DAGCombiner.cpp revision 5b8f82e35b51bf007de07a7ca9347d804084ddf8
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  return RV;
762}
763
764/// getInputChainForNode - Given a node, return its input chain if it has one,
765/// otherwise return a null sd operand.
766static SDOperand getInputChainForNode(SDNode *N) {
767  if (unsigned NumOps = N->getNumOperands()) {
768    if (N->getOperand(0).getValueType() == MVT::Other)
769      return N->getOperand(0);
770    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
771      return N->getOperand(NumOps-1);
772    for (unsigned i = 1; i < NumOps-1; ++i)
773      if (N->getOperand(i).getValueType() == MVT::Other)
774        return N->getOperand(i);
775  }
776  return SDOperand(0, 0);
777}
778
779SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
780  // If N has two operands, where one has an input chain equal to the other,
781  // the 'other' chain is redundant.
782  if (N->getNumOperands() == 2) {
783    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
784      return N->getOperand(0);
785    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
786      return N->getOperand(1);
787  }
788
789  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
790  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
791  SmallPtrSet<SDNode*, 16> SeenOps;
792  bool Changed = false;             // If we should replace this token factor.
793
794  // Start out with this token factor.
795  TFs.push_back(N);
796
797  // Iterate through token factors.  The TFs grows when new token factors are
798  // encountered.
799  for (unsigned i = 0; i < TFs.size(); ++i) {
800    SDNode *TF = TFs[i];
801
802    // Check each of the operands.
803    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
804      SDOperand Op = TF->getOperand(i);
805
806      switch (Op.getOpcode()) {
807      case ISD::EntryToken:
808        // Entry tokens don't need to be added to the list. They are
809        // rededundant.
810        Changed = true;
811        break;
812
813      case ISD::TokenFactor:
814        if ((CombinerAA || Op.hasOneUse()) &&
815            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
816          // Queue up for processing.
817          TFs.push_back(Op.Val);
818          // Clean up in case the token factor is removed.
819          AddToWorkList(Op.Val);
820          Changed = true;
821          break;
822        }
823        // Fall thru
824
825      default:
826        // Only add if it isn't already in the list.
827        if (SeenOps.insert(Op.Val))
828          Ops.push_back(Op);
829        else
830          Changed = true;
831        break;
832      }
833    }
834  }
835
836  SDOperand Result;
837
838  // If we've change things around then replace token factor.
839  if (Changed) {
840    if (Ops.empty()) {
841      // The entry token is the only possible outcome.
842      Result = DAG.getEntryNode();
843    } else {
844      // New and improved token factor.
845      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
846    }
847
848    // Don't add users to work list.
849    return CombineTo(N, Result, false);
850  }
851
852  return Result;
853}
854
855/// MERGE_VALUES can always be eliminated.
856SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
857  WorkListRemover DeadNodes(*this);
858  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
859    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
860                                  &DeadNodes);
861  removeFromWorkList(N);
862  DAG.DeleteNode(N);
863  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
864}
865
866
867static
868SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
869  MVT::ValueType VT = N0.getValueType();
870  SDOperand N00 = N0.getOperand(0);
871  SDOperand N01 = N0.getOperand(1);
872  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
873  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
874      isa<ConstantSDNode>(N00.getOperand(1))) {
875    N0 = DAG.getNode(ISD::ADD, VT,
876                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
877                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
878    return DAG.getNode(ISD::ADD, VT, N0, N1);
879  }
880  return SDOperand();
881}
882
883static
884SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
885                              SelectionDAG &DAG) {
886  MVT::ValueType VT = N->getValueType(0);
887  unsigned Opc = N->getOpcode();
888  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
889  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
890  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
891  ISD::CondCode CC = ISD::SETCC_INVALID;
892  if (isSlctCC)
893    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
894  else {
895    SDOperand CCOp = Slct.getOperand(0);
896    if (CCOp.getOpcode() == ISD::SETCC)
897      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
898  }
899
900  bool DoXform = false;
901  bool InvCC = false;
902  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
903          "Bad input!");
904  if (LHS.getOpcode() == ISD::Constant &&
905      cast<ConstantSDNode>(LHS)->isNullValue())
906    DoXform = true;
907  else if (CC != ISD::SETCC_INVALID &&
908           RHS.getOpcode() == ISD::Constant &&
909           cast<ConstantSDNode>(RHS)->isNullValue()) {
910    std::swap(LHS, RHS);
911    SDOperand Op0 = Slct.getOperand(0);
912    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
913                                : Op0.getOperand(0).getValueType());
914    CC = ISD::getSetCCInverse(CC, isInt);
915    DoXform = true;
916    InvCC = true;
917  }
918
919  if (DoXform) {
920    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
921    if (isSlctCC)
922      return DAG.getSelectCC(OtherOp, Result,
923                             Slct.getOperand(0), Slct.getOperand(1), CC);
924    SDOperand CCOp = Slct.getOperand(0);
925    if (InvCC)
926      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
927                          CCOp.getOperand(1), CC);
928    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
929  }
930  return SDOperand();
931}
932
933SDOperand DAGCombiner::visitADD(SDNode *N) {
934  SDOperand N0 = N->getOperand(0);
935  SDOperand N1 = N->getOperand(1);
936  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
937  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
938  MVT::ValueType VT = N0.getValueType();
939
940  // fold vector ops
941  if (MVT::isVector(VT)) {
942    SDOperand FoldedVOp = SimplifyVBinOp(N);
943    if (FoldedVOp.Val) return FoldedVOp;
944  }
945
946  // fold (add x, undef) -> undef
947  if (N0.getOpcode() == ISD::UNDEF)
948    return N0;
949  if (N1.getOpcode() == ISD::UNDEF)
950    return N1;
951  // fold (add c1, c2) -> c1+c2
952  if (N0C && N1C)
953    return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT);
954  // canonicalize constant to RHS
955  if (N0C && !N1C)
956    return DAG.getNode(ISD::ADD, VT, N1, N0);
957  // fold (add x, 0) -> x
958  if (N1C && N1C->isNullValue())
959    return N0;
960  // fold ((c1-A)+c2) -> (c1+c2)-A
961  if (N1C && N0.getOpcode() == ISD::SUB)
962    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
963      return DAG.getNode(ISD::SUB, VT,
964                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
965                         N0.getOperand(1));
966  // reassociate add
967  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
968  if (RADD.Val != 0)
969    return RADD;
970  // fold ((0-A) + B) -> B-A
971  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
972      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
973    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
974  // fold (A + (0-B)) -> A-B
975  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
976      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
977    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
978  // fold (A+(B-A)) -> B
979  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
980    return N1.getOperand(0);
981
982  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
983    return SDOperand(N, 0);
984
985  // fold (a+b) -> (a|b) iff a and b share no bits.
986  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
987    APInt LHSZero, LHSOne;
988    APInt RHSZero, RHSOne;
989    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
990    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
991    if (LHSZero.getBoolValue()) {
992      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
993
994      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
995      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
996      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
997          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
998        return DAG.getNode(ISD::OR, VT, N0, N1);
999    }
1000  }
1001
1002  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1003  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1004    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1005    if (Result.Val) return Result;
1006  }
1007  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1008    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1009    if (Result.Val) return Result;
1010  }
1011
1012  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1013  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1014    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1015    if (Result.Val) return Result;
1016  }
1017  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1018    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1019    if (Result.Val) return Result;
1020  }
1021
1022  return SDOperand();
1023}
1024
1025SDOperand DAGCombiner::visitADDC(SDNode *N) {
1026  SDOperand N0 = N->getOperand(0);
1027  SDOperand N1 = N->getOperand(1);
1028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1030  MVT::ValueType VT = N0.getValueType();
1031
1032  // If the flag result is dead, turn this into an ADD.
1033  if (N->hasNUsesOfValue(0, 1))
1034    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1035                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1036
1037  // canonicalize constant to RHS.
1038  if (N0C && !N1C) {
1039    SDOperand Ops[] = { N1, N0 };
1040    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1041  }
1042
1043  // fold (addc x, 0) -> x + no carry out
1044  if (N1C && N1C->isNullValue())
1045    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1046
1047  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1048  APInt LHSZero, LHSOne;
1049  APInt RHSZero, RHSOne;
1050  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1051  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1052  if (LHSZero.getBoolValue()) {
1053    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1054
1055    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1058        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1059      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1060                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1061  }
1062
1063  return SDOperand();
1064}
1065
1066SDOperand DAGCombiner::visitADDE(SDNode *N) {
1067  SDOperand N0 = N->getOperand(0);
1068  SDOperand N1 = N->getOperand(1);
1069  SDOperand CarryIn = N->getOperand(2);
1070  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1071  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1072  //MVT::ValueType VT = N0.getValueType();
1073
1074  // canonicalize constant to RHS
1075  if (N0C && !N1C) {
1076    SDOperand Ops[] = { N1, N0, CarryIn };
1077    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1078  }
1079
1080  // fold (adde x, y, false) -> (addc x, y)
1081  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1082    SDOperand Ops[] = { N1, N0 };
1083    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1084  }
1085
1086  return SDOperand();
1087}
1088
1089
1090
1091SDOperand DAGCombiner::visitSUB(SDNode *N) {
1092  SDOperand N0 = N->getOperand(0);
1093  SDOperand N1 = N->getOperand(1);
1094  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1096  MVT::ValueType VT = N0.getValueType();
1097
1098  // fold vector ops
1099  if (MVT::isVector(VT)) {
1100    SDOperand FoldedVOp = SimplifyVBinOp(N);
1101    if (FoldedVOp.Val) return FoldedVOp;
1102  }
1103
1104  // fold (sub x, x) -> 0
1105  if (N0 == N1) {
1106    if (ISD::isBuildVectorAllZeros(N0.Val))
1107      // Zero vectors might be normalized to a particular vector type to ensure
1108      // they are CSE'd. Return it as it is.
1109      return N0;
1110    return DAG.getConstant(0, N->getValueType(0));
1111  }
1112  // fold (sub c1, c2) -> c1-c2
1113  if (N0C && N1C)
1114    return DAG.getNode(ISD::SUB, VT, N0, N1);
1115  // fold (sub x, c) -> (add x, -c)
1116  if (N1C)
1117    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1118  // fold (A+B)-A -> B
1119  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1120    return N0.getOperand(1);
1121  // fold (A+B)-B -> A
1122  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1123    return N0.getOperand(0);
1124  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1125  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1126    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1127    if (Result.Val) return Result;
1128  }
1129  // If either operand of a sub is undef, the result is undef
1130  if (N0.getOpcode() == ISD::UNDEF)
1131    return N0;
1132  if (N1.getOpcode() == ISD::UNDEF)
1133    return N1;
1134
1135  return SDOperand();
1136}
1137
1138SDOperand DAGCombiner::visitMUL(SDNode *N) {
1139  SDOperand N0 = N->getOperand(0);
1140  SDOperand N1 = N->getOperand(1);
1141  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1142  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1143  MVT::ValueType VT = N0.getValueType();
1144
1145  // fold vector ops
1146  if (MVT::isVector(VT)) {
1147    SDOperand FoldedVOp = SimplifyVBinOp(N);
1148    if (FoldedVOp.Val) return FoldedVOp;
1149  }
1150
1151  // fold (mul x, undef) -> 0
1152  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1153    return DAG.getConstant(0, VT);
1154  // fold (mul c1, c2) -> c1*c2
1155  if (N0C && N1C)
1156    return DAG.getNode(ISD::MUL, VT, N0, N1);
1157  // canonicalize constant to RHS
1158  if (N0C && !N1C)
1159    return DAG.getNode(ISD::MUL, VT, N1, N0);
1160  // fold (mul x, 0) -> 0
1161  if (N1C && N1C->isNullValue())
1162    return N1;
1163  // fold (mul x, -1) -> 0-x
1164  if (N1C && N1C->isAllOnesValue())
1165    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1166  // fold (mul x, (1 << c)) -> x << c
1167  if (N1C && isPowerOf2_64(N1C->getValue()))
1168    return DAG.getNode(ISD::SHL, VT, N0,
1169                       DAG.getConstant(Log2_64(N1C->getValue()),
1170                                       TLI.getShiftAmountTy()));
1171  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1172  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1173    // FIXME: If the input is something that is easily negated (e.g. a
1174    // single-use add), we should put the negate there.
1175    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1176                       DAG.getNode(ISD::SHL, VT, N0,
1177                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1178                                            TLI.getShiftAmountTy())));
1179  }
1180
1181  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1182  if (N1C && N0.getOpcode() == ISD::SHL &&
1183      isa<ConstantSDNode>(N0.getOperand(1))) {
1184    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1185    AddToWorkList(C3.Val);
1186    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1187  }
1188
1189  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1190  // use.
1191  {
1192    SDOperand Sh(0,0), Y(0,0);
1193    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1194    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1195        N0.Val->hasOneUse()) {
1196      Sh = N0; Y = N1;
1197    } else if (N1.getOpcode() == ISD::SHL &&
1198               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1199      Sh = N1; Y = N0;
1200    }
1201    if (Sh.Val) {
1202      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1203      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1204    }
1205  }
1206  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1207  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1208      isa<ConstantSDNode>(N0.getOperand(1))) {
1209    return DAG.getNode(ISD::ADD, VT,
1210                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1211                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1212  }
1213
1214  // reassociate mul
1215  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1216  if (RMUL.Val != 0)
1217    return RMUL;
1218
1219  return SDOperand();
1220}
1221
1222SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1223  SDOperand N0 = N->getOperand(0);
1224  SDOperand N1 = N->getOperand(1);
1225  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1226  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1227  MVT::ValueType VT = N->getValueType(0);
1228
1229  // fold vector ops
1230  if (MVT::isVector(VT)) {
1231    SDOperand FoldedVOp = SimplifyVBinOp(N);
1232    if (FoldedVOp.Val) return FoldedVOp;
1233  }
1234
1235  // fold (sdiv c1, c2) -> c1/c2
1236  if (N0C && N1C && !N1C->isNullValue())
1237    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1238  // fold (sdiv X, 1) -> X
1239  if (N1C && N1C->getSignExtended() == 1LL)
1240    return N0;
1241  // fold (sdiv X, -1) -> 0-X
1242  if (N1C && N1C->isAllOnesValue())
1243    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1244  // If we know the sign bits of both operands are zero, strength reduce to a
1245  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1246  if (!MVT::isVector(VT)) {
1247    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1248      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1249  }
1250  // fold (sdiv X, pow2) -> simple ops after legalize
1251  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1252      (isPowerOf2_64(N1C->getSignExtended()) ||
1253       isPowerOf2_64(-N1C->getSignExtended()))) {
1254    // If dividing by powers of two is cheap, then don't perform the following
1255    // fold.
1256    if (TLI.isPow2DivCheap())
1257      return SDOperand();
1258    int64_t pow2 = N1C->getSignExtended();
1259    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1260    unsigned lg2 = Log2_64(abs2);
1261    // Splat the sign bit into the register
1262    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1263                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1264                                                TLI.getShiftAmountTy()));
1265    AddToWorkList(SGN.Val);
1266    // Add (N0 < 0) ? abs2 - 1 : 0;
1267    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1268                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1269                                                TLI.getShiftAmountTy()));
1270    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1271    AddToWorkList(SRL.Val);
1272    AddToWorkList(ADD.Val);    // Divide by pow2
1273    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1274                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1275    // If we're dividing by a positive value, we're done.  Otherwise, we must
1276    // negate the result.
1277    if (pow2 > 0)
1278      return SRA;
1279    AddToWorkList(SRA.Val);
1280    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1281  }
1282  // if integer divide is expensive and we satisfy the requirements, emit an
1283  // alternate sequence.
1284  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1285      !TLI.isIntDivCheap()) {
1286    SDOperand Op = BuildSDIV(N);
1287    if (Op.Val) return Op;
1288  }
1289
1290  // undef / X -> 0
1291  if (N0.getOpcode() == ISD::UNDEF)
1292    return DAG.getConstant(0, VT);
1293  // X / undef -> undef
1294  if (N1.getOpcode() == ISD::UNDEF)
1295    return N1;
1296
1297  return SDOperand();
1298}
1299
1300SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1301  SDOperand N0 = N->getOperand(0);
1302  SDOperand N1 = N->getOperand(1);
1303  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1304  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1305  MVT::ValueType VT = N->getValueType(0);
1306
1307  // fold vector ops
1308  if (MVT::isVector(VT)) {
1309    SDOperand FoldedVOp = SimplifyVBinOp(N);
1310    if (FoldedVOp.Val) return FoldedVOp;
1311  }
1312
1313  // fold (udiv c1, c2) -> c1/c2
1314  if (N0C && N1C && !N1C->isNullValue())
1315    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1316  // fold (udiv x, (1 << c)) -> x >>u c
1317  if (N1C && isPowerOf2_64(N1C->getValue()))
1318    return DAG.getNode(ISD::SRL, VT, N0,
1319                       DAG.getConstant(Log2_64(N1C->getValue()),
1320                                       TLI.getShiftAmountTy()));
1321  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1322  if (N1.getOpcode() == ISD::SHL) {
1323    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1324      if (isPowerOf2_64(SHC->getValue())) {
1325        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1326        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1327                                    DAG.getConstant(Log2_64(SHC->getValue()),
1328                                                    ADDVT));
1329        AddToWorkList(Add.Val);
1330        return DAG.getNode(ISD::SRL, VT, N0, Add);
1331      }
1332    }
1333  }
1334  // fold (udiv x, c) -> alternate
1335  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1336    SDOperand Op = BuildUDIV(N);
1337    if (Op.Val) return Op;
1338  }
1339
1340  // undef / X -> 0
1341  if (N0.getOpcode() == ISD::UNDEF)
1342    return DAG.getConstant(0, VT);
1343  // X / undef -> undef
1344  if (N1.getOpcode() == ISD::UNDEF)
1345    return N1;
1346
1347  return SDOperand();
1348}
1349
1350SDOperand DAGCombiner::visitSREM(SDNode *N) {
1351  SDOperand N0 = N->getOperand(0);
1352  SDOperand N1 = N->getOperand(1);
1353  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1354  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1355  MVT::ValueType VT = N->getValueType(0);
1356
1357  // fold (srem c1, c2) -> c1%c2
1358  if (N0C && N1C && !N1C->isNullValue())
1359    return DAG.getNode(ISD::SREM, VT, N0, N1);
1360  // If we know the sign bits of both operands are zero, strength reduce to a
1361  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1362  if (!MVT::isVector(VT)) {
1363    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1364      return DAG.getNode(ISD::UREM, VT, N0, N1);
1365  }
1366
1367  // If X/C can be simplified by the division-by-constant logic, lower
1368  // X%C to the equivalent of X-X/C*C.
1369  if (N1C && !N1C->isNullValue()) {
1370    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1371    AddToWorkList(Div.Val);
1372    SDOperand OptimizedDiv = combine(Div.Val);
1373    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1374      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1375      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1376      AddToWorkList(Mul.Val);
1377      return Sub;
1378    }
1379  }
1380
1381  // undef % X -> 0
1382  if (N0.getOpcode() == ISD::UNDEF)
1383    return DAG.getConstant(0, VT);
1384  // X % undef -> undef
1385  if (N1.getOpcode() == ISD::UNDEF)
1386    return N1;
1387
1388  return SDOperand();
1389}
1390
1391SDOperand DAGCombiner::visitUREM(SDNode *N) {
1392  SDOperand N0 = N->getOperand(0);
1393  SDOperand N1 = N->getOperand(1);
1394  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1395  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1396  MVT::ValueType VT = N->getValueType(0);
1397
1398  // fold (urem c1, c2) -> c1%c2
1399  if (N0C && N1C && !N1C->isNullValue())
1400    return DAG.getNode(ISD::UREM, VT, N0, N1);
1401  // fold (urem x, pow2) -> (and x, pow2-1)
1402  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1403    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1404  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1405  if (N1.getOpcode() == ISD::SHL) {
1406    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1407      if (isPowerOf2_64(SHC->getValue())) {
1408        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1409        AddToWorkList(Add.Val);
1410        return DAG.getNode(ISD::AND, VT, N0, Add);
1411      }
1412    }
1413  }
1414
1415  // If X/C can be simplified by the division-by-constant logic, lower
1416  // X%C to the equivalent of X-X/C*C.
1417  if (N1C && !N1C->isNullValue()) {
1418    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1419    SDOperand OptimizedDiv = combine(Div.Val);
1420    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1421      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1422      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1423      AddToWorkList(Mul.Val);
1424      return Sub;
1425    }
1426  }
1427
1428  // undef % X -> 0
1429  if (N0.getOpcode() == ISD::UNDEF)
1430    return DAG.getConstant(0, VT);
1431  // X % undef -> undef
1432  if (N1.getOpcode() == ISD::UNDEF)
1433    return N1;
1434
1435  return SDOperand();
1436}
1437
1438SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1439  SDOperand N0 = N->getOperand(0);
1440  SDOperand N1 = N->getOperand(1);
1441  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1442  MVT::ValueType VT = N->getValueType(0);
1443
1444  // fold (mulhs x, 0) -> 0
1445  if (N1C && N1C->isNullValue())
1446    return N1;
1447  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1448  if (N1C && N1C->getValue() == 1)
1449    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1450                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1451                                       TLI.getShiftAmountTy()));
1452  // fold (mulhs x, undef) -> 0
1453  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1454    return DAG.getConstant(0, VT);
1455
1456  return SDOperand();
1457}
1458
1459SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1460  SDOperand N0 = N->getOperand(0);
1461  SDOperand N1 = N->getOperand(1);
1462  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1463  MVT::ValueType VT = N->getValueType(0);
1464
1465  // fold (mulhu x, 0) -> 0
1466  if (N1C && N1C->isNullValue())
1467    return N1;
1468  // fold (mulhu x, 1) -> 0
1469  if (N1C && N1C->getValue() == 1)
1470    return DAG.getConstant(0, N0.getValueType());
1471  // fold (mulhu x, undef) -> 0
1472  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1473    return DAG.getConstant(0, VT);
1474
1475  return SDOperand();
1476}
1477
1478/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1479/// compute two values. LoOp and HiOp give the opcodes for the two computations
1480/// that are being performed. Return true if a simplification was made.
1481///
1482SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1483                                                  unsigned HiOp) {
1484  // If the high half is not needed, just compute the low half.
1485  bool HiExists = N->hasAnyUseOfValue(1);
1486  if (!HiExists &&
1487      (!AfterLegalize ||
1488       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1489    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1490                                N->getNumOperands());
1491    return CombineTo(N, Res, Res);
1492  }
1493
1494  // If the low half is not needed, just compute the high half.
1495  bool LoExists = N->hasAnyUseOfValue(0);
1496  if (!LoExists &&
1497      (!AfterLegalize ||
1498       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1499    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1500                                N->getNumOperands());
1501    return CombineTo(N, Res, Res);
1502  }
1503
1504  // If both halves are used, return as it is.
1505  if (LoExists && HiExists)
1506    return SDOperand();
1507
1508  // If the two computed results can be simplified separately, separate them.
1509  if (LoExists) {
1510    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1511                               N->op_begin(), N->getNumOperands());
1512    AddToWorkList(Lo.Val);
1513    SDOperand LoOpt = combine(Lo.Val);
1514    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1515        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1516      return CombineTo(N, LoOpt, LoOpt);
1517  }
1518
1519  if (HiExists) {
1520    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1521                               N->op_begin(), N->getNumOperands());
1522    AddToWorkList(Hi.Val);
1523    SDOperand HiOpt = combine(Hi.Val);
1524    if (HiOpt.Val && HiOpt != Hi &&
1525        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1526      return CombineTo(N, HiOpt, HiOpt);
1527  }
1528  return SDOperand();
1529}
1530
1531SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1532  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1533  if (Res.Val) return Res;
1534
1535  return SDOperand();
1536}
1537
1538SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1539  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1540  if (Res.Val) return Res;
1541
1542  return SDOperand();
1543}
1544
1545SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1546  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1547  if (Res.Val) return Res;
1548
1549  return SDOperand();
1550}
1551
1552SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1553  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1554  if (Res.Val) return Res;
1555
1556  return SDOperand();
1557}
1558
1559/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1560/// two operands of the same opcode, try to simplify it.
1561SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1562  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1563  MVT::ValueType VT = N0.getValueType();
1564  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1565
1566  // For each of OP in AND/OR/XOR:
1567  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1568  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1569  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1570  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1571  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1572       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1573      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1574    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1575                                   N0.getOperand(0).getValueType(),
1576                                   N0.getOperand(0), N1.getOperand(0));
1577    AddToWorkList(ORNode.Val);
1578    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1579  }
1580
1581  // For each of OP in SHL/SRL/SRA/AND...
1582  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1583  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1584  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1585  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1586       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1587      N0.getOperand(1) == N1.getOperand(1)) {
1588    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1589                                   N0.getOperand(0).getValueType(),
1590                                   N0.getOperand(0), N1.getOperand(0));
1591    AddToWorkList(ORNode.Val);
1592    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1593  }
1594
1595  return SDOperand();
1596}
1597
1598SDOperand DAGCombiner::visitAND(SDNode *N) {
1599  SDOperand N0 = N->getOperand(0);
1600  SDOperand N1 = N->getOperand(1);
1601  SDOperand LL, LR, RL, RR, CC0, CC1;
1602  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1603  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1604  MVT::ValueType VT = N1.getValueType();
1605  unsigned BitWidth = MVT::getSizeInBits(VT);
1606
1607  // fold vector ops
1608  if (MVT::isVector(VT)) {
1609    SDOperand FoldedVOp = SimplifyVBinOp(N);
1610    if (FoldedVOp.Val) return FoldedVOp;
1611  }
1612
1613  // fold (and x, undef) -> 0
1614  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1615    return DAG.getConstant(0, VT);
1616  // fold (and c1, c2) -> c1&c2
1617  if (N0C && N1C)
1618    return DAG.getNode(ISD::AND, VT, N0, N1);
1619  // canonicalize constant to RHS
1620  if (N0C && !N1C)
1621    return DAG.getNode(ISD::AND, VT, N1, N0);
1622  // fold (and x, -1) -> x
1623  if (N1C && N1C->isAllOnesValue())
1624    return N0;
1625  // if (and x, c) is known to be zero, return 0
1626  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1627                                   APInt::getAllOnesValue(BitWidth)))
1628    return DAG.getConstant(0, VT);
1629  // reassociate and
1630  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1631  if (RAND.Val != 0)
1632    return RAND;
1633  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1634  if (N1C && N0.getOpcode() == ISD::OR)
1635    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1636      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1637        return N1;
1638  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1639  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1640    SDOperand N0Op0 = N0.getOperand(0);
1641    APInt Mask = ~N1C->getAPIntValue();
1642    Mask.trunc(N0Op0.getValueSizeInBits());
1643    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1644      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1645                                   N0Op0);
1646
1647      // Replace uses of the AND with uses of the Zero extend node.
1648      CombineTo(N, Zext);
1649
1650      // We actually want to replace all uses of the any_extend with the
1651      // zero_extend, to avoid duplicating things.  This will later cause this
1652      // AND to be folded.
1653      CombineTo(N0.Val, Zext);
1654      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1655    }
1656  }
1657  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1658  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1659    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1660    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1661
1662    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1663        MVT::isInteger(LL.getValueType())) {
1664      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1665      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1666        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1667        AddToWorkList(ORNode.Val);
1668        return DAG.getSetCC(VT, ORNode, LR, Op1);
1669      }
1670      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1671      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1672        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1673        AddToWorkList(ANDNode.Val);
1674        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1675      }
1676      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1677      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1678        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1679        AddToWorkList(ORNode.Val);
1680        return DAG.getSetCC(VT, ORNode, LR, Op1);
1681      }
1682    }
1683    // canonicalize equivalent to ll == rl
1684    if (LL == RR && LR == RL) {
1685      Op1 = ISD::getSetCCSwappedOperands(Op1);
1686      std::swap(RL, RR);
1687    }
1688    if (LL == RL && LR == RR) {
1689      bool isInteger = MVT::isInteger(LL.getValueType());
1690      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1691      if (Result != ISD::SETCC_INVALID)
1692        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1693    }
1694  }
1695
1696  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1697  if (N0.getOpcode() == N1.getOpcode()) {
1698    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1699    if (Tmp.Val) return Tmp;
1700  }
1701
1702  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1703  // fold (and (sra)) -> (and (srl)) when possible.
1704  if (!MVT::isVector(VT) &&
1705      SimplifyDemandedBits(SDOperand(N, 0)))
1706    return SDOperand(N, 0);
1707  // fold (zext_inreg (extload x)) -> (zextload x)
1708  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1709    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1710    MVT::ValueType EVT = LN0->getMemoryVT();
1711    // If we zero all the possible extended bits, then we can turn this into
1712    // a zextload if we are running before legalize or the operation is legal.
1713    unsigned BitWidth = N1.getValueSizeInBits();
1714    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1715                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1716        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1717      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1718                                         LN0->getBasePtr(), LN0->getSrcValue(),
1719                                         LN0->getSrcValueOffset(), EVT,
1720                                         LN0->isVolatile(),
1721                                         LN0->getAlignment());
1722      AddToWorkList(N);
1723      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1724      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1725    }
1726  }
1727  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1728  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1729      N0.hasOneUse()) {
1730    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1731    MVT::ValueType EVT = LN0->getMemoryVT();
1732    // If we zero all the possible extended bits, then we can turn this into
1733    // a zextload if we are running before legalize or the operation is legal.
1734    unsigned BitWidth = N1.getValueSizeInBits();
1735    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1736                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1737        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1738      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1739                                         LN0->getBasePtr(), LN0->getSrcValue(),
1740                                         LN0->getSrcValueOffset(), EVT,
1741                                         LN0->isVolatile(),
1742                                         LN0->getAlignment());
1743      AddToWorkList(N);
1744      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1745      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1746    }
1747  }
1748
1749  // fold (and (load x), 255) -> (zextload x, i8)
1750  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1751  if (N1C && N0.getOpcode() == ISD::LOAD) {
1752    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1753    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1754        LN0->isUnindexed() && N0.hasOneUse()) {
1755      MVT::ValueType EVT, LoadedVT;
1756      if (N1C->getValue() == 255)
1757        EVT = MVT::i8;
1758      else if (N1C->getValue() == 65535)
1759        EVT = MVT::i16;
1760      else if (N1C->getValue() == ~0U)
1761        EVT = MVT::i32;
1762      else
1763        EVT = MVT::Other;
1764
1765      LoadedVT = LN0->getMemoryVT();
1766      if (EVT != MVT::Other && LoadedVT > EVT &&
1767          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1768        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1769        // For big endian targets, we need to add an offset to the pointer to
1770        // load the correct bytes.  For little endian systems, we merely need to
1771        // read fewer bytes from the same pointer.
1772        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1773        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1774        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1775        unsigned Alignment = LN0->getAlignment();
1776        SDOperand NewPtr = LN0->getBasePtr();
1777        if (TLI.isBigEndian()) {
1778          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1779                               DAG.getConstant(PtrOff, PtrType));
1780          Alignment = MinAlign(Alignment, PtrOff);
1781        }
1782        AddToWorkList(NewPtr.Val);
1783        SDOperand Load =
1784          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1785                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1786                         LN0->isVolatile(), Alignment);
1787        AddToWorkList(N);
1788        CombineTo(N0.Val, Load, Load.getValue(1));
1789        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1790      }
1791    }
1792  }
1793
1794  return SDOperand();
1795}
1796
1797SDOperand DAGCombiner::visitOR(SDNode *N) {
1798  SDOperand N0 = N->getOperand(0);
1799  SDOperand N1 = N->getOperand(1);
1800  SDOperand LL, LR, RL, RR, CC0, CC1;
1801  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1802  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1803  MVT::ValueType VT = N1.getValueType();
1804
1805  // fold vector ops
1806  if (MVT::isVector(VT)) {
1807    SDOperand FoldedVOp = SimplifyVBinOp(N);
1808    if (FoldedVOp.Val) return FoldedVOp;
1809  }
1810
1811  // fold (or x, undef) -> -1
1812  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1813    return DAG.getConstant(~0ULL, VT);
1814  // fold (or c1, c2) -> c1|c2
1815  if (N0C && N1C)
1816    return DAG.getNode(ISD::OR, VT, N0, N1);
1817  // canonicalize constant to RHS
1818  if (N0C && !N1C)
1819    return DAG.getNode(ISD::OR, VT, N1, N0);
1820  // fold (or x, 0) -> x
1821  if (N1C && N1C->isNullValue())
1822    return N0;
1823  // fold (or x, -1) -> -1
1824  if (N1C && N1C->isAllOnesValue())
1825    return N1;
1826  // fold (or x, c) -> c iff (x & ~c) == 0
1827  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1828    return N1;
1829  // reassociate or
1830  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1831  if (ROR.Val != 0)
1832    return ROR;
1833  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1834  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1835             isa<ConstantSDNode>(N0.getOperand(1))) {
1836    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1837    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1838                                                 N1),
1839                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1840  }
1841  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1842  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1843    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1844    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1845
1846    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1847        MVT::isInteger(LL.getValueType())) {
1848      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1849      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1850      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1851          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1852        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1853        AddToWorkList(ORNode.Val);
1854        return DAG.getSetCC(VT, ORNode, LR, Op1);
1855      }
1856      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1857      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1858      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1859          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1860        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1861        AddToWorkList(ANDNode.Val);
1862        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1863      }
1864    }
1865    // canonicalize equivalent to ll == rl
1866    if (LL == RR && LR == RL) {
1867      Op1 = ISD::getSetCCSwappedOperands(Op1);
1868      std::swap(RL, RR);
1869    }
1870    if (LL == RL && LR == RR) {
1871      bool isInteger = MVT::isInteger(LL.getValueType());
1872      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1873      if (Result != ISD::SETCC_INVALID)
1874        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1875    }
1876  }
1877
1878  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1879  if (N0.getOpcode() == N1.getOpcode()) {
1880    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1881    if (Tmp.Val) return Tmp;
1882  }
1883
1884  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1885  if (N0.getOpcode() == ISD::AND &&
1886      N1.getOpcode() == ISD::AND &&
1887      N0.getOperand(1).getOpcode() == ISD::Constant &&
1888      N1.getOperand(1).getOpcode() == ISD::Constant &&
1889      // Don't increase # computations.
1890      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1891    // We can only do this xform if we know that bits from X that are set in C2
1892    // but not in C1 are already zero.  Likewise for Y.
1893    const APInt &LHSMask =
1894      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1895    const APInt &RHSMask =
1896      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1897
1898    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1899        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1900      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1901      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1902    }
1903  }
1904
1905
1906  // See if this is some rotate idiom.
1907  if (SDNode *Rot = MatchRotate(N0, N1))
1908    return SDOperand(Rot, 0);
1909
1910  return SDOperand();
1911}
1912
1913
1914/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1915static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1916  if (Op.getOpcode() == ISD::AND) {
1917    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1918      Mask = Op.getOperand(1);
1919      Op = Op.getOperand(0);
1920    } else {
1921      return false;
1922    }
1923  }
1924
1925  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1926    Shift = Op;
1927    return true;
1928  }
1929  return false;
1930}
1931
1932
1933// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1934// idioms for rotate, and if the target supports rotation instructions, generate
1935// a rot[lr].
1936SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1937  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1938  MVT::ValueType VT = LHS.getValueType();
1939  if (!TLI.isTypeLegal(VT)) return 0;
1940
1941  // The target must have at least one rotate flavor.
1942  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1943  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1944  if (!HasROTL && !HasROTR) return 0;
1945
1946  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1947  SDOperand LHSShift;   // The shift.
1948  SDOperand LHSMask;    // AND value if any.
1949  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1950    return 0; // Not part of a rotate.
1951
1952  SDOperand RHSShift;   // The shift.
1953  SDOperand RHSMask;    // AND value if any.
1954  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1955    return 0; // Not part of a rotate.
1956
1957  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1958    return 0;   // Not shifting the same value.
1959
1960  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1961    return 0;   // Shifts must disagree.
1962
1963  // Canonicalize shl to left side in a shl/srl pair.
1964  if (RHSShift.getOpcode() == ISD::SHL) {
1965    std::swap(LHS, RHS);
1966    std::swap(LHSShift, RHSShift);
1967    std::swap(LHSMask , RHSMask );
1968  }
1969
1970  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1971  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1972  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1973  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1974
1975  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1976  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1977  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1978      RHSShiftAmt.getOpcode() == ISD::Constant) {
1979    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1980    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1981    if ((LShVal + RShVal) != OpSizeInBits)
1982      return 0;
1983
1984    SDOperand Rot;
1985    if (HasROTL)
1986      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1987    else
1988      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1989
1990    // If there is an AND of either shifted operand, apply it to the result.
1991    if (LHSMask.Val || RHSMask.Val) {
1992      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
1993
1994      if (LHSMask.Val) {
1995        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
1996        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
1997      }
1998      if (RHSMask.Val) {
1999        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2000        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2001      }
2002
2003      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2004    }
2005
2006    return Rot.Val;
2007  }
2008
2009  // If there is a mask here, and we have a variable shift, we can't be sure
2010  // that we're masking out the right stuff.
2011  if (LHSMask.Val || RHSMask.Val)
2012    return 0;
2013
2014  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2015  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2016  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2017      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2018    if (ConstantSDNode *SUBC =
2019          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2020      if (SUBC->getValue() == OpSizeInBits) {
2021        if (HasROTL)
2022          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2023        else
2024          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2025      }
2026    }
2027  }
2028
2029  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2030  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2031  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2032      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2033    if (ConstantSDNode *SUBC =
2034          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2035      if (SUBC->getValue() == OpSizeInBits) {
2036        if (HasROTL)
2037          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2038        else
2039          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2040      }
2041    }
2042  }
2043
2044  // Look for sign/zext/any-extended cases:
2045  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2046       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2047       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2048      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2049       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2050       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2051    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2052    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2053    if (RExtOp0.getOpcode() == ISD::SUB &&
2054        RExtOp0.getOperand(1) == LExtOp0) {
2055      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2056      //   (rotr x, y)
2057      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2058      //   (rotl x, (sub 32, y))
2059      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2060        if (SUBC->getValue() == OpSizeInBits) {
2061          if (HasROTL)
2062            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2063          else
2064            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2065        }
2066      }
2067    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2068               RExtOp0 == LExtOp0.getOperand(1)) {
2069      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2070      //   (rotl x, y)
2071      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2072      //   (rotr x, (sub 32, y))
2073      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2074        if (SUBC->getValue() == OpSizeInBits) {
2075          if (HasROTL)
2076            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2077          else
2078            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2079        }
2080      }
2081    }
2082  }
2083
2084  return 0;
2085}
2086
2087
2088SDOperand DAGCombiner::visitXOR(SDNode *N) {
2089  SDOperand N0 = N->getOperand(0);
2090  SDOperand N1 = N->getOperand(1);
2091  SDOperand LHS, RHS, CC;
2092  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2093  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2094  MVT::ValueType VT = N0.getValueType();
2095
2096  // fold vector ops
2097  if (MVT::isVector(VT)) {
2098    SDOperand FoldedVOp = SimplifyVBinOp(N);
2099    if (FoldedVOp.Val) return FoldedVOp;
2100  }
2101
2102  // fold (xor x, undef) -> undef
2103  if (N0.getOpcode() == ISD::UNDEF)
2104    return N0;
2105  if (N1.getOpcode() == ISD::UNDEF)
2106    return N1;
2107  // fold (xor c1, c2) -> c1^c2
2108  if (N0C && N1C)
2109    return DAG.getNode(ISD::XOR, VT, N0, N1);
2110  // canonicalize constant to RHS
2111  if (N0C && !N1C)
2112    return DAG.getNode(ISD::XOR, VT, N1, N0);
2113  // fold (xor x, 0) -> x
2114  if (N1C && N1C->isNullValue())
2115    return N0;
2116  // reassociate xor
2117  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2118  if (RXOR.Val != 0)
2119    return RXOR;
2120  // fold !(x cc y) -> (x !cc y)
2121  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2122    bool isInt = MVT::isInteger(LHS.getValueType());
2123    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2124                                               isInt);
2125    if (N0.getOpcode() == ISD::SETCC)
2126      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2127    if (N0.getOpcode() == ISD::SELECT_CC)
2128      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2129    assert(0 && "Unhandled SetCC Equivalent!");
2130    abort();
2131  }
2132  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2133  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2134      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2135    SDOperand V = N0.getOperand(0);
2136    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2137                    DAG.getConstant(1, V.getValueType()));
2138    AddToWorkList(V.Val);
2139    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2140  }
2141
2142  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2143  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2144      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2145    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2146    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2147      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2148      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2149      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2150      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2151      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2152    }
2153  }
2154  // fold !(x or y) -> (!x and !y) iff x or y are constants
2155  if (N1C && N1C->isAllOnesValue() &&
2156      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2157    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2158    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2159      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2160      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2161      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2162      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2163      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2164    }
2165  }
2166  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2167  if (N1C && N0.getOpcode() == ISD::XOR) {
2168    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2169    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2170    if (N00C)
2171      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2172                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2173    if (N01C)
2174      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2175                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2176  }
2177  // fold (xor x, x) -> 0
2178  if (N0 == N1) {
2179    if (!MVT::isVector(VT)) {
2180      return DAG.getConstant(0, VT);
2181    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2182      // Produce a vector of zeros.
2183      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2184      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2185      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2186    }
2187  }
2188
2189  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2190  if (N0.getOpcode() == N1.getOpcode()) {
2191    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2192    if (Tmp.Val) return Tmp;
2193  }
2194
2195  // Simplify the expression using non-local knowledge.
2196  if (!MVT::isVector(VT) &&
2197      SimplifyDemandedBits(SDOperand(N, 0)))
2198    return SDOperand(N, 0);
2199
2200  return SDOperand();
2201}
2202
2203/// visitShiftByConstant - Handle transforms common to the three shifts, when
2204/// the shift amount is a constant.
2205SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2206  SDNode *LHS = N->getOperand(0).Val;
2207  if (!LHS->hasOneUse()) return SDOperand();
2208
2209  // We want to pull some binops through shifts, so that we have (and (shift))
2210  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2211  // thing happens with address calculations, so it's important to canonicalize
2212  // it.
2213  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2214
2215  switch (LHS->getOpcode()) {
2216  default: return SDOperand();
2217  case ISD::OR:
2218  case ISD::XOR:
2219    HighBitSet = false; // We can only transform sra if the high bit is clear.
2220    break;
2221  case ISD::AND:
2222    HighBitSet = true;  // We can only transform sra if the high bit is set.
2223    break;
2224  case ISD::ADD:
2225    if (N->getOpcode() != ISD::SHL)
2226      return SDOperand(); // only shl(add) not sr[al](add).
2227    HighBitSet = false; // We can only transform sra if the high bit is clear.
2228    break;
2229  }
2230
2231  // We require the RHS of the binop to be a constant as well.
2232  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2233  if (!BinOpCst) return SDOperand();
2234
2235
2236  // FIXME: disable this for unless the input to the binop is a shift by a
2237  // constant.  If it is not a shift, it pessimizes some common cases like:
2238  //
2239  //void foo(int *X, int i) { X[i & 1235] = 1; }
2240  //int bar(int *X, int i) { return X[i & 255]; }
2241  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2242  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2243       BinOpLHSVal->getOpcode() != ISD::SRA &&
2244       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2245      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2246    return SDOperand();
2247
2248  MVT::ValueType VT = N->getValueType(0);
2249
2250  // If this is a signed shift right, and the high bit is modified
2251  // by the logical operation, do not perform the transformation.
2252  // The highBitSet boolean indicates the value of the high bit of
2253  // the constant which would cause it to be modified for this
2254  // operation.
2255  if (N->getOpcode() == ISD::SRA) {
2256    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2257    if (BinOpRHSSignSet != HighBitSet)
2258      return SDOperand();
2259  }
2260
2261  // Fold the constants, shifting the binop RHS by the shift amount.
2262  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2263                                 LHS->getOperand(1), N->getOperand(1));
2264
2265  // Create the new shift.
2266  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2267                                   N->getOperand(1));
2268
2269  // Create the new binop.
2270  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2271}
2272
2273
2274SDOperand DAGCombiner::visitSHL(SDNode *N) {
2275  SDOperand N0 = N->getOperand(0);
2276  SDOperand N1 = N->getOperand(1);
2277  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2278  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2279  MVT::ValueType VT = N0.getValueType();
2280  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2281
2282  // fold (shl c1, c2) -> c1<<c2
2283  if (N0C && N1C)
2284    return DAG.getNode(ISD::SHL, VT, N0, N1);
2285  // fold (shl 0, x) -> 0
2286  if (N0C && N0C->isNullValue())
2287    return N0;
2288  // fold (shl x, c >= size(x)) -> undef
2289  if (N1C && N1C->getValue() >= OpSizeInBits)
2290    return DAG.getNode(ISD::UNDEF, VT);
2291  // fold (shl x, 0) -> x
2292  if (N1C && N1C->isNullValue())
2293    return N0;
2294  // if (shl x, c) is known to be zero, return 0
2295  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2296                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2297    return DAG.getConstant(0, VT);
2298  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2299    return SDOperand(N, 0);
2300  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2301  if (N1C && N0.getOpcode() == ISD::SHL &&
2302      N0.getOperand(1).getOpcode() == ISD::Constant) {
2303    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2304    uint64_t c2 = N1C->getValue();
2305    if (c1 + c2 > OpSizeInBits)
2306      return DAG.getConstant(0, VT);
2307    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2308                       DAG.getConstant(c1 + c2, N1.getValueType()));
2309  }
2310  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2311  //                               (srl (and x, -1 << c1), c1-c2)
2312  if (N1C && N0.getOpcode() == ISD::SRL &&
2313      N0.getOperand(1).getOpcode() == ISD::Constant) {
2314    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2315    uint64_t c2 = N1C->getValue();
2316    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2317                                 DAG.getConstant(~0ULL << c1, VT));
2318    if (c2 > c1)
2319      return DAG.getNode(ISD::SHL, VT, Mask,
2320                         DAG.getConstant(c2-c1, N1.getValueType()));
2321    else
2322      return DAG.getNode(ISD::SRL, VT, Mask,
2323                         DAG.getConstant(c1-c2, N1.getValueType()));
2324  }
2325  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2326  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2327    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2328                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2329
2330  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2331}
2332
2333SDOperand DAGCombiner::visitSRA(SDNode *N) {
2334  SDOperand N0 = N->getOperand(0);
2335  SDOperand N1 = N->getOperand(1);
2336  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2337  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2338  MVT::ValueType VT = N0.getValueType();
2339
2340  // fold (sra c1, c2) -> c1>>c2
2341  if (N0C && N1C)
2342    return DAG.getNode(ISD::SRA, VT, N0, N1);
2343  // fold (sra 0, x) -> 0
2344  if (N0C && N0C->isNullValue())
2345    return N0;
2346  // fold (sra -1, x) -> -1
2347  if (N0C && N0C->isAllOnesValue())
2348    return N0;
2349  // fold (sra x, c >= size(x)) -> undef
2350  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2351    return DAG.getNode(ISD::UNDEF, VT);
2352  // fold (sra x, 0) -> x
2353  if (N1C && N1C->isNullValue())
2354    return N0;
2355  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2356  // sext_inreg.
2357  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2358    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2359    MVT::ValueType EVT;
2360    switch (LowBits) {
2361    default: EVT = MVT::Other; break;
2362    case  1: EVT = MVT::i1;    break;
2363    case  8: EVT = MVT::i8;    break;
2364    case 16: EVT = MVT::i16;   break;
2365    case 32: EVT = MVT::i32;   break;
2366    }
2367    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2368      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2369                         DAG.getValueType(EVT));
2370  }
2371
2372  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2373  if (N1C && N0.getOpcode() == ISD::SRA) {
2374    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2375      unsigned Sum = N1C->getValue() + C1->getValue();
2376      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2377      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2378                         DAG.getConstant(Sum, N1C->getValueType(0)));
2379    }
2380  }
2381
2382  // Simplify, based on bits shifted out of the LHS.
2383  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2384    return SDOperand(N, 0);
2385
2386
2387  // If the sign bit is known to be zero, switch this to a SRL.
2388  if (DAG.SignBitIsZero(N0))
2389    return DAG.getNode(ISD::SRL, VT, N0, N1);
2390
2391  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2392}
2393
2394SDOperand DAGCombiner::visitSRL(SDNode *N) {
2395  SDOperand N0 = N->getOperand(0);
2396  SDOperand N1 = N->getOperand(1);
2397  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2398  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2399  MVT::ValueType VT = N0.getValueType();
2400  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2401
2402  // fold (srl c1, c2) -> c1 >>u c2
2403  if (N0C && N1C)
2404    return DAG.getNode(ISD::SRL, VT, N0, N1);
2405  // fold (srl 0, x) -> 0
2406  if (N0C && N0C->isNullValue())
2407    return N0;
2408  // fold (srl x, c >= size(x)) -> undef
2409  if (N1C && N1C->getValue() >= OpSizeInBits)
2410    return DAG.getNode(ISD::UNDEF, VT);
2411  // fold (srl x, 0) -> x
2412  if (N1C && N1C->isNullValue())
2413    return N0;
2414  // if (srl x, c) is known to be zero, return 0
2415  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2416                                   APInt::getAllOnesValue(OpSizeInBits)))
2417    return DAG.getConstant(0, VT);
2418
2419  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2420  if (N1C && N0.getOpcode() == ISD::SRL &&
2421      N0.getOperand(1).getOpcode() == ISD::Constant) {
2422    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2423    uint64_t c2 = N1C->getValue();
2424    if (c1 + c2 > OpSizeInBits)
2425      return DAG.getConstant(0, VT);
2426    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2427                       DAG.getConstant(c1 + c2, N1.getValueType()));
2428  }
2429
2430  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2431  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2432    // Shifting in all undef bits?
2433    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2434    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2435      return DAG.getNode(ISD::UNDEF, VT);
2436
2437    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2438    AddToWorkList(SmallShift.Val);
2439    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2440  }
2441
2442  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2443  // bit, which is unmodified by sra.
2444  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2445    if (N0.getOpcode() == ISD::SRA)
2446      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2447  }
2448
2449  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2450  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2451      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2452    APInt KnownZero, KnownOne;
2453    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2454    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2455
2456    // If any of the input bits are KnownOne, then the input couldn't be all
2457    // zeros, thus the result of the srl will always be zero.
2458    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2459
2460    // If all of the bits input the to ctlz node are known to be zero, then
2461    // the result of the ctlz is "32" and the result of the shift is one.
2462    APInt UnknownBits = ~KnownZero & Mask;
2463    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2464
2465    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2466    if ((UnknownBits & (UnknownBits-1)) == 0) {
2467      // Okay, we know that only that the single bit specified by UnknownBits
2468      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2469      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2470      // to an SRL,XOR pair, which is likely to simplify more.
2471      unsigned ShAmt = UnknownBits.countTrailingZeros();
2472      SDOperand Op = N0.getOperand(0);
2473      if (ShAmt) {
2474        Op = DAG.getNode(ISD::SRL, VT, Op,
2475                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2476        AddToWorkList(Op.Val);
2477      }
2478      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2479    }
2480  }
2481
2482  // fold operands of srl based on knowledge that the low bits are not
2483  // demanded.
2484  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2485    return SDOperand(N, 0);
2486
2487  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2488}
2489
2490SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2491  SDOperand N0 = N->getOperand(0);
2492  MVT::ValueType VT = N->getValueType(0);
2493
2494  // fold (ctlz c1) -> c2
2495  if (isa<ConstantSDNode>(N0))
2496    return DAG.getNode(ISD::CTLZ, VT, N0);
2497  return SDOperand();
2498}
2499
2500SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2501  SDOperand N0 = N->getOperand(0);
2502  MVT::ValueType VT = N->getValueType(0);
2503
2504  // fold (cttz c1) -> c2
2505  if (isa<ConstantSDNode>(N0))
2506    return DAG.getNode(ISD::CTTZ, VT, N0);
2507  return SDOperand();
2508}
2509
2510SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2511  SDOperand N0 = N->getOperand(0);
2512  MVT::ValueType VT = N->getValueType(0);
2513
2514  // fold (ctpop c1) -> c2
2515  if (isa<ConstantSDNode>(N0))
2516    return DAG.getNode(ISD::CTPOP, VT, N0);
2517  return SDOperand();
2518}
2519
2520SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2521  SDOperand N0 = N->getOperand(0);
2522  SDOperand N1 = N->getOperand(1);
2523  SDOperand N2 = N->getOperand(2);
2524  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2525  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2526  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2527  MVT::ValueType VT = N->getValueType(0);
2528  MVT::ValueType VT0 = N0.getValueType();
2529
2530  // fold select C, X, X -> X
2531  if (N1 == N2)
2532    return N1;
2533  // fold select true, X, Y -> X
2534  if (N0C && !N0C->isNullValue())
2535    return N1;
2536  // fold select false, X, Y -> Y
2537  if (N0C && N0C->isNullValue())
2538    return N2;
2539  // fold select C, 1, X -> C | X
2540  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2541    return DAG.getNode(ISD::OR, VT, N0, N2);
2542  // fold select C, 0, 1 -> ~C
2543  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2544      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2545    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2546    if (VT == VT0)
2547      return XORNode;
2548    AddToWorkList(XORNode.Val);
2549    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2550      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2551    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2552  }
2553  // fold select C, 0, X -> ~C & X
2554  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2555    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2556    AddToWorkList(XORNode.Val);
2557    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2558  }
2559  // fold select C, X, 1 -> ~C | X
2560  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2561    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2562    AddToWorkList(XORNode.Val);
2563    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2564  }
2565  // fold select C, X, 0 -> C & X
2566  // FIXME: this should check for C type == X type, not i1?
2567  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2568    return DAG.getNode(ISD::AND, VT, N0, N1);
2569  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2570  if (MVT::i1 == VT && N0 == N1)
2571    return DAG.getNode(ISD::OR, VT, N0, N2);
2572  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2573  if (MVT::i1 == VT && N0 == N2)
2574    return DAG.getNode(ISD::AND, VT, N0, N1);
2575
2576  // If we can fold this based on the true/false value, do so.
2577  if (SimplifySelectOps(N, N1, N2))
2578    return SDOperand(N, 0);  // Don't revisit N.
2579
2580  // fold selects based on a setcc into other things, such as min/max/abs
2581  if (N0.getOpcode() == ISD::SETCC) {
2582    // FIXME:
2583    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2584    // having to say they don't support SELECT_CC on every type the DAG knows
2585    // about, since there is no way to mark an opcode illegal at all value types
2586    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2587      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2588                         N1, N2, N0.getOperand(2));
2589    else
2590      return SimplifySelect(N0, N1, N2);
2591  }
2592  return SDOperand();
2593}
2594
2595SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2596  SDOperand N0 = N->getOperand(0);
2597  SDOperand N1 = N->getOperand(1);
2598  SDOperand N2 = N->getOperand(2);
2599  SDOperand N3 = N->getOperand(3);
2600  SDOperand N4 = N->getOperand(4);
2601  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2602
2603  // fold select_cc lhs, rhs, x, x, cc -> x
2604  if (N2 == N3)
2605    return N2;
2606
2607  // Determine if the condition we're dealing with is constant
2608  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
2609  if (SCC.Val) AddToWorkList(SCC.Val);
2610
2611  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2612    if (SCCC->getValue())
2613      return N2;    // cond always true -> true val
2614    else
2615      return N3;    // cond always false -> false val
2616  }
2617
2618  // Fold to a simpler select_cc
2619  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2620    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2621                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2622                       SCC.getOperand(2));
2623
2624  // If we can fold this based on the true/false value, do so.
2625  if (SimplifySelectOps(N, N2, N3))
2626    return SDOperand(N, 0);  // Don't revisit N.
2627
2628  // fold select_cc into other things, such as min/max/abs
2629  return SimplifySelectCC(N0, N1, N2, N3, CC);
2630}
2631
2632SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2633  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2634                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2635}
2636
2637// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2638// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2639// transformation. Returns true if extension are possible and the above
2640// mentioned transformation is profitable.
2641static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2642                                    unsigned ExtOpc,
2643                                    SmallVector<SDNode*, 4> &ExtendNodes,
2644                                    TargetLowering &TLI) {
2645  bool HasCopyToRegUses = false;
2646  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2647  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2648       UI != UE; ++UI) {
2649    SDNode *User = *UI;
2650    if (User == N)
2651      continue;
2652    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2653    if (User->getOpcode() == ISD::SETCC) {
2654      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2655      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2656        // Sign bits will be lost after a zext.
2657        return false;
2658      bool Add = false;
2659      for (unsigned i = 0; i != 2; ++i) {
2660        SDOperand UseOp = User->getOperand(i);
2661        if (UseOp == N0)
2662          continue;
2663        if (!isa<ConstantSDNode>(UseOp))
2664          return false;
2665        Add = true;
2666      }
2667      if (Add)
2668        ExtendNodes.push_back(User);
2669    } else {
2670      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2671        SDOperand UseOp = User->getOperand(i);
2672        if (UseOp == N0) {
2673          // If truncate from extended type to original load type is free
2674          // on this target, then it's ok to extend a CopyToReg.
2675          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2676            HasCopyToRegUses = true;
2677          else
2678            return false;
2679        }
2680      }
2681    }
2682  }
2683
2684  if (HasCopyToRegUses) {
2685    bool BothLiveOut = false;
2686    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2687         UI != UE; ++UI) {
2688      SDNode *User = *UI;
2689      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2690        SDOperand UseOp = User->getOperand(i);
2691        if (UseOp.Val == N && UseOp.ResNo == 0) {
2692          BothLiveOut = true;
2693          break;
2694        }
2695      }
2696    }
2697    if (BothLiveOut)
2698      // Both unextended and extended values are live out. There had better be
2699      // good a reason for the transformation.
2700      return ExtendNodes.size();
2701  }
2702  return true;
2703}
2704
2705SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2706  SDOperand N0 = N->getOperand(0);
2707  MVT::ValueType VT = N->getValueType(0);
2708
2709  // fold (sext c1) -> c1
2710  if (isa<ConstantSDNode>(N0))
2711    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2712
2713  // fold (sext (sext x)) -> (sext x)
2714  // fold (sext (aext x)) -> (sext x)
2715  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2716    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2717
2718  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2719  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2720  if (N0.getOpcode() == ISD::TRUNCATE) {
2721    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2722    if (NarrowLoad.Val) {
2723      if (NarrowLoad.Val != N0.Val)
2724        CombineTo(N0.Val, NarrowLoad);
2725      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2726    }
2727  }
2728
2729  // See if the value being truncated is already sign extended.  If so, just
2730  // eliminate the trunc/sext pair.
2731  if (N0.getOpcode() == ISD::TRUNCATE) {
2732    SDOperand Op = N0.getOperand(0);
2733    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2734    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2735    unsigned DestBits = MVT::getSizeInBits(VT);
2736    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2737
2738    if (OpBits == DestBits) {
2739      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2740      // bits, it is already ready.
2741      if (NumSignBits > DestBits-MidBits)
2742        return Op;
2743    } else if (OpBits < DestBits) {
2744      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2745      // bits, just sext from i32.
2746      if (NumSignBits > OpBits-MidBits)
2747        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2748    } else {
2749      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2750      // bits, just truncate to i32.
2751      if (NumSignBits > OpBits-MidBits)
2752        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2753    }
2754
2755    // fold (sext (truncate x)) -> (sextinreg x).
2756    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2757                                               N0.getValueType())) {
2758      if (Op.getValueType() < VT)
2759        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2760      else if (Op.getValueType() > VT)
2761        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2762      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2763                         DAG.getValueType(N0.getValueType()));
2764    }
2765  }
2766
2767  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2768  if (ISD::isNON_EXTLoad(N0.Val) &&
2769      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2770    bool DoXform = true;
2771    SmallVector<SDNode*, 4> SetCCs;
2772    if (!N0.hasOneUse())
2773      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2774    if (DoXform) {
2775      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2776      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2777                                         LN0->getBasePtr(), LN0->getSrcValue(),
2778                                         LN0->getSrcValueOffset(),
2779                                         N0.getValueType(),
2780                                         LN0->isVolatile(),
2781                                         LN0->getAlignment());
2782      CombineTo(N, ExtLoad);
2783      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2784      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2785      // Extend SetCC uses if necessary.
2786      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2787        SDNode *SetCC = SetCCs[i];
2788        SmallVector<SDOperand, 4> Ops;
2789        for (unsigned j = 0; j != 2; ++j) {
2790          SDOperand SOp = SetCC->getOperand(j);
2791          if (SOp == Trunc)
2792            Ops.push_back(ExtLoad);
2793          else
2794            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2795          }
2796        Ops.push_back(SetCC->getOperand(2));
2797        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2798                                     &Ops[0], Ops.size()));
2799      }
2800      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2801    }
2802  }
2803
2804  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2805  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2806  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2807      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2808    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2809    MVT::ValueType EVT = LN0->getMemoryVT();
2810    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2811      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2812                                         LN0->getBasePtr(), LN0->getSrcValue(),
2813                                         LN0->getSrcValueOffset(), EVT,
2814                                         LN0->isVolatile(),
2815                                         LN0->getAlignment());
2816      CombineTo(N, ExtLoad);
2817      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2818                ExtLoad.getValue(1));
2819      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2820    }
2821  }
2822
2823  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2824  if (N0.getOpcode() == ISD::SETCC) {
2825    SDOperand SCC =
2826      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2827                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2828                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2829    if (SCC.Val) return SCC;
2830  }
2831
2832  return SDOperand();
2833}
2834
2835SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2836  SDOperand N0 = N->getOperand(0);
2837  MVT::ValueType VT = N->getValueType(0);
2838
2839  // fold (zext c1) -> c1
2840  if (isa<ConstantSDNode>(N0))
2841    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2842  // fold (zext (zext x)) -> (zext x)
2843  // fold (zext (aext x)) -> (zext x)
2844  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2845    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2846
2847  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2848  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2849  if (N0.getOpcode() == ISD::TRUNCATE) {
2850    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2851    if (NarrowLoad.Val) {
2852      if (NarrowLoad.Val != N0.Val)
2853        CombineTo(N0.Val, NarrowLoad);
2854      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2855    }
2856  }
2857
2858  // fold (zext (truncate x)) -> (and x, mask)
2859  if (N0.getOpcode() == ISD::TRUNCATE &&
2860      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2861    SDOperand Op = N0.getOperand(0);
2862    if (Op.getValueType() < VT) {
2863      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2864    } else if (Op.getValueType() > VT) {
2865      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2866    }
2867    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2868  }
2869
2870  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2871  if (N0.getOpcode() == ISD::AND &&
2872      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2873      N0.getOperand(1).getOpcode() == ISD::Constant) {
2874    SDOperand X = N0.getOperand(0).getOperand(0);
2875    if (X.getValueType() < VT) {
2876      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2877    } else if (X.getValueType() > VT) {
2878      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2879    }
2880    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2881    Mask.zext(MVT::getSizeInBits(VT));
2882    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2883  }
2884
2885  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2886  if (ISD::isNON_EXTLoad(N0.Val) &&
2887      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2888    bool DoXform = true;
2889    SmallVector<SDNode*, 4> SetCCs;
2890    if (!N0.hasOneUse())
2891      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2892    if (DoXform) {
2893      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2894      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2895                                         LN0->getBasePtr(), LN0->getSrcValue(),
2896                                         LN0->getSrcValueOffset(),
2897                                         N0.getValueType(),
2898                                         LN0->isVolatile(),
2899                                         LN0->getAlignment());
2900      CombineTo(N, ExtLoad);
2901      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2902      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2903      // Extend SetCC uses if necessary.
2904      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2905        SDNode *SetCC = SetCCs[i];
2906        SmallVector<SDOperand, 4> Ops;
2907        for (unsigned j = 0; j != 2; ++j) {
2908          SDOperand SOp = SetCC->getOperand(j);
2909          if (SOp == Trunc)
2910            Ops.push_back(ExtLoad);
2911          else
2912            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2913          }
2914        Ops.push_back(SetCC->getOperand(2));
2915        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2916                                     &Ops[0], Ops.size()));
2917      }
2918      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2919    }
2920  }
2921
2922  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2923  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2924  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2925      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2926    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2927    MVT::ValueType EVT = LN0->getMemoryVT();
2928    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2929                                       LN0->getBasePtr(), LN0->getSrcValue(),
2930                                       LN0->getSrcValueOffset(), EVT,
2931                                       LN0->isVolatile(),
2932                                       LN0->getAlignment());
2933    CombineTo(N, ExtLoad);
2934    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2935              ExtLoad.getValue(1));
2936    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2937  }
2938
2939  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2940  if (N0.getOpcode() == ISD::SETCC) {
2941    SDOperand SCC =
2942      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2943                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2944                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2945    if (SCC.Val) return SCC;
2946  }
2947
2948  return SDOperand();
2949}
2950
2951SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2952  SDOperand N0 = N->getOperand(0);
2953  MVT::ValueType VT = N->getValueType(0);
2954
2955  // fold (aext c1) -> c1
2956  if (isa<ConstantSDNode>(N0))
2957    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2958  // fold (aext (aext x)) -> (aext x)
2959  // fold (aext (zext x)) -> (zext x)
2960  // fold (aext (sext x)) -> (sext x)
2961  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2962      N0.getOpcode() == ISD::ZERO_EXTEND ||
2963      N0.getOpcode() == ISD::SIGN_EXTEND)
2964    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2965
2966  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2967  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2968  if (N0.getOpcode() == ISD::TRUNCATE) {
2969    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2970    if (NarrowLoad.Val) {
2971      if (NarrowLoad.Val != N0.Val)
2972        CombineTo(N0.Val, NarrowLoad);
2973      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2974    }
2975  }
2976
2977  // fold (aext (truncate x))
2978  if (N0.getOpcode() == ISD::TRUNCATE) {
2979    SDOperand TruncOp = N0.getOperand(0);
2980    if (TruncOp.getValueType() == VT)
2981      return TruncOp; // x iff x size == zext size.
2982    if (TruncOp.getValueType() > VT)
2983      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2984    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2985  }
2986
2987  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2988  if (N0.getOpcode() == ISD::AND &&
2989      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2990      N0.getOperand(1).getOpcode() == ISD::Constant) {
2991    SDOperand X = N0.getOperand(0).getOperand(0);
2992    if (X.getValueType() < VT) {
2993      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2994    } else if (X.getValueType() > VT) {
2995      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2996    }
2997    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2998    Mask.zext(MVT::getSizeInBits(VT));
2999    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
3000  }
3001
3002  // fold (aext (load x)) -> (aext (truncate (extload x)))
3003  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3004      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3005    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3006    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3007                                       LN0->getBasePtr(), LN0->getSrcValue(),
3008                                       LN0->getSrcValueOffset(),
3009                                       N0.getValueType(),
3010                                       LN0->isVolatile(),
3011                                       LN0->getAlignment());
3012    CombineTo(N, ExtLoad);
3013    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3014              ExtLoad.getValue(1));
3015    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3016  }
3017
3018  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3019  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3020  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3021  if (N0.getOpcode() == ISD::LOAD &&
3022      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3023      N0.hasOneUse()) {
3024    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3025    MVT::ValueType EVT = LN0->getMemoryVT();
3026    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3027                                       LN0->getChain(), LN0->getBasePtr(),
3028                                       LN0->getSrcValue(),
3029                                       LN0->getSrcValueOffset(), EVT,
3030                                       LN0->isVolatile(),
3031                                       LN0->getAlignment());
3032    CombineTo(N, ExtLoad);
3033    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3034              ExtLoad.getValue(1));
3035    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3036  }
3037
3038  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3039  if (N0.getOpcode() == ISD::SETCC) {
3040    SDOperand SCC =
3041      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3042                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3043                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3044    if (SCC.Val)
3045      return SCC;
3046  }
3047
3048  return SDOperand();
3049}
3050
3051/// GetDemandedBits - See if the specified operand can be simplified with the
3052/// knowledge that only the bits specified by Mask are used.  If so, return the
3053/// simpler operand, otherwise return a null SDOperand.
3054SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3055  switch (V.getOpcode()) {
3056  default: break;
3057  case ISD::OR:
3058  case ISD::XOR:
3059    // If the LHS or RHS don't contribute bits to the or, drop them.
3060    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3061      return V.getOperand(1);
3062    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3063      return V.getOperand(0);
3064    break;
3065  case ISD::SRL:
3066    // Only look at single-use SRLs.
3067    if (!V.Val->hasOneUse())
3068      break;
3069    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3070      // See if we can recursively simplify the LHS.
3071      unsigned Amt = RHSC->getValue();
3072      APInt NewMask = Mask << Amt;
3073      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3074      if (SimplifyLHS.Val) {
3075        return DAG.getNode(ISD::SRL, V.getValueType(),
3076                           SimplifyLHS, V.getOperand(1));
3077      }
3078    }
3079  }
3080  return SDOperand();
3081}
3082
3083/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3084/// bits and then truncated to a narrower type and where N is a multiple
3085/// of number of bits of the narrower type, transform it to a narrower load
3086/// from address + N / num of bits of new type. If the result is to be
3087/// extended, also fold the extension to form a extending load.
3088SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3089  unsigned Opc = N->getOpcode();
3090  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3091  SDOperand N0 = N->getOperand(0);
3092  MVT::ValueType VT = N->getValueType(0);
3093  MVT::ValueType EVT = N->getValueType(0);
3094
3095  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3096  // extended to VT.
3097  if (Opc == ISD::SIGN_EXTEND_INREG) {
3098    ExtType = ISD::SEXTLOAD;
3099    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3100    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3101      return SDOperand();
3102  }
3103
3104  unsigned EVTBits = MVT::getSizeInBits(EVT);
3105  unsigned ShAmt = 0;
3106  bool CombineSRL =  false;
3107  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3108    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3109      ShAmt = N01->getValue();
3110      // Is the shift amount a multiple of size of VT?
3111      if ((ShAmt & (EVTBits-1)) == 0) {
3112        N0 = N0.getOperand(0);
3113        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3114          return SDOperand();
3115        CombineSRL = true;
3116      }
3117    }
3118  }
3119
3120  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3121      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3122      // zero extended form: by shrinking the load, we lose track of the fact
3123      // that it is already zero extended.
3124      // FIXME: This should be reevaluated.
3125      VT != MVT::i1) {
3126    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3127           "Cannot truncate to larger type!");
3128    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3129    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3130    // For big endian targets, we need to adjust the offset to the pointer to
3131    // load the correct bytes.
3132    if (TLI.isBigEndian()) {
3133      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3134      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3135      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3136    }
3137    uint64_t PtrOff =  ShAmt / 8;
3138    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3139    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3140                                   DAG.getConstant(PtrOff, PtrType));
3141    AddToWorkList(NewPtr.Val);
3142    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3143      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3144                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3145                    LN0->isVolatile(), NewAlign)
3146      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3147                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3148                       LN0->isVolatile(), NewAlign);
3149    AddToWorkList(N);
3150    if (CombineSRL) {
3151      WorkListRemover DeadNodes(*this);
3152      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3153                                    &DeadNodes);
3154      CombineTo(N->getOperand(0).Val, Load);
3155    } else
3156      CombineTo(N0.Val, Load, Load.getValue(1));
3157    if (ShAmt) {
3158      if (Opc == ISD::SIGN_EXTEND_INREG)
3159        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3160      else
3161        return DAG.getNode(Opc, VT, Load);
3162    }
3163    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3164  }
3165
3166  return SDOperand();
3167}
3168
3169
3170SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3171  SDOperand N0 = N->getOperand(0);
3172  SDOperand N1 = N->getOperand(1);
3173  MVT::ValueType VT = N->getValueType(0);
3174  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3175  unsigned VTBits = MVT::getSizeInBits(VT);
3176  unsigned EVTBits = MVT::getSizeInBits(EVT);
3177
3178  // fold (sext_in_reg c1) -> c1
3179  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3180    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3181
3182  // If the input is already sign extended, just drop the extension.
3183  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3184    return N0;
3185
3186  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3187  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3188      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3189    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3190  }
3191
3192  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3193  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3194    return DAG.getZeroExtendInReg(N0, EVT);
3195
3196  // fold operands of sext_in_reg based on knowledge that the top bits are not
3197  // demanded.
3198  if (SimplifyDemandedBits(SDOperand(N, 0)))
3199    return SDOperand(N, 0);
3200
3201  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3202  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3203  SDOperand NarrowLoad = ReduceLoadWidth(N);
3204  if (NarrowLoad.Val)
3205    return NarrowLoad;
3206
3207  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3208  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3209  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3210  if (N0.getOpcode() == ISD::SRL) {
3211    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3212      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3213        // We can turn this into an SRA iff the input to the SRL is already sign
3214        // extended enough.
3215        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3216        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3217          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3218      }
3219  }
3220
3221  // fold (sext_inreg (extload x)) -> (sextload x)
3222  if (ISD::isEXTLoad(N0.Val) &&
3223      ISD::isUNINDEXEDLoad(N0.Val) &&
3224      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3225      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3226    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3227    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3228                                       LN0->getBasePtr(), LN0->getSrcValue(),
3229                                       LN0->getSrcValueOffset(), EVT,
3230                                       LN0->isVolatile(),
3231                                       LN0->getAlignment());
3232    CombineTo(N, ExtLoad);
3233    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3234    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3235  }
3236  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3237  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3238      N0.hasOneUse() &&
3239      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3240      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3241    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3242    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3243                                       LN0->getBasePtr(), LN0->getSrcValue(),
3244                                       LN0->getSrcValueOffset(), EVT,
3245                                       LN0->isVolatile(),
3246                                       LN0->getAlignment());
3247    CombineTo(N, ExtLoad);
3248    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3249    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3250  }
3251  return SDOperand();
3252}
3253
3254SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3255  SDOperand N0 = N->getOperand(0);
3256  MVT::ValueType VT = N->getValueType(0);
3257
3258  // noop truncate
3259  if (N0.getValueType() == N->getValueType(0))
3260    return N0;
3261  // fold (truncate c1) -> c1
3262  if (isa<ConstantSDNode>(N0))
3263    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3264  // fold (truncate (truncate x)) -> (truncate x)
3265  if (N0.getOpcode() == ISD::TRUNCATE)
3266    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3267  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3268  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3269      N0.getOpcode() == ISD::ANY_EXTEND) {
3270    if (N0.getOperand(0).getValueType() < VT)
3271      // if the source is smaller than the dest, we still need an extend
3272      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3273    else if (N0.getOperand(0).getValueType() > VT)
3274      // if the source is larger than the dest, than we just need the truncate
3275      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3276    else
3277      // if the source and dest are the same type, we can drop both the extend
3278      // and the truncate
3279      return N0.getOperand(0);
3280  }
3281
3282  // See if we can simplify the input to this truncate through knowledge that
3283  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3284  // -> trunc y
3285  SDOperand Shorter =
3286    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3287                                             MVT::getSizeInBits(VT)));
3288  if (Shorter.Val)
3289    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3290
3291  // fold (truncate (load x)) -> (smaller load x)
3292  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3293  return ReduceLoadWidth(N);
3294}
3295
3296SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3297  SDOperand N0 = N->getOperand(0);
3298  MVT::ValueType VT = N->getValueType(0);
3299
3300  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3301  // Only do this before legalize, since afterward the target may be depending
3302  // on the bitconvert.
3303  // First check to see if this is all constant.
3304  if (!AfterLegalize &&
3305      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3306      MVT::isVector(VT)) {
3307    bool isSimple = true;
3308    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3309      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3310          N0.getOperand(i).getOpcode() != ISD::Constant &&
3311          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3312        isSimple = false;
3313        break;
3314      }
3315
3316    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3317    assert(!MVT::isVector(DestEltVT) &&
3318           "Element type of vector ValueType must not be vector!");
3319    if (isSimple) {
3320      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3321    }
3322  }
3323
3324  // If the input is a constant, let getNode() fold it.
3325  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3326    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3327    if (Res.Val != N) return Res;
3328  }
3329
3330  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3331    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3332
3333  // fold (conv (load x)) -> (load (conv*)x)
3334  // If the resultant load doesn't need a higher alignment than the original!
3335  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3336      TLI.isOperationLegal(ISD::LOAD, VT)) {
3337    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3338    unsigned Align = TLI.getTargetMachine().getTargetData()->
3339      getABITypeAlignment(MVT::getTypeForValueType(VT));
3340    unsigned OrigAlign = LN0->getAlignment();
3341    if (Align <= OrigAlign) {
3342      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3343                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3344                                   LN0->isVolatile(), Align);
3345      AddToWorkList(N);
3346      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3347                Load.getValue(1));
3348      return Load;
3349    }
3350  }
3351
3352  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3353  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3354  // This often reduces constant pool loads.
3355  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3356      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3357    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3358    AddToWorkList(NewConv.Val);
3359
3360    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3361    if (N0.getOpcode() == ISD::FNEG)
3362      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3363    assert(N0.getOpcode() == ISD::FABS);
3364    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3365  }
3366
3367  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3368  // Note that we don't handle copysign(x,cst) because this can always be folded
3369  // to an fneg or fabs.
3370  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3371      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3372      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3373    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3374    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3375                              N0.getOperand(1));
3376    AddToWorkList(X.Val);
3377
3378    // If X has a different width than the result/lhs, sext it or truncate it.
3379    unsigned VTWidth = MVT::getSizeInBits(VT);
3380    if (OrigXWidth < VTWidth) {
3381      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3382      AddToWorkList(X.Val);
3383    } else if (OrigXWidth > VTWidth) {
3384      // To get the sign bit in the right place, we have to shift it right
3385      // before truncating.
3386      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3387                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3388      AddToWorkList(X.Val);
3389      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3390      AddToWorkList(X.Val);
3391    }
3392
3393    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3394    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3395    AddToWorkList(X.Val);
3396
3397    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3398    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3399    AddToWorkList(Cst.Val);
3400
3401    return DAG.getNode(ISD::OR, VT, X, Cst);
3402  }
3403
3404  return SDOperand();
3405}
3406
3407/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3408/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3409/// destination element value type.
3410SDOperand DAGCombiner::
3411ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3412  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3413
3414  // If this is already the right type, we're done.
3415  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3416
3417  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3418  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3419
3420  // If this is a conversion of N elements of one type to N elements of another
3421  // type, convert each element.  This handles FP<->INT cases.
3422  if (SrcBitSize == DstBitSize) {
3423    SmallVector<SDOperand, 8> Ops;
3424    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3425      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3426      AddToWorkList(Ops.back().Val);
3427    }
3428    MVT::ValueType VT =
3429      MVT::getVectorType(DstEltVT,
3430                         MVT::getVectorNumElements(BV->getValueType(0)));
3431    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3432  }
3433
3434  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3435  // handle annoying details of growing/shrinking FP values, we convert them to
3436  // int first.
3437  if (MVT::isFloatingPoint(SrcEltVT)) {
3438    // Convert the input float vector to a int vector where the elements are the
3439    // same sizes.
3440    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3441    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3442    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3443    SrcEltVT = IntVT;
3444  }
3445
3446  // Now we know the input is an integer vector.  If the output is a FP type,
3447  // convert to integer first, then to FP of the right size.
3448  if (MVT::isFloatingPoint(DstEltVT)) {
3449    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3450    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3451    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3452
3453    // Next, convert to FP elements of the same size.
3454    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3455  }
3456
3457  // Okay, we know the src/dst types are both integers of differing types.
3458  // Handling growing first.
3459  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3460  if (SrcBitSize < DstBitSize) {
3461    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3462
3463    SmallVector<SDOperand, 8> Ops;
3464    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3465         i += NumInputsPerOutput) {
3466      bool isLE = TLI.isLittleEndian();
3467      APInt NewBits = APInt(DstBitSize, 0);
3468      bool EltIsUndef = true;
3469      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3470        // Shift the previously computed bits over.
3471        NewBits <<= SrcBitSize;
3472        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3473        if (Op.getOpcode() == ISD::UNDEF) continue;
3474        EltIsUndef = false;
3475
3476        NewBits |=
3477          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3478      }
3479
3480      if (EltIsUndef)
3481        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3482      else
3483        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3484    }
3485
3486    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3487    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3488  }
3489
3490  // Finally, this must be the case where we are shrinking elements: each input
3491  // turns into multiple outputs.
3492  bool isS2V = ISD::isScalarToVector(BV);
3493  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3494  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3495                                     NumOutputsPerInput * BV->getNumOperands());
3496  SmallVector<SDOperand, 8> Ops;
3497  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3498    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3499      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3500        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3501      continue;
3502    }
3503    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3504    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3505      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3506      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3507      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3508        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3509        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3510      OpVal = OpVal.lshr(DstBitSize);
3511    }
3512
3513    // For big endian targets, swap the order of the pieces of each element.
3514    if (TLI.isBigEndian())
3515      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3516  }
3517  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3518}
3519
3520
3521
3522SDOperand DAGCombiner::visitFADD(SDNode *N) {
3523  SDOperand N0 = N->getOperand(0);
3524  SDOperand N1 = N->getOperand(1);
3525  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3526  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3527  MVT::ValueType VT = N->getValueType(0);
3528
3529  // fold vector ops
3530  if (MVT::isVector(VT)) {
3531    SDOperand FoldedVOp = SimplifyVBinOp(N);
3532    if (FoldedVOp.Val) return FoldedVOp;
3533  }
3534
3535  // fold (fadd c1, c2) -> c1+c2
3536  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3537    return DAG.getNode(ISD::FADD, VT, N0, N1);
3538  // canonicalize constant to RHS
3539  if (N0CFP && !N1CFP)
3540    return DAG.getNode(ISD::FADD, VT, N1, N0);
3541  // fold (A + (-B)) -> A-B
3542  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3543    return DAG.getNode(ISD::FSUB, VT, N0,
3544                       GetNegatedExpression(N1, DAG, AfterLegalize));
3545  // fold ((-A) + B) -> B-A
3546  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3547    return DAG.getNode(ISD::FSUB, VT, N1,
3548                       GetNegatedExpression(N0, DAG, AfterLegalize));
3549
3550  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3551  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3552      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3553    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3554                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3555
3556  return SDOperand();
3557}
3558
3559SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3560  SDOperand N0 = N->getOperand(0);
3561  SDOperand N1 = N->getOperand(1);
3562  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3563  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3564  MVT::ValueType VT = N->getValueType(0);
3565
3566  // fold vector ops
3567  if (MVT::isVector(VT)) {
3568    SDOperand FoldedVOp = SimplifyVBinOp(N);
3569    if (FoldedVOp.Val) return FoldedVOp;
3570  }
3571
3572  // fold (fsub c1, c2) -> c1-c2
3573  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3574    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3575  // fold (0-B) -> -B
3576  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3577    if (isNegatibleForFree(N1, AfterLegalize))
3578      return GetNegatedExpression(N1, DAG, AfterLegalize);
3579    return DAG.getNode(ISD::FNEG, VT, N1);
3580  }
3581  // fold (A-(-B)) -> A+B
3582  if (isNegatibleForFree(N1, AfterLegalize))
3583    return DAG.getNode(ISD::FADD, VT, N0,
3584                       GetNegatedExpression(N1, DAG, AfterLegalize));
3585
3586  return SDOperand();
3587}
3588
3589SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3590  SDOperand N0 = N->getOperand(0);
3591  SDOperand N1 = N->getOperand(1);
3592  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3593  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3594  MVT::ValueType VT = N->getValueType(0);
3595
3596  // fold vector ops
3597  if (MVT::isVector(VT)) {
3598    SDOperand FoldedVOp = SimplifyVBinOp(N);
3599    if (FoldedVOp.Val) return FoldedVOp;
3600  }
3601
3602  // fold (fmul c1, c2) -> c1*c2
3603  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3604    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3605  // canonicalize constant to RHS
3606  if (N0CFP && !N1CFP)
3607    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3608  // fold (fmul X, 2.0) -> (fadd X, X)
3609  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3610    return DAG.getNode(ISD::FADD, VT, N0, N0);
3611  // fold (fmul X, -1.0) -> (fneg X)
3612  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3613    return DAG.getNode(ISD::FNEG, VT, N0);
3614
3615  // -X * -Y -> X*Y
3616  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3617    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3618      // Both can be negated for free, check to see if at least one is cheaper
3619      // negated.
3620      if (LHSNeg == 2 || RHSNeg == 2)
3621        return DAG.getNode(ISD::FMUL, VT,
3622                           GetNegatedExpression(N0, DAG, AfterLegalize),
3623                           GetNegatedExpression(N1, DAG, AfterLegalize));
3624    }
3625  }
3626
3627  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3628  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3629      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3630    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3631                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3632
3633  return SDOperand();
3634}
3635
3636SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3637  SDOperand N0 = N->getOperand(0);
3638  SDOperand N1 = N->getOperand(1);
3639  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3640  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3641  MVT::ValueType VT = N->getValueType(0);
3642
3643  // fold vector ops
3644  if (MVT::isVector(VT)) {
3645    SDOperand FoldedVOp = SimplifyVBinOp(N);
3646    if (FoldedVOp.Val) return FoldedVOp;
3647  }
3648
3649  // fold (fdiv c1, c2) -> c1/c2
3650  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3651    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3652
3653
3654  // -X / -Y -> X*Y
3655  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3656    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3657      // Both can be negated for free, check to see if at least one is cheaper
3658      // negated.
3659      if (LHSNeg == 2 || RHSNeg == 2)
3660        return DAG.getNode(ISD::FDIV, VT,
3661                           GetNegatedExpression(N0, DAG, AfterLegalize),
3662                           GetNegatedExpression(N1, DAG, AfterLegalize));
3663    }
3664  }
3665
3666  return SDOperand();
3667}
3668
3669SDOperand DAGCombiner::visitFREM(SDNode *N) {
3670  SDOperand N0 = N->getOperand(0);
3671  SDOperand N1 = N->getOperand(1);
3672  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3673  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3674  MVT::ValueType VT = N->getValueType(0);
3675
3676  // fold (frem c1, c2) -> fmod(c1,c2)
3677  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3678    return DAG.getNode(ISD::FREM, VT, N0, N1);
3679
3680  return SDOperand();
3681}
3682
3683SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3684  SDOperand N0 = N->getOperand(0);
3685  SDOperand N1 = N->getOperand(1);
3686  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3687  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3688  MVT::ValueType VT = N->getValueType(0);
3689
3690  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3691    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3692
3693  if (N1CFP) {
3694    const APFloat& V = N1CFP->getValueAPF();
3695    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3696    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3697    if (!V.isNegative())
3698      return DAG.getNode(ISD::FABS, VT, N0);
3699    else
3700      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3701  }
3702
3703  // copysign(fabs(x), y) -> copysign(x, y)
3704  // copysign(fneg(x), y) -> copysign(x, y)
3705  // copysign(copysign(x,z), y) -> copysign(x, y)
3706  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3707      N0.getOpcode() == ISD::FCOPYSIGN)
3708    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3709
3710  // copysign(x, abs(y)) -> abs(x)
3711  if (N1.getOpcode() == ISD::FABS)
3712    return DAG.getNode(ISD::FABS, VT, N0);
3713
3714  // copysign(x, copysign(y,z)) -> copysign(x, z)
3715  if (N1.getOpcode() == ISD::FCOPYSIGN)
3716    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3717
3718  // copysign(x, fp_extend(y)) -> copysign(x, y)
3719  // copysign(x, fp_round(y)) -> copysign(x, y)
3720  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3721    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3722
3723  return SDOperand();
3724}
3725
3726
3727
3728SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3729  SDOperand N0 = N->getOperand(0);
3730  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3731  MVT::ValueType VT = N->getValueType(0);
3732
3733  // fold (sint_to_fp c1) -> c1fp
3734  if (N0C && N0.getValueType() != MVT::ppcf128)
3735    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3736  return SDOperand();
3737}
3738
3739SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3740  SDOperand N0 = N->getOperand(0);
3741  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3742  MVT::ValueType VT = N->getValueType(0);
3743
3744  // fold (uint_to_fp c1) -> c1fp
3745  if (N0C && N0.getValueType() != MVT::ppcf128)
3746    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3747  return SDOperand();
3748}
3749
3750SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3751  SDOperand N0 = N->getOperand(0);
3752  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3753  MVT::ValueType VT = N->getValueType(0);
3754
3755  // fold (fp_to_sint c1fp) -> c1
3756  if (N0CFP)
3757    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3758  return SDOperand();
3759}
3760
3761SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3762  SDOperand N0 = N->getOperand(0);
3763  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3764  MVT::ValueType VT = N->getValueType(0);
3765
3766  // fold (fp_to_uint c1fp) -> c1
3767  if (N0CFP && VT != MVT::ppcf128)
3768    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3769  return SDOperand();
3770}
3771
3772SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3773  SDOperand N0 = N->getOperand(0);
3774  SDOperand N1 = N->getOperand(1);
3775  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3776  MVT::ValueType VT = N->getValueType(0);
3777
3778  // fold (fp_round c1fp) -> c1fp
3779  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3780    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3781
3782  // fold (fp_round (fp_extend x)) -> x
3783  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3784    return N0.getOperand(0);
3785
3786  // fold (fp_round (fp_round x)) -> (fp_round x)
3787  if (N0.getOpcode() == ISD::FP_ROUND) {
3788    // This is a value preserving truncation if both round's are.
3789    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3790                   N0.Val->getConstantOperandVal(1) == 1;
3791    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3792                       DAG.getIntPtrConstant(IsTrunc));
3793  }
3794
3795  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3796  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3797    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3798    AddToWorkList(Tmp.Val);
3799    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3800  }
3801
3802  return SDOperand();
3803}
3804
3805SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3806  SDOperand N0 = N->getOperand(0);
3807  MVT::ValueType VT = N->getValueType(0);
3808  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3809  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3810
3811  // fold (fp_round_inreg c1fp) -> c1fp
3812  if (N0CFP) {
3813    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3814    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3815  }
3816  return SDOperand();
3817}
3818
3819SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3820  SDOperand N0 = N->getOperand(0);
3821  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3822  MVT::ValueType VT = N->getValueType(0);
3823
3824  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3825  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3826    return SDOperand();
3827
3828  // fold (fp_extend c1fp) -> c1fp
3829  if (N0CFP && VT != MVT::ppcf128)
3830    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3831
3832  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3833  // value of X.
3834  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3835    SDOperand In = N0.getOperand(0);
3836    if (In.getValueType() == VT) return In;
3837    if (VT < In.getValueType())
3838      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3839    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3840  }
3841
3842  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3843  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3844      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3845    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3846    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3847                                       LN0->getBasePtr(), LN0->getSrcValue(),
3848                                       LN0->getSrcValueOffset(),
3849                                       N0.getValueType(),
3850                                       LN0->isVolatile(),
3851                                       LN0->getAlignment());
3852    CombineTo(N, ExtLoad);
3853    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3854                                  DAG.getIntPtrConstant(1)),
3855              ExtLoad.getValue(1));
3856    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3857  }
3858
3859
3860  return SDOperand();
3861}
3862
3863SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3864  SDOperand N0 = N->getOperand(0);
3865
3866  if (isNegatibleForFree(N0, AfterLegalize))
3867    return GetNegatedExpression(N0, DAG, AfterLegalize);
3868
3869  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3870  // constant pool values.
3871  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3872      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3873      !MVT::isVector(N0.getOperand(0).getValueType())) {
3874    SDOperand Int = N0.getOperand(0);
3875    MVT::ValueType IntVT = Int.getValueType();
3876    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3877      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3878                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3879      AddToWorkList(Int.Val);
3880      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3881    }
3882  }
3883
3884  return SDOperand();
3885}
3886
3887SDOperand DAGCombiner::visitFABS(SDNode *N) {
3888  SDOperand N0 = N->getOperand(0);
3889  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3890  MVT::ValueType VT = N->getValueType(0);
3891
3892  // fold (fabs c1) -> fabs(c1)
3893  if (N0CFP && VT != MVT::ppcf128)
3894    return DAG.getNode(ISD::FABS, VT, N0);
3895  // fold (fabs (fabs x)) -> (fabs x)
3896  if (N0.getOpcode() == ISD::FABS)
3897    return N->getOperand(0);
3898  // fold (fabs (fneg x)) -> (fabs x)
3899  // fold (fabs (fcopysign x, y)) -> (fabs x)
3900  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3901    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3902
3903  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3904  // constant pool values.
3905  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3906      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3907      !MVT::isVector(N0.getOperand(0).getValueType())) {
3908    SDOperand Int = N0.getOperand(0);
3909    MVT::ValueType IntVT = Int.getValueType();
3910    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3911      Int = DAG.getNode(ISD::AND, IntVT, Int,
3912                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3913      AddToWorkList(Int.Val);
3914      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3915    }
3916  }
3917
3918  return SDOperand();
3919}
3920
3921SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3922  SDOperand Chain = N->getOperand(0);
3923  SDOperand N1 = N->getOperand(1);
3924  SDOperand N2 = N->getOperand(2);
3925  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3926
3927  // never taken branch, fold to chain
3928  if (N1C && N1C->isNullValue())
3929    return Chain;
3930  // unconditional branch
3931  if (N1C && N1C->getValue() == 1)
3932    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3933  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3934  // on the target.
3935  if (N1.getOpcode() == ISD::SETCC &&
3936      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3937    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3938                       N1.getOperand(0), N1.getOperand(1), N2);
3939  }
3940  return SDOperand();
3941}
3942
3943// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3944//
3945SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3946  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3947  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3948
3949  // Use SimplifySetCC  to simplify SETCC's.
3950  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3951  if (Simp.Val) AddToWorkList(Simp.Val);
3952
3953  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3954
3955  // fold br_cc true, dest -> br dest (unconditional branch)
3956  if (SCCC && SCCC->getValue())
3957    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3958                       N->getOperand(4));
3959  // fold br_cc false, dest -> unconditional fall through
3960  if (SCCC && SCCC->isNullValue())
3961    return N->getOperand(0);
3962
3963  // fold to a simpler setcc
3964  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3965    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3966                       Simp.getOperand(2), Simp.getOperand(0),
3967                       Simp.getOperand(1), N->getOperand(4));
3968  return SDOperand();
3969}
3970
3971
3972/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3973/// pre-indexed load / store when the base pointer is a add or subtract
3974/// and it has other uses besides the load / store. After the
3975/// transformation, the new indexed load / store has effectively folded
3976/// the add / subtract in and all of its other uses are redirected to the
3977/// new load / store.
3978bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3979  if (!AfterLegalize)
3980    return false;
3981
3982  bool isLoad = true;
3983  SDOperand Ptr;
3984  MVT::ValueType VT;
3985  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3986    if (LD->isIndexed())
3987      return false;
3988    VT = LD->getMemoryVT();
3989    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3990        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3991      return false;
3992    Ptr = LD->getBasePtr();
3993  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3994    if (ST->isIndexed())
3995      return false;
3996    VT = ST->getMemoryVT();
3997    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3998        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3999      return false;
4000    Ptr = ST->getBasePtr();
4001    isLoad = false;
4002  } else
4003    return false;
4004
4005  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4006  // out.  There is no reason to make this a preinc/predec.
4007  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4008      Ptr.Val->hasOneUse())
4009    return false;
4010
4011  // Ask the target to do addressing mode selection.
4012  SDOperand BasePtr;
4013  SDOperand Offset;
4014  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4015  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4016    return false;
4017  // Don't create a indexed load / store with zero offset.
4018  if (isa<ConstantSDNode>(Offset) &&
4019      cast<ConstantSDNode>(Offset)->getValue() == 0)
4020    return false;
4021
4022  // Try turning it into a pre-indexed load / store except when:
4023  // 1) The new base ptr is a frame index.
4024  // 2) If N is a store and the new base ptr is either the same as or is a
4025  //    predecessor of the value being stored.
4026  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4027  //    that would create a cycle.
4028  // 4) All uses are load / store ops that use it as old base ptr.
4029
4030  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4031  // (plus the implicit offset) to a register to preinc anyway.
4032  if (isa<FrameIndexSDNode>(BasePtr))
4033    return false;
4034
4035  // Check #2.
4036  if (!isLoad) {
4037    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4038    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4039      return false;
4040  }
4041
4042  // Now check for #3 and #4.
4043  bool RealUse = false;
4044  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4045         E = Ptr.Val->use_end(); I != E; ++I) {
4046    SDNode *Use = *I;
4047    if (Use == N)
4048      continue;
4049    if (Use->isPredecessorOf(N))
4050      return false;
4051
4052    if (!((Use->getOpcode() == ISD::LOAD &&
4053           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4054          (Use->getOpcode() == ISD::STORE &&
4055           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4056      RealUse = true;
4057  }
4058  if (!RealUse)
4059    return false;
4060
4061  SDOperand Result;
4062  if (isLoad)
4063    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4064  else
4065    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4066  ++PreIndexedNodes;
4067  ++NodesCombined;
4068  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4069  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4070  DOUT << '\n';
4071  WorkListRemover DeadNodes(*this);
4072  if (isLoad) {
4073    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4074                                  &DeadNodes);
4075    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4076                                  &DeadNodes);
4077  } else {
4078    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4079                                  &DeadNodes);
4080  }
4081
4082  // Finally, since the node is now dead, remove it from the graph.
4083  DAG.DeleteNode(N);
4084
4085  // Replace the uses of Ptr with uses of the updated base value.
4086  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4087                                &DeadNodes);
4088  removeFromWorkList(Ptr.Val);
4089  DAG.DeleteNode(Ptr.Val);
4090
4091  return true;
4092}
4093
4094/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4095/// add / sub of the base pointer node into a post-indexed load / store.
4096/// The transformation folded the add / subtract into the new indexed
4097/// load / store effectively and all of its uses are redirected to the
4098/// new load / store.
4099bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4100  if (!AfterLegalize)
4101    return false;
4102
4103  bool isLoad = true;
4104  SDOperand Ptr;
4105  MVT::ValueType VT;
4106  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4107    if (LD->isIndexed())
4108      return false;
4109    VT = LD->getMemoryVT();
4110    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4111        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4112      return false;
4113    Ptr = LD->getBasePtr();
4114  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4115    if (ST->isIndexed())
4116      return false;
4117    VT = ST->getMemoryVT();
4118    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4119        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4120      return false;
4121    Ptr = ST->getBasePtr();
4122    isLoad = false;
4123  } else
4124    return false;
4125
4126  if (Ptr.Val->hasOneUse())
4127    return false;
4128
4129  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4130         E = Ptr.Val->use_end(); I != E; ++I) {
4131    SDNode *Op = *I;
4132    if (Op == N ||
4133        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4134      continue;
4135
4136    SDOperand BasePtr;
4137    SDOperand Offset;
4138    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4139    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4140      if (Ptr == Offset)
4141        std::swap(BasePtr, Offset);
4142      if (Ptr != BasePtr)
4143        continue;
4144      // Don't create a indexed load / store with zero offset.
4145      if (isa<ConstantSDNode>(Offset) &&
4146          cast<ConstantSDNode>(Offset)->getValue() == 0)
4147        continue;
4148
4149      // Try turning it into a post-indexed load / store except when
4150      // 1) All uses are load / store ops that use it as base ptr.
4151      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4152      //    nor a successor of N. Otherwise, if Op is folded that would
4153      //    create a cycle.
4154
4155      // Check for #1.
4156      bool TryNext = false;
4157      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4158             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4159        SDNode *Use = *II;
4160        if (Use == Ptr.Val)
4161          continue;
4162
4163        // If all the uses are load / store addresses, then don't do the
4164        // transformation.
4165        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4166          bool RealUse = false;
4167          for (SDNode::use_iterator III = Use->use_begin(),
4168                 EEE = Use->use_end(); III != EEE; ++III) {
4169            SDNode *UseUse = *III;
4170            if (!((UseUse->getOpcode() == ISD::LOAD &&
4171                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4172                  (UseUse->getOpcode() == ISD::STORE &&
4173                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4174              RealUse = true;
4175          }
4176
4177          if (!RealUse) {
4178            TryNext = true;
4179            break;
4180          }
4181        }
4182      }
4183      if (TryNext)
4184        continue;
4185
4186      // Check for #2
4187      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4188        SDOperand Result = isLoad
4189          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4190          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4191        ++PostIndexedNodes;
4192        ++NodesCombined;
4193        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4194        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4195        DOUT << '\n';
4196        WorkListRemover DeadNodes(*this);
4197        if (isLoad) {
4198          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4199                                        &DeadNodes);
4200          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4201                                        &DeadNodes);
4202        } else {
4203          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4204                                        &DeadNodes);
4205        }
4206
4207        // Finally, since the node is now dead, remove it from the graph.
4208        DAG.DeleteNode(N);
4209
4210        // Replace the uses of Use with uses of the updated base value.
4211        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4212                                      Result.getValue(isLoad ? 1 : 0),
4213                                      &DeadNodes);
4214        removeFromWorkList(Op);
4215        DAG.DeleteNode(Op);
4216        return true;
4217      }
4218    }
4219  }
4220  return false;
4221}
4222
4223/// InferAlignment - If we can infer some alignment information from this
4224/// pointer, return it.
4225static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4226  // If this is a direct reference to a stack slot, use information about the
4227  // stack slot's alignment.
4228  int FrameIdx = 1 << 31;
4229  int64_t FrameOffset = 0;
4230  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4231    FrameIdx = FI->getIndex();
4232  } else if (Ptr.getOpcode() == ISD::ADD &&
4233             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4234             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4235    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4236    FrameOffset = Ptr.getConstantOperandVal(1);
4237  }
4238
4239  if (FrameIdx != (1 << 31)) {
4240    // FIXME: Handle FI+CST.
4241    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4242    if (MFI.isFixedObjectIndex(FrameIdx)) {
4243      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4244
4245      // The alignment of the frame index can be determined from its offset from
4246      // the incoming frame position.  If the frame object is at offset 32 and
4247      // the stack is guaranteed to be 16-byte aligned, then we know that the
4248      // object is 16-byte aligned.
4249      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4250      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4251
4252      // Finally, the frame object itself may have a known alignment.  Factor
4253      // the alignment + offset into a new alignment.  For example, if we know
4254      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4255      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4256      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4257      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4258                                      FrameOffset);
4259      return std::max(Align, FIInfoAlign);
4260    }
4261  }
4262
4263  return 0;
4264}
4265
4266SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4267  LoadSDNode *LD  = cast<LoadSDNode>(N);
4268  SDOperand Chain = LD->getChain();
4269  SDOperand Ptr   = LD->getBasePtr();
4270
4271  // Try to infer better alignment information than the load already has.
4272  if (LD->isUnindexed()) {
4273    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4274      if (Align > LD->getAlignment())
4275        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4276                              Chain, Ptr, LD->getSrcValue(),
4277                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4278                              LD->isVolatile(), Align);
4279    }
4280  }
4281
4282
4283  // If load is not volatile and there are no uses of the loaded value (and
4284  // the updated indexed value in case of indexed loads), change uses of the
4285  // chain value into uses of the chain input (i.e. delete the dead load).
4286  if (!LD->isVolatile()) {
4287    if (N->getValueType(1) == MVT::Other) {
4288      // Unindexed loads.
4289      if (N->hasNUsesOfValue(0, 0)) {
4290        // It's not safe to use the two value CombineTo variant here. e.g.
4291        // v1, chain2 = load chain1, loc
4292        // v2, chain3 = load chain2, loc
4293        // v3         = add v2, c
4294        // Now we replace use of chain2 with chain1.  This makes the second load
4295        // isomorphic to the one we are deleting, and thus makes this load live.
4296        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4297        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4298        DOUT << "\n";
4299        WorkListRemover DeadNodes(*this);
4300        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4301        if (N->use_empty()) {
4302          removeFromWorkList(N);
4303          DAG.DeleteNode(N);
4304        }
4305        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4306      }
4307    } else {
4308      // Indexed loads.
4309      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4310      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4311        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4312        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4313        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4314        DOUT << " and 2 other values\n";
4315        WorkListRemover DeadNodes(*this);
4316        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4317        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4318                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4319                                      &DeadNodes);
4320        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4321        removeFromWorkList(N);
4322        DAG.DeleteNode(N);
4323        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4324      }
4325    }
4326  }
4327
4328  // If this load is directly stored, replace the load value with the stored
4329  // value.
4330  // TODO: Handle store large -> read small portion.
4331  // TODO: Handle TRUNCSTORE/LOADEXT
4332  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4333    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4334      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4335      if (PrevST->getBasePtr() == Ptr &&
4336          PrevST->getValue().getValueType() == N->getValueType(0))
4337      return CombineTo(N, Chain.getOperand(1), Chain);
4338    }
4339  }
4340
4341  if (CombinerAA) {
4342    // Walk up chain skipping non-aliasing memory nodes.
4343    SDOperand BetterChain = FindBetterChain(N, Chain);
4344
4345    // If there is a better chain.
4346    if (Chain != BetterChain) {
4347      SDOperand ReplLoad;
4348
4349      // Replace the chain to void dependency.
4350      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4351        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4352                               LD->getSrcValue(), LD->getSrcValueOffset(),
4353                               LD->isVolatile(), LD->getAlignment());
4354      } else {
4355        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4356                                  LD->getValueType(0),
4357                                  BetterChain, Ptr, LD->getSrcValue(),
4358                                  LD->getSrcValueOffset(),
4359                                  LD->getMemoryVT(),
4360                                  LD->isVolatile(),
4361                                  LD->getAlignment());
4362      }
4363
4364      // Create token factor to keep old chain connected.
4365      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4366                                    Chain, ReplLoad.getValue(1));
4367
4368      // Replace uses with load result and token factor. Don't add users
4369      // to work list.
4370      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4371    }
4372  }
4373
4374  // Try transforming N to an indexed load.
4375  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4376    return SDOperand(N, 0);
4377
4378  return SDOperand();
4379}
4380
4381
4382SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4383  StoreSDNode *ST  = cast<StoreSDNode>(N);
4384  SDOperand Chain = ST->getChain();
4385  SDOperand Value = ST->getValue();
4386  SDOperand Ptr   = ST->getBasePtr();
4387
4388  // Try to infer better alignment information than the store already has.
4389  if (ST->isUnindexed()) {
4390    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4391      if (Align > ST->getAlignment())
4392        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4393                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4394                                 ST->isVolatile(), Align);
4395    }
4396  }
4397
4398  // If this is a store of a bit convert, store the input value if the
4399  // resultant store does not need a higher alignment than the original.
4400  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4401      ST->isUnindexed()) {
4402    unsigned Align = ST->getAlignment();
4403    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4404    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4405      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4406    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4407      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4408                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4409  }
4410
4411  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4412  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4413    if (Value.getOpcode() != ISD::TargetConstantFP) {
4414      SDOperand Tmp;
4415      switch (CFP->getValueType(0)) {
4416      default: assert(0 && "Unknown FP type");
4417      case MVT::f80:    // We don't do this for these yet.
4418      case MVT::f128:
4419      case MVT::ppcf128:
4420        break;
4421      case MVT::f32:
4422        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4423          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4424                              convertToAPInt().getZExtValue(), MVT::i32);
4425          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4426                              ST->getSrcValueOffset(), ST->isVolatile(),
4427                              ST->getAlignment());
4428        }
4429        break;
4430      case MVT::f64:
4431        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4432          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4433                                  getZExtValue(), MVT::i64);
4434          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4435                              ST->getSrcValueOffset(), ST->isVolatile(),
4436                              ST->getAlignment());
4437        } else if (TLI.isTypeLegal(MVT::i32)) {
4438          // Many FP stores are not made apparent until after legalize, e.g. for
4439          // argument passing.  Since this is so common, custom legalize the
4440          // 64-bit integer store into two 32-bit stores.
4441          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4442          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4443          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4444          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4445
4446          int SVOffset = ST->getSrcValueOffset();
4447          unsigned Alignment = ST->getAlignment();
4448          bool isVolatile = ST->isVolatile();
4449
4450          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4451                                       ST->getSrcValueOffset(),
4452                                       isVolatile, ST->getAlignment());
4453          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4454                            DAG.getConstant(4, Ptr.getValueType()));
4455          SVOffset += 4;
4456          Alignment = MinAlign(Alignment, 4U);
4457          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4458                                       SVOffset, isVolatile, Alignment);
4459          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4460        }
4461        break;
4462      }
4463    }
4464  }
4465
4466  if (CombinerAA) {
4467    // Walk up chain skipping non-aliasing memory nodes.
4468    SDOperand BetterChain = FindBetterChain(N, Chain);
4469
4470    // If there is a better chain.
4471    if (Chain != BetterChain) {
4472      // Replace the chain to avoid dependency.
4473      SDOperand ReplStore;
4474      if (ST->isTruncatingStore()) {
4475        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4476                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4477                                      ST->getMemoryVT(),
4478                                      ST->isVolatile(), ST->getAlignment());
4479      } else {
4480        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4481                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4482                                 ST->isVolatile(), ST->getAlignment());
4483      }
4484
4485      // Create token to keep both nodes around.
4486      SDOperand Token =
4487        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4488
4489      // Don't add users to work list.
4490      return CombineTo(N, Token, false);
4491    }
4492  }
4493
4494  // Try transforming N to an indexed store.
4495  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4496    return SDOperand(N, 0);
4497
4498  // FIXME: is there such a thing as a truncating indexed store?
4499  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4500      MVT::isInteger(Value.getValueType())) {
4501    // See if we can simplify the input to this truncstore with knowledge that
4502    // only the low bits are being used.  For example:
4503    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4504    SDOperand Shorter =
4505      GetDemandedBits(Value,
4506                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4507                                      MVT::getSizeInBits(ST->getMemoryVT())));
4508    AddToWorkList(Value.Val);
4509    if (Shorter.Val)
4510      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4511                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4512                               ST->isVolatile(), ST->getAlignment());
4513
4514    // Otherwise, see if we can simplify the operation with
4515    // SimplifyDemandedBits, which only works if the value has a single use.
4516    if (SimplifyDemandedBits(Value,
4517                             APInt::getLowBitsSet(
4518                               Value.getValueSizeInBits(),
4519                               MVT::getSizeInBits(ST->getMemoryVT()))))
4520      return SDOperand(N, 0);
4521  }
4522
4523  // If this is a load followed by a store to the same location, then the store
4524  // is dead/noop.
4525  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4526    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4527        ST->isUnindexed() && !ST->isVolatile() &&
4528        // There can't be any side effects between the load and store, such as
4529        // a call or store.
4530        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4531      // The store is dead, remove it.
4532      return Chain;
4533    }
4534  }
4535
4536  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4537  // truncating store.  We can do this even if this is already a truncstore.
4538  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4539      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4540      Value.Val->hasOneUse() && ST->isUnindexed() &&
4541      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4542                            ST->getMemoryVT())) {
4543    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4544                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4545                             ST->isVolatile(), ST->getAlignment());
4546  }
4547
4548  return SDOperand();
4549}
4550
4551SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4552  SDOperand InVec = N->getOperand(0);
4553  SDOperand InVal = N->getOperand(1);
4554  SDOperand EltNo = N->getOperand(2);
4555
4556  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4557  // vector with the inserted element.
4558  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4559    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4560    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4561    if (Elt < Ops.size())
4562      Ops[Elt] = InVal;
4563    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4564                       &Ops[0], Ops.size());
4565  }
4566
4567  return SDOperand();
4568}
4569
4570SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4571  SDOperand InVec = N->getOperand(0);
4572  SDOperand EltNo = N->getOperand(1);
4573
4574  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4575  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4576  if (isa<ConstantSDNode>(EltNo)) {
4577    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4578    bool NewLoad = false;
4579    if (Elt == 0) {
4580      MVT::ValueType VT = InVec.getValueType();
4581      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4582      MVT::ValueType LVT = EVT;
4583      unsigned NumElts = MVT::getVectorNumElements(VT);
4584      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4585        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4586        if (!MVT::isVector(BCVT) ||
4587            NumElts != MVT::getVectorNumElements(BCVT))
4588          return SDOperand();
4589        InVec = InVec.getOperand(0);
4590        EVT = MVT::getVectorElementType(BCVT);
4591        NewLoad = true;
4592      }
4593      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4594          InVec.getOperand(0).getValueType() == EVT &&
4595          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4596          InVec.getOperand(0).hasOneUse()) {
4597        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4598        unsigned Align = LN0->getAlignment();
4599        if (NewLoad) {
4600          // Check the resultant load doesn't need a higher alignment than the
4601          // original load.
4602          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4603            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4604          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4605            return SDOperand();
4606          Align = NewAlign;
4607        }
4608
4609        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4610                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4611                           LN0->isVolatile(), Align);
4612      }
4613    }
4614  }
4615  return SDOperand();
4616}
4617
4618
4619SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4620  unsigned NumInScalars = N->getNumOperands();
4621  MVT::ValueType VT = N->getValueType(0);
4622  unsigned NumElts = MVT::getVectorNumElements(VT);
4623  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4624
4625  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4626  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4627  // at most two distinct vectors, turn this into a shuffle node.
4628  SDOperand VecIn1, VecIn2;
4629  for (unsigned i = 0; i != NumInScalars; ++i) {
4630    // Ignore undef inputs.
4631    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4632
4633    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4634    // constant index, bail out.
4635    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4636        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4637      VecIn1 = VecIn2 = SDOperand(0, 0);
4638      break;
4639    }
4640
4641    // If the input vector type disagrees with the result of the build_vector,
4642    // we can't make a shuffle.
4643    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4644    if (ExtractedFromVec.getValueType() != VT) {
4645      VecIn1 = VecIn2 = SDOperand(0, 0);
4646      break;
4647    }
4648
4649    // Otherwise, remember this.  We allow up to two distinct input vectors.
4650    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4651      continue;
4652
4653    if (VecIn1.Val == 0) {
4654      VecIn1 = ExtractedFromVec;
4655    } else if (VecIn2.Val == 0) {
4656      VecIn2 = ExtractedFromVec;
4657    } else {
4658      // Too many inputs.
4659      VecIn1 = VecIn2 = SDOperand(0, 0);
4660      break;
4661    }
4662  }
4663
4664  // If everything is good, we can make a shuffle operation.
4665  if (VecIn1.Val) {
4666    SmallVector<SDOperand, 8> BuildVecIndices;
4667    for (unsigned i = 0; i != NumInScalars; ++i) {
4668      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4669        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4670        continue;
4671      }
4672
4673      SDOperand Extract = N->getOperand(i);
4674
4675      // If extracting from the first vector, just use the index directly.
4676      if (Extract.getOperand(0) == VecIn1) {
4677        BuildVecIndices.push_back(Extract.getOperand(1));
4678        continue;
4679      }
4680
4681      // Otherwise, use InIdx + VecSize
4682      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4683      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4684    }
4685
4686    // Add count and size info.
4687    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4688
4689    // Return the new VECTOR_SHUFFLE node.
4690    SDOperand Ops[5];
4691    Ops[0] = VecIn1;
4692    if (VecIn2.Val) {
4693      Ops[1] = VecIn2;
4694    } else {
4695      // Use an undef build_vector as input for the second operand.
4696      std::vector<SDOperand> UnOps(NumInScalars,
4697                                   DAG.getNode(ISD::UNDEF,
4698                                               EltType));
4699      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4700                           &UnOps[0], UnOps.size());
4701      AddToWorkList(Ops[1].Val);
4702    }
4703    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4704                         &BuildVecIndices[0], BuildVecIndices.size());
4705    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4706  }
4707
4708  return SDOperand();
4709}
4710
4711SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4712  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4713  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4714  // inputs come from at most two distinct vectors, turn this into a shuffle
4715  // node.
4716
4717  // If we only have one input vector, we don't need to do any concatenation.
4718  if (N->getNumOperands() == 1) {
4719    return N->getOperand(0);
4720  }
4721
4722  return SDOperand();
4723}
4724
4725SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4726  SDOperand ShufMask = N->getOperand(2);
4727  unsigned NumElts = ShufMask.getNumOperands();
4728
4729  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4730  bool isIdentity = true;
4731  for (unsigned i = 0; i != NumElts; ++i) {
4732    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4733        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4734      isIdentity = false;
4735      break;
4736    }
4737  }
4738  if (isIdentity) return N->getOperand(0);
4739
4740  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4741  isIdentity = true;
4742  for (unsigned i = 0; i != NumElts; ++i) {
4743    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4744        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4745      isIdentity = false;
4746      break;
4747    }
4748  }
4749  if (isIdentity) return N->getOperand(1);
4750
4751  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4752  // needed at all.
4753  bool isUnary = true;
4754  bool isSplat = true;
4755  int VecNum = -1;
4756  unsigned BaseIdx = 0;
4757  for (unsigned i = 0; i != NumElts; ++i)
4758    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4759      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4760      int V = (Idx < NumElts) ? 0 : 1;
4761      if (VecNum == -1) {
4762        VecNum = V;
4763        BaseIdx = Idx;
4764      } else {
4765        if (BaseIdx != Idx)
4766          isSplat = false;
4767        if (VecNum != V) {
4768          isUnary = false;
4769          break;
4770        }
4771      }
4772    }
4773
4774  SDOperand N0 = N->getOperand(0);
4775  SDOperand N1 = N->getOperand(1);
4776  // Normalize unary shuffle so the RHS is undef.
4777  if (isUnary && VecNum == 1)
4778    std::swap(N0, N1);
4779
4780  // If it is a splat, check if the argument vector is a build_vector with
4781  // all scalar elements the same.
4782  if (isSplat) {
4783    SDNode *V = N0.Val;
4784
4785    // If this is a bit convert that changes the element type of the vector but
4786    // not the number of vector elements, look through it.  Be careful not to
4787    // look though conversions that change things like v4f32 to v2f64.
4788    if (V->getOpcode() == ISD::BIT_CONVERT) {
4789      SDOperand ConvInput = V->getOperand(0);
4790      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4791        V = ConvInput.Val;
4792    }
4793
4794    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4795      unsigned NumElems = V->getNumOperands();
4796      if (NumElems > BaseIdx) {
4797        SDOperand Base;
4798        bool AllSame = true;
4799        for (unsigned i = 0; i != NumElems; ++i) {
4800          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4801            Base = V->getOperand(i);
4802            break;
4803          }
4804        }
4805        // Splat of <u, u, u, u>, return <u, u, u, u>
4806        if (!Base.Val)
4807          return N0;
4808        for (unsigned i = 0; i != NumElems; ++i) {
4809          if (V->getOperand(i) != Base) {
4810            AllSame = false;
4811            break;
4812          }
4813        }
4814        // Splat of <x, x, x, x>, return <x, x, x, x>
4815        if (AllSame)
4816          return N0;
4817      }
4818    }
4819  }
4820
4821  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4822  // into an undef.
4823  if (isUnary || N0 == N1) {
4824    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4825    // first operand.
4826    SmallVector<SDOperand, 8> MappedOps;
4827    for (unsigned i = 0; i != NumElts; ++i) {
4828      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4829          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4830        MappedOps.push_back(ShufMask.getOperand(i));
4831      } else {
4832        unsigned NewIdx =
4833          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4834        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4835      }
4836    }
4837    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4838                           &MappedOps[0], MappedOps.size());
4839    AddToWorkList(ShufMask.Val);
4840    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4841                       N0,
4842                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4843                       ShufMask);
4844  }
4845
4846  return SDOperand();
4847}
4848
4849/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4850/// an AND to a vector_shuffle with the destination vector and a zero vector.
4851/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4852///      vector_shuffle V, Zero, <0, 4, 2, 4>
4853SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4854  SDOperand LHS = N->getOperand(0);
4855  SDOperand RHS = N->getOperand(1);
4856  if (N->getOpcode() == ISD::AND) {
4857    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4858      RHS = RHS.getOperand(0);
4859    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4860      std::vector<SDOperand> IdxOps;
4861      unsigned NumOps = RHS.getNumOperands();
4862      unsigned NumElts = NumOps;
4863      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4864      for (unsigned i = 0; i != NumElts; ++i) {
4865        SDOperand Elt = RHS.getOperand(i);
4866        if (!isa<ConstantSDNode>(Elt))
4867          return SDOperand();
4868        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4869          IdxOps.push_back(DAG.getConstant(i, EVT));
4870        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4871          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4872        else
4873          return SDOperand();
4874      }
4875
4876      // Let's see if the target supports this vector_shuffle.
4877      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4878        return SDOperand();
4879
4880      // Return the new VECTOR_SHUFFLE node.
4881      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4882      std::vector<SDOperand> Ops;
4883      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4884      Ops.push_back(LHS);
4885      AddToWorkList(LHS.Val);
4886      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4887      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4888                                &ZeroOps[0], ZeroOps.size()));
4889      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4890                                &IdxOps[0], IdxOps.size()));
4891      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4892                                     &Ops[0], Ops.size());
4893      if (VT != LHS.getValueType()) {
4894        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4895      }
4896      return Result;
4897    }
4898  }
4899  return SDOperand();
4900}
4901
4902/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4903SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4904  // After legalize, the target may be depending on adds and other
4905  // binary ops to provide legal ways to construct constants or other
4906  // things. Simplifying them may result in a loss of legality.
4907  if (AfterLegalize) return SDOperand();
4908
4909  MVT::ValueType VT = N->getValueType(0);
4910  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4911
4912  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4913  SDOperand LHS = N->getOperand(0);
4914  SDOperand RHS = N->getOperand(1);
4915  SDOperand Shuffle = XformToShuffleWithZero(N);
4916  if (Shuffle.Val) return Shuffle;
4917
4918  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4919  // this operation.
4920  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4921      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4922    SmallVector<SDOperand, 8> Ops;
4923    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4924      SDOperand LHSOp = LHS.getOperand(i);
4925      SDOperand RHSOp = RHS.getOperand(i);
4926      // If these two elements can't be folded, bail out.
4927      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4928           LHSOp.getOpcode() != ISD::Constant &&
4929           LHSOp.getOpcode() != ISD::ConstantFP) ||
4930          (RHSOp.getOpcode() != ISD::UNDEF &&
4931           RHSOp.getOpcode() != ISD::Constant &&
4932           RHSOp.getOpcode() != ISD::ConstantFP))
4933        break;
4934      // Can't fold divide by zero.
4935      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4936          N->getOpcode() == ISD::FDIV) {
4937        if ((RHSOp.getOpcode() == ISD::Constant &&
4938             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4939            (RHSOp.getOpcode() == ISD::ConstantFP &&
4940             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4941          break;
4942      }
4943      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4944      AddToWorkList(Ops.back().Val);
4945      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4946              Ops.back().getOpcode() == ISD::Constant ||
4947              Ops.back().getOpcode() == ISD::ConstantFP) &&
4948             "Scalar binop didn't fold!");
4949    }
4950
4951    if (Ops.size() == LHS.getNumOperands()) {
4952      MVT::ValueType VT = LHS.getValueType();
4953      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4954    }
4955  }
4956
4957  return SDOperand();
4958}
4959
4960SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4961  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4962
4963  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4964                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4965  // If we got a simplified select_cc node back from SimplifySelectCC, then
4966  // break it down into a new SETCC node, and a new SELECT node, and then return
4967  // the SELECT node, since we were called with a SELECT node.
4968  if (SCC.Val) {
4969    // Check to see if we got a select_cc back (to turn into setcc/select).
4970    // Otherwise, just return whatever node we got back, like fabs.
4971    if (SCC.getOpcode() == ISD::SELECT_CC) {
4972      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4973                                    SCC.getOperand(0), SCC.getOperand(1),
4974                                    SCC.getOperand(4));
4975      AddToWorkList(SETCC.Val);
4976      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4977                         SCC.getOperand(3), SETCC);
4978    }
4979    return SCC;
4980  }
4981  return SDOperand();
4982}
4983
4984/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4985/// are the two values being selected between, see if we can simplify the
4986/// select.  Callers of this should assume that TheSelect is deleted if this
4987/// returns true.  As such, they should return the appropriate thing (e.g. the
4988/// node) back to the top-level of the DAG combiner loop to avoid it being
4989/// looked at.
4990///
4991bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4992                                    SDOperand RHS) {
4993
4994  // If this is a select from two identical things, try to pull the operation
4995  // through the select.
4996  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4997    // If this is a load and the token chain is identical, replace the select
4998    // of two loads with a load through a select of the address to load from.
4999    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5000    // constants have been dropped into the constant pool.
5001    if (LHS.getOpcode() == ISD::LOAD &&
5002        // Token chains must be identical.
5003        LHS.getOperand(0) == RHS.getOperand(0)) {
5004      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5005      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5006
5007      // If this is an EXTLOAD, the VT's must match.
5008      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5009        // FIXME: this conflates two src values, discarding one.  This is not
5010        // the right thing to do, but nothing uses srcvalues now.  When they do,
5011        // turn SrcValue into a list of locations.
5012        SDOperand Addr;
5013        if (TheSelect->getOpcode() == ISD::SELECT) {
5014          // Check that the condition doesn't reach either load.  If so, folding
5015          // this will induce a cycle into the DAG.
5016          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5017              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5018            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5019                               TheSelect->getOperand(0), LLD->getBasePtr(),
5020                               RLD->getBasePtr());
5021          }
5022        } else {
5023          // Check that the condition doesn't reach either load.  If so, folding
5024          // this will induce a cycle into the DAG.
5025          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5026              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5027              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5028              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5029            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5030                             TheSelect->getOperand(0),
5031                             TheSelect->getOperand(1),
5032                             LLD->getBasePtr(), RLD->getBasePtr(),
5033                             TheSelect->getOperand(4));
5034          }
5035        }
5036
5037        if (Addr.Val) {
5038          SDOperand Load;
5039          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5040            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5041                               Addr,LLD->getSrcValue(),
5042                               LLD->getSrcValueOffset(),
5043                               LLD->isVolatile(),
5044                               LLD->getAlignment());
5045          else {
5046            Load = DAG.getExtLoad(LLD->getExtensionType(),
5047                                  TheSelect->getValueType(0),
5048                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5049                                  LLD->getSrcValueOffset(),
5050                                  LLD->getMemoryVT(),
5051                                  LLD->isVolatile(),
5052                                  LLD->getAlignment());
5053          }
5054          // Users of the select now use the result of the load.
5055          CombineTo(TheSelect, Load);
5056
5057          // Users of the old loads now use the new load's chain.  We know the
5058          // old-load value is dead now.
5059          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5060          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5061          return true;
5062        }
5063      }
5064    }
5065  }
5066
5067  return false;
5068}
5069
5070SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5071                                        SDOperand N2, SDOperand N3,
5072                                        ISD::CondCode CC, bool NotExtCompare) {
5073
5074  MVT::ValueType VT = N2.getValueType();
5075  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5076  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5077  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5078
5079  // Determine if the condition we're dealing with is constant
5080  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
5081  if (SCC.Val) AddToWorkList(SCC.Val);
5082  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5083
5084  // fold select_cc true, x, y -> x
5085  if (SCCC && SCCC->getValue())
5086    return N2;
5087  // fold select_cc false, x, y -> y
5088  if (SCCC && SCCC->getValue() == 0)
5089    return N3;
5090
5091  // Check to see if we can simplify the select into an fabs node
5092  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5093    // Allow either -0.0 or 0.0
5094    if (CFP->getValueAPF().isZero()) {
5095      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5096      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5097          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5098          N2 == N3.getOperand(0))
5099        return DAG.getNode(ISD::FABS, VT, N0);
5100
5101      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5102      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5103          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5104          N2.getOperand(0) == N3)
5105        return DAG.getNode(ISD::FABS, VT, N3);
5106    }
5107  }
5108
5109  // Check to see if we can perform the "gzip trick", transforming
5110  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5111  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5112      MVT::isInteger(N0.getValueType()) &&
5113      MVT::isInteger(N2.getValueType()) &&
5114      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5115       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5116    MVT::ValueType XType = N0.getValueType();
5117    MVT::ValueType AType = N2.getValueType();
5118    if (XType >= AType) {
5119      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5120      // single-bit constant.
5121      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5122        unsigned ShCtV = Log2_64(N2C->getValue());
5123        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5124        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5125        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5126        AddToWorkList(Shift.Val);
5127        if (XType > AType) {
5128          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5129          AddToWorkList(Shift.Val);
5130        }
5131        return DAG.getNode(ISD::AND, AType, Shift, N2);
5132      }
5133      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5134                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5135                                                    TLI.getShiftAmountTy()));
5136      AddToWorkList(Shift.Val);
5137      if (XType > AType) {
5138        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5139        AddToWorkList(Shift.Val);
5140      }
5141      return DAG.getNode(ISD::AND, AType, Shift, N2);
5142    }
5143  }
5144
5145  // fold select C, 16, 0 -> shl C, 4
5146  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5147      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5148
5149    // If the caller doesn't want us to simplify this into a zext of a compare,
5150    // don't do it.
5151    if (NotExtCompare && N2C->getValue() == 1)
5152      return SDOperand();
5153
5154    // Get a SetCC of the condition
5155    // FIXME: Should probably make sure that setcc is legal if we ever have a
5156    // target where it isn't.
5157    SDOperand Temp, SCC;
5158    // cast from setcc result type to select result type
5159    if (AfterLegalize) {
5160      SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5161      if (N2.getValueType() < SCC.getValueType())
5162        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5163      else
5164        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5165    } else {
5166      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5167      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5168    }
5169    AddToWorkList(SCC.Val);
5170    AddToWorkList(Temp.Val);
5171
5172    if (N2C->getValue() == 1)
5173      return Temp;
5174    // shl setcc result by log2 n2c
5175    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5176                       DAG.getConstant(Log2_64(N2C->getValue()),
5177                                       TLI.getShiftAmountTy()));
5178  }
5179
5180  // Check to see if this is the equivalent of setcc
5181  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5182  // otherwise, go ahead with the folds.
5183  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5184    MVT::ValueType XType = N0.getValueType();
5185    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) {
5186      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5187      if (Res.getValueType() != VT)
5188        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5189      return Res;
5190    }
5191
5192    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5193    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5194        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5195      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5196      return DAG.getNode(ISD::SRL, XType, Ctlz,
5197                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5198                                         TLI.getShiftAmountTy()));
5199    }
5200    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5201    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5202      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5203                                    N0);
5204      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5205                                    DAG.getConstant(~0ULL, XType));
5206      return DAG.getNode(ISD::SRL, XType,
5207                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5208                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5209                                         TLI.getShiftAmountTy()));
5210    }
5211    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5212    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5213      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5214                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5215                                                   TLI.getShiftAmountTy()));
5216      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5217    }
5218  }
5219
5220  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5221  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5222  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5223      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5224      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5225    MVT::ValueType XType = N0.getValueType();
5226    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5227                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5228                                                  TLI.getShiftAmountTy()));
5229    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5230    AddToWorkList(Shift.Val);
5231    AddToWorkList(Add.Val);
5232    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5233  }
5234  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5235  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5236  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5237      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5238    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5239      MVT::ValueType XType = N0.getValueType();
5240      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5241        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5242                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5243                                                      TLI.getShiftAmountTy()));
5244        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5245        AddToWorkList(Shift.Val);
5246        AddToWorkList(Add.Val);
5247        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5248      }
5249    }
5250  }
5251
5252  return SDOperand();
5253}
5254
5255/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5256SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5257                                     SDOperand N1, ISD::CondCode Cond,
5258                                     bool foldBooleans) {
5259  TargetLowering::DAGCombinerInfo
5260    DagCombineInfo(DAG, !AfterLegalize, false, this);
5261  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5262}
5263
5264/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5265/// return a DAG expression to select that will generate the same value by
5266/// multiplying by a magic number.  See:
5267/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5268SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5269  std::vector<SDNode*> Built;
5270  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5271
5272  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5273       ii != ee; ++ii)
5274    AddToWorkList(*ii);
5275  return S;
5276}
5277
5278/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5279/// return a DAG expression to select that will generate the same value by
5280/// multiplying by a magic number.  See:
5281/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5282SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5283  std::vector<SDNode*> Built;
5284  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5285
5286  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5287       ii != ee; ++ii)
5288    AddToWorkList(*ii);
5289  return S;
5290}
5291
5292/// FindBaseOffset - Return true if base is known not to alias with anything
5293/// but itself.  Provides base object and offset as results.
5294static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5295  // Assume it is a primitive operation.
5296  Base = Ptr; Offset = 0;
5297
5298  // If it's an adding a simple constant then integrate the offset.
5299  if (Base.getOpcode() == ISD::ADD) {
5300    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5301      Base = Base.getOperand(0);
5302      Offset += C->getValue();
5303    }
5304  }
5305
5306  // If it's any of the following then it can't alias with anything but itself.
5307  return isa<FrameIndexSDNode>(Base) ||
5308         isa<ConstantPoolSDNode>(Base) ||
5309         isa<GlobalAddressSDNode>(Base);
5310}
5311
5312/// isAlias - Return true if there is any possibility that the two addresses
5313/// overlap.
5314bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5315                          const Value *SrcValue1, int SrcValueOffset1,
5316                          SDOperand Ptr2, int64_t Size2,
5317                          const Value *SrcValue2, int SrcValueOffset2)
5318{
5319  // If they are the same then they must be aliases.
5320  if (Ptr1 == Ptr2) return true;
5321
5322  // Gather base node and offset information.
5323  SDOperand Base1, Base2;
5324  int64_t Offset1, Offset2;
5325  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5326  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5327
5328  // If they have a same base address then...
5329  if (Base1 == Base2) {
5330    // Check to see if the addresses overlap.
5331    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5332  }
5333
5334  // If we know both bases then they can't alias.
5335  if (KnownBase1 && KnownBase2) return false;
5336
5337  if (CombinerGlobalAA) {
5338    // Use alias analysis information.
5339    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5340    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5341    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5342    AliasAnalysis::AliasResult AAResult =
5343                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5344    if (AAResult == AliasAnalysis::NoAlias)
5345      return false;
5346  }
5347
5348  // Otherwise we have to assume they alias.
5349  return true;
5350}
5351
5352/// FindAliasInfo - Extracts the relevant alias information from the memory
5353/// node.  Returns true if the operand was a load.
5354bool DAGCombiner::FindAliasInfo(SDNode *N,
5355                        SDOperand &Ptr, int64_t &Size,
5356                        const Value *&SrcValue, int &SrcValueOffset) {
5357  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5358    Ptr = LD->getBasePtr();
5359    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5360    SrcValue = LD->getSrcValue();
5361    SrcValueOffset = LD->getSrcValueOffset();
5362    return true;
5363  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5364    Ptr = ST->getBasePtr();
5365    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5366    SrcValue = ST->getSrcValue();
5367    SrcValueOffset = ST->getSrcValueOffset();
5368  } else {
5369    assert(0 && "FindAliasInfo expected a memory operand");
5370  }
5371
5372  return false;
5373}
5374
5375/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5376/// looking for aliasing nodes and adding them to the Aliases vector.
5377void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5378                                   SmallVector<SDOperand, 8> &Aliases) {
5379  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5380  std::set<SDNode *> Visited;           // Visited node set.
5381
5382  // Get alias information for node.
5383  SDOperand Ptr;
5384  int64_t Size;
5385  const Value *SrcValue;
5386  int SrcValueOffset;
5387  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5388
5389  // Starting off.
5390  Chains.push_back(OriginalChain);
5391
5392  // Look at each chain and determine if it is an alias.  If so, add it to the
5393  // aliases list.  If not, then continue up the chain looking for the next
5394  // candidate.
5395  while (!Chains.empty()) {
5396    SDOperand Chain = Chains.back();
5397    Chains.pop_back();
5398
5399     // Don't bother if we've been before.
5400    if (Visited.find(Chain.Val) != Visited.end()) continue;
5401    Visited.insert(Chain.Val);
5402
5403    switch (Chain.getOpcode()) {
5404    case ISD::EntryToken:
5405      // Entry token is ideal chain operand, but handled in FindBetterChain.
5406      break;
5407
5408    case ISD::LOAD:
5409    case ISD::STORE: {
5410      // Get alias information for Chain.
5411      SDOperand OpPtr;
5412      int64_t OpSize;
5413      const Value *OpSrcValue;
5414      int OpSrcValueOffset;
5415      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5416                                    OpSrcValue, OpSrcValueOffset);
5417
5418      // If chain is alias then stop here.
5419      if (!(IsLoad && IsOpLoad) &&
5420          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5421                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5422        Aliases.push_back(Chain);
5423      } else {
5424        // Look further up the chain.
5425        Chains.push_back(Chain.getOperand(0));
5426        // Clean up old chain.
5427        AddToWorkList(Chain.Val);
5428      }
5429      break;
5430    }
5431
5432    case ISD::TokenFactor:
5433      // We have to check each of the operands of the token factor, so we queue
5434      // then up.  Adding the  operands to the queue (stack) in reverse order
5435      // maintains the original order and increases the likelihood that getNode
5436      // will find a matching token factor (CSE.)
5437      for (unsigned n = Chain.getNumOperands(); n;)
5438        Chains.push_back(Chain.getOperand(--n));
5439      // Eliminate the token factor if we can.
5440      AddToWorkList(Chain.Val);
5441      break;
5442
5443    default:
5444      // For all other instructions we will just have to take what we can get.
5445      Aliases.push_back(Chain);
5446      break;
5447    }
5448  }
5449}
5450
5451/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5452/// for a better chain (aliasing node.)
5453SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5454  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5455
5456  // Accumulate all the aliases to this node.
5457  GatherAllAliases(N, OldChain, Aliases);
5458
5459  if (Aliases.size() == 0) {
5460    // If no operands then chain to entry token.
5461    return DAG.getEntryNode();
5462  } else if (Aliases.size() == 1) {
5463    // If a single operand then chain to it.  We don't need to revisit it.
5464    return Aliases[0];
5465  }
5466
5467  // Construct a custom tailored token factor.
5468  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5469                                   &Aliases[0], Aliases.size());
5470
5471  // Make sure the old chain gets cleaned up.
5472  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5473
5474  return NewChain;
5475}
5476
5477// SelectionDAG::Combine - This is the entry point for the file.
5478//
5479void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5480  if (!RunningAfterLegalize && ViewDAGCombine1)
5481    viewGraph();
5482  if (RunningAfterLegalize && ViewDAGCombine2)
5483    viewGraph();
5484  /// run - This is the main entry point to this class.
5485  ///
5486  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5487}
5488