DAGCombiner.cpp revision 75c9433b49b1e4e2d7e61249c3cd0e3ce910d5c8
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitVSELECT(SDNode *N);
209    SDValue visitSELECT_CC(SDNode *N);
210    SDValue visitSETCC(SDNode *N);
211    SDValue visitSIGN_EXTEND(SDNode *N);
212    SDValue visitZERO_EXTEND(SDNode *N);
213    SDValue visitANY_EXTEND(SDNode *N);
214    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
215    SDValue visitTRUNCATE(SDNode *N);
216    SDValue visitBITCAST(SDNode *N);
217    SDValue visitBUILD_PAIR(SDNode *N);
218    SDValue visitFADD(SDNode *N);
219    SDValue visitFSUB(SDNode *N);
220    SDValue visitFMUL(SDNode *N);
221    SDValue visitFMA(SDNode *N);
222    SDValue visitFDIV(SDNode *N);
223    SDValue visitFREM(SDNode *N);
224    SDValue visitFCOPYSIGN(SDNode *N);
225    SDValue visitSINT_TO_FP(SDNode *N);
226    SDValue visitUINT_TO_FP(SDNode *N);
227    SDValue visitFP_TO_SINT(SDNode *N);
228    SDValue visitFP_TO_UINT(SDNode *N);
229    SDValue visitFP_ROUND(SDNode *N);
230    SDValue visitFP_ROUND_INREG(SDNode *N);
231    SDValue visitFP_EXTEND(SDNode *N);
232    SDValue visitFNEG(SDNode *N);
233    SDValue visitFABS(SDNode *N);
234    SDValue visitFCEIL(SDNode *N);
235    SDValue visitFTRUNC(SDNode *N);
236    SDValue visitFFLOOR(SDNode *N);
237    SDValue visitBRCOND(SDNode *N);
238    SDValue visitBR_CC(SDNode *N);
239    SDValue visitLOAD(SDNode *N);
240    SDValue visitSTORE(SDNode *N);
241    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
242    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
243    SDValue visitBUILD_VECTOR(SDNode *N);
244    SDValue visitCONCAT_VECTORS(SDNode *N);
245    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
246    SDValue visitVECTOR_SHUFFLE(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          SDLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVectorImpl<SDValue> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
330      if (LHSTy.isVector())
331        return LHSTy;
332      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) : TLI.getPointerTy();
333    }
334
335    /// isTypeLegal - This method returns true if we are running before type
336    /// legalization or if the specified VT is legal.
337    bool isTypeLegal(const EVT &VT) {
338      if (!LegalTypes) return true;
339      return TLI.isTypeLegal(VT);
340    }
341
342    /// getSetCCResultType - Convenience wrapper around
343    /// TargetLowering::getSetCCResultType
344    EVT getSetCCResultType(EVT VT) const {
345      return TLI.getSetCCResultType(*DAG.getContext(), VT);
346    }
347  };
348}
349
350
351namespace {
352/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
353/// nodes from the worklist.
354class WorkListRemover : public SelectionDAG::DAGUpdateListener {
355  DAGCombiner &DC;
356public:
357  explicit WorkListRemover(DAGCombiner &dc)
358    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
359
360  virtual void NodeDeleted(SDNode *N, SDNode *E) {
361    DC.removeFromWorkList(N);
362  }
363};
364}
365
366//===----------------------------------------------------------------------===//
367//  TargetLowering::DAGCombinerInfo implementation
368//===----------------------------------------------------------------------===//
369
370void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
371  ((DAGCombiner*)DC)->AddToWorkList(N);
372}
373
374void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
375  ((DAGCombiner*)DC)->removeFromWorkList(N);
376}
377
378SDValue TargetLowering::DAGCombinerInfo::
379CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
380  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
381}
382
383SDValue TargetLowering::DAGCombinerInfo::
384CombineTo(SDNode *N, SDValue Res, bool AddTo) {
385  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
386}
387
388
389SDValue TargetLowering::DAGCombinerInfo::
390CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
391  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
392}
393
394void TargetLowering::DAGCombinerInfo::
395CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
396  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
397}
398
399//===----------------------------------------------------------------------===//
400// Helper Functions
401//===----------------------------------------------------------------------===//
402
403/// isNegatibleForFree - Return 1 if we can compute the negated form of the
404/// specified expression for the same cost as the expression itself, or 2 if we
405/// can compute the negated form more cheaply than the expression itself.
406static char isNegatibleForFree(SDValue Op, bool LegalOperations,
407                               const TargetLowering &TLI,
408                               const TargetOptions *Options,
409                               unsigned Depth = 0) {
410  // fneg is removable even if it has multiple uses.
411  if (Op.getOpcode() == ISD::FNEG) return 2;
412
413  // Don't allow anything with multiple uses.
414  if (!Op.hasOneUse()) return 0;
415
416  // Don't recurse exponentially.
417  if (Depth > 6) return 0;
418
419  switch (Op.getOpcode()) {
420  default: return false;
421  case ISD::ConstantFP:
422    // Don't invert constant FP values after legalize.  The negated constant
423    // isn't necessarily legal.
424    return LegalOperations ? 0 : 1;
425  case ISD::FADD:
426    // FIXME: determine better conditions for this xform.
427    if (!Options->UnsafeFPMath) return 0;
428
429    // After operation legalization, it might not be legal to create new FSUBs.
430    if (LegalOperations &&
431        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
432      return 0;
433
434    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
435    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
436                                    Options, Depth + 1))
437      return V;
438    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
439    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
440                              Depth + 1);
441  case ISD::FSUB:
442    // We can't turn -(A-B) into B-A when we honor signed zeros.
443    if (!Options->UnsafeFPMath) return 0;
444
445    // fold (fneg (fsub A, B)) -> (fsub B, A)
446    return 1;
447
448  case ISD::FMUL:
449  case ISD::FDIV:
450    if (Options->HonorSignDependentRoundingFPMath()) return 0;
451
452    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
453    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
454                                    Options, Depth + 1))
455      return V;
456
457    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
458                              Depth + 1);
459
460  case ISD::FP_EXTEND:
461  case ISD::FP_ROUND:
462  case ISD::FSIN:
463    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
464                              Depth + 1);
465  }
466}
467
468/// GetNegatedExpression - If isNegatibleForFree returns true, this function
469/// returns the newly negated expression.
470static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
471                                    bool LegalOperations, unsigned Depth = 0) {
472  // fneg is removable even if it has multiple uses.
473  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
474
475  // Don't allow anything with multiple uses.
476  assert(Op.hasOneUse() && "Unknown reuse!");
477
478  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
479  switch (Op.getOpcode()) {
480  default: llvm_unreachable("Unknown code");
481  case ISD::ConstantFP: {
482    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
483    V.changeSign();
484    return DAG.getConstantFP(V, Op.getValueType());
485  }
486  case ISD::FADD:
487    // FIXME: determine better conditions for this xform.
488    assert(DAG.getTarget().Options.UnsafeFPMath);
489
490    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
491    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
492                           DAG.getTargetLoweringInfo(),
493                           &DAG.getTarget().Options, Depth+1))
494      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
495                         GetNegatedExpression(Op.getOperand(0), DAG,
496                                              LegalOperations, Depth+1),
497                         Op.getOperand(1));
498    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
499    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
500                       GetNegatedExpression(Op.getOperand(1), DAG,
501                                            LegalOperations, Depth+1),
502                       Op.getOperand(0));
503  case ISD::FSUB:
504    // We can't turn -(A-B) into B-A when we honor signed zeros.
505    assert(DAG.getTarget().Options.UnsafeFPMath);
506
507    // fold (fneg (fsub 0, B)) -> B
508    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
509      if (N0CFP->getValueAPF().isZero())
510        return Op.getOperand(1);
511
512    // fold (fneg (fsub A, B)) -> (fsub B, A)
513    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
514                       Op.getOperand(1), Op.getOperand(0));
515
516  case ISD::FMUL:
517  case ISD::FDIV:
518    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
519
520    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
521    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
522                           DAG.getTargetLoweringInfo(),
523                           &DAG.getTarget().Options, Depth+1))
524      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
525                         GetNegatedExpression(Op.getOperand(0), DAG,
526                                              LegalOperations, Depth+1),
527                         Op.getOperand(1));
528
529    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
530    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
531                       Op.getOperand(0),
532                       GetNegatedExpression(Op.getOperand(1), DAG,
533                                            LegalOperations, Depth+1));
534
535  case ISD::FP_EXTEND:
536  case ISD::FSIN:
537    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
538                       GetNegatedExpression(Op.getOperand(0), DAG,
539                                            LegalOperations, Depth+1));
540  case ISD::FP_ROUND:
541      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
542                         GetNegatedExpression(Op.getOperand(0), DAG,
543                                              LegalOperations, Depth+1),
544                         Op.getOperand(1));
545  }
546}
547
548
549// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
550// that selects between the values 1 and 0, making it equivalent to a setcc.
551// Also, set the incoming LHS, RHS, and CC references to the appropriate
552// nodes based on the type of node we are checking.  This simplifies life a
553// bit for the callers.
554static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
555                              SDValue &CC) {
556  if (N.getOpcode() == ISD::SETCC) {
557    LHS = N.getOperand(0);
558    RHS = N.getOperand(1);
559    CC  = N.getOperand(2);
560    return true;
561  }
562  if (N.getOpcode() == ISD::SELECT_CC &&
563      N.getOperand(2).getOpcode() == ISD::Constant &&
564      N.getOperand(3).getOpcode() == ISD::Constant &&
565      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
566      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
567    LHS = N.getOperand(0);
568    RHS = N.getOperand(1);
569    CC  = N.getOperand(4);
570    return true;
571  }
572  return false;
573}
574
575// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
576// one use.  If this is true, it allows the users to invert the operation for
577// free when it is profitable to do so.
578static bool isOneUseSetCC(SDValue N) {
579  SDValue N0, N1, N2;
580  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
581    return true;
582  return false;
583}
584
585SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
586                                    SDValue N0, SDValue N1) {
587  EVT VT = N0.getValueType();
588  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
589    if (isa<ConstantSDNode>(N1)) {
590      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
591      SDValue OpNode =
592        DAG.FoldConstantArithmetic(Opc, VT,
593                                   cast<ConstantSDNode>(N0.getOperand(1)),
594                                   cast<ConstantSDNode>(N1));
595      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
596    }
597    if (N0.hasOneUse()) {
598      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
599      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
600                                   N0.getOperand(0), N1);
601      AddToWorkList(OpNode.getNode());
602      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
603    }
604  }
605
606  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
607    if (isa<ConstantSDNode>(N0)) {
608      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
609      SDValue OpNode =
610        DAG.FoldConstantArithmetic(Opc, VT,
611                                   cast<ConstantSDNode>(N1.getOperand(1)),
612                                   cast<ConstantSDNode>(N0));
613      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
614    }
615    if (N1.hasOneUse()) {
616      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
617      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
618                                   N1.getOperand(0), N0);
619      AddToWorkList(OpNode.getNode());
620      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
621    }
622  }
623
624  return SDValue();
625}
626
627SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
628                               bool AddTo) {
629  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
630  ++NodesCombined;
631  DEBUG(dbgs() << "\nReplacing.1 ";
632        N->dump(&DAG);
633        dbgs() << "\nWith: ";
634        To[0].getNode()->dump(&DAG);
635        dbgs() << " and " << NumTo-1 << " other values\n";
636        for (unsigned i = 0, e = NumTo; i != e; ++i)
637          assert((!To[i].getNode() ||
638                  N->getValueType(i) == To[i].getValueType()) &&
639                 "Cannot combine value to value of different type!"));
640  WorkListRemover DeadNodes(*this);
641  DAG.ReplaceAllUsesWith(N, To);
642  if (AddTo) {
643    // Push the new nodes and any users onto the worklist
644    for (unsigned i = 0, e = NumTo; i != e; ++i) {
645      if (To[i].getNode()) {
646        AddToWorkList(To[i].getNode());
647        AddUsersToWorkList(To[i].getNode());
648      }
649    }
650  }
651
652  // Finally, if the node is now dead, remove it from the graph.  The node
653  // may not be dead if the replacement process recursively simplified to
654  // something else needing this node.
655  if (N->use_empty()) {
656    // Nodes can be reintroduced into the worklist.  Make sure we do not
657    // process a node that has been replaced.
658    removeFromWorkList(N);
659
660    // Finally, since the node is now dead, remove it from the graph.
661    DAG.DeleteNode(N);
662  }
663  return SDValue(N, 0);
664}
665
666void DAGCombiner::
667CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
668  // Replace all uses.  If any nodes become isomorphic to other nodes and
669  // are deleted, make sure to remove them from our worklist.
670  WorkListRemover DeadNodes(*this);
671  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
672
673  // Push the new node and any (possibly new) users onto the worklist.
674  AddToWorkList(TLO.New.getNode());
675  AddUsersToWorkList(TLO.New.getNode());
676
677  // Finally, if the node is now dead, remove it from the graph.  The node
678  // may not be dead if the replacement process recursively simplified to
679  // something else needing this node.
680  if (TLO.Old.getNode()->use_empty()) {
681    removeFromWorkList(TLO.Old.getNode());
682
683    // If the operands of this node are only used by the node, they will now
684    // be dead.  Make sure to visit them first to delete dead nodes early.
685    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
686      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
687        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
688
689    DAG.DeleteNode(TLO.Old.getNode());
690  }
691}
692
693/// SimplifyDemandedBits - Check the specified integer node value to see if
694/// it can be simplified or if things it uses can be simplified by bit
695/// propagation.  If so, return true.
696bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
697  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
698  APInt KnownZero, KnownOne;
699  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
700    return false;
701
702  // Revisit the node.
703  AddToWorkList(Op.getNode());
704
705  // Replace the old value with the new one.
706  ++NodesCombined;
707  DEBUG(dbgs() << "\nReplacing.2 ";
708        TLO.Old.getNode()->dump(&DAG);
709        dbgs() << "\nWith: ";
710        TLO.New.getNode()->dump(&DAG);
711        dbgs() << '\n');
712
713  CommitTargetLoweringOpt(TLO);
714  return true;
715}
716
717void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
718  SDLoc dl(Load);
719  EVT VT = Load->getValueType(0);
720  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
721
722  DEBUG(dbgs() << "\nReplacing.9 ";
723        Load->dump(&DAG);
724        dbgs() << "\nWith: ";
725        Trunc.getNode()->dump(&DAG);
726        dbgs() << '\n');
727  WorkListRemover DeadNodes(*this);
728  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
729  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
730  removeFromWorkList(Load);
731  DAG.DeleteNode(Load);
732  AddToWorkList(Trunc.getNode());
733}
734
735SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
736  Replace = false;
737  SDLoc dl(Op);
738  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
739    EVT MemVT = LD->getMemoryVT();
740    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
741      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
742                                                  : ISD::EXTLOAD)
743      : LD->getExtensionType();
744    Replace = true;
745    return DAG.getExtLoad(ExtType, dl, PVT,
746                          LD->getChain(), LD->getBasePtr(),
747                          LD->getPointerInfo(),
748                          MemVT, LD->isVolatile(),
749                          LD->isNonTemporal(), LD->getAlignment());
750  }
751
752  unsigned Opc = Op.getOpcode();
753  switch (Opc) {
754  default: break;
755  case ISD::AssertSext:
756    return DAG.getNode(ISD::AssertSext, dl, PVT,
757                       SExtPromoteOperand(Op.getOperand(0), PVT),
758                       Op.getOperand(1));
759  case ISD::AssertZext:
760    return DAG.getNode(ISD::AssertZext, dl, PVT,
761                       ZExtPromoteOperand(Op.getOperand(0), PVT),
762                       Op.getOperand(1));
763  case ISD::Constant: {
764    unsigned ExtOpc =
765      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
766    return DAG.getNode(ExtOpc, dl, PVT, Op);
767  }
768  }
769
770  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
771    return SDValue();
772  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
773}
774
775SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
776  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
777    return SDValue();
778  EVT OldVT = Op.getValueType();
779  SDLoc dl(Op);
780  bool Replace = false;
781  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
782  if (NewOp.getNode() == 0)
783    return SDValue();
784  AddToWorkList(NewOp.getNode());
785
786  if (Replace)
787    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
788  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
789                     DAG.getValueType(OldVT));
790}
791
792SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
793  EVT OldVT = Op.getValueType();
794  SDLoc dl(Op);
795  bool Replace = false;
796  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
797  if (NewOp.getNode() == 0)
798    return SDValue();
799  AddToWorkList(NewOp.getNode());
800
801  if (Replace)
802    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
803  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
804}
805
806/// PromoteIntBinOp - Promote the specified integer binary operation if the
807/// target indicates it is beneficial. e.g. On x86, it's usually better to
808/// promote i16 operations to i32 since i16 instructions are longer.
809SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
810  if (!LegalOperations)
811    return SDValue();
812
813  EVT VT = Op.getValueType();
814  if (VT.isVector() || !VT.isInteger())
815    return SDValue();
816
817  // If operation type is 'undesirable', e.g. i16 on x86, consider
818  // promoting it.
819  unsigned Opc = Op.getOpcode();
820  if (TLI.isTypeDesirableForOp(Opc, VT))
821    return SDValue();
822
823  EVT PVT = VT;
824  // Consult target whether it is a good idea to promote this operation and
825  // what's the right type to promote it to.
826  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
827    assert(PVT != VT && "Don't know what type to promote to!");
828
829    bool Replace0 = false;
830    SDValue N0 = Op.getOperand(0);
831    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
832    if (NN0.getNode() == 0)
833      return SDValue();
834
835    bool Replace1 = false;
836    SDValue N1 = Op.getOperand(1);
837    SDValue NN1;
838    if (N0 == N1)
839      NN1 = NN0;
840    else {
841      NN1 = PromoteOperand(N1, PVT, Replace1);
842      if (NN1.getNode() == 0)
843        return SDValue();
844    }
845
846    AddToWorkList(NN0.getNode());
847    if (NN1.getNode())
848      AddToWorkList(NN1.getNode());
849
850    if (Replace0)
851      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
852    if (Replace1)
853      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
854
855    DEBUG(dbgs() << "\nPromoting ";
856          Op.getNode()->dump(&DAG));
857    SDLoc dl(Op);
858    return DAG.getNode(ISD::TRUNCATE, dl, VT,
859                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
860  }
861  return SDValue();
862}
863
864/// PromoteIntShiftOp - Promote the specified integer shift operation if the
865/// target indicates it is beneficial. e.g. On x86, it's usually better to
866/// promote i16 operations to i32 since i16 instructions are longer.
867SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
868  if (!LegalOperations)
869    return SDValue();
870
871  EVT VT = Op.getValueType();
872  if (VT.isVector() || !VT.isInteger())
873    return SDValue();
874
875  // If operation type is 'undesirable', e.g. i16 on x86, consider
876  // promoting it.
877  unsigned Opc = Op.getOpcode();
878  if (TLI.isTypeDesirableForOp(Opc, VT))
879    return SDValue();
880
881  EVT PVT = VT;
882  // Consult target whether it is a good idea to promote this operation and
883  // what's the right type to promote it to.
884  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
885    assert(PVT != VT && "Don't know what type to promote to!");
886
887    bool Replace = false;
888    SDValue N0 = Op.getOperand(0);
889    if (Opc == ISD::SRA)
890      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
891    else if (Opc == ISD::SRL)
892      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
893    else
894      N0 = PromoteOperand(N0, PVT, Replace);
895    if (N0.getNode() == 0)
896      return SDValue();
897
898    AddToWorkList(N0.getNode());
899    if (Replace)
900      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
901
902    DEBUG(dbgs() << "\nPromoting ";
903          Op.getNode()->dump(&DAG));
904    SDLoc dl(Op);
905    return DAG.getNode(ISD::TRUNCATE, dl, VT,
906                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
907  }
908  return SDValue();
909}
910
911SDValue DAGCombiner::PromoteExtend(SDValue Op) {
912  if (!LegalOperations)
913    return SDValue();
914
915  EVT VT = Op.getValueType();
916  if (VT.isVector() || !VT.isInteger())
917    return SDValue();
918
919  // If operation type is 'undesirable', e.g. i16 on x86, consider
920  // promoting it.
921  unsigned Opc = Op.getOpcode();
922  if (TLI.isTypeDesirableForOp(Opc, VT))
923    return SDValue();
924
925  EVT PVT = VT;
926  // Consult target whether it is a good idea to promote this operation and
927  // what's the right type to promote it to.
928  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
929    assert(PVT != VT && "Don't know what type to promote to!");
930    // fold (aext (aext x)) -> (aext x)
931    // fold (aext (zext x)) -> (zext x)
932    // fold (aext (sext x)) -> (sext x)
933    DEBUG(dbgs() << "\nPromoting ";
934          Op.getNode()->dump(&DAG));
935    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
936  }
937  return SDValue();
938}
939
940bool DAGCombiner::PromoteLoad(SDValue Op) {
941  if (!LegalOperations)
942    return false;
943
944  EVT VT = Op.getValueType();
945  if (VT.isVector() || !VT.isInteger())
946    return false;
947
948  // If operation type is 'undesirable', e.g. i16 on x86, consider
949  // promoting it.
950  unsigned Opc = Op.getOpcode();
951  if (TLI.isTypeDesirableForOp(Opc, VT))
952    return false;
953
954  EVT PVT = VT;
955  // Consult target whether it is a good idea to promote this operation and
956  // what's the right type to promote it to.
957  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
958    assert(PVT != VT && "Don't know what type to promote to!");
959
960    SDLoc dl(Op);
961    SDNode *N = Op.getNode();
962    LoadSDNode *LD = cast<LoadSDNode>(N);
963    EVT MemVT = LD->getMemoryVT();
964    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
965      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
966                                                  : ISD::EXTLOAD)
967      : LD->getExtensionType();
968    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
969                                   LD->getChain(), LD->getBasePtr(),
970                                   LD->getPointerInfo(),
971                                   MemVT, LD->isVolatile(),
972                                   LD->isNonTemporal(), LD->getAlignment());
973    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
974
975    DEBUG(dbgs() << "\nPromoting ";
976          N->dump(&DAG);
977          dbgs() << "\nTo: ";
978          Result.getNode()->dump(&DAG);
979          dbgs() << '\n');
980    WorkListRemover DeadNodes(*this);
981    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
982    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
983    removeFromWorkList(N);
984    DAG.DeleteNode(N);
985    AddToWorkList(Result.getNode());
986    return true;
987  }
988  return false;
989}
990
991
992//===----------------------------------------------------------------------===//
993//  Main DAG Combiner implementation
994//===----------------------------------------------------------------------===//
995
996void DAGCombiner::Run(CombineLevel AtLevel) {
997  // set the instance variables, so that the various visit routines may use it.
998  Level = AtLevel;
999  LegalOperations = Level >= AfterLegalizeVectorOps;
1000  LegalTypes = Level >= AfterLegalizeTypes;
1001
1002  // Add all the dag nodes to the worklist.
1003  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1004       E = DAG.allnodes_end(); I != E; ++I)
1005    AddToWorkList(I);
1006
1007  // Create a dummy node (which is not added to allnodes), that adds a reference
1008  // to the root node, preventing it from being deleted, and tracking any
1009  // changes of the root.
1010  HandleSDNode Dummy(DAG.getRoot());
1011
1012  // The root of the dag may dangle to deleted nodes until the dag combiner is
1013  // done.  Set it to null to avoid confusion.
1014  DAG.setRoot(SDValue());
1015
1016  // while the worklist isn't empty, find a node and
1017  // try and combine it.
1018  while (!WorkListContents.empty()) {
1019    SDNode *N;
1020    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1021    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1022    // worklist *should* contain, and check the node we want to visit is should
1023    // actually be visited.
1024    do {
1025      N = WorkListOrder.pop_back_val();
1026    } while (!WorkListContents.erase(N));
1027
1028    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1029    // N is deleted from the DAG, since they too may now be dead or may have a
1030    // reduced number of uses, allowing other xforms.
1031    if (N->use_empty() && N != &Dummy) {
1032      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1033        AddToWorkList(N->getOperand(i).getNode());
1034
1035      DAG.DeleteNode(N);
1036      continue;
1037    }
1038
1039    SDValue RV = combine(N);
1040
1041    if (RV.getNode() == 0)
1042      continue;
1043
1044    ++NodesCombined;
1045
1046    // If we get back the same node we passed in, rather than a new node or
1047    // zero, we know that the node must have defined multiple values and
1048    // CombineTo was used.  Since CombineTo takes care of the worklist
1049    // mechanics for us, we have no work to do in this case.
1050    if (RV.getNode() == N)
1051      continue;
1052
1053    assert(N->getOpcode() != ISD::DELETED_NODE &&
1054           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1055           "Node was deleted but visit returned new node!");
1056
1057    DEBUG(dbgs() << "\nReplacing.3 ";
1058          N->dump(&DAG);
1059          dbgs() << "\nWith: ";
1060          RV.getNode()->dump(&DAG);
1061          dbgs() << '\n');
1062
1063    // Transfer debug value.
1064    DAG.TransferDbgValues(SDValue(N, 0), RV);
1065    WorkListRemover DeadNodes(*this);
1066    if (N->getNumValues() == RV.getNode()->getNumValues())
1067      DAG.ReplaceAllUsesWith(N, RV.getNode());
1068    else {
1069      assert(N->getValueType(0) == RV.getValueType() &&
1070             N->getNumValues() == 1 && "Type mismatch");
1071      SDValue OpV = RV;
1072      DAG.ReplaceAllUsesWith(N, &OpV);
1073    }
1074
1075    // Push the new node and any users onto the worklist
1076    AddToWorkList(RV.getNode());
1077    AddUsersToWorkList(RV.getNode());
1078
1079    // Add any uses of the old node to the worklist in case this node is the
1080    // last one that uses them.  They may become dead after this node is
1081    // deleted.
1082    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1083      AddToWorkList(N->getOperand(i).getNode());
1084
1085    // Finally, if the node is now dead, remove it from the graph.  The node
1086    // may not be dead if the replacement process recursively simplified to
1087    // something else needing this node.
1088    if (N->use_empty()) {
1089      // Nodes can be reintroduced into the worklist.  Make sure we do not
1090      // process a node that has been replaced.
1091      removeFromWorkList(N);
1092
1093      // Finally, since the node is now dead, remove it from the graph.
1094      DAG.DeleteNode(N);
1095    }
1096  }
1097
1098  // If the root changed (e.g. it was a dead load, update the root).
1099  DAG.setRoot(Dummy.getValue());
1100  DAG.RemoveDeadNodes();
1101}
1102
1103SDValue DAGCombiner::visit(SDNode *N) {
1104  switch (N->getOpcode()) {
1105  default: break;
1106  case ISD::TokenFactor:        return visitTokenFactor(N);
1107  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1108  case ISD::ADD:                return visitADD(N);
1109  case ISD::SUB:                return visitSUB(N);
1110  case ISD::ADDC:               return visitADDC(N);
1111  case ISD::SUBC:               return visitSUBC(N);
1112  case ISD::ADDE:               return visitADDE(N);
1113  case ISD::SUBE:               return visitSUBE(N);
1114  case ISD::MUL:                return visitMUL(N);
1115  case ISD::SDIV:               return visitSDIV(N);
1116  case ISD::UDIV:               return visitUDIV(N);
1117  case ISD::SREM:               return visitSREM(N);
1118  case ISD::UREM:               return visitUREM(N);
1119  case ISD::MULHU:              return visitMULHU(N);
1120  case ISD::MULHS:              return visitMULHS(N);
1121  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1122  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1123  case ISD::SMULO:              return visitSMULO(N);
1124  case ISD::UMULO:              return visitUMULO(N);
1125  case ISD::SDIVREM:            return visitSDIVREM(N);
1126  case ISD::UDIVREM:            return visitUDIVREM(N);
1127  case ISD::AND:                return visitAND(N);
1128  case ISD::OR:                 return visitOR(N);
1129  case ISD::XOR:                return visitXOR(N);
1130  case ISD::SHL:                return visitSHL(N);
1131  case ISD::SRA:                return visitSRA(N);
1132  case ISD::SRL:                return visitSRL(N);
1133  case ISD::CTLZ:               return visitCTLZ(N);
1134  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1135  case ISD::CTTZ:               return visitCTTZ(N);
1136  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1137  case ISD::CTPOP:              return visitCTPOP(N);
1138  case ISD::SELECT:             return visitSELECT(N);
1139  case ISD::VSELECT:            return visitVSELECT(N);
1140  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1141  case ISD::SETCC:              return visitSETCC(N);
1142  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1143  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1144  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1145  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1146  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1147  case ISD::BITCAST:            return visitBITCAST(N);
1148  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1149  case ISD::FADD:               return visitFADD(N);
1150  case ISD::FSUB:               return visitFSUB(N);
1151  case ISD::FMUL:               return visitFMUL(N);
1152  case ISD::FMA:                return visitFMA(N);
1153  case ISD::FDIV:               return visitFDIV(N);
1154  case ISD::FREM:               return visitFREM(N);
1155  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1156  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1157  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1158  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1159  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1160  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1161  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1162  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1163  case ISD::FNEG:               return visitFNEG(N);
1164  case ISD::FABS:               return visitFABS(N);
1165  case ISD::FFLOOR:             return visitFFLOOR(N);
1166  case ISD::FCEIL:              return visitFCEIL(N);
1167  case ISD::FTRUNC:             return visitFTRUNC(N);
1168  case ISD::BRCOND:             return visitBRCOND(N);
1169  case ISD::BR_CC:              return visitBR_CC(N);
1170  case ISD::LOAD:               return visitLOAD(N);
1171  case ISD::STORE:              return visitSTORE(N);
1172  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1173  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1174  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1175  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1176  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1177  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1178  }
1179  return SDValue();
1180}
1181
1182SDValue DAGCombiner::combine(SDNode *N) {
1183  SDValue RV = visit(N);
1184
1185  // If nothing happened, try a target-specific DAG combine.
1186  if (RV.getNode() == 0) {
1187    assert(N->getOpcode() != ISD::DELETED_NODE &&
1188           "Node was deleted but visit returned NULL!");
1189
1190    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1191        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1192
1193      // Expose the DAG combiner to the target combiner impls.
1194      TargetLowering::DAGCombinerInfo
1195        DagCombineInfo(DAG, Level, false, this);
1196
1197      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1198    }
1199  }
1200
1201  // If nothing happened still, try promoting the operation.
1202  if (RV.getNode() == 0) {
1203    switch (N->getOpcode()) {
1204    default: break;
1205    case ISD::ADD:
1206    case ISD::SUB:
1207    case ISD::MUL:
1208    case ISD::AND:
1209    case ISD::OR:
1210    case ISD::XOR:
1211      RV = PromoteIntBinOp(SDValue(N, 0));
1212      break;
1213    case ISD::SHL:
1214    case ISD::SRA:
1215    case ISD::SRL:
1216      RV = PromoteIntShiftOp(SDValue(N, 0));
1217      break;
1218    case ISD::SIGN_EXTEND:
1219    case ISD::ZERO_EXTEND:
1220    case ISD::ANY_EXTEND:
1221      RV = PromoteExtend(SDValue(N, 0));
1222      break;
1223    case ISD::LOAD:
1224      if (PromoteLoad(SDValue(N, 0)))
1225        RV = SDValue(N, 0);
1226      break;
1227    }
1228  }
1229
1230  // If N is a commutative binary node, try commuting it to enable more
1231  // sdisel CSE.
1232  if (RV.getNode() == 0 &&
1233      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1234      N->getNumValues() == 1) {
1235    SDValue N0 = N->getOperand(0);
1236    SDValue N1 = N->getOperand(1);
1237
1238    // Constant operands are canonicalized to RHS.
1239    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1240      SDValue Ops[] = { N1, N0 };
1241      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1242                                            Ops, 2);
1243      if (CSENode)
1244        return SDValue(CSENode, 0);
1245    }
1246  }
1247
1248  return RV;
1249}
1250
1251/// getInputChainForNode - Given a node, return its input chain if it has one,
1252/// otherwise return a null sd operand.
1253static SDValue getInputChainForNode(SDNode *N) {
1254  if (unsigned NumOps = N->getNumOperands()) {
1255    if (N->getOperand(0).getValueType() == MVT::Other)
1256      return N->getOperand(0);
1257    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1258      return N->getOperand(NumOps-1);
1259    for (unsigned i = 1; i < NumOps-1; ++i)
1260      if (N->getOperand(i).getValueType() == MVT::Other)
1261        return N->getOperand(i);
1262  }
1263  return SDValue();
1264}
1265
1266SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1267  // If N has two operands, where one has an input chain equal to the other,
1268  // the 'other' chain is redundant.
1269  if (N->getNumOperands() == 2) {
1270    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1271      return N->getOperand(0);
1272    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1273      return N->getOperand(1);
1274  }
1275
1276  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1277  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1278  SmallPtrSet<SDNode*, 16> SeenOps;
1279  bool Changed = false;             // If we should replace this token factor.
1280
1281  // Start out with this token factor.
1282  TFs.push_back(N);
1283
1284  // Iterate through token factors.  The TFs grows when new token factors are
1285  // encountered.
1286  for (unsigned i = 0; i < TFs.size(); ++i) {
1287    SDNode *TF = TFs[i];
1288
1289    // Check each of the operands.
1290    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1291      SDValue Op = TF->getOperand(i);
1292
1293      switch (Op.getOpcode()) {
1294      case ISD::EntryToken:
1295        // Entry tokens don't need to be added to the list. They are
1296        // rededundant.
1297        Changed = true;
1298        break;
1299
1300      case ISD::TokenFactor:
1301        if (Op.hasOneUse() &&
1302            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1303          // Queue up for processing.
1304          TFs.push_back(Op.getNode());
1305          // Clean up in case the token factor is removed.
1306          AddToWorkList(Op.getNode());
1307          Changed = true;
1308          break;
1309        }
1310        // Fall thru
1311
1312      default:
1313        // Only add if it isn't already in the list.
1314        if (SeenOps.insert(Op.getNode()))
1315          Ops.push_back(Op);
1316        else
1317          Changed = true;
1318        break;
1319      }
1320    }
1321  }
1322
1323  SDValue Result;
1324
1325  // If we've change things around then replace token factor.
1326  if (Changed) {
1327    if (Ops.empty()) {
1328      // The entry token is the only possible outcome.
1329      Result = DAG.getEntryNode();
1330    } else {
1331      // New and improved token factor.
1332      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1333                           MVT::Other, &Ops[0], Ops.size());
1334    }
1335
1336    // Don't add users to work list.
1337    return CombineTo(N, Result, false);
1338  }
1339
1340  return Result;
1341}
1342
1343/// MERGE_VALUES can always be eliminated.
1344SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1345  WorkListRemover DeadNodes(*this);
1346  // Replacing results may cause a different MERGE_VALUES to suddenly
1347  // be CSE'd with N, and carry its uses with it. Iterate until no
1348  // uses remain, to ensure that the node can be safely deleted.
1349  // First add the users of this node to the work list so that they
1350  // can be tried again once they have new operands.
1351  AddUsersToWorkList(N);
1352  do {
1353    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1354      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1355  } while (!N->use_empty());
1356  removeFromWorkList(N);
1357  DAG.DeleteNode(N);
1358  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1359}
1360
1361static
1362SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1363                              SelectionDAG &DAG) {
1364  EVT VT = N0.getValueType();
1365  SDValue N00 = N0.getOperand(0);
1366  SDValue N01 = N0.getOperand(1);
1367  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1368
1369  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1370      isa<ConstantSDNode>(N00.getOperand(1))) {
1371    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1372    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1373                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1374                                 N00.getOperand(0), N01),
1375                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1376                                 N00.getOperand(1), N01));
1377    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1378  }
1379
1380  return SDValue();
1381}
1382
1383SDValue DAGCombiner::visitADD(SDNode *N) {
1384  SDValue N0 = N->getOperand(0);
1385  SDValue N1 = N->getOperand(1);
1386  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1387  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1388  EVT VT = N0.getValueType();
1389
1390  // fold vector ops
1391  if (VT.isVector()) {
1392    SDValue FoldedVOp = SimplifyVBinOp(N);
1393    if (FoldedVOp.getNode()) return FoldedVOp;
1394
1395    // fold (add x, 0) -> x, vector edition
1396    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1397      return N0;
1398    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1399      return N1;
1400  }
1401
1402  // fold (add x, undef) -> undef
1403  if (N0.getOpcode() == ISD::UNDEF)
1404    return N0;
1405  if (N1.getOpcode() == ISD::UNDEF)
1406    return N1;
1407  // fold (add c1, c2) -> c1+c2
1408  if (N0C && N1C)
1409    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1410  // canonicalize constant to RHS
1411  if (N0C && !N1C)
1412    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1413  // fold (add x, 0) -> x
1414  if (N1C && N1C->isNullValue())
1415    return N0;
1416  // fold (add Sym, c) -> Sym+c
1417  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1418    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1419        GA->getOpcode() == ISD::GlobalAddress)
1420      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1421                                  GA->getOffset() +
1422                                    (uint64_t)N1C->getSExtValue());
1423  // fold ((c1-A)+c2) -> (c1+c2)-A
1424  if (N1C && N0.getOpcode() == ISD::SUB)
1425    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1426      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1427                         DAG.getConstant(N1C->getAPIntValue()+
1428                                         N0C->getAPIntValue(), VT),
1429                         N0.getOperand(1));
1430  // reassociate add
1431  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1432  if (RADD.getNode() != 0)
1433    return RADD;
1434  // fold ((0-A) + B) -> B-A
1435  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1436      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1437    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1438  // fold (A + (0-B)) -> A-B
1439  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1440      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1441    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1442  // fold (A+(B-A)) -> B
1443  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1444    return N1.getOperand(0);
1445  // fold ((B-A)+A) -> B
1446  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1447    return N0.getOperand(0);
1448  // fold (A+(B-(A+C))) to (B-C)
1449  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1450      N0 == N1.getOperand(1).getOperand(0))
1451    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1452                       N1.getOperand(1).getOperand(1));
1453  // fold (A+(B-(C+A))) to (B-C)
1454  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1455      N0 == N1.getOperand(1).getOperand(1))
1456    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1457                       N1.getOperand(1).getOperand(0));
1458  // fold (A+((B-A)+or-C)) to (B+or-C)
1459  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1460      N1.getOperand(0).getOpcode() == ISD::SUB &&
1461      N0 == N1.getOperand(0).getOperand(1))
1462    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1463                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1464
1465  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1466  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1467    SDValue N00 = N0.getOperand(0);
1468    SDValue N01 = N0.getOperand(1);
1469    SDValue N10 = N1.getOperand(0);
1470    SDValue N11 = N1.getOperand(1);
1471
1472    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1473      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1474                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1475                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1476  }
1477
1478  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1479    return SDValue(N, 0);
1480
1481  // fold (a+b) -> (a|b) iff a and b share no bits.
1482  if (VT.isInteger() && !VT.isVector()) {
1483    APInt LHSZero, LHSOne;
1484    APInt RHSZero, RHSOne;
1485    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1486
1487    if (LHSZero.getBoolValue()) {
1488      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1489
1490      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1491      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1492      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1493        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1494    }
1495  }
1496
1497  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1498  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1499    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1500    if (Result.getNode()) return Result;
1501  }
1502  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1503    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1504    if (Result.getNode()) return Result;
1505  }
1506
1507  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1508  if (N1.getOpcode() == ISD::SHL &&
1509      N1.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1514                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1515                                       N1.getOperand(0).getOperand(1),
1516                                       N1.getOperand(1)));
1517  if (N0.getOpcode() == ISD::SHL &&
1518      N0.getOperand(0).getOpcode() == ISD::SUB)
1519    if (ConstantSDNode *C =
1520          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1521      if (C->getAPIntValue() == 0)
1522        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1523                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1524                                       N0.getOperand(0).getOperand(1),
1525                                       N0.getOperand(1)));
1526
1527  if (N1.getOpcode() == ISD::AND) {
1528    SDValue AndOp0 = N1.getOperand(0);
1529    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1530    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1531    unsigned DestBits = VT.getScalarType().getSizeInBits();
1532
1533    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1534    // and similar xforms where the inner op is either ~0 or 0.
1535    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1536      SDLoc DL(N);
1537      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1538    }
1539  }
1540
1541  // add (sext i1), X -> sub X, (zext i1)
1542  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1543      N0.getOperand(0).getValueType() == MVT::i1 &&
1544      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1545    SDLoc DL(N);
1546    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1547    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1548  }
1549
1550  return SDValue();
1551}
1552
1553SDValue DAGCombiner::visitADDC(SDNode *N) {
1554  SDValue N0 = N->getOperand(0);
1555  SDValue N1 = N->getOperand(1);
1556  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1557  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1558  EVT VT = N0.getValueType();
1559
1560  // If the flag result is dead, turn this into an ADD.
1561  if (!N->hasAnyUseOfValue(1))
1562    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1563                     DAG.getNode(ISD::CARRY_FALSE,
1564                                 SDLoc(N), MVT::Glue));
1565
1566  // canonicalize constant to RHS.
1567  if (N0C && !N1C)
1568    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1569
1570  // fold (addc x, 0) -> x + no carry out
1571  if (N1C && N1C->isNullValue())
1572    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1573                                        SDLoc(N), MVT::Glue));
1574
1575  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1576  APInt LHSZero, LHSOne;
1577  APInt RHSZero, RHSOne;
1578  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1579
1580  if (LHSZero.getBoolValue()) {
1581    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1582
1583    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1584    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1585    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1586      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1587                       DAG.getNode(ISD::CARRY_FALSE,
1588                                   SDLoc(N), MVT::Glue));
1589  }
1590
1591  return SDValue();
1592}
1593
1594SDValue DAGCombiner::visitADDE(SDNode *N) {
1595  SDValue N0 = N->getOperand(0);
1596  SDValue N1 = N->getOperand(1);
1597  SDValue CarryIn = N->getOperand(2);
1598  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1599  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1600
1601  // canonicalize constant to RHS
1602  if (N0C && !N1C)
1603    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1604                       N1, N0, CarryIn);
1605
1606  // fold (adde x, y, false) -> (addc x, y)
1607  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1608    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1609
1610  return SDValue();
1611}
1612
1613// Since it may not be valid to emit a fold to zero for vector initializers
1614// check if we can before folding.
1615static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1616                             SelectionDAG &DAG,
1617                             bool LegalOperations, bool LegalTypes) {
1618  if (!VT.isVector())
1619    return DAG.getConstant(0, VT);
1620  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1621    // Produce a vector of zeros.
1622    EVT ElemTy = VT.getVectorElementType();
1623    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1624                      TargetLowering::TypePromoteInteger)
1625      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1626    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1627           "Type for zero vector elements is not legal");
1628    SDValue El = DAG.getConstant(0, ElemTy);
1629    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1630    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1631      &Ops[0], Ops.size());
1632  }
1633  return SDValue();
1634}
1635
1636SDValue DAGCombiner::visitSUB(SDNode *N) {
1637  SDValue N0 = N->getOperand(0);
1638  SDValue N1 = N->getOperand(1);
1639  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1640  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1641  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1642    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1643  EVT VT = N0.getValueType();
1644
1645  // fold vector ops
1646  if (VT.isVector()) {
1647    SDValue FoldedVOp = SimplifyVBinOp(N);
1648    if (FoldedVOp.getNode()) return FoldedVOp;
1649
1650    // fold (sub x, 0) -> x, vector edition
1651    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1652      return N0;
1653  }
1654
1655  // fold (sub x, x) -> 0
1656  // FIXME: Refactor this and xor and other similar operations together.
1657  if (N0 == N1)
1658    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1659  // fold (sub c1, c2) -> c1-c2
1660  if (N0C && N1C)
1661    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1662  // fold (sub x, c) -> (add x, -c)
1663  if (N1C)
1664    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1665                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1666  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1667  if (N0C && N0C->isAllOnesValue())
1668    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1669  // fold A-(A-B) -> B
1670  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1671    return N1.getOperand(1);
1672  // fold (A+B)-A -> B
1673  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1674    return N0.getOperand(1);
1675  // fold (A+B)-B -> A
1676  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1677    return N0.getOperand(0);
1678  // fold C2-(A+C1) -> (C2-C1)-A
1679  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1680    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1681                                   VT);
1682    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1683                       N1.getOperand(0));
1684  }
1685  // fold ((A+(B+or-C))-B) -> A+or-C
1686  if (N0.getOpcode() == ISD::ADD &&
1687      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1688       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1689      N0.getOperand(1).getOperand(0) == N1)
1690    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1691                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1692  // fold ((A+(C+B))-B) -> A+C
1693  if (N0.getOpcode() == ISD::ADD &&
1694      N0.getOperand(1).getOpcode() == ISD::ADD &&
1695      N0.getOperand(1).getOperand(1) == N1)
1696    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1697                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1698  // fold ((A-(B-C))-C) -> A-B
1699  if (N0.getOpcode() == ISD::SUB &&
1700      N0.getOperand(1).getOpcode() == ISD::SUB &&
1701      N0.getOperand(1).getOperand(1) == N1)
1702    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1703                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1704
1705  // If either operand of a sub is undef, the result is undef
1706  if (N0.getOpcode() == ISD::UNDEF)
1707    return N0;
1708  if (N1.getOpcode() == ISD::UNDEF)
1709    return N1;
1710
1711  // If the relocation model supports it, consider symbol offsets.
1712  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1713    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1714      // fold (sub Sym, c) -> Sym-c
1715      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1716        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1717                                    GA->getOffset() -
1718                                      (uint64_t)N1C->getSExtValue());
1719      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1720      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1721        if (GA->getGlobal() == GB->getGlobal())
1722          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1723                                 VT);
1724    }
1725
1726  return SDValue();
1727}
1728
1729SDValue DAGCombiner::visitSUBC(SDNode *N) {
1730  SDValue N0 = N->getOperand(0);
1731  SDValue N1 = N->getOperand(1);
1732  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1733  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1734  EVT VT = N0.getValueType();
1735
1736  // If the flag result is dead, turn this into an SUB.
1737  if (!N->hasAnyUseOfValue(1))
1738    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1739                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1740                                 MVT::Glue));
1741
1742  // fold (subc x, x) -> 0 + no borrow
1743  if (N0 == N1)
1744    return CombineTo(N, DAG.getConstant(0, VT),
1745                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1746                                 MVT::Glue));
1747
1748  // fold (subc x, 0) -> x + no borrow
1749  if (N1C && N1C->isNullValue())
1750    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1751                                        MVT::Glue));
1752
1753  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1754  if (N0C && N0C->isAllOnesValue())
1755    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1756                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1757                                 MVT::Glue));
1758
1759  return SDValue();
1760}
1761
1762SDValue DAGCombiner::visitSUBE(SDNode *N) {
1763  SDValue N0 = N->getOperand(0);
1764  SDValue N1 = N->getOperand(1);
1765  SDValue CarryIn = N->getOperand(2);
1766
1767  // fold (sube x, y, false) -> (subc x, y)
1768  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1769    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1770
1771  return SDValue();
1772}
1773
1774/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
1775/// all the same constant or undefined.
1776static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1777  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1778  if (!C)
1779    return false;
1780
1781  APInt SplatUndef;
1782  unsigned SplatBitSize;
1783  bool HasAnyUndefs;
1784  EVT EltVT = N->getValueType(0).getVectorElementType();
1785  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1786                             HasAnyUndefs) &&
1787          EltVT.getSizeInBits() >= SplatBitSize);
1788}
1789
1790SDValue DAGCombiner::visitMUL(SDNode *N) {
1791  SDValue N0 = N->getOperand(0);
1792  SDValue N1 = N->getOperand(1);
1793  EVT VT = N0.getValueType();
1794
1795  // fold (mul x, undef) -> 0
1796  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1797    return DAG.getConstant(0, VT);
1798
1799  bool N0IsConst = false;
1800  bool N1IsConst = false;
1801  APInt ConstValue0, ConstValue1;
1802  // fold vector ops
1803  if (VT.isVector()) {
1804    SDValue FoldedVOp = SimplifyVBinOp(N);
1805    if (FoldedVOp.getNode()) return FoldedVOp;
1806
1807    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1808    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1809  } else {
1810    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1811    ConstValue0 = N0IsConst? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() : APInt();
1812    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1813    ConstValue1 = N1IsConst? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() : APInt();
1814  }
1815
1816  // fold (mul c1, c2) -> c1*c2
1817  if (N0IsConst && N1IsConst)
1818    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1819
1820  // canonicalize constant to RHS
1821  if (N0IsConst && !N1IsConst)
1822    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1823  // fold (mul x, 0) -> 0
1824  if (N1IsConst && ConstValue1 == 0)
1825    return N1;
1826  // fold (mul x, 1) -> x
1827  if (N1IsConst && ConstValue1 == 1)
1828    return N0;
1829  // fold (mul x, -1) -> 0-x
1830  if (N1IsConst && ConstValue1.isAllOnesValue())
1831    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1832                       DAG.getConstant(0, VT), N0);
1833  // fold (mul x, (1 << c)) -> x << c
1834  if (N1IsConst && ConstValue1.isPowerOf2())
1835    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1836                       DAG.getConstant(ConstValue1.logBase2(),
1837                                       getShiftAmountTy(N0.getValueType())));
1838  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1839  if (N1IsConst && (-ConstValue1).isPowerOf2()) {
1840    unsigned Log2Val = (-ConstValue1).logBase2();
1841    // FIXME: If the input is something that is easily negated (e.g. a
1842    // single-use add), we should put the negate there.
1843    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1844                       DAG.getConstant(0, VT),
1845                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1846                            DAG.getConstant(Log2Val,
1847                                      getShiftAmountTy(N0.getValueType()))));
1848  }
1849
1850  APInt Val;
1851  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1852  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1853      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1854                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1855    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1856                             N1, N0.getOperand(1));
1857    AddToWorkList(C3.getNode());
1858    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1859                       N0.getOperand(0), C3);
1860  }
1861
1862  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1863  // use.
1864  {
1865    SDValue Sh(0,0), Y(0,0);
1866    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1867    if (N0.getOpcode() == ISD::SHL &&
1868        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1869                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1870        N0.getNode()->hasOneUse()) {
1871      Sh = N0; Y = N1;
1872    } else if (N1.getOpcode() == ISD::SHL &&
1873               isa<ConstantSDNode>(N1.getOperand(1)) &&
1874               N1.getNode()->hasOneUse()) {
1875      Sh = N1; Y = N0;
1876    }
1877
1878    if (Sh.getNode()) {
1879      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1880                                Sh.getOperand(0), Y);
1881      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1882                         Mul, Sh.getOperand(1));
1883    }
1884  }
1885
1886  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1887  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1888      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1889                     isa<ConstantSDNode>(N0.getOperand(1))))
1890    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1891                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1892                                   N0.getOperand(0), N1),
1893                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1894                                   N0.getOperand(1), N1));
1895
1896  // reassociate mul
1897  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1898  if (RMUL.getNode() != 0)
1899    return RMUL;
1900
1901  return SDValue();
1902}
1903
1904SDValue DAGCombiner::visitSDIV(SDNode *N) {
1905  SDValue N0 = N->getOperand(0);
1906  SDValue N1 = N->getOperand(1);
1907  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1908  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1909  EVT VT = N->getValueType(0);
1910
1911  // fold vector ops
1912  if (VT.isVector()) {
1913    SDValue FoldedVOp = SimplifyVBinOp(N);
1914    if (FoldedVOp.getNode()) return FoldedVOp;
1915  }
1916
1917  // fold (sdiv c1, c2) -> c1/c2
1918  if (N0C && N1C && !N1C->isNullValue())
1919    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1920  // fold (sdiv X, 1) -> X
1921  if (N1C && N1C->getAPIntValue() == 1LL)
1922    return N0;
1923  // fold (sdiv X, -1) -> 0-X
1924  if (N1C && N1C->isAllOnesValue())
1925    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1926                       DAG.getConstant(0, VT), N0);
1927  // If we know the sign bits of both operands are zero, strength reduce to a
1928  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1929  if (!VT.isVector()) {
1930    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1931      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1932                         N0, N1);
1933  }
1934  // fold (sdiv X, pow2) -> simple ops after legalize
1935  if (N1C && !N1C->isNullValue() &&
1936      (N1C->getAPIntValue().isPowerOf2() ||
1937       (-N1C->getAPIntValue()).isPowerOf2())) {
1938    // If dividing by powers of two is cheap, then don't perform the following
1939    // fold.
1940    if (TLI.isPow2DivCheap())
1941      return SDValue();
1942
1943    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1944
1945    // Splat the sign bit into the register
1946    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1947                              DAG.getConstant(VT.getSizeInBits()-1,
1948                                       getShiftAmountTy(N0.getValueType())));
1949    AddToWorkList(SGN.getNode());
1950
1951    // Add (N0 < 0) ? abs2 - 1 : 0;
1952    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1953                              DAG.getConstant(VT.getSizeInBits() - lg2,
1954                                       getShiftAmountTy(SGN.getValueType())));
1955    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1956    AddToWorkList(SRL.getNode());
1957    AddToWorkList(ADD.getNode());    // Divide by pow2
1958    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1959                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1960
1961    // If we're dividing by a positive value, we're done.  Otherwise, we must
1962    // negate the result.
1963    if (N1C->getAPIntValue().isNonNegative())
1964      return SRA;
1965
1966    AddToWorkList(SRA.getNode());
1967    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1968                       DAG.getConstant(0, VT), SRA);
1969  }
1970
1971  // if integer divide is expensive and we satisfy the requirements, emit an
1972  // alternate sequence.
1973  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1974    SDValue Op = BuildSDIV(N);
1975    if (Op.getNode()) return Op;
1976  }
1977
1978  // undef / X -> 0
1979  if (N0.getOpcode() == ISD::UNDEF)
1980    return DAG.getConstant(0, VT);
1981  // X / undef -> undef
1982  if (N1.getOpcode() == ISD::UNDEF)
1983    return N1;
1984
1985  return SDValue();
1986}
1987
1988SDValue DAGCombiner::visitUDIV(SDNode *N) {
1989  SDValue N0 = N->getOperand(0);
1990  SDValue N1 = N->getOperand(1);
1991  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1993  EVT VT = N->getValueType(0);
1994
1995  // fold vector ops
1996  if (VT.isVector()) {
1997    SDValue FoldedVOp = SimplifyVBinOp(N);
1998    if (FoldedVOp.getNode()) return FoldedVOp;
1999  }
2000
2001  // fold (udiv c1, c2) -> c1/c2
2002  if (N0C && N1C && !N1C->isNullValue())
2003    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2004  // fold (udiv x, (1 << c)) -> x >>u c
2005  if (N1C && N1C->getAPIntValue().isPowerOf2())
2006    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2007                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2008                                       getShiftAmountTy(N0.getValueType())));
2009  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2010  if (N1.getOpcode() == ISD::SHL) {
2011    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2012      if (SHC->getAPIntValue().isPowerOf2()) {
2013        EVT ADDVT = N1.getOperand(1).getValueType();
2014        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2015                                  N1.getOperand(1),
2016                                  DAG.getConstant(SHC->getAPIntValue()
2017                                                                  .logBase2(),
2018                                                  ADDVT));
2019        AddToWorkList(Add.getNode());
2020        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2021      }
2022    }
2023  }
2024  // fold (udiv x, c) -> alternate
2025  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2026    SDValue Op = BuildUDIV(N);
2027    if (Op.getNode()) return Op;
2028  }
2029
2030  // undef / X -> 0
2031  if (N0.getOpcode() == ISD::UNDEF)
2032    return DAG.getConstant(0, VT);
2033  // X / undef -> undef
2034  if (N1.getOpcode() == ISD::UNDEF)
2035    return N1;
2036
2037  return SDValue();
2038}
2039
2040SDValue DAGCombiner::visitSREM(SDNode *N) {
2041  SDValue N0 = N->getOperand(0);
2042  SDValue N1 = N->getOperand(1);
2043  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2044  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2045  EVT VT = N->getValueType(0);
2046
2047  // fold (srem c1, c2) -> c1%c2
2048  if (N0C && N1C && !N1C->isNullValue())
2049    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2050  // If we know the sign bits of both operands are zero, strength reduce to a
2051  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2052  if (!VT.isVector()) {
2053    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2054      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2055  }
2056
2057  // If X/C can be simplified by the division-by-constant logic, lower
2058  // X%C to the equivalent of X-X/C*C.
2059  if (N1C && !N1C->isNullValue()) {
2060    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2061    AddToWorkList(Div.getNode());
2062    SDValue OptimizedDiv = combine(Div.getNode());
2063    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2064      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2065                                OptimizedDiv, N1);
2066      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2067      AddToWorkList(Mul.getNode());
2068      return Sub;
2069    }
2070  }
2071
2072  // undef % X -> 0
2073  if (N0.getOpcode() == ISD::UNDEF)
2074    return DAG.getConstant(0, VT);
2075  // X % undef -> undef
2076  if (N1.getOpcode() == ISD::UNDEF)
2077    return N1;
2078
2079  return SDValue();
2080}
2081
2082SDValue DAGCombiner::visitUREM(SDNode *N) {
2083  SDValue N0 = N->getOperand(0);
2084  SDValue N1 = N->getOperand(1);
2085  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2086  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2087  EVT VT = N->getValueType(0);
2088
2089  // fold (urem c1, c2) -> c1%c2
2090  if (N0C && N1C && !N1C->isNullValue())
2091    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2092  // fold (urem x, pow2) -> (and x, pow2-1)
2093  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2094    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2095                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2096  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2097  if (N1.getOpcode() == ISD::SHL) {
2098    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2099      if (SHC->getAPIntValue().isPowerOf2()) {
2100        SDValue Add =
2101          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2102                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2103                                 VT));
2104        AddToWorkList(Add.getNode());
2105        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2106      }
2107    }
2108  }
2109
2110  // If X/C can be simplified by the division-by-constant logic, lower
2111  // X%C to the equivalent of X-X/C*C.
2112  if (N1C && !N1C->isNullValue()) {
2113    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2114    AddToWorkList(Div.getNode());
2115    SDValue OptimizedDiv = combine(Div.getNode());
2116    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2117      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2118                                OptimizedDiv, N1);
2119      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2120      AddToWorkList(Mul.getNode());
2121      return Sub;
2122    }
2123  }
2124
2125  // undef % X -> 0
2126  if (N0.getOpcode() == ISD::UNDEF)
2127    return DAG.getConstant(0, VT);
2128  // X % undef -> undef
2129  if (N1.getOpcode() == ISD::UNDEF)
2130    return N1;
2131
2132  return SDValue();
2133}
2134
2135SDValue DAGCombiner::visitMULHS(SDNode *N) {
2136  SDValue N0 = N->getOperand(0);
2137  SDValue N1 = N->getOperand(1);
2138  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2139  EVT VT = N->getValueType(0);
2140  SDLoc DL(N);
2141
2142  // fold (mulhs x, 0) -> 0
2143  if (N1C && N1C->isNullValue())
2144    return N1;
2145  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2146  if (N1C && N1C->getAPIntValue() == 1)
2147    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2148                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2149                                       getShiftAmountTy(N0.getValueType())));
2150  // fold (mulhs x, undef) -> 0
2151  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2152    return DAG.getConstant(0, VT);
2153
2154  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2155  // plus a shift.
2156  if (VT.isSimple() && !VT.isVector()) {
2157    MVT Simple = VT.getSimpleVT();
2158    unsigned SimpleSize = Simple.getSizeInBits();
2159    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2160    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2161      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2162      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2163      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2164      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2165            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2166      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2167    }
2168  }
2169
2170  return SDValue();
2171}
2172
2173SDValue DAGCombiner::visitMULHU(SDNode *N) {
2174  SDValue N0 = N->getOperand(0);
2175  SDValue N1 = N->getOperand(1);
2176  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2177  EVT VT = N->getValueType(0);
2178  SDLoc DL(N);
2179
2180  // fold (mulhu x, 0) -> 0
2181  if (N1C && N1C->isNullValue())
2182    return N1;
2183  // fold (mulhu x, 1) -> 0
2184  if (N1C && N1C->getAPIntValue() == 1)
2185    return DAG.getConstant(0, N0.getValueType());
2186  // fold (mulhu x, undef) -> 0
2187  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2188    return DAG.getConstant(0, VT);
2189
2190  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2191  // plus a shift.
2192  if (VT.isSimple() && !VT.isVector()) {
2193    MVT Simple = VT.getSimpleVT();
2194    unsigned SimpleSize = Simple.getSizeInBits();
2195    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2196    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2197      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2198      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2199      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2200      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2201            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2202      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2203    }
2204  }
2205
2206  return SDValue();
2207}
2208
2209/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2210/// compute two values. LoOp and HiOp give the opcodes for the two computations
2211/// that are being performed. Return true if a simplification was made.
2212///
2213SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2214                                                unsigned HiOp) {
2215  // If the high half is not needed, just compute the low half.
2216  bool HiExists = N->hasAnyUseOfValue(1);
2217  if (!HiExists &&
2218      (!LegalOperations ||
2219       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2220    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2221                              N->op_begin(), N->getNumOperands());
2222    return CombineTo(N, Res, Res);
2223  }
2224
2225  // If the low half is not needed, just compute the high half.
2226  bool LoExists = N->hasAnyUseOfValue(0);
2227  if (!LoExists &&
2228      (!LegalOperations ||
2229       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2230    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2231                              N->op_begin(), N->getNumOperands());
2232    return CombineTo(N, Res, Res);
2233  }
2234
2235  // If both halves are used, return as it is.
2236  if (LoExists && HiExists)
2237    return SDValue();
2238
2239  // If the two computed results can be simplified separately, separate them.
2240  if (LoExists) {
2241    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2242                             N->op_begin(), N->getNumOperands());
2243    AddToWorkList(Lo.getNode());
2244    SDValue LoOpt = combine(Lo.getNode());
2245    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2246        (!LegalOperations ||
2247         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2248      return CombineTo(N, LoOpt, LoOpt);
2249  }
2250
2251  if (HiExists) {
2252    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2253                             N->op_begin(), N->getNumOperands());
2254    AddToWorkList(Hi.getNode());
2255    SDValue HiOpt = combine(Hi.getNode());
2256    if (HiOpt.getNode() && HiOpt != Hi &&
2257        (!LegalOperations ||
2258         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2259      return CombineTo(N, HiOpt, HiOpt);
2260  }
2261
2262  return SDValue();
2263}
2264
2265SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2266  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2267  if (Res.getNode()) return Res;
2268
2269  EVT VT = N->getValueType(0);
2270  SDLoc DL(N);
2271
2272  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2273  // plus a shift.
2274  if (VT.isSimple() && !VT.isVector()) {
2275    MVT Simple = VT.getSimpleVT();
2276    unsigned SimpleSize = Simple.getSizeInBits();
2277    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2278    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2279      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2280      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2281      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2282      // Compute the high part as N1.
2283      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2284            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2285      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2286      // Compute the low part as N0.
2287      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2288      return CombineTo(N, Lo, Hi);
2289    }
2290  }
2291
2292  return SDValue();
2293}
2294
2295SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2296  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2297  if (Res.getNode()) return Res;
2298
2299  EVT VT = N->getValueType(0);
2300  SDLoc DL(N);
2301
2302  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2303  // plus a shift.
2304  if (VT.isSimple() && !VT.isVector()) {
2305    MVT Simple = VT.getSimpleVT();
2306    unsigned SimpleSize = Simple.getSizeInBits();
2307    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2308    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2309      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2310      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2311      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2312      // Compute the high part as N1.
2313      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2314            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2315      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2316      // Compute the low part as N0.
2317      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2318      return CombineTo(N, Lo, Hi);
2319    }
2320  }
2321
2322  return SDValue();
2323}
2324
2325SDValue DAGCombiner::visitSMULO(SDNode *N) {
2326  // (smulo x, 2) -> (saddo x, x)
2327  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2328    if (C2->getAPIntValue() == 2)
2329      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2330                         N->getOperand(0), N->getOperand(0));
2331
2332  return SDValue();
2333}
2334
2335SDValue DAGCombiner::visitUMULO(SDNode *N) {
2336  // (umulo x, 2) -> (uaddo x, x)
2337  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2338    if (C2->getAPIntValue() == 2)
2339      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2340                         N->getOperand(0), N->getOperand(0));
2341
2342  return SDValue();
2343}
2344
2345SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2346  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2347  if (Res.getNode()) return Res;
2348
2349  return SDValue();
2350}
2351
2352SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2353  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2354  if (Res.getNode()) return Res;
2355
2356  return SDValue();
2357}
2358
2359/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2360/// two operands of the same opcode, try to simplify it.
2361SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2362  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2363  EVT VT = N0.getValueType();
2364  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2365
2366  // Bail early if none of these transforms apply.
2367  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2368
2369  // For each of OP in AND/OR/XOR:
2370  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2371  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2372  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2373  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2374  //
2375  // do not sink logical op inside of a vector extend, since it may combine
2376  // into a vsetcc.
2377  EVT Op0VT = N0.getOperand(0).getValueType();
2378  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2379       N0.getOpcode() == ISD::SIGN_EXTEND ||
2380       // Avoid infinite looping with PromoteIntBinOp.
2381       (N0.getOpcode() == ISD::ANY_EXTEND &&
2382        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2383       (N0.getOpcode() == ISD::TRUNCATE &&
2384        (!TLI.isZExtFree(VT, Op0VT) ||
2385         !TLI.isTruncateFree(Op0VT, VT)) &&
2386        TLI.isTypeLegal(Op0VT))) &&
2387      !VT.isVector() &&
2388      Op0VT == N1.getOperand(0).getValueType() &&
2389      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2390    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2391                                 N0.getOperand(0).getValueType(),
2392                                 N0.getOperand(0), N1.getOperand(0));
2393    AddToWorkList(ORNode.getNode());
2394    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2395  }
2396
2397  // For each of OP in SHL/SRL/SRA/AND...
2398  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2399  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2400  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2401  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2402       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2403      N0.getOperand(1) == N1.getOperand(1)) {
2404    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2405                                 N0.getOperand(0).getValueType(),
2406                                 N0.getOperand(0), N1.getOperand(0));
2407    AddToWorkList(ORNode.getNode());
2408    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2409                       ORNode, N0.getOperand(1));
2410  }
2411
2412  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2413  // Only perform this optimization after type legalization and before
2414  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2415  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2416  // we don't want to undo this promotion.
2417  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2418  // on scalars.
2419  if ((N0.getOpcode() == ISD::BITCAST ||
2420       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2421      Level == AfterLegalizeTypes) {
2422    SDValue In0 = N0.getOperand(0);
2423    SDValue In1 = N1.getOperand(0);
2424    EVT In0Ty = In0.getValueType();
2425    EVT In1Ty = In1.getValueType();
2426    SDLoc DL(N);
2427    // If both incoming values are integers, and the original types are the
2428    // same.
2429    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2430      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2431      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2432      AddToWorkList(Op.getNode());
2433      return BC;
2434    }
2435  }
2436
2437  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2438  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2439  // If both shuffles use the same mask, and both shuffle within a single
2440  // vector, then it is worthwhile to move the swizzle after the operation.
2441  // The type-legalizer generates this pattern when loading illegal
2442  // vector types from memory. In many cases this allows additional shuffle
2443  // optimizations.
2444  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2445      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2446      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2447    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2448    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2449
2450    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2451           "Inputs to shuffles are not the same type");
2452
2453    unsigned NumElts = VT.getVectorNumElements();
2454
2455    // Check that both shuffles use the same mask. The masks are known to be of
2456    // the same length because the result vector type is the same.
2457    bool SameMask = true;
2458    for (unsigned i = 0; i != NumElts; ++i) {
2459      int Idx0 = SVN0->getMaskElt(i);
2460      int Idx1 = SVN1->getMaskElt(i);
2461      if (Idx0 != Idx1) {
2462        SameMask = false;
2463        break;
2464      }
2465    }
2466
2467    if (SameMask) {
2468      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2469                               N0.getOperand(0), N1.getOperand(0));
2470      AddToWorkList(Op.getNode());
2471      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2472                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2473    }
2474  }
2475
2476  return SDValue();
2477}
2478
2479SDValue DAGCombiner::visitAND(SDNode *N) {
2480  SDValue N0 = N->getOperand(0);
2481  SDValue N1 = N->getOperand(1);
2482  SDValue LL, LR, RL, RR, CC0, CC1;
2483  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2484  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2485  EVT VT = N1.getValueType();
2486  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2487
2488  // fold vector ops
2489  if (VT.isVector()) {
2490    SDValue FoldedVOp = SimplifyVBinOp(N);
2491    if (FoldedVOp.getNode()) return FoldedVOp;
2492
2493    // fold (and x, 0) -> 0, vector edition
2494    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2495      return N0;
2496    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2497      return N1;
2498
2499    // fold (and x, -1) -> x, vector edition
2500    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2501      return N1;
2502    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2503      return N0;
2504  }
2505
2506  // fold (and x, undef) -> 0
2507  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2508    return DAG.getConstant(0, VT);
2509  // fold (and c1, c2) -> c1&c2
2510  if (N0C && N1C)
2511    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2512  // canonicalize constant to RHS
2513  if (N0C && !N1C)
2514    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2515  // fold (and x, -1) -> x
2516  if (N1C && N1C->isAllOnesValue())
2517    return N0;
2518  // if (and x, c) is known to be zero, return 0
2519  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2520                                   APInt::getAllOnesValue(BitWidth)))
2521    return DAG.getConstant(0, VT);
2522  // reassociate and
2523  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2524  if (RAND.getNode() != 0)
2525    return RAND;
2526  // fold (and (or x, C), D) -> D if (C & D) == D
2527  if (N1C && N0.getOpcode() == ISD::OR)
2528    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2529      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2530        return N1;
2531  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2532  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2533    SDValue N0Op0 = N0.getOperand(0);
2534    APInt Mask = ~N1C->getAPIntValue();
2535    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2536    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2537      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2538                                 N0.getValueType(), N0Op0);
2539
2540      // Replace uses of the AND with uses of the Zero extend node.
2541      CombineTo(N, Zext);
2542
2543      // We actually want to replace all uses of the any_extend with the
2544      // zero_extend, to avoid duplicating things.  This will later cause this
2545      // AND to be folded.
2546      CombineTo(N0.getNode(), Zext);
2547      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2548    }
2549  }
2550  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2551  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2552  // already be zero by virtue of the width of the base type of the load.
2553  //
2554  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2555  // more cases.
2556  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2557       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2558      N0.getOpcode() == ISD::LOAD) {
2559    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2560                                         N0 : N0.getOperand(0) );
2561
2562    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2563    // This can be a pure constant or a vector splat, in which case we treat the
2564    // vector as a scalar and use the splat value.
2565    APInt Constant = APInt::getNullValue(1);
2566    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2567      Constant = C->getAPIntValue();
2568    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2569      APInt SplatValue, SplatUndef;
2570      unsigned SplatBitSize;
2571      bool HasAnyUndefs;
2572      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2573                                             SplatBitSize, HasAnyUndefs);
2574      if (IsSplat) {
2575        // Undef bits can contribute to a possible optimisation if set, so
2576        // set them.
2577        SplatValue |= SplatUndef;
2578
2579        // The splat value may be something like "0x00FFFFFF", which means 0 for
2580        // the first vector value and FF for the rest, repeating. We need a mask
2581        // that will apply equally to all members of the vector, so AND all the
2582        // lanes of the constant together.
2583        EVT VT = Vector->getValueType(0);
2584        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2585
2586        // If the splat value has been compressed to a bitlength lower
2587        // than the size of the vector lane, we need to re-expand it to
2588        // the lane size.
2589        if (BitWidth > SplatBitSize)
2590          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2591               SplatBitSize < BitWidth;
2592               SplatBitSize = SplatBitSize * 2)
2593            SplatValue |= SplatValue.shl(SplatBitSize);
2594
2595        Constant = APInt::getAllOnesValue(BitWidth);
2596        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2597          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2598      }
2599    }
2600
2601    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2602    // actually legal and isn't going to get expanded, else this is a false
2603    // optimisation.
2604    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2605                                                    Load->getMemoryVT());
2606
2607    // Resize the constant to the same size as the original memory access before
2608    // extension. If it is still the AllOnesValue then this AND is completely
2609    // unneeded.
2610    Constant =
2611      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2612
2613    bool B;
2614    switch (Load->getExtensionType()) {
2615    default: B = false; break;
2616    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2617    case ISD::ZEXTLOAD:
2618    case ISD::NON_EXTLOAD: B = true; break;
2619    }
2620
2621    if (B && Constant.isAllOnesValue()) {
2622      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2623      // preserve semantics once we get rid of the AND.
2624      SDValue NewLoad(Load, 0);
2625      if (Load->getExtensionType() == ISD::EXTLOAD) {
2626        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2627                              Load->getValueType(0), SDLoc(Load),
2628                              Load->getChain(), Load->getBasePtr(),
2629                              Load->getOffset(), Load->getMemoryVT(),
2630                              Load->getMemOperand());
2631        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2632        if (Load->getNumValues() == 3) {
2633          // PRE/POST_INC loads have 3 values.
2634          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2635                           NewLoad.getValue(2) };
2636          CombineTo(Load, To, 3, true);
2637        } else {
2638          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2639        }
2640      }
2641
2642      // Fold the AND away, taking care not to fold to the old load node if we
2643      // replaced it.
2644      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2645
2646      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2647    }
2648  }
2649  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2650  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2651    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2652    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2653
2654    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2655        LL.getValueType().isInteger()) {
2656      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2657      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2658        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2659                                     LR.getValueType(), LL, RL);
2660        AddToWorkList(ORNode.getNode());
2661        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2662      }
2663      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2664      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2665        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2666                                      LR.getValueType(), LL, RL);
2667        AddToWorkList(ANDNode.getNode());
2668        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2669      }
2670      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2671      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2672        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2673                                     LR.getValueType(), LL, RL);
2674        AddToWorkList(ORNode.getNode());
2675        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2676      }
2677    }
2678    // canonicalize equivalent to ll == rl
2679    if (LL == RR && LR == RL) {
2680      Op1 = ISD::getSetCCSwappedOperands(Op1);
2681      std::swap(RL, RR);
2682    }
2683    if (LL == RL && LR == RR) {
2684      bool isInteger = LL.getValueType().isInteger();
2685      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2686      if (Result != ISD::SETCC_INVALID &&
2687          (!LegalOperations ||
2688           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2689            TLI.isOperationLegal(ISD::SETCC,
2690                            getSetCCResultType(N0.getSimpleValueType())))))
2691        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2692                            LL, LR, Result);
2693    }
2694  }
2695
2696  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2697  if (N0.getOpcode() == N1.getOpcode()) {
2698    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2699    if (Tmp.getNode()) return Tmp;
2700  }
2701
2702  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2703  // fold (and (sra)) -> (and (srl)) when possible.
2704  if (!VT.isVector() &&
2705      SimplifyDemandedBits(SDValue(N, 0)))
2706    return SDValue(N, 0);
2707
2708  // fold (zext_inreg (extload x)) -> (zextload x)
2709  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2710    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2711    EVT MemVT = LN0->getMemoryVT();
2712    // If we zero all the possible extended bits, then we can turn this into
2713    // a zextload if we are running before legalize or the operation is legal.
2714    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2715    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2716                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2717        ((!LegalOperations && !LN0->isVolatile()) ||
2718         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2719      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2720                                       LN0->getChain(), LN0->getBasePtr(),
2721                                       LN0->getPointerInfo(), MemVT,
2722                                       LN0->isVolatile(), LN0->isNonTemporal(),
2723                                       LN0->getAlignment());
2724      AddToWorkList(N);
2725      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2726      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2727    }
2728  }
2729  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2730  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2731      N0.hasOneUse()) {
2732    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2733    EVT MemVT = LN0->getMemoryVT();
2734    // If we zero all the possible extended bits, then we can turn this into
2735    // a zextload if we are running before legalize or the operation is legal.
2736    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2737    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2738                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2739        ((!LegalOperations && !LN0->isVolatile()) ||
2740         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2741      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2742                                       LN0->getChain(),
2743                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2744                                       MemVT,
2745                                       LN0->isVolatile(), LN0->isNonTemporal(),
2746                                       LN0->getAlignment());
2747      AddToWorkList(N);
2748      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2749      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2750    }
2751  }
2752
2753  // fold (and (load x), 255) -> (zextload x, i8)
2754  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2755  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2756  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2757              (N0.getOpcode() == ISD::ANY_EXTEND &&
2758               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2759    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2760    LoadSDNode *LN0 = HasAnyExt
2761      ? cast<LoadSDNode>(N0.getOperand(0))
2762      : cast<LoadSDNode>(N0);
2763    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2764        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2765      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2766      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2767        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2768        EVT LoadedVT = LN0->getMemoryVT();
2769
2770        if (ExtVT == LoadedVT &&
2771            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2772          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2773
2774          SDValue NewLoad =
2775            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2776                           LN0->getChain(), LN0->getBasePtr(),
2777                           LN0->getPointerInfo(),
2778                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2779                           LN0->getAlignment());
2780          AddToWorkList(N);
2781          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2782          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2783        }
2784
2785        // Do not change the width of a volatile load.
2786        // Do not generate loads of non-round integer types since these can
2787        // be expensive (and would be wrong if the type is not byte sized).
2788        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2789            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2790          EVT PtrType = LN0->getOperand(1).getValueType();
2791
2792          unsigned Alignment = LN0->getAlignment();
2793          SDValue NewPtr = LN0->getBasePtr();
2794
2795          // For big endian targets, we need to add an offset to the pointer
2796          // to load the correct bytes.  For little endian systems, we merely
2797          // need to read fewer bytes from the same pointer.
2798          if (TLI.isBigEndian()) {
2799            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2800            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2801            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2802            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2803                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2804            Alignment = MinAlign(Alignment, PtrOff);
2805          }
2806
2807          AddToWorkList(NewPtr.getNode());
2808
2809          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2810          SDValue Load =
2811            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2812                           LN0->getChain(), NewPtr,
2813                           LN0->getPointerInfo(),
2814                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2815                           Alignment);
2816          AddToWorkList(N);
2817          CombineTo(LN0, Load, Load.getValue(1));
2818          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2819        }
2820      }
2821    }
2822  }
2823
2824  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2825      VT.getSizeInBits() <= 64) {
2826    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2827      APInt ADDC = ADDI->getAPIntValue();
2828      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2829        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2830        // immediate for an add, but it is legal if its top c2 bits are set,
2831        // transform the ADD so the immediate doesn't need to be materialized
2832        // in a register.
2833        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2834          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2835                                             SRLI->getZExtValue());
2836          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2837            ADDC |= Mask;
2838            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2839              SDValue NewAdd =
2840                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2841                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2842              CombineTo(N0.getNode(), NewAdd);
2843              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2844            }
2845          }
2846        }
2847      }
2848    }
2849  }
2850
2851  return SDValue();
2852}
2853
2854/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2855///
2856SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2857                                        bool DemandHighBits) {
2858  if (!LegalOperations)
2859    return SDValue();
2860
2861  EVT VT = N->getValueType(0);
2862  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2863    return SDValue();
2864  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2865    return SDValue();
2866
2867  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2868  bool LookPassAnd0 = false;
2869  bool LookPassAnd1 = false;
2870  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2871      std::swap(N0, N1);
2872  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2873      std::swap(N0, N1);
2874  if (N0.getOpcode() == ISD::AND) {
2875    if (!N0.getNode()->hasOneUse())
2876      return SDValue();
2877    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2878    if (!N01C || N01C->getZExtValue() != 0xFF00)
2879      return SDValue();
2880    N0 = N0.getOperand(0);
2881    LookPassAnd0 = true;
2882  }
2883
2884  if (N1.getOpcode() == ISD::AND) {
2885    if (!N1.getNode()->hasOneUse())
2886      return SDValue();
2887    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2888    if (!N11C || N11C->getZExtValue() != 0xFF)
2889      return SDValue();
2890    N1 = N1.getOperand(0);
2891    LookPassAnd1 = true;
2892  }
2893
2894  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2895    std::swap(N0, N1);
2896  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2897    return SDValue();
2898  if (!N0.getNode()->hasOneUse() ||
2899      !N1.getNode()->hasOneUse())
2900    return SDValue();
2901
2902  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2903  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2904  if (!N01C || !N11C)
2905    return SDValue();
2906  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2907    return SDValue();
2908
2909  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2910  SDValue N00 = N0->getOperand(0);
2911  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2912    if (!N00.getNode()->hasOneUse())
2913      return SDValue();
2914    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2915    if (!N001C || N001C->getZExtValue() != 0xFF)
2916      return SDValue();
2917    N00 = N00.getOperand(0);
2918    LookPassAnd0 = true;
2919  }
2920
2921  SDValue N10 = N1->getOperand(0);
2922  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2923    if (!N10.getNode()->hasOneUse())
2924      return SDValue();
2925    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2926    if (!N101C || N101C->getZExtValue() != 0xFF00)
2927      return SDValue();
2928    N10 = N10.getOperand(0);
2929    LookPassAnd1 = true;
2930  }
2931
2932  if (N00 != N10)
2933    return SDValue();
2934
2935  // Make sure everything beyond the low halfword is zero since the SRL 16
2936  // will clear the top bits.
2937  unsigned OpSizeInBits = VT.getSizeInBits();
2938  if (DemandHighBits && OpSizeInBits > 16 &&
2939      (!LookPassAnd0 || !LookPassAnd1) &&
2940      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2941    return SDValue();
2942
2943  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2944  if (OpSizeInBits > 16)
2945    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2946                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2947  return Res;
2948}
2949
2950/// isBSwapHWordElement - Return true if the specified node is an element
2951/// that makes up a 32-bit packed halfword byteswap. i.e.
2952/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2953static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2954  if (!N.getNode()->hasOneUse())
2955    return false;
2956
2957  unsigned Opc = N.getOpcode();
2958  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2959    return false;
2960
2961  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2962  if (!N1C)
2963    return false;
2964
2965  unsigned Num;
2966  switch (N1C->getZExtValue()) {
2967  default:
2968    return false;
2969  case 0xFF:       Num = 0; break;
2970  case 0xFF00:     Num = 1; break;
2971  case 0xFF0000:   Num = 2; break;
2972  case 0xFF000000: Num = 3; break;
2973  }
2974
2975  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2976  SDValue N0 = N.getOperand(0);
2977  if (Opc == ISD::AND) {
2978    if (Num == 0 || Num == 2) {
2979      // (x >> 8) & 0xff
2980      // (x >> 8) & 0xff0000
2981      if (N0.getOpcode() != ISD::SRL)
2982        return false;
2983      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2984      if (!C || C->getZExtValue() != 8)
2985        return false;
2986    } else {
2987      // (x << 8) & 0xff00
2988      // (x << 8) & 0xff000000
2989      if (N0.getOpcode() != ISD::SHL)
2990        return false;
2991      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2992      if (!C || C->getZExtValue() != 8)
2993        return false;
2994    }
2995  } else if (Opc == ISD::SHL) {
2996    // (x & 0xff) << 8
2997    // (x & 0xff0000) << 8
2998    if (Num != 0 && Num != 2)
2999      return false;
3000    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3001    if (!C || C->getZExtValue() != 8)
3002      return false;
3003  } else { // Opc == ISD::SRL
3004    // (x & 0xff00) >> 8
3005    // (x & 0xff000000) >> 8
3006    if (Num != 1 && Num != 3)
3007      return false;
3008    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3009    if (!C || C->getZExtValue() != 8)
3010      return false;
3011  }
3012
3013  if (Parts[Num])
3014    return false;
3015
3016  Parts[Num] = N0.getOperand(0).getNode();
3017  return true;
3018}
3019
3020/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3021/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3022/// => (rotl (bswap x), 16)
3023SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3024  if (!LegalOperations)
3025    return SDValue();
3026
3027  EVT VT = N->getValueType(0);
3028  if (VT != MVT::i32)
3029    return SDValue();
3030  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3031    return SDValue();
3032
3033  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3034  // Look for either
3035  // (or (or (and), (and)), (or (and), (and)))
3036  // (or (or (or (and), (and)), (and)), (and))
3037  if (N0.getOpcode() != ISD::OR)
3038    return SDValue();
3039  SDValue N00 = N0.getOperand(0);
3040  SDValue N01 = N0.getOperand(1);
3041
3042  if (N1.getOpcode() == ISD::OR &&
3043      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3044    // (or (or (and), (and)), (or (and), (and)))
3045    SDValue N000 = N00.getOperand(0);
3046    if (!isBSwapHWordElement(N000, Parts))
3047      return SDValue();
3048
3049    SDValue N001 = N00.getOperand(1);
3050    if (!isBSwapHWordElement(N001, Parts))
3051      return SDValue();
3052    SDValue N010 = N01.getOperand(0);
3053    if (!isBSwapHWordElement(N010, Parts))
3054      return SDValue();
3055    SDValue N011 = N01.getOperand(1);
3056    if (!isBSwapHWordElement(N011, Parts))
3057      return SDValue();
3058  } else {
3059    // (or (or (or (and), (and)), (and)), (and))
3060    if (!isBSwapHWordElement(N1, Parts))
3061      return SDValue();
3062    if (!isBSwapHWordElement(N01, Parts))
3063      return SDValue();
3064    if (N00.getOpcode() != ISD::OR)
3065      return SDValue();
3066    SDValue N000 = N00.getOperand(0);
3067    if (!isBSwapHWordElement(N000, Parts))
3068      return SDValue();
3069    SDValue N001 = N00.getOperand(1);
3070    if (!isBSwapHWordElement(N001, Parts))
3071      return SDValue();
3072  }
3073
3074  // Make sure the parts are all coming from the same node.
3075  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3076    return SDValue();
3077
3078  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3079                              SDValue(Parts[0],0));
3080
3081  // Result of the bswap should be rotated by 16. If it's not legal, than
3082  // do  (x << 16) | (x >> 16).
3083  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3084  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3085    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3086  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3087    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3088  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3089                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3090                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3091}
3092
3093SDValue DAGCombiner::visitOR(SDNode *N) {
3094  SDValue N0 = N->getOperand(0);
3095  SDValue N1 = N->getOperand(1);
3096  SDValue LL, LR, RL, RR, CC0, CC1;
3097  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3098  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3099  EVT VT = N1.getValueType();
3100
3101  // fold vector ops
3102  if (VT.isVector()) {
3103    SDValue FoldedVOp = SimplifyVBinOp(N);
3104    if (FoldedVOp.getNode()) return FoldedVOp;
3105
3106    // fold (or x, 0) -> x, vector edition
3107    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3108      return N1;
3109    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3110      return N0;
3111
3112    // fold (or x, -1) -> -1, vector edition
3113    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3114      return N0;
3115    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3116      return N1;
3117  }
3118
3119  // fold (or x, undef) -> -1
3120  if (!LegalOperations &&
3121      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3122    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3123    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3124  }
3125  // fold (or c1, c2) -> c1|c2
3126  if (N0C && N1C)
3127    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3128  // canonicalize constant to RHS
3129  if (N0C && !N1C)
3130    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3131  // fold (or x, 0) -> x
3132  if (N1C && N1C->isNullValue())
3133    return N0;
3134  // fold (or x, -1) -> -1
3135  if (N1C && N1C->isAllOnesValue())
3136    return N1;
3137  // fold (or x, c) -> c iff (x & ~c) == 0
3138  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3139    return N1;
3140
3141  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3142  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3143  if (BSwap.getNode() != 0)
3144    return BSwap;
3145  BSwap = MatchBSwapHWordLow(N, N0, N1);
3146  if (BSwap.getNode() != 0)
3147    return BSwap;
3148
3149  // reassociate or
3150  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3151  if (ROR.getNode() != 0)
3152    return ROR;
3153  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3154  // iff (c1 & c2) == 0.
3155  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3156             isa<ConstantSDNode>(N0.getOperand(1))) {
3157    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3158    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3159      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3160                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3161                                     N0.getOperand(0), N1),
3162                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3163  }
3164  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3165  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3166    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3167    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3168
3169    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3170        LL.getValueType().isInteger()) {
3171      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3172      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3173      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3174          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3175        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3176                                     LR.getValueType(), LL, RL);
3177        AddToWorkList(ORNode.getNode());
3178        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3179      }
3180      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3181      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3182      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3183          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3184        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3185                                      LR.getValueType(), LL, RL);
3186        AddToWorkList(ANDNode.getNode());
3187        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3188      }
3189    }
3190    // canonicalize equivalent to ll == rl
3191    if (LL == RR && LR == RL) {
3192      Op1 = ISD::getSetCCSwappedOperands(Op1);
3193      std::swap(RL, RR);
3194    }
3195    if (LL == RL && LR == RR) {
3196      bool isInteger = LL.getValueType().isInteger();
3197      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3198      if (Result != ISD::SETCC_INVALID &&
3199          (!LegalOperations ||
3200           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3201            TLI.isOperationLegal(ISD::SETCC,
3202              getSetCCResultType(N0.getValueType())))))
3203        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3204                            LL, LR, Result);
3205    }
3206  }
3207
3208  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3209  if (N0.getOpcode() == N1.getOpcode()) {
3210    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3211    if (Tmp.getNode()) return Tmp;
3212  }
3213
3214  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3215  if (N0.getOpcode() == ISD::AND &&
3216      N1.getOpcode() == ISD::AND &&
3217      N0.getOperand(1).getOpcode() == ISD::Constant &&
3218      N1.getOperand(1).getOpcode() == ISD::Constant &&
3219      // Don't increase # computations.
3220      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3221    // We can only do this xform if we know that bits from X that are set in C2
3222    // but not in C1 are already zero.  Likewise for Y.
3223    const APInt &LHSMask =
3224      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3225    const APInt &RHSMask =
3226      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3227
3228    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3229        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3230      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3231                              N0.getOperand(0), N1.getOperand(0));
3232      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3233                         DAG.getConstant(LHSMask | RHSMask, VT));
3234    }
3235  }
3236
3237  // See if this is some rotate idiom.
3238  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3239    return SDValue(Rot, 0);
3240
3241  // Simplify the operands using demanded-bits information.
3242  if (!VT.isVector() &&
3243      SimplifyDemandedBits(SDValue(N, 0)))
3244    return SDValue(N, 0);
3245
3246  return SDValue();
3247}
3248
3249/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3250static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3251  if (Op.getOpcode() == ISD::AND) {
3252    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3253      Mask = Op.getOperand(1);
3254      Op = Op.getOperand(0);
3255    } else {
3256      return false;
3257    }
3258  }
3259
3260  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3261    Shift = Op;
3262    return true;
3263  }
3264
3265  return false;
3266}
3267
3268// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3269// idioms for rotate, and if the target supports rotation instructions, generate
3270// a rot[lr].
3271SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3272  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3273  EVT VT = LHS.getValueType();
3274  if (!TLI.isTypeLegal(VT)) return 0;
3275
3276  // The target must have at least one rotate flavor.
3277  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3278  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3279  if (!HasROTL && !HasROTR) return 0;
3280
3281  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3282  SDValue LHSShift;   // The shift.
3283  SDValue LHSMask;    // AND value if any.
3284  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3285    return 0; // Not part of a rotate.
3286
3287  SDValue RHSShift;   // The shift.
3288  SDValue RHSMask;    // AND value if any.
3289  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3290    return 0; // Not part of a rotate.
3291
3292  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3293    return 0;   // Not shifting the same value.
3294
3295  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3296    return 0;   // Shifts must disagree.
3297
3298  // Canonicalize shl to left side in a shl/srl pair.
3299  if (RHSShift.getOpcode() == ISD::SHL) {
3300    std::swap(LHS, RHS);
3301    std::swap(LHSShift, RHSShift);
3302    std::swap(LHSMask , RHSMask );
3303  }
3304
3305  unsigned OpSizeInBits = VT.getSizeInBits();
3306  SDValue LHSShiftArg = LHSShift.getOperand(0);
3307  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3308  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3309
3310  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3311  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3312  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3313      RHSShiftAmt.getOpcode() == ISD::Constant) {
3314    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3315    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3316    if ((LShVal + RShVal) != OpSizeInBits)
3317      return 0;
3318
3319    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3320                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3321
3322    // If there is an AND of either shifted operand, apply it to the result.
3323    if (LHSMask.getNode() || RHSMask.getNode()) {
3324      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3325
3326      if (LHSMask.getNode()) {
3327        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3328        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3329      }
3330      if (RHSMask.getNode()) {
3331        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3332        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3333      }
3334
3335      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3336    }
3337
3338    return Rot.getNode();
3339  }
3340
3341  // If there is a mask here, and we have a variable shift, we can't be sure
3342  // that we're masking out the right stuff.
3343  if (LHSMask.getNode() || RHSMask.getNode())
3344    return 0;
3345
3346  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3347  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3348  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3349      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3350    if (ConstantSDNode *SUBC =
3351          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3352      if (SUBC->getAPIntValue() == OpSizeInBits)
3353        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3354                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3355    }
3356  }
3357
3358  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3359  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3360  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3361      RHSShiftAmt == LHSShiftAmt.getOperand(1))
3362    if (ConstantSDNode *SUBC =
3363          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0)))
3364      if (SUBC->getAPIntValue() == OpSizeInBits)
3365        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3366                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3367
3368  // Look for sign/zext/any-extended or truncate cases:
3369  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3370       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3371       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3372       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3373      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3374       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3375       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3376       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3377    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3378    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3379    if (RExtOp0.getOpcode() == ISD::SUB &&
3380        RExtOp0.getOperand(1) == LExtOp0) {
3381      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3382      //   (rotl x, y)
3383      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3384      //   (rotr x, (sub 32, y))
3385      if (ConstantSDNode *SUBC =
3386            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0)))
3387        if (SUBC->getAPIntValue() == OpSizeInBits)
3388          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3389                             LHSShiftArg,
3390                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3391    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3392               RExtOp0 == LExtOp0.getOperand(1)) {
3393      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3394      //   (rotr x, y)
3395      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3396      //   (rotl x, (sub 32, y))
3397      if (ConstantSDNode *SUBC =
3398            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0)))
3399        if (SUBC->getAPIntValue() == OpSizeInBits)
3400          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3401                             LHSShiftArg,
3402                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3403    }
3404  }
3405
3406  return 0;
3407}
3408
3409SDValue DAGCombiner::visitXOR(SDNode *N) {
3410  SDValue N0 = N->getOperand(0);
3411  SDValue N1 = N->getOperand(1);
3412  SDValue LHS, RHS, CC;
3413  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3414  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3415  EVT VT = N0.getValueType();
3416
3417  // fold vector ops
3418  if (VT.isVector()) {
3419    SDValue FoldedVOp = SimplifyVBinOp(N);
3420    if (FoldedVOp.getNode()) return FoldedVOp;
3421
3422    // fold (xor x, 0) -> x, vector edition
3423    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3424      return N1;
3425    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3426      return N0;
3427  }
3428
3429  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3430  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3431    return DAG.getConstant(0, VT);
3432  // fold (xor x, undef) -> undef
3433  if (N0.getOpcode() == ISD::UNDEF)
3434    return N0;
3435  if (N1.getOpcode() == ISD::UNDEF)
3436    return N1;
3437  // fold (xor c1, c2) -> c1^c2
3438  if (N0C && N1C)
3439    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3440  // canonicalize constant to RHS
3441  if (N0C && !N1C)
3442    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3443  // fold (xor x, 0) -> x
3444  if (N1C && N1C->isNullValue())
3445    return N0;
3446  // reassociate xor
3447  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3448  if (RXOR.getNode() != 0)
3449    return RXOR;
3450
3451  // fold !(x cc y) -> (x !cc y)
3452  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3453    bool isInt = LHS.getValueType().isInteger();
3454    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3455                                               isInt);
3456
3457    if (!LegalOperations ||
3458        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3459      switch (N0.getOpcode()) {
3460      default:
3461        llvm_unreachable("Unhandled SetCC Equivalent!");
3462      case ISD::SETCC:
3463        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3464      case ISD::SELECT_CC:
3465        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3466                               N0.getOperand(3), NotCC);
3467      }
3468    }
3469  }
3470
3471  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3472  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3473      N0.getNode()->hasOneUse() &&
3474      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3475    SDValue V = N0.getOperand(0);
3476    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3477                    DAG.getConstant(1, V.getValueType()));
3478    AddToWorkList(V.getNode());
3479    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3480  }
3481
3482  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3483  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3484      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3485    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3486    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3487      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3488      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3489      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3490      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3491      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3492    }
3493  }
3494  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3495  if (N1C && N1C->isAllOnesValue() &&
3496      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3497    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3498    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3499      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3500      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3501      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3502      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3503      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3504    }
3505  }
3506  // fold (xor (and x, y), y) -> (and (not x), y)
3507  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3508      N0->getOperand(1) == N1) {
3509    SDValue X = N0->getOperand(0);
3510    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3511    AddToWorkList(NotX.getNode());
3512    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3513  }
3514  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3515  if (N1C && N0.getOpcode() == ISD::XOR) {
3516    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3517    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3518    if (N00C)
3519      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3520                         DAG.getConstant(N1C->getAPIntValue() ^
3521                                         N00C->getAPIntValue(), VT));
3522    if (N01C)
3523      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3524                         DAG.getConstant(N1C->getAPIntValue() ^
3525                                         N01C->getAPIntValue(), VT));
3526  }
3527  // fold (xor x, x) -> 0
3528  if (N0 == N1)
3529    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3530
3531  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3532  if (N0.getOpcode() == N1.getOpcode()) {
3533    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3534    if (Tmp.getNode()) return Tmp;
3535  }
3536
3537  // Simplify the expression using non-local knowledge.
3538  if (!VT.isVector() &&
3539      SimplifyDemandedBits(SDValue(N, 0)))
3540    return SDValue(N, 0);
3541
3542  return SDValue();
3543}
3544
3545/// visitShiftByConstant - Handle transforms common to the three shifts, when
3546/// the shift amount is a constant.
3547SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3548  SDNode *LHS = N->getOperand(0).getNode();
3549  if (!LHS->hasOneUse()) return SDValue();
3550
3551  // We want to pull some binops through shifts, so that we have (and (shift))
3552  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3553  // thing happens with address calculations, so it's important to canonicalize
3554  // it.
3555  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3556
3557  switch (LHS->getOpcode()) {
3558  default: return SDValue();
3559  case ISD::OR:
3560  case ISD::XOR:
3561    HighBitSet = false; // We can only transform sra if the high bit is clear.
3562    break;
3563  case ISD::AND:
3564    HighBitSet = true;  // We can only transform sra if the high bit is set.
3565    break;
3566  case ISD::ADD:
3567    if (N->getOpcode() != ISD::SHL)
3568      return SDValue(); // only shl(add) not sr[al](add).
3569    HighBitSet = false; // We can only transform sra if the high bit is clear.
3570    break;
3571  }
3572
3573  // We require the RHS of the binop to be a constant as well.
3574  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3575  if (!BinOpCst) return SDValue();
3576
3577  // FIXME: disable this unless the input to the binop is a shift by a constant.
3578  // If it is not a shift, it pessimizes some common cases like:
3579  //
3580  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3581  //    int bar(int *X, int i) { return X[i & 255]; }
3582  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3583  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3584       BinOpLHSVal->getOpcode() != ISD::SRA &&
3585       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3586      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3587    return SDValue();
3588
3589  EVT VT = N->getValueType(0);
3590
3591  // If this is a signed shift right, and the high bit is modified by the
3592  // logical operation, do not perform the transformation. The highBitSet
3593  // boolean indicates the value of the high bit of the constant which would
3594  // cause it to be modified for this operation.
3595  if (N->getOpcode() == ISD::SRA) {
3596    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3597    if (BinOpRHSSignSet != HighBitSet)
3598      return SDValue();
3599  }
3600
3601  // Fold the constants, shifting the binop RHS by the shift amount.
3602  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3603                               N->getValueType(0),
3604                               LHS->getOperand(1), N->getOperand(1));
3605
3606  // Create the new shift.
3607  SDValue NewShift = DAG.getNode(N->getOpcode(),
3608                                 SDLoc(LHS->getOperand(0)),
3609                                 VT, LHS->getOperand(0), N->getOperand(1));
3610
3611  // Create the new binop.
3612  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3613}
3614
3615SDValue DAGCombiner::visitSHL(SDNode *N) {
3616  SDValue N0 = N->getOperand(0);
3617  SDValue N1 = N->getOperand(1);
3618  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3619  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3620  EVT VT = N0.getValueType();
3621  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3622
3623  // fold (shl c1, c2) -> c1<<c2
3624  if (N0C && N1C)
3625    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3626  // fold (shl 0, x) -> 0
3627  if (N0C && N0C->isNullValue())
3628    return N0;
3629  // fold (shl x, c >= size(x)) -> undef
3630  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3631    return DAG.getUNDEF(VT);
3632  // fold (shl x, 0) -> x
3633  if (N1C && N1C->isNullValue())
3634    return N0;
3635  // fold (shl undef, x) -> 0
3636  if (N0.getOpcode() == ISD::UNDEF)
3637    return DAG.getConstant(0, VT);
3638  // if (shl x, c) is known to be zero, return 0
3639  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3640                            APInt::getAllOnesValue(OpSizeInBits)))
3641    return DAG.getConstant(0, VT);
3642  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3643  if (N1.getOpcode() == ISD::TRUNCATE &&
3644      N1.getOperand(0).getOpcode() == ISD::AND &&
3645      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3646    SDValue N101 = N1.getOperand(0).getOperand(1);
3647    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3648      EVT TruncVT = N1.getValueType();
3649      SDValue N100 = N1.getOperand(0).getOperand(0);
3650      APInt TruncC = N101C->getAPIntValue();
3651      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3652      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3653                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3654                                     DAG.getNode(ISD::TRUNCATE,
3655                                                 SDLoc(N),
3656                                                 TruncVT, N100),
3657                                     DAG.getConstant(TruncC, TruncVT)));
3658    }
3659  }
3660
3661  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3662    return SDValue(N, 0);
3663
3664  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3665  if (N1C && N0.getOpcode() == ISD::SHL &&
3666      N0.getOperand(1).getOpcode() == ISD::Constant) {
3667    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3668    uint64_t c2 = N1C->getZExtValue();
3669    if (c1 + c2 >= OpSizeInBits)
3670      return DAG.getConstant(0, VT);
3671    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3672                       DAG.getConstant(c1 + c2, N1.getValueType()));
3673  }
3674
3675  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3676  // For this to be valid, the second form must not preserve any of the bits
3677  // that are shifted out by the inner shift in the first form.  This means
3678  // the outer shift size must be >= the number of bits added by the ext.
3679  // As a corollary, we don't care what kind of ext it is.
3680  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3681              N0.getOpcode() == ISD::ANY_EXTEND ||
3682              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3683      N0.getOperand(0).getOpcode() == ISD::SHL &&
3684      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3685    uint64_t c1 =
3686      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3687    uint64_t c2 = N1C->getZExtValue();
3688    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3689    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3690    if (c2 >= OpSizeInBits - InnerShiftSize) {
3691      if (c1 + c2 >= OpSizeInBits)
3692        return DAG.getConstant(0, VT);
3693      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3694                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3695                                     N0.getOperand(0)->getOperand(0)),
3696                         DAG.getConstant(c1 + c2, N1.getValueType()));
3697    }
3698  }
3699
3700  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3701  //                               (and (srl x, (sub c1, c2), MASK)
3702  // Only fold this if the inner shift has no other uses -- if it does, folding
3703  // this will increase the total number of instructions.
3704  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3705      N0.getOperand(1).getOpcode() == ISD::Constant) {
3706    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3707    if (c1 < VT.getSizeInBits()) {
3708      uint64_t c2 = N1C->getZExtValue();
3709      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3710                                         VT.getSizeInBits() - c1);
3711      SDValue Shift;
3712      if (c2 > c1) {
3713        Mask = Mask.shl(c2-c1);
3714        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3715                            DAG.getConstant(c2-c1, N1.getValueType()));
3716      } else {
3717        Mask = Mask.lshr(c1-c2);
3718        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3719                            DAG.getConstant(c1-c2, N1.getValueType()));
3720      }
3721      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3722                         DAG.getConstant(Mask, VT));
3723    }
3724  }
3725  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3726  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3727    SDValue HiBitsMask =
3728      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3729                                            VT.getSizeInBits() -
3730                                              N1C->getZExtValue()),
3731                      VT);
3732    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3733                       HiBitsMask);
3734  }
3735
3736  if (N1C) {
3737    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3738    if (NewSHL.getNode())
3739      return NewSHL;
3740  }
3741
3742  return SDValue();
3743}
3744
3745SDValue DAGCombiner::visitSRA(SDNode *N) {
3746  SDValue N0 = N->getOperand(0);
3747  SDValue N1 = N->getOperand(1);
3748  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3749  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3750  EVT VT = N0.getValueType();
3751  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3752
3753  // fold (sra c1, c2) -> (sra c1, c2)
3754  if (N0C && N1C)
3755    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3756  // fold (sra 0, x) -> 0
3757  if (N0C && N0C->isNullValue())
3758    return N0;
3759  // fold (sra -1, x) -> -1
3760  if (N0C && N0C->isAllOnesValue())
3761    return N0;
3762  // fold (sra x, (setge c, size(x))) -> undef
3763  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3764    return DAG.getUNDEF(VT);
3765  // fold (sra x, 0) -> x
3766  if (N1C && N1C->isNullValue())
3767    return N0;
3768  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3769  // sext_inreg.
3770  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3771    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3772    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3773    if (VT.isVector())
3774      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3775                               ExtVT, VT.getVectorNumElements());
3776    if ((!LegalOperations ||
3777         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3778      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3779                         N0.getOperand(0), DAG.getValueType(ExtVT));
3780  }
3781
3782  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3783  if (N1C && N0.getOpcode() == ISD::SRA) {
3784    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3785      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3786      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3787      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3788                         DAG.getConstant(Sum, N1C->getValueType(0)));
3789    }
3790  }
3791
3792  // fold (sra (shl X, m), (sub result_size, n))
3793  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3794  // result_size - n != m.
3795  // If truncate is free for the target sext(shl) is likely to result in better
3796  // code.
3797  if (N0.getOpcode() == ISD::SHL) {
3798    // Get the two constanst of the shifts, CN0 = m, CN = n.
3799    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3800    if (N01C && N1C) {
3801      // Determine what the truncate's result bitsize and type would be.
3802      EVT TruncVT =
3803        EVT::getIntegerVT(*DAG.getContext(),
3804                          OpSizeInBits - N1C->getZExtValue());
3805      // Determine the residual right-shift amount.
3806      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3807
3808      // If the shift is not a no-op (in which case this should be just a sign
3809      // extend already), the truncated to type is legal, sign_extend is legal
3810      // on that type, and the truncate to that type is both legal and free,
3811      // perform the transform.
3812      if ((ShiftAmt > 0) &&
3813          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3814          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3815          TLI.isTruncateFree(VT, TruncVT)) {
3816
3817          SDValue Amt = DAG.getConstant(ShiftAmt,
3818              getShiftAmountTy(N0.getOperand(0).getValueType()));
3819          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3820                                      N0.getOperand(0), Amt);
3821          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3822                                      Shift);
3823          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3824                             N->getValueType(0), Trunc);
3825      }
3826    }
3827  }
3828
3829  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3830  if (N1.getOpcode() == ISD::TRUNCATE &&
3831      N1.getOperand(0).getOpcode() == ISD::AND &&
3832      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3833    SDValue N101 = N1.getOperand(0).getOperand(1);
3834    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3835      EVT TruncVT = N1.getValueType();
3836      SDValue N100 = N1.getOperand(0).getOperand(0);
3837      APInt TruncC = N101C->getAPIntValue();
3838      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3839      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3840                         DAG.getNode(ISD::AND, SDLoc(N),
3841                                     TruncVT,
3842                                     DAG.getNode(ISD::TRUNCATE,
3843                                                 SDLoc(N),
3844                                                 TruncVT, N100),
3845                                     DAG.getConstant(TruncC, TruncVT)));
3846    }
3847  }
3848
3849  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3850  //      if c1 is equal to the number of bits the trunc removes
3851  if (N0.getOpcode() == ISD::TRUNCATE &&
3852      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3853       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3854      N0.getOperand(0).hasOneUse() &&
3855      N0.getOperand(0).getOperand(1).hasOneUse() &&
3856      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3857    EVT LargeVT = N0.getOperand(0).getValueType();
3858    ConstantSDNode *LargeShiftAmt =
3859      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3860
3861    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3862        LargeShiftAmt->getZExtValue()) {
3863      SDValue Amt =
3864        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3865              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3866      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3867                                N0.getOperand(0).getOperand(0), Amt);
3868      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3869    }
3870  }
3871
3872  // Simplify, based on bits shifted out of the LHS.
3873  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3874    return SDValue(N, 0);
3875
3876
3877  // If the sign bit is known to be zero, switch this to a SRL.
3878  if (DAG.SignBitIsZero(N0))
3879    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3880
3881  if (N1C) {
3882    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3883    if (NewSRA.getNode())
3884      return NewSRA;
3885  }
3886
3887  return SDValue();
3888}
3889
3890SDValue DAGCombiner::visitSRL(SDNode *N) {
3891  SDValue N0 = N->getOperand(0);
3892  SDValue N1 = N->getOperand(1);
3893  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3894  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3895  EVT VT = N0.getValueType();
3896  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3897
3898  // fold (srl c1, c2) -> c1 >>u c2
3899  if (N0C && N1C)
3900    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3901  // fold (srl 0, x) -> 0
3902  if (N0C && N0C->isNullValue())
3903    return N0;
3904  // fold (srl x, c >= size(x)) -> undef
3905  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3906    return DAG.getUNDEF(VT);
3907  // fold (srl x, 0) -> x
3908  if (N1C && N1C->isNullValue())
3909    return N0;
3910  // if (srl x, c) is known to be zero, return 0
3911  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3912                                   APInt::getAllOnesValue(OpSizeInBits)))
3913    return DAG.getConstant(0, VT);
3914
3915  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3916  if (N1C && N0.getOpcode() == ISD::SRL &&
3917      N0.getOperand(1).getOpcode() == ISD::Constant) {
3918    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3919    uint64_t c2 = N1C->getZExtValue();
3920    if (c1 + c2 >= OpSizeInBits)
3921      return DAG.getConstant(0, VT);
3922    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3923                       DAG.getConstant(c1 + c2, N1.getValueType()));
3924  }
3925
3926  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3927  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3928      N0.getOperand(0).getOpcode() == ISD::SRL &&
3929      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3930    uint64_t c1 =
3931      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3932    uint64_t c2 = N1C->getZExtValue();
3933    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3934    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3935    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3936    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3937    if (c1 + OpSizeInBits == InnerShiftSize) {
3938      if (c1 + c2 >= InnerShiftSize)
3939        return DAG.getConstant(0, VT);
3940      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
3941                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
3942                                     N0.getOperand(0)->getOperand(0),
3943                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3944    }
3945  }
3946
3947  // fold (srl (shl x, c), c) -> (and x, cst2)
3948  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3949      N0.getValueSizeInBits() <= 64) {
3950    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3951    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3952                       DAG.getConstant(~0ULL >> ShAmt, VT));
3953  }
3954
3955  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
3956  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3957    // Shifting in all undef bits?
3958    EVT SmallVT = N0.getOperand(0).getValueType();
3959    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3960      return DAG.getUNDEF(VT);
3961
3962    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3963      uint64_t ShiftAmt = N1C->getZExtValue();
3964      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
3965                                       N0.getOperand(0),
3966                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3967      AddToWorkList(SmallShift.getNode());
3968      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
3969      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3970                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
3971                         DAG.getConstant(Mask, VT));
3972    }
3973  }
3974
3975  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3976  // bit, which is unmodified by sra.
3977  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3978    if (N0.getOpcode() == ISD::SRA)
3979      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
3980  }
3981
3982  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3983  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3984      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3985    APInt KnownZero, KnownOne;
3986    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3987
3988    // If any of the input bits are KnownOne, then the input couldn't be all
3989    // zeros, thus the result of the srl will always be zero.
3990    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3991
3992    // If all of the bits input the to ctlz node are known to be zero, then
3993    // the result of the ctlz is "32" and the result of the shift is one.
3994    APInt UnknownBits = ~KnownZero;
3995    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3996
3997    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3998    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3999      // Okay, we know that only that the single bit specified by UnknownBits
4000      // could be set on input to the CTLZ node. If this bit is set, the SRL
4001      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4002      // to an SRL/XOR pair, which is likely to simplify more.
4003      unsigned ShAmt = UnknownBits.countTrailingZeros();
4004      SDValue Op = N0.getOperand(0);
4005
4006      if (ShAmt) {
4007        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4008                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4009        AddToWorkList(Op.getNode());
4010      }
4011
4012      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4013                         Op, DAG.getConstant(1, VT));
4014    }
4015  }
4016
4017  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4018  if (N1.getOpcode() == ISD::TRUNCATE &&
4019      N1.getOperand(0).getOpcode() == ISD::AND &&
4020      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4021    SDValue N101 = N1.getOperand(0).getOperand(1);
4022    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4023      EVT TruncVT = N1.getValueType();
4024      SDValue N100 = N1.getOperand(0).getOperand(0);
4025      APInt TruncC = N101C->getAPIntValue();
4026      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4027      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4028                         DAG.getNode(ISD::AND, SDLoc(N),
4029                                     TruncVT,
4030                                     DAG.getNode(ISD::TRUNCATE,
4031                                                 SDLoc(N),
4032                                                 TruncVT, N100),
4033                                     DAG.getConstant(TruncC, TruncVT)));
4034    }
4035  }
4036
4037  // fold operands of srl based on knowledge that the low bits are not
4038  // demanded.
4039  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4040    return SDValue(N, 0);
4041
4042  if (N1C) {
4043    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4044    if (NewSRL.getNode())
4045      return NewSRL;
4046  }
4047
4048  // Attempt to convert a srl of a load into a narrower zero-extending load.
4049  SDValue NarrowLoad = ReduceLoadWidth(N);
4050  if (NarrowLoad.getNode())
4051    return NarrowLoad;
4052
4053  // Here is a common situation. We want to optimize:
4054  //
4055  //   %a = ...
4056  //   %b = and i32 %a, 2
4057  //   %c = srl i32 %b, 1
4058  //   brcond i32 %c ...
4059  //
4060  // into
4061  //
4062  //   %a = ...
4063  //   %b = and %a, 2
4064  //   %c = setcc eq %b, 0
4065  //   brcond %c ...
4066  //
4067  // However when after the source operand of SRL is optimized into AND, the SRL
4068  // itself may not be optimized further. Look for it and add the BRCOND into
4069  // the worklist.
4070  if (N->hasOneUse()) {
4071    SDNode *Use = *N->use_begin();
4072    if (Use->getOpcode() == ISD::BRCOND)
4073      AddToWorkList(Use);
4074    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4075      // Also look pass the truncate.
4076      Use = *Use->use_begin();
4077      if (Use->getOpcode() == ISD::BRCOND)
4078        AddToWorkList(Use);
4079    }
4080  }
4081
4082  return SDValue();
4083}
4084
4085SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4086  SDValue N0 = N->getOperand(0);
4087  EVT VT = N->getValueType(0);
4088
4089  // fold (ctlz c1) -> c2
4090  if (isa<ConstantSDNode>(N0))
4091    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4092  return SDValue();
4093}
4094
4095SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4096  SDValue N0 = N->getOperand(0);
4097  EVT VT = N->getValueType(0);
4098
4099  // fold (ctlz_zero_undef c1) -> c2
4100  if (isa<ConstantSDNode>(N0))
4101    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4102  return SDValue();
4103}
4104
4105SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4106  SDValue N0 = N->getOperand(0);
4107  EVT VT = N->getValueType(0);
4108
4109  // fold (cttz c1) -> c2
4110  if (isa<ConstantSDNode>(N0))
4111    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4112  return SDValue();
4113}
4114
4115SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4116  SDValue N0 = N->getOperand(0);
4117  EVT VT = N->getValueType(0);
4118
4119  // fold (cttz_zero_undef c1) -> c2
4120  if (isa<ConstantSDNode>(N0))
4121    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4122  return SDValue();
4123}
4124
4125SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4126  SDValue N0 = N->getOperand(0);
4127  EVT VT = N->getValueType(0);
4128
4129  // fold (ctpop c1) -> c2
4130  if (isa<ConstantSDNode>(N0))
4131    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4132  return SDValue();
4133}
4134
4135SDValue DAGCombiner::visitSELECT(SDNode *N) {
4136  SDValue N0 = N->getOperand(0);
4137  SDValue N1 = N->getOperand(1);
4138  SDValue N2 = N->getOperand(2);
4139  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4140  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4141  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4142  EVT VT = N->getValueType(0);
4143  EVT VT0 = N0.getValueType();
4144
4145  // fold (select C, X, X) -> X
4146  if (N1 == N2)
4147    return N1;
4148  // fold (select true, X, Y) -> X
4149  if (N0C && !N0C->isNullValue())
4150    return N1;
4151  // fold (select false, X, Y) -> Y
4152  if (N0C && N0C->isNullValue())
4153    return N2;
4154  // fold (select C, 1, X) -> (or C, X)
4155  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4156    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4157  // fold (select C, 0, 1) -> (xor C, 1)
4158  if (VT.isInteger() &&
4159      (VT0 == MVT::i1 ||
4160       (VT0.isInteger() &&
4161        TLI.getBooleanContents(false) ==
4162        TargetLowering::ZeroOrOneBooleanContent)) &&
4163      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4164    SDValue XORNode;
4165    if (VT == VT0)
4166      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4167                         N0, DAG.getConstant(1, VT0));
4168    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4169                          N0, DAG.getConstant(1, VT0));
4170    AddToWorkList(XORNode.getNode());
4171    if (VT.bitsGT(VT0))
4172      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4173    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4174  }
4175  // fold (select C, 0, X) -> (and (not C), X)
4176  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4177    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4178    AddToWorkList(NOTNode.getNode());
4179    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4180  }
4181  // fold (select C, X, 1) -> (or (not C), X)
4182  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4183    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4184    AddToWorkList(NOTNode.getNode());
4185    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4186  }
4187  // fold (select C, X, 0) -> (and C, X)
4188  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4189    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4190  // fold (select X, X, Y) -> (or X, Y)
4191  // fold (select X, 1, Y) -> (or X, Y)
4192  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4193    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4194  // fold (select X, Y, X) -> (and X, Y)
4195  // fold (select X, Y, 0) -> (and X, Y)
4196  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4197    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4198
4199  // If we can fold this based on the true/false value, do so.
4200  if (SimplifySelectOps(N, N1, N2))
4201    return SDValue(N, 0);  // Don't revisit N.
4202
4203  // fold selects based on a setcc into other things, such as min/max/abs
4204  if (N0.getOpcode() == ISD::SETCC) {
4205    // FIXME:
4206    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4207    // having to say they don't support SELECT_CC on every type the DAG knows
4208    // about, since there is no way to mark an opcode illegal at all value types
4209    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4210        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4211      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4212                         N0.getOperand(0), N0.getOperand(1),
4213                         N1, N2, N0.getOperand(2));
4214    return SimplifySelect(SDLoc(N), N0, N1, N2);
4215  }
4216
4217  return SDValue();
4218}
4219
4220SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4221  SDValue N0 = N->getOperand(0);
4222  SDValue N1 = N->getOperand(1);
4223  SDValue N2 = N->getOperand(2);
4224  SDLoc DL(N);
4225
4226  // Canonicalize integer abs.
4227  // vselect (setg[te] X,  0),  X, -X ->
4228  // vselect (setgt    X, -1),  X, -X ->
4229  // vselect (setl[te] X,  0), -X,  X ->
4230  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4231  if (N0.getOpcode() == ISD::SETCC) {
4232    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4233    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4234    bool isAbs = false;
4235    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4236
4237    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4238         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4239        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4240      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4241    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4242             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4243      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4244
4245    if (isAbs) {
4246      EVT VT = LHS.getValueType();
4247      SDValue Shift = DAG.getNode(
4248          ISD::SRA, DL, VT, LHS,
4249          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4250      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4251      AddToWorkList(Shift.getNode());
4252      AddToWorkList(Add.getNode());
4253      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4254    }
4255  }
4256
4257  return SDValue();
4258}
4259
4260SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4261  SDValue N0 = N->getOperand(0);
4262  SDValue N1 = N->getOperand(1);
4263  SDValue N2 = N->getOperand(2);
4264  SDValue N3 = N->getOperand(3);
4265  SDValue N4 = N->getOperand(4);
4266  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4267
4268  // fold select_cc lhs, rhs, x, x, cc -> x
4269  if (N2 == N3)
4270    return N2;
4271
4272  // Determine if the condition we're dealing with is constant
4273  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4274                              N0, N1, CC, SDLoc(N), false);
4275  if (SCC.getNode()) {
4276    AddToWorkList(SCC.getNode());
4277
4278    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4279      if (!SCCC->isNullValue())
4280        return N2;    // cond always true -> true val
4281      else
4282        return N3;    // cond always false -> false val
4283    }
4284
4285    // Fold to a simpler select_cc
4286    if (SCC.getOpcode() == ISD::SETCC)
4287      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4288                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4289                         SCC.getOperand(2));
4290  }
4291
4292  // If we can fold this based on the true/false value, do so.
4293  if (SimplifySelectOps(N, N2, N3))
4294    return SDValue(N, 0);  // Don't revisit N.
4295
4296  // fold select_cc into other things, such as min/max/abs
4297  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4298}
4299
4300SDValue DAGCombiner::visitSETCC(SDNode *N) {
4301  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4302                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4303                       SDLoc(N));
4304}
4305
4306// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4307// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4308// transformation. Returns true if extension are possible and the above
4309// mentioned transformation is profitable.
4310static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4311                                    unsigned ExtOpc,
4312                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4313                                    const TargetLowering &TLI) {
4314  bool HasCopyToRegUses = false;
4315  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4316  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4317                            UE = N0.getNode()->use_end();
4318       UI != UE; ++UI) {
4319    SDNode *User = *UI;
4320    if (User == N)
4321      continue;
4322    if (UI.getUse().getResNo() != N0.getResNo())
4323      continue;
4324    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4325    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4326      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4327      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4328        // Sign bits will be lost after a zext.
4329        return false;
4330      bool Add = false;
4331      for (unsigned i = 0; i != 2; ++i) {
4332        SDValue UseOp = User->getOperand(i);
4333        if (UseOp == N0)
4334          continue;
4335        if (!isa<ConstantSDNode>(UseOp))
4336          return false;
4337        Add = true;
4338      }
4339      if (Add)
4340        ExtendNodes.push_back(User);
4341      continue;
4342    }
4343    // If truncates aren't free and there are users we can't
4344    // extend, it isn't worthwhile.
4345    if (!isTruncFree)
4346      return false;
4347    // Remember if this value is live-out.
4348    if (User->getOpcode() == ISD::CopyToReg)
4349      HasCopyToRegUses = true;
4350  }
4351
4352  if (HasCopyToRegUses) {
4353    bool BothLiveOut = false;
4354    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4355         UI != UE; ++UI) {
4356      SDUse &Use = UI.getUse();
4357      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4358        BothLiveOut = true;
4359        break;
4360      }
4361    }
4362    if (BothLiveOut)
4363      // Both unextended and extended values are live out. There had better be
4364      // a good reason for the transformation.
4365      return ExtendNodes.size();
4366  }
4367  return true;
4368}
4369
4370void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4371                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4372                                  ISD::NodeType ExtType) {
4373  // Extend SetCC uses if necessary.
4374  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4375    SDNode *SetCC = SetCCs[i];
4376    SmallVector<SDValue, 4> Ops;
4377
4378    for (unsigned j = 0; j != 2; ++j) {
4379      SDValue SOp = SetCC->getOperand(j);
4380      if (SOp == Trunc)
4381        Ops.push_back(ExtLoad);
4382      else
4383        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4384    }
4385
4386    Ops.push_back(SetCC->getOperand(2));
4387    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4388                                 &Ops[0], Ops.size()));
4389  }
4390}
4391
4392SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4393  SDValue N0 = N->getOperand(0);
4394  EVT VT = N->getValueType(0);
4395
4396  // fold (sext c1) -> c1
4397  if (isa<ConstantSDNode>(N0))
4398    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4399
4400  // fold (sext (sext x)) -> (sext x)
4401  // fold (sext (aext x)) -> (sext x)
4402  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4403    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4404                       N0.getOperand(0));
4405
4406  if (N0.getOpcode() == ISD::TRUNCATE) {
4407    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4408    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4409    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4410    if (NarrowLoad.getNode()) {
4411      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4412      if (NarrowLoad.getNode() != N0.getNode()) {
4413        CombineTo(N0.getNode(), NarrowLoad);
4414        // CombineTo deleted the truncate, if needed, but not what's under it.
4415        AddToWorkList(oye);
4416      }
4417      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4418    }
4419
4420    // See if the value being truncated is already sign extended.  If so, just
4421    // eliminate the trunc/sext pair.
4422    SDValue Op = N0.getOperand(0);
4423    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4424    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4425    unsigned DestBits = VT.getScalarType().getSizeInBits();
4426    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4427
4428    if (OpBits == DestBits) {
4429      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4430      // bits, it is already ready.
4431      if (NumSignBits > DestBits-MidBits)
4432        return Op;
4433    } else if (OpBits < DestBits) {
4434      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4435      // bits, just sext from i32.
4436      if (NumSignBits > OpBits-MidBits)
4437        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4438    } else {
4439      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4440      // bits, just truncate to i32.
4441      if (NumSignBits > OpBits-MidBits)
4442        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4443    }
4444
4445    // fold (sext (truncate x)) -> (sextinreg x).
4446    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4447                                                 N0.getValueType())) {
4448      if (OpBits < DestBits)
4449        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4450      else if (OpBits > DestBits)
4451        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4452      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4453                         DAG.getValueType(N0.getValueType()));
4454    }
4455  }
4456
4457  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4458  // None of the supported targets knows how to perform load and sign extend
4459  // on vectors in one instruction.  We only perform this transformation on
4460  // scalars.
4461  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4462      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4463       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4464    bool DoXform = true;
4465    SmallVector<SDNode*, 4> SetCCs;
4466    if (!N0.hasOneUse())
4467      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4468    if (DoXform) {
4469      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4470      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4471                                       LN0->getChain(),
4472                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4473                                       N0.getValueType(),
4474                                       LN0->isVolatile(), LN0->isNonTemporal(),
4475                                       LN0->getAlignment());
4476      CombineTo(N, ExtLoad);
4477      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4478                                  N0.getValueType(), ExtLoad);
4479      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4480      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4481                      ISD::SIGN_EXTEND);
4482      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4483    }
4484  }
4485
4486  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4487  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4488  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4489      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4490    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4491    EVT MemVT = LN0->getMemoryVT();
4492    if ((!LegalOperations && !LN0->isVolatile()) ||
4493        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4494      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4495                                       LN0->getChain(),
4496                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4497                                       MemVT,
4498                                       LN0->isVolatile(), LN0->isNonTemporal(),
4499                                       LN0->getAlignment());
4500      CombineTo(N, ExtLoad);
4501      CombineTo(N0.getNode(),
4502                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4503                            N0.getValueType(), ExtLoad),
4504                ExtLoad.getValue(1));
4505      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4506    }
4507  }
4508
4509  // fold (sext (and/or/xor (load x), cst)) ->
4510  //      (and/or/xor (sextload x), (sext cst))
4511  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4512       N0.getOpcode() == ISD::XOR) &&
4513      isa<LoadSDNode>(N0.getOperand(0)) &&
4514      N0.getOperand(1).getOpcode() == ISD::Constant &&
4515      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4516      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4517    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4518    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4519      bool DoXform = true;
4520      SmallVector<SDNode*, 4> SetCCs;
4521      if (!N0.hasOneUse())
4522        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4523                                          SetCCs, TLI);
4524      if (DoXform) {
4525        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4526                                         LN0->getChain(), LN0->getBasePtr(),
4527                                         LN0->getPointerInfo(),
4528                                         LN0->getMemoryVT(),
4529                                         LN0->isVolatile(),
4530                                         LN0->isNonTemporal(),
4531                                         LN0->getAlignment());
4532        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4533        Mask = Mask.sext(VT.getSizeInBits());
4534        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4535                                  ExtLoad, DAG.getConstant(Mask, VT));
4536        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4537                                    SDLoc(N0.getOperand(0)),
4538                                    N0.getOperand(0).getValueType(), ExtLoad);
4539        CombineTo(N, And);
4540        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4541        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4542                        ISD::SIGN_EXTEND);
4543        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4544      }
4545    }
4546  }
4547
4548  if (N0.getOpcode() == ISD::SETCC) {
4549    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4550    // Only do this before legalize for now.
4551    if (VT.isVector() && !LegalOperations &&
4552        TLI.getBooleanContents(true) ==
4553          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4554      EVT N0VT = N0.getOperand(0).getValueType();
4555      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4556      // of the same size as the compared operands. Only optimize sext(setcc())
4557      // if this is the case.
4558      EVT SVT = getSetCCResultType(N0VT);
4559
4560      // We know that the # elements of the results is the same as the
4561      // # elements of the compare (and the # elements of the compare result
4562      // for that matter).  Check to see that they are the same size.  If so,
4563      // we know that the element size of the sext'd result matches the
4564      // element size of the compare operands.
4565      if (VT.getSizeInBits() == SVT.getSizeInBits())
4566        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4567                             N0.getOperand(1),
4568                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4569
4570      // If the desired elements are smaller or larger than the source
4571      // elements we can use a matching integer vector type and then
4572      // truncate/sign extend
4573      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4574      if (SVT == MatchingVectorType) {
4575        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4576                               N0.getOperand(0), N0.getOperand(1),
4577                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4578        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4579      }
4580    }
4581
4582    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4583    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4584    SDValue NegOne =
4585      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4586    SDValue SCC =
4587      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4588                       NegOne, DAG.getConstant(0, VT),
4589                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4590    if (SCC.getNode()) return SCC;
4591    if (!VT.isVector() &&
4592        (!LegalOperations ||
4593         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4594      return DAG.getSelect(SDLoc(N), VT,
4595                           DAG.getSetCC(SDLoc(N),
4596                                        getSetCCResultType(VT),
4597                                        N0.getOperand(0), N0.getOperand(1),
4598                                        cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4599                           NegOne, DAG.getConstant(0, VT));
4600    }
4601  }
4602
4603  // fold (sext x) -> (zext x) if the sign bit is known zero.
4604  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4605      DAG.SignBitIsZero(N0))
4606    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4607
4608  return SDValue();
4609}
4610
4611// isTruncateOf - If N is a truncate of some other value, return true, record
4612// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4613// This function computes KnownZero to avoid a duplicated call to
4614// ComputeMaskedBits in the caller.
4615static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4616                         APInt &KnownZero) {
4617  APInt KnownOne;
4618  if (N->getOpcode() == ISD::TRUNCATE) {
4619    Op = N->getOperand(0);
4620    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4621    return true;
4622  }
4623
4624  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4625      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4626    return false;
4627
4628  SDValue Op0 = N->getOperand(0);
4629  SDValue Op1 = N->getOperand(1);
4630  assert(Op0.getValueType() == Op1.getValueType());
4631
4632  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4633  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4634  if (COp0 && COp0->isNullValue())
4635    Op = Op1;
4636  else if (COp1 && COp1->isNullValue())
4637    Op = Op0;
4638  else
4639    return false;
4640
4641  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4642
4643  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4644    return false;
4645
4646  return true;
4647}
4648
4649SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4650  SDValue N0 = N->getOperand(0);
4651  EVT VT = N->getValueType(0);
4652
4653  // fold (zext c1) -> c1
4654  if (isa<ConstantSDNode>(N0))
4655    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4656  // fold (zext (zext x)) -> (zext x)
4657  // fold (zext (aext x)) -> (zext x)
4658  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4659    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4660                       N0.getOperand(0));
4661
4662  // fold (zext (truncate x)) -> (zext x) or
4663  //      (zext (truncate x)) -> (truncate x)
4664  // This is valid when the truncated bits of x are already zero.
4665  // FIXME: We should extend this to work for vectors too.
4666  SDValue Op;
4667  APInt KnownZero;
4668  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4669    APInt TruncatedBits =
4670      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4671      APInt(Op.getValueSizeInBits(), 0) :
4672      APInt::getBitsSet(Op.getValueSizeInBits(),
4673                        N0.getValueSizeInBits(),
4674                        std::min(Op.getValueSizeInBits(),
4675                                 VT.getSizeInBits()));
4676    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4677      if (VT.bitsGT(Op.getValueType()))
4678        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4679      if (VT.bitsLT(Op.getValueType()))
4680        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4681
4682      return Op;
4683    }
4684  }
4685
4686  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4687  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4688  if (N0.getOpcode() == ISD::TRUNCATE) {
4689    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4690    if (NarrowLoad.getNode()) {
4691      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4692      if (NarrowLoad.getNode() != N0.getNode()) {
4693        CombineTo(N0.getNode(), NarrowLoad);
4694        // CombineTo deleted the truncate, if needed, but not what's under it.
4695        AddToWorkList(oye);
4696      }
4697      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4698    }
4699  }
4700
4701  // fold (zext (truncate x)) -> (and x, mask)
4702  if (N0.getOpcode() == ISD::TRUNCATE &&
4703      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4704
4705    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4706    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4707    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4708    if (NarrowLoad.getNode()) {
4709      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4710      if (NarrowLoad.getNode() != N0.getNode()) {
4711        CombineTo(N0.getNode(), NarrowLoad);
4712        // CombineTo deleted the truncate, if needed, but not what's under it.
4713        AddToWorkList(oye);
4714      }
4715      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4716    }
4717
4718    SDValue Op = N0.getOperand(0);
4719    if (Op.getValueType().bitsLT(VT)) {
4720      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4721      AddToWorkList(Op.getNode());
4722    } else if (Op.getValueType().bitsGT(VT)) {
4723      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4724      AddToWorkList(Op.getNode());
4725    }
4726    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4727                                  N0.getValueType().getScalarType());
4728  }
4729
4730  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4731  // if either of the casts is not free.
4732  if (N0.getOpcode() == ISD::AND &&
4733      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4734      N0.getOperand(1).getOpcode() == ISD::Constant &&
4735      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4736                           N0.getValueType()) ||
4737       !TLI.isZExtFree(N0.getValueType(), VT))) {
4738    SDValue X = N0.getOperand(0).getOperand(0);
4739    if (X.getValueType().bitsLT(VT)) {
4740      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4741    } else if (X.getValueType().bitsGT(VT)) {
4742      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4743    }
4744    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4745    Mask = Mask.zext(VT.getSizeInBits());
4746    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4747                       X, DAG.getConstant(Mask, VT));
4748  }
4749
4750  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4751  // None of the supported targets knows how to perform load and vector_zext
4752  // on vectors in one instruction.  We only perform this transformation on
4753  // scalars.
4754  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4755      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4756       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4757    bool DoXform = true;
4758    SmallVector<SDNode*, 4> SetCCs;
4759    if (!N0.hasOneUse())
4760      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4761    if (DoXform) {
4762      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4763      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4764                                       LN0->getChain(),
4765                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4766                                       N0.getValueType(),
4767                                       LN0->isVolatile(), LN0->isNonTemporal(),
4768                                       LN0->getAlignment());
4769      CombineTo(N, ExtLoad);
4770      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4771                                  N0.getValueType(), ExtLoad);
4772      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4773
4774      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4775                      ISD::ZERO_EXTEND);
4776      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4777    }
4778  }
4779
4780  // fold (zext (and/or/xor (load x), cst)) ->
4781  //      (and/or/xor (zextload x), (zext cst))
4782  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4783       N0.getOpcode() == ISD::XOR) &&
4784      isa<LoadSDNode>(N0.getOperand(0)) &&
4785      N0.getOperand(1).getOpcode() == ISD::Constant &&
4786      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4787      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4788    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4789    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4790      bool DoXform = true;
4791      SmallVector<SDNode*, 4> SetCCs;
4792      if (!N0.hasOneUse())
4793        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4794                                          SetCCs, TLI);
4795      if (DoXform) {
4796        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4797                                         LN0->getChain(), LN0->getBasePtr(),
4798                                         LN0->getPointerInfo(),
4799                                         LN0->getMemoryVT(),
4800                                         LN0->isVolatile(),
4801                                         LN0->isNonTemporal(),
4802                                         LN0->getAlignment());
4803        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4804        Mask = Mask.zext(VT.getSizeInBits());
4805        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4806                                  ExtLoad, DAG.getConstant(Mask, VT));
4807        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4808                                    SDLoc(N0.getOperand(0)),
4809                                    N0.getOperand(0).getValueType(), ExtLoad);
4810        CombineTo(N, And);
4811        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4812        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4813                        ISD::ZERO_EXTEND);
4814        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4815      }
4816    }
4817  }
4818
4819  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4820  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4821  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4822      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4823    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4824    EVT MemVT = LN0->getMemoryVT();
4825    if ((!LegalOperations && !LN0->isVolatile()) ||
4826        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4827      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4828                                       LN0->getChain(),
4829                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4830                                       MemVT,
4831                                       LN0->isVolatile(), LN0->isNonTemporal(),
4832                                       LN0->getAlignment());
4833      CombineTo(N, ExtLoad);
4834      CombineTo(N0.getNode(),
4835                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4836                            ExtLoad),
4837                ExtLoad.getValue(1));
4838      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4839    }
4840  }
4841
4842  if (N0.getOpcode() == ISD::SETCC) {
4843    if (!LegalOperations && VT.isVector()) {
4844      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4845      // Only do this before legalize for now.
4846      EVT N0VT = N0.getOperand(0).getValueType();
4847      EVT EltVT = VT.getVectorElementType();
4848      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4849                                    DAG.getConstant(1, EltVT));
4850      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4851        // We know that the # elements of the results is the same as the
4852        // # elements of the compare (and the # elements of the compare result
4853        // for that matter).  Check to see that they are the same size.  If so,
4854        // we know that the element size of the sext'd result matches the
4855        // element size of the compare operands.
4856        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4857                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4858                                         N0.getOperand(1),
4859                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4860                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4861                                       &OneOps[0], OneOps.size()));
4862
4863      // If the desired elements are smaller or larger than the source
4864      // elements we can use a matching integer vector type and then
4865      // truncate/sign extend
4866      EVT MatchingElementType =
4867        EVT::getIntegerVT(*DAG.getContext(),
4868                          N0VT.getScalarType().getSizeInBits());
4869      EVT MatchingVectorType =
4870        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4871                         N0VT.getVectorNumElements());
4872      SDValue VsetCC =
4873        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4874                      N0.getOperand(1),
4875                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4876      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4877                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4878                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4879                                     &OneOps[0], OneOps.size()));
4880    }
4881
4882    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4883    SDValue SCC =
4884      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4885                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4886                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4887    if (SCC.getNode()) return SCC;
4888  }
4889
4890  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4891  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4892      isa<ConstantSDNode>(N0.getOperand(1)) &&
4893      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4894      N0.hasOneUse()) {
4895    SDValue ShAmt = N0.getOperand(1);
4896    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4897    if (N0.getOpcode() == ISD::SHL) {
4898      SDValue InnerZExt = N0.getOperand(0);
4899      // If the original shl may be shifting out bits, do not perform this
4900      // transformation.
4901      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4902        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4903      if (ShAmtVal > KnownZeroBits)
4904        return SDValue();
4905    }
4906
4907    SDLoc DL(N);
4908
4909    // Ensure that the shift amount is wide enough for the shifted value.
4910    if (VT.getSizeInBits() >= 256)
4911      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4912
4913    return DAG.getNode(N0.getOpcode(), DL, VT,
4914                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4915                       ShAmt);
4916  }
4917
4918  return SDValue();
4919}
4920
4921SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4922  SDValue N0 = N->getOperand(0);
4923  EVT VT = N->getValueType(0);
4924
4925  // fold (aext c1) -> c1
4926  if (isa<ConstantSDNode>(N0))
4927    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
4928  // fold (aext (aext x)) -> (aext x)
4929  // fold (aext (zext x)) -> (zext x)
4930  // fold (aext (sext x)) -> (sext x)
4931  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4932      N0.getOpcode() == ISD::ZERO_EXTEND ||
4933      N0.getOpcode() == ISD::SIGN_EXTEND)
4934    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
4935
4936  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4937  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4938  if (N0.getOpcode() == ISD::TRUNCATE) {
4939    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4940    if (NarrowLoad.getNode()) {
4941      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4942      if (NarrowLoad.getNode() != N0.getNode()) {
4943        CombineTo(N0.getNode(), NarrowLoad);
4944        // CombineTo deleted the truncate, if needed, but not what's under it.
4945        AddToWorkList(oye);
4946      }
4947      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4948    }
4949  }
4950
4951  // fold (aext (truncate x))
4952  if (N0.getOpcode() == ISD::TRUNCATE) {
4953    SDValue TruncOp = N0.getOperand(0);
4954    if (TruncOp.getValueType() == VT)
4955      return TruncOp; // x iff x size == zext size.
4956    if (TruncOp.getValueType().bitsGT(VT))
4957      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
4958    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
4959  }
4960
4961  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4962  // if the trunc is not free.
4963  if (N0.getOpcode() == ISD::AND &&
4964      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4965      N0.getOperand(1).getOpcode() == ISD::Constant &&
4966      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4967                          N0.getValueType())) {
4968    SDValue X = N0.getOperand(0).getOperand(0);
4969    if (X.getValueType().bitsLT(VT)) {
4970      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
4971    } else if (X.getValueType().bitsGT(VT)) {
4972      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
4973    }
4974    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4975    Mask = Mask.zext(VT.getSizeInBits());
4976    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4977                       X, DAG.getConstant(Mask, VT));
4978  }
4979
4980  // fold (aext (load x)) -> (aext (truncate (extload x)))
4981  // None of the supported targets knows how to perform load and any_ext
4982  // on vectors in one instruction.  We only perform this transformation on
4983  // scalars.
4984  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4985      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4986       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4987    bool DoXform = true;
4988    SmallVector<SDNode*, 4> SetCCs;
4989    if (!N0.hasOneUse())
4990      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4991    if (DoXform) {
4992      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4993      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
4994                                       LN0->getChain(),
4995                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4996                                       N0.getValueType(),
4997                                       LN0->isVolatile(), LN0->isNonTemporal(),
4998                                       LN0->getAlignment());
4999      CombineTo(N, ExtLoad);
5000      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5001                                  N0.getValueType(), ExtLoad);
5002      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5003      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5004                      ISD::ANY_EXTEND);
5005      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5006    }
5007  }
5008
5009  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5010  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5011  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5012  if (N0.getOpcode() == ISD::LOAD &&
5013      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5014      N0.hasOneUse()) {
5015    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5016    EVT MemVT = LN0->getMemoryVT();
5017    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5018                                     VT, LN0->getChain(), LN0->getBasePtr(),
5019                                     LN0->getPointerInfo(), MemVT,
5020                                     LN0->isVolatile(), LN0->isNonTemporal(),
5021                                     LN0->getAlignment());
5022    CombineTo(N, ExtLoad);
5023    CombineTo(N0.getNode(),
5024              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5025                          N0.getValueType(), ExtLoad),
5026              ExtLoad.getValue(1));
5027    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5028  }
5029
5030  if (N0.getOpcode() == ISD::SETCC) {
5031    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5032    // Only do this before legalize for now.
5033    if (VT.isVector() && !LegalOperations) {
5034      EVT N0VT = N0.getOperand(0).getValueType();
5035        // We know that the # elements of the results is the same as the
5036        // # elements of the compare (and the # elements of the compare result
5037        // for that matter).  Check to see that they are the same size.  If so,
5038        // we know that the element size of the sext'd result matches the
5039        // element size of the compare operands.
5040      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5041        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5042                             N0.getOperand(1),
5043                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5044      // If the desired elements are smaller or larger than the source
5045      // elements we can use a matching integer vector type and then
5046      // truncate/sign extend
5047      else {
5048        EVT MatchingElementType =
5049          EVT::getIntegerVT(*DAG.getContext(),
5050                            N0VT.getScalarType().getSizeInBits());
5051        EVT MatchingVectorType =
5052          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5053                           N0VT.getVectorNumElements());
5054        SDValue VsetCC =
5055          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5056                        N0.getOperand(1),
5057                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5058        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5059      }
5060    }
5061
5062    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5063    SDValue SCC =
5064      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5065                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5066                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5067    if (SCC.getNode())
5068      return SCC;
5069  }
5070
5071  return SDValue();
5072}
5073
5074/// GetDemandedBits - See if the specified operand can be simplified with the
5075/// knowledge that only the bits specified by Mask are used.  If so, return the
5076/// simpler operand, otherwise return a null SDValue.
5077SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5078  switch (V.getOpcode()) {
5079  default: break;
5080  case ISD::Constant: {
5081    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5082    assert(CV != 0 && "Const value should be ConstSDNode.");
5083    const APInt &CVal = CV->getAPIntValue();
5084    APInt NewVal = CVal & Mask;
5085    if (NewVal != CVal)
5086      return DAG.getConstant(NewVal, V.getValueType());
5087    break;
5088  }
5089  case ISD::OR:
5090  case ISD::XOR:
5091    // If the LHS or RHS don't contribute bits to the or, drop them.
5092    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5093      return V.getOperand(1);
5094    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5095      return V.getOperand(0);
5096    break;
5097  case ISD::SRL:
5098    // Only look at single-use SRLs.
5099    if (!V.getNode()->hasOneUse())
5100      break;
5101    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5102      // See if we can recursively simplify the LHS.
5103      unsigned Amt = RHSC->getZExtValue();
5104
5105      // Watch out for shift count overflow though.
5106      if (Amt >= Mask.getBitWidth()) break;
5107      APInt NewMask = Mask << Amt;
5108      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5109      if (SimplifyLHS.getNode())
5110        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5111                           SimplifyLHS, V.getOperand(1));
5112    }
5113  }
5114  return SDValue();
5115}
5116
5117/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5118/// bits and then truncated to a narrower type and where N is a multiple
5119/// of number of bits of the narrower type, transform it to a narrower load
5120/// from address + N / num of bits of new type. If the result is to be
5121/// extended, also fold the extension to form a extending load.
5122SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5123  unsigned Opc = N->getOpcode();
5124
5125  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5126  SDValue N0 = N->getOperand(0);
5127  EVT VT = N->getValueType(0);
5128  EVT ExtVT = VT;
5129
5130  // This transformation isn't valid for vector loads.
5131  if (VT.isVector())
5132    return SDValue();
5133
5134  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5135  // extended to VT.
5136  if (Opc == ISD::SIGN_EXTEND_INREG) {
5137    ExtType = ISD::SEXTLOAD;
5138    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5139  } else if (Opc == ISD::SRL) {
5140    // Another special-case: SRL is basically zero-extending a narrower value.
5141    ExtType = ISD::ZEXTLOAD;
5142    N0 = SDValue(N, 0);
5143    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5144    if (!N01) return SDValue();
5145    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5146                              VT.getSizeInBits() - N01->getZExtValue());
5147  }
5148  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5149    return SDValue();
5150
5151  unsigned EVTBits = ExtVT.getSizeInBits();
5152
5153  // Do not generate loads of non-round integer types since these can
5154  // be expensive (and would be wrong if the type is not byte sized).
5155  if (!ExtVT.isRound())
5156    return SDValue();
5157
5158  unsigned ShAmt = 0;
5159  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5160    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5161      ShAmt = N01->getZExtValue();
5162      // Is the shift amount a multiple of size of VT?
5163      if ((ShAmt & (EVTBits-1)) == 0) {
5164        N0 = N0.getOperand(0);
5165        // Is the load width a multiple of size of VT?
5166        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5167          return SDValue();
5168      }
5169
5170      // At this point, we must have a load or else we can't do the transform.
5171      if (!isa<LoadSDNode>(N0)) return SDValue();
5172
5173      // Because a SRL must be assumed to *need* to zero-extend the high bits
5174      // (as opposed to anyext the high bits), we can't combine the zextload
5175      // lowering of SRL and an sextload.
5176      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5177        return SDValue();
5178
5179      // If the shift amount is larger than the input type then we're not
5180      // accessing any of the loaded bytes.  If the load was a zextload/extload
5181      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5182      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5183        return SDValue();
5184    }
5185  }
5186
5187  // If the load is shifted left (and the result isn't shifted back right),
5188  // we can fold the truncate through the shift.
5189  unsigned ShLeftAmt = 0;
5190  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5191      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5192    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5193      ShLeftAmt = N01->getZExtValue();
5194      N0 = N0.getOperand(0);
5195    }
5196  }
5197
5198  // If we haven't found a load, we can't narrow it.  Don't transform one with
5199  // multiple uses, this would require adding a new load.
5200  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5201    return SDValue();
5202
5203  // Don't change the width of a volatile load.
5204  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5205  if (LN0->isVolatile())
5206    return SDValue();
5207
5208  // Verify that we are actually reducing a load width here.
5209  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5210    return SDValue();
5211
5212  // For the transform to be legal, the load must produce only two values
5213  // (the value loaded and the chain).  Don't transform a pre-increment
5214  // load, for example, which produces an extra value.  Otherwise the
5215  // transformation is not equivalent, and the downstream logic to replace
5216  // uses gets things wrong.
5217  if (LN0->getNumValues() > 2)
5218    return SDValue();
5219
5220  // If the load that we're shrinking is an extload and we're not just
5221  // discarding the extension we can't simply shrink the load. Bail.
5222  // TODO: It would be possible to merge the extensions in some cases.
5223  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5224      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5225    return SDValue();
5226
5227  EVT PtrType = N0.getOperand(1).getValueType();
5228
5229  if (PtrType == MVT::Untyped || PtrType.isExtended())
5230    // It's not possible to generate a constant of extended or untyped type.
5231    return SDValue();
5232
5233  // For big endian targets, we need to adjust the offset to the pointer to
5234  // load the correct bytes.
5235  if (TLI.isBigEndian()) {
5236    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5237    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5238    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5239  }
5240
5241  uint64_t PtrOff = ShAmt / 8;
5242  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5243  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5244                               PtrType, LN0->getBasePtr(),
5245                               DAG.getConstant(PtrOff, PtrType));
5246  AddToWorkList(NewPtr.getNode());
5247
5248  SDValue Load;
5249  if (ExtType == ISD::NON_EXTLOAD)
5250    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5251                        LN0->getPointerInfo().getWithOffset(PtrOff),
5252                        LN0->isVolatile(), LN0->isNonTemporal(),
5253                        LN0->isInvariant(), NewAlign);
5254  else
5255    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5256                          LN0->getPointerInfo().getWithOffset(PtrOff),
5257                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5258                          NewAlign);
5259
5260  // Replace the old load's chain with the new load's chain.
5261  WorkListRemover DeadNodes(*this);
5262  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5263
5264  // Shift the result left, if we've swallowed a left shift.
5265  SDValue Result = Load;
5266  if (ShLeftAmt != 0) {
5267    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5268    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5269      ShImmTy = VT;
5270    // If the shift amount is as large as the result size (but, presumably,
5271    // no larger than the source) then the useful bits of the result are
5272    // zero; we can't simply return the shortened shift, because the result
5273    // of that operation is undefined.
5274    if (ShLeftAmt >= VT.getSizeInBits())
5275      Result = DAG.getConstant(0, VT);
5276    else
5277      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5278                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5279  }
5280
5281  // Return the new loaded value.
5282  return Result;
5283}
5284
5285SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5286  SDValue N0 = N->getOperand(0);
5287  SDValue N1 = N->getOperand(1);
5288  EVT VT = N->getValueType(0);
5289  EVT EVT = cast<VTSDNode>(N1)->getVT();
5290  unsigned VTBits = VT.getScalarType().getSizeInBits();
5291  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5292
5293  // fold (sext_in_reg c1) -> c1
5294  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5295    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5296
5297  // If the input is already sign extended, just drop the extension.
5298  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5299    return N0;
5300
5301  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5302  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5303      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5304    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5305                       N0.getOperand(0), N1);
5306
5307  // fold (sext_in_reg (sext x)) -> (sext x)
5308  // fold (sext_in_reg (aext x)) -> (sext x)
5309  // if x is small enough.
5310  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5311    SDValue N00 = N0.getOperand(0);
5312    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5313        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5314      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5315  }
5316
5317  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5318  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5319    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5320
5321  // fold operands of sext_in_reg based on knowledge that the top bits are not
5322  // demanded.
5323  if (SimplifyDemandedBits(SDValue(N, 0)))
5324    return SDValue(N, 0);
5325
5326  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5327  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5328  SDValue NarrowLoad = ReduceLoadWidth(N);
5329  if (NarrowLoad.getNode())
5330    return NarrowLoad;
5331
5332  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5333  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5334  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5335  if (N0.getOpcode() == ISD::SRL) {
5336    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5337      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5338        // We can turn this into an SRA iff the input to the SRL is already sign
5339        // extended enough.
5340        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5341        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5342          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5343                             N0.getOperand(0), N0.getOperand(1));
5344      }
5345  }
5346
5347  // fold (sext_inreg (extload x)) -> (sextload x)
5348  if (ISD::isEXTLoad(N0.getNode()) &&
5349      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5350      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5351      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5352       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5353    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5354    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5355                                     LN0->getChain(),
5356                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5357                                     EVT,
5358                                     LN0->isVolatile(), LN0->isNonTemporal(),
5359                                     LN0->getAlignment());
5360    CombineTo(N, ExtLoad);
5361    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5362    AddToWorkList(ExtLoad.getNode());
5363    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5364  }
5365  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5366  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5367      N0.hasOneUse() &&
5368      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5369      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5370       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5371    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5372    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5373                                     LN0->getChain(),
5374                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5375                                     EVT,
5376                                     LN0->isVolatile(), LN0->isNonTemporal(),
5377                                     LN0->getAlignment());
5378    CombineTo(N, ExtLoad);
5379    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5380    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5381  }
5382
5383  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5384  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5385    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5386                                       N0.getOperand(1), false);
5387    if (BSwap.getNode() != 0)
5388      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5389                         BSwap, N1);
5390  }
5391
5392  return SDValue();
5393}
5394
5395SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5396  SDValue N0 = N->getOperand(0);
5397  EVT VT = N->getValueType(0);
5398  bool isLE = TLI.isLittleEndian();
5399
5400  // noop truncate
5401  if (N0.getValueType() == N->getValueType(0))
5402    return N0;
5403  // fold (truncate c1) -> c1
5404  if (isa<ConstantSDNode>(N0))
5405    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5406  // fold (truncate (truncate x)) -> (truncate x)
5407  if (N0.getOpcode() == ISD::TRUNCATE)
5408    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5409  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5410  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5411      N0.getOpcode() == ISD::SIGN_EXTEND ||
5412      N0.getOpcode() == ISD::ANY_EXTEND) {
5413    if (N0.getOperand(0).getValueType().bitsLT(VT))
5414      // if the source is smaller than the dest, we still need an extend
5415      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5416                         N0.getOperand(0));
5417    if (N0.getOperand(0).getValueType().bitsGT(VT))
5418      // if the source is larger than the dest, than we just need the truncate
5419      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5420    // if the source and dest are the same type, we can drop both the extend
5421    // and the truncate.
5422    return N0.getOperand(0);
5423  }
5424
5425  // Fold extract-and-trunc into a narrow extract. For example:
5426  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5427  //   i32 y = TRUNCATE(i64 x)
5428  //        -- becomes --
5429  //   v16i8 b = BITCAST (v2i64 val)
5430  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5431  //
5432  // Note: We only run this optimization after type legalization (which often
5433  // creates this pattern) and before operation legalization after which
5434  // we need to be more careful about the vector instructions that we generate.
5435  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5436      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5437
5438    EVT VecTy = N0.getOperand(0).getValueType();
5439    EVT ExTy = N0.getValueType();
5440    EVT TrTy = N->getValueType(0);
5441
5442    unsigned NumElem = VecTy.getVectorNumElements();
5443    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5444
5445    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5446    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5447
5448    SDValue EltNo = N0->getOperand(1);
5449    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5450      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5451      EVT IndexTy = N0->getOperand(1).getValueType();
5452      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5453
5454      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5455                              NVT, N0.getOperand(0));
5456
5457      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5458                         SDLoc(N), TrTy, V,
5459                         DAG.getConstant(Index, IndexTy));
5460    }
5461  }
5462
5463  // Fold a series of buildvector, bitcast, and truncate if possible.
5464  // For example fold
5465  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5466  //   (2xi32 (buildvector x, y)).
5467  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5468      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5469      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5470      N0.getOperand(0).hasOneUse()) {
5471
5472    SDValue BuildVect = N0.getOperand(0);
5473    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5474    EVT TruncVecEltTy = VT.getVectorElementType();
5475
5476    // Check that the element types match.
5477    if (BuildVectEltTy == TruncVecEltTy) {
5478      // Now we only need to compute the offset of the truncated elements.
5479      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5480      unsigned TruncVecNumElts = VT.getVectorNumElements();
5481      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5482
5483      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5484             "Invalid number of elements");
5485
5486      SmallVector<SDValue, 8> Opnds;
5487      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5488        Opnds.push_back(BuildVect.getOperand(i));
5489
5490      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5491                         Opnds.size());
5492    }
5493  }
5494
5495  // See if we can simplify the input to this truncate through knowledge that
5496  // only the low bits are being used.
5497  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5498  // Currently we only perform this optimization on scalars because vectors
5499  // may have different active low bits.
5500  if (!VT.isVector()) {
5501    SDValue Shorter =
5502      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5503                                               VT.getSizeInBits()));
5504    if (Shorter.getNode())
5505      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5506  }
5507  // fold (truncate (load x)) -> (smaller load x)
5508  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5509  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5510    SDValue Reduced = ReduceLoadWidth(N);
5511    if (Reduced.getNode())
5512      return Reduced;
5513  }
5514  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5515  // where ... are all 'undef'.
5516  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5517    SmallVector<EVT, 8> VTs;
5518    SDValue V;
5519    unsigned Idx = 0;
5520    unsigned NumDefs = 0;
5521
5522    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5523      SDValue X = N0.getOperand(i);
5524      if (X.getOpcode() != ISD::UNDEF) {
5525        V = X;
5526        Idx = i;
5527        NumDefs++;
5528      }
5529      // Stop if more than one members are non-undef.
5530      if (NumDefs > 1)
5531        break;
5532      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5533                                     VT.getVectorElementType(),
5534                                     X.getValueType().getVectorNumElements()));
5535    }
5536
5537    if (NumDefs == 0)
5538      return DAG.getUNDEF(VT);
5539
5540    if (NumDefs == 1) {
5541      assert(V.getNode() && "The single defined operand is empty!");
5542      SmallVector<SDValue, 8> Opnds;
5543      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5544        if (i != Idx) {
5545          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5546          continue;
5547        }
5548        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5549        AddToWorkList(NV.getNode());
5550        Opnds.push_back(NV);
5551      }
5552      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5553                         &Opnds[0], Opnds.size());
5554    }
5555  }
5556
5557  // Simplify the operands using demanded-bits information.
5558  if (!VT.isVector() &&
5559      SimplifyDemandedBits(SDValue(N, 0)))
5560    return SDValue(N, 0);
5561
5562  return SDValue();
5563}
5564
5565static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5566  SDValue Elt = N->getOperand(i);
5567  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5568    return Elt.getNode();
5569  return Elt.getOperand(Elt.getResNo()).getNode();
5570}
5571
5572/// CombineConsecutiveLoads - build_pair (load, load) -> load
5573/// if load locations are consecutive.
5574SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5575  assert(N->getOpcode() == ISD::BUILD_PAIR);
5576
5577  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5578  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5579  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5580      LD1->getPointerInfo().getAddrSpace() !=
5581         LD2->getPointerInfo().getAddrSpace())
5582    return SDValue();
5583  EVT LD1VT = LD1->getValueType(0);
5584
5585  if (ISD::isNON_EXTLoad(LD2) &&
5586      LD2->hasOneUse() &&
5587      // If both are volatile this would reduce the number of volatile loads.
5588      // If one is volatile it might be ok, but play conservative and bail out.
5589      !LD1->isVolatile() &&
5590      !LD2->isVolatile() &&
5591      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5592    unsigned Align = LD1->getAlignment();
5593    unsigned NewAlign = TLI.getDataLayout()->
5594      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5595
5596    if (NewAlign <= Align &&
5597        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5598      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5599                         LD1->getBasePtr(), LD1->getPointerInfo(),
5600                         false, false, false, Align);
5601  }
5602
5603  return SDValue();
5604}
5605
5606SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5607  SDValue N0 = N->getOperand(0);
5608  EVT VT = N->getValueType(0);
5609
5610  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5611  // Only do this before legalize, since afterward the target may be depending
5612  // on the bitconvert.
5613  // First check to see if this is all constant.
5614  if (!LegalTypes &&
5615      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5616      VT.isVector()) {
5617    bool isSimple = true;
5618    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5619      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5620          N0.getOperand(i).getOpcode() != ISD::Constant &&
5621          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5622        isSimple = false;
5623        break;
5624      }
5625
5626    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5627    assert(!DestEltVT.isVector() &&
5628           "Element type of vector ValueType must not be vector!");
5629    if (isSimple)
5630      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5631  }
5632
5633  // If the input is a constant, let getNode fold it.
5634  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5635    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5636    if (Res.getNode() != N) {
5637      if (!LegalOperations ||
5638          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5639        return Res;
5640
5641      // Folding it resulted in an illegal node, and it's too late to
5642      // do that. Clean up the old node and forego the transformation.
5643      // Ideally this won't happen very often, because instcombine
5644      // and the earlier dagcombine runs (where illegal nodes are
5645      // permitted) should have folded most of them already.
5646      DAG.DeleteNode(Res.getNode());
5647    }
5648  }
5649
5650  // (conv (conv x, t1), t2) -> (conv x, t2)
5651  if (N0.getOpcode() == ISD::BITCAST)
5652    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5653                       N0.getOperand(0));
5654
5655  // fold (conv (load x)) -> (load (conv*)x)
5656  // If the resultant load doesn't need a higher alignment than the original!
5657  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5658      // Do not change the width of a volatile load.
5659      !cast<LoadSDNode>(N0)->isVolatile() &&
5660      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5661    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5662    unsigned Align = TLI.getDataLayout()->
5663      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5664    unsigned OrigAlign = LN0->getAlignment();
5665
5666    if (Align <= OrigAlign) {
5667      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5668                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5669                                 LN0->isVolatile(), LN0->isNonTemporal(),
5670                                 LN0->isInvariant(), OrigAlign);
5671      AddToWorkList(N);
5672      CombineTo(N0.getNode(),
5673                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5674                            N0.getValueType(), Load),
5675                Load.getValue(1));
5676      return Load;
5677    }
5678  }
5679
5680  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5681  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5682  // This often reduces constant pool loads.
5683  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5684       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5685      N0.getNode()->hasOneUse() && VT.isInteger() &&
5686      !VT.isVector() && !N0.getValueType().isVector()) {
5687    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5688                                  N0.getOperand(0));
5689    AddToWorkList(NewConv.getNode());
5690
5691    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5692    if (N0.getOpcode() == ISD::FNEG)
5693      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5694                         NewConv, DAG.getConstant(SignBit, VT));
5695    assert(N0.getOpcode() == ISD::FABS);
5696    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5697                       NewConv, DAG.getConstant(~SignBit, VT));
5698  }
5699
5700  // fold (bitconvert (fcopysign cst, x)) ->
5701  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5702  // Note that we don't handle (copysign x, cst) because this can always be
5703  // folded to an fneg or fabs.
5704  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5705      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5706      VT.isInteger() && !VT.isVector()) {
5707    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5708    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5709    if (isTypeLegal(IntXVT)) {
5710      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5711                              IntXVT, N0.getOperand(1));
5712      AddToWorkList(X.getNode());
5713
5714      // If X has a different width than the result/lhs, sext it or truncate it.
5715      unsigned VTWidth = VT.getSizeInBits();
5716      if (OrigXWidth < VTWidth) {
5717        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5718        AddToWorkList(X.getNode());
5719      } else if (OrigXWidth > VTWidth) {
5720        // To get the sign bit in the right place, we have to shift it right
5721        // before truncating.
5722        X = DAG.getNode(ISD::SRL, SDLoc(X),
5723                        X.getValueType(), X,
5724                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5725        AddToWorkList(X.getNode());
5726        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5727        AddToWorkList(X.getNode());
5728      }
5729
5730      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5731      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5732                      X, DAG.getConstant(SignBit, VT));
5733      AddToWorkList(X.getNode());
5734
5735      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5736                                VT, N0.getOperand(0));
5737      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5738                        Cst, DAG.getConstant(~SignBit, VT));
5739      AddToWorkList(Cst.getNode());
5740
5741      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5742    }
5743  }
5744
5745  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5746  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5747    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5748    if (CombineLD.getNode())
5749      return CombineLD;
5750  }
5751
5752  return SDValue();
5753}
5754
5755SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5756  EVT VT = N->getValueType(0);
5757  return CombineConsecutiveLoads(N, VT);
5758}
5759
5760/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5761/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5762/// destination element value type.
5763SDValue DAGCombiner::
5764ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5765  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5766
5767  // If this is already the right type, we're done.
5768  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5769
5770  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5771  unsigned DstBitSize = DstEltVT.getSizeInBits();
5772
5773  // If this is a conversion of N elements of one type to N elements of another
5774  // type, convert each element.  This handles FP<->INT cases.
5775  if (SrcBitSize == DstBitSize) {
5776    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5777                              BV->getValueType(0).getVectorNumElements());
5778
5779    // Due to the FP element handling below calling this routine recursively,
5780    // we can end up with a scalar-to-vector node here.
5781    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5782      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5783                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5784                                     DstEltVT, BV->getOperand(0)));
5785
5786    SmallVector<SDValue, 8> Ops;
5787    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5788      SDValue Op = BV->getOperand(i);
5789      // If the vector element type is not legal, the BUILD_VECTOR operands
5790      // are promoted and implicitly truncated.  Make that explicit here.
5791      if (Op.getValueType() != SrcEltVT)
5792        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5793      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5794                                DstEltVT, Op));
5795      AddToWorkList(Ops.back().getNode());
5796    }
5797    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5798                       &Ops[0], Ops.size());
5799  }
5800
5801  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5802  // handle annoying details of growing/shrinking FP values, we convert them to
5803  // int first.
5804  if (SrcEltVT.isFloatingPoint()) {
5805    // Convert the input float vector to a int vector where the elements are the
5806    // same sizes.
5807    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5808    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5809    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5810    SrcEltVT = IntVT;
5811  }
5812
5813  // Now we know the input is an integer vector.  If the output is a FP type,
5814  // convert to integer first, then to FP of the right size.
5815  if (DstEltVT.isFloatingPoint()) {
5816    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5817    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5818    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5819
5820    // Next, convert to FP elements of the same size.
5821    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5822  }
5823
5824  // Okay, we know the src/dst types are both integers of differing types.
5825  // Handling growing first.
5826  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5827  if (SrcBitSize < DstBitSize) {
5828    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5829
5830    SmallVector<SDValue, 8> Ops;
5831    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5832         i += NumInputsPerOutput) {
5833      bool isLE = TLI.isLittleEndian();
5834      APInt NewBits = APInt(DstBitSize, 0);
5835      bool EltIsUndef = true;
5836      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5837        // Shift the previously computed bits over.
5838        NewBits <<= SrcBitSize;
5839        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5840        if (Op.getOpcode() == ISD::UNDEF) continue;
5841        EltIsUndef = false;
5842
5843        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5844                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5845      }
5846
5847      if (EltIsUndef)
5848        Ops.push_back(DAG.getUNDEF(DstEltVT));
5849      else
5850        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5851    }
5852
5853    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5854    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5855                       &Ops[0], Ops.size());
5856  }
5857
5858  // Finally, this must be the case where we are shrinking elements: each input
5859  // turns into multiple outputs.
5860  bool isS2V = ISD::isScalarToVector(BV);
5861  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5862  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5863                            NumOutputsPerInput*BV->getNumOperands());
5864  SmallVector<SDValue, 8> Ops;
5865
5866  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5867    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5868      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5869        Ops.push_back(DAG.getUNDEF(DstEltVT));
5870      continue;
5871    }
5872
5873    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5874                  getAPIntValue().zextOrTrunc(SrcBitSize);
5875
5876    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5877      APInt ThisVal = OpVal.trunc(DstBitSize);
5878      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5879      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5880        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5881        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5882                           Ops[0]);
5883      OpVal = OpVal.lshr(DstBitSize);
5884    }
5885
5886    // For big endian targets, swap the order of the pieces of each element.
5887    if (TLI.isBigEndian())
5888      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5889  }
5890
5891  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5892                     &Ops[0], Ops.size());
5893}
5894
5895SDValue DAGCombiner::visitFADD(SDNode *N) {
5896  SDValue N0 = N->getOperand(0);
5897  SDValue N1 = N->getOperand(1);
5898  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5899  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5900  EVT VT = N->getValueType(0);
5901
5902  // fold vector ops
5903  if (VT.isVector()) {
5904    SDValue FoldedVOp = SimplifyVBinOp(N);
5905    if (FoldedVOp.getNode()) return FoldedVOp;
5906  }
5907
5908  // fold (fadd c1, c2) -> c1 + c2
5909  if (N0CFP && N1CFP)
5910    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5911  // canonicalize constant to RHS
5912  if (N0CFP && !N1CFP)
5913    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5914  // fold (fadd A, 0) -> A
5915  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5916      N1CFP->getValueAPF().isZero())
5917    return N0;
5918  // fold (fadd A, (fneg B)) -> (fsub A, B)
5919  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5920    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5921    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
5922                       GetNegatedExpression(N1, DAG, LegalOperations));
5923  // fold (fadd (fneg A), B) -> (fsub B, A)
5924  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5925    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5926    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
5927                       GetNegatedExpression(N0, DAG, LegalOperations));
5928
5929  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5930  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5931      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5932      isa<ConstantFPSDNode>(N0.getOperand(1)))
5933    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
5934                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
5935                                   N0.getOperand(1), N1));
5936
5937  // No FP constant should be created after legalization as Instruction
5938  // Selection pass has hard time in dealing with FP constant.
5939  //
5940  // We don't need test this condition for transformation like following, as
5941  // the DAG being transformed implies it is legal to take FP constant as
5942  // operand.
5943  //
5944  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
5945  //
5946  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
5947
5948  // If allow, fold (fadd (fneg x), x) -> 0.0
5949  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5950      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
5951    return DAG.getConstantFP(0.0, VT);
5952
5953    // If allow, fold (fadd x, (fneg x)) -> 0.0
5954  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5955      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
5956    return DAG.getConstantFP(0.0, VT);
5957
5958  // In unsafe math mode, we can fold chains of FADD's of the same value
5959  // into multiplications.  This transform is not safe in general because
5960  // we are reducing the number of rounding steps.
5961  if (DAG.getTarget().Options.UnsafeFPMath &&
5962      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5963      !N0CFP && !N1CFP) {
5964    if (N0.getOpcode() == ISD::FMUL) {
5965      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5966      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5967
5968      // (fadd (fmul c, x), x) -> (fmul x, c+1)
5969      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5970        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5971                                     SDValue(CFP00, 0),
5972                                     DAG.getConstantFP(1.0, VT));
5973        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5974                           N1, NewCFP);
5975      }
5976
5977      // (fadd (fmul x, c), x) -> (fmul x, c+1)
5978      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5979        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5980                                     SDValue(CFP01, 0),
5981                                     DAG.getConstantFP(1.0, VT));
5982        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5983                           N1, NewCFP);
5984      }
5985
5986      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
5987      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5988          N1.getOperand(0) == N1.getOperand(1) &&
5989          N0.getOperand(1) == N1.getOperand(0)) {
5990        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
5991                                     SDValue(CFP00, 0),
5992                                     DAG.getConstantFP(2.0, VT));
5993        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
5994                           N0.getOperand(1), NewCFP);
5995      }
5996
5997      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
5998      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5999          N1.getOperand(0) == N1.getOperand(1) &&
6000          N0.getOperand(0) == N1.getOperand(0)) {
6001        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6002                                     SDValue(CFP01, 0),
6003                                     DAG.getConstantFP(2.0, VT));
6004        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6005                           N0.getOperand(0), NewCFP);
6006      }
6007    }
6008
6009    if (N1.getOpcode() == ISD::FMUL) {
6010      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6011      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6012
6013      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6014      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6015        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6016                                     SDValue(CFP10, 0),
6017                                     DAG.getConstantFP(1.0, VT));
6018        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6019                           N0, NewCFP);
6020      }
6021
6022      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6023      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6024        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6025                                     SDValue(CFP11, 0),
6026                                     DAG.getConstantFP(1.0, VT));
6027        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6028                           N0, NewCFP);
6029      }
6030
6031
6032      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6033      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6034          N0.getOperand(0) == N0.getOperand(1) &&
6035          N1.getOperand(1) == N0.getOperand(0)) {
6036        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6037                                     SDValue(CFP10, 0),
6038                                     DAG.getConstantFP(2.0, VT));
6039        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6040                           N1.getOperand(1), NewCFP);
6041      }
6042
6043      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6044      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6045          N0.getOperand(0) == N0.getOperand(1) &&
6046          N1.getOperand(0) == N0.getOperand(0)) {
6047        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6048                                     SDValue(CFP11, 0),
6049                                     DAG.getConstantFP(2.0, VT));
6050        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6051                           N1.getOperand(0), NewCFP);
6052      }
6053    }
6054
6055    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6056      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6057      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6058      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6059          (N0.getOperand(0) == N1))
6060        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6061                           N1, DAG.getConstantFP(3.0, VT));
6062    }
6063
6064    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6065      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6066      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6067      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6068          N1.getOperand(0) == N0)
6069        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6070                           N0, DAG.getConstantFP(3.0, VT));
6071    }
6072
6073    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6074    if (AllowNewFpConst &&
6075        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6076        N0.getOperand(0) == N0.getOperand(1) &&
6077        N1.getOperand(0) == N1.getOperand(1) &&
6078        N0.getOperand(0) == N1.getOperand(0))
6079      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6080                         N0.getOperand(0),
6081                         DAG.getConstantFP(4.0, VT));
6082  }
6083
6084  // FADD -> FMA combines:
6085  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6086       DAG.getTarget().Options.UnsafeFPMath) &&
6087      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6088      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6089
6090    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6091    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6092      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6093                         N0.getOperand(0), N0.getOperand(1), N1);
6094
6095    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6096    // Note: Commutes FADD operands.
6097    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6098      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6099                         N1.getOperand(0), N1.getOperand(1), N0);
6100  }
6101
6102  return SDValue();
6103}
6104
6105SDValue DAGCombiner::visitFSUB(SDNode *N) {
6106  SDValue N0 = N->getOperand(0);
6107  SDValue N1 = N->getOperand(1);
6108  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6109  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6110  EVT VT = N->getValueType(0);
6111  SDLoc dl(N);
6112
6113  // fold vector ops
6114  if (VT.isVector()) {
6115    SDValue FoldedVOp = SimplifyVBinOp(N);
6116    if (FoldedVOp.getNode()) return FoldedVOp;
6117  }
6118
6119  // fold (fsub c1, c2) -> c1-c2
6120  if (N0CFP && N1CFP)
6121    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6122  // fold (fsub A, 0) -> A
6123  if (DAG.getTarget().Options.UnsafeFPMath &&
6124      N1CFP && N1CFP->getValueAPF().isZero())
6125    return N0;
6126  // fold (fsub 0, B) -> -B
6127  if (DAG.getTarget().Options.UnsafeFPMath &&
6128      N0CFP && N0CFP->getValueAPF().isZero()) {
6129    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6130      return GetNegatedExpression(N1, DAG, LegalOperations);
6131    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6132      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6133  }
6134  // fold (fsub A, (fneg B)) -> (fadd A, B)
6135  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6136    return DAG.getNode(ISD::FADD, dl, VT, N0,
6137                       GetNegatedExpression(N1, DAG, LegalOperations));
6138
6139  // If 'unsafe math' is enabled, fold
6140  //    (fsub x, x) -> 0.0 &
6141  //    (fsub x, (fadd x, y)) -> (fneg y) &
6142  //    (fsub x, (fadd y, x)) -> (fneg y)
6143  if (DAG.getTarget().Options.UnsafeFPMath) {
6144    if (N0 == N1)
6145      return DAG.getConstantFP(0.0f, VT);
6146
6147    if (N1.getOpcode() == ISD::FADD) {
6148      SDValue N10 = N1->getOperand(0);
6149      SDValue N11 = N1->getOperand(1);
6150
6151      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6152                                          &DAG.getTarget().Options))
6153        return GetNegatedExpression(N11, DAG, LegalOperations);
6154
6155      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6156                                          &DAG.getTarget().Options))
6157        return GetNegatedExpression(N10, DAG, LegalOperations);
6158    }
6159  }
6160
6161  // FSUB -> FMA combines:
6162  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6163       DAG.getTarget().Options.UnsafeFPMath) &&
6164      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6165      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6166
6167    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6168    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6169      return DAG.getNode(ISD::FMA, dl, VT,
6170                         N0.getOperand(0), N0.getOperand(1),
6171                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6172
6173    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6174    // Note: Commutes FSUB operands.
6175    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6176      return DAG.getNode(ISD::FMA, dl, VT,
6177                         DAG.getNode(ISD::FNEG, dl, VT,
6178                         N1.getOperand(0)),
6179                         N1.getOperand(1), N0);
6180
6181    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6182    if (N0.getOpcode() == ISD::FNEG &&
6183        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6184        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6185      SDValue N00 = N0.getOperand(0).getOperand(0);
6186      SDValue N01 = N0.getOperand(0).getOperand(1);
6187      return DAG.getNode(ISD::FMA, dl, VT,
6188                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6189                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6190    }
6191  }
6192
6193  return SDValue();
6194}
6195
6196SDValue DAGCombiner::visitFMUL(SDNode *N) {
6197  SDValue N0 = N->getOperand(0);
6198  SDValue N1 = N->getOperand(1);
6199  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6200  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6201  EVT VT = N->getValueType(0);
6202  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6203
6204  // fold vector ops
6205  if (VT.isVector()) {
6206    SDValue FoldedVOp = SimplifyVBinOp(N);
6207    if (FoldedVOp.getNode()) return FoldedVOp;
6208  }
6209
6210  // fold (fmul c1, c2) -> c1*c2
6211  if (N0CFP && N1CFP)
6212    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6213  // canonicalize constant to RHS
6214  if (N0CFP && !N1CFP)
6215    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6216  // fold (fmul A, 0) -> 0
6217  if (DAG.getTarget().Options.UnsafeFPMath &&
6218      N1CFP && N1CFP->getValueAPF().isZero())
6219    return N1;
6220  // fold (fmul A, 0) -> 0, vector edition.
6221  if (DAG.getTarget().Options.UnsafeFPMath &&
6222      ISD::isBuildVectorAllZeros(N1.getNode()))
6223    return N1;
6224  // fold (fmul A, 1.0) -> A
6225  if (N1CFP && N1CFP->isExactlyValue(1.0))
6226    return N0;
6227  // fold (fmul X, 2.0) -> (fadd X, X)
6228  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6229    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6230  // fold (fmul X, -1.0) -> (fneg X)
6231  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6232    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6233      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6234
6235  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6236  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6237                                       &DAG.getTarget().Options)) {
6238    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6239                                         &DAG.getTarget().Options)) {
6240      // Both can be negated for free, check to see if at least one is cheaper
6241      // negated.
6242      if (LHSNeg == 2 || RHSNeg == 2)
6243        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6244                           GetNegatedExpression(N0, DAG, LegalOperations),
6245                           GetNegatedExpression(N1, DAG, LegalOperations));
6246    }
6247  }
6248
6249  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6250  if (DAG.getTarget().Options.UnsafeFPMath &&
6251      N1CFP && N0.getOpcode() == ISD::FMUL &&
6252      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6253    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6254                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6255                                   N0.getOperand(1), N1));
6256
6257  return SDValue();
6258}
6259
6260SDValue DAGCombiner::visitFMA(SDNode *N) {
6261  SDValue N0 = N->getOperand(0);
6262  SDValue N1 = N->getOperand(1);
6263  SDValue N2 = N->getOperand(2);
6264  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6265  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6266  EVT VT = N->getValueType(0);
6267  SDLoc dl(N);
6268
6269  if (DAG.getTarget().Options.UnsafeFPMath) {
6270    if (N0CFP && N0CFP->isZero())
6271      return N2;
6272    if (N1CFP && N1CFP->isZero())
6273      return N2;
6274  }
6275  if (N0CFP && N0CFP->isExactlyValue(1.0))
6276    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6277  if (N1CFP && N1CFP->isExactlyValue(1.0))
6278    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6279
6280  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6281  if (N0CFP && !N1CFP)
6282    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6283
6284  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6285  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6286      N2.getOpcode() == ISD::FMUL &&
6287      N0 == N2.getOperand(0) &&
6288      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6289    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6290                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6291  }
6292
6293
6294  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6295  if (DAG.getTarget().Options.UnsafeFPMath &&
6296      N0.getOpcode() == ISD::FMUL && N1CFP &&
6297      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6298    return DAG.getNode(ISD::FMA, dl, VT,
6299                       N0.getOperand(0),
6300                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6301                       N2);
6302  }
6303
6304  // (fma x, 1, y) -> (fadd x, y)
6305  // (fma x, -1, y) -> (fadd (fneg x), y)
6306  if (N1CFP) {
6307    if (N1CFP->isExactlyValue(1.0))
6308      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6309
6310    if (N1CFP->isExactlyValue(-1.0) &&
6311        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6312      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6313      AddToWorkList(RHSNeg.getNode());
6314      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6315    }
6316  }
6317
6318  // (fma x, c, x) -> (fmul x, (c+1))
6319  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6320    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6321                       DAG.getNode(ISD::FADD, dl, VT,
6322                                   N1, DAG.getConstantFP(1.0, VT)));
6323
6324  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6325  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6326      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6327    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6328                       DAG.getNode(ISD::FADD, dl, VT,
6329                                   N1, DAG.getConstantFP(-1.0, VT)));
6330
6331
6332  return SDValue();
6333}
6334
6335SDValue DAGCombiner::visitFDIV(SDNode *N) {
6336  SDValue N0 = N->getOperand(0);
6337  SDValue N1 = N->getOperand(1);
6338  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6339  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6340  EVT VT = N->getValueType(0);
6341  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6342
6343  // fold vector ops
6344  if (VT.isVector()) {
6345    SDValue FoldedVOp = SimplifyVBinOp(N);
6346    if (FoldedVOp.getNode()) return FoldedVOp;
6347  }
6348
6349  // fold (fdiv c1, c2) -> c1/c2
6350  if (N0CFP && N1CFP)
6351    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6352
6353  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6354  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6355    // Compute the reciprocal 1.0 / c2.
6356    APFloat N1APF = N1CFP->getValueAPF();
6357    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6358    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6359    // Only do the transform if the reciprocal is a legal fp immediate that
6360    // isn't too nasty (eg NaN, denormal, ...).
6361    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6362        (!LegalOperations ||
6363         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6364         // backend)... we should handle this gracefully after Legalize.
6365         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6366         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6367         TLI.isFPImmLegal(Recip, VT)))
6368      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6369                         DAG.getConstantFP(Recip, VT));
6370  }
6371
6372  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6373  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6374                                       &DAG.getTarget().Options)) {
6375    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6376                                         &DAG.getTarget().Options)) {
6377      // Both can be negated for free, check to see if at least one is cheaper
6378      // negated.
6379      if (LHSNeg == 2 || RHSNeg == 2)
6380        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6381                           GetNegatedExpression(N0, DAG, LegalOperations),
6382                           GetNegatedExpression(N1, DAG, LegalOperations));
6383    }
6384  }
6385
6386  return SDValue();
6387}
6388
6389SDValue DAGCombiner::visitFREM(SDNode *N) {
6390  SDValue N0 = N->getOperand(0);
6391  SDValue N1 = N->getOperand(1);
6392  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6393  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6394  EVT VT = N->getValueType(0);
6395
6396  // fold (frem c1, c2) -> fmod(c1,c2)
6397  if (N0CFP && N1CFP)
6398    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6399
6400  return SDValue();
6401}
6402
6403SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6404  SDValue N0 = N->getOperand(0);
6405  SDValue N1 = N->getOperand(1);
6406  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6407  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6408  EVT VT = N->getValueType(0);
6409
6410  if (N0CFP && N1CFP)  // Constant fold
6411    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6412
6413  if (N1CFP) {
6414    const APFloat& V = N1CFP->getValueAPF();
6415    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6416    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6417    if (!V.isNegative()) {
6418      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6419        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6420    } else {
6421      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6422        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6423                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6424    }
6425  }
6426
6427  // copysign(fabs(x), y) -> copysign(x, y)
6428  // copysign(fneg(x), y) -> copysign(x, y)
6429  // copysign(copysign(x,z), y) -> copysign(x, y)
6430  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6431      N0.getOpcode() == ISD::FCOPYSIGN)
6432    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6433                       N0.getOperand(0), N1);
6434
6435  // copysign(x, abs(y)) -> abs(x)
6436  if (N1.getOpcode() == ISD::FABS)
6437    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6438
6439  // copysign(x, copysign(y,z)) -> copysign(x, z)
6440  if (N1.getOpcode() == ISD::FCOPYSIGN)
6441    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6442                       N0, N1.getOperand(1));
6443
6444  // copysign(x, fp_extend(y)) -> copysign(x, y)
6445  // copysign(x, fp_round(y)) -> copysign(x, y)
6446  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6447    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6448                       N0, N1.getOperand(0));
6449
6450  return SDValue();
6451}
6452
6453SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6454  SDValue N0 = N->getOperand(0);
6455  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6456  EVT VT = N->getValueType(0);
6457  EVT OpVT = N0.getValueType();
6458
6459  // fold (sint_to_fp c1) -> c1fp
6460  if (N0C &&
6461      // ...but only if the target supports immediate floating-point values
6462      (!LegalOperations ||
6463       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6464    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6465
6466  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6467  // but UINT_TO_FP is legal on this target, try to convert.
6468  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6469      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6470    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6471    if (DAG.SignBitIsZero(N0))
6472      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6473  }
6474
6475  // The next optimizations are desireable only if SELECT_CC can be lowered.
6476  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6477  // having to say they don't support SELECT_CC on every type the DAG knows
6478  // about, since there is no way to mark an opcode illegal at all value types
6479  // (See also visitSELECT)
6480  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6481    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6482    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6483        !VT.isVector() &&
6484        (!LegalOperations ||
6485         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6486      SDValue Ops[] =
6487        { N0.getOperand(0), N0.getOperand(1),
6488          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6489          N0.getOperand(2) };
6490      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6491    }
6492
6493    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6494    //      (select_cc x, y, 1.0, 0.0,, cc)
6495    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6496        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6497        (!LegalOperations ||
6498         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6499      SDValue Ops[] =
6500        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6501          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6502          N0.getOperand(0).getOperand(2) };
6503      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6504    }
6505  }
6506
6507  return SDValue();
6508}
6509
6510SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6511  SDValue N0 = N->getOperand(0);
6512  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6513  EVT VT = N->getValueType(0);
6514  EVT OpVT = N0.getValueType();
6515
6516  // fold (uint_to_fp c1) -> c1fp
6517  if (N0C &&
6518      // ...but only if the target supports immediate floating-point values
6519      (!LegalOperations ||
6520       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6521    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6522
6523  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6524  // but SINT_TO_FP is legal on this target, try to convert.
6525  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6526      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6527    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6528    if (DAG.SignBitIsZero(N0))
6529      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6530  }
6531
6532  // The next optimizations are desireable only if SELECT_CC can be lowered.
6533  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6534  // having to say they don't support SELECT_CC on every type the DAG knows
6535  // about, since there is no way to mark an opcode illegal at all value types
6536  // (See also visitSELECT)
6537  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6538    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6539
6540    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6541        (!LegalOperations ||
6542         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6543      SDValue Ops[] =
6544        { N0.getOperand(0), N0.getOperand(1),
6545          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6546          N0.getOperand(2) };
6547      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6548    }
6549  }
6550
6551  return SDValue();
6552}
6553
6554SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6555  SDValue N0 = N->getOperand(0);
6556  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6557  EVT VT = N->getValueType(0);
6558
6559  // fold (fp_to_sint c1fp) -> c1
6560  if (N0CFP)
6561    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6562
6563  return SDValue();
6564}
6565
6566SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6567  SDValue N0 = N->getOperand(0);
6568  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6569  EVT VT = N->getValueType(0);
6570
6571  // fold (fp_to_uint c1fp) -> c1
6572  if (N0CFP)
6573    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6574
6575  return SDValue();
6576}
6577
6578SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6579  SDValue N0 = N->getOperand(0);
6580  SDValue N1 = N->getOperand(1);
6581  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6582  EVT VT = N->getValueType(0);
6583
6584  // fold (fp_round c1fp) -> c1fp
6585  if (N0CFP)
6586    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6587
6588  // fold (fp_round (fp_extend x)) -> x
6589  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6590    return N0.getOperand(0);
6591
6592  // fold (fp_round (fp_round x)) -> (fp_round x)
6593  if (N0.getOpcode() == ISD::FP_ROUND) {
6594    // This is a value preserving truncation if both round's are.
6595    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6596                   N0.getNode()->getConstantOperandVal(1) == 1;
6597    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6598                       DAG.getIntPtrConstant(IsTrunc));
6599  }
6600
6601  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6602  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6603    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6604                              N0.getOperand(0), N1);
6605    AddToWorkList(Tmp.getNode());
6606    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6607                       Tmp, N0.getOperand(1));
6608  }
6609
6610  return SDValue();
6611}
6612
6613SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6614  SDValue N0 = N->getOperand(0);
6615  EVT VT = N->getValueType(0);
6616  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6617  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6618
6619  // fold (fp_round_inreg c1fp) -> c1fp
6620  if (N0CFP && isTypeLegal(EVT)) {
6621    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6622    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6623  }
6624
6625  return SDValue();
6626}
6627
6628SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6629  SDValue N0 = N->getOperand(0);
6630  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6631  EVT VT = N->getValueType(0);
6632
6633  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6634  if (N->hasOneUse() &&
6635      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6636    return SDValue();
6637
6638  // fold (fp_extend c1fp) -> c1fp
6639  if (N0CFP)
6640    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6641
6642  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6643  // value of X.
6644  if (N0.getOpcode() == ISD::FP_ROUND
6645      && N0.getNode()->getConstantOperandVal(1) == 1) {
6646    SDValue In = N0.getOperand(0);
6647    if (In.getValueType() == VT) return In;
6648    if (VT.bitsLT(In.getValueType()))
6649      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6650                         In, N0.getOperand(1));
6651    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6652  }
6653
6654  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6655  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6656      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6657       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6658    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6659    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6660                                     LN0->getChain(),
6661                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6662                                     N0.getValueType(),
6663                                     LN0->isVolatile(), LN0->isNonTemporal(),
6664                                     LN0->getAlignment());
6665    CombineTo(N, ExtLoad);
6666    CombineTo(N0.getNode(),
6667              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6668                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6669              ExtLoad.getValue(1));
6670    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6671  }
6672
6673  return SDValue();
6674}
6675
6676SDValue DAGCombiner::visitFNEG(SDNode *N) {
6677  SDValue N0 = N->getOperand(0);
6678  EVT VT = N->getValueType(0);
6679
6680  if (VT.isVector()) {
6681    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6682    if (FoldedVOp.getNode()) return FoldedVOp;
6683  }
6684
6685  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6686                         &DAG.getTarget().Options))
6687    return GetNegatedExpression(N0, DAG, LegalOperations);
6688
6689  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6690  // constant pool values.
6691  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6692      !VT.isVector() &&
6693      N0.getNode()->hasOneUse() &&
6694      N0.getOperand(0).getValueType().isInteger()) {
6695    SDValue Int = N0.getOperand(0);
6696    EVT IntVT = Int.getValueType();
6697    if (IntVT.isInteger() && !IntVT.isVector()) {
6698      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6699              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6700      AddToWorkList(Int.getNode());
6701      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6702                         VT, Int);
6703    }
6704  }
6705
6706  // (fneg (fmul c, x)) -> (fmul -c, x)
6707  if (N0.getOpcode() == ISD::FMUL) {
6708    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6709    if (CFP1)
6710      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6711                         N0.getOperand(0),
6712                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6713                                     N0.getOperand(1)));
6714  }
6715
6716  return SDValue();
6717}
6718
6719SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6720  SDValue N0 = N->getOperand(0);
6721  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6722  EVT VT = N->getValueType(0);
6723
6724  // fold (fceil c1) -> fceil(c1)
6725  if (N0CFP)
6726    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6727
6728  return SDValue();
6729}
6730
6731SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6732  SDValue N0 = N->getOperand(0);
6733  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6734  EVT VT = N->getValueType(0);
6735
6736  // fold (ftrunc c1) -> ftrunc(c1)
6737  if (N0CFP)
6738    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6739
6740  return SDValue();
6741}
6742
6743SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6744  SDValue N0 = N->getOperand(0);
6745  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6746  EVT VT = N->getValueType(0);
6747
6748  // fold (ffloor c1) -> ffloor(c1)
6749  if (N0CFP)
6750    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6751
6752  return SDValue();
6753}
6754
6755SDValue DAGCombiner::visitFABS(SDNode *N) {
6756  SDValue N0 = N->getOperand(0);
6757  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6758  EVT VT = N->getValueType(0);
6759
6760  if (VT.isVector()) {
6761    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6762    if (FoldedVOp.getNode()) return FoldedVOp;
6763  }
6764
6765  // fold (fabs c1) -> fabs(c1)
6766  if (N0CFP)
6767    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6768  // fold (fabs (fabs x)) -> (fabs x)
6769  if (N0.getOpcode() == ISD::FABS)
6770    return N->getOperand(0);
6771  // fold (fabs (fneg x)) -> (fabs x)
6772  // fold (fabs (fcopysign x, y)) -> (fabs x)
6773  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6774    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6775
6776  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6777  // constant pool values.
6778  if (!TLI.isFAbsFree(VT) &&
6779      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6780      N0.getOperand(0).getValueType().isInteger() &&
6781      !N0.getOperand(0).getValueType().isVector()) {
6782    SDValue Int = N0.getOperand(0);
6783    EVT IntVT = Int.getValueType();
6784    if (IntVT.isInteger() && !IntVT.isVector()) {
6785      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6786             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6787      AddToWorkList(Int.getNode());
6788      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6789                         N->getValueType(0), Int);
6790    }
6791  }
6792
6793  return SDValue();
6794}
6795
6796SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6797  SDValue Chain = N->getOperand(0);
6798  SDValue N1 = N->getOperand(1);
6799  SDValue N2 = N->getOperand(2);
6800
6801  // If N is a constant we could fold this into a fallthrough or unconditional
6802  // branch. However that doesn't happen very often in normal code, because
6803  // Instcombine/SimplifyCFG should have handled the available opportunities.
6804  // If we did this folding here, it would be necessary to update the
6805  // MachineBasicBlock CFG, which is awkward.
6806
6807  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6808  // on the target.
6809  if (N1.getOpcode() == ISD::SETCC &&
6810      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6811                                   N1.getOperand(0).getValueType())) {
6812    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6813                       Chain, N1.getOperand(2),
6814                       N1.getOperand(0), N1.getOperand(1), N2);
6815  }
6816
6817  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6818      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6819       (N1.getOperand(0).hasOneUse() &&
6820        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6821    SDNode *Trunc = 0;
6822    if (N1.getOpcode() == ISD::TRUNCATE) {
6823      // Look pass the truncate.
6824      Trunc = N1.getNode();
6825      N1 = N1.getOperand(0);
6826    }
6827
6828    // Match this pattern so that we can generate simpler code:
6829    //
6830    //   %a = ...
6831    //   %b = and i32 %a, 2
6832    //   %c = srl i32 %b, 1
6833    //   brcond i32 %c ...
6834    //
6835    // into
6836    //
6837    //   %a = ...
6838    //   %b = and i32 %a, 2
6839    //   %c = setcc eq %b, 0
6840    //   brcond %c ...
6841    //
6842    // This applies only when the AND constant value has one bit set and the
6843    // SRL constant is equal to the log2 of the AND constant. The back-end is
6844    // smart enough to convert the result into a TEST/JMP sequence.
6845    SDValue Op0 = N1.getOperand(0);
6846    SDValue Op1 = N1.getOperand(1);
6847
6848    if (Op0.getOpcode() == ISD::AND &&
6849        Op1.getOpcode() == ISD::Constant) {
6850      SDValue AndOp1 = Op0.getOperand(1);
6851
6852      if (AndOp1.getOpcode() == ISD::Constant) {
6853        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6854
6855        if (AndConst.isPowerOf2() &&
6856            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6857          SDValue SetCC =
6858            DAG.getSetCC(SDLoc(N),
6859                         getSetCCResultType(Op0.getValueType()),
6860                         Op0, DAG.getConstant(0, Op0.getValueType()),
6861                         ISD::SETNE);
6862
6863          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6864                                          MVT::Other, Chain, SetCC, N2);
6865          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6866          // will convert it back to (X & C1) >> C2.
6867          CombineTo(N, NewBRCond, false);
6868          // Truncate is dead.
6869          if (Trunc) {
6870            removeFromWorkList(Trunc);
6871            DAG.DeleteNode(Trunc);
6872          }
6873          // Replace the uses of SRL with SETCC
6874          WorkListRemover DeadNodes(*this);
6875          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6876          removeFromWorkList(N1.getNode());
6877          DAG.DeleteNode(N1.getNode());
6878          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6879        }
6880      }
6881    }
6882
6883    if (Trunc)
6884      // Restore N1 if the above transformation doesn't match.
6885      N1 = N->getOperand(1);
6886  }
6887
6888  // Transform br(xor(x, y)) -> br(x != y)
6889  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6890  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6891    SDNode *TheXor = N1.getNode();
6892    SDValue Op0 = TheXor->getOperand(0);
6893    SDValue Op1 = TheXor->getOperand(1);
6894    if (Op0.getOpcode() == Op1.getOpcode()) {
6895      // Avoid missing important xor optimizations.
6896      SDValue Tmp = visitXOR(TheXor);
6897      if (Tmp.getNode()) {
6898        if (Tmp.getNode() != TheXor) {
6899          DEBUG(dbgs() << "\nReplacing.8 ";
6900                TheXor->dump(&DAG);
6901                dbgs() << "\nWith: ";
6902                Tmp.getNode()->dump(&DAG);
6903                dbgs() << '\n');
6904          WorkListRemover DeadNodes(*this);
6905          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6906          removeFromWorkList(TheXor);
6907          DAG.DeleteNode(TheXor);
6908          return DAG.getNode(ISD::BRCOND, SDLoc(N),
6909                             MVT::Other, Chain, Tmp, N2);
6910        }
6911
6912        // visitXOR has changed XOR's operands or replaced the XOR completely,
6913        // bail out.
6914        return SDValue(N, 0);
6915      }
6916    }
6917
6918    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6919      bool Equal = false;
6920      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6921        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6922            Op0.getOpcode() == ISD::XOR) {
6923          TheXor = Op0.getNode();
6924          Equal = true;
6925        }
6926
6927      EVT SetCCVT = N1.getValueType();
6928      if (LegalTypes)
6929        SetCCVT = getSetCCResultType(SetCCVT);
6930      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
6931                                   SetCCVT,
6932                                   Op0, Op1,
6933                                   Equal ? ISD::SETEQ : ISD::SETNE);
6934      // Replace the uses of XOR with SETCC
6935      WorkListRemover DeadNodes(*this);
6936      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6937      removeFromWorkList(N1.getNode());
6938      DAG.DeleteNode(N1.getNode());
6939      return DAG.getNode(ISD::BRCOND, SDLoc(N),
6940                         MVT::Other, Chain, SetCC, N2);
6941    }
6942  }
6943
6944  return SDValue();
6945}
6946
6947// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6948//
6949SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6950  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6951  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6952
6953  // If N is a constant we could fold this into a fallthrough or unconditional
6954  // branch. However that doesn't happen very often in normal code, because
6955  // Instcombine/SimplifyCFG should have handled the available opportunities.
6956  // If we did this folding here, it would be necessary to update the
6957  // MachineBasicBlock CFG, which is awkward.
6958
6959  // Use SimplifySetCC to simplify SETCC's.
6960  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
6961                               CondLHS, CondRHS, CC->get(), SDLoc(N),
6962                               false);
6963  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6964
6965  // fold to a simpler setcc
6966  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6967    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6968                       N->getOperand(0), Simp.getOperand(2),
6969                       Simp.getOperand(0), Simp.getOperand(1),
6970                       N->getOperand(4));
6971
6972  return SDValue();
6973}
6974
6975/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6976/// uses N as its base pointer and that N may be folded in the load / store
6977/// addressing mode.
6978static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6979                                    SelectionDAG &DAG,
6980                                    const TargetLowering &TLI) {
6981  EVT VT;
6982  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6983    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6984      return false;
6985    VT = Use->getValueType(0);
6986  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6987    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6988      return false;
6989    VT = ST->getValue().getValueType();
6990  } else
6991    return false;
6992
6993  TargetLowering::AddrMode AM;
6994  if (N->getOpcode() == ISD::ADD) {
6995    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6996    if (Offset)
6997      // [reg +/- imm]
6998      AM.BaseOffs = Offset->getSExtValue();
6999    else
7000      // [reg +/- reg]
7001      AM.Scale = 1;
7002  } else if (N->getOpcode() == ISD::SUB) {
7003    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7004    if (Offset)
7005      // [reg +/- imm]
7006      AM.BaseOffs = -Offset->getSExtValue();
7007    else
7008      // [reg +/- reg]
7009      AM.Scale = 1;
7010  } else
7011    return false;
7012
7013  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7014}
7015
7016/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7017/// pre-indexed load / store when the base pointer is an add or subtract
7018/// and it has other uses besides the load / store. After the
7019/// transformation, the new indexed load / store has effectively folded
7020/// the add / subtract in and all of its other uses are redirected to the
7021/// new load / store.
7022bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7023  if (Level < AfterLegalizeDAG)
7024    return false;
7025
7026  bool isLoad = true;
7027  SDValue Ptr;
7028  EVT VT;
7029  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7030    if (LD->isIndexed())
7031      return false;
7032    VT = LD->getMemoryVT();
7033    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7034        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7035      return false;
7036    Ptr = LD->getBasePtr();
7037  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7038    if (ST->isIndexed())
7039      return false;
7040    VT = ST->getMemoryVT();
7041    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7042        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7043      return false;
7044    Ptr = ST->getBasePtr();
7045    isLoad = false;
7046  } else {
7047    return false;
7048  }
7049
7050  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7051  // out.  There is no reason to make this a preinc/predec.
7052  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7053      Ptr.getNode()->hasOneUse())
7054    return false;
7055
7056  // Ask the target to do addressing mode selection.
7057  SDValue BasePtr;
7058  SDValue Offset;
7059  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7060  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7061    return false;
7062
7063  // Backends without true r+i pre-indexed forms may need to pass a
7064  // constant base with a variable offset so that constant coercion
7065  // will work with the patterns in canonical form.
7066  bool Swapped = false;
7067  if (isa<ConstantSDNode>(BasePtr)) {
7068    std::swap(BasePtr, Offset);
7069    Swapped = true;
7070  }
7071
7072  // Don't create a indexed load / store with zero offset.
7073  if (isa<ConstantSDNode>(Offset) &&
7074      cast<ConstantSDNode>(Offset)->isNullValue())
7075    return false;
7076
7077  // Try turning it into a pre-indexed load / store except when:
7078  // 1) The new base ptr is a frame index.
7079  // 2) If N is a store and the new base ptr is either the same as or is a
7080  //    predecessor of the value being stored.
7081  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7082  //    that would create a cycle.
7083  // 4) All uses are load / store ops that use it as old base ptr.
7084
7085  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7086  // (plus the implicit offset) to a register to preinc anyway.
7087  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7088    return false;
7089
7090  // Check #2.
7091  if (!isLoad) {
7092    SDValue Val = cast<StoreSDNode>(N)->getValue();
7093    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7094      return false;
7095  }
7096
7097  // If the offset is a constant, there may be other adds of constants that
7098  // can be folded with this one. We should do this to avoid having to keep
7099  // a copy of the original base pointer.
7100  SmallVector<SDNode *, 16> OtherUses;
7101  if (isa<ConstantSDNode>(Offset))
7102    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7103         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7104      SDNode *Use = *I;
7105      if (Use == Ptr.getNode())
7106        continue;
7107
7108      if (Use->isPredecessorOf(N))
7109        continue;
7110
7111      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7112        OtherUses.clear();
7113        break;
7114      }
7115
7116      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7117      if (Op1.getNode() == BasePtr.getNode())
7118        std::swap(Op0, Op1);
7119      assert(Op0.getNode() == BasePtr.getNode() &&
7120             "Use of ADD/SUB but not an operand");
7121
7122      if (!isa<ConstantSDNode>(Op1)) {
7123        OtherUses.clear();
7124        break;
7125      }
7126
7127      // FIXME: In some cases, we can be smarter about this.
7128      if (Op1.getValueType() != Offset.getValueType()) {
7129        OtherUses.clear();
7130        break;
7131      }
7132
7133      OtherUses.push_back(Use);
7134    }
7135
7136  if (Swapped)
7137    std::swap(BasePtr, Offset);
7138
7139  // Now check for #3 and #4.
7140  bool RealUse = false;
7141
7142  // Caches for hasPredecessorHelper
7143  SmallPtrSet<const SDNode *, 32> Visited;
7144  SmallVector<const SDNode *, 16> Worklist;
7145
7146  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7147         E = Ptr.getNode()->use_end(); I != E; ++I) {
7148    SDNode *Use = *I;
7149    if (Use == N)
7150      continue;
7151    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7152      return false;
7153
7154    // If Ptr may be folded in addressing mode of other use, then it's
7155    // not profitable to do this transformation.
7156    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7157      RealUse = true;
7158  }
7159
7160  if (!RealUse)
7161    return false;
7162
7163  SDValue Result;
7164  if (isLoad)
7165    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7166                                BasePtr, Offset, AM);
7167  else
7168    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7169                                 BasePtr, Offset, AM);
7170  ++PreIndexedNodes;
7171  ++NodesCombined;
7172  DEBUG(dbgs() << "\nReplacing.4 ";
7173        N->dump(&DAG);
7174        dbgs() << "\nWith: ";
7175        Result.getNode()->dump(&DAG);
7176        dbgs() << '\n');
7177  WorkListRemover DeadNodes(*this);
7178  if (isLoad) {
7179    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7180    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7181  } else {
7182    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7183  }
7184
7185  // Finally, since the node is now dead, remove it from the graph.
7186  DAG.DeleteNode(N);
7187
7188  if (Swapped)
7189    std::swap(BasePtr, Offset);
7190
7191  // Replace other uses of BasePtr that can be updated to use Ptr
7192  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7193    unsigned OffsetIdx = 1;
7194    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7195      OffsetIdx = 0;
7196    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7197           BasePtr.getNode() && "Expected BasePtr operand");
7198
7199    // We need to replace ptr0 in the following expression:
7200    //   x0 * offset0 + y0 * ptr0 = t0
7201    // knowing that
7202    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7203    //
7204    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7205    // indexed load/store and the expresion that needs to be re-written.
7206    //
7207    // Therefore, we have:
7208    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7209
7210    ConstantSDNode *CN =
7211      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7212    int X0, X1, Y0, Y1;
7213    APInt Offset0 = CN->getAPIntValue();
7214    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7215
7216    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7217    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7218    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7219    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7220
7221    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7222
7223    APInt CNV = Offset0;
7224    if (X0 < 0) CNV = -CNV;
7225    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7226    else CNV = CNV - Offset1;
7227
7228    // We can now generate the new expression.
7229    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7230    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7231
7232    SDValue NewUse = DAG.getNode(Opcode,
7233                                 SDLoc(OtherUses[i]),
7234                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7235    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7236    removeFromWorkList(OtherUses[i]);
7237    DAG.DeleteNode(OtherUses[i]);
7238  }
7239
7240  // Replace the uses of Ptr with uses of the updated base value.
7241  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7242  removeFromWorkList(Ptr.getNode());
7243  DAG.DeleteNode(Ptr.getNode());
7244
7245  return true;
7246}
7247
7248/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7249/// add / sub of the base pointer node into a post-indexed load / store.
7250/// The transformation folded the add / subtract into the new indexed
7251/// load / store effectively and all of its uses are redirected to the
7252/// new load / store.
7253bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7254  if (Level < AfterLegalizeDAG)
7255    return false;
7256
7257  bool isLoad = true;
7258  SDValue Ptr;
7259  EVT VT;
7260  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7261    if (LD->isIndexed())
7262      return false;
7263    VT = LD->getMemoryVT();
7264    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7265        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7266      return false;
7267    Ptr = LD->getBasePtr();
7268  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7269    if (ST->isIndexed())
7270      return false;
7271    VT = ST->getMemoryVT();
7272    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7273        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7274      return false;
7275    Ptr = ST->getBasePtr();
7276    isLoad = false;
7277  } else {
7278    return false;
7279  }
7280
7281  if (Ptr.getNode()->hasOneUse())
7282    return false;
7283
7284  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7285         E = Ptr.getNode()->use_end(); I != E; ++I) {
7286    SDNode *Op = *I;
7287    if (Op == N ||
7288        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7289      continue;
7290
7291    SDValue BasePtr;
7292    SDValue Offset;
7293    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7294    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7295      // Don't create a indexed load / store with zero offset.
7296      if (isa<ConstantSDNode>(Offset) &&
7297          cast<ConstantSDNode>(Offset)->isNullValue())
7298        continue;
7299
7300      // Try turning it into a post-indexed load / store except when
7301      // 1) All uses are load / store ops that use it as base ptr (and
7302      //    it may be folded as addressing mmode).
7303      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7304      //    nor a successor of N. Otherwise, if Op is folded that would
7305      //    create a cycle.
7306
7307      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7308        continue;
7309
7310      // Check for #1.
7311      bool TryNext = false;
7312      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7313             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7314        SDNode *Use = *II;
7315        if (Use == Ptr.getNode())
7316          continue;
7317
7318        // If all the uses are load / store addresses, then don't do the
7319        // transformation.
7320        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7321          bool RealUse = false;
7322          for (SDNode::use_iterator III = Use->use_begin(),
7323                 EEE = Use->use_end(); III != EEE; ++III) {
7324            SDNode *UseUse = *III;
7325            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7326              RealUse = true;
7327          }
7328
7329          if (!RealUse) {
7330            TryNext = true;
7331            break;
7332          }
7333        }
7334      }
7335
7336      if (TryNext)
7337        continue;
7338
7339      // Check for #2
7340      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7341        SDValue Result = isLoad
7342          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7343                               BasePtr, Offset, AM)
7344          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7345                                BasePtr, Offset, AM);
7346        ++PostIndexedNodes;
7347        ++NodesCombined;
7348        DEBUG(dbgs() << "\nReplacing.5 ";
7349              N->dump(&DAG);
7350              dbgs() << "\nWith: ";
7351              Result.getNode()->dump(&DAG);
7352              dbgs() << '\n');
7353        WorkListRemover DeadNodes(*this);
7354        if (isLoad) {
7355          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7356          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7357        } else {
7358          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7359        }
7360
7361        // Finally, since the node is now dead, remove it from the graph.
7362        DAG.DeleteNode(N);
7363
7364        // Replace the uses of Use with uses of the updated base value.
7365        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7366                                      Result.getValue(isLoad ? 1 : 0));
7367        removeFromWorkList(Op);
7368        DAG.DeleteNode(Op);
7369        return true;
7370      }
7371    }
7372  }
7373
7374  return false;
7375}
7376
7377SDValue DAGCombiner::visitLOAD(SDNode *N) {
7378  LoadSDNode *LD  = cast<LoadSDNode>(N);
7379  SDValue Chain = LD->getChain();
7380  SDValue Ptr   = LD->getBasePtr();
7381
7382  // If load is not volatile and there are no uses of the loaded value (and
7383  // the updated indexed value in case of indexed loads), change uses of the
7384  // chain value into uses of the chain input (i.e. delete the dead load).
7385  if (!LD->isVolatile()) {
7386    if (N->getValueType(1) == MVT::Other) {
7387      // Unindexed loads.
7388      if (!N->hasAnyUseOfValue(0)) {
7389        // It's not safe to use the two value CombineTo variant here. e.g.
7390        // v1, chain2 = load chain1, loc
7391        // v2, chain3 = load chain2, loc
7392        // v3         = add v2, c
7393        // Now we replace use of chain2 with chain1.  This makes the second load
7394        // isomorphic to the one we are deleting, and thus makes this load live.
7395        DEBUG(dbgs() << "\nReplacing.6 ";
7396              N->dump(&DAG);
7397              dbgs() << "\nWith chain: ";
7398              Chain.getNode()->dump(&DAG);
7399              dbgs() << "\n");
7400        WorkListRemover DeadNodes(*this);
7401        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7402
7403        if (N->use_empty()) {
7404          removeFromWorkList(N);
7405          DAG.DeleteNode(N);
7406        }
7407
7408        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7409      }
7410    } else {
7411      // Indexed loads.
7412      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7413      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7414        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7415        DEBUG(dbgs() << "\nReplacing.7 ";
7416              N->dump(&DAG);
7417              dbgs() << "\nWith: ";
7418              Undef.getNode()->dump(&DAG);
7419              dbgs() << " and 2 other values\n");
7420        WorkListRemover DeadNodes(*this);
7421        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7422        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7423                                      DAG.getUNDEF(N->getValueType(1)));
7424        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7425        removeFromWorkList(N);
7426        DAG.DeleteNode(N);
7427        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7428      }
7429    }
7430  }
7431
7432  // If this load is directly stored, replace the load value with the stored
7433  // value.
7434  // TODO: Handle store large -> read small portion.
7435  // TODO: Handle TRUNCSTORE/LOADEXT
7436  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7437    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7438      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7439      if (PrevST->getBasePtr() == Ptr &&
7440          PrevST->getValue().getValueType() == N->getValueType(0))
7441      return CombineTo(N, Chain.getOperand(1), Chain);
7442    }
7443  }
7444
7445  // Try to infer better alignment information than the load already has.
7446  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7447    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7448      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7449        SDValue NewLoad =
7450               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7451                              LD->getValueType(0),
7452                              Chain, Ptr, LD->getPointerInfo(),
7453                              LD->getMemoryVT(),
7454                              LD->isVolatile(), LD->isNonTemporal(), Align);
7455        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7456      }
7457    }
7458  }
7459
7460  if (CombinerAA) {
7461    // Walk up chain skipping non-aliasing memory nodes.
7462    SDValue BetterChain = FindBetterChain(N, Chain);
7463
7464    // If there is a better chain.
7465    if (Chain != BetterChain) {
7466      SDValue ReplLoad;
7467
7468      // Replace the chain to void dependency.
7469      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7470        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7471                               BetterChain, Ptr, LD->getPointerInfo(),
7472                               LD->isVolatile(), LD->isNonTemporal(),
7473                               LD->isInvariant(), LD->getAlignment());
7474      } else {
7475        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7476                                  LD->getValueType(0),
7477                                  BetterChain, Ptr, LD->getPointerInfo(),
7478                                  LD->getMemoryVT(),
7479                                  LD->isVolatile(),
7480                                  LD->isNonTemporal(),
7481                                  LD->getAlignment());
7482      }
7483
7484      // Create token factor to keep old chain connected.
7485      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7486                                  MVT::Other, Chain, ReplLoad.getValue(1));
7487
7488      // Make sure the new and old chains are cleaned up.
7489      AddToWorkList(Token.getNode());
7490
7491      // Replace uses with load result and token factor. Don't add users
7492      // to work list.
7493      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7494    }
7495  }
7496
7497  // Try transforming N to an indexed load.
7498  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7499    return SDValue(N, 0);
7500
7501  return SDValue();
7502}
7503
7504/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7505/// load is having specific bytes cleared out.  If so, return the byte size
7506/// being masked out and the shift amount.
7507static std::pair<unsigned, unsigned>
7508CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7509  std::pair<unsigned, unsigned> Result(0, 0);
7510
7511  // Check for the structure we're looking for.
7512  if (V->getOpcode() != ISD::AND ||
7513      !isa<ConstantSDNode>(V->getOperand(1)) ||
7514      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7515    return Result;
7516
7517  // Check the chain and pointer.
7518  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7519  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7520
7521  // The store should be chained directly to the load or be an operand of a
7522  // tokenfactor.
7523  if (LD == Chain.getNode())
7524    ; // ok.
7525  else if (Chain->getOpcode() != ISD::TokenFactor)
7526    return Result; // Fail.
7527  else {
7528    bool isOk = false;
7529    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7530      if (Chain->getOperand(i).getNode() == LD) {
7531        isOk = true;
7532        break;
7533      }
7534    if (!isOk) return Result;
7535  }
7536
7537  // This only handles simple types.
7538  if (V.getValueType() != MVT::i16 &&
7539      V.getValueType() != MVT::i32 &&
7540      V.getValueType() != MVT::i64)
7541    return Result;
7542
7543  // Check the constant mask.  Invert it so that the bits being masked out are
7544  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7545  // follow the sign bit for uniformity.
7546  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7547  unsigned NotMaskLZ = countLeadingZeros(NotMask);
7548  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7549  unsigned NotMaskTZ = countTrailingZeros(NotMask);
7550  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7551  if (NotMaskLZ == 64) return Result;  // All zero mask.
7552
7553  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7554  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7555    return Result;
7556
7557  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7558  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7559    NotMaskLZ -= 64-V.getValueSizeInBits();
7560
7561  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7562  switch (MaskedBytes) {
7563  case 1:
7564  case 2:
7565  case 4: break;
7566  default: return Result; // All one mask, or 5-byte mask.
7567  }
7568
7569  // Verify that the first bit starts at a multiple of mask so that the access
7570  // is aligned the same as the access width.
7571  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7572
7573  Result.first = MaskedBytes;
7574  Result.second = NotMaskTZ/8;
7575  return Result;
7576}
7577
7578
7579/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7580/// provides a value as specified by MaskInfo.  If so, replace the specified
7581/// store with a narrower store of truncated IVal.
7582static SDNode *
7583ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7584                                SDValue IVal, StoreSDNode *St,
7585                                DAGCombiner *DC) {
7586  unsigned NumBytes = MaskInfo.first;
7587  unsigned ByteShift = MaskInfo.second;
7588  SelectionDAG &DAG = DC->getDAG();
7589
7590  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7591  // that uses this.  If not, this is not a replacement.
7592  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7593                                  ByteShift*8, (ByteShift+NumBytes)*8);
7594  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7595
7596  // Check that it is legal on the target to do this.  It is legal if the new
7597  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7598  // legalization.
7599  MVT VT = MVT::getIntegerVT(NumBytes*8);
7600  if (!DC->isTypeLegal(VT))
7601    return 0;
7602
7603  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7604  // shifted by ByteShift and truncated down to NumBytes.
7605  if (ByteShift)
7606    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
7607                       DAG.getConstant(ByteShift*8,
7608                                    DC->getShiftAmountTy(IVal.getValueType())));
7609
7610  // Figure out the offset for the store and the alignment of the access.
7611  unsigned StOffset;
7612  unsigned NewAlign = St->getAlignment();
7613
7614  if (DAG.getTargetLoweringInfo().isLittleEndian())
7615    StOffset = ByteShift;
7616  else
7617    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7618
7619  SDValue Ptr = St->getBasePtr();
7620  if (StOffset) {
7621    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
7622                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7623    NewAlign = MinAlign(NewAlign, StOffset);
7624  }
7625
7626  // Truncate down to the new size.
7627  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
7628
7629  ++OpsNarrowed;
7630  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
7631                      St->getPointerInfo().getWithOffset(StOffset),
7632                      false, false, NewAlign).getNode();
7633}
7634
7635
7636/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7637/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7638/// of the loaded bits, try narrowing the load and store if it would end up
7639/// being a win for performance or code size.
7640SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7641  StoreSDNode *ST  = cast<StoreSDNode>(N);
7642  if (ST->isVolatile())
7643    return SDValue();
7644
7645  SDValue Chain = ST->getChain();
7646  SDValue Value = ST->getValue();
7647  SDValue Ptr   = ST->getBasePtr();
7648  EVT VT = Value.getValueType();
7649
7650  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7651    return SDValue();
7652
7653  unsigned Opc = Value.getOpcode();
7654
7655  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7656  // is a byte mask indicating a consecutive number of bytes, check to see if
7657  // Y is known to provide just those bytes.  If so, we try to replace the
7658  // load + replace + store sequence with a single (narrower) store, which makes
7659  // the load dead.
7660  if (Opc == ISD::OR) {
7661    std::pair<unsigned, unsigned> MaskedLoad;
7662    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7663    if (MaskedLoad.first)
7664      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7665                                                  Value.getOperand(1), ST,this))
7666        return SDValue(NewST, 0);
7667
7668    // Or is commutative, so try swapping X and Y.
7669    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7670    if (MaskedLoad.first)
7671      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7672                                                  Value.getOperand(0), ST,this))
7673        return SDValue(NewST, 0);
7674  }
7675
7676  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7677      Value.getOperand(1).getOpcode() != ISD::Constant)
7678    return SDValue();
7679
7680  SDValue N0 = Value.getOperand(0);
7681  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7682      Chain == SDValue(N0.getNode(), 1)) {
7683    LoadSDNode *LD = cast<LoadSDNode>(N0);
7684    if (LD->getBasePtr() != Ptr ||
7685        LD->getPointerInfo().getAddrSpace() !=
7686        ST->getPointerInfo().getAddrSpace())
7687      return SDValue();
7688
7689    // Find the type to narrow it the load / op / store to.
7690    SDValue N1 = Value.getOperand(1);
7691    unsigned BitWidth = N1.getValueSizeInBits();
7692    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7693    if (Opc == ISD::AND)
7694      Imm ^= APInt::getAllOnesValue(BitWidth);
7695    if (Imm == 0 || Imm.isAllOnesValue())
7696      return SDValue();
7697    unsigned ShAmt = Imm.countTrailingZeros();
7698    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7699    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7700    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7701    while (NewBW < BitWidth &&
7702           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7703             TLI.isNarrowingProfitable(VT, NewVT))) {
7704      NewBW = NextPowerOf2(NewBW);
7705      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7706    }
7707    if (NewBW >= BitWidth)
7708      return SDValue();
7709
7710    // If the lsb changed does not start at the type bitwidth boundary,
7711    // start at the previous one.
7712    if (ShAmt % NewBW)
7713      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7714    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7715                                   std::min(BitWidth, ShAmt + NewBW));
7716    if ((Imm & Mask) == Imm) {
7717      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7718      if (Opc == ISD::AND)
7719        NewImm ^= APInt::getAllOnesValue(NewBW);
7720      uint64_t PtrOff = ShAmt / 8;
7721      // For big endian targets, we need to adjust the offset to the pointer to
7722      // load the correct bytes.
7723      if (TLI.isBigEndian())
7724        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7725
7726      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7727      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7728      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7729        return SDValue();
7730
7731      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
7732                                   Ptr.getValueType(), Ptr,
7733                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7734      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
7735                                  LD->getChain(), NewPtr,
7736                                  LD->getPointerInfo().getWithOffset(PtrOff),
7737                                  LD->isVolatile(), LD->isNonTemporal(),
7738                                  LD->isInvariant(), NewAlign);
7739      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
7740                                   DAG.getConstant(NewImm, NewVT));
7741      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
7742                                   NewVal, NewPtr,
7743                                   ST->getPointerInfo().getWithOffset(PtrOff),
7744                                   false, false, NewAlign);
7745
7746      AddToWorkList(NewPtr.getNode());
7747      AddToWorkList(NewLD.getNode());
7748      AddToWorkList(NewVal.getNode());
7749      WorkListRemover DeadNodes(*this);
7750      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7751      ++OpsNarrowed;
7752      return NewST;
7753    }
7754  }
7755
7756  return SDValue();
7757}
7758
7759/// TransformFPLoadStorePair - For a given floating point load / store pair,
7760/// if the load value isn't used by any other operations, then consider
7761/// transforming the pair to integer load / store operations if the target
7762/// deems the transformation profitable.
7763SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7764  StoreSDNode *ST  = cast<StoreSDNode>(N);
7765  SDValue Chain = ST->getChain();
7766  SDValue Value = ST->getValue();
7767  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7768      Value.hasOneUse() &&
7769      Chain == SDValue(Value.getNode(), 1)) {
7770    LoadSDNode *LD = cast<LoadSDNode>(Value);
7771    EVT VT = LD->getMemoryVT();
7772    if (!VT.isFloatingPoint() ||
7773        VT != ST->getMemoryVT() ||
7774        LD->isNonTemporal() ||
7775        ST->isNonTemporal() ||
7776        LD->getPointerInfo().getAddrSpace() != 0 ||
7777        ST->getPointerInfo().getAddrSpace() != 0)
7778      return SDValue();
7779
7780    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7781    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7782        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7783        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7784        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7785      return SDValue();
7786
7787    unsigned LDAlign = LD->getAlignment();
7788    unsigned STAlign = ST->getAlignment();
7789    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7790    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7791    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7792      return SDValue();
7793
7794    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
7795                                LD->getChain(), LD->getBasePtr(),
7796                                LD->getPointerInfo(),
7797                                false, false, false, LDAlign);
7798
7799    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
7800                                 NewLD, ST->getBasePtr(),
7801                                 ST->getPointerInfo(),
7802                                 false, false, STAlign);
7803
7804    AddToWorkList(NewLD.getNode());
7805    AddToWorkList(NewST.getNode());
7806    WorkListRemover DeadNodes(*this);
7807    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7808    ++LdStFP2Int;
7809    return NewST;
7810  }
7811
7812  return SDValue();
7813}
7814
7815/// Helper struct to parse and store a memory address as base + index + offset.
7816/// We ignore sign extensions when it is safe to do so.
7817/// The following two expressions are not equivalent. To differentiate we need
7818/// to store whether there was a sign extension involved in the index
7819/// computation.
7820///  (load (i64 add (i64 copyfromreg %c)
7821///                 (i64 signextend (add (i8 load %index)
7822///                                      (i8 1))))
7823/// vs
7824///
7825/// (load (i64 add (i64 copyfromreg %c)
7826///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7827///                                         (i32 1)))))
7828struct BaseIndexOffset {
7829  SDValue Base;
7830  SDValue Index;
7831  int64_t Offset;
7832  bool IsIndexSignExt;
7833
7834  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7835
7836  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7837                  bool IsIndexSignExt) :
7838    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7839
7840  bool equalBaseIndex(const BaseIndexOffset &Other) {
7841    return Other.Base == Base && Other.Index == Index &&
7842      Other.IsIndexSignExt == IsIndexSignExt;
7843  }
7844
7845  /// Parses tree in Ptr for base, index, offset addresses.
7846  static BaseIndexOffset match(SDValue Ptr) {
7847    bool IsIndexSignExt = false;
7848
7849    // Just Base or possibly anything else.
7850    if (Ptr->getOpcode() != ISD::ADD)
7851      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7852
7853    // Base + offset.
7854    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7855      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7856      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7857                              IsIndexSignExt);
7858    }
7859
7860    // Look at Base + Index + Offset cases.
7861    SDValue Base = Ptr->getOperand(0);
7862    SDValue IndexOffset = Ptr->getOperand(1);
7863
7864    // Skip signextends.
7865    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7866      IndexOffset = IndexOffset->getOperand(0);
7867      IsIndexSignExt = true;
7868    }
7869
7870    // Either the case of Base + Index (no offset) or something else.
7871    if (IndexOffset->getOpcode() != ISD::ADD)
7872      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7873
7874    // Now we have the case of Base + Index + offset.
7875    SDValue Index = IndexOffset->getOperand(0);
7876    SDValue Offset = IndexOffset->getOperand(1);
7877
7878    if (!isa<ConstantSDNode>(Offset))
7879      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7880
7881    // Ignore signextends.
7882    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7883      Index = Index->getOperand(0);
7884      IsIndexSignExt = true;
7885    } else IsIndexSignExt = false;
7886
7887    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7888    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7889  }
7890};
7891
7892/// Holds a pointer to an LSBaseSDNode as well as information on where it
7893/// is located in a sequence of memory operations connected by a chain.
7894struct MemOpLink {
7895  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7896    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7897  // Ptr to the mem node.
7898  LSBaseSDNode *MemNode;
7899  // Offset from the base ptr.
7900  int64_t OffsetFromBase;
7901  // What is the sequence number of this mem node.
7902  // Lowest mem operand in the DAG starts at zero.
7903  unsigned SequenceNum;
7904};
7905
7906/// Sorts store nodes in a link according to their offset from a shared
7907// base ptr.
7908struct ConsecutiveMemoryChainSorter {
7909  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7910    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7911  }
7912};
7913
7914bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7915  EVT MemVT = St->getMemoryVT();
7916  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7917  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7918    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7919
7920  // Don't merge vectors into wider inputs.
7921  if (MemVT.isVector() || !MemVT.isSimple())
7922    return false;
7923
7924  // Perform an early exit check. Do not bother looking at stored values that
7925  // are not constants or loads.
7926  SDValue StoredVal = St->getValue();
7927  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7928  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7929      !IsLoadSrc)
7930    return false;
7931
7932  // Only look at ends of store sequences.
7933  SDValue Chain = SDValue(St, 1);
7934  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7935    return false;
7936
7937  // This holds the base pointer, index, and the offset in bytes from the base
7938  // pointer.
7939  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
7940
7941  // We must have a base and an offset.
7942  if (!BasePtr.Base.getNode())
7943    return false;
7944
7945  // Do not handle stores to undef base pointers.
7946  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
7947    return false;
7948
7949  // Save the LoadSDNodes that we find in the chain.
7950  // We need to make sure that these nodes do not interfere with
7951  // any of the store nodes.
7952  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7953
7954  // Save the StoreSDNodes that we find in the chain.
7955  SmallVector<MemOpLink, 8> StoreNodes;
7956
7957  // Walk up the chain and look for nodes with offsets from the same
7958  // base pointer. Stop when reaching an instruction with a different kind
7959  // or instruction which has a different base pointer.
7960  unsigned Seq = 0;
7961  StoreSDNode *Index = St;
7962  while (Index) {
7963    // If the chain has more than one use, then we can't reorder the mem ops.
7964    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7965      break;
7966
7967    // Find the base pointer and offset for this memory node.
7968    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
7969
7970    // Check that the base pointer is the same as the original one.
7971    if (!Ptr.equalBaseIndex(BasePtr))
7972      break;
7973
7974    // Check that the alignment is the same.
7975    if (Index->getAlignment() != St->getAlignment())
7976      break;
7977
7978    // The memory operands must not be volatile.
7979    if (Index->isVolatile() || Index->isIndexed())
7980      break;
7981
7982    // No truncation.
7983    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7984      if (St->isTruncatingStore())
7985        break;
7986
7987    // The stored memory type must be the same.
7988    if (Index->getMemoryVT() != MemVT)
7989      break;
7990
7991    // We do not allow unaligned stores because we want to prevent overriding
7992    // stores.
7993    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7994      break;
7995
7996    // We found a potential memory operand to merge.
7997    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
7998
7999    // Find the next memory operand in the chain. If the next operand in the
8000    // chain is a store then move up and continue the scan with the next
8001    // memory operand. If the next operand is a load save it and use alias
8002    // information to check if it interferes with anything.
8003    SDNode *NextInChain = Index->getChain().getNode();
8004    while (1) {
8005      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8006        // We found a store node. Use it for the next iteration.
8007        Index = STn;
8008        break;
8009      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8010        // Save the load node for later. Continue the scan.
8011        AliasLoadNodes.push_back(Ldn);
8012        NextInChain = Ldn->getChain().getNode();
8013        continue;
8014      } else {
8015        Index = NULL;
8016        break;
8017      }
8018    }
8019  }
8020
8021  // Check if there is anything to merge.
8022  if (StoreNodes.size() < 2)
8023    return false;
8024
8025  // Sort the memory operands according to their distance from the base pointer.
8026  std::sort(StoreNodes.begin(), StoreNodes.end(),
8027            ConsecutiveMemoryChainSorter());
8028
8029  // Scan the memory operations on the chain and find the first non-consecutive
8030  // store memory address.
8031  unsigned LastConsecutiveStore = 0;
8032  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8033  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8034
8035    // Check that the addresses are consecutive starting from the second
8036    // element in the list of stores.
8037    if (i > 0) {
8038      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8039      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8040        break;
8041    }
8042
8043    bool Alias = false;
8044    // Check if this store interferes with any of the loads that we found.
8045    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8046      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8047        Alias = true;
8048        break;
8049      }
8050    // We found a load that alias with this store. Stop the sequence.
8051    if (Alias)
8052      break;
8053
8054    // Mark this node as useful.
8055    LastConsecutiveStore = i;
8056  }
8057
8058  // The node with the lowest store address.
8059  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8060
8061  // Store the constants into memory as one consecutive store.
8062  if (!IsLoadSrc) {
8063    unsigned LastLegalType = 0;
8064    unsigned LastLegalVectorType = 0;
8065    bool NonZero = false;
8066    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8067      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8068      SDValue StoredVal = St->getValue();
8069
8070      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8071        NonZero |= !C->isNullValue();
8072      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8073        NonZero |= !C->getConstantFPValue()->isNullValue();
8074      } else {
8075        // Non constant.
8076        break;
8077      }
8078
8079      // Find a legal type for the constant store.
8080      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8081      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8082      if (TLI.isTypeLegal(StoreTy))
8083        LastLegalType = i+1;
8084      // Or check whether a truncstore is legal.
8085      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8086               TargetLowering::TypePromoteInteger) {
8087        EVT LegalizedStoredValueTy =
8088          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8089        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8090          LastLegalType = i+1;
8091      }
8092
8093      // Find a legal type for the vector store.
8094      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8095      if (TLI.isTypeLegal(Ty))
8096        LastLegalVectorType = i + 1;
8097    }
8098
8099    // We only use vectors if the constant is known to be zero and the
8100    // function is not marked with the noimplicitfloat attribute.
8101    if (NonZero || NoVectors)
8102      LastLegalVectorType = 0;
8103
8104    // Check if we found a legal integer type to store.
8105    if (LastLegalType == 0 && LastLegalVectorType == 0)
8106      return false;
8107
8108    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8109    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8110
8111    // Make sure we have something to merge.
8112    if (NumElem < 2)
8113      return false;
8114
8115    unsigned EarliestNodeUsed = 0;
8116    for (unsigned i=0; i < NumElem; ++i) {
8117      // Find a chain for the new wide-store operand. Notice that some
8118      // of the store nodes that we found may not be selected for inclusion
8119      // in the wide store. The chain we use needs to be the chain of the
8120      // earliest store node which is *used* and replaced by the wide store.
8121      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8122        EarliestNodeUsed = i;
8123    }
8124
8125    // The earliest Node in the DAG.
8126    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8127    SDLoc DL(StoreNodes[0].MemNode);
8128
8129    SDValue StoredVal;
8130    if (UseVector) {
8131      // Find a legal type for the vector store.
8132      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8133      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8134      StoredVal = DAG.getConstant(0, Ty);
8135    } else {
8136      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8137      APInt StoreInt(StoreBW, 0);
8138
8139      // Construct a single integer constant which is made of the smaller
8140      // constant inputs.
8141      bool IsLE = TLI.isLittleEndian();
8142      for (unsigned i = 0; i < NumElem ; ++i) {
8143        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8144        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8145        SDValue Val = St->getValue();
8146        StoreInt<<=ElementSizeBytes*8;
8147        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8148          StoreInt|=C->getAPIntValue().zext(StoreBW);
8149        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8150          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8151        } else {
8152          assert(false && "Invalid constant element type");
8153        }
8154      }
8155
8156      // Create the new Load and Store operations.
8157      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8158      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8159    }
8160
8161    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8162                                    FirstInChain->getBasePtr(),
8163                                    FirstInChain->getPointerInfo(),
8164                                    false, false,
8165                                    FirstInChain->getAlignment());
8166
8167    // Replace the first store with the new store
8168    CombineTo(EarliestOp, NewStore);
8169    // Erase all other stores.
8170    for (unsigned i = 0; i < NumElem ; ++i) {
8171      if (StoreNodes[i].MemNode == EarliestOp)
8172        continue;
8173      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8174      // ReplaceAllUsesWith will replace all uses that existed when it was
8175      // called, but graph optimizations may cause new ones to appear. For
8176      // example, the case in pr14333 looks like
8177      //
8178      //  St's chain -> St -> another store -> X
8179      //
8180      // And the only difference from St to the other store is the chain.
8181      // When we change it's chain to be St's chain they become identical,
8182      // get CSEed and the net result is that X is now a use of St.
8183      // Since we know that St is redundant, just iterate.
8184      while (!St->use_empty())
8185        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8186      removeFromWorkList(St);
8187      DAG.DeleteNode(St);
8188    }
8189
8190    return true;
8191  }
8192
8193  // Below we handle the case of multiple consecutive stores that
8194  // come from multiple consecutive loads. We merge them into a single
8195  // wide load and a single wide store.
8196
8197  // Look for load nodes which are used by the stored values.
8198  SmallVector<MemOpLink, 8> LoadNodes;
8199
8200  // Find acceptable loads. Loads need to have the same chain (token factor),
8201  // must not be zext, volatile, indexed, and they must be consecutive.
8202  BaseIndexOffset LdBasePtr;
8203  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8204    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8205    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8206    if (!Ld) break;
8207
8208    // Loads must only have one use.
8209    if (!Ld->hasNUsesOfValue(1, 0))
8210      break;
8211
8212    // Check that the alignment is the same as the stores.
8213    if (Ld->getAlignment() != St->getAlignment())
8214      break;
8215
8216    // The memory operands must not be volatile.
8217    if (Ld->isVolatile() || Ld->isIndexed())
8218      break;
8219
8220    // We do not accept ext loads.
8221    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8222      break;
8223
8224    // The stored memory type must be the same.
8225    if (Ld->getMemoryVT() != MemVT)
8226      break;
8227
8228    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8229    // If this is not the first ptr that we check.
8230    if (LdBasePtr.Base.getNode()) {
8231      // The base ptr must be the same.
8232      if (!LdPtr.equalBaseIndex(LdBasePtr))
8233        break;
8234    } else {
8235      // Check that all other base pointers are the same as this one.
8236      LdBasePtr = LdPtr;
8237    }
8238
8239    // We found a potential memory operand to merge.
8240    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8241  }
8242
8243  if (LoadNodes.size() < 2)
8244    return false;
8245
8246  // Scan the memory operations on the chain and find the first non-consecutive
8247  // load memory address. These variables hold the index in the store node
8248  // array.
8249  unsigned LastConsecutiveLoad = 0;
8250  // This variable refers to the size and not index in the array.
8251  unsigned LastLegalVectorType = 0;
8252  unsigned LastLegalIntegerType = 0;
8253  StartAddress = LoadNodes[0].OffsetFromBase;
8254  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8255  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8256    // All loads much share the same chain.
8257    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8258      break;
8259
8260    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8261    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8262      break;
8263    LastConsecutiveLoad = i;
8264
8265    // Find a legal type for the vector store.
8266    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8267    if (TLI.isTypeLegal(StoreTy))
8268      LastLegalVectorType = i + 1;
8269
8270    // Find a legal type for the integer store.
8271    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8272    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8273    if (TLI.isTypeLegal(StoreTy))
8274      LastLegalIntegerType = i + 1;
8275    // Or check whether a truncstore and extload is legal.
8276    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8277             TargetLowering::TypePromoteInteger) {
8278      EVT LegalizedStoredValueTy =
8279        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8280      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8281          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8282          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8283          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8284        LastLegalIntegerType = i+1;
8285    }
8286  }
8287
8288  // Only use vector types if the vector type is larger than the integer type.
8289  // If they are the same, use integers.
8290  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8291  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8292
8293  // We add +1 here because the LastXXX variables refer to location while
8294  // the NumElem refers to array/index size.
8295  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8296  NumElem = std::min(LastLegalType, NumElem);
8297
8298  if (NumElem < 2)
8299    return false;
8300
8301  // The earliest Node in the DAG.
8302  unsigned EarliestNodeUsed = 0;
8303  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8304  for (unsigned i=1; i<NumElem; ++i) {
8305    // Find a chain for the new wide-store operand. Notice that some
8306    // of the store nodes that we found may not be selected for inclusion
8307    // in the wide store. The chain we use needs to be the chain of the
8308    // earliest store node which is *used* and replaced by the wide store.
8309    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8310      EarliestNodeUsed = i;
8311  }
8312
8313  // Find if it is better to use vectors or integers to load and store
8314  // to memory.
8315  EVT JointMemOpVT;
8316  if (UseVectorTy) {
8317    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8318  } else {
8319    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8320    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8321  }
8322
8323  SDLoc LoadDL(LoadNodes[0].MemNode);
8324  SDLoc StoreDL(StoreNodes[0].MemNode);
8325
8326  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8327  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8328                                FirstLoad->getChain(),
8329                                FirstLoad->getBasePtr(),
8330                                FirstLoad->getPointerInfo(),
8331                                false, false, false,
8332                                FirstLoad->getAlignment());
8333
8334  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8335                                  FirstInChain->getBasePtr(),
8336                                  FirstInChain->getPointerInfo(), false, false,
8337                                  FirstInChain->getAlignment());
8338
8339  // Replace one of the loads with the new load.
8340  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8341  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8342                                SDValue(NewLoad.getNode(), 1));
8343
8344  // Remove the rest of the load chains.
8345  for (unsigned i = 1; i < NumElem ; ++i) {
8346    // Replace all chain users of the old load nodes with the chain of the new
8347    // load node.
8348    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8349    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8350  }
8351
8352  // Replace the first store with the new store.
8353  CombineTo(EarliestOp, NewStore);
8354  // Erase all other stores.
8355  for (unsigned i = 0; i < NumElem ; ++i) {
8356    // Remove all Store nodes.
8357    if (StoreNodes[i].MemNode == EarliestOp)
8358      continue;
8359    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8360    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8361    removeFromWorkList(St);
8362    DAG.DeleteNode(St);
8363  }
8364
8365  return true;
8366}
8367
8368SDValue DAGCombiner::visitSTORE(SDNode *N) {
8369  StoreSDNode *ST  = cast<StoreSDNode>(N);
8370  SDValue Chain = ST->getChain();
8371  SDValue Value = ST->getValue();
8372  SDValue Ptr   = ST->getBasePtr();
8373
8374  // If this is a store of a bit convert, store the input value if the
8375  // resultant store does not need a higher alignment than the original.
8376  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8377      ST->isUnindexed()) {
8378    unsigned OrigAlign = ST->getAlignment();
8379    EVT SVT = Value.getOperand(0).getValueType();
8380    unsigned Align = TLI.getDataLayout()->
8381      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8382    if (Align <= OrigAlign &&
8383        ((!LegalOperations && !ST->isVolatile()) ||
8384         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8385      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
8386                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8387                          ST->isNonTemporal(), OrigAlign);
8388  }
8389
8390  // Turn 'store undef, Ptr' -> nothing.
8391  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8392    return Chain;
8393
8394  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8395  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8396    // NOTE: If the original store is volatile, this transform must not increase
8397    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8398    // processor operation but an i64 (which is not legal) requires two.  So the
8399    // transform should not be done in this case.
8400    if (Value.getOpcode() != ISD::TargetConstantFP) {
8401      SDValue Tmp;
8402      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8403      default: llvm_unreachable("Unknown FP type");
8404      case MVT::f16:    // We don't do this for these yet.
8405      case MVT::f80:
8406      case MVT::f128:
8407      case MVT::ppcf128:
8408        break;
8409      case MVT::f32:
8410        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8411            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8412          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8413                              bitcastToAPInt().getZExtValue(), MVT::i32);
8414          return DAG.getStore(Chain, SDLoc(N), Tmp,
8415                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8416                              ST->isNonTemporal(), ST->getAlignment());
8417        }
8418        break;
8419      case MVT::f64:
8420        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8421             !ST->isVolatile()) ||
8422            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8423          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8424                                getZExtValue(), MVT::i64);
8425          return DAG.getStore(Chain, SDLoc(N), Tmp,
8426                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8427                              ST->isNonTemporal(), ST->getAlignment());
8428        }
8429
8430        if (!ST->isVolatile() &&
8431            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8432          // Many FP stores are not made apparent until after legalize, e.g. for
8433          // argument passing.  Since this is so common, custom legalize the
8434          // 64-bit integer store into two 32-bit stores.
8435          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8436          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8437          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8438          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8439
8440          unsigned Alignment = ST->getAlignment();
8441          bool isVolatile = ST->isVolatile();
8442          bool isNonTemporal = ST->isNonTemporal();
8443
8444          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
8445                                     Ptr, ST->getPointerInfo(),
8446                                     isVolatile, isNonTemporal,
8447                                     ST->getAlignment());
8448          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
8449                            DAG.getConstant(4, Ptr.getValueType()));
8450          Alignment = MinAlign(Alignment, 4U);
8451          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
8452                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8453                                     isVolatile, isNonTemporal,
8454                                     Alignment);
8455          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
8456                             St0, St1);
8457        }
8458
8459        break;
8460      }
8461    }
8462  }
8463
8464  // Try to infer better alignment information than the store already has.
8465  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8466    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8467      if (Align > ST->getAlignment())
8468        return DAG.getTruncStore(Chain, SDLoc(N), Value,
8469                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8470                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8471    }
8472  }
8473
8474  // Try transforming a pair floating point load / store ops to integer
8475  // load / store ops.
8476  SDValue NewST = TransformFPLoadStorePair(N);
8477  if (NewST.getNode())
8478    return NewST;
8479
8480  if (CombinerAA) {
8481    // Walk up chain skipping non-aliasing memory nodes.
8482    SDValue BetterChain = FindBetterChain(N, Chain);
8483
8484    // If there is a better chain.
8485    if (Chain != BetterChain) {
8486      SDValue ReplStore;
8487
8488      // Replace the chain to avoid dependency.
8489      if (ST->isTruncatingStore()) {
8490        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
8491                                      ST->getPointerInfo(),
8492                                      ST->getMemoryVT(), ST->isVolatile(),
8493                                      ST->isNonTemporal(), ST->getAlignment());
8494      } else {
8495        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
8496                                 ST->getPointerInfo(),
8497                                 ST->isVolatile(), ST->isNonTemporal(),
8498                                 ST->getAlignment());
8499      }
8500
8501      // Create token to keep both nodes around.
8502      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
8503                                  MVT::Other, Chain, ReplStore);
8504
8505      // Make sure the new and old chains are cleaned up.
8506      AddToWorkList(Token.getNode());
8507
8508      // Don't add users to work list.
8509      return CombineTo(N, Token, false);
8510    }
8511  }
8512
8513  // Try transforming N to an indexed store.
8514  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8515    return SDValue(N, 0);
8516
8517  // FIXME: is there such a thing as a truncating indexed store?
8518  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8519      Value.getValueType().isInteger()) {
8520    // See if we can simplify the input to this truncstore with knowledge that
8521    // only the low bits are being used.  For example:
8522    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8523    SDValue Shorter =
8524      GetDemandedBits(Value,
8525                      APInt::getLowBitsSet(
8526                        Value.getValueType().getScalarType().getSizeInBits(),
8527                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8528    AddToWorkList(Value.getNode());
8529    if (Shorter.getNode())
8530      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
8531                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8532                               ST->isVolatile(), ST->isNonTemporal(),
8533                               ST->getAlignment());
8534
8535    // Otherwise, see if we can simplify the operation with
8536    // SimplifyDemandedBits, which only works if the value has a single use.
8537    if (SimplifyDemandedBits(Value,
8538                        APInt::getLowBitsSet(
8539                          Value.getValueType().getScalarType().getSizeInBits(),
8540                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8541      return SDValue(N, 0);
8542  }
8543
8544  // If this is a load followed by a store to the same location, then the store
8545  // is dead/noop.
8546  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8547    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8548        ST->isUnindexed() && !ST->isVolatile() &&
8549        // There can't be any side effects between the load and store, such as
8550        // a call or store.
8551        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8552      // The store is dead, remove it.
8553      return Chain;
8554    }
8555  }
8556
8557  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8558  // truncating store.  We can do this even if this is already a truncstore.
8559  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8560      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8561      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8562                            ST->getMemoryVT())) {
8563    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
8564                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8565                             ST->isVolatile(), ST->isNonTemporal(),
8566                             ST->getAlignment());
8567  }
8568
8569  // Only perform this optimization before the types are legal, because we
8570  // don't want to perform this optimization on every DAGCombine invocation.
8571  if (!LegalTypes) {
8572    bool EverChanged = false;
8573
8574    do {
8575      // There can be multiple store sequences on the same chain.
8576      // Keep trying to merge store sequences until we are unable to do so
8577      // or until we merge the last store on the chain.
8578      bool Changed = MergeConsecutiveStores(ST);
8579      EverChanged |= Changed;
8580      if (!Changed) break;
8581    } while (ST->getOpcode() != ISD::DELETED_NODE);
8582
8583    if (EverChanged)
8584      return SDValue(N, 0);
8585  }
8586
8587  return ReduceLoadOpStoreWidth(N);
8588}
8589
8590SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8591  SDValue InVec = N->getOperand(0);
8592  SDValue InVal = N->getOperand(1);
8593  SDValue EltNo = N->getOperand(2);
8594  SDLoc dl(N);
8595
8596  // If the inserted element is an UNDEF, just use the input vector.
8597  if (InVal.getOpcode() == ISD::UNDEF)
8598    return InVec;
8599
8600  EVT VT = InVec.getValueType();
8601
8602  // If we can't generate a legal BUILD_VECTOR, exit
8603  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8604    return SDValue();
8605
8606  // Check that we know which element is being inserted
8607  if (!isa<ConstantSDNode>(EltNo))
8608    return SDValue();
8609  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8610
8611  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8612  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8613  // vector elements.
8614  SmallVector<SDValue, 8> Ops;
8615  // Do not combine these two vectors if the output vector will not replace
8616  // the input vector.
8617  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
8618    Ops.append(InVec.getNode()->op_begin(),
8619               InVec.getNode()->op_end());
8620  } else if (InVec.getOpcode() == ISD::UNDEF) {
8621    unsigned NElts = VT.getVectorNumElements();
8622    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8623  } else {
8624    return SDValue();
8625  }
8626
8627  // Insert the element
8628  if (Elt < Ops.size()) {
8629    // All the operands of BUILD_VECTOR must have the same type;
8630    // we enforce that here.
8631    EVT OpVT = Ops[0].getValueType();
8632    if (InVal.getValueType() != OpVT)
8633      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8634                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8635                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8636    Ops[Elt] = InVal;
8637  }
8638
8639  // Return the new vector
8640  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8641                     VT, &Ops[0], Ops.size());
8642}
8643
8644SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8645  // (vextract (scalar_to_vector val, 0) -> val
8646  SDValue InVec = N->getOperand(0);
8647  EVT VT = InVec.getValueType();
8648  EVT NVT = N->getValueType(0);
8649
8650  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8651    // Check if the result type doesn't match the inserted element type. A
8652    // SCALAR_TO_VECTOR may truncate the inserted element and the
8653    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8654    SDValue InOp = InVec.getOperand(0);
8655    if (InOp.getValueType() != NVT) {
8656      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8657      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
8658    }
8659    return InOp;
8660  }
8661
8662  SDValue EltNo = N->getOperand(1);
8663  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8664
8665  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8666  // We only perform this optimization before the op legalization phase because
8667  // we may introduce new vector instructions which are not backed by TD
8668  // patterns. For example on AVX, extracting elements from a wide vector
8669  // without using extract_subvector.
8670  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8671      && ConstEltNo && !LegalOperations) {
8672    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8673    int NumElem = VT.getVectorNumElements();
8674    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8675    // Find the new index to extract from.
8676    int OrigElt = SVOp->getMaskElt(Elt);
8677
8678    // Extracting an undef index is undef.
8679    if (OrigElt == -1)
8680      return DAG.getUNDEF(NVT);
8681
8682    // Select the right vector half to extract from.
8683    if (OrigElt < NumElem) {
8684      InVec = InVec->getOperand(0);
8685    } else {
8686      InVec = InVec->getOperand(1);
8687      OrigElt -= NumElem;
8688    }
8689
8690    EVT IndexTy = N->getOperand(1).getValueType();
8691    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
8692                       InVec, DAG.getConstant(OrigElt, IndexTy));
8693  }
8694
8695  // Perform only after legalization to ensure build_vector / vector_shuffle
8696  // optimizations have already been done.
8697  if (!LegalOperations) return SDValue();
8698
8699  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8700  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8701  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8702
8703  if (ConstEltNo) {
8704    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8705    bool NewLoad = false;
8706    bool BCNumEltsChanged = false;
8707    EVT ExtVT = VT.getVectorElementType();
8708    EVT LVT = ExtVT;
8709
8710    // If the result of load has to be truncated, then it's not necessarily
8711    // profitable.
8712    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8713      return SDValue();
8714
8715    if (InVec.getOpcode() == ISD::BITCAST) {
8716      // Don't duplicate a load with other uses.
8717      if (!InVec.hasOneUse())
8718        return SDValue();
8719
8720      EVT BCVT = InVec.getOperand(0).getValueType();
8721      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8722        return SDValue();
8723      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8724        BCNumEltsChanged = true;
8725      InVec = InVec.getOperand(0);
8726      ExtVT = BCVT.getVectorElementType();
8727      NewLoad = true;
8728    }
8729
8730    LoadSDNode *LN0 = NULL;
8731    const ShuffleVectorSDNode *SVN = NULL;
8732    if (ISD::isNormalLoad(InVec.getNode())) {
8733      LN0 = cast<LoadSDNode>(InVec);
8734    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8735               InVec.getOperand(0).getValueType() == ExtVT &&
8736               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8737      // Don't duplicate a load with other uses.
8738      if (!InVec.hasOneUse())
8739        return SDValue();
8740
8741      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8742    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8743      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8744      // =>
8745      // (load $addr+1*size)
8746
8747      // Don't duplicate a load with other uses.
8748      if (!InVec.hasOneUse())
8749        return SDValue();
8750
8751      // If the bit convert changed the number of elements, it is unsafe
8752      // to examine the mask.
8753      if (BCNumEltsChanged)
8754        return SDValue();
8755
8756      // Select the input vector, guarding against out of range extract vector.
8757      unsigned NumElems = VT.getVectorNumElements();
8758      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8759      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8760
8761      if (InVec.getOpcode() == ISD::BITCAST) {
8762        // Don't duplicate a load with other uses.
8763        if (!InVec.hasOneUse())
8764          return SDValue();
8765
8766        InVec = InVec.getOperand(0);
8767      }
8768      if (ISD::isNormalLoad(InVec.getNode())) {
8769        LN0 = cast<LoadSDNode>(InVec);
8770        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8771      }
8772    }
8773
8774    // Make sure we found a non-volatile load and the extractelement is
8775    // the only use.
8776    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8777      return SDValue();
8778
8779    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8780    if (Elt == -1)
8781      return DAG.getUNDEF(LVT);
8782
8783    unsigned Align = LN0->getAlignment();
8784    if (NewLoad) {
8785      // Check the resultant load doesn't need a higher alignment than the
8786      // original load.
8787      unsigned NewAlign =
8788        TLI.getDataLayout()
8789            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8790
8791      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8792        return SDValue();
8793
8794      Align = NewAlign;
8795    }
8796
8797    SDValue NewPtr = LN0->getBasePtr();
8798    unsigned PtrOff = 0;
8799
8800    if (Elt) {
8801      PtrOff = LVT.getSizeInBits() * Elt / 8;
8802      EVT PtrType = NewPtr.getValueType();
8803      if (TLI.isBigEndian())
8804        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8805      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
8806                           DAG.getConstant(PtrOff, PtrType));
8807    }
8808
8809    // The replacement we need to do here is a little tricky: we need to
8810    // replace an extractelement of a load with a load.
8811    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8812    // Note that this replacement assumes that the extractvalue is the only
8813    // use of the load; that's okay because we don't want to perform this
8814    // transformation in other cases anyway.
8815    SDValue Load;
8816    SDValue Chain;
8817    if (NVT.bitsGT(LVT)) {
8818      // If the result type of vextract is wider than the load, then issue an
8819      // extending load instead.
8820      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8821        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8822      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
8823                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8824                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8825      Chain = Load.getValue(1);
8826    } else {
8827      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
8828                         LN0->getPointerInfo().getWithOffset(PtrOff),
8829                         LN0->isVolatile(), LN0->isNonTemporal(),
8830                         LN0->isInvariant(), Align);
8831      Chain = Load.getValue(1);
8832      if (NVT.bitsLT(LVT))
8833        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
8834      else
8835        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
8836    }
8837    WorkListRemover DeadNodes(*this);
8838    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8839    SDValue To[] = { Load, Chain };
8840    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8841    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8842    // worklist explicitly as well.
8843    AddToWorkList(Load.getNode());
8844    AddUsersToWorkList(Load.getNode()); // Add users too
8845    // Make sure to revisit this node to clean it up; it will usually be dead.
8846    AddToWorkList(N);
8847    return SDValue(N, 0);
8848  }
8849
8850  return SDValue();
8851}
8852
8853// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8854SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8855  // We perform this optimization post type-legalization because
8856  // the type-legalizer often scalarizes integer-promoted vectors.
8857  // Performing this optimization before may create bit-casts which
8858  // will be type-legalized to complex code sequences.
8859  // We perform this optimization only before the operation legalizer because we
8860  // may introduce illegal operations.
8861  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8862    return SDValue();
8863
8864  unsigned NumInScalars = N->getNumOperands();
8865  SDLoc dl(N);
8866  EVT VT = N->getValueType(0);
8867
8868  // Check to see if this is a BUILD_VECTOR of a bunch of values
8869  // which come from any_extend or zero_extend nodes. If so, we can create
8870  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8871  // optimizations. We do not handle sign-extend because we can't fill the sign
8872  // using shuffles.
8873  EVT SourceType = MVT::Other;
8874  bool AllAnyExt = true;
8875
8876  for (unsigned i = 0; i != NumInScalars; ++i) {
8877    SDValue In = N->getOperand(i);
8878    // Ignore undef inputs.
8879    if (In.getOpcode() == ISD::UNDEF) continue;
8880
8881    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8882    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8883
8884    // Abort if the element is not an extension.
8885    if (!ZeroExt && !AnyExt) {
8886      SourceType = MVT::Other;
8887      break;
8888    }
8889
8890    // The input is a ZeroExt or AnyExt. Check the original type.
8891    EVT InTy = In.getOperand(0).getValueType();
8892
8893    // Check that all of the widened source types are the same.
8894    if (SourceType == MVT::Other)
8895      // First time.
8896      SourceType = InTy;
8897    else if (InTy != SourceType) {
8898      // Multiple income types. Abort.
8899      SourceType = MVT::Other;
8900      break;
8901    }
8902
8903    // Check if all of the extends are ANY_EXTENDs.
8904    AllAnyExt &= AnyExt;
8905  }
8906
8907  // In order to have valid types, all of the inputs must be extended from the
8908  // same source type and all of the inputs must be any or zero extend.
8909  // Scalar sizes must be a power of two.
8910  EVT OutScalarTy = VT.getScalarType();
8911  bool ValidTypes = SourceType != MVT::Other &&
8912                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8913                 isPowerOf2_32(SourceType.getSizeInBits());
8914
8915  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8916  // turn into a single shuffle instruction.
8917  if (!ValidTypes)
8918    return SDValue();
8919
8920  bool isLE = TLI.isLittleEndian();
8921  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8922  assert(ElemRatio > 1 && "Invalid element size ratio");
8923  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8924                               DAG.getConstant(0, SourceType);
8925
8926  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8927  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8928
8929  // Populate the new build_vector
8930  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8931    SDValue Cast = N->getOperand(i);
8932    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8933            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8934            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8935    SDValue In;
8936    if (Cast.getOpcode() == ISD::UNDEF)
8937      In = DAG.getUNDEF(SourceType);
8938    else
8939      In = Cast->getOperand(0);
8940    unsigned Index = isLE ? (i * ElemRatio) :
8941                            (i * ElemRatio + (ElemRatio - 1));
8942
8943    assert(Index < Ops.size() && "Invalid index");
8944    Ops[Index] = In;
8945  }
8946
8947  // The type of the new BUILD_VECTOR node.
8948  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8949  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8950         "Invalid vector size");
8951  // Check if the new vector type is legal.
8952  if (!isTypeLegal(VecVT)) return SDValue();
8953
8954  // Make the new BUILD_VECTOR.
8955  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8956
8957  // The new BUILD_VECTOR node has the potential to be further optimized.
8958  AddToWorkList(BV.getNode());
8959  // Bitcast to the desired type.
8960  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8961}
8962
8963SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8964  EVT VT = N->getValueType(0);
8965
8966  unsigned NumInScalars = N->getNumOperands();
8967  SDLoc dl(N);
8968
8969  EVT SrcVT = MVT::Other;
8970  unsigned Opcode = ISD::DELETED_NODE;
8971  unsigned NumDefs = 0;
8972
8973  for (unsigned i = 0; i != NumInScalars; ++i) {
8974    SDValue In = N->getOperand(i);
8975    unsigned Opc = In.getOpcode();
8976
8977    if (Opc == ISD::UNDEF)
8978      continue;
8979
8980    // If all scalar values are floats and converted from integers.
8981    if (Opcode == ISD::DELETED_NODE &&
8982        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8983      Opcode = Opc;
8984    }
8985
8986    if (Opc != Opcode)
8987      return SDValue();
8988
8989    EVT InVT = In.getOperand(0).getValueType();
8990
8991    // If all scalar values are typed differently, bail out. It's chosen to
8992    // simplify BUILD_VECTOR of integer types.
8993    if (SrcVT == MVT::Other)
8994      SrcVT = InVT;
8995    if (SrcVT != InVT)
8996      return SDValue();
8997    NumDefs++;
8998  }
8999
9000  // If the vector has just one element defined, it's not worth to fold it into
9001  // a vectorized one.
9002  if (NumDefs < 2)
9003    return SDValue();
9004
9005  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9006         && "Should only handle conversion from integer to float.");
9007  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9008
9009  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9010
9011  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9012    return SDValue();
9013
9014  SmallVector<SDValue, 8> Opnds;
9015  for (unsigned i = 0; i != NumInScalars; ++i) {
9016    SDValue In = N->getOperand(i);
9017
9018    if (In.getOpcode() == ISD::UNDEF)
9019      Opnds.push_back(DAG.getUNDEF(SrcVT));
9020    else
9021      Opnds.push_back(In.getOperand(0));
9022  }
9023  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9024                           &Opnds[0], Opnds.size());
9025  AddToWorkList(BV.getNode());
9026
9027  return DAG.getNode(Opcode, dl, VT, BV);
9028}
9029
9030SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9031  unsigned NumInScalars = N->getNumOperands();
9032  SDLoc dl(N);
9033  EVT VT = N->getValueType(0);
9034
9035  // A vector built entirely of undefs is undef.
9036  if (ISD::allOperandsUndef(N))
9037    return DAG.getUNDEF(VT);
9038
9039  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9040  if (V.getNode())
9041    return V;
9042
9043  V = reduceBuildVecConvertToConvertBuildVec(N);
9044  if (V.getNode())
9045    return V;
9046
9047  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9048  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9049  // at most two distinct vectors, turn this into a shuffle node.
9050
9051  // May only combine to shuffle after legalize if shuffle is legal.
9052  if (LegalOperations &&
9053      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9054    return SDValue();
9055
9056  SDValue VecIn1, VecIn2;
9057  for (unsigned i = 0; i != NumInScalars; ++i) {
9058    // Ignore undef inputs.
9059    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9060
9061    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9062    // constant index, bail out.
9063    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9064        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9065      VecIn1 = VecIn2 = SDValue(0, 0);
9066      break;
9067    }
9068
9069    // We allow up to two distinct input vectors.
9070    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9071    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9072      continue;
9073
9074    if (VecIn1.getNode() == 0) {
9075      VecIn1 = ExtractedFromVec;
9076    } else if (VecIn2.getNode() == 0) {
9077      VecIn2 = ExtractedFromVec;
9078    } else {
9079      // Too many inputs.
9080      VecIn1 = VecIn2 = SDValue(0, 0);
9081      break;
9082    }
9083  }
9084
9085    // If everything is good, we can make a shuffle operation.
9086  if (VecIn1.getNode()) {
9087    SmallVector<int, 8> Mask;
9088    for (unsigned i = 0; i != NumInScalars; ++i) {
9089      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9090        Mask.push_back(-1);
9091        continue;
9092      }
9093
9094      // If extracting from the first vector, just use the index directly.
9095      SDValue Extract = N->getOperand(i);
9096      SDValue ExtVal = Extract.getOperand(1);
9097      if (Extract.getOperand(0) == VecIn1) {
9098        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9099        if (ExtIndex > VT.getVectorNumElements())
9100          return SDValue();
9101
9102        Mask.push_back(ExtIndex);
9103        continue;
9104      }
9105
9106      // Otherwise, use InIdx + VecSize
9107      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9108      Mask.push_back(Idx+NumInScalars);
9109    }
9110
9111    // We can't generate a shuffle node with mismatched input and output types.
9112    // Attempt to transform a single input vector to the correct type.
9113    if ((VT != VecIn1.getValueType())) {
9114      // We don't support shuffeling between TWO values of different types.
9115      if (VecIn2.getNode() != 0)
9116        return SDValue();
9117
9118      // We only support widening of vectors which are half the size of the
9119      // output registers. For example XMM->YMM widening on X86 with AVX.
9120      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9121        return SDValue();
9122
9123      // If the input vector type has a different base type to the output
9124      // vector type, bail out.
9125      if (VecIn1.getValueType().getVectorElementType() !=
9126          VT.getVectorElementType())
9127        return SDValue();
9128
9129      // Widen the input vector by adding undef values.
9130      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9131                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9132    }
9133
9134    // If VecIn2 is unused then change it to undef.
9135    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9136
9137    // Check that we were able to transform all incoming values to the same
9138    // type.
9139    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9140        VecIn1.getValueType() != VT)
9141          return SDValue();
9142
9143    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9144    if (!isTypeLegal(VT))
9145      return SDValue();
9146
9147    // Return the new VECTOR_SHUFFLE node.
9148    SDValue Ops[2];
9149    Ops[0] = VecIn1;
9150    Ops[1] = VecIn2;
9151    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9152  }
9153
9154  return SDValue();
9155}
9156
9157SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9158  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9159  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9160  // inputs come from at most two distinct vectors, turn this into a shuffle
9161  // node.
9162
9163  // If we only have one input vector, we don't need to do any concatenation.
9164  if (N->getNumOperands() == 1)
9165    return N->getOperand(0);
9166
9167  // Check if all of the operands are undefs.
9168  if (ISD::allOperandsUndef(N))
9169    return DAG.getUNDEF(N->getValueType(0));
9170
9171  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9172  // nodes often generate nop CONCAT_VECTOR nodes.
9173  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9174  // place the incoming vectors at the exact same location.
9175  SDValue SingleSource = SDValue();
9176  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9177
9178  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9179    SDValue Op = N->getOperand(i);
9180
9181    if (Op.getOpcode() == ISD::UNDEF)
9182      continue;
9183
9184    // Check if this is the identity extract:
9185    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9186      return SDValue();
9187
9188    // Find the single incoming vector for the extract_subvector.
9189    if (SingleSource.getNode()) {
9190      if (Op.getOperand(0) != SingleSource)
9191        return SDValue();
9192    } else {
9193      SingleSource = Op.getOperand(0);
9194
9195      // Check the source type is the same as the type of the result.
9196      // If not, this concat may extend the vector, so we can not
9197      // optimize it away.
9198      if (SingleSource.getValueType() != N->getValueType(0))
9199        return SDValue();
9200    }
9201
9202    unsigned IdentityIndex = i * PartNumElem;
9203    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9204    // The extract index must be constant.
9205    if (!CS)
9206      return SDValue();
9207
9208    // Check that we are reading from the identity index.
9209    if (CS->getZExtValue() != IdentityIndex)
9210      return SDValue();
9211  }
9212
9213  if (SingleSource.getNode())
9214    return SingleSource;
9215
9216  return SDValue();
9217}
9218
9219SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9220  EVT NVT = N->getValueType(0);
9221  SDValue V = N->getOperand(0);
9222
9223  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9224    // Combine:
9225    //    (extract_subvec (concat V1, V2, ...), i)
9226    // Into:
9227    //    Vi if possible
9228    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9229    if (V->getOperand(0).getValueType() != NVT)
9230      return SDValue();
9231    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9232    unsigned NumElems = NVT.getVectorNumElements();
9233    assert((Idx % NumElems) == 0 &&
9234           "IDX in concat is not a multiple of the result vector length.");
9235    return V->getOperand(Idx / NumElems);
9236  }
9237
9238  // Skip bitcasting
9239  if (V->getOpcode() == ISD::BITCAST)
9240    V = V.getOperand(0);
9241
9242  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9243    SDLoc dl(N);
9244    // Handle only simple case where vector being inserted and vector
9245    // being extracted are of same type, and are half size of larger vectors.
9246    EVT BigVT = V->getOperand(0).getValueType();
9247    EVT SmallVT = V->getOperand(1).getValueType();
9248    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9249      return SDValue();
9250
9251    // Only handle cases where both indexes are constants with the same type.
9252    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9253    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9254
9255    if (InsIdx && ExtIdx &&
9256        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9257        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9258      // Combine:
9259      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9260      // Into:
9261      //    indices are equal or bit offsets are equal => V1
9262      //    otherwise => (extract_subvec V1, ExtIdx)
9263      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9264          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9265        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9266      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9267                         DAG.getNode(ISD::BITCAST, dl,
9268                                     N->getOperand(0).getValueType(),
9269                                     V->getOperand(0)), N->getOperand(1));
9270    }
9271  }
9272
9273  return SDValue();
9274}
9275
9276// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9277static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9278  EVT VT = N->getValueType(0);
9279  unsigned NumElts = VT.getVectorNumElements();
9280
9281  SDValue N0 = N->getOperand(0);
9282  SDValue N1 = N->getOperand(1);
9283  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9284
9285  SmallVector<SDValue, 4> Ops;
9286  EVT ConcatVT = N0.getOperand(0).getValueType();
9287  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9288  unsigned NumConcats = NumElts / NumElemsPerConcat;
9289
9290  // Look at every vector that's inserted. We're looking for exact
9291  // subvector-sized copies from a concatenated vector
9292  for (unsigned I = 0; I != NumConcats; ++I) {
9293    // Make sure we're dealing with a copy.
9294    unsigned Begin = I * NumElemsPerConcat;
9295    bool AllUndef = true, NoUndef = true;
9296    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9297      if (SVN->getMaskElt(J) >= 0)
9298        AllUndef = false;
9299      else
9300        NoUndef = false;
9301    }
9302
9303    if (NoUndef) {
9304      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9305        return SDValue();
9306
9307      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9308        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9309          return SDValue();
9310
9311      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9312      if (FirstElt < N0.getNumOperands())
9313        Ops.push_back(N0.getOperand(FirstElt));
9314      else
9315        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9316
9317    } else if (AllUndef) {
9318      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9319    } else { // Mixed with general masks and undefs, can't do optimization.
9320      return SDValue();
9321    }
9322  }
9323
9324  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9325                     Ops.size());
9326}
9327
9328SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9329  EVT VT = N->getValueType(0);
9330  unsigned NumElts = VT.getVectorNumElements();
9331
9332  SDValue N0 = N->getOperand(0);
9333  SDValue N1 = N->getOperand(1);
9334
9335  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9336
9337  // Canonicalize shuffle undef, undef -> undef
9338  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9339    return DAG.getUNDEF(VT);
9340
9341  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9342
9343  // Canonicalize shuffle v, v -> v, undef
9344  if (N0 == N1) {
9345    SmallVector<int, 8> NewMask;
9346    for (unsigned i = 0; i != NumElts; ++i) {
9347      int Idx = SVN->getMaskElt(i);
9348      if (Idx >= (int)NumElts) Idx -= NumElts;
9349      NewMask.push_back(Idx);
9350    }
9351    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
9352                                &NewMask[0]);
9353  }
9354
9355  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9356  if (N0.getOpcode() == ISD::UNDEF) {
9357    SmallVector<int, 8> NewMask;
9358    for (unsigned i = 0; i != NumElts; ++i) {
9359      int Idx = SVN->getMaskElt(i);
9360      if (Idx >= 0) {
9361        if (Idx < (int)NumElts)
9362          Idx += NumElts;
9363        else
9364          Idx -= NumElts;
9365      }
9366      NewMask.push_back(Idx);
9367    }
9368    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
9369                                &NewMask[0]);
9370  }
9371
9372  // Remove references to rhs if it is undef
9373  if (N1.getOpcode() == ISD::UNDEF) {
9374    bool Changed = false;
9375    SmallVector<int, 8> NewMask;
9376    for (unsigned i = 0; i != NumElts; ++i) {
9377      int Idx = SVN->getMaskElt(i);
9378      if (Idx >= (int)NumElts) {
9379        Idx = -1;
9380        Changed = true;
9381      }
9382      NewMask.push_back(Idx);
9383    }
9384    if (Changed)
9385      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
9386  }
9387
9388  // If it is a splat, check if the argument vector is another splat or a
9389  // build_vector with all scalar elements the same.
9390  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9391    SDNode *V = N0.getNode();
9392
9393    // If this is a bit convert that changes the element type of the vector but
9394    // not the number of vector elements, look through it.  Be careful not to
9395    // look though conversions that change things like v4f32 to v2f64.
9396    if (V->getOpcode() == ISD::BITCAST) {
9397      SDValue ConvInput = V->getOperand(0);
9398      if (ConvInput.getValueType().isVector() &&
9399          ConvInput.getValueType().getVectorNumElements() == NumElts)
9400        V = ConvInput.getNode();
9401    }
9402
9403    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9404      assert(V->getNumOperands() == NumElts &&
9405             "BUILD_VECTOR has wrong number of operands");
9406      SDValue Base;
9407      bool AllSame = true;
9408      for (unsigned i = 0; i != NumElts; ++i) {
9409        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9410          Base = V->getOperand(i);
9411          break;
9412        }
9413      }
9414      // Splat of <u, u, u, u>, return <u, u, u, u>
9415      if (!Base.getNode())
9416        return N0;
9417      for (unsigned i = 0; i != NumElts; ++i) {
9418        if (V->getOperand(i) != Base) {
9419          AllSame = false;
9420          break;
9421        }
9422      }
9423      // Splat of <x, x, x, x>, return <x, x, x, x>
9424      if (AllSame)
9425        return N0;
9426    }
9427  }
9428
9429  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9430      Level < AfterLegalizeVectorOps &&
9431      (N1.getOpcode() == ISD::UNDEF ||
9432      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9433       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9434    SDValue V = partitionShuffleOfConcats(N, DAG);
9435
9436    if (V.getNode())
9437      return V;
9438  }
9439
9440  // If this shuffle node is simply a swizzle of another shuffle node,
9441  // and it reverses the swizzle of the previous shuffle then we can
9442  // optimize shuffle(shuffle(x, undef), undef) -> x.
9443  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9444      N1.getOpcode() == ISD::UNDEF) {
9445
9446    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9447
9448    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9449    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9450      return SDValue();
9451
9452    // The incoming shuffle must be of the same type as the result of the
9453    // current shuffle.
9454    assert(OtherSV->getOperand(0).getValueType() == VT &&
9455           "Shuffle types don't match");
9456
9457    for (unsigned i = 0; i != NumElts; ++i) {
9458      int Idx = SVN->getMaskElt(i);
9459      assert(Idx < (int)NumElts && "Index references undef operand");
9460      // Next, this index comes from the first value, which is the incoming
9461      // shuffle. Adopt the incoming index.
9462      if (Idx >= 0)
9463        Idx = OtherSV->getMaskElt(Idx);
9464
9465      // The combined shuffle must map each index to itself.
9466      if (Idx >= 0 && (unsigned)Idx != i)
9467        return SDValue();
9468    }
9469
9470    return OtherSV->getOperand(0);
9471  }
9472
9473  return SDValue();
9474}
9475
9476/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9477/// an AND to a vector_shuffle with the destination vector and a zero vector.
9478/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9479///      vector_shuffle V, Zero, <0, 4, 2, 4>
9480SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9481  EVT VT = N->getValueType(0);
9482  SDLoc dl(N);
9483  SDValue LHS = N->getOperand(0);
9484  SDValue RHS = N->getOperand(1);
9485  if (N->getOpcode() == ISD::AND) {
9486    if (RHS.getOpcode() == ISD::BITCAST)
9487      RHS = RHS.getOperand(0);
9488    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9489      SmallVector<int, 8> Indices;
9490      unsigned NumElts = RHS.getNumOperands();
9491      for (unsigned i = 0; i != NumElts; ++i) {
9492        SDValue Elt = RHS.getOperand(i);
9493        if (!isa<ConstantSDNode>(Elt))
9494          return SDValue();
9495
9496        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9497          Indices.push_back(i);
9498        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9499          Indices.push_back(NumElts);
9500        else
9501          return SDValue();
9502      }
9503
9504      // Let's see if the target supports this vector_shuffle.
9505      EVT RVT = RHS.getValueType();
9506      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9507        return SDValue();
9508
9509      // Return the new VECTOR_SHUFFLE node.
9510      EVT EltVT = RVT.getVectorElementType();
9511      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9512                                     DAG.getConstant(0, EltVT));
9513      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9514                                 RVT, &ZeroOps[0], ZeroOps.size());
9515      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9516      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9517      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9518    }
9519  }
9520
9521  return SDValue();
9522}
9523
9524/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9525SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9526  assert(N->getValueType(0).isVector() &&
9527         "SimplifyVBinOp only works on vectors!");
9528
9529  SDValue LHS = N->getOperand(0);
9530  SDValue RHS = N->getOperand(1);
9531  SDValue Shuffle = XformToShuffleWithZero(N);
9532  if (Shuffle.getNode()) return Shuffle;
9533
9534  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9535  // this operation.
9536  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9537      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9538    SmallVector<SDValue, 8> Ops;
9539    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9540      SDValue LHSOp = LHS.getOperand(i);
9541      SDValue RHSOp = RHS.getOperand(i);
9542      // If these two elements can't be folded, bail out.
9543      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9544           LHSOp.getOpcode() != ISD::Constant &&
9545           LHSOp.getOpcode() != ISD::ConstantFP) ||
9546          (RHSOp.getOpcode() != ISD::UNDEF &&
9547           RHSOp.getOpcode() != ISD::Constant &&
9548           RHSOp.getOpcode() != ISD::ConstantFP))
9549        break;
9550
9551      // Can't fold divide by zero.
9552      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9553          N->getOpcode() == ISD::FDIV) {
9554        if ((RHSOp.getOpcode() == ISD::Constant &&
9555             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9556            (RHSOp.getOpcode() == ISD::ConstantFP &&
9557             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9558          break;
9559      }
9560
9561      EVT VT = LHSOp.getValueType();
9562      EVT RVT = RHSOp.getValueType();
9563      if (RVT != VT) {
9564        // Integer BUILD_VECTOR operands may have types larger than the element
9565        // size (e.g., when the element type is not legal).  Prior to type
9566        // legalization, the types may not match between the two BUILD_VECTORS.
9567        // Truncate one of the operands to make them match.
9568        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9569          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
9570        } else {
9571          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
9572          VT = RVT;
9573        }
9574      }
9575      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
9576                                   LHSOp, RHSOp);
9577      if (FoldOp.getOpcode() != ISD::UNDEF &&
9578          FoldOp.getOpcode() != ISD::Constant &&
9579          FoldOp.getOpcode() != ISD::ConstantFP)
9580        break;
9581      Ops.push_back(FoldOp);
9582      AddToWorkList(FoldOp.getNode());
9583    }
9584
9585    if (Ops.size() == LHS.getNumOperands())
9586      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9587                         LHS.getValueType(), &Ops[0], Ops.size());
9588  }
9589
9590  return SDValue();
9591}
9592
9593/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9594SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9595  assert(N->getValueType(0).isVector() &&
9596         "SimplifyVUnaryOp only works on vectors!");
9597
9598  SDValue N0 = N->getOperand(0);
9599
9600  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9601    return SDValue();
9602
9603  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9604  SmallVector<SDValue, 8> Ops;
9605  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9606    SDValue Op = N0.getOperand(i);
9607    if (Op.getOpcode() != ISD::UNDEF &&
9608        Op.getOpcode() != ISD::ConstantFP)
9609      break;
9610    EVT EltVT = Op.getValueType();
9611    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
9612    if (FoldOp.getOpcode() != ISD::UNDEF &&
9613        FoldOp.getOpcode() != ISD::ConstantFP)
9614      break;
9615    Ops.push_back(FoldOp);
9616    AddToWorkList(FoldOp.getNode());
9617  }
9618
9619  if (Ops.size() != N0.getNumOperands())
9620    return SDValue();
9621
9622  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
9623                     N0.getValueType(), &Ops[0], Ops.size());
9624}
9625
9626SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
9627                                    SDValue N1, SDValue N2){
9628  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9629
9630  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9631                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9632
9633  // If we got a simplified select_cc node back from SimplifySelectCC, then
9634  // break it down into a new SETCC node, and a new SELECT node, and then return
9635  // the SELECT node, since we were called with a SELECT node.
9636  if (SCC.getNode()) {
9637    // Check to see if we got a select_cc back (to turn into setcc/select).
9638    // Otherwise, just return whatever node we got back, like fabs.
9639    if (SCC.getOpcode() == ISD::SELECT_CC) {
9640      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
9641                                  N0.getValueType(),
9642                                  SCC.getOperand(0), SCC.getOperand(1),
9643                                  SCC.getOperand(4));
9644      AddToWorkList(SETCC.getNode());
9645      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
9646                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
9647    }
9648
9649    return SCC;
9650  }
9651  return SDValue();
9652}
9653
9654/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9655/// are the two values being selected between, see if we can simplify the
9656/// select.  Callers of this should assume that TheSelect is deleted if this
9657/// returns true.  As such, they should return the appropriate thing (e.g. the
9658/// node) back to the top-level of the DAG combiner loop to avoid it being
9659/// looked at.
9660bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9661                                    SDValue RHS) {
9662
9663  // Cannot simplify select with vector condition
9664  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9665
9666  // If this is a select from two identical things, try to pull the operation
9667  // through the select.
9668  if (LHS.getOpcode() != RHS.getOpcode() ||
9669      !LHS.hasOneUse() || !RHS.hasOneUse())
9670    return false;
9671
9672  // If this is a load and the token chain is identical, replace the select
9673  // of two loads with a load through a select of the address to load from.
9674  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9675  // constants have been dropped into the constant pool.
9676  if (LHS.getOpcode() == ISD::LOAD) {
9677    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9678    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9679
9680    // Token chains must be identical.
9681    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9682        // Do not let this transformation reduce the number of volatile loads.
9683        LLD->isVolatile() || RLD->isVolatile() ||
9684        // If this is an EXTLOAD, the VT's must match.
9685        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9686        // If this is an EXTLOAD, the kind of extension must match.
9687        (LLD->getExtensionType() != RLD->getExtensionType() &&
9688         // The only exception is if one of the extensions is anyext.
9689         LLD->getExtensionType() != ISD::EXTLOAD &&
9690         RLD->getExtensionType() != ISD::EXTLOAD) ||
9691        // FIXME: this discards src value information.  This is
9692        // over-conservative. It would be beneficial to be able to remember
9693        // both potential memory locations.  Since we are discarding
9694        // src value info, don't do the transformation if the memory
9695        // locations are not in the default address space.
9696        LLD->getPointerInfo().getAddrSpace() != 0 ||
9697        RLD->getPointerInfo().getAddrSpace() != 0 ||
9698        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9699                                      LLD->getBasePtr().getValueType()))
9700      return false;
9701
9702    // Check that the select condition doesn't reach either load.  If so,
9703    // folding this will induce a cycle into the DAG.  If not, this is safe to
9704    // xform, so create a select of the addresses.
9705    SDValue Addr;
9706    if (TheSelect->getOpcode() == ISD::SELECT) {
9707      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9708      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9709          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9710        return false;
9711      // The loads must not depend on one another.
9712      if (LLD->isPredecessorOf(RLD) ||
9713          RLD->isPredecessorOf(LLD))
9714        return false;
9715      Addr = DAG.getSelect(SDLoc(TheSelect),
9716                           LLD->getBasePtr().getValueType(),
9717                           TheSelect->getOperand(0), LLD->getBasePtr(),
9718                           RLD->getBasePtr());
9719    } else {  // Otherwise SELECT_CC
9720      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9721      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9722
9723      if ((LLD->hasAnyUseOfValue(1) &&
9724           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9725          (RLD->hasAnyUseOfValue(1) &&
9726           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9727        return false;
9728
9729      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
9730                         LLD->getBasePtr().getValueType(),
9731                         TheSelect->getOperand(0),
9732                         TheSelect->getOperand(1),
9733                         LLD->getBasePtr(), RLD->getBasePtr(),
9734                         TheSelect->getOperand(4));
9735    }
9736
9737    SDValue Load;
9738    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9739      Load = DAG.getLoad(TheSelect->getValueType(0),
9740                         SDLoc(TheSelect),
9741                         // FIXME: Discards pointer info.
9742                         LLD->getChain(), Addr, MachinePointerInfo(),
9743                         LLD->isVolatile(), LLD->isNonTemporal(),
9744                         LLD->isInvariant(), LLD->getAlignment());
9745    } else {
9746      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9747                            RLD->getExtensionType() : LLD->getExtensionType(),
9748                            SDLoc(TheSelect),
9749                            TheSelect->getValueType(0),
9750                            // FIXME: Discards pointer info.
9751                            LLD->getChain(), Addr, MachinePointerInfo(),
9752                            LLD->getMemoryVT(), LLD->isVolatile(),
9753                            LLD->isNonTemporal(), LLD->getAlignment());
9754    }
9755
9756    // Users of the select now use the result of the load.
9757    CombineTo(TheSelect, Load);
9758
9759    // Users of the old loads now use the new load's chain.  We know the
9760    // old-load value is dead now.
9761    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9762    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9763    return true;
9764  }
9765
9766  return false;
9767}
9768
9769/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9770/// where 'cond' is the comparison specified by CC.
9771SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
9772                                      SDValue N2, SDValue N3,
9773                                      ISD::CondCode CC, bool NotExtCompare) {
9774  // (x ? y : y) -> y.
9775  if (N2 == N3) return N2;
9776
9777  EVT VT = N2.getValueType();
9778  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9779  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9780  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9781
9782  // Determine if the condition we're dealing with is constant
9783  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
9784                              N0, N1, CC, DL, false);
9785  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9786  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9787
9788  // fold select_cc true, x, y -> x
9789  if (SCCC && !SCCC->isNullValue())
9790    return N2;
9791  // fold select_cc false, x, y -> y
9792  if (SCCC && SCCC->isNullValue())
9793    return N3;
9794
9795  // Check to see if we can simplify the select into an fabs node
9796  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9797    // Allow either -0.0 or 0.0
9798    if (CFP->getValueAPF().isZero()) {
9799      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9800      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9801          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9802          N2 == N3.getOperand(0))
9803        return DAG.getNode(ISD::FABS, DL, VT, N0);
9804
9805      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9806      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9807          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9808          N2.getOperand(0) == N3)
9809        return DAG.getNode(ISD::FABS, DL, VT, N3);
9810    }
9811  }
9812
9813  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9814  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9815  // in it.  This is a win when the constant is not otherwise available because
9816  // it replaces two constant pool loads with one.  We only do this if the FP
9817  // type is known to be legal, because if it isn't, then we are before legalize
9818  // types an we want the other legalization to happen first (e.g. to avoid
9819  // messing with soft float) and if the ConstantFP is not legal, because if
9820  // it is legal, we may not need to store the FP constant in a constant pool.
9821  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9822    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9823      if (TLI.isTypeLegal(N2.getValueType()) &&
9824          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9825           TargetLowering::Legal) &&
9826          // If both constants have multiple uses, then we won't need to do an
9827          // extra load, they are likely around in registers for other users.
9828          (TV->hasOneUse() || FV->hasOneUse())) {
9829        Constant *Elts[] = {
9830          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9831          const_cast<ConstantFP*>(TV->getConstantFPValue())
9832        };
9833        Type *FPTy = Elts[0]->getType();
9834        const DataLayout &TD = *TLI.getDataLayout();
9835
9836        // Create a ConstantArray of the two constants.
9837        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9838        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9839                                            TD.getPrefTypeAlignment(FPTy));
9840        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9841
9842        // Get the offsets to the 0 and 1 element of the array so that we can
9843        // select between them.
9844        SDValue Zero = DAG.getIntPtrConstant(0);
9845        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9846        SDValue One = DAG.getIntPtrConstant(EltSize);
9847
9848        SDValue Cond = DAG.getSetCC(DL,
9849                                    getSetCCResultType(N0.getValueType()),
9850                                    N0, N1, CC);
9851        AddToWorkList(Cond.getNode());
9852        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
9853                                          Cond, One, Zero);
9854        AddToWorkList(CstOffset.getNode());
9855        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9856                            CstOffset);
9857        AddToWorkList(CPIdx.getNode());
9858        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9859                           MachinePointerInfo::getConstantPool(), false,
9860                           false, false, Alignment);
9861
9862      }
9863    }
9864
9865  // Check to see if we can perform the "gzip trick", transforming
9866  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9867  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9868      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9869       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9870    EVT XType = N0.getValueType();
9871    EVT AType = N2.getValueType();
9872    if (XType.bitsGE(AType)) {
9873      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9874      // single-bit constant.
9875      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9876        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9877        ShCtV = XType.getSizeInBits()-ShCtV-1;
9878        SDValue ShCt = DAG.getConstant(ShCtV,
9879                                       getShiftAmountTy(N0.getValueType()));
9880        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
9881                                    XType, N0, ShCt);
9882        AddToWorkList(Shift.getNode());
9883
9884        if (XType.bitsGT(AType)) {
9885          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9886          AddToWorkList(Shift.getNode());
9887        }
9888
9889        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9890      }
9891
9892      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
9893                                  XType, N0,
9894                                  DAG.getConstant(XType.getSizeInBits()-1,
9895                                         getShiftAmountTy(N0.getValueType())));
9896      AddToWorkList(Shift.getNode());
9897
9898      if (XType.bitsGT(AType)) {
9899        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9900        AddToWorkList(Shift.getNode());
9901      }
9902
9903      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9904    }
9905  }
9906
9907  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9908  // where y is has a single bit set.
9909  // A plaintext description would be, we can turn the SELECT_CC into an AND
9910  // when the condition can be materialized as an all-ones register.  Any
9911  // single bit-test can be materialized as an all-ones register with
9912  // shift-left and shift-right-arith.
9913  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9914      N0->getValueType(0) == VT &&
9915      N1C && N1C->isNullValue() &&
9916      N2C && N2C->isNullValue()) {
9917    SDValue AndLHS = N0->getOperand(0);
9918    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9919    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9920      // Shift the tested bit over the sign bit.
9921      APInt AndMask = ConstAndRHS->getAPIntValue();
9922      SDValue ShlAmt =
9923        DAG.getConstant(AndMask.countLeadingZeros(),
9924                        getShiftAmountTy(AndLHS.getValueType()));
9925      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
9926
9927      // Now arithmetic right shift it all the way over, so the result is either
9928      // all-ones, or zero.
9929      SDValue ShrAmt =
9930        DAG.getConstant(AndMask.getBitWidth()-1,
9931                        getShiftAmountTy(Shl.getValueType()));
9932      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
9933
9934      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9935    }
9936  }
9937
9938  // fold select C, 16, 0 -> shl C, 4
9939  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9940    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9941      TargetLowering::ZeroOrOneBooleanContent) {
9942
9943    // If the caller doesn't want us to simplify this into a zext of a compare,
9944    // don't do it.
9945    if (NotExtCompare && N2C->getAPIntValue() == 1)
9946      return SDValue();
9947
9948    // Get a SetCC of the condition
9949    // NOTE: Don't create a SETCC if it's not legal on this target.
9950    if (!LegalOperations ||
9951        TLI.isOperationLegal(ISD::SETCC,
9952          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9953      SDValue Temp, SCC;
9954      // cast from setcc result type to select result type
9955      if (LegalTypes) {
9956        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
9957                            N0, N1, CC);
9958        if (N2.getValueType().bitsLT(SCC.getValueType()))
9959          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
9960                                        N2.getValueType());
9961        else
9962          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9963                             N2.getValueType(), SCC);
9964      } else {
9965        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
9966        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
9967                           N2.getValueType(), SCC);
9968      }
9969
9970      AddToWorkList(SCC.getNode());
9971      AddToWorkList(Temp.getNode());
9972
9973      if (N2C->getAPIntValue() == 1)
9974        return Temp;
9975
9976      // shl setcc result by log2 n2c
9977      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9978                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9979                                         getShiftAmountTy(Temp.getValueType())));
9980    }
9981  }
9982
9983  // Check to see if this is the equivalent of setcc
9984  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9985  // otherwise, go ahead with the folds.
9986  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9987    EVT XType = N0.getValueType();
9988    if (!LegalOperations ||
9989        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
9990      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
9991      if (Res.getValueType() != VT)
9992        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9993      return Res;
9994    }
9995
9996    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9997    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9998        (!LegalOperations ||
9999         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10000      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10001      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10002                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10003                                       getShiftAmountTy(Ctlz.getValueType())));
10004    }
10005    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10006    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10007      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10008                                  XType, DAG.getConstant(0, XType), N0);
10009      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10010      return DAG.getNode(ISD::SRL, DL, XType,
10011                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10012                         DAG.getConstant(XType.getSizeInBits()-1,
10013                                         getShiftAmountTy(XType)));
10014    }
10015    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10016    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10017      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10018                                 DAG.getConstant(XType.getSizeInBits()-1,
10019                                         getShiftAmountTy(N0.getValueType())));
10020      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10021    }
10022  }
10023
10024  // Check to see if this is an integer abs.
10025  // select_cc setg[te] X,  0,  X, -X ->
10026  // select_cc setgt    X, -1,  X, -X ->
10027  // select_cc setl[te] X,  0, -X,  X ->
10028  // select_cc setlt    X,  1, -X,  X ->
10029  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10030  if (N1C) {
10031    ConstantSDNode *SubC = NULL;
10032    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10033         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10034        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10035      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10036    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10037              (N1C->isOne() && CC == ISD::SETLT)) &&
10038             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10039      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10040
10041    EVT XType = N0.getValueType();
10042    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10043      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10044                                  N0,
10045                                  DAG.getConstant(XType.getSizeInBits()-1,
10046                                         getShiftAmountTy(N0.getValueType())));
10047      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10048                                XType, N0, Shift);
10049      AddToWorkList(Shift.getNode());
10050      AddToWorkList(Add.getNode());
10051      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10052    }
10053  }
10054
10055  return SDValue();
10056}
10057
10058/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10059SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10060                                   SDValue N1, ISD::CondCode Cond,
10061                                   SDLoc DL, bool foldBooleans) {
10062  TargetLowering::DAGCombinerInfo
10063    DagCombineInfo(DAG, Level, false, this);
10064  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10065}
10066
10067/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10068/// return a DAG expression to select that will generate the same value by
10069/// multiplying by a magic number.  See:
10070/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10071SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10072  std::vector<SDNode*> Built;
10073  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10074
10075  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10076       ii != ee; ++ii)
10077    AddToWorkList(*ii);
10078  return S;
10079}
10080
10081/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10082/// return a DAG expression to select that will generate the same value by
10083/// multiplying by a magic number.  See:
10084/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10085SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10086  std::vector<SDNode*> Built;
10087  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10088
10089  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10090       ii != ee; ++ii)
10091    AddToWorkList(*ii);
10092  return S;
10093}
10094
10095/// FindBaseOffset - Return true if base is a frame index, which is known not
10096// to alias with anything but itself.  Provides base object and offset as
10097// results.
10098static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10099                           const GlobalValue *&GV, const void *&CV) {
10100  // Assume it is a primitive operation.
10101  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10102
10103  // If it's an adding a simple constant then integrate the offset.
10104  if (Base.getOpcode() == ISD::ADD) {
10105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10106      Base = Base.getOperand(0);
10107      Offset += C->getZExtValue();
10108    }
10109  }
10110
10111  // Return the underlying GlobalValue, and update the Offset.  Return false
10112  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10113  // by multiple nodes with different offsets.
10114  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10115    GV = G->getGlobal();
10116    Offset += G->getOffset();
10117    return false;
10118  }
10119
10120  // Return the underlying Constant value, and update the Offset.  Return false
10121  // for ConstantSDNodes since the same constant pool entry may be represented
10122  // by multiple nodes with different offsets.
10123  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10124    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10125                                         : (const void *)C->getConstVal();
10126    Offset += C->getOffset();
10127    return false;
10128  }
10129  // If it's any of the following then it can't alias with anything but itself.
10130  return isa<FrameIndexSDNode>(Base);
10131}
10132
10133/// isAlias - Return true if there is any possibility that the two addresses
10134/// overlap.
10135bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10136                          const Value *SrcValue1, int SrcValueOffset1,
10137                          unsigned SrcValueAlign1,
10138                          const MDNode *TBAAInfo1,
10139                          SDValue Ptr2, int64_t Size2,
10140                          const Value *SrcValue2, int SrcValueOffset2,
10141                          unsigned SrcValueAlign2,
10142                          const MDNode *TBAAInfo2) const {
10143  // If they are the same then they must be aliases.
10144  if (Ptr1 == Ptr2) return true;
10145
10146  // Gather base node and offset information.
10147  SDValue Base1, Base2;
10148  int64_t Offset1, Offset2;
10149  const GlobalValue *GV1, *GV2;
10150  const void *CV1, *CV2;
10151  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10152  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10153
10154  // If they have a same base address then check to see if they overlap.
10155  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10156    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10157
10158  // It is possible for different frame indices to alias each other, mostly
10159  // when tail call optimization reuses return address slots for arguments.
10160  // To catch this case, look up the actual index of frame indices to compute
10161  // the real alias relationship.
10162  if (isFrameIndex1 && isFrameIndex2) {
10163    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10164    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10165    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10166    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10167  }
10168
10169  // Otherwise, if we know what the bases are, and they aren't identical, then
10170  // we know they cannot alias.
10171  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10172    return false;
10173
10174  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10175  // compared to the size and offset of the access, we may be able to prove they
10176  // do not alias.  This check is conservative for now to catch cases created by
10177  // splitting vector types.
10178  if ((SrcValueAlign1 == SrcValueAlign2) &&
10179      (SrcValueOffset1 != SrcValueOffset2) &&
10180      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10181    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10182    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10183
10184    // There is no overlap between these relatively aligned accesses of similar
10185    // size, return no alias.
10186    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10187      return false;
10188  }
10189
10190  if (CombinerGlobalAA) {
10191    // Use alias analysis information.
10192    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10193    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10194    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10195    AliasAnalysis::AliasResult AAResult =
10196      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10197               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10198    if (AAResult == AliasAnalysis::NoAlias)
10199      return false;
10200  }
10201
10202  // Otherwise we have to assume they alias.
10203  return true;
10204}
10205
10206bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10207  SDValue Ptr0, Ptr1;
10208  int64_t Size0, Size1;
10209  const Value *SrcValue0, *SrcValue1;
10210  int SrcValueOffset0, SrcValueOffset1;
10211  unsigned SrcValueAlign0, SrcValueAlign1;
10212  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10213  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10214                SrcValueAlign0, SrcTBAAInfo0);
10215  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10216                SrcValueAlign1, SrcTBAAInfo1);
10217  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10218                 SrcValueAlign0, SrcTBAAInfo0,
10219                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10220                 SrcValueAlign1, SrcTBAAInfo1);
10221}
10222
10223/// FindAliasInfo - Extracts the relevant alias information from the memory
10224/// node.  Returns true if the operand was a load.
10225bool DAGCombiner::FindAliasInfo(SDNode *N,
10226                                SDValue &Ptr, int64_t &Size,
10227                                const Value *&SrcValue,
10228                                int &SrcValueOffset,
10229                                unsigned &SrcValueAlign,
10230                                const MDNode *&TBAAInfo) const {
10231  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10232
10233  Ptr = LS->getBasePtr();
10234  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10235  SrcValue = LS->getSrcValue();
10236  SrcValueOffset = LS->getSrcValueOffset();
10237  SrcValueAlign = LS->getOriginalAlignment();
10238  TBAAInfo = LS->getTBAAInfo();
10239  return isa<LoadSDNode>(LS);
10240}
10241
10242/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10243/// looking for aliasing nodes and adding them to the Aliases vector.
10244void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10245                                   SmallVectorImpl<SDValue> &Aliases) {
10246  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10247  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10248
10249  // Get alias information for node.
10250  SDValue Ptr;
10251  int64_t Size;
10252  const Value *SrcValue;
10253  int SrcValueOffset;
10254  unsigned SrcValueAlign;
10255  const MDNode *SrcTBAAInfo;
10256  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10257                              SrcValueAlign, SrcTBAAInfo);
10258
10259  // Starting off.
10260  Chains.push_back(OriginalChain);
10261  unsigned Depth = 0;
10262
10263  // Look at each chain and determine if it is an alias.  If so, add it to the
10264  // aliases list.  If not, then continue up the chain looking for the next
10265  // candidate.
10266  while (!Chains.empty()) {
10267    SDValue Chain = Chains.back();
10268    Chains.pop_back();
10269
10270    // For TokenFactor nodes, look at each operand and only continue up the
10271    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10272    // find more and revert to original chain since the xform is unlikely to be
10273    // profitable.
10274    //
10275    // FIXME: The depth check could be made to return the last non-aliasing
10276    // chain we found before we hit a tokenfactor rather than the original
10277    // chain.
10278    if (Depth > 6 || Aliases.size() == 2) {
10279      Aliases.clear();
10280      Aliases.push_back(OriginalChain);
10281      break;
10282    }
10283
10284    // Don't bother if we've been before.
10285    if (!Visited.insert(Chain.getNode()))
10286      continue;
10287
10288    switch (Chain.getOpcode()) {
10289    case ISD::EntryToken:
10290      // Entry token is ideal chain operand, but handled in FindBetterChain.
10291      break;
10292
10293    case ISD::LOAD:
10294    case ISD::STORE: {
10295      // Get alias information for Chain.
10296      SDValue OpPtr;
10297      int64_t OpSize;
10298      const Value *OpSrcValue;
10299      int OpSrcValueOffset;
10300      unsigned OpSrcValueAlign;
10301      const MDNode *OpSrcTBAAInfo;
10302      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10303                                    OpSrcValue, OpSrcValueOffset,
10304                                    OpSrcValueAlign,
10305                                    OpSrcTBAAInfo);
10306
10307      // If chain is alias then stop here.
10308      if (!(IsLoad && IsOpLoad) &&
10309          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10310                  SrcTBAAInfo,
10311                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10312                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10313        Aliases.push_back(Chain);
10314      } else {
10315        // Look further up the chain.
10316        Chains.push_back(Chain.getOperand(0));
10317        ++Depth;
10318      }
10319      break;
10320    }
10321
10322    case ISD::TokenFactor:
10323      // We have to check each of the operands of the token factor for "small"
10324      // token factors, so we queue them up.  Adding the operands to the queue
10325      // (stack) in reverse order maintains the original order and increases the
10326      // likelihood that getNode will find a matching token factor (CSE.)
10327      if (Chain.getNumOperands() > 16) {
10328        Aliases.push_back(Chain);
10329        break;
10330      }
10331      for (unsigned n = Chain.getNumOperands(); n;)
10332        Chains.push_back(Chain.getOperand(--n));
10333      ++Depth;
10334      break;
10335
10336    default:
10337      // For all other instructions we will just have to take what we can get.
10338      Aliases.push_back(Chain);
10339      break;
10340    }
10341  }
10342}
10343
10344/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10345/// for a better chain (aliasing node.)
10346SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10347  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10348
10349  // Accumulate all the aliases to this node.
10350  GatherAllAliases(N, OldChain, Aliases);
10351
10352  // If no operands then chain to entry token.
10353  if (Aliases.size() == 0)
10354    return DAG.getEntryNode();
10355
10356  // If a single operand then chain to it.  We don't need to revisit it.
10357  if (Aliases.size() == 1)
10358    return Aliases[0];
10359
10360  // Construct a custom tailored token factor.
10361  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
10362                     &Aliases[0], Aliases.size());
10363}
10364
10365// SelectionDAG::Combine - This is the entry point for the file.
10366//
10367void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10368                           CodeGenOpt::Level OptLevel) {
10369  /// run - This is the main entry point to this class.
10370  ///
10371  DAGCombiner(*this, AA, OptLevel).Run(Level);
10372}
10373