DAGCombiner.cpp revision 768ebcdf631baa1b18dc65a5983a237b307a99c2
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitVSELECT(SDNode *N);
209    SDValue visitSELECT_CC(SDNode *N);
210    SDValue visitSETCC(SDNode *N);
211    SDValue visitSIGN_EXTEND(SDNode *N);
212    SDValue visitZERO_EXTEND(SDNode *N);
213    SDValue visitANY_EXTEND(SDNode *N);
214    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
215    SDValue visitTRUNCATE(SDNode *N);
216    SDValue visitBITCAST(SDNode *N);
217    SDValue visitBUILD_PAIR(SDNode *N);
218    SDValue visitFADD(SDNode *N);
219    SDValue visitFSUB(SDNode *N);
220    SDValue visitFMUL(SDNode *N);
221    SDValue visitFMA(SDNode *N);
222    SDValue visitFDIV(SDNode *N);
223    SDValue visitFREM(SDNode *N);
224    SDValue visitFCOPYSIGN(SDNode *N);
225    SDValue visitSINT_TO_FP(SDNode *N);
226    SDValue visitUINT_TO_FP(SDNode *N);
227    SDValue visitFP_TO_SINT(SDNode *N);
228    SDValue visitFP_TO_UINT(SDNode *N);
229    SDValue visitFP_ROUND(SDNode *N);
230    SDValue visitFP_ROUND_INREG(SDNode *N);
231    SDValue visitFP_EXTEND(SDNode *N);
232    SDValue visitFNEG(SDNode *N);
233    SDValue visitFABS(SDNode *N);
234    SDValue visitFCEIL(SDNode *N);
235    SDValue visitFTRUNC(SDNode *N);
236    SDValue visitFFLOOR(SDNode *N);
237    SDValue visitBRCOND(SDNode *N);
238    SDValue visitBR_CC(SDNode *N);
239    SDValue visitLOAD(SDNode *N);
240    SDValue visitSTORE(SDNode *N);
241    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
242    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
243    SDValue visitBUILD_VECTOR(SDNode *N);
244    SDValue visitCONCAT_VECTORS(SDNode *N);
245    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
246    SDValue visitVECTOR_SHUFFLE(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          DebugLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVector<SDValue, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
330    }
331
332    /// isTypeLegal - This method returns true if we are running before type
333    /// legalization or if the specified VT is legal.
334    bool isTypeLegal(const EVT &VT) {
335      if (!LegalTypes) return true;
336      return TLI.isTypeLegal(VT);
337    }
338  };
339}
340
341
342namespace {
343/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
344/// nodes from the worklist.
345class WorkListRemover : public SelectionDAG::DAGUpdateListener {
346  DAGCombiner &DC;
347public:
348  explicit WorkListRemover(DAGCombiner &dc)
349    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
350
351  virtual void NodeDeleted(SDNode *N, SDNode *E) {
352    DC.removeFromWorkList(N);
353  }
354};
355}
356
357//===----------------------------------------------------------------------===//
358//  TargetLowering::DAGCombinerInfo implementation
359//===----------------------------------------------------------------------===//
360
361void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
362  ((DAGCombiner*)DC)->AddToWorkList(N);
363}
364
365void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
366  ((DAGCombiner*)DC)->removeFromWorkList(N);
367}
368
369SDValue TargetLowering::DAGCombinerInfo::
370CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
371  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
372}
373
374SDValue TargetLowering::DAGCombinerInfo::
375CombineTo(SDNode *N, SDValue Res, bool AddTo) {
376  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
377}
378
379
380SDValue TargetLowering::DAGCombinerInfo::
381CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
382  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
383}
384
385void TargetLowering::DAGCombinerInfo::
386CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
387  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
388}
389
390//===----------------------------------------------------------------------===//
391// Helper Functions
392//===----------------------------------------------------------------------===//
393
394/// isNegatibleForFree - Return 1 if we can compute the negated form of the
395/// specified expression for the same cost as the expression itself, or 2 if we
396/// can compute the negated form more cheaply than the expression itself.
397static char isNegatibleForFree(SDValue Op, bool LegalOperations,
398                               const TargetLowering &TLI,
399                               const TargetOptions *Options,
400                               unsigned Depth = 0) {
401  // fneg is removable even if it has multiple uses.
402  if (Op.getOpcode() == ISD::FNEG) return 2;
403
404  // Don't allow anything with multiple uses.
405  if (!Op.hasOneUse()) return 0;
406
407  // Don't recurse exponentially.
408  if (Depth > 6) return 0;
409
410  switch (Op.getOpcode()) {
411  default: return false;
412  case ISD::ConstantFP:
413    // Don't invert constant FP values after legalize.  The negated constant
414    // isn't necessarily legal.
415    return LegalOperations ? 0 : 1;
416  case ISD::FADD:
417    // FIXME: determine better conditions for this xform.
418    if (!Options->UnsafeFPMath) return 0;
419
420    // After operation legalization, it might not be legal to create new FSUBs.
421    if (LegalOperations &&
422        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
423      return 0;
424
425    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
426    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
427                                    Options, Depth + 1))
428      return V;
429    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
430    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
431                              Depth + 1);
432  case ISD::FSUB:
433    // We can't turn -(A-B) into B-A when we honor signed zeros.
434    if (!Options->UnsafeFPMath) return 0;
435
436    // fold (fneg (fsub A, B)) -> (fsub B, A)
437    return 1;
438
439  case ISD::FMUL:
440  case ISD::FDIV:
441    if (Options->HonorSignDependentRoundingFPMath()) return 0;
442
443    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
444    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
445                                    Options, Depth + 1))
446      return V;
447
448    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
449                              Depth + 1);
450
451  case ISD::FP_EXTEND:
452  case ISD::FP_ROUND:
453  case ISD::FSIN:
454    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
455                              Depth + 1);
456  }
457}
458
459/// GetNegatedExpression - If isNegatibleForFree returns true, this function
460/// returns the newly negated expression.
461static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
462                                    bool LegalOperations, unsigned Depth = 0) {
463  // fneg is removable even if it has multiple uses.
464  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
465
466  // Don't allow anything with multiple uses.
467  assert(Op.hasOneUse() && "Unknown reuse!");
468
469  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
470  switch (Op.getOpcode()) {
471  default: llvm_unreachable("Unknown code");
472  case ISD::ConstantFP: {
473    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
474    V.changeSign();
475    return DAG.getConstantFP(V, Op.getValueType());
476  }
477  case ISD::FADD:
478    // FIXME: determine better conditions for this xform.
479    assert(DAG.getTarget().Options.UnsafeFPMath);
480
481    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
482    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
483                           DAG.getTargetLoweringInfo(),
484                           &DAG.getTarget().Options, Depth+1))
485      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
486                         GetNegatedExpression(Op.getOperand(0), DAG,
487                                              LegalOperations, Depth+1),
488                         Op.getOperand(1));
489    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
490    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
491                       GetNegatedExpression(Op.getOperand(1), DAG,
492                                            LegalOperations, Depth+1),
493                       Op.getOperand(0));
494  case ISD::FSUB:
495    // We can't turn -(A-B) into B-A when we honor signed zeros.
496    assert(DAG.getTarget().Options.UnsafeFPMath);
497
498    // fold (fneg (fsub 0, B)) -> B
499    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
500      if (N0CFP->getValueAPF().isZero())
501        return Op.getOperand(1);
502
503    // fold (fneg (fsub A, B)) -> (fsub B, A)
504    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
505                       Op.getOperand(1), Op.getOperand(0));
506
507  case ISD::FMUL:
508  case ISD::FDIV:
509    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
510
511    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519
520    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
521    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
522                       Op.getOperand(0),
523                       GetNegatedExpression(Op.getOperand(1), DAG,
524                                            LegalOperations, Depth+1));
525
526  case ISD::FP_EXTEND:
527  case ISD::FSIN:
528    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
529                       GetNegatedExpression(Op.getOperand(0), DAG,
530                                            LegalOperations, Depth+1));
531  case ISD::FP_ROUND:
532      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
533                         GetNegatedExpression(Op.getOperand(0), DAG,
534                                              LegalOperations, Depth+1),
535                         Op.getOperand(1));
536  }
537}
538
539
540// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
541// that selects between the values 1 and 0, making it equivalent to a setcc.
542// Also, set the incoming LHS, RHS, and CC references to the appropriate
543// nodes based on the type of node we are checking.  This simplifies life a
544// bit for the callers.
545static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
546                              SDValue &CC) {
547  if (N.getOpcode() == ISD::SETCC) {
548    LHS = N.getOperand(0);
549    RHS = N.getOperand(1);
550    CC  = N.getOperand(2);
551    return true;
552  }
553  if (N.getOpcode() == ISD::SELECT_CC &&
554      N.getOperand(2).getOpcode() == ISD::Constant &&
555      N.getOperand(3).getOpcode() == ISD::Constant &&
556      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
557      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
558    LHS = N.getOperand(0);
559    RHS = N.getOperand(1);
560    CC  = N.getOperand(4);
561    return true;
562  }
563  return false;
564}
565
566// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
567// one use.  If this is true, it allows the users to invert the operation for
568// free when it is profitable to do so.
569static bool isOneUseSetCC(SDValue N) {
570  SDValue N0, N1, N2;
571  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
572    return true;
573  return false;
574}
575
576SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
577                                    SDValue N0, SDValue N1) {
578  EVT VT = N0.getValueType();
579  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
580    if (isa<ConstantSDNode>(N1)) {
581      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
582      SDValue OpNode =
583        DAG.FoldConstantArithmetic(Opc, VT,
584                                   cast<ConstantSDNode>(N0.getOperand(1)),
585                                   cast<ConstantSDNode>(N1));
586      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
587    }
588    if (N0.hasOneUse()) {
589      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
590      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
591                                   N0.getOperand(0), N1);
592      AddToWorkList(OpNode.getNode());
593      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
594    }
595  }
596
597  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
598    if (isa<ConstantSDNode>(N0)) {
599      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
600      SDValue OpNode =
601        DAG.FoldConstantArithmetic(Opc, VT,
602                                   cast<ConstantSDNode>(N1.getOperand(1)),
603                                   cast<ConstantSDNode>(N0));
604      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
605    }
606    if (N1.hasOneUse()) {
607      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
608      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
609                                   N1.getOperand(0), N0);
610      AddToWorkList(OpNode.getNode());
611      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
612    }
613  }
614
615  return SDValue();
616}
617
618SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
619                               bool AddTo) {
620  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
621  ++NodesCombined;
622  DEBUG(dbgs() << "\nReplacing.1 ";
623        N->dump(&DAG);
624        dbgs() << "\nWith: ";
625        To[0].getNode()->dump(&DAG);
626        dbgs() << " and " << NumTo-1 << " other values\n";
627        for (unsigned i = 0, e = NumTo; i != e; ++i)
628          assert((!To[i].getNode() ||
629                  N->getValueType(i) == To[i].getValueType()) &&
630                 "Cannot combine value to value of different type!"));
631  WorkListRemover DeadNodes(*this);
632  DAG.ReplaceAllUsesWith(N, To);
633  if (AddTo) {
634    // Push the new nodes and any users onto the worklist
635    for (unsigned i = 0, e = NumTo; i != e; ++i) {
636      if (To[i].getNode()) {
637        AddToWorkList(To[i].getNode());
638        AddUsersToWorkList(To[i].getNode());
639      }
640    }
641  }
642
643  // Finally, if the node is now dead, remove it from the graph.  The node
644  // may not be dead if the replacement process recursively simplified to
645  // something else needing this node.
646  if (N->use_empty()) {
647    // Nodes can be reintroduced into the worklist.  Make sure we do not
648    // process a node that has been replaced.
649    removeFromWorkList(N);
650
651    // Finally, since the node is now dead, remove it from the graph.
652    DAG.DeleteNode(N);
653  }
654  return SDValue(N, 0);
655}
656
657void DAGCombiner::
658CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
659  // Replace all uses.  If any nodes become isomorphic to other nodes and
660  // are deleted, make sure to remove them from our worklist.
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
663
664  // Push the new node and any (possibly new) users onto the worklist.
665  AddToWorkList(TLO.New.getNode());
666  AddUsersToWorkList(TLO.New.getNode());
667
668  // Finally, if the node is now dead, remove it from the graph.  The node
669  // may not be dead if the replacement process recursively simplified to
670  // something else needing this node.
671  if (TLO.Old.getNode()->use_empty()) {
672    removeFromWorkList(TLO.Old.getNode());
673
674    // If the operands of this node are only used by the node, they will now
675    // be dead.  Make sure to visit them first to delete dead nodes early.
676    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
677      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
678        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
679
680    DAG.DeleteNode(TLO.Old.getNode());
681  }
682}
683
684/// SimplifyDemandedBits - Check the specified integer node value to see if
685/// it can be simplified or if things it uses can be simplified by bit
686/// propagation.  If so, return true.
687bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
688  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
689  APInt KnownZero, KnownOne;
690  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
691    return false;
692
693  // Revisit the node.
694  AddToWorkList(Op.getNode());
695
696  // Replace the old value with the new one.
697  ++NodesCombined;
698  DEBUG(dbgs() << "\nReplacing.2 ";
699        TLO.Old.getNode()->dump(&DAG);
700        dbgs() << "\nWith: ";
701        TLO.New.getNode()->dump(&DAG);
702        dbgs() << '\n');
703
704  CommitTargetLoweringOpt(TLO);
705  return true;
706}
707
708void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
709  DebugLoc dl = Load->getDebugLoc();
710  EVT VT = Load->getValueType(0);
711  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
712
713  DEBUG(dbgs() << "\nReplacing.9 ";
714        Load->dump(&DAG);
715        dbgs() << "\nWith: ";
716        Trunc.getNode()->dump(&DAG);
717        dbgs() << '\n');
718  WorkListRemover DeadNodes(*this);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
720  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
721  removeFromWorkList(Load);
722  DAG.DeleteNode(Load);
723  AddToWorkList(Trunc.getNode());
724}
725
726SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
727  Replace = false;
728  DebugLoc dl = Op.getDebugLoc();
729  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
730    EVT MemVT = LD->getMemoryVT();
731    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
732      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
733                                                  : ISD::EXTLOAD)
734      : LD->getExtensionType();
735    Replace = true;
736    return DAG.getExtLoad(ExtType, dl, PVT,
737                          LD->getChain(), LD->getBasePtr(),
738                          LD->getPointerInfo(),
739                          MemVT, LD->isVolatile(),
740                          LD->isNonTemporal(), LD->getAlignment());
741  }
742
743  unsigned Opc = Op.getOpcode();
744  switch (Opc) {
745  default: break;
746  case ISD::AssertSext:
747    return DAG.getNode(ISD::AssertSext, dl, PVT,
748                       SExtPromoteOperand(Op.getOperand(0), PVT),
749                       Op.getOperand(1));
750  case ISD::AssertZext:
751    return DAG.getNode(ISD::AssertZext, dl, PVT,
752                       ZExtPromoteOperand(Op.getOperand(0), PVT),
753                       Op.getOperand(1));
754  case ISD::Constant: {
755    unsigned ExtOpc =
756      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
757    return DAG.getNode(ExtOpc, dl, PVT, Op);
758  }
759  }
760
761  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
762    return SDValue();
763  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
764}
765
766SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
767  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
768    return SDValue();
769  EVT OldVT = Op.getValueType();
770  DebugLoc dl = Op.getDebugLoc();
771  bool Replace = false;
772  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
773  if (NewOp.getNode() == 0)
774    return SDValue();
775  AddToWorkList(NewOp.getNode());
776
777  if (Replace)
778    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
779  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
780                     DAG.getValueType(OldVT));
781}
782
783SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
784  EVT OldVT = Op.getValueType();
785  DebugLoc dl = Op.getDebugLoc();
786  bool Replace = false;
787  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
788  if (NewOp.getNode() == 0)
789    return SDValue();
790  AddToWorkList(NewOp.getNode());
791
792  if (Replace)
793    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
794  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
795}
796
797/// PromoteIntBinOp - Promote the specified integer binary operation if the
798/// target indicates it is beneficial. e.g. On x86, it's usually better to
799/// promote i16 operations to i32 since i16 instructions are longer.
800SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
801  if (!LegalOperations)
802    return SDValue();
803
804  EVT VT = Op.getValueType();
805  if (VT.isVector() || !VT.isInteger())
806    return SDValue();
807
808  // If operation type is 'undesirable', e.g. i16 on x86, consider
809  // promoting it.
810  unsigned Opc = Op.getOpcode();
811  if (TLI.isTypeDesirableForOp(Opc, VT))
812    return SDValue();
813
814  EVT PVT = VT;
815  // Consult target whether it is a good idea to promote this operation and
816  // what's the right type to promote it to.
817  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
818    assert(PVT != VT && "Don't know what type to promote to!");
819
820    bool Replace0 = false;
821    SDValue N0 = Op.getOperand(0);
822    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
823    if (NN0.getNode() == 0)
824      return SDValue();
825
826    bool Replace1 = false;
827    SDValue N1 = Op.getOperand(1);
828    SDValue NN1;
829    if (N0 == N1)
830      NN1 = NN0;
831    else {
832      NN1 = PromoteOperand(N1, PVT, Replace1);
833      if (NN1.getNode() == 0)
834        return SDValue();
835    }
836
837    AddToWorkList(NN0.getNode());
838    if (NN1.getNode())
839      AddToWorkList(NN1.getNode());
840
841    if (Replace0)
842      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
843    if (Replace1)
844      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
845
846    DEBUG(dbgs() << "\nPromoting ";
847          Op.getNode()->dump(&DAG));
848    DebugLoc dl = Op.getDebugLoc();
849    return DAG.getNode(ISD::TRUNCATE, dl, VT,
850                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
851  }
852  return SDValue();
853}
854
855/// PromoteIntShiftOp - Promote the specified integer shift operation if the
856/// target indicates it is beneficial. e.g. On x86, it's usually better to
857/// promote i16 operations to i32 since i16 instructions are longer.
858SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
859  if (!LegalOperations)
860    return SDValue();
861
862  EVT VT = Op.getValueType();
863  if (VT.isVector() || !VT.isInteger())
864    return SDValue();
865
866  // If operation type is 'undesirable', e.g. i16 on x86, consider
867  // promoting it.
868  unsigned Opc = Op.getOpcode();
869  if (TLI.isTypeDesirableForOp(Opc, VT))
870    return SDValue();
871
872  EVT PVT = VT;
873  // Consult target whether it is a good idea to promote this operation and
874  // what's the right type to promote it to.
875  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
876    assert(PVT != VT && "Don't know what type to promote to!");
877
878    bool Replace = false;
879    SDValue N0 = Op.getOperand(0);
880    if (Opc == ISD::SRA)
881      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
882    else if (Opc == ISD::SRL)
883      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
884    else
885      N0 = PromoteOperand(N0, PVT, Replace);
886    if (N0.getNode() == 0)
887      return SDValue();
888
889    AddToWorkList(N0.getNode());
890    if (Replace)
891      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
892
893    DEBUG(dbgs() << "\nPromoting ";
894          Op.getNode()->dump(&DAG));
895    DebugLoc dl = Op.getDebugLoc();
896    return DAG.getNode(ISD::TRUNCATE, dl, VT,
897                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
898  }
899  return SDValue();
900}
901
902SDValue DAGCombiner::PromoteExtend(SDValue Op) {
903  if (!LegalOperations)
904    return SDValue();
905
906  EVT VT = Op.getValueType();
907  if (VT.isVector() || !VT.isInteger())
908    return SDValue();
909
910  // If operation type is 'undesirable', e.g. i16 on x86, consider
911  // promoting it.
912  unsigned Opc = Op.getOpcode();
913  if (TLI.isTypeDesirableForOp(Opc, VT))
914    return SDValue();
915
916  EVT PVT = VT;
917  // Consult target whether it is a good idea to promote this operation and
918  // what's the right type to promote it to.
919  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
920    assert(PVT != VT && "Don't know what type to promote to!");
921    // fold (aext (aext x)) -> (aext x)
922    // fold (aext (zext x)) -> (zext x)
923    // fold (aext (sext x)) -> (sext x)
924    DEBUG(dbgs() << "\nPromoting ";
925          Op.getNode()->dump(&DAG));
926    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
927  }
928  return SDValue();
929}
930
931bool DAGCombiner::PromoteLoad(SDValue Op) {
932  if (!LegalOperations)
933    return false;
934
935  EVT VT = Op.getValueType();
936  if (VT.isVector() || !VT.isInteger())
937    return false;
938
939  // If operation type is 'undesirable', e.g. i16 on x86, consider
940  // promoting it.
941  unsigned Opc = Op.getOpcode();
942  if (TLI.isTypeDesirableForOp(Opc, VT))
943    return false;
944
945  EVT PVT = VT;
946  // Consult target whether it is a good idea to promote this operation and
947  // what's the right type to promote it to.
948  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
949    assert(PVT != VT && "Don't know what type to promote to!");
950
951    DebugLoc dl = Op.getDebugLoc();
952    SDNode *N = Op.getNode();
953    LoadSDNode *LD = cast<LoadSDNode>(N);
954    EVT MemVT = LD->getMemoryVT();
955    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
956      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
957                                                  : ISD::EXTLOAD)
958      : LD->getExtensionType();
959    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
960                                   LD->getChain(), LD->getBasePtr(),
961                                   LD->getPointerInfo(),
962                                   MemVT, LD->isVolatile(),
963                                   LD->isNonTemporal(), LD->getAlignment());
964    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
965
966    DEBUG(dbgs() << "\nPromoting ";
967          N->dump(&DAG);
968          dbgs() << "\nTo: ";
969          Result.getNode()->dump(&DAG);
970          dbgs() << '\n');
971    WorkListRemover DeadNodes(*this);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
973    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
974    removeFromWorkList(N);
975    DAG.DeleteNode(N);
976    AddToWorkList(Result.getNode());
977    return true;
978  }
979  return false;
980}
981
982
983//===----------------------------------------------------------------------===//
984//  Main DAG Combiner implementation
985//===----------------------------------------------------------------------===//
986
987void DAGCombiner::Run(CombineLevel AtLevel) {
988  // set the instance variables, so that the various visit routines may use it.
989  Level = AtLevel;
990  LegalOperations = Level >= AfterLegalizeVectorOps;
991  LegalTypes = Level >= AfterLegalizeTypes;
992
993  // Add all the dag nodes to the worklist.
994  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
995       E = DAG.allnodes_end(); I != E; ++I)
996    AddToWorkList(I);
997
998  // Create a dummy node (which is not added to allnodes), that adds a reference
999  // to the root node, preventing it from being deleted, and tracking any
1000  // changes of the root.
1001  HandleSDNode Dummy(DAG.getRoot());
1002
1003  // The root of the dag may dangle to deleted nodes until the dag combiner is
1004  // done.  Set it to null to avoid confusion.
1005  DAG.setRoot(SDValue());
1006
1007  // while the worklist isn't empty, find a node and
1008  // try and combine it.
1009  while (!WorkListContents.empty()) {
1010    SDNode *N;
1011    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1012    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1013    // worklist *should* contain, and check the node we want to visit is should
1014    // actually be visited.
1015    do {
1016      N = WorkListOrder.pop_back_val();
1017    } while (!WorkListContents.erase(N));
1018
1019    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1020    // N is deleted from the DAG, since they too may now be dead or may have a
1021    // reduced number of uses, allowing other xforms.
1022    if (N->use_empty() && N != &Dummy) {
1023      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1024        AddToWorkList(N->getOperand(i).getNode());
1025
1026      DAG.DeleteNode(N);
1027      continue;
1028    }
1029
1030    SDValue RV = combine(N);
1031
1032    if (RV.getNode() == 0)
1033      continue;
1034
1035    ++NodesCombined;
1036
1037    // If we get back the same node we passed in, rather than a new node or
1038    // zero, we know that the node must have defined multiple values and
1039    // CombineTo was used.  Since CombineTo takes care of the worklist
1040    // mechanics for us, we have no work to do in this case.
1041    if (RV.getNode() == N)
1042      continue;
1043
1044    assert(N->getOpcode() != ISD::DELETED_NODE &&
1045           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1046           "Node was deleted but visit returned new node!");
1047
1048    DEBUG(dbgs() << "\nReplacing.3 ";
1049          N->dump(&DAG);
1050          dbgs() << "\nWith: ";
1051          RV.getNode()->dump(&DAG);
1052          dbgs() << '\n');
1053
1054    // Transfer debug value.
1055    DAG.TransferDbgValues(SDValue(N, 0), RV);
1056    WorkListRemover DeadNodes(*this);
1057    if (N->getNumValues() == RV.getNode()->getNumValues())
1058      DAG.ReplaceAllUsesWith(N, RV.getNode());
1059    else {
1060      assert(N->getValueType(0) == RV.getValueType() &&
1061             N->getNumValues() == 1 && "Type mismatch");
1062      SDValue OpV = RV;
1063      DAG.ReplaceAllUsesWith(N, &OpV);
1064    }
1065
1066    // Push the new node and any users onto the worklist
1067    AddToWorkList(RV.getNode());
1068    AddUsersToWorkList(RV.getNode());
1069
1070    // Add any uses of the old node to the worklist in case this node is the
1071    // last one that uses them.  They may become dead after this node is
1072    // deleted.
1073    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1074      AddToWorkList(N->getOperand(i).getNode());
1075
1076    // Finally, if the node is now dead, remove it from the graph.  The node
1077    // may not be dead if the replacement process recursively simplified to
1078    // something else needing this node.
1079    if (N->use_empty()) {
1080      // Nodes can be reintroduced into the worklist.  Make sure we do not
1081      // process a node that has been replaced.
1082      removeFromWorkList(N);
1083
1084      // Finally, since the node is now dead, remove it from the graph.
1085      DAG.DeleteNode(N);
1086    }
1087  }
1088
1089  // If the root changed (e.g. it was a dead load, update the root).
1090  DAG.setRoot(Dummy.getValue());
1091  DAG.RemoveDeadNodes();
1092}
1093
1094SDValue DAGCombiner::visit(SDNode *N) {
1095  switch (N->getOpcode()) {
1096  default: break;
1097  case ISD::TokenFactor:        return visitTokenFactor(N);
1098  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1099  case ISD::ADD:                return visitADD(N);
1100  case ISD::SUB:                return visitSUB(N);
1101  case ISD::ADDC:               return visitADDC(N);
1102  case ISD::SUBC:               return visitSUBC(N);
1103  case ISD::ADDE:               return visitADDE(N);
1104  case ISD::SUBE:               return visitSUBE(N);
1105  case ISD::MUL:                return visitMUL(N);
1106  case ISD::SDIV:               return visitSDIV(N);
1107  case ISD::UDIV:               return visitUDIV(N);
1108  case ISD::SREM:               return visitSREM(N);
1109  case ISD::UREM:               return visitUREM(N);
1110  case ISD::MULHU:              return visitMULHU(N);
1111  case ISD::MULHS:              return visitMULHS(N);
1112  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1113  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1114  case ISD::SMULO:              return visitSMULO(N);
1115  case ISD::UMULO:              return visitUMULO(N);
1116  case ISD::SDIVREM:            return visitSDIVREM(N);
1117  case ISD::UDIVREM:            return visitUDIVREM(N);
1118  case ISD::AND:                return visitAND(N);
1119  case ISD::OR:                 return visitOR(N);
1120  case ISD::XOR:                return visitXOR(N);
1121  case ISD::SHL:                return visitSHL(N);
1122  case ISD::SRA:                return visitSRA(N);
1123  case ISD::SRL:                return visitSRL(N);
1124  case ISD::CTLZ:               return visitCTLZ(N);
1125  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1126  case ISD::CTTZ:               return visitCTTZ(N);
1127  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1128  case ISD::CTPOP:              return visitCTPOP(N);
1129  case ISD::SELECT:             return visitSELECT(N);
1130  case ISD::VSELECT:            return visitVSELECT(N);
1131  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1132  case ISD::SETCC:              return visitSETCC(N);
1133  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1134  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1135  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1136  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1137  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1138  case ISD::BITCAST:            return visitBITCAST(N);
1139  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1140  case ISD::FADD:               return visitFADD(N);
1141  case ISD::FSUB:               return visitFSUB(N);
1142  case ISD::FMUL:               return visitFMUL(N);
1143  case ISD::FMA:                return visitFMA(N);
1144  case ISD::FDIV:               return visitFDIV(N);
1145  case ISD::FREM:               return visitFREM(N);
1146  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1147  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1148  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1149  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1150  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1151  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1152  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1153  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1154  case ISD::FNEG:               return visitFNEG(N);
1155  case ISD::FABS:               return visitFABS(N);
1156  case ISD::FFLOOR:             return visitFFLOOR(N);
1157  case ISD::FCEIL:              return visitFCEIL(N);
1158  case ISD::FTRUNC:             return visitFTRUNC(N);
1159  case ISD::BRCOND:             return visitBRCOND(N);
1160  case ISD::BR_CC:              return visitBR_CC(N);
1161  case ISD::LOAD:               return visitLOAD(N);
1162  case ISD::STORE:              return visitSTORE(N);
1163  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1164  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1165  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1166  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1167  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1168  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1169  }
1170  return SDValue();
1171}
1172
1173SDValue DAGCombiner::combine(SDNode *N) {
1174  SDValue RV = visit(N);
1175
1176  // If nothing happened, try a target-specific DAG combine.
1177  if (RV.getNode() == 0) {
1178    assert(N->getOpcode() != ISD::DELETED_NODE &&
1179           "Node was deleted but visit returned NULL!");
1180
1181    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1182        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1183
1184      // Expose the DAG combiner to the target combiner impls.
1185      TargetLowering::DAGCombinerInfo
1186        DagCombineInfo(DAG, Level, false, this);
1187
1188      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1189    }
1190  }
1191
1192  // If nothing happened still, try promoting the operation.
1193  if (RV.getNode() == 0) {
1194    switch (N->getOpcode()) {
1195    default: break;
1196    case ISD::ADD:
1197    case ISD::SUB:
1198    case ISD::MUL:
1199    case ISD::AND:
1200    case ISD::OR:
1201    case ISD::XOR:
1202      RV = PromoteIntBinOp(SDValue(N, 0));
1203      break;
1204    case ISD::SHL:
1205    case ISD::SRA:
1206    case ISD::SRL:
1207      RV = PromoteIntShiftOp(SDValue(N, 0));
1208      break;
1209    case ISD::SIGN_EXTEND:
1210    case ISD::ZERO_EXTEND:
1211    case ISD::ANY_EXTEND:
1212      RV = PromoteExtend(SDValue(N, 0));
1213      break;
1214    case ISD::LOAD:
1215      if (PromoteLoad(SDValue(N, 0)))
1216        RV = SDValue(N, 0);
1217      break;
1218    }
1219  }
1220
1221  // If N is a commutative binary node, try commuting it to enable more
1222  // sdisel CSE.
1223  if (RV.getNode() == 0 &&
1224      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1225      N->getNumValues() == 1) {
1226    SDValue N0 = N->getOperand(0);
1227    SDValue N1 = N->getOperand(1);
1228
1229    // Constant operands are canonicalized to RHS.
1230    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1231      SDValue Ops[] = { N1, N0 };
1232      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1233                                            Ops, 2);
1234      if (CSENode)
1235        return SDValue(CSENode, 0);
1236    }
1237  }
1238
1239  return RV;
1240}
1241
1242/// getInputChainForNode - Given a node, return its input chain if it has one,
1243/// otherwise return a null sd operand.
1244static SDValue getInputChainForNode(SDNode *N) {
1245  if (unsigned NumOps = N->getNumOperands()) {
1246    if (N->getOperand(0).getValueType() == MVT::Other)
1247      return N->getOperand(0);
1248    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1249      return N->getOperand(NumOps-1);
1250    for (unsigned i = 1; i < NumOps-1; ++i)
1251      if (N->getOperand(i).getValueType() == MVT::Other)
1252        return N->getOperand(i);
1253  }
1254  return SDValue();
1255}
1256
1257SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1258  // If N has two operands, where one has an input chain equal to the other,
1259  // the 'other' chain is redundant.
1260  if (N->getNumOperands() == 2) {
1261    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1262      return N->getOperand(0);
1263    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1264      return N->getOperand(1);
1265  }
1266
1267  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1268  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1269  SmallPtrSet<SDNode*, 16> SeenOps;
1270  bool Changed = false;             // If we should replace this token factor.
1271
1272  // Start out with this token factor.
1273  TFs.push_back(N);
1274
1275  // Iterate through token factors.  The TFs grows when new token factors are
1276  // encountered.
1277  for (unsigned i = 0; i < TFs.size(); ++i) {
1278    SDNode *TF = TFs[i];
1279
1280    // Check each of the operands.
1281    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1282      SDValue Op = TF->getOperand(i);
1283
1284      switch (Op.getOpcode()) {
1285      case ISD::EntryToken:
1286        // Entry tokens don't need to be added to the list. They are
1287        // rededundant.
1288        Changed = true;
1289        break;
1290
1291      case ISD::TokenFactor:
1292        if (Op.hasOneUse() &&
1293            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1294          // Queue up for processing.
1295          TFs.push_back(Op.getNode());
1296          // Clean up in case the token factor is removed.
1297          AddToWorkList(Op.getNode());
1298          Changed = true;
1299          break;
1300        }
1301        // Fall thru
1302
1303      default:
1304        // Only add if it isn't already in the list.
1305        if (SeenOps.insert(Op.getNode()))
1306          Ops.push_back(Op);
1307        else
1308          Changed = true;
1309        break;
1310      }
1311    }
1312  }
1313
1314  SDValue Result;
1315
1316  // If we've change things around then replace token factor.
1317  if (Changed) {
1318    if (Ops.empty()) {
1319      // The entry token is the only possible outcome.
1320      Result = DAG.getEntryNode();
1321    } else {
1322      // New and improved token factor.
1323      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1324                           MVT::Other, &Ops[0], Ops.size());
1325    }
1326
1327    // Don't add users to work list.
1328    return CombineTo(N, Result, false);
1329  }
1330
1331  return Result;
1332}
1333
1334/// MERGE_VALUES can always be eliminated.
1335SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1336  WorkListRemover DeadNodes(*this);
1337  // Replacing results may cause a different MERGE_VALUES to suddenly
1338  // be CSE'd with N, and carry its uses with it. Iterate until no
1339  // uses remain, to ensure that the node can be safely deleted.
1340  // First add the users of this node to the work list so that they
1341  // can be tried again once they have new operands.
1342  AddUsersToWorkList(N);
1343  do {
1344    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1345      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1346  } while (!N->use_empty());
1347  removeFromWorkList(N);
1348  DAG.DeleteNode(N);
1349  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1350}
1351
1352static
1353SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1354                              SelectionDAG &DAG) {
1355  EVT VT = N0.getValueType();
1356  SDValue N00 = N0.getOperand(0);
1357  SDValue N01 = N0.getOperand(1);
1358  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1359
1360  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1361      isa<ConstantSDNode>(N00.getOperand(1))) {
1362    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1363    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1364                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1365                                 N00.getOperand(0), N01),
1366                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1367                                 N00.getOperand(1), N01));
1368    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1369  }
1370
1371  return SDValue();
1372}
1373
1374SDValue DAGCombiner::visitADD(SDNode *N) {
1375  SDValue N0 = N->getOperand(0);
1376  SDValue N1 = N->getOperand(1);
1377  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1378  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1379  EVT VT = N0.getValueType();
1380
1381  // fold vector ops
1382  if (VT.isVector()) {
1383    SDValue FoldedVOp = SimplifyVBinOp(N);
1384    if (FoldedVOp.getNode()) return FoldedVOp;
1385
1386    // fold (add x, 0) -> x, vector edition
1387    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1388      return N0;
1389    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1390      return N1;
1391  }
1392
1393  // fold (add x, undef) -> undef
1394  if (N0.getOpcode() == ISD::UNDEF)
1395    return N0;
1396  if (N1.getOpcode() == ISD::UNDEF)
1397    return N1;
1398  // fold (add c1, c2) -> c1+c2
1399  if (N0C && N1C)
1400    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1401  // canonicalize constant to RHS
1402  if (N0C && !N1C)
1403    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1404  // fold (add x, 0) -> x
1405  if (N1C && N1C->isNullValue())
1406    return N0;
1407  // fold (add Sym, c) -> Sym+c
1408  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1409    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1410        GA->getOpcode() == ISD::GlobalAddress)
1411      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1412                                  GA->getOffset() +
1413                                    (uint64_t)N1C->getSExtValue());
1414  // fold ((c1-A)+c2) -> (c1+c2)-A
1415  if (N1C && N0.getOpcode() == ISD::SUB)
1416    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1417      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1418                         DAG.getConstant(N1C->getAPIntValue()+
1419                                         N0C->getAPIntValue(), VT),
1420                         N0.getOperand(1));
1421  // reassociate add
1422  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1423  if (RADD.getNode() != 0)
1424    return RADD;
1425  // fold ((0-A) + B) -> B-A
1426  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1427      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1428    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1429  // fold (A + (0-B)) -> A-B
1430  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1431      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1432    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1433  // fold (A+(B-A)) -> B
1434  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1435    return N1.getOperand(0);
1436  // fold ((B-A)+A) -> B
1437  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1438    return N0.getOperand(0);
1439  // fold (A+(B-(A+C))) to (B-C)
1440  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1441      N0 == N1.getOperand(1).getOperand(0))
1442    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1443                       N1.getOperand(1).getOperand(1));
1444  // fold (A+(B-(C+A))) to (B-C)
1445  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1446      N0 == N1.getOperand(1).getOperand(1))
1447    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1448                       N1.getOperand(1).getOperand(0));
1449  // fold (A+((B-A)+or-C)) to (B+or-C)
1450  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1451      N1.getOperand(0).getOpcode() == ISD::SUB &&
1452      N0 == N1.getOperand(0).getOperand(1))
1453    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1454                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1455
1456  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1457  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1458    SDValue N00 = N0.getOperand(0);
1459    SDValue N01 = N0.getOperand(1);
1460    SDValue N10 = N1.getOperand(0);
1461    SDValue N11 = N1.getOperand(1);
1462
1463    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1464      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1465                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1466                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1467  }
1468
1469  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1470    return SDValue(N, 0);
1471
1472  // fold (a+b) -> (a|b) iff a and b share no bits.
1473  if (VT.isInteger() && !VT.isVector()) {
1474    APInt LHSZero, LHSOne;
1475    APInt RHSZero, RHSOne;
1476    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1477
1478    if (LHSZero.getBoolValue()) {
1479      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1480
1481      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1482      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1483      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1484        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1485    }
1486  }
1487
1488  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1489  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1490    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1491    if (Result.getNode()) return Result;
1492  }
1493  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1494    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1495    if (Result.getNode()) return Result;
1496  }
1497
1498  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1499  if (N1.getOpcode() == ISD::SHL &&
1500      N1.getOperand(0).getOpcode() == ISD::SUB)
1501    if (ConstantSDNode *C =
1502          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1503      if (C->getAPIntValue() == 0)
1504        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1505                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1506                                       N1.getOperand(0).getOperand(1),
1507                                       N1.getOperand(1)));
1508  if (N0.getOpcode() == ISD::SHL &&
1509      N0.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1514                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1515                                       N0.getOperand(0).getOperand(1),
1516                                       N0.getOperand(1)));
1517
1518  if (N1.getOpcode() == ISD::AND) {
1519    SDValue AndOp0 = N1.getOperand(0);
1520    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1521    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1522    unsigned DestBits = VT.getScalarType().getSizeInBits();
1523
1524    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1525    // and similar xforms where the inner op is either ~0 or 0.
1526    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1527      DebugLoc DL = N->getDebugLoc();
1528      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1529    }
1530  }
1531
1532  // add (sext i1), X -> sub X, (zext i1)
1533  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1534      N0.getOperand(0).getValueType() == MVT::i1 &&
1535      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1536    DebugLoc DL = N->getDebugLoc();
1537    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1538    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1539  }
1540
1541  return SDValue();
1542}
1543
1544SDValue DAGCombiner::visitADDC(SDNode *N) {
1545  SDValue N0 = N->getOperand(0);
1546  SDValue N1 = N->getOperand(1);
1547  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1548  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1549  EVT VT = N0.getValueType();
1550
1551  // If the flag result is dead, turn this into an ADD.
1552  if (!N->hasAnyUseOfValue(1))
1553    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1554                     DAG.getNode(ISD::CARRY_FALSE,
1555                                 N->getDebugLoc(), MVT::Glue));
1556
1557  // canonicalize constant to RHS.
1558  if (N0C && !N1C)
1559    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1560
1561  // fold (addc x, 0) -> x + no carry out
1562  if (N1C && N1C->isNullValue())
1563    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1564                                        N->getDebugLoc(), MVT::Glue));
1565
1566  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1567  APInt LHSZero, LHSOne;
1568  APInt RHSZero, RHSOne;
1569  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1570
1571  if (LHSZero.getBoolValue()) {
1572    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1573
1574    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1575    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1576    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1577      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1578                       DAG.getNode(ISD::CARRY_FALSE,
1579                                   N->getDebugLoc(), MVT::Glue));
1580  }
1581
1582  return SDValue();
1583}
1584
1585SDValue DAGCombiner::visitADDE(SDNode *N) {
1586  SDValue N0 = N->getOperand(0);
1587  SDValue N1 = N->getOperand(1);
1588  SDValue CarryIn = N->getOperand(2);
1589  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1590  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1591
1592  // canonicalize constant to RHS
1593  if (N0C && !N1C)
1594    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1595                       N1, N0, CarryIn);
1596
1597  // fold (adde x, y, false) -> (addc x, y)
1598  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1599    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1600
1601  return SDValue();
1602}
1603
1604// Since it may not be valid to emit a fold to zero for vector initializers
1605// check if we can before folding.
1606static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1607                             SelectionDAG &DAG, bool LegalOperations) {
1608  if (!VT.isVector()) {
1609    return DAG.getConstant(0, VT);
1610  }
1611  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1612    // Produce a vector of zeros.
1613    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1614    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1615    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1616      &Ops[0], Ops.size());
1617  }
1618  return SDValue();
1619}
1620
1621SDValue DAGCombiner::visitSUB(SDNode *N) {
1622  SDValue N0 = N->getOperand(0);
1623  SDValue N1 = N->getOperand(1);
1624  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1626  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1627    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1628  EVT VT = N0.getValueType();
1629
1630  // fold vector ops
1631  if (VT.isVector()) {
1632    SDValue FoldedVOp = SimplifyVBinOp(N);
1633    if (FoldedVOp.getNode()) return FoldedVOp;
1634
1635    // fold (sub x, 0) -> x, vector edition
1636    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1637      return N0;
1638  }
1639
1640  // fold (sub x, x) -> 0
1641  // FIXME: Refactor this and xor and other similar operations together.
1642  if (N0 == N1)
1643    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1644  // fold (sub c1, c2) -> c1-c2
1645  if (N0C && N1C)
1646    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1647  // fold (sub x, c) -> (add x, -c)
1648  if (N1C)
1649    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1650                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1651  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1652  if (N0C && N0C->isAllOnesValue())
1653    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1654  // fold A-(A-B) -> B
1655  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1656    return N1.getOperand(1);
1657  // fold (A+B)-A -> B
1658  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1659    return N0.getOperand(1);
1660  // fold (A+B)-B -> A
1661  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1662    return N0.getOperand(0);
1663  // fold C2-(A+C1) -> (C2-C1)-A
1664  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1665    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1666                                   VT);
1667    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1668                       N1.getOperand(0));
1669  }
1670  // fold ((A+(B+or-C))-B) -> A+or-C
1671  if (N0.getOpcode() == ISD::ADD &&
1672      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1673       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1674      N0.getOperand(1).getOperand(0) == N1)
1675    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1676                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1677  // fold ((A+(C+B))-B) -> A+C
1678  if (N0.getOpcode() == ISD::ADD &&
1679      N0.getOperand(1).getOpcode() == ISD::ADD &&
1680      N0.getOperand(1).getOperand(1) == N1)
1681    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1682                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1683  // fold ((A-(B-C))-C) -> A-B
1684  if (N0.getOpcode() == ISD::SUB &&
1685      N0.getOperand(1).getOpcode() == ISD::SUB &&
1686      N0.getOperand(1).getOperand(1) == N1)
1687    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1688                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1689
1690  // If either operand of a sub is undef, the result is undef
1691  if (N0.getOpcode() == ISD::UNDEF)
1692    return N0;
1693  if (N1.getOpcode() == ISD::UNDEF)
1694    return N1;
1695
1696  // If the relocation model supports it, consider symbol offsets.
1697  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1698    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1699      // fold (sub Sym, c) -> Sym-c
1700      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1701        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1702                                    GA->getOffset() -
1703                                      (uint64_t)N1C->getSExtValue());
1704      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1705      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1706        if (GA->getGlobal() == GB->getGlobal())
1707          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1708                                 VT);
1709    }
1710
1711  return SDValue();
1712}
1713
1714SDValue DAGCombiner::visitSUBC(SDNode *N) {
1715  SDValue N0 = N->getOperand(0);
1716  SDValue N1 = N->getOperand(1);
1717  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1719  EVT VT = N0.getValueType();
1720
1721  // If the flag result is dead, turn this into an SUB.
1722  if (!N->hasAnyUseOfValue(1))
1723    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1724                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1725                                 MVT::Glue));
1726
1727  // fold (subc x, x) -> 0 + no borrow
1728  if (N0 == N1)
1729    return CombineTo(N, DAG.getConstant(0, VT),
1730                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1731                                 MVT::Glue));
1732
1733  // fold (subc x, 0) -> x + no borrow
1734  if (N1C && N1C->isNullValue())
1735    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1736                                        MVT::Glue));
1737
1738  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1739  if (N0C && N0C->isAllOnesValue())
1740    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1741                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1742                                 MVT::Glue));
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBE(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  SDValue CarryIn = N->getOperand(2);
1751
1752  // fold (sube x, y, false) -> (subc x, y)
1753  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1754    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1755
1756  return SDValue();
1757}
1758
1759SDValue DAGCombiner::visitMUL(SDNode *N) {
1760  SDValue N0 = N->getOperand(0);
1761  SDValue N1 = N->getOperand(1);
1762  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1763  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1764  EVT VT = N0.getValueType();
1765
1766  // fold vector ops
1767  if (VT.isVector()) {
1768    SDValue FoldedVOp = SimplifyVBinOp(N);
1769    if (FoldedVOp.getNode()) return FoldedVOp;
1770  }
1771
1772  // fold (mul x, undef) -> 0
1773  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1774    return DAG.getConstant(0, VT);
1775  // fold (mul c1, c2) -> c1*c2
1776  if (N0C && N1C)
1777    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1778  // canonicalize constant to RHS
1779  if (N0C && !N1C)
1780    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1781  // fold (mul x, 0) -> 0
1782  if (N1C && N1C->isNullValue())
1783    return N1;
1784  // fold (mul x, -1) -> 0-x
1785  if (N1C && N1C->isAllOnesValue())
1786    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1787                       DAG.getConstant(0, VT), N0);
1788  // fold (mul x, (1 << c)) -> x << c
1789  if (N1C && N1C->getAPIntValue().isPowerOf2())
1790    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1791                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1792                                       getShiftAmountTy(N0.getValueType())));
1793  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1794  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1795    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1796    // FIXME: If the input is something that is easily negated (e.g. a
1797    // single-use add), we should put the negate there.
1798    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1799                       DAG.getConstant(0, VT),
1800                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1801                            DAG.getConstant(Log2Val,
1802                                      getShiftAmountTy(N0.getValueType()))));
1803  }
1804  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1805  if (N1C && N0.getOpcode() == ISD::SHL &&
1806      isa<ConstantSDNode>(N0.getOperand(1))) {
1807    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1808                             N1, N0.getOperand(1));
1809    AddToWorkList(C3.getNode());
1810    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1811                       N0.getOperand(0), C3);
1812  }
1813
1814  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1815  // use.
1816  {
1817    SDValue Sh(0,0), Y(0,0);
1818    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1819    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1820        N0.getNode()->hasOneUse()) {
1821      Sh = N0; Y = N1;
1822    } else if (N1.getOpcode() == ISD::SHL &&
1823               isa<ConstantSDNode>(N1.getOperand(1)) &&
1824               N1.getNode()->hasOneUse()) {
1825      Sh = N1; Y = N0;
1826    }
1827
1828    if (Sh.getNode()) {
1829      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1830                                Sh.getOperand(0), Y);
1831      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1832                         Mul, Sh.getOperand(1));
1833    }
1834  }
1835
1836  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1837  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1838      isa<ConstantSDNode>(N0.getOperand(1)))
1839    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1840                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1841                                   N0.getOperand(0), N1),
1842                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1843                                   N0.getOperand(1), N1));
1844
1845  // reassociate mul
1846  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1847  if (RMUL.getNode() != 0)
1848    return RMUL;
1849
1850  return SDValue();
1851}
1852
1853SDValue DAGCombiner::visitSDIV(SDNode *N) {
1854  SDValue N0 = N->getOperand(0);
1855  SDValue N1 = N->getOperand(1);
1856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1857  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1858  EVT VT = N->getValueType(0);
1859
1860  // fold vector ops
1861  if (VT.isVector()) {
1862    SDValue FoldedVOp = SimplifyVBinOp(N);
1863    if (FoldedVOp.getNode()) return FoldedVOp;
1864  }
1865
1866  // fold (sdiv c1, c2) -> c1/c2
1867  if (N0C && N1C && !N1C->isNullValue())
1868    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1869  // fold (sdiv X, 1) -> X
1870  if (N1C && N1C->getAPIntValue() == 1LL)
1871    return N0;
1872  // fold (sdiv X, -1) -> 0-X
1873  if (N1C && N1C->isAllOnesValue())
1874    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1875                       DAG.getConstant(0, VT), N0);
1876  // If we know the sign bits of both operands are zero, strength reduce to a
1877  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1878  if (!VT.isVector()) {
1879    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1880      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1881                         N0, N1);
1882  }
1883  // fold (sdiv X, pow2) -> simple ops after legalize
1884  if (N1C && !N1C->isNullValue() &&
1885      (N1C->getAPIntValue().isPowerOf2() ||
1886       (-N1C->getAPIntValue()).isPowerOf2())) {
1887    // If dividing by powers of two is cheap, then don't perform the following
1888    // fold.
1889    if (TLI.isPow2DivCheap())
1890      return SDValue();
1891
1892    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1893
1894    // Splat the sign bit into the register
1895    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1896                              DAG.getConstant(VT.getSizeInBits()-1,
1897                                       getShiftAmountTy(N0.getValueType())));
1898    AddToWorkList(SGN.getNode());
1899
1900    // Add (N0 < 0) ? abs2 - 1 : 0;
1901    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1902                              DAG.getConstant(VT.getSizeInBits() - lg2,
1903                                       getShiftAmountTy(SGN.getValueType())));
1904    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1905    AddToWorkList(SRL.getNode());
1906    AddToWorkList(ADD.getNode());    // Divide by pow2
1907    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1908                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1909
1910    // If we're dividing by a positive value, we're done.  Otherwise, we must
1911    // negate the result.
1912    if (N1C->getAPIntValue().isNonNegative())
1913      return SRA;
1914
1915    AddToWorkList(SRA.getNode());
1916    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1917                       DAG.getConstant(0, VT), SRA);
1918  }
1919
1920  // if integer divide is expensive and we satisfy the requirements, emit an
1921  // alternate sequence.
1922  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1923    SDValue Op = BuildSDIV(N);
1924    if (Op.getNode()) return Op;
1925  }
1926
1927  // undef / X -> 0
1928  if (N0.getOpcode() == ISD::UNDEF)
1929    return DAG.getConstant(0, VT);
1930  // X / undef -> undef
1931  if (N1.getOpcode() == ISD::UNDEF)
1932    return N1;
1933
1934  return SDValue();
1935}
1936
1937SDValue DAGCombiner::visitUDIV(SDNode *N) {
1938  SDValue N0 = N->getOperand(0);
1939  SDValue N1 = N->getOperand(1);
1940  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1942  EVT VT = N->getValueType(0);
1943
1944  // fold vector ops
1945  if (VT.isVector()) {
1946    SDValue FoldedVOp = SimplifyVBinOp(N);
1947    if (FoldedVOp.getNode()) return FoldedVOp;
1948  }
1949
1950  // fold (udiv c1, c2) -> c1/c2
1951  if (N0C && N1C && !N1C->isNullValue())
1952    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1953  // fold (udiv x, (1 << c)) -> x >>u c
1954  if (N1C && N1C->getAPIntValue().isPowerOf2())
1955    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1956                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1957                                       getShiftAmountTy(N0.getValueType())));
1958  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1959  if (N1.getOpcode() == ISD::SHL) {
1960    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1961      if (SHC->getAPIntValue().isPowerOf2()) {
1962        EVT ADDVT = N1.getOperand(1).getValueType();
1963        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1964                                  N1.getOperand(1),
1965                                  DAG.getConstant(SHC->getAPIntValue()
1966                                                                  .logBase2(),
1967                                                  ADDVT));
1968        AddToWorkList(Add.getNode());
1969        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1970      }
1971    }
1972  }
1973  // fold (udiv x, c) -> alternate
1974  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1975    SDValue Op = BuildUDIV(N);
1976    if (Op.getNode()) return Op;
1977  }
1978
1979  // undef / X -> 0
1980  if (N0.getOpcode() == ISD::UNDEF)
1981    return DAG.getConstant(0, VT);
1982  // X / undef -> undef
1983  if (N1.getOpcode() == ISD::UNDEF)
1984    return N1;
1985
1986  return SDValue();
1987}
1988
1989SDValue DAGCombiner::visitSREM(SDNode *N) {
1990  SDValue N0 = N->getOperand(0);
1991  SDValue N1 = N->getOperand(1);
1992  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1994  EVT VT = N->getValueType(0);
1995
1996  // fold (srem c1, c2) -> c1%c2
1997  if (N0C && N1C && !N1C->isNullValue())
1998    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1999  // If we know the sign bits of both operands are zero, strength reduce to a
2000  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2001  if (!VT.isVector()) {
2002    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2003      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
2004  }
2005
2006  // If X/C can be simplified by the division-by-constant logic, lower
2007  // X%C to the equivalent of X-X/C*C.
2008  if (N1C && !N1C->isNullValue()) {
2009    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
2010    AddToWorkList(Div.getNode());
2011    SDValue OptimizedDiv = combine(Div.getNode());
2012    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2013      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2014                                OptimizedDiv, N1);
2015      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2016      AddToWorkList(Mul.getNode());
2017      return Sub;
2018    }
2019  }
2020
2021  // undef % X -> 0
2022  if (N0.getOpcode() == ISD::UNDEF)
2023    return DAG.getConstant(0, VT);
2024  // X % undef -> undef
2025  if (N1.getOpcode() == ISD::UNDEF)
2026    return N1;
2027
2028  return SDValue();
2029}
2030
2031SDValue DAGCombiner::visitUREM(SDNode *N) {
2032  SDValue N0 = N->getOperand(0);
2033  SDValue N1 = N->getOperand(1);
2034  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2035  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2036  EVT VT = N->getValueType(0);
2037
2038  // fold (urem c1, c2) -> c1%c2
2039  if (N0C && N1C && !N1C->isNullValue())
2040    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2041  // fold (urem x, pow2) -> (and x, pow2-1)
2042  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2043    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2044                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2045  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2046  if (N1.getOpcode() == ISD::SHL) {
2047    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2048      if (SHC->getAPIntValue().isPowerOf2()) {
2049        SDValue Add =
2050          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2051                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2052                                 VT));
2053        AddToWorkList(Add.getNode());
2054        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2055      }
2056    }
2057  }
2058
2059  // If X/C can be simplified by the division-by-constant logic, lower
2060  // X%C to the equivalent of X-X/C*C.
2061  if (N1C && !N1C->isNullValue()) {
2062    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2063    AddToWorkList(Div.getNode());
2064    SDValue OptimizedDiv = combine(Div.getNode());
2065    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2066      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2067                                OptimizedDiv, N1);
2068      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2069      AddToWorkList(Mul.getNode());
2070      return Sub;
2071    }
2072  }
2073
2074  // undef % X -> 0
2075  if (N0.getOpcode() == ISD::UNDEF)
2076    return DAG.getConstant(0, VT);
2077  // X % undef -> undef
2078  if (N1.getOpcode() == ISD::UNDEF)
2079    return N1;
2080
2081  return SDValue();
2082}
2083
2084SDValue DAGCombiner::visitMULHS(SDNode *N) {
2085  SDValue N0 = N->getOperand(0);
2086  SDValue N1 = N->getOperand(1);
2087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2088  EVT VT = N->getValueType(0);
2089  DebugLoc DL = N->getDebugLoc();
2090
2091  // fold (mulhs x, 0) -> 0
2092  if (N1C && N1C->isNullValue())
2093    return N1;
2094  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2095  if (N1C && N1C->getAPIntValue() == 1)
2096    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2097                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2098                                       getShiftAmountTy(N0.getValueType())));
2099  // fold (mulhs x, undef) -> 0
2100  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2101    return DAG.getConstant(0, VT);
2102
2103  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2104  // plus a shift.
2105  if (VT.isSimple() && !VT.isVector()) {
2106    MVT Simple = VT.getSimpleVT();
2107    unsigned SimpleSize = Simple.getSizeInBits();
2108    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2109    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2110      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2111      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2112      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2113      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2114            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2115      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2116    }
2117  }
2118
2119  return SDValue();
2120}
2121
2122SDValue DAGCombiner::visitMULHU(SDNode *N) {
2123  SDValue N0 = N->getOperand(0);
2124  SDValue N1 = N->getOperand(1);
2125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2126  EVT VT = N->getValueType(0);
2127  DebugLoc DL = N->getDebugLoc();
2128
2129  // fold (mulhu x, 0) -> 0
2130  if (N1C && N1C->isNullValue())
2131    return N1;
2132  // fold (mulhu x, 1) -> 0
2133  if (N1C && N1C->getAPIntValue() == 1)
2134    return DAG.getConstant(0, N0.getValueType());
2135  // fold (mulhu x, undef) -> 0
2136  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2137    return DAG.getConstant(0, VT);
2138
2139  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2140  // plus a shift.
2141  if (VT.isSimple() && !VT.isVector()) {
2142    MVT Simple = VT.getSimpleVT();
2143    unsigned SimpleSize = Simple.getSizeInBits();
2144    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2145    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2146      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2147      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2148      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2149      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2150            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2151      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2152    }
2153  }
2154
2155  return SDValue();
2156}
2157
2158/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2159/// compute two values. LoOp and HiOp give the opcodes for the two computations
2160/// that are being performed. Return true if a simplification was made.
2161///
2162SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2163                                                unsigned HiOp) {
2164  // If the high half is not needed, just compute the low half.
2165  bool HiExists = N->hasAnyUseOfValue(1);
2166  if (!HiExists &&
2167      (!LegalOperations ||
2168       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2169    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2170                              N->op_begin(), N->getNumOperands());
2171    return CombineTo(N, Res, Res);
2172  }
2173
2174  // If the low half is not needed, just compute the high half.
2175  bool LoExists = N->hasAnyUseOfValue(0);
2176  if (!LoExists &&
2177      (!LegalOperations ||
2178       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2179    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2180                              N->op_begin(), N->getNumOperands());
2181    return CombineTo(N, Res, Res);
2182  }
2183
2184  // If both halves are used, return as it is.
2185  if (LoExists && HiExists)
2186    return SDValue();
2187
2188  // If the two computed results can be simplified separately, separate them.
2189  if (LoExists) {
2190    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2191                             N->op_begin(), N->getNumOperands());
2192    AddToWorkList(Lo.getNode());
2193    SDValue LoOpt = combine(Lo.getNode());
2194    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2195        (!LegalOperations ||
2196         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2197      return CombineTo(N, LoOpt, LoOpt);
2198  }
2199
2200  if (HiExists) {
2201    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2202                             N->op_begin(), N->getNumOperands());
2203    AddToWorkList(Hi.getNode());
2204    SDValue HiOpt = combine(Hi.getNode());
2205    if (HiOpt.getNode() && HiOpt != Hi &&
2206        (!LegalOperations ||
2207         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2208      return CombineTo(N, HiOpt, HiOpt);
2209  }
2210
2211  return SDValue();
2212}
2213
2214SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2215  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2216  if (Res.getNode()) return Res;
2217
2218  EVT VT = N->getValueType(0);
2219  DebugLoc DL = N->getDebugLoc();
2220
2221  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2222  // plus a shift.
2223  if (VT.isSimple() && !VT.isVector()) {
2224    MVT Simple = VT.getSimpleVT();
2225    unsigned SimpleSize = Simple.getSizeInBits();
2226    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2227    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2228      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2229      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2230      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2231      // Compute the high part as N1.
2232      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2233            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2234      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2235      // Compute the low part as N0.
2236      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2237      return CombineTo(N, Lo, Hi);
2238    }
2239  }
2240
2241  return SDValue();
2242}
2243
2244SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2245  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2246  if (Res.getNode()) return Res;
2247
2248  EVT VT = N->getValueType(0);
2249  DebugLoc DL = N->getDebugLoc();
2250
2251  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2252  // plus a shift.
2253  if (VT.isSimple() && !VT.isVector()) {
2254    MVT Simple = VT.getSimpleVT();
2255    unsigned SimpleSize = Simple.getSizeInBits();
2256    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2257    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2258      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2259      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2260      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2261      // Compute the high part as N1.
2262      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2263            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2264      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2265      // Compute the low part as N0.
2266      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2267      return CombineTo(N, Lo, Hi);
2268    }
2269  }
2270
2271  return SDValue();
2272}
2273
2274SDValue DAGCombiner::visitSMULO(SDNode *N) {
2275  // (smulo x, 2) -> (saddo x, x)
2276  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2277    if (C2->getAPIntValue() == 2)
2278      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2279                         N->getOperand(0), N->getOperand(0));
2280
2281  return SDValue();
2282}
2283
2284SDValue DAGCombiner::visitUMULO(SDNode *N) {
2285  // (umulo x, 2) -> (uaddo x, x)
2286  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2287    if (C2->getAPIntValue() == 2)
2288      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2289                         N->getOperand(0), N->getOperand(0));
2290
2291  return SDValue();
2292}
2293
2294SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2295  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2296  if (Res.getNode()) return Res;
2297
2298  return SDValue();
2299}
2300
2301SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2302  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2303  if (Res.getNode()) return Res;
2304
2305  return SDValue();
2306}
2307
2308/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2309/// two operands of the same opcode, try to simplify it.
2310SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2311  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2312  EVT VT = N0.getValueType();
2313  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2314
2315  // Bail early if none of these transforms apply.
2316  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2317
2318  // For each of OP in AND/OR/XOR:
2319  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2320  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2321  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2322  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2323  //
2324  // do not sink logical op inside of a vector extend, since it may combine
2325  // into a vsetcc.
2326  EVT Op0VT = N0.getOperand(0).getValueType();
2327  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2328       N0.getOpcode() == ISD::SIGN_EXTEND ||
2329       // Avoid infinite looping with PromoteIntBinOp.
2330       (N0.getOpcode() == ISD::ANY_EXTEND &&
2331        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2332       (N0.getOpcode() == ISD::TRUNCATE &&
2333        (!TLI.isZExtFree(VT, Op0VT) ||
2334         !TLI.isTruncateFree(Op0VT, VT)) &&
2335        TLI.isTypeLegal(Op0VT))) &&
2336      !VT.isVector() &&
2337      Op0VT == N1.getOperand(0).getValueType() &&
2338      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2339    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2340                                 N0.getOperand(0).getValueType(),
2341                                 N0.getOperand(0), N1.getOperand(0));
2342    AddToWorkList(ORNode.getNode());
2343    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2344  }
2345
2346  // For each of OP in SHL/SRL/SRA/AND...
2347  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2348  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2349  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2350  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2351       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2352      N0.getOperand(1) == N1.getOperand(1)) {
2353    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2354                                 N0.getOperand(0).getValueType(),
2355                                 N0.getOperand(0), N1.getOperand(0));
2356    AddToWorkList(ORNode.getNode());
2357    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2358                       ORNode, N0.getOperand(1));
2359  }
2360
2361  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2362  // Only perform this optimization after type legalization and before
2363  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2364  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2365  // we don't want to undo this promotion.
2366  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2367  // on scalars.
2368  if ((N0.getOpcode() == ISD::BITCAST ||
2369       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2370      Level == AfterLegalizeTypes) {
2371    SDValue In0 = N0.getOperand(0);
2372    SDValue In1 = N1.getOperand(0);
2373    EVT In0Ty = In0.getValueType();
2374    EVT In1Ty = In1.getValueType();
2375    DebugLoc DL = N->getDebugLoc();
2376    // If both incoming values are integers, and the original types are the
2377    // same.
2378    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2379      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2380      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2381      AddToWorkList(Op.getNode());
2382      return BC;
2383    }
2384  }
2385
2386  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2387  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2388  // If both shuffles use the same mask, and both shuffle within a single
2389  // vector, then it is worthwhile to move the swizzle after the operation.
2390  // The type-legalizer generates this pattern when loading illegal
2391  // vector types from memory. In many cases this allows additional shuffle
2392  // optimizations.
2393  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2394      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2395      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2396    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2397    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2398
2399    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2400           "Inputs to shuffles are not the same type");
2401
2402    unsigned NumElts = VT.getVectorNumElements();
2403
2404    // Check that both shuffles use the same mask. The masks are known to be of
2405    // the same length because the result vector type is the same.
2406    bool SameMask = true;
2407    for (unsigned i = 0; i != NumElts; ++i) {
2408      int Idx0 = SVN0->getMaskElt(i);
2409      int Idx1 = SVN1->getMaskElt(i);
2410      if (Idx0 != Idx1) {
2411        SameMask = false;
2412        break;
2413      }
2414    }
2415
2416    if (SameMask) {
2417      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2418                               N0.getOperand(0), N1.getOperand(0));
2419      AddToWorkList(Op.getNode());
2420      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2421                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2422    }
2423  }
2424
2425  return SDValue();
2426}
2427
2428SDValue DAGCombiner::visitAND(SDNode *N) {
2429  SDValue N0 = N->getOperand(0);
2430  SDValue N1 = N->getOperand(1);
2431  SDValue LL, LR, RL, RR, CC0, CC1;
2432  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2433  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2434  EVT VT = N1.getValueType();
2435  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2436
2437  // fold vector ops
2438  if (VT.isVector()) {
2439    SDValue FoldedVOp = SimplifyVBinOp(N);
2440    if (FoldedVOp.getNode()) return FoldedVOp;
2441
2442    // fold (and x, 0) -> 0, vector edition
2443    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2444      return N0;
2445    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2446      return N1;
2447
2448    // fold (and x, -1) -> x, vector edition
2449    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2450      return N1;
2451    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2452      return N0;
2453  }
2454
2455  // fold (and x, undef) -> 0
2456  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2457    return DAG.getConstant(0, VT);
2458  // fold (and c1, c2) -> c1&c2
2459  if (N0C && N1C)
2460    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2461  // canonicalize constant to RHS
2462  if (N0C && !N1C)
2463    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2464  // fold (and x, -1) -> x
2465  if (N1C && N1C->isAllOnesValue())
2466    return N0;
2467  // if (and x, c) is known to be zero, return 0
2468  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2469                                   APInt::getAllOnesValue(BitWidth)))
2470    return DAG.getConstant(0, VT);
2471  // reassociate and
2472  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2473  if (RAND.getNode() != 0)
2474    return RAND;
2475  // fold (and (or x, C), D) -> D if (C & D) == D
2476  if (N1C && N0.getOpcode() == ISD::OR)
2477    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2478      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2479        return N1;
2480  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2481  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2482    SDValue N0Op0 = N0.getOperand(0);
2483    APInt Mask = ~N1C->getAPIntValue();
2484    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2485    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2486      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2487                                 N0.getValueType(), N0Op0);
2488
2489      // Replace uses of the AND with uses of the Zero extend node.
2490      CombineTo(N, Zext);
2491
2492      // We actually want to replace all uses of the any_extend with the
2493      // zero_extend, to avoid duplicating things.  This will later cause this
2494      // AND to be folded.
2495      CombineTo(N0.getNode(), Zext);
2496      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2497    }
2498  }
2499  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2500  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2501  // already be zero by virtue of the width of the base type of the load.
2502  //
2503  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2504  // more cases.
2505  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2506       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2507      N0.getOpcode() == ISD::LOAD) {
2508    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2509                                         N0 : N0.getOperand(0) );
2510
2511    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2512    // This can be a pure constant or a vector splat, in which case we treat the
2513    // vector as a scalar and use the splat value.
2514    APInt Constant = APInt::getNullValue(1);
2515    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2516      Constant = C->getAPIntValue();
2517    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2518      APInt SplatValue, SplatUndef;
2519      unsigned SplatBitSize;
2520      bool HasAnyUndefs;
2521      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2522                                             SplatBitSize, HasAnyUndefs);
2523      if (IsSplat) {
2524        // Undef bits can contribute to a possible optimisation if set, so
2525        // set them.
2526        SplatValue |= SplatUndef;
2527
2528        // The splat value may be something like "0x00FFFFFF", which means 0 for
2529        // the first vector value and FF for the rest, repeating. We need a mask
2530        // that will apply equally to all members of the vector, so AND all the
2531        // lanes of the constant together.
2532        EVT VT = Vector->getValueType(0);
2533        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2534
2535        // If the splat value has been compressed to a bitlength lower
2536        // than the size of the vector lane, we need to re-expand it to
2537        // the lane size.
2538        if (BitWidth > SplatBitSize)
2539          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2540               SplatBitSize < BitWidth;
2541               SplatBitSize = SplatBitSize * 2)
2542            SplatValue |= SplatValue.shl(SplatBitSize);
2543
2544        Constant = APInt::getAllOnesValue(BitWidth);
2545        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2546          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2547      }
2548    }
2549
2550    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2551    // actually legal and isn't going to get expanded, else this is a false
2552    // optimisation.
2553    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2554                                                    Load->getMemoryVT());
2555
2556    // Resize the constant to the same size as the original memory access before
2557    // extension. If it is still the AllOnesValue then this AND is completely
2558    // unneeded.
2559    Constant =
2560      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2561
2562    bool B;
2563    switch (Load->getExtensionType()) {
2564    default: B = false; break;
2565    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2566    case ISD::ZEXTLOAD:
2567    case ISD::NON_EXTLOAD: B = true; break;
2568    }
2569
2570    if (B && Constant.isAllOnesValue()) {
2571      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2572      // preserve semantics once we get rid of the AND.
2573      SDValue NewLoad(Load, 0);
2574      if (Load->getExtensionType() == ISD::EXTLOAD) {
2575        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2576                              Load->getValueType(0), Load->getDebugLoc(),
2577                              Load->getChain(), Load->getBasePtr(),
2578                              Load->getOffset(), Load->getMemoryVT(),
2579                              Load->getMemOperand());
2580        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2581        if (Load->getNumValues() == 3) {
2582          // PRE/POST_INC loads have 3 values.
2583          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2584                           NewLoad.getValue(2) };
2585          CombineTo(Load, To, 3, true);
2586        } else {
2587          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2588        }
2589      }
2590
2591      // Fold the AND away, taking care not to fold to the old load node if we
2592      // replaced it.
2593      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2594
2595      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2596    }
2597  }
2598  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2599  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2600    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2601    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2602
2603    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2604        LL.getValueType().isInteger()) {
2605      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2606      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2607        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2608                                     LR.getValueType(), LL, RL);
2609        AddToWorkList(ORNode.getNode());
2610        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2611      }
2612      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2613      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2614        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2615                                      LR.getValueType(), LL, RL);
2616        AddToWorkList(ANDNode.getNode());
2617        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2618      }
2619      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2620      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2621        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2622                                     LR.getValueType(), LL, RL);
2623        AddToWorkList(ORNode.getNode());
2624        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2625      }
2626    }
2627    // canonicalize equivalent to ll == rl
2628    if (LL == RR && LR == RL) {
2629      Op1 = ISD::getSetCCSwappedOperands(Op1);
2630      std::swap(RL, RR);
2631    }
2632    if (LL == RL && LR == RR) {
2633      bool isInteger = LL.getValueType().isInteger();
2634      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2635      if (Result != ISD::SETCC_INVALID &&
2636          (!LegalOperations ||
2637           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2638            TLI.isOperationLegal(ISD::SETCC,
2639                            TLI.getSetCCResultType(N0.getSimpleValueType())))))
2640        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2641                            LL, LR, Result);
2642    }
2643  }
2644
2645  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2646  if (N0.getOpcode() == N1.getOpcode()) {
2647    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2648    if (Tmp.getNode()) return Tmp;
2649  }
2650
2651  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2652  // fold (and (sra)) -> (and (srl)) when possible.
2653  if (!VT.isVector() &&
2654      SimplifyDemandedBits(SDValue(N, 0)))
2655    return SDValue(N, 0);
2656
2657  // fold (zext_inreg (extload x)) -> (zextload x)
2658  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2659    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2660    EVT MemVT = LN0->getMemoryVT();
2661    // If we zero all the possible extended bits, then we can turn this into
2662    // a zextload if we are running before legalize or the operation is legal.
2663    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2664    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2665                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2666        ((!LegalOperations && !LN0->isVolatile()) ||
2667         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2668      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2669                                       LN0->getChain(), LN0->getBasePtr(),
2670                                       LN0->getPointerInfo(), MemVT,
2671                                       LN0->isVolatile(), LN0->isNonTemporal(),
2672                                       LN0->getAlignment());
2673      AddToWorkList(N);
2674      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2675      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2676    }
2677  }
2678  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2679  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2680      N0.hasOneUse()) {
2681    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2682    EVT MemVT = LN0->getMemoryVT();
2683    // If we zero all the possible extended bits, then we can turn this into
2684    // a zextload if we are running before legalize or the operation is legal.
2685    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2686    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2687                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2688        ((!LegalOperations && !LN0->isVolatile()) ||
2689         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2690      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2691                                       LN0->getChain(),
2692                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2693                                       MemVT,
2694                                       LN0->isVolatile(), LN0->isNonTemporal(),
2695                                       LN0->getAlignment());
2696      AddToWorkList(N);
2697      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2698      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2699    }
2700  }
2701
2702  // fold (and (load x), 255) -> (zextload x, i8)
2703  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2704  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2705  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2706              (N0.getOpcode() == ISD::ANY_EXTEND &&
2707               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2708    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2709    LoadSDNode *LN0 = HasAnyExt
2710      ? cast<LoadSDNode>(N0.getOperand(0))
2711      : cast<LoadSDNode>(N0);
2712    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2713        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2714      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2715      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2716        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2717        EVT LoadedVT = LN0->getMemoryVT();
2718
2719        if (ExtVT == LoadedVT &&
2720            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2721          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2722
2723          SDValue NewLoad =
2724            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2725                           LN0->getChain(), LN0->getBasePtr(),
2726                           LN0->getPointerInfo(),
2727                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2728                           LN0->getAlignment());
2729          AddToWorkList(N);
2730          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2731          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2732        }
2733
2734        // Do not change the width of a volatile load.
2735        // Do not generate loads of non-round integer types since these can
2736        // be expensive (and would be wrong if the type is not byte sized).
2737        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2738            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2739          EVT PtrType = LN0->getOperand(1).getValueType();
2740
2741          unsigned Alignment = LN0->getAlignment();
2742          SDValue NewPtr = LN0->getBasePtr();
2743
2744          // For big endian targets, we need to add an offset to the pointer
2745          // to load the correct bytes.  For little endian systems, we merely
2746          // need to read fewer bytes from the same pointer.
2747          if (TLI.isBigEndian()) {
2748            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2749            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2750            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2751            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2752                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2753            Alignment = MinAlign(Alignment, PtrOff);
2754          }
2755
2756          AddToWorkList(NewPtr.getNode());
2757
2758          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2759          SDValue Load =
2760            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2761                           LN0->getChain(), NewPtr,
2762                           LN0->getPointerInfo(),
2763                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2764                           Alignment);
2765          AddToWorkList(N);
2766          CombineTo(LN0, Load, Load.getValue(1));
2767          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2768        }
2769      }
2770    }
2771  }
2772
2773  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2774      VT.getSizeInBits() <= 64) {
2775    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2776      APInt ADDC = ADDI->getAPIntValue();
2777      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2778        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2779        // immediate for an add, but it is legal if its top c2 bits are set,
2780        // transform the ADD so the immediate doesn't need to be materialized
2781        // in a register.
2782        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2783          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2784                                             SRLI->getZExtValue());
2785          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2786            ADDC |= Mask;
2787            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2788              SDValue NewAdd =
2789                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2790                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2791              CombineTo(N0.getNode(), NewAdd);
2792              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2793            }
2794          }
2795        }
2796      }
2797    }
2798  }
2799
2800  return SDValue();
2801}
2802
2803/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2804///
2805SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2806                                        bool DemandHighBits) {
2807  if (!LegalOperations)
2808    return SDValue();
2809
2810  EVT VT = N->getValueType(0);
2811  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2812    return SDValue();
2813  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2814    return SDValue();
2815
2816  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2817  bool LookPassAnd0 = false;
2818  bool LookPassAnd1 = false;
2819  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2820      std::swap(N0, N1);
2821  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2822      std::swap(N0, N1);
2823  if (N0.getOpcode() == ISD::AND) {
2824    if (!N0.getNode()->hasOneUse())
2825      return SDValue();
2826    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2827    if (!N01C || N01C->getZExtValue() != 0xFF00)
2828      return SDValue();
2829    N0 = N0.getOperand(0);
2830    LookPassAnd0 = true;
2831  }
2832
2833  if (N1.getOpcode() == ISD::AND) {
2834    if (!N1.getNode()->hasOneUse())
2835      return SDValue();
2836    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2837    if (!N11C || N11C->getZExtValue() != 0xFF)
2838      return SDValue();
2839    N1 = N1.getOperand(0);
2840    LookPassAnd1 = true;
2841  }
2842
2843  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2844    std::swap(N0, N1);
2845  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2846    return SDValue();
2847  if (!N0.getNode()->hasOneUse() ||
2848      !N1.getNode()->hasOneUse())
2849    return SDValue();
2850
2851  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2852  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2853  if (!N01C || !N11C)
2854    return SDValue();
2855  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2856    return SDValue();
2857
2858  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2859  SDValue N00 = N0->getOperand(0);
2860  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2861    if (!N00.getNode()->hasOneUse())
2862      return SDValue();
2863    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2864    if (!N001C || N001C->getZExtValue() != 0xFF)
2865      return SDValue();
2866    N00 = N00.getOperand(0);
2867    LookPassAnd0 = true;
2868  }
2869
2870  SDValue N10 = N1->getOperand(0);
2871  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2872    if (!N10.getNode()->hasOneUse())
2873      return SDValue();
2874    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2875    if (!N101C || N101C->getZExtValue() != 0xFF00)
2876      return SDValue();
2877    N10 = N10.getOperand(0);
2878    LookPassAnd1 = true;
2879  }
2880
2881  if (N00 != N10)
2882    return SDValue();
2883
2884  // Make sure everything beyond the low halfword is zero since the SRL 16
2885  // will clear the top bits.
2886  unsigned OpSizeInBits = VT.getSizeInBits();
2887  if (DemandHighBits && OpSizeInBits > 16 &&
2888      (!LookPassAnd0 || !LookPassAnd1) &&
2889      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2890    return SDValue();
2891
2892  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2893  if (OpSizeInBits > 16)
2894    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2895                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2896  return Res;
2897}
2898
2899/// isBSwapHWordElement - Return true if the specified node is an element
2900/// that makes up a 32-bit packed halfword byteswap. i.e.
2901/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2902static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2903  if (!N.getNode()->hasOneUse())
2904    return false;
2905
2906  unsigned Opc = N.getOpcode();
2907  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2908    return false;
2909
2910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2911  if (!N1C)
2912    return false;
2913
2914  unsigned Num;
2915  switch (N1C->getZExtValue()) {
2916  default:
2917    return false;
2918  case 0xFF:       Num = 0; break;
2919  case 0xFF00:     Num = 1; break;
2920  case 0xFF0000:   Num = 2; break;
2921  case 0xFF000000: Num = 3; break;
2922  }
2923
2924  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2925  SDValue N0 = N.getOperand(0);
2926  if (Opc == ISD::AND) {
2927    if (Num == 0 || Num == 2) {
2928      // (x >> 8) & 0xff
2929      // (x >> 8) & 0xff0000
2930      if (N0.getOpcode() != ISD::SRL)
2931        return false;
2932      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2933      if (!C || C->getZExtValue() != 8)
2934        return false;
2935    } else {
2936      // (x << 8) & 0xff00
2937      // (x << 8) & 0xff000000
2938      if (N0.getOpcode() != ISD::SHL)
2939        return false;
2940      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2941      if (!C || C->getZExtValue() != 8)
2942        return false;
2943    }
2944  } else if (Opc == ISD::SHL) {
2945    // (x & 0xff) << 8
2946    // (x & 0xff0000) << 8
2947    if (Num != 0 && Num != 2)
2948      return false;
2949    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2950    if (!C || C->getZExtValue() != 8)
2951      return false;
2952  } else { // Opc == ISD::SRL
2953    // (x & 0xff00) >> 8
2954    // (x & 0xff000000) >> 8
2955    if (Num != 1 && Num != 3)
2956      return false;
2957    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2958    if (!C || C->getZExtValue() != 8)
2959      return false;
2960  }
2961
2962  if (Parts[Num])
2963    return false;
2964
2965  Parts[Num] = N0.getOperand(0).getNode();
2966  return true;
2967}
2968
2969/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2970/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2971/// => (rotl (bswap x), 16)
2972SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2973  if (!LegalOperations)
2974    return SDValue();
2975
2976  EVT VT = N->getValueType(0);
2977  if (VT != MVT::i32)
2978    return SDValue();
2979  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2980    return SDValue();
2981
2982  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2983  // Look for either
2984  // (or (or (and), (and)), (or (and), (and)))
2985  // (or (or (or (and), (and)), (and)), (and))
2986  if (N0.getOpcode() != ISD::OR)
2987    return SDValue();
2988  SDValue N00 = N0.getOperand(0);
2989  SDValue N01 = N0.getOperand(1);
2990
2991  if (N1.getOpcode() == ISD::OR &&
2992      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
2993    // (or (or (and), (and)), (or (and), (and)))
2994    SDValue N000 = N00.getOperand(0);
2995    if (!isBSwapHWordElement(N000, Parts))
2996      return SDValue();
2997
2998    SDValue N001 = N00.getOperand(1);
2999    if (!isBSwapHWordElement(N001, Parts))
3000      return SDValue();
3001    SDValue N010 = N01.getOperand(0);
3002    if (!isBSwapHWordElement(N010, Parts))
3003      return SDValue();
3004    SDValue N011 = N01.getOperand(1);
3005    if (!isBSwapHWordElement(N011, Parts))
3006      return SDValue();
3007  } else {
3008    // (or (or (or (and), (and)), (and)), (and))
3009    if (!isBSwapHWordElement(N1, Parts))
3010      return SDValue();
3011    if (!isBSwapHWordElement(N01, Parts))
3012      return SDValue();
3013    if (N00.getOpcode() != ISD::OR)
3014      return SDValue();
3015    SDValue N000 = N00.getOperand(0);
3016    if (!isBSwapHWordElement(N000, Parts))
3017      return SDValue();
3018    SDValue N001 = N00.getOperand(1);
3019    if (!isBSwapHWordElement(N001, Parts))
3020      return SDValue();
3021  }
3022
3023  // Make sure the parts are all coming from the same node.
3024  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3025    return SDValue();
3026
3027  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3028                              SDValue(Parts[0],0));
3029
3030  // Result of the bswap should be rotated by 16. If it's not legal, than
3031  // do  (x << 16) | (x >> 16).
3032  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3033  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3034    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3035  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3036    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3037  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3038                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3039                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3040}
3041
3042SDValue DAGCombiner::visitOR(SDNode *N) {
3043  SDValue N0 = N->getOperand(0);
3044  SDValue N1 = N->getOperand(1);
3045  SDValue LL, LR, RL, RR, CC0, CC1;
3046  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3047  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3048  EVT VT = N1.getValueType();
3049
3050  // fold vector ops
3051  if (VT.isVector()) {
3052    SDValue FoldedVOp = SimplifyVBinOp(N);
3053    if (FoldedVOp.getNode()) return FoldedVOp;
3054
3055    // fold (or x, 0) -> x, vector edition
3056    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3057      return N1;
3058    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3059      return N0;
3060
3061    // fold (or x, -1) -> -1, vector edition
3062    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3063      return N0;
3064    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3065      return N1;
3066  }
3067
3068  // fold (or x, undef) -> -1
3069  if (!LegalOperations &&
3070      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3071    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3072    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3073  }
3074  // fold (or c1, c2) -> c1|c2
3075  if (N0C && N1C)
3076    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3077  // canonicalize constant to RHS
3078  if (N0C && !N1C)
3079    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3080  // fold (or x, 0) -> x
3081  if (N1C && N1C->isNullValue())
3082    return N0;
3083  // fold (or x, -1) -> -1
3084  if (N1C && N1C->isAllOnesValue())
3085    return N1;
3086  // fold (or x, c) -> c iff (x & ~c) == 0
3087  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3088    return N1;
3089
3090  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3091  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3092  if (BSwap.getNode() != 0)
3093    return BSwap;
3094  BSwap = MatchBSwapHWordLow(N, N0, N1);
3095  if (BSwap.getNode() != 0)
3096    return BSwap;
3097
3098  // reassociate or
3099  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3100  if (ROR.getNode() != 0)
3101    return ROR;
3102  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3103  // iff (c1 & c2) == 0.
3104  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3105             isa<ConstantSDNode>(N0.getOperand(1))) {
3106    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3107    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3108      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3109                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3110                                     N0.getOperand(0), N1),
3111                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3112  }
3113  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3114  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3115    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3116    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3117
3118    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3119        LL.getValueType().isInteger()) {
3120      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3121      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3122      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3123          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3124        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3125                                     LR.getValueType(), LL, RL);
3126        AddToWorkList(ORNode.getNode());
3127        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3128      }
3129      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3130      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3131      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3132          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3133        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3134                                      LR.getValueType(), LL, RL);
3135        AddToWorkList(ANDNode.getNode());
3136        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3137      }
3138    }
3139    // canonicalize equivalent to ll == rl
3140    if (LL == RR && LR == RL) {
3141      Op1 = ISD::getSetCCSwappedOperands(Op1);
3142      std::swap(RL, RR);
3143    }
3144    if (LL == RL && LR == RR) {
3145      bool isInteger = LL.getValueType().isInteger();
3146      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3147      if (Result != ISD::SETCC_INVALID &&
3148          (!LegalOperations ||
3149           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3150            TLI.isOperationLegal(ISD::SETCC,
3151              TLI.getSetCCResultType(N0.getValueType())))))
3152        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3153                            LL, LR, Result);
3154    }
3155  }
3156
3157  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3158  if (N0.getOpcode() == N1.getOpcode()) {
3159    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3160    if (Tmp.getNode()) return Tmp;
3161  }
3162
3163  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3164  if (N0.getOpcode() == ISD::AND &&
3165      N1.getOpcode() == ISD::AND &&
3166      N0.getOperand(1).getOpcode() == ISD::Constant &&
3167      N1.getOperand(1).getOpcode() == ISD::Constant &&
3168      // Don't increase # computations.
3169      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3170    // We can only do this xform if we know that bits from X that are set in C2
3171    // but not in C1 are already zero.  Likewise for Y.
3172    const APInt &LHSMask =
3173      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3174    const APInt &RHSMask =
3175      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3176
3177    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3178        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3179      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3180                              N0.getOperand(0), N1.getOperand(0));
3181      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3182                         DAG.getConstant(LHSMask | RHSMask, VT));
3183    }
3184  }
3185
3186  // See if this is some rotate idiom.
3187  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3188    return SDValue(Rot, 0);
3189
3190  // Simplify the operands using demanded-bits information.
3191  if (!VT.isVector() &&
3192      SimplifyDemandedBits(SDValue(N, 0)))
3193    return SDValue(N, 0);
3194
3195  return SDValue();
3196}
3197
3198/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3199static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3200  if (Op.getOpcode() == ISD::AND) {
3201    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3202      Mask = Op.getOperand(1);
3203      Op = Op.getOperand(0);
3204    } else {
3205      return false;
3206    }
3207  }
3208
3209  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3210    Shift = Op;
3211    return true;
3212  }
3213
3214  return false;
3215}
3216
3217// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3218// idioms for rotate, and if the target supports rotation instructions, generate
3219// a rot[lr].
3220SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3221  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3222  EVT VT = LHS.getValueType();
3223  if (!TLI.isTypeLegal(VT)) return 0;
3224
3225  // The target must have at least one rotate flavor.
3226  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3227  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3228  if (!HasROTL && !HasROTR) return 0;
3229
3230  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3231  SDValue LHSShift;   // The shift.
3232  SDValue LHSMask;    // AND value if any.
3233  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3234    return 0; // Not part of a rotate.
3235
3236  SDValue RHSShift;   // The shift.
3237  SDValue RHSMask;    // AND value if any.
3238  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3239    return 0; // Not part of a rotate.
3240
3241  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3242    return 0;   // Not shifting the same value.
3243
3244  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3245    return 0;   // Shifts must disagree.
3246
3247  // Canonicalize shl to left side in a shl/srl pair.
3248  if (RHSShift.getOpcode() == ISD::SHL) {
3249    std::swap(LHS, RHS);
3250    std::swap(LHSShift, RHSShift);
3251    std::swap(LHSMask , RHSMask );
3252  }
3253
3254  unsigned OpSizeInBits = VT.getSizeInBits();
3255  SDValue LHSShiftArg = LHSShift.getOperand(0);
3256  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3257  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3258
3259  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3260  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3261  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3262      RHSShiftAmt.getOpcode() == ISD::Constant) {
3263    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3264    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3265    if ((LShVal + RShVal) != OpSizeInBits)
3266      return 0;
3267
3268    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3269                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3270
3271    // If there is an AND of either shifted operand, apply it to the result.
3272    if (LHSMask.getNode() || RHSMask.getNode()) {
3273      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3274
3275      if (LHSMask.getNode()) {
3276        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3277        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3278      }
3279      if (RHSMask.getNode()) {
3280        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3281        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3282      }
3283
3284      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3285    }
3286
3287    return Rot.getNode();
3288  }
3289
3290  // If there is a mask here, and we have a variable shift, we can't be sure
3291  // that we're masking out the right stuff.
3292  if (LHSMask.getNode() || RHSMask.getNode())
3293    return 0;
3294
3295  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3296  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3297  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3298      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3299    if (ConstantSDNode *SUBC =
3300          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3301      if (SUBC->getAPIntValue() == OpSizeInBits) {
3302        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3303                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3304      }
3305    }
3306  }
3307
3308  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3309  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3310  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3311      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3312    if (ConstantSDNode *SUBC =
3313          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3314      if (SUBC->getAPIntValue() == OpSizeInBits) {
3315        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3316                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3317      }
3318    }
3319  }
3320
3321  // Look for sign/zext/any-extended or truncate cases:
3322  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3323       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3324       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3325       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3326      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3327       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3328       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3329       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3330    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3331    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3332    if (RExtOp0.getOpcode() == ISD::SUB &&
3333        RExtOp0.getOperand(1) == LExtOp0) {
3334      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3335      //   (rotl x, y)
3336      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3337      //   (rotr x, (sub 32, y))
3338      if (ConstantSDNode *SUBC =
3339            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3340        if (SUBC->getAPIntValue() == OpSizeInBits) {
3341          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3342                             LHSShiftArg,
3343                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3344        }
3345      }
3346    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3347               RExtOp0 == LExtOp0.getOperand(1)) {
3348      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3349      //   (rotr x, y)
3350      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3351      //   (rotl x, (sub 32, y))
3352      if (ConstantSDNode *SUBC =
3353            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3354        if (SUBC->getAPIntValue() == OpSizeInBits) {
3355          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3356                             LHSShiftArg,
3357                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3358        }
3359      }
3360    }
3361  }
3362
3363  return 0;
3364}
3365
3366SDValue DAGCombiner::visitXOR(SDNode *N) {
3367  SDValue N0 = N->getOperand(0);
3368  SDValue N1 = N->getOperand(1);
3369  SDValue LHS, RHS, CC;
3370  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3371  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3372  EVT VT = N0.getValueType();
3373
3374  // fold vector ops
3375  if (VT.isVector()) {
3376    SDValue FoldedVOp = SimplifyVBinOp(N);
3377    if (FoldedVOp.getNode()) return FoldedVOp;
3378
3379    // fold (xor x, 0) -> x, vector edition
3380    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3381      return N1;
3382    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3383      return N0;
3384  }
3385
3386  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3387  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3388    return DAG.getConstant(0, VT);
3389  // fold (xor x, undef) -> undef
3390  if (N0.getOpcode() == ISD::UNDEF)
3391    return N0;
3392  if (N1.getOpcode() == ISD::UNDEF)
3393    return N1;
3394  // fold (xor c1, c2) -> c1^c2
3395  if (N0C && N1C)
3396    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3397  // canonicalize constant to RHS
3398  if (N0C && !N1C)
3399    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3400  // fold (xor x, 0) -> x
3401  if (N1C && N1C->isNullValue())
3402    return N0;
3403  // reassociate xor
3404  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3405  if (RXOR.getNode() != 0)
3406    return RXOR;
3407
3408  // fold !(x cc y) -> (x !cc y)
3409  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3410    bool isInt = LHS.getValueType().isInteger();
3411    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3412                                               isInt);
3413
3414    if (!LegalOperations ||
3415        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3416      switch (N0.getOpcode()) {
3417      default:
3418        llvm_unreachable("Unhandled SetCC Equivalent!");
3419      case ISD::SETCC:
3420        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3421      case ISD::SELECT_CC:
3422        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3423                               N0.getOperand(3), NotCC);
3424      }
3425    }
3426  }
3427
3428  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3429  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3430      N0.getNode()->hasOneUse() &&
3431      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3432    SDValue V = N0.getOperand(0);
3433    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3434                    DAG.getConstant(1, V.getValueType()));
3435    AddToWorkList(V.getNode());
3436    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3437  }
3438
3439  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3440  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3441      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3442    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3443    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3444      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3445      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3446      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3447      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3448      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3449    }
3450  }
3451  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3452  if (N1C && N1C->isAllOnesValue() &&
3453      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3454    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3455    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3456      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3457      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3458      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3459      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3460      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3461    }
3462  }
3463  // fold (xor (and x, y), y) -> (and (not x), y)
3464  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3465      N0->getOperand(1) == N1) {
3466    SDValue X = N0->getOperand(0);
3467    SDValue NotX = DAG.getNOT(X.getDebugLoc(), X, VT);
3468    AddToWorkList(NotX.getNode());
3469    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NotX, N1);
3470  }
3471  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3472  if (N1C && N0.getOpcode() == ISD::XOR) {
3473    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3474    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3475    if (N00C)
3476      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3477                         DAG.getConstant(N1C->getAPIntValue() ^
3478                                         N00C->getAPIntValue(), VT));
3479    if (N01C)
3480      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3481                         DAG.getConstant(N1C->getAPIntValue() ^
3482                                         N01C->getAPIntValue(), VT));
3483  }
3484  // fold (xor x, x) -> 0
3485  if (N0 == N1)
3486    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3487
3488  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3489  if (N0.getOpcode() == N1.getOpcode()) {
3490    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3491    if (Tmp.getNode()) return Tmp;
3492  }
3493
3494  // Simplify the expression using non-local knowledge.
3495  if (!VT.isVector() &&
3496      SimplifyDemandedBits(SDValue(N, 0)))
3497    return SDValue(N, 0);
3498
3499  return SDValue();
3500}
3501
3502/// visitShiftByConstant - Handle transforms common to the three shifts, when
3503/// the shift amount is a constant.
3504SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3505  SDNode *LHS = N->getOperand(0).getNode();
3506  if (!LHS->hasOneUse()) return SDValue();
3507
3508  // We want to pull some binops through shifts, so that we have (and (shift))
3509  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3510  // thing happens with address calculations, so it's important to canonicalize
3511  // it.
3512  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3513
3514  switch (LHS->getOpcode()) {
3515  default: return SDValue();
3516  case ISD::OR:
3517  case ISD::XOR:
3518    HighBitSet = false; // We can only transform sra if the high bit is clear.
3519    break;
3520  case ISD::AND:
3521    HighBitSet = true;  // We can only transform sra if the high bit is set.
3522    break;
3523  case ISD::ADD:
3524    if (N->getOpcode() != ISD::SHL)
3525      return SDValue(); // only shl(add) not sr[al](add).
3526    HighBitSet = false; // We can only transform sra if the high bit is clear.
3527    break;
3528  }
3529
3530  // We require the RHS of the binop to be a constant as well.
3531  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3532  if (!BinOpCst) return SDValue();
3533
3534  // FIXME: disable this unless the input to the binop is a shift by a constant.
3535  // If it is not a shift, it pessimizes some common cases like:
3536  //
3537  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3538  //    int bar(int *X, int i) { return X[i & 255]; }
3539  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3540  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3541       BinOpLHSVal->getOpcode() != ISD::SRA &&
3542       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3543      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3544    return SDValue();
3545
3546  EVT VT = N->getValueType(0);
3547
3548  // If this is a signed shift right, and the high bit is modified by the
3549  // logical operation, do not perform the transformation. The highBitSet
3550  // boolean indicates the value of the high bit of the constant which would
3551  // cause it to be modified for this operation.
3552  if (N->getOpcode() == ISD::SRA) {
3553    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3554    if (BinOpRHSSignSet != HighBitSet)
3555      return SDValue();
3556  }
3557
3558  // Fold the constants, shifting the binop RHS by the shift amount.
3559  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3560                               N->getValueType(0),
3561                               LHS->getOperand(1), N->getOperand(1));
3562
3563  // Create the new shift.
3564  SDValue NewShift = DAG.getNode(N->getOpcode(),
3565                                 LHS->getOperand(0).getDebugLoc(),
3566                                 VT, LHS->getOperand(0), N->getOperand(1));
3567
3568  // Create the new binop.
3569  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3570}
3571
3572SDValue DAGCombiner::visitSHL(SDNode *N) {
3573  SDValue N0 = N->getOperand(0);
3574  SDValue N1 = N->getOperand(1);
3575  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3576  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3577  EVT VT = N0.getValueType();
3578  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3579
3580  // fold (shl c1, c2) -> c1<<c2
3581  if (N0C && N1C)
3582    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3583  // fold (shl 0, x) -> 0
3584  if (N0C && N0C->isNullValue())
3585    return N0;
3586  // fold (shl x, c >= size(x)) -> undef
3587  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3588    return DAG.getUNDEF(VT);
3589  // fold (shl x, 0) -> x
3590  if (N1C && N1C->isNullValue())
3591    return N0;
3592  // fold (shl undef, x) -> 0
3593  if (N0.getOpcode() == ISD::UNDEF)
3594    return DAG.getConstant(0, VT);
3595  // if (shl x, c) is known to be zero, return 0
3596  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3597                            APInt::getAllOnesValue(OpSizeInBits)))
3598    return DAG.getConstant(0, VT);
3599  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3600  if (N1.getOpcode() == ISD::TRUNCATE &&
3601      N1.getOperand(0).getOpcode() == ISD::AND &&
3602      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3603    SDValue N101 = N1.getOperand(0).getOperand(1);
3604    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3605      EVT TruncVT = N1.getValueType();
3606      SDValue N100 = N1.getOperand(0).getOperand(0);
3607      APInt TruncC = N101C->getAPIntValue();
3608      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3609      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3610                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3611                                     DAG.getNode(ISD::TRUNCATE,
3612                                                 N->getDebugLoc(),
3613                                                 TruncVT, N100),
3614                                     DAG.getConstant(TruncC, TruncVT)));
3615    }
3616  }
3617
3618  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3619    return SDValue(N, 0);
3620
3621  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3622  if (N1C && N0.getOpcode() == ISD::SHL &&
3623      N0.getOperand(1).getOpcode() == ISD::Constant) {
3624    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3625    uint64_t c2 = N1C->getZExtValue();
3626    if (c1 + c2 >= OpSizeInBits)
3627      return DAG.getConstant(0, VT);
3628    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3629                       DAG.getConstant(c1 + c2, N1.getValueType()));
3630  }
3631
3632  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3633  // For this to be valid, the second form must not preserve any of the bits
3634  // that are shifted out by the inner shift in the first form.  This means
3635  // the outer shift size must be >= the number of bits added by the ext.
3636  // As a corollary, we don't care what kind of ext it is.
3637  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3638              N0.getOpcode() == ISD::ANY_EXTEND ||
3639              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3640      N0.getOperand(0).getOpcode() == ISD::SHL &&
3641      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3642    uint64_t c1 =
3643      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3644    uint64_t c2 = N1C->getZExtValue();
3645    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3646    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3647    if (c2 >= OpSizeInBits - InnerShiftSize) {
3648      if (c1 + c2 >= OpSizeInBits)
3649        return DAG.getConstant(0, VT);
3650      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3651                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3652                                     N0.getOperand(0)->getOperand(0)),
3653                         DAG.getConstant(c1 + c2, N1.getValueType()));
3654    }
3655  }
3656
3657  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3658  //                               (and (srl x, (sub c1, c2), MASK)
3659  // Only fold this if the inner shift has no other uses -- if it does, folding
3660  // this will increase the total number of instructions.
3661  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3662      N0.getOperand(1).getOpcode() == ISD::Constant) {
3663    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3664    if (c1 < VT.getSizeInBits()) {
3665      uint64_t c2 = N1C->getZExtValue();
3666      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3667                                         VT.getSizeInBits() - c1);
3668      SDValue Shift;
3669      if (c2 > c1) {
3670        Mask = Mask.shl(c2-c1);
3671        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3672                            DAG.getConstant(c2-c1, N1.getValueType()));
3673      } else {
3674        Mask = Mask.lshr(c1-c2);
3675        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3676                            DAG.getConstant(c1-c2, N1.getValueType()));
3677      }
3678      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3679                         DAG.getConstant(Mask, VT));
3680    }
3681  }
3682  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3683  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3684    SDValue HiBitsMask =
3685      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3686                                            VT.getSizeInBits() -
3687                                              N1C->getZExtValue()),
3688                      VT);
3689    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3690                       HiBitsMask);
3691  }
3692
3693  if (N1C) {
3694    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3695    if (NewSHL.getNode())
3696      return NewSHL;
3697  }
3698
3699  return SDValue();
3700}
3701
3702SDValue DAGCombiner::visitSRA(SDNode *N) {
3703  SDValue N0 = N->getOperand(0);
3704  SDValue N1 = N->getOperand(1);
3705  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3706  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3707  EVT VT = N0.getValueType();
3708  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3709
3710  // fold (sra c1, c2) -> (sra c1, c2)
3711  if (N0C && N1C)
3712    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3713  // fold (sra 0, x) -> 0
3714  if (N0C && N0C->isNullValue())
3715    return N0;
3716  // fold (sra -1, x) -> -1
3717  if (N0C && N0C->isAllOnesValue())
3718    return N0;
3719  // fold (sra x, (setge c, size(x))) -> undef
3720  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3721    return DAG.getUNDEF(VT);
3722  // fold (sra x, 0) -> x
3723  if (N1C && N1C->isNullValue())
3724    return N0;
3725  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3726  // sext_inreg.
3727  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3728    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3729    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3730    if (VT.isVector())
3731      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3732                               ExtVT, VT.getVectorNumElements());
3733    if ((!LegalOperations ||
3734         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3735      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3736                         N0.getOperand(0), DAG.getValueType(ExtVT));
3737  }
3738
3739  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3740  if (N1C && N0.getOpcode() == ISD::SRA) {
3741    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3742      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3743      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3744      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3745                         DAG.getConstant(Sum, N1C->getValueType(0)));
3746    }
3747  }
3748
3749  // fold (sra (shl X, m), (sub result_size, n))
3750  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3751  // result_size - n != m.
3752  // If truncate is free for the target sext(shl) is likely to result in better
3753  // code.
3754  if (N0.getOpcode() == ISD::SHL) {
3755    // Get the two constanst of the shifts, CN0 = m, CN = n.
3756    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3757    if (N01C && N1C) {
3758      // Determine what the truncate's result bitsize and type would be.
3759      EVT TruncVT =
3760        EVT::getIntegerVT(*DAG.getContext(),
3761                          OpSizeInBits - N1C->getZExtValue());
3762      // Determine the residual right-shift amount.
3763      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3764
3765      // If the shift is not a no-op (in which case this should be just a sign
3766      // extend already), the truncated to type is legal, sign_extend is legal
3767      // on that type, and the truncate to that type is both legal and free,
3768      // perform the transform.
3769      if ((ShiftAmt > 0) &&
3770          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3771          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3772          TLI.isTruncateFree(VT, TruncVT)) {
3773
3774          SDValue Amt = DAG.getConstant(ShiftAmt,
3775              getShiftAmountTy(N0.getOperand(0).getValueType()));
3776          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3777                                      N0.getOperand(0), Amt);
3778          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3779                                      Shift);
3780          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3781                             N->getValueType(0), Trunc);
3782      }
3783    }
3784  }
3785
3786  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3787  if (N1.getOpcode() == ISD::TRUNCATE &&
3788      N1.getOperand(0).getOpcode() == ISD::AND &&
3789      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3790    SDValue N101 = N1.getOperand(0).getOperand(1);
3791    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3792      EVT TruncVT = N1.getValueType();
3793      SDValue N100 = N1.getOperand(0).getOperand(0);
3794      APInt TruncC = N101C->getAPIntValue();
3795      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3796      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3797                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3798                                     TruncVT,
3799                                     DAG.getNode(ISD::TRUNCATE,
3800                                                 N->getDebugLoc(),
3801                                                 TruncVT, N100),
3802                                     DAG.getConstant(TruncC, TruncVT)));
3803    }
3804  }
3805
3806  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3807  //      if c1 is equal to the number of bits the trunc removes
3808  if (N0.getOpcode() == ISD::TRUNCATE &&
3809      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3810       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3811      N0.getOperand(0).hasOneUse() &&
3812      N0.getOperand(0).getOperand(1).hasOneUse() &&
3813      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3814    EVT LargeVT = N0.getOperand(0).getValueType();
3815    ConstantSDNode *LargeShiftAmt =
3816      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3817
3818    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3819        LargeShiftAmt->getZExtValue()) {
3820      SDValue Amt =
3821        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3822              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3823      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3824                                N0.getOperand(0).getOperand(0), Amt);
3825      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3826    }
3827  }
3828
3829  // Simplify, based on bits shifted out of the LHS.
3830  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3831    return SDValue(N, 0);
3832
3833
3834  // If the sign bit is known to be zero, switch this to a SRL.
3835  if (DAG.SignBitIsZero(N0))
3836    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3837
3838  if (N1C) {
3839    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3840    if (NewSRA.getNode())
3841      return NewSRA;
3842  }
3843
3844  return SDValue();
3845}
3846
3847SDValue DAGCombiner::visitSRL(SDNode *N) {
3848  SDValue N0 = N->getOperand(0);
3849  SDValue N1 = N->getOperand(1);
3850  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3851  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3852  EVT VT = N0.getValueType();
3853  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3854
3855  // fold (srl c1, c2) -> c1 >>u c2
3856  if (N0C && N1C)
3857    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3858  // fold (srl 0, x) -> 0
3859  if (N0C && N0C->isNullValue())
3860    return N0;
3861  // fold (srl x, c >= size(x)) -> undef
3862  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3863    return DAG.getUNDEF(VT);
3864  // fold (srl x, 0) -> x
3865  if (N1C && N1C->isNullValue())
3866    return N0;
3867  // if (srl x, c) is known to be zero, return 0
3868  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3869                                   APInt::getAllOnesValue(OpSizeInBits)))
3870    return DAG.getConstant(0, VT);
3871
3872  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3873  if (N1C && N0.getOpcode() == ISD::SRL &&
3874      N0.getOperand(1).getOpcode() == ISD::Constant) {
3875    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3876    uint64_t c2 = N1C->getZExtValue();
3877    if (c1 + c2 >= OpSizeInBits)
3878      return DAG.getConstant(0, VT);
3879    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3880                       DAG.getConstant(c1 + c2, N1.getValueType()));
3881  }
3882
3883  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3884  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3885      N0.getOperand(0).getOpcode() == ISD::SRL &&
3886      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3887    uint64_t c1 =
3888      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3889    uint64_t c2 = N1C->getZExtValue();
3890    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3891    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3892    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3893    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3894    if (c1 + OpSizeInBits == InnerShiftSize) {
3895      if (c1 + c2 >= InnerShiftSize)
3896        return DAG.getConstant(0, VT);
3897      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3898                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3899                                     N0.getOperand(0)->getOperand(0),
3900                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3901    }
3902  }
3903
3904  // fold (srl (shl x, c), c) -> (and x, cst2)
3905  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3906      N0.getValueSizeInBits() <= 64) {
3907    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3908    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3909                       DAG.getConstant(~0ULL >> ShAmt, VT));
3910  }
3911
3912
3913  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3914  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3915    // Shifting in all undef bits?
3916    EVT SmallVT = N0.getOperand(0).getValueType();
3917    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3918      return DAG.getUNDEF(VT);
3919
3920    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3921      uint64_t ShiftAmt = N1C->getZExtValue();
3922      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3923                                       N0.getOperand(0),
3924                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3925      AddToWorkList(SmallShift.getNode());
3926      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3927    }
3928  }
3929
3930  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3931  // bit, which is unmodified by sra.
3932  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3933    if (N0.getOpcode() == ISD::SRA)
3934      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3935  }
3936
3937  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3938  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3939      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3940    APInt KnownZero, KnownOne;
3941    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3942
3943    // If any of the input bits are KnownOne, then the input couldn't be all
3944    // zeros, thus the result of the srl will always be zero.
3945    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3946
3947    // If all of the bits input the to ctlz node are known to be zero, then
3948    // the result of the ctlz is "32" and the result of the shift is one.
3949    APInt UnknownBits = ~KnownZero;
3950    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3951
3952    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3953    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3954      // Okay, we know that only that the single bit specified by UnknownBits
3955      // could be set on input to the CTLZ node. If this bit is set, the SRL
3956      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3957      // to an SRL/XOR pair, which is likely to simplify more.
3958      unsigned ShAmt = UnknownBits.countTrailingZeros();
3959      SDValue Op = N0.getOperand(0);
3960
3961      if (ShAmt) {
3962        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3963                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3964        AddToWorkList(Op.getNode());
3965      }
3966
3967      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3968                         Op, DAG.getConstant(1, VT));
3969    }
3970  }
3971
3972  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3973  if (N1.getOpcode() == ISD::TRUNCATE &&
3974      N1.getOperand(0).getOpcode() == ISD::AND &&
3975      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3976    SDValue N101 = N1.getOperand(0).getOperand(1);
3977    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3978      EVT TruncVT = N1.getValueType();
3979      SDValue N100 = N1.getOperand(0).getOperand(0);
3980      APInt TruncC = N101C->getAPIntValue();
3981      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3982      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3983                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3984                                     TruncVT,
3985                                     DAG.getNode(ISD::TRUNCATE,
3986                                                 N->getDebugLoc(),
3987                                                 TruncVT, N100),
3988                                     DAG.getConstant(TruncC, TruncVT)));
3989    }
3990  }
3991
3992  // fold operands of srl based on knowledge that the low bits are not
3993  // demanded.
3994  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3995    return SDValue(N, 0);
3996
3997  if (N1C) {
3998    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3999    if (NewSRL.getNode())
4000      return NewSRL;
4001  }
4002
4003  // Attempt to convert a srl of a load into a narrower zero-extending load.
4004  SDValue NarrowLoad = ReduceLoadWidth(N);
4005  if (NarrowLoad.getNode())
4006    return NarrowLoad;
4007
4008  // Here is a common situation. We want to optimize:
4009  //
4010  //   %a = ...
4011  //   %b = and i32 %a, 2
4012  //   %c = srl i32 %b, 1
4013  //   brcond i32 %c ...
4014  //
4015  // into
4016  //
4017  //   %a = ...
4018  //   %b = and %a, 2
4019  //   %c = setcc eq %b, 0
4020  //   brcond %c ...
4021  //
4022  // However when after the source operand of SRL is optimized into AND, the SRL
4023  // itself may not be optimized further. Look for it and add the BRCOND into
4024  // the worklist.
4025  if (N->hasOneUse()) {
4026    SDNode *Use = *N->use_begin();
4027    if (Use->getOpcode() == ISD::BRCOND)
4028      AddToWorkList(Use);
4029    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4030      // Also look pass the truncate.
4031      Use = *Use->use_begin();
4032      if (Use->getOpcode() == ISD::BRCOND)
4033        AddToWorkList(Use);
4034    }
4035  }
4036
4037  return SDValue();
4038}
4039
4040SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4041  SDValue N0 = N->getOperand(0);
4042  EVT VT = N->getValueType(0);
4043
4044  // fold (ctlz c1) -> c2
4045  if (isa<ConstantSDNode>(N0))
4046    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
4047  return SDValue();
4048}
4049
4050SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4051  SDValue N0 = N->getOperand(0);
4052  EVT VT = N->getValueType(0);
4053
4054  // fold (ctlz_zero_undef c1) -> c2
4055  if (isa<ConstantSDNode>(N0))
4056    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4057  return SDValue();
4058}
4059
4060SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4061  SDValue N0 = N->getOperand(0);
4062  EVT VT = N->getValueType(0);
4063
4064  // fold (cttz c1) -> c2
4065  if (isa<ConstantSDNode>(N0))
4066    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4067  return SDValue();
4068}
4069
4070SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4071  SDValue N0 = N->getOperand(0);
4072  EVT VT = N->getValueType(0);
4073
4074  // fold (cttz_zero_undef c1) -> c2
4075  if (isa<ConstantSDNode>(N0))
4076    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4077  return SDValue();
4078}
4079
4080SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4081  SDValue N0 = N->getOperand(0);
4082  EVT VT = N->getValueType(0);
4083
4084  // fold (ctpop c1) -> c2
4085  if (isa<ConstantSDNode>(N0))
4086    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4087  return SDValue();
4088}
4089
4090SDValue DAGCombiner::visitSELECT(SDNode *N) {
4091  SDValue N0 = N->getOperand(0);
4092  SDValue N1 = N->getOperand(1);
4093  SDValue N2 = N->getOperand(2);
4094  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4096  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4097  EVT VT = N->getValueType(0);
4098  EVT VT0 = N0.getValueType();
4099
4100  // fold (select C, X, X) -> X
4101  if (N1 == N2)
4102    return N1;
4103  // fold (select true, X, Y) -> X
4104  if (N0C && !N0C->isNullValue())
4105    return N1;
4106  // fold (select false, X, Y) -> Y
4107  if (N0C && N0C->isNullValue())
4108    return N2;
4109  // fold (select C, 1, X) -> (or C, X)
4110  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4111    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4112  // fold (select C, 0, 1) -> (xor C, 1)
4113  if (VT.isInteger() &&
4114      (VT0 == MVT::i1 ||
4115       (VT0.isInteger() &&
4116        TLI.getBooleanContents(false) ==
4117        TargetLowering::ZeroOrOneBooleanContent)) &&
4118      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4119    SDValue XORNode;
4120    if (VT == VT0)
4121      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4122                         N0, DAG.getConstant(1, VT0));
4123    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4124                          N0, DAG.getConstant(1, VT0));
4125    AddToWorkList(XORNode.getNode());
4126    if (VT.bitsGT(VT0))
4127      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4128    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4129  }
4130  // fold (select C, 0, X) -> (and (not C), X)
4131  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4132    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4133    AddToWorkList(NOTNode.getNode());
4134    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4135  }
4136  // fold (select C, X, 1) -> (or (not C), X)
4137  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4138    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4139    AddToWorkList(NOTNode.getNode());
4140    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4141  }
4142  // fold (select C, X, 0) -> (and C, X)
4143  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4144    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4145  // fold (select X, X, Y) -> (or X, Y)
4146  // fold (select X, 1, Y) -> (or X, Y)
4147  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4148    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4149  // fold (select X, Y, X) -> (and X, Y)
4150  // fold (select X, Y, 0) -> (and X, Y)
4151  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4152    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4153
4154  // If we can fold this based on the true/false value, do so.
4155  if (SimplifySelectOps(N, N1, N2))
4156    return SDValue(N, 0);  // Don't revisit N.
4157
4158  // fold selects based on a setcc into other things, such as min/max/abs
4159  if (N0.getOpcode() == ISD::SETCC) {
4160    // FIXME:
4161    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4162    // having to say they don't support SELECT_CC on every type the DAG knows
4163    // about, since there is no way to mark an opcode illegal at all value types
4164    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4165        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4166      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4167                         N0.getOperand(0), N0.getOperand(1),
4168                         N1, N2, N0.getOperand(2));
4169    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4170  }
4171
4172  return SDValue();
4173}
4174
4175SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4176  SDValue N0 = N->getOperand(0);
4177  SDValue N1 = N->getOperand(1);
4178  SDValue N2 = N->getOperand(2);
4179  DebugLoc DL = N->getDebugLoc();
4180
4181  // Canonicalize integer abs.
4182  // vselect (setg[te] X,  0),  X, -X ->
4183  // vselect (setgt    X, -1),  X, -X ->
4184  // vselect (setl[te] X,  0), -X,  X ->
4185  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4186  if (N0.getOpcode() == ISD::SETCC) {
4187    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4188    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4189    bool isAbs = false;
4190    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4191
4192    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4193         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4194        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4195      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4196    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4197             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4198      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4199
4200    if (isAbs) {
4201      EVT VT = LHS.getValueType();
4202      SDValue Shift = DAG.getNode(
4203          ISD::SRA, DL, VT, LHS,
4204          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4205      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4206      AddToWorkList(Shift.getNode());
4207      AddToWorkList(Add.getNode());
4208      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4209    }
4210  }
4211
4212  return SDValue();
4213}
4214
4215SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4216  SDValue N0 = N->getOperand(0);
4217  SDValue N1 = N->getOperand(1);
4218  SDValue N2 = N->getOperand(2);
4219  SDValue N3 = N->getOperand(3);
4220  SDValue N4 = N->getOperand(4);
4221  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4222
4223  // fold select_cc lhs, rhs, x, x, cc -> x
4224  if (N2 == N3)
4225    return N2;
4226
4227  // Determine if the condition we're dealing with is constant
4228  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4229                              N0, N1, CC, N->getDebugLoc(), false);
4230  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4231
4232  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4233    if (!SCCC->isNullValue())
4234      return N2;    // cond always true -> true val
4235    else
4236      return N3;    // cond always false -> false val
4237  }
4238
4239  // Fold to a simpler select_cc
4240  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4241    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4242                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4243                       SCC.getOperand(2));
4244
4245  // If we can fold this based on the true/false value, do so.
4246  if (SimplifySelectOps(N, N2, N3))
4247    return SDValue(N, 0);  // Don't revisit N.
4248
4249  // fold select_cc into other things, such as min/max/abs
4250  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4251}
4252
4253SDValue DAGCombiner::visitSETCC(SDNode *N) {
4254  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4255                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4256                       N->getDebugLoc());
4257}
4258
4259// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4260// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4261// transformation. Returns true if extension are possible and the above
4262// mentioned transformation is profitable.
4263static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4264                                    unsigned ExtOpc,
4265                                    SmallVector<SDNode*, 4> &ExtendNodes,
4266                                    const TargetLowering &TLI) {
4267  bool HasCopyToRegUses = false;
4268  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4269  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4270                            UE = N0.getNode()->use_end();
4271       UI != UE; ++UI) {
4272    SDNode *User = *UI;
4273    if (User == N)
4274      continue;
4275    if (UI.getUse().getResNo() != N0.getResNo())
4276      continue;
4277    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4278    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4279      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4280      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4281        // Sign bits will be lost after a zext.
4282        return false;
4283      bool Add = false;
4284      for (unsigned i = 0; i != 2; ++i) {
4285        SDValue UseOp = User->getOperand(i);
4286        if (UseOp == N0)
4287          continue;
4288        if (!isa<ConstantSDNode>(UseOp))
4289          return false;
4290        Add = true;
4291      }
4292      if (Add)
4293        ExtendNodes.push_back(User);
4294      continue;
4295    }
4296    // If truncates aren't free and there are users we can't
4297    // extend, it isn't worthwhile.
4298    if (!isTruncFree)
4299      return false;
4300    // Remember if this value is live-out.
4301    if (User->getOpcode() == ISD::CopyToReg)
4302      HasCopyToRegUses = true;
4303  }
4304
4305  if (HasCopyToRegUses) {
4306    bool BothLiveOut = false;
4307    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4308         UI != UE; ++UI) {
4309      SDUse &Use = UI.getUse();
4310      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4311        BothLiveOut = true;
4312        break;
4313      }
4314    }
4315    if (BothLiveOut)
4316      // Both unextended and extended values are live out. There had better be
4317      // a good reason for the transformation.
4318      return ExtendNodes.size();
4319  }
4320  return true;
4321}
4322
4323void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4324                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4325                                  ISD::NodeType ExtType) {
4326  // Extend SetCC uses if necessary.
4327  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4328    SDNode *SetCC = SetCCs[i];
4329    SmallVector<SDValue, 4> Ops;
4330
4331    for (unsigned j = 0; j != 2; ++j) {
4332      SDValue SOp = SetCC->getOperand(j);
4333      if (SOp == Trunc)
4334        Ops.push_back(ExtLoad);
4335      else
4336        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4337    }
4338
4339    Ops.push_back(SetCC->getOperand(2));
4340    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4341                                 &Ops[0], Ops.size()));
4342  }
4343}
4344
4345SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4346  SDValue N0 = N->getOperand(0);
4347  EVT VT = N->getValueType(0);
4348
4349  // fold (sext c1) -> c1
4350  if (isa<ConstantSDNode>(N0))
4351    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4352
4353  // fold (sext (sext x)) -> (sext x)
4354  // fold (sext (aext x)) -> (sext x)
4355  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4356    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4357                       N0.getOperand(0));
4358
4359  if (N0.getOpcode() == ISD::TRUNCATE) {
4360    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4361    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4362    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4363    if (NarrowLoad.getNode()) {
4364      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4365      if (NarrowLoad.getNode() != N0.getNode()) {
4366        CombineTo(N0.getNode(), NarrowLoad);
4367        // CombineTo deleted the truncate, if needed, but not what's under it.
4368        AddToWorkList(oye);
4369      }
4370      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4371    }
4372
4373    // See if the value being truncated is already sign extended.  If so, just
4374    // eliminate the trunc/sext pair.
4375    SDValue Op = N0.getOperand(0);
4376    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4377    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4378    unsigned DestBits = VT.getScalarType().getSizeInBits();
4379    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4380
4381    if (OpBits == DestBits) {
4382      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4383      // bits, it is already ready.
4384      if (NumSignBits > DestBits-MidBits)
4385        return Op;
4386    } else if (OpBits < DestBits) {
4387      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4388      // bits, just sext from i32.
4389      if (NumSignBits > OpBits-MidBits)
4390        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4391    } else {
4392      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4393      // bits, just truncate to i32.
4394      if (NumSignBits > OpBits-MidBits)
4395        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4396    }
4397
4398    // fold (sext (truncate x)) -> (sextinreg x).
4399    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4400                                                 N0.getValueType())) {
4401      if (OpBits < DestBits)
4402        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4403      else if (OpBits > DestBits)
4404        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4405      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4406                         DAG.getValueType(N0.getValueType()));
4407    }
4408  }
4409
4410  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4411  // None of the supported targets knows how to perform load and sign extend
4412  // on vectors in one instruction.  We only perform this transformation on
4413  // scalars.
4414  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4415      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4416       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4417    bool DoXform = true;
4418    SmallVector<SDNode*, 4> SetCCs;
4419    if (!N0.hasOneUse())
4420      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4421    if (DoXform) {
4422      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4423      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4424                                       LN0->getChain(),
4425                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4426                                       N0.getValueType(),
4427                                       LN0->isVolatile(), LN0->isNonTemporal(),
4428                                       LN0->getAlignment());
4429      CombineTo(N, ExtLoad);
4430      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4431                                  N0.getValueType(), ExtLoad);
4432      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4433      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4434                      ISD::SIGN_EXTEND);
4435      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4436    }
4437  }
4438
4439  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4440  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4441  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4442      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4443    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4444    EVT MemVT = LN0->getMemoryVT();
4445    if ((!LegalOperations && !LN0->isVolatile()) ||
4446        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4447      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4448                                       LN0->getChain(),
4449                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4450                                       MemVT,
4451                                       LN0->isVolatile(), LN0->isNonTemporal(),
4452                                       LN0->getAlignment());
4453      CombineTo(N, ExtLoad);
4454      CombineTo(N0.getNode(),
4455                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4456                            N0.getValueType(), ExtLoad),
4457                ExtLoad.getValue(1));
4458      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4459    }
4460  }
4461
4462  // fold (sext (and/or/xor (load x), cst)) ->
4463  //      (and/or/xor (sextload x), (sext cst))
4464  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4465       N0.getOpcode() == ISD::XOR) &&
4466      isa<LoadSDNode>(N0.getOperand(0)) &&
4467      N0.getOperand(1).getOpcode() == ISD::Constant &&
4468      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4469      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4470    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4471    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4472      bool DoXform = true;
4473      SmallVector<SDNode*, 4> SetCCs;
4474      if (!N0.hasOneUse())
4475        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4476                                          SetCCs, TLI);
4477      if (DoXform) {
4478        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4479                                         LN0->getChain(), LN0->getBasePtr(),
4480                                         LN0->getPointerInfo(),
4481                                         LN0->getMemoryVT(),
4482                                         LN0->isVolatile(),
4483                                         LN0->isNonTemporal(),
4484                                         LN0->getAlignment());
4485        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4486        Mask = Mask.sext(VT.getSizeInBits());
4487        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4488                                  ExtLoad, DAG.getConstant(Mask, VT));
4489        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4490                                    N0.getOperand(0).getDebugLoc(),
4491                                    N0.getOperand(0).getValueType(), ExtLoad);
4492        CombineTo(N, And);
4493        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4494        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4495                        ISD::SIGN_EXTEND);
4496        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4497      }
4498    }
4499  }
4500
4501  if (N0.getOpcode() == ISD::SETCC) {
4502    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4503    // Only do this before legalize for now.
4504    if (VT.isVector() && !LegalOperations &&
4505        TLI.getBooleanContents(true) ==
4506          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4507      EVT N0VT = N0.getOperand(0).getValueType();
4508      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4509      // of the same size as the compared operands. Only optimize sext(setcc())
4510      // if this is the case.
4511      EVT SVT = TLI.getSetCCResultType(N0VT);
4512
4513      // We know that the # elements of the results is the same as the
4514      // # elements of the compare (and the # elements of the compare result
4515      // for that matter).  Check to see that they are the same size.  If so,
4516      // we know that the element size of the sext'd result matches the
4517      // element size of the compare operands.
4518      if (VT.getSizeInBits() == SVT.getSizeInBits())
4519        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4520                             N0.getOperand(1),
4521                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4522      // If the desired elements are smaller or larger than the source
4523      // elements we can use a matching integer vector type and then
4524      // truncate/sign extend
4525      EVT MatchingElementType =
4526        EVT::getIntegerVT(*DAG.getContext(),
4527                          N0VT.getScalarType().getSizeInBits());
4528      EVT MatchingVectorType =
4529        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4530                         N0VT.getVectorNumElements());
4531
4532      if (SVT == MatchingVectorType) {
4533        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4534                               N0.getOperand(0), N0.getOperand(1),
4535                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4536        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4537      }
4538    }
4539
4540    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4541    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4542    SDValue NegOne =
4543      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4544    SDValue SCC =
4545      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4546                       NegOne, DAG.getConstant(0, VT),
4547                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4548    if (SCC.getNode()) return SCC;
4549    if (!VT.isVector() && (!LegalOperations ||
4550        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT))))
4551      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4552                         DAG.getSetCC(N->getDebugLoc(),
4553                                      TLI.getSetCCResultType(VT),
4554                                      N0.getOperand(0), N0.getOperand(1),
4555                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4556                         NegOne, DAG.getConstant(0, VT));
4557  }
4558
4559  // fold (sext x) -> (zext x) if the sign bit is known zero.
4560  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4561      DAG.SignBitIsZero(N0))
4562    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4563
4564  return SDValue();
4565}
4566
4567// isTruncateOf - If N is a truncate of some other value, return true, record
4568// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4569// This function computes KnownZero to avoid a duplicated call to
4570// ComputeMaskedBits in the caller.
4571static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4572                         APInt &KnownZero) {
4573  APInt KnownOne;
4574  if (N->getOpcode() == ISD::TRUNCATE) {
4575    Op = N->getOperand(0);
4576    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4577    return true;
4578  }
4579
4580  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4581      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4582    return false;
4583
4584  SDValue Op0 = N->getOperand(0);
4585  SDValue Op1 = N->getOperand(1);
4586  assert(Op0.getValueType() == Op1.getValueType());
4587
4588  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4589  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4590  if (COp0 && COp0->isNullValue())
4591    Op = Op1;
4592  else if (COp1 && COp1->isNullValue())
4593    Op = Op0;
4594  else
4595    return false;
4596
4597  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4598
4599  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4600    return false;
4601
4602  return true;
4603}
4604
4605SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4606  SDValue N0 = N->getOperand(0);
4607  EVT VT = N->getValueType(0);
4608
4609  // fold (zext c1) -> c1
4610  if (isa<ConstantSDNode>(N0))
4611    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4612  // fold (zext (zext x)) -> (zext x)
4613  // fold (zext (aext x)) -> (zext x)
4614  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4615    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4616                       N0.getOperand(0));
4617
4618  // fold (zext (truncate x)) -> (zext x) or
4619  //      (zext (truncate x)) -> (truncate x)
4620  // This is valid when the truncated bits of x are already zero.
4621  // FIXME: We should extend this to work for vectors too.
4622  SDValue Op;
4623  APInt KnownZero;
4624  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4625    APInt TruncatedBits =
4626      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4627      APInt(Op.getValueSizeInBits(), 0) :
4628      APInt::getBitsSet(Op.getValueSizeInBits(),
4629                        N0.getValueSizeInBits(),
4630                        std::min(Op.getValueSizeInBits(),
4631                                 VT.getSizeInBits()));
4632    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4633      if (VT.bitsGT(Op.getValueType()))
4634        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4635      if (VT.bitsLT(Op.getValueType()))
4636        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4637
4638      return Op;
4639    }
4640  }
4641
4642  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4643  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4644  if (N0.getOpcode() == ISD::TRUNCATE) {
4645    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4646    if (NarrowLoad.getNode()) {
4647      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4648      if (NarrowLoad.getNode() != N0.getNode()) {
4649        CombineTo(N0.getNode(), NarrowLoad);
4650        // CombineTo deleted the truncate, if needed, but not what's under it.
4651        AddToWorkList(oye);
4652      }
4653      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4654    }
4655  }
4656
4657  // fold (zext (truncate x)) -> (and x, mask)
4658  if (N0.getOpcode() == ISD::TRUNCATE &&
4659      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4660
4661    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4662    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4663    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4664    if (NarrowLoad.getNode()) {
4665      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4666      if (NarrowLoad.getNode() != N0.getNode()) {
4667        CombineTo(N0.getNode(), NarrowLoad);
4668        // CombineTo deleted the truncate, if needed, but not what's under it.
4669        AddToWorkList(oye);
4670      }
4671      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4672    }
4673
4674    SDValue Op = N0.getOperand(0);
4675    if (Op.getValueType().bitsLT(VT)) {
4676      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4677      AddToWorkList(Op.getNode());
4678    } else if (Op.getValueType().bitsGT(VT)) {
4679      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4680      AddToWorkList(Op.getNode());
4681    }
4682    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4683                                  N0.getValueType().getScalarType());
4684  }
4685
4686  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4687  // if either of the casts is not free.
4688  if (N0.getOpcode() == ISD::AND &&
4689      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4690      N0.getOperand(1).getOpcode() == ISD::Constant &&
4691      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4692                           N0.getValueType()) ||
4693       !TLI.isZExtFree(N0.getValueType(), VT))) {
4694    SDValue X = N0.getOperand(0).getOperand(0);
4695    if (X.getValueType().bitsLT(VT)) {
4696      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4697    } else if (X.getValueType().bitsGT(VT)) {
4698      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4699    }
4700    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4701    Mask = Mask.zext(VT.getSizeInBits());
4702    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4703                       X, DAG.getConstant(Mask, VT));
4704  }
4705
4706  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4707  // None of the supported targets knows how to perform load and vector_zext
4708  // on vectors in one instruction.  We only perform this transformation on
4709  // scalars.
4710  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4711      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4712       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4713    bool DoXform = true;
4714    SmallVector<SDNode*, 4> SetCCs;
4715    if (!N0.hasOneUse())
4716      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4717    if (DoXform) {
4718      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4719      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4720                                       LN0->getChain(),
4721                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4722                                       N0.getValueType(),
4723                                       LN0->isVolatile(), LN0->isNonTemporal(),
4724                                       LN0->getAlignment());
4725      CombineTo(N, ExtLoad);
4726      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4727                                  N0.getValueType(), ExtLoad);
4728      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4729
4730      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4731                      ISD::ZERO_EXTEND);
4732      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4733    }
4734  }
4735
4736  // fold (zext (and/or/xor (load x), cst)) ->
4737  //      (and/or/xor (zextload x), (zext cst))
4738  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4739       N0.getOpcode() == ISD::XOR) &&
4740      isa<LoadSDNode>(N0.getOperand(0)) &&
4741      N0.getOperand(1).getOpcode() == ISD::Constant &&
4742      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4743      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4744    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4745    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4746      bool DoXform = true;
4747      SmallVector<SDNode*, 4> SetCCs;
4748      if (!N0.hasOneUse())
4749        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4750                                          SetCCs, TLI);
4751      if (DoXform) {
4752        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4753                                         LN0->getChain(), LN0->getBasePtr(),
4754                                         LN0->getPointerInfo(),
4755                                         LN0->getMemoryVT(),
4756                                         LN0->isVolatile(),
4757                                         LN0->isNonTemporal(),
4758                                         LN0->getAlignment());
4759        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4760        Mask = Mask.zext(VT.getSizeInBits());
4761        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4762                                  ExtLoad, DAG.getConstant(Mask, VT));
4763        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4764                                    N0.getOperand(0).getDebugLoc(),
4765                                    N0.getOperand(0).getValueType(), ExtLoad);
4766        CombineTo(N, And);
4767        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4768        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4769                        ISD::ZERO_EXTEND);
4770        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4771      }
4772    }
4773  }
4774
4775  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4776  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4777  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4778      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4779    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4780    EVT MemVT = LN0->getMemoryVT();
4781    if ((!LegalOperations && !LN0->isVolatile()) ||
4782        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4783      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4784                                       LN0->getChain(),
4785                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4786                                       MemVT,
4787                                       LN0->isVolatile(), LN0->isNonTemporal(),
4788                                       LN0->getAlignment());
4789      CombineTo(N, ExtLoad);
4790      CombineTo(N0.getNode(),
4791                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4792                            ExtLoad),
4793                ExtLoad.getValue(1));
4794      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4795    }
4796  }
4797
4798  if (N0.getOpcode() == ISD::SETCC) {
4799    if (!LegalOperations && VT.isVector()) {
4800      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4801      // Only do this before legalize for now.
4802      EVT N0VT = N0.getOperand(0).getValueType();
4803      EVT EltVT = VT.getVectorElementType();
4804      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4805                                    DAG.getConstant(1, EltVT));
4806      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4807        // We know that the # elements of the results is the same as the
4808        // # elements of the compare (and the # elements of the compare result
4809        // for that matter).  Check to see that they are the same size.  If so,
4810        // we know that the element size of the sext'd result matches the
4811        // element size of the compare operands.
4812        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4813                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4814                                         N0.getOperand(1),
4815                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4816                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4817                                       &OneOps[0], OneOps.size()));
4818
4819      // If the desired elements are smaller or larger than the source
4820      // elements we can use a matching integer vector type and then
4821      // truncate/sign extend
4822      EVT MatchingElementType =
4823        EVT::getIntegerVT(*DAG.getContext(),
4824                          N0VT.getScalarType().getSizeInBits());
4825      EVT MatchingVectorType =
4826        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4827                         N0VT.getVectorNumElements());
4828      SDValue VsetCC =
4829        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4830                      N0.getOperand(1),
4831                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4832      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4833                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4834                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4835                                     &OneOps[0], OneOps.size()));
4836    }
4837
4838    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4839    SDValue SCC =
4840      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4841                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4842                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4843    if (SCC.getNode()) return SCC;
4844  }
4845
4846  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4847  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4848      isa<ConstantSDNode>(N0.getOperand(1)) &&
4849      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4850      N0.hasOneUse()) {
4851    SDValue ShAmt = N0.getOperand(1);
4852    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4853    if (N0.getOpcode() == ISD::SHL) {
4854      SDValue InnerZExt = N0.getOperand(0);
4855      // If the original shl may be shifting out bits, do not perform this
4856      // transformation.
4857      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4858        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4859      if (ShAmtVal > KnownZeroBits)
4860        return SDValue();
4861    }
4862
4863    DebugLoc DL = N->getDebugLoc();
4864
4865    // Ensure that the shift amount is wide enough for the shifted value.
4866    if (VT.getSizeInBits() >= 256)
4867      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4868
4869    return DAG.getNode(N0.getOpcode(), DL, VT,
4870                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4871                       ShAmt);
4872  }
4873
4874  return SDValue();
4875}
4876
4877SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4878  SDValue N0 = N->getOperand(0);
4879  EVT VT = N->getValueType(0);
4880
4881  // fold (aext c1) -> c1
4882  if (isa<ConstantSDNode>(N0))
4883    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4884  // fold (aext (aext x)) -> (aext x)
4885  // fold (aext (zext x)) -> (zext x)
4886  // fold (aext (sext x)) -> (sext x)
4887  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4888      N0.getOpcode() == ISD::ZERO_EXTEND ||
4889      N0.getOpcode() == ISD::SIGN_EXTEND)
4890    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4891
4892  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4893  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4894  if (N0.getOpcode() == ISD::TRUNCATE) {
4895    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4896    if (NarrowLoad.getNode()) {
4897      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4898      if (NarrowLoad.getNode() != N0.getNode()) {
4899        CombineTo(N0.getNode(), NarrowLoad);
4900        // CombineTo deleted the truncate, if needed, but not what's under it.
4901        AddToWorkList(oye);
4902      }
4903      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4904    }
4905  }
4906
4907  // fold (aext (truncate x))
4908  if (N0.getOpcode() == ISD::TRUNCATE) {
4909    SDValue TruncOp = N0.getOperand(0);
4910    if (TruncOp.getValueType() == VT)
4911      return TruncOp; // x iff x size == zext size.
4912    if (TruncOp.getValueType().bitsGT(VT))
4913      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4914    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4915  }
4916
4917  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4918  // if the trunc is not free.
4919  if (N0.getOpcode() == ISD::AND &&
4920      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4921      N0.getOperand(1).getOpcode() == ISD::Constant &&
4922      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4923                          N0.getValueType())) {
4924    SDValue X = N0.getOperand(0).getOperand(0);
4925    if (X.getValueType().bitsLT(VT)) {
4926      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4927    } else if (X.getValueType().bitsGT(VT)) {
4928      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4929    }
4930    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4931    Mask = Mask.zext(VT.getSizeInBits());
4932    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4933                       X, DAG.getConstant(Mask, VT));
4934  }
4935
4936  // fold (aext (load x)) -> (aext (truncate (extload x)))
4937  // None of the supported targets knows how to perform load and any_ext
4938  // on vectors in one instruction.  We only perform this transformation on
4939  // scalars.
4940  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4941      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4942       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4943    bool DoXform = true;
4944    SmallVector<SDNode*, 4> SetCCs;
4945    if (!N0.hasOneUse())
4946      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4947    if (DoXform) {
4948      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4949      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4950                                       LN0->getChain(),
4951                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4952                                       N0.getValueType(),
4953                                       LN0->isVolatile(), LN0->isNonTemporal(),
4954                                       LN0->getAlignment());
4955      CombineTo(N, ExtLoad);
4956      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4957                                  N0.getValueType(), ExtLoad);
4958      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4959      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4960                      ISD::ANY_EXTEND);
4961      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4962    }
4963  }
4964
4965  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4966  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4967  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4968  if (N0.getOpcode() == ISD::LOAD &&
4969      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4970      N0.hasOneUse()) {
4971    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4972    EVT MemVT = LN0->getMemoryVT();
4973    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4974                                     VT, LN0->getChain(), LN0->getBasePtr(),
4975                                     LN0->getPointerInfo(), MemVT,
4976                                     LN0->isVolatile(), LN0->isNonTemporal(),
4977                                     LN0->getAlignment());
4978    CombineTo(N, ExtLoad);
4979    CombineTo(N0.getNode(),
4980              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4981                          N0.getValueType(), ExtLoad),
4982              ExtLoad.getValue(1));
4983    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4984  }
4985
4986  if (N0.getOpcode() == ISD::SETCC) {
4987    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4988    // Only do this before legalize for now.
4989    if (VT.isVector() && !LegalOperations) {
4990      EVT N0VT = N0.getOperand(0).getValueType();
4991        // We know that the # elements of the results is the same as the
4992        // # elements of the compare (and the # elements of the compare result
4993        // for that matter).  Check to see that they are the same size.  If so,
4994        // we know that the element size of the sext'd result matches the
4995        // element size of the compare operands.
4996      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4997        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4998                             N0.getOperand(1),
4999                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5000      // If the desired elements are smaller or larger than the source
5001      // elements we can use a matching integer vector type and then
5002      // truncate/sign extend
5003      else {
5004        EVT MatchingElementType =
5005          EVT::getIntegerVT(*DAG.getContext(),
5006                            N0VT.getScalarType().getSizeInBits());
5007        EVT MatchingVectorType =
5008          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5009                           N0VT.getVectorNumElements());
5010        SDValue VsetCC =
5011          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
5012                        N0.getOperand(1),
5013                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5014        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
5015      }
5016    }
5017
5018    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5019    SDValue SCC =
5020      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
5021                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5022                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5023    if (SCC.getNode())
5024      return SCC;
5025  }
5026
5027  return SDValue();
5028}
5029
5030/// GetDemandedBits - See if the specified operand can be simplified with the
5031/// knowledge that only the bits specified by Mask are used.  If so, return the
5032/// simpler operand, otherwise return a null SDValue.
5033SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5034  switch (V.getOpcode()) {
5035  default: break;
5036  case ISD::Constant: {
5037    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5038    assert(CV != 0 && "Const value should be ConstSDNode.");
5039    const APInt &CVal = CV->getAPIntValue();
5040    APInt NewVal = CVal & Mask;
5041    if (NewVal != CVal) {
5042      return DAG.getConstant(NewVal, V.getValueType());
5043    }
5044    break;
5045  }
5046  case ISD::OR:
5047  case ISD::XOR:
5048    // If the LHS or RHS don't contribute bits to the or, drop them.
5049    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5050      return V.getOperand(1);
5051    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5052      return V.getOperand(0);
5053    break;
5054  case ISD::SRL:
5055    // Only look at single-use SRLs.
5056    if (!V.getNode()->hasOneUse())
5057      break;
5058    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5059      // See if we can recursively simplify the LHS.
5060      unsigned Amt = RHSC->getZExtValue();
5061
5062      // Watch out for shift count overflow though.
5063      if (Amt >= Mask.getBitWidth()) break;
5064      APInt NewMask = Mask << Amt;
5065      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5066      if (SimplifyLHS.getNode())
5067        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
5068                           SimplifyLHS, V.getOperand(1));
5069    }
5070  }
5071  return SDValue();
5072}
5073
5074/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5075/// bits and then truncated to a narrower type and where N is a multiple
5076/// of number of bits of the narrower type, transform it to a narrower load
5077/// from address + N / num of bits of new type. If the result is to be
5078/// extended, also fold the extension to form a extending load.
5079SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5080  unsigned Opc = N->getOpcode();
5081
5082  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5083  SDValue N0 = N->getOperand(0);
5084  EVT VT = N->getValueType(0);
5085  EVT ExtVT = VT;
5086
5087  // This transformation isn't valid for vector loads.
5088  if (VT.isVector())
5089    return SDValue();
5090
5091  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5092  // extended to VT.
5093  if (Opc == ISD::SIGN_EXTEND_INREG) {
5094    ExtType = ISD::SEXTLOAD;
5095    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5096  } else if (Opc == ISD::SRL) {
5097    // Another special-case: SRL is basically zero-extending a narrower value.
5098    ExtType = ISD::ZEXTLOAD;
5099    N0 = SDValue(N, 0);
5100    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5101    if (!N01) return SDValue();
5102    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5103                              VT.getSizeInBits() - N01->getZExtValue());
5104  }
5105  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5106    return SDValue();
5107
5108  unsigned EVTBits = ExtVT.getSizeInBits();
5109
5110  // Do not generate loads of non-round integer types since these can
5111  // be expensive (and would be wrong if the type is not byte sized).
5112  if (!ExtVT.isRound())
5113    return SDValue();
5114
5115  unsigned ShAmt = 0;
5116  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5117    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5118      ShAmt = N01->getZExtValue();
5119      // Is the shift amount a multiple of size of VT?
5120      if ((ShAmt & (EVTBits-1)) == 0) {
5121        N0 = N0.getOperand(0);
5122        // Is the load width a multiple of size of VT?
5123        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5124          return SDValue();
5125      }
5126
5127      // At this point, we must have a load or else we can't do the transform.
5128      if (!isa<LoadSDNode>(N0)) return SDValue();
5129
5130      // Because a SRL must be assumed to *need* to zero-extend the high bits
5131      // (as opposed to anyext the high bits), we can't combine the zextload
5132      // lowering of SRL and an sextload.
5133      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5134        return SDValue();
5135
5136      // If the shift amount is larger than the input type then we're not
5137      // accessing any of the loaded bytes.  If the load was a zextload/extload
5138      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5139      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5140        return SDValue();
5141    }
5142  }
5143
5144  // If the load is shifted left (and the result isn't shifted back right),
5145  // we can fold the truncate through the shift.
5146  unsigned ShLeftAmt = 0;
5147  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5148      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5149    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5150      ShLeftAmt = N01->getZExtValue();
5151      N0 = N0.getOperand(0);
5152    }
5153  }
5154
5155  // If we haven't found a load, we can't narrow it.  Don't transform one with
5156  // multiple uses, this would require adding a new load.
5157  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5158    return SDValue();
5159
5160  // Don't change the width of a volatile load.
5161  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5162  if (LN0->isVolatile())
5163    return SDValue();
5164
5165  // Verify that we are actually reducing a load width here.
5166  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5167    return SDValue();
5168
5169  // For the transform to be legal, the load must produce only two values
5170  // (the value loaded and the chain).  Don't transform a pre-increment
5171  // load, for example, which produces an extra value.  Otherwise the
5172  // transformation is not equivalent, and the downstream logic to replace
5173  // uses gets things wrong.
5174  if (LN0->getNumValues() > 2)
5175    return SDValue();
5176
5177  EVT PtrType = N0.getOperand(1).getValueType();
5178
5179  if (PtrType == MVT::Untyped || PtrType.isExtended())
5180    // It's not possible to generate a constant of extended or untyped type.
5181    return SDValue();
5182
5183  // For big endian targets, we need to adjust the offset to the pointer to
5184  // load the correct bytes.
5185  if (TLI.isBigEndian()) {
5186    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5187    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5188    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5189  }
5190
5191  uint64_t PtrOff = ShAmt / 8;
5192  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5193  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5194                               PtrType, LN0->getBasePtr(),
5195                               DAG.getConstant(PtrOff, PtrType));
5196  AddToWorkList(NewPtr.getNode());
5197
5198  SDValue Load;
5199  if (ExtType == ISD::NON_EXTLOAD)
5200    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5201                        LN0->getPointerInfo().getWithOffset(PtrOff),
5202                        LN0->isVolatile(), LN0->isNonTemporal(),
5203                        LN0->isInvariant(), NewAlign);
5204  else
5205    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5206                          LN0->getPointerInfo().getWithOffset(PtrOff),
5207                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5208                          NewAlign);
5209
5210  // Replace the old load's chain with the new load's chain.
5211  WorkListRemover DeadNodes(*this);
5212  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5213
5214  // Shift the result left, if we've swallowed a left shift.
5215  SDValue Result = Load;
5216  if (ShLeftAmt != 0) {
5217    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5218    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5219      ShImmTy = VT;
5220    // If the shift amount is as large as the result size (but, presumably,
5221    // no larger than the source) then the useful bits of the result are
5222    // zero; we can't simply return the shortened shift, because the result
5223    // of that operation is undefined.
5224    if (ShLeftAmt >= VT.getSizeInBits())
5225      Result = DAG.getConstant(0, VT);
5226    else
5227      Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5228                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5229  }
5230
5231  // Return the new loaded value.
5232  return Result;
5233}
5234
5235SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5236  SDValue N0 = N->getOperand(0);
5237  SDValue N1 = N->getOperand(1);
5238  EVT VT = N->getValueType(0);
5239  EVT EVT = cast<VTSDNode>(N1)->getVT();
5240  unsigned VTBits = VT.getScalarType().getSizeInBits();
5241  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5242
5243  // fold (sext_in_reg c1) -> c1
5244  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5245    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5246
5247  // If the input is already sign extended, just drop the extension.
5248  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5249    return N0;
5250
5251  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5252  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5253      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5254    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5255                       N0.getOperand(0), N1);
5256  }
5257
5258  // fold (sext_in_reg (sext x)) -> (sext x)
5259  // fold (sext_in_reg (aext x)) -> (sext x)
5260  // if x is small enough.
5261  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5262    SDValue N00 = N0.getOperand(0);
5263    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5264        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5265      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5266  }
5267
5268  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5269  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5270    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5271
5272  // fold operands of sext_in_reg based on knowledge that the top bits are not
5273  // demanded.
5274  if (SimplifyDemandedBits(SDValue(N, 0)))
5275    return SDValue(N, 0);
5276
5277  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5278  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5279  SDValue NarrowLoad = ReduceLoadWidth(N);
5280  if (NarrowLoad.getNode())
5281    return NarrowLoad;
5282
5283  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5284  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5285  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5286  if (N0.getOpcode() == ISD::SRL) {
5287    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5288      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5289        // We can turn this into an SRA iff the input to the SRL is already sign
5290        // extended enough.
5291        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5292        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5293          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5294                             N0.getOperand(0), N0.getOperand(1));
5295      }
5296  }
5297
5298  // fold (sext_inreg (extload x)) -> (sextload x)
5299  if (ISD::isEXTLoad(N0.getNode()) &&
5300      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5301      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5302      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5303       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5304    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5305    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5306                                     LN0->getChain(),
5307                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5308                                     EVT,
5309                                     LN0->isVolatile(), LN0->isNonTemporal(),
5310                                     LN0->getAlignment());
5311    CombineTo(N, ExtLoad);
5312    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5313    AddToWorkList(ExtLoad.getNode());
5314    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5315  }
5316  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5317  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5318      N0.hasOneUse() &&
5319      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5320      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5321       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5322    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5323    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5324                                     LN0->getChain(),
5325                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5326                                     EVT,
5327                                     LN0->isVolatile(), LN0->isNonTemporal(),
5328                                     LN0->getAlignment());
5329    CombineTo(N, ExtLoad);
5330    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5331    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5332  }
5333
5334  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5335  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5336    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5337                                       N0.getOperand(1), false);
5338    if (BSwap.getNode() != 0)
5339      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5340                         BSwap, N1);
5341  }
5342
5343  return SDValue();
5344}
5345
5346SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5347  SDValue N0 = N->getOperand(0);
5348  EVT VT = N->getValueType(0);
5349  bool isLE = TLI.isLittleEndian();
5350
5351  // noop truncate
5352  if (N0.getValueType() == N->getValueType(0))
5353    return N0;
5354  // fold (truncate c1) -> c1
5355  if (isa<ConstantSDNode>(N0))
5356    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5357  // fold (truncate (truncate x)) -> (truncate x)
5358  if (N0.getOpcode() == ISD::TRUNCATE)
5359    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5360  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5361  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5362      N0.getOpcode() == ISD::SIGN_EXTEND ||
5363      N0.getOpcode() == ISD::ANY_EXTEND) {
5364    if (N0.getOperand(0).getValueType().bitsLT(VT))
5365      // if the source is smaller than the dest, we still need an extend
5366      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5367                         N0.getOperand(0));
5368    if (N0.getOperand(0).getValueType().bitsGT(VT))
5369      // if the source is larger than the dest, than we just need the truncate
5370      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5371    // if the source and dest are the same type, we can drop both the extend
5372    // and the truncate.
5373    return N0.getOperand(0);
5374  }
5375
5376  // Fold extract-and-trunc into a narrow extract. For example:
5377  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5378  //   i32 y = TRUNCATE(i64 x)
5379  //        -- becomes --
5380  //   v16i8 b = BITCAST (v2i64 val)
5381  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5382  //
5383  // Note: We only run this optimization after type legalization (which often
5384  // creates this pattern) and before operation legalization after which
5385  // we need to be more careful about the vector instructions that we generate.
5386  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5387      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5388
5389    EVT VecTy = N0.getOperand(0).getValueType();
5390    EVT ExTy = N0.getValueType();
5391    EVT TrTy = N->getValueType(0);
5392
5393    unsigned NumElem = VecTy.getVectorNumElements();
5394    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5395
5396    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5397    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5398
5399    SDValue EltNo = N0->getOperand(1);
5400    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5401      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5402      EVT IndexTy = N0->getOperand(1).getValueType();
5403      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5404
5405      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5406                              NVT, N0.getOperand(0));
5407
5408      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5409                         N->getDebugLoc(), TrTy, V,
5410                         DAG.getConstant(Index, IndexTy));
5411    }
5412  }
5413
5414  // Fold a series of buildvector, bitcast, and truncate if possible.
5415  // For example fold
5416  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5417  //   (2xi32 (buildvector x, y)).
5418  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5419      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5420      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5421      N0.getOperand(0).hasOneUse()) {
5422
5423    SDValue BuildVect = N0.getOperand(0);
5424    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5425    EVT TruncVecEltTy = VT.getVectorElementType();
5426
5427    // Check that the element types match.
5428    if (BuildVectEltTy == TruncVecEltTy) {
5429      // Now we only need to compute the offset of the truncated elements.
5430      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5431      unsigned TruncVecNumElts = VT.getVectorNumElements();
5432      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5433
5434      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5435             "Invalid number of elements");
5436
5437      SmallVector<SDValue, 8> Opnds;
5438      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5439        Opnds.push_back(BuildVect.getOperand(i));
5440
5441      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, &Opnds[0],
5442                         Opnds.size());
5443    }
5444  }
5445
5446  // See if we can simplify the input to this truncate through knowledge that
5447  // only the low bits are being used.
5448  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5449  // Currently we only perform this optimization on scalars because vectors
5450  // may have different active low bits.
5451  if (!VT.isVector()) {
5452    SDValue Shorter =
5453      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5454                                               VT.getSizeInBits()));
5455    if (Shorter.getNode())
5456      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5457  }
5458  // fold (truncate (load x)) -> (smaller load x)
5459  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5460  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5461    SDValue Reduced = ReduceLoadWidth(N);
5462    if (Reduced.getNode())
5463      return Reduced;
5464  }
5465  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5466  // where ... are all 'undef'.
5467  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5468    SmallVector<EVT, 8> VTs;
5469    SDValue V;
5470    unsigned Idx = 0;
5471    unsigned NumDefs = 0;
5472
5473    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5474      SDValue X = N0.getOperand(i);
5475      if (X.getOpcode() != ISD::UNDEF) {
5476        V = X;
5477        Idx = i;
5478        NumDefs++;
5479      }
5480      // Stop if more than one members are non-undef.
5481      if (NumDefs > 1)
5482        break;
5483      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5484                                     VT.getVectorElementType(),
5485                                     X.getValueType().getVectorNumElements()));
5486    }
5487
5488    if (NumDefs == 0)
5489      return DAG.getUNDEF(VT);
5490
5491    if (NumDefs == 1) {
5492      assert(V.getNode() && "The single defined operand is empty!");
5493      SmallVector<SDValue, 8> Opnds;
5494      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5495        if (i != Idx) {
5496          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5497          continue;
5498        }
5499        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5500        AddToWorkList(NV.getNode());
5501        Opnds.push_back(NV);
5502      }
5503      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5504                         &Opnds[0], Opnds.size());
5505    }
5506  }
5507
5508  // Simplify the operands using demanded-bits information.
5509  if (!VT.isVector() &&
5510      SimplifyDemandedBits(SDValue(N, 0)))
5511    return SDValue(N, 0);
5512
5513  return SDValue();
5514}
5515
5516static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5517  SDValue Elt = N->getOperand(i);
5518  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5519    return Elt.getNode();
5520  return Elt.getOperand(Elt.getResNo()).getNode();
5521}
5522
5523/// CombineConsecutiveLoads - build_pair (load, load) -> load
5524/// if load locations are consecutive.
5525SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5526  assert(N->getOpcode() == ISD::BUILD_PAIR);
5527
5528  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5529  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5530  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5531      LD1->getPointerInfo().getAddrSpace() !=
5532         LD2->getPointerInfo().getAddrSpace())
5533    return SDValue();
5534  EVT LD1VT = LD1->getValueType(0);
5535
5536  if (ISD::isNON_EXTLoad(LD2) &&
5537      LD2->hasOneUse() &&
5538      // If both are volatile this would reduce the number of volatile loads.
5539      // If one is volatile it might be ok, but play conservative and bail out.
5540      !LD1->isVolatile() &&
5541      !LD2->isVolatile() &&
5542      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5543    unsigned Align = LD1->getAlignment();
5544    unsigned NewAlign = TLI.getDataLayout()->
5545      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5546
5547    if (NewAlign <= Align &&
5548        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5549      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5550                         LD1->getBasePtr(), LD1->getPointerInfo(),
5551                         false, false, false, Align);
5552  }
5553
5554  return SDValue();
5555}
5556
5557SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5558  SDValue N0 = N->getOperand(0);
5559  EVT VT = N->getValueType(0);
5560
5561  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5562  // Only do this before legalize, since afterward the target may be depending
5563  // on the bitconvert.
5564  // First check to see if this is all constant.
5565  if (!LegalTypes &&
5566      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5567      VT.isVector()) {
5568    bool isSimple = true;
5569    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5570      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5571          N0.getOperand(i).getOpcode() != ISD::Constant &&
5572          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5573        isSimple = false;
5574        break;
5575      }
5576
5577    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5578    assert(!DestEltVT.isVector() &&
5579           "Element type of vector ValueType must not be vector!");
5580    if (isSimple)
5581      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5582  }
5583
5584  // If the input is a constant, let getNode fold it.
5585  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5586    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5587    if (Res.getNode() != N) {
5588      if (!LegalOperations ||
5589          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5590        return Res;
5591
5592      // Folding it resulted in an illegal node, and it's too late to
5593      // do that. Clean up the old node and forego the transformation.
5594      // Ideally this won't happen very often, because instcombine
5595      // and the earlier dagcombine runs (where illegal nodes are
5596      // permitted) should have folded most of them already.
5597      DAG.DeleteNode(Res.getNode());
5598    }
5599  }
5600
5601  // (conv (conv x, t1), t2) -> (conv x, t2)
5602  if (N0.getOpcode() == ISD::BITCAST)
5603    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5604                       N0.getOperand(0));
5605
5606  // fold (conv (load x)) -> (load (conv*)x)
5607  // If the resultant load doesn't need a higher alignment than the original!
5608  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5609      // Do not change the width of a volatile load.
5610      !cast<LoadSDNode>(N0)->isVolatile() &&
5611      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5612    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5613    unsigned Align = TLI.getDataLayout()->
5614      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5615    unsigned OrigAlign = LN0->getAlignment();
5616
5617    if (Align <= OrigAlign) {
5618      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5619                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5620                                 LN0->isVolatile(), LN0->isNonTemporal(),
5621                                 LN0->isInvariant(), OrigAlign);
5622      AddToWorkList(N);
5623      CombineTo(N0.getNode(),
5624                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5625                            N0.getValueType(), Load),
5626                Load.getValue(1));
5627      return Load;
5628    }
5629  }
5630
5631  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5632  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5633  // This often reduces constant pool loads.
5634  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5635       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5636      N0.getNode()->hasOneUse() && VT.isInteger() &&
5637      !VT.isVector() && !N0.getValueType().isVector()) {
5638    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5639                                  N0.getOperand(0));
5640    AddToWorkList(NewConv.getNode());
5641
5642    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5643    if (N0.getOpcode() == ISD::FNEG)
5644      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5645                         NewConv, DAG.getConstant(SignBit, VT));
5646    assert(N0.getOpcode() == ISD::FABS);
5647    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5648                       NewConv, DAG.getConstant(~SignBit, VT));
5649  }
5650
5651  // fold (bitconvert (fcopysign cst, x)) ->
5652  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5653  // Note that we don't handle (copysign x, cst) because this can always be
5654  // folded to an fneg or fabs.
5655  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5656      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5657      VT.isInteger() && !VT.isVector()) {
5658    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5659    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5660    if (isTypeLegal(IntXVT)) {
5661      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5662                              IntXVT, N0.getOperand(1));
5663      AddToWorkList(X.getNode());
5664
5665      // If X has a different width than the result/lhs, sext it or truncate it.
5666      unsigned VTWidth = VT.getSizeInBits();
5667      if (OrigXWidth < VTWidth) {
5668        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5669        AddToWorkList(X.getNode());
5670      } else if (OrigXWidth > VTWidth) {
5671        // To get the sign bit in the right place, we have to shift it right
5672        // before truncating.
5673        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5674                        X.getValueType(), X,
5675                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5676        AddToWorkList(X.getNode());
5677        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5678        AddToWorkList(X.getNode());
5679      }
5680
5681      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5682      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5683                      X, DAG.getConstant(SignBit, VT));
5684      AddToWorkList(X.getNode());
5685
5686      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5687                                VT, N0.getOperand(0));
5688      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5689                        Cst, DAG.getConstant(~SignBit, VT));
5690      AddToWorkList(Cst.getNode());
5691
5692      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5693    }
5694  }
5695
5696  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5697  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5698    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5699    if (CombineLD.getNode())
5700      return CombineLD;
5701  }
5702
5703  return SDValue();
5704}
5705
5706SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5707  EVT VT = N->getValueType(0);
5708  return CombineConsecutiveLoads(N, VT);
5709}
5710
5711/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5712/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5713/// destination element value type.
5714SDValue DAGCombiner::
5715ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5716  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5717
5718  // If this is already the right type, we're done.
5719  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5720
5721  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5722  unsigned DstBitSize = DstEltVT.getSizeInBits();
5723
5724  // If this is a conversion of N elements of one type to N elements of another
5725  // type, convert each element.  This handles FP<->INT cases.
5726  if (SrcBitSize == DstBitSize) {
5727    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5728                              BV->getValueType(0).getVectorNumElements());
5729
5730    // Due to the FP element handling below calling this routine recursively,
5731    // we can end up with a scalar-to-vector node here.
5732    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5733      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5734                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5735                                     DstEltVT, BV->getOperand(0)));
5736
5737    SmallVector<SDValue, 8> Ops;
5738    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5739      SDValue Op = BV->getOperand(i);
5740      // If the vector element type is not legal, the BUILD_VECTOR operands
5741      // are promoted and implicitly truncated.  Make that explicit here.
5742      if (Op.getValueType() != SrcEltVT)
5743        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5744      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5745                                DstEltVT, Op));
5746      AddToWorkList(Ops.back().getNode());
5747    }
5748    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5749                       &Ops[0], Ops.size());
5750  }
5751
5752  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5753  // handle annoying details of growing/shrinking FP values, we convert them to
5754  // int first.
5755  if (SrcEltVT.isFloatingPoint()) {
5756    // Convert the input float vector to a int vector where the elements are the
5757    // same sizes.
5758    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5759    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5760    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5761    SrcEltVT = IntVT;
5762  }
5763
5764  // Now we know the input is an integer vector.  If the output is a FP type,
5765  // convert to integer first, then to FP of the right size.
5766  if (DstEltVT.isFloatingPoint()) {
5767    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5768    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5769    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5770
5771    // Next, convert to FP elements of the same size.
5772    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5773  }
5774
5775  // Okay, we know the src/dst types are both integers of differing types.
5776  // Handling growing first.
5777  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5778  if (SrcBitSize < DstBitSize) {
5779    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5780
5781    SmallVector<SDValue, 8> Ops;
5782    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5783         i += NumInputsPerOutput) {
5784      bool isLE = TLI.isLittleEndian();
5785      APInt NewBits = APInt(DstBitSize, 0);
5786      bool EltIsUndef = true;
5787      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5788        // Shift the previously computed bits over.
5789        NewBits <<= SrcBitSize;
5790        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5791        if (Op.getOpcode() == ISD::UNDEF) continue;
5792        EltIsUndef = false;
5793
5794        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5795                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5796      }
5797
5798      if (EltIsUndef)
5799        Ops.push_back(DAG.getUNDEF(DstEltVT));
5800      else
5801        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5802    }
5803
5804    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5805    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5806                       &Ops[0], Ops.size());
5807  }
5808
5809  // Finally, this must be the case where we are shrinking elements: each input
5810  // turns into multiple outputs.
5811  bool isS2V = ISD::isScalarToVector(BV);
5812  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5813  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5814                            NumOutputsPerInput*BV->getNumOperands());
5815  SmallVector<SDValue, 8> Ops;
5816
5817  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5818    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5819      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5820        Ops.push_back(DAG.getUNDEF(DstEltVT));
5821      continue;
5822    }
5823
5824    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5825                  getAPIntValue().zextOrTrunc(SrcBitSize);
5826
5827    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5828      APInt ThisVal = OpVal.trunc(DstBitSize);
5829      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5830      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5831        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5832        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5833                           Ops[0]);
5834      OpVal = OpVal.lshr(DstBitSize);
5835    }
5836
5837    // For big endian targets, swap the order of the pieces of each element.
5838    if (TLI.isBigEndian())
5839      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5840  }
5841
5842  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5843                     &Ops[0], Ops.size());
5844}
5845
5846SDValue DAGCombiner::visitFADD(SDNode *N) {
5847  SDValue N0 = N->getOperand(0);
5848  SDValue N1 = N->getOperand(1);
5849  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5850  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5851  EVT VT = N->getValueType(0);
5852
5853  // fold vector ops
5854  if (VT.isVector()) {
5855    SDValue FoldedVOp = SimplifyVBinOp(N);
5856    if (FoldedVOp.getNode()) return FoldedVOp;
5857  }
5858
5859  // fold (fadd c1, c2) -> c1 + c2
5860  if (N0CFP && N1CFP)
5861    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5862  // canonicalize constant to RHS
5863  if (N0CFP && !N1CFP)
5864    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5865  // fold (fadd A, 0) -> A
5866  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5867      N1CFP->getValueAPF().isZero())
5868    return N0;
5869  // fold (fadd A, (fneg B)) -> (fsub A, B)
5870  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5871    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5872    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5873                       GetNegatedExpression(N1, DAG, LegalOperations));
5874  // fold (fadd (fneg A), B) -> (fsub B, A)
5875  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5876    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5877    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5878                       GetNegatedExpression(N0, DAG, LegalOperations));
5879
5880  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5881  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5882      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5883      isa<ConstantFPSDNode>(N0.getOperand(1)))
5884    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5885                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5886                                   N0.getOperand(1), N1));
5887
5888  // No FP constant should be created after legalization as Instruction
5889  // Selection pass has hard time in dealing with FP constant.
5890  //
5891  // We don't need test this condition for transformation like following, as
5892  // the DAG being transformed implies it is legal to take FP constant as
5893  // operand.
5894  //
5895  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
5896  //
5897  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
5898
5899  // If allow, fold (fadd (fneg x), x) -> 0.0
5900  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5901      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5902    return DAG.getConstantFP(0.0, VT);
5903  }
5904
5905    // If allow, fold (fadd x, (fneg x)) -> 0.0
5906  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5907      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5908    return DAG.getConstantFP(0.0, VT);
5909  }
5910
5911  // In unsafe math mode, we can fold chains of FADD's of the same value
5912  // into multiplications.  This transform is not safe in general because
5913  // we are reducing the number of rounding steps.
5914  if (DAG.getTarget().Options.UnsafeFPMath &&
5915      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5916      !N0CFP && !N1CFP) {
5917    if (N0.getOpcode() == ISD::FMUL) {
5918      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5919      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5920
5921      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5922      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5923        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5924                                     SDValue(CFP00, 0),
5925                                     DAG.getConstantFP(1.0, VT));
5926        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5927                           N1, NewCFP);
5928      }
5929
5930      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5931      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5932        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5933                                     SDValue(CFP01, 0),
5934                                     DAG.getConstantFP(1.0, VT));
5935        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5936                           N1, NewCFP);
5937      }
5938
5939      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5940      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5941          N1.getOperand(0) == N1.getOperand(1) &&
5942          N0.getOperand(1) == N1.getOperand(0)) {
5943        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5944                                     SDValue(CFP00, 0),
5945                                     DAG.getConstantFP(2.0, VT));
5946        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5947                           N0.getOperand(1), NewCFP);
5948      }
5949
5950      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5951      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5952          N1.getOperand(0) == N1.getOperand(1) &&
5953          N0.getOperand(0) == N1.getOperand(0)) {
5954        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5955                                     SDValue(CFP01, 0),
5956                                     DAG.getConstantFP(2.0, VT));
5957        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5958                           N0.getOperand(0), NewCFP);
5959      }
5960    }
5961
5962    if (N1.getOpcode() == ISD::FMUL) {
5963      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5964      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5965
5966      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5967      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5968        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5969                                     SDValue(CFP10, 0),
5970                                     DAG.getConstantFP(1.0, VT));
5971        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5972                           N0, NewCFP);
5973      }
5974
5975      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5976      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5977        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5978                                     SDValue(CFP11, 0),
5979                                     DAG.getConstantFP(1.0, VT));
5980        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5981                           N0, NewCFP);
5982      }
5983
5984
5985      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5986      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5987          N1.getOperand(0) == N1.getOperand(1) &&
5988          N0.getOperand(1) == N1.getOperand(0)) {
5989        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5990                                     SDValue(CFP10, 0),
5991                                     DAG.getConstantFP(2.0, VT));
5992        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5993                           N0.getOperand(1), NewCFP);
5994      }
5995
5996      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5997      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5998          N1.getOperand(0) == N1.getOperand(1) &&
5999          N0.getOperand(0) == N1.getOperand(0)) {
6000        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
6001                                     SDValue(CFP11, 0),
6002                                     DAG.getConstantFP(2.0, VT));
6003        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6004                           N0.getOperand(0), NewCFP);
6005      }
6006    }
6007
6008    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6009      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6010      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
6011      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6012          (N0.getOperand(0) == N1)) {
6013        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6014                           N1, DAG.getConstantFP(3.0, VT));
6015      }
6016    }
6017
6018    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6019      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6020      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
6021      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6022          N1.getOperand(0) == N0) {
6023        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6024                           N0, DAG.getConstantFP(3.0, VT));
6025      }
6026    }
6027
6028    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
6029    if (AllowNewFpConst &&
6030        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6031        N0.getOperand(0) == N0.getOperand(1) &&
6032        N1.getOperand(0) == N1.getOperand(1) &&
6033        N0.getOperand(0) == N1.getOperand(0)) {
6034      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6035                         N0.getOperand(0),
6036                         DAG.getConstantFP(4.0, VT));
6037    }
6038  }
6039
6040  // FADD -> FMA combines:
6041  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6042       DAG.getTarget().Options.UnsafeFPMath) &&
6043      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6044      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6045
6046    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6047    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6048      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
6049                         N0.getOperand(0), N0.getOperand(1), N1);
6050    }
6051
6052    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6053    // Note: Commutes FADD operands.
6054    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6055      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
6056                         N1.getOperand(0), N1.getOperand(1), N0);
6057    }
6058  }
6059
6060  return SDValue();
6061}
6062
6063SDValue DAGCombiner::visitFSUB(SDNode *N) {
6064  SDValue N0 = N->getOperand(0);
6065  SDValue N1 = N->getOperand(1);
6066  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6067  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6068  EVT VT = N->getValueType(0);
6069  DebugLoc dl = N->getDebugLoc();
6070
6071  // fold vector ops
6072  if (VT.isVector()) {
6073    SDValue FoldedVOp = SimplifyVBinOp(N);
6074    if (FoldedVOp.getNode()) return FoldedVOp;
6075  }
6076
6077  // fold (fsub c1, c2) -> c1-c2
6078  if (N0CFP && N1CFP)
6079    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
6080  // fold (fsub A, 0) -> A
6081  if (DAG.getTarget().Options.UnsafeFPMath &&
6082      N1CFP && N1CFP->getValueAPF().isZero())
6083    return N0;
6084  // fold (fsub 0, B) -> -B
6085  if (DAG.getTarget().Options.UnsafeFPMath &&
6086      N0CFP && N0CFP->getValueAPF().isZero()) {
6087    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6088      return GetNegatedExpression(N1, DAG, LegalOperations);
6089    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6090      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6091  }
6092  // fold (fsub A, (fneg B)) -> (fadd A, B)
6093  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6094    return DAG.getNode(ISD::FADD, dl, VT, N0,
6095                       GetNegatedExpression(N1, DAG, LegalOperations));
6096
6097  // If 'unsafe math' is enabled, fold
6098  //    (fsub x, x) -> 0.0 &
6099  //    (fsub x, (fadd x, y)) -> (fneg y) &
6100  //    (fsub x, (fadd y, x)) -> (fneg y)
6101  if (DAG.getTarget().Options.UnsafeFPMath) {
6102    if (N0 == N1)
6103      return DAG.getConstantFP(0.0f, VT);
6104
6105    if (N1.getOpcode() == ISD::FADD) {
6106      SDValue N10 = N1->getOperand(0);
6107      SDValue N11 = N1->getOperand(1);
6108
6109      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6110                                          &DAG.getTarget().Options))
6111        return GetNegatedExpression(N11, DAG, LegalOperations);
6112      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6113                                               &DAG.getTarget().Options))
6114        return GetNegatedExpression(N10, DAG, LegalOperations);
6115    }
6116  }
6117
6118  // FSUB -> FMA combines:
6119  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6120       DAG.getTarget().Options.UnsafeFPMath) &&
6121      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6122      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6123
6124    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6125    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6126      return DAG.getNode(ISD::FMA, dl, VT,
6127                         N0.getOperand(0), N0.getOperand(1),
6128                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6129    }
6130
6131    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6132    // Note: Commutes FSUB operands.
6133    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6134      return DAG.getNode(ISD::FMA, dl, VT,
6135                         DAG.getNode(ISD::FNEG, dl, VT,
6136                         N1.getOperand(0)),
6137                         N1.getOperand(1), N0);
6138    }
6139
6140    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6141    if (N0.getOpcode() == ISD::FNEG &&
6142        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6143        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6144      SDValue N00 = N0.getOperand(0).getOperand(0);
6145      SDValue N01 = N0.getOperand(0).getOperand(1);
6146      return DAG.getNode(ISD::FMA, dl, VT,
6147                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6148                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6149    }
6150  }
6151
6152  return SDValue();
6153}
6154
6155SDValue DAGCombiner::visitFMUL(SDNode *N) {
6156  SDValue N0 = N->getOperand(0);
6157  SDValue N1 = N->getOperand(1);
6158  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6159  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6160  EVT VT = N->getValueType(0);
6161  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6162
6163  // fold vector ops
6164  if (VT.isVector()) {
6165    SDValue FoldedVOp = SimplifyVBinOp(N);
6166    if (FoldedVOp.getNode()) return FoldedVOp;
6167  }
6168
6169  // fold (fmul c1, c2) -> c1*c2
6170  if (N0CFP && N1CFP)
6171    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6172  // canonicalize constant to RHS
6173  if (N0CFP && !N1CFP)
6174    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6175  // fold (fmul A, 0) -> 0
6176  if (DAG.getTarget().Options.UnsafeFPMath &&
6177      N1CFP && N1CFP->getValueAPF().isZero())
6178    return N1;
6179  // fold (fmul A, 0) -> 0, vector edition.
6180  if (DAG.getTarget().Options.UnsafeFPMath &&
6181      ISD::isBuildVectorAllZeros(N1.getNode()))
6182    return N1;
6183  // fold (fmul A, 1.0) -> A
6184  if (N1CFP && N1CFP->isExactlyValue(1.0))
6185    return N0;
6186  // fold (fmul X, 2.0) -> (fadd X, X)
6187  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6188    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6189  // fold (fmul X, -1.0) -> (fneg X)
6190  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6191    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6192      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6193
6194  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6195  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6196                                       &DAG.getTarget().Options)) {
6197    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6198                                         &DAG.getTarget().Options)) {
6199      // Both can be negated for free, check to see if at least one is cheaper
6200      // negated.
6201      if (LHSNeg == 2 || RHSNeg == 2)
6202        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6203                           GetNegatedExpression(N0, DAG, LegalOperations),
6204                           GetNegatedExpression(N1, DAG, LegalOperations));
6205    }
6206  }
6207
6208  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6209  if (DAG.getTarget().Options.UnsafeFPMath &&
6210      N1CFP && N0.getOpcode() == ISD::FMUL &&
6211      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6212    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6213                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6214                                   N0.getOperand(1), N1));
6215
6216  return SDValue();
6217}
6218
6219SDValue DAGCombiner::visitFMA(SDNode *N) {
6220  SDValue N0 = N->getOperand(0);
6221  SDValue N1 = N->getOperand(1);
6222  SDValue N2 = N->getOperand(2);
6223  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6224  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6225  EVT VT = N->getValueType(0);
6226  DebugLoc dl = N->getDebugLoc();
6227
6228  if (DAG.getTarget().Options.UnsafeFPMath) {
6229    if (N0CFP && N0CFP->isZero())
6230      return N2;
6231    if (N1CFP && N1CFP->isZero())
6232      return N2;
6233  }
6234  if (N0CFP && N0CFP->isExactlyValue(1.0))
6235    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6236  if (N1CFP && N1CFP->isExactlyValue(1.0))
6237    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6238
6239  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6240  if (N0CFP && !N1CFP)
6241    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6242
6243  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6244  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6245      N2.getOpcode() == ISD::FMUL &&
6246      N0 == N2.getOperand(0) &&
6247      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6248    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6249                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6250  }
6251
6252
6253  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6254  if (DAG.getTarget().Options.UnsafeFPMath &&
6255      N0.getOpcode() == ISD::FMUL && N1CFP &&
6256      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6257    return DAG.getNode(ISD::FMA, dl, VT,
6258                       N0.getOperand(0),
6259                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6260                       N2);
6261  }
6262
6263  // (fma x, 1, y) -> (fadd x, y)
6264  // (fma x, -1, y) -> (fadd (fneg x), y)
6265  if (N1CFP) {
6266    if (N1CFP->isExactlyValue(1.0))
6267      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6268
6269    if (N1CFP->isExactlyValue(-1.0) &&
6270        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6271      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6272      AddToWorkList(RHSNeg.getNode());
6273      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6274    }
6275  }
6276
6277  // (fma x, c, x) -> (fmul x, (c+1))
6278  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6279    return DAG.getNode(ISD::FMUL, dl, VT,
6280                       N0,
6281                       DAG.getNode(ISD::FADD, dl, VT,
6282                                   N1, DAG.getConstantFP(1.0, VT)));
6283  }
6284
6285  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6286  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6287      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6288    return DAG.getNode(ISD::FMUL, dl, VT,
6289                       N0,
6290                       DAG.getNode(ISD::FADD, dl, VT,
6291                                   N1, DAG.getConstantFP(-1.0, VT)));
6292  }
6293
6294
6295  return SDValue();
6296}
6297
6298SDValue DAGCombiner::visitFDIV(SDNode *N) {
6299  SDValue N0 = N->getOperand(0);
6300  SDValue N1 = N->getOperand(1);
6301  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6302  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6303  EVT VT = N->getValueType(0);
6304  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6305
6306  // fold vector ops
6307  if (VT.isVector()) {
6308    SDValue FoldedVOp = SimplifyVBinOp(N);
6309    if (FoldedVOp.getNode()) return FoldedVOp;
6310  }
6311
6312  // fold (fdiv c1, c2) -> c1/c2
6313  if (N0CFP && N1CFP)
6314    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6315
6316  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6317  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6318    // Compute the reciprocal 1.0 / c2.
6319    APFloat N1APF = N1CFP->getValueAPF();
6320    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6321    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6322    // Only do the transform if the reciprocal is a legal fp immediate that
6323    // isn't too nasty (eg NaN, denormal, ...).
6324    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6325        (!LegalOperations ||
6326         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6327         // backend)... we should handle this gracefully after Legalize.
6328         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6329         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6330         TLI.isFPImmLegal(Recip, VT)))
6331      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6332                         DAG.getConstantFP(Recip, VT));
6333  }
6334
6335  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6336  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6337                                       &DAG.getTarget().Options)) {
6338    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6339                                         &DAG.getTarget().Options)) {
6340      // Both can be negated for free, check to see if at least one is cheaper
6341      // negated.
6342      if (LHSNeg == 2 || RHSNeg == 2)
6343        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6344                           GetNegatedExpression(N0, DAG, LegalOperations),
6345                           GetNegatedExpression(N1, DAG, LegalOperations));
6346    }
6347  }
6348
6349  return SDValue();
6350}
6351
6352SDValue DAGCombiner::visitFREM(SDNode *N) {
6353  SDValue N0 = N->getOperand(0);
6354  SDValue N1 = N->getOperand(1);
6355  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6356  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6357  EVT VT = N->getValueType(0);
6358
6359  // fold (frem c1, c2) -> fmod(c1,c2)
6360  if (N0CFP && N1CFP)
6361    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6362
6363  return SDValue();
6364}
6365
6366SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6367  SDValue N0 = N->getOperand(0);
6368  SDValue N1 = N->getOperand(1);
6369  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6370  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6371  EVT VT = N->getValueType(0);
6372
6373  if (N0CFP && N1CFP)  // Constant fold
6374    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6375
6376  if (N1CFP) {
6377    const APFloat& V = N1CFP->getValueAPF();
6378    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6379    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6380    if (!V.isNegative()) {
6381      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6382        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6383    } else {
6384      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6385        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6386                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6387    }
6388  }
6389
6390  // copysign(fabs(x), y) -> copysign(x, y)
6391  // copysign(fneg(x), y) -> copysign(x, y)
6392  // copysign(copysign(x,z), y) -> copysign(x, y)
6393  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6394      N0.getOpcode() == ISD::FCOPYSIGN)
6395    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6396                       N0.getOperand(0), N1);
6397
6398  // copysign(x, abs(y)) -> abs(x)
6399  if (N1.getOpcode() == ISD::FABS)
6400    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6401
6402  // copysign(x, copysign(y,z)) -> copysign(x, z)
6403  if (N1.getOpcode() == ISD::FCOPYSIGN)
6404    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6405                       N0, N1.getOperand(1));
6406
6407  // copysign(x, fp_extend(y)) -> copysign(x, y)
6408  // copysign(x, fp_round(y)) -> copysign(x, y)
6409  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6410    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6411                       N0, N1.getOperand(0));
6412
6413  return SDValue();
6414}
6415
6416SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6417  SDValue N0 = N->getOperand(0);
6418  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6419  EVT VT = N->getValueType(0);
6420  EVT OpVT = N0.getValueType();
6421
6422  // fold (sint_to_fp c1) -> c1fp
6423  if (N0C &&
6424      // ...but only if the target supports immediate floating-point values
6425      (!LegalOperations ||
6426       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6427    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6428
6429  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6430  // but UINT_TO_FP is legal on this target, try to convert.
6431  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6432      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6433    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6434    if (DAG.SignBitIsZero(N0))
6435      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6436  }
6437
6438  // The next optimizations are desireable only if SELECT_CC can be lowered.
6439  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6440  // having to say they don't support SELECT_CC on every type the DAG knows
6441  // about, since there is no way to mark an opcode illegal at all value types
6442  // (See also visitSELECT)
6443  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6444    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6445    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6446        !VT.isVector() &&
6447        (!LegalOperations ||
6448         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6449      SDValue Ops[] =
6450        { N0.getOperand(0), N0.getOperand(1),
6451          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6452          N0.getOperand(2) };
6453      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6454    }
6455
6456    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6457    //      (select_cc x, y, 1.0, 0.0,, cc)
6458    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6459        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6460        (!LegalOperations ||
6461         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6462      SDValue Ops[] =
6463        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6464          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6465          N0.getOperand(0).getOperand(2) };
6466      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6467    }
6468  }
6469
6470  return SDValue();
6471}
6472
6473SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6474  SDValue N0 = N->getOperand(0);
6475  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6476  EVT VT = N->getValueType(0);
6477  EVT OpVT = N0.getValueType();
6478
6479  // fold (uint_to_fp c1) -> c1fp
6480  if (N0C &&
6481      // ...but only if the target supports immediate floating-point values
6482      (!LegalOperations ||
6483       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6484    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6485
6486  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6487  // but SINT_TO_FP is legal on this target, try to convert.
6488  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6489      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6490    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6491    if (DAG.SignBitIsZero(N0))
6492      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6493  }
6494
6495  // The next optimizations are desireable only if SELECT_CC can be lowered.
6496  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6497  // having to say they don't support SELECT_CC on every type the DAG knows
6498  // about, since there is no way to mark an opcode illegal at all value types
6499  // (See also visitSELECT)
6500  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6501    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6502
6503    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6504        (!LegalOperations ||
6505         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6506      SDValue Ops[] =
6507        { N0.getOperand(0), N0.getOperand(1),
6508          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6509          N0.getOperand(2) };
6510      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6511    }
6512  }
6513
6514  return SDValue();
6515}
6516
6517SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6518  SDValue N0 = N->getOperand(0);
6519  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6520  EVT VT = N->getValueType(0);
6521
6522  // fold (fp_to_sint c1fp) -> c1
6523  if (N0CFP)
6524    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6525
6526  return SDValue();
6527}
6528
6529SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6530  SDValue N0 = N->getOperand(0);
6531  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6532  EVT VT = N->getValueType(0);
6533
6534  // fold (fp_to_uint c1fp) -> c1
6535  if (N0CFP)
6536    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6537
6538  return SDValue();
6539}
6540
6541SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6542  SDValue N0 = N->getOperand(0);
6543  SDValue N1 = N->getOperand(1);
6544  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6545  EVT VT = N->getValueType(0);
6546
6547  // fold (fp_round c1fp) -> c1fp
6548  if (N0CFP)
6549    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6550
6551  // fold (fp_round (fp_extend x)) -> x
6552  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6553    return N0.getOperand(0);
6554
6555  // fold (fp_round (fp_round x)) -> (fp_round x)
6556  if (N0.getOpcode() == ISD::FP_ROUND) {
6557    // This is a value preserving truncation if both round's are.
6558    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6559                   N0.getNode()->getConstantOperandVal(1) == 1;
6560    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6561                       DAG.getIntPtrConstant(IsTrunc));
6562  }
6563
6564  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6565  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6566    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6567                              N0.getOperand(0), N1);
6568    AddToWorkList(Tmp.getNode());
6569    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6570                       Tmp, N0.getOperand(1));
6571  }
6572
6573  return SDValue();
6574}
6575
6576SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6577  SDValue N0 = N->getOperand(0);
6578  EVT VT = N->getValueType(0);
6579  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6580  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6581
6582  // fold (fp_round_inreg c1fp) -> c1fp
6583  if (N0CFP && isTypeLegal(EVT)) {
6584    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6585    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6586  }
6587
6588  return SDValue();
6589}
6590
6591SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6592  SDValue N0 = N->getOperand(0);
6593  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6594  EVT VT = N->getValueType(0);
6595
6596  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6597  if (N->hasOneUse() &&
6598      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6599    return SDValue();
6600
6601  // fold (fp_extend c1fp) -> c1fp
6602  if (N0CFP)
6603    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6604
6605  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6606  // value of X.
6607  if (N0.getOpcode() == ISD::FP_ROUND
6608      && N0.getNode()->getConstantOperandVal(1) == 1) {
6609    SDValue In = N0.getOperand(0);
6610    if (In.getValueType() == VT) return In;
6611    if (VT.bitsLT(In.getValueType()))
6612      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6613                         In, N0.getOperand(1));
6614    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6615  }
6616
6617  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6618  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6619      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6620       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6621    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6622    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6623                                     LN0->getChain(),
6624                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6625                                     N0.getValueType(),
6626                                     LN0->isVolatile(), LN0->isNonTemporal(),
6627                                     LN0->getAlignment());
6628    CombineTo(N, ExtLoad);
6629    CombineTo(N0.getNode(),
6630              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6631                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6632              ExtLoad.getValue(1));
6633    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6634  }
6635
6636  return SDValue();
6637}
6638
6639SDValue DAGCombiner::visitFNEG(SDNode *N) {
6640  SDValue N0 = N->getOperand(0);
6641  EVT VT = N->getValueType(0);
6642
6643  if (VT.isVector()) {
6644    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6645    if (FoldedVOp.getNode()) return FoldedVOp;
6646  }
6647
6648  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6649                         &DAG.getTarget().Options))
6650    return GetNegatedExpression(N0, DAG, LegalOperations);
6651
6652  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6653  // constant pool values.
6654  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6655      !VT.isVector() &&
6656      N0.getNode()->hasOneUse() &&
6657      N0.getOperand(0).getValueType().isInteger()) {
6658    SDValue Int = N0.getOperand(0);
6659    EVT IntVT = Int.getValueType();
6660    if (IntVT.isInteger() && !IntVT.isVector()) {
6661      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6662              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6663      AddToWorkList(Int.getNode());
6664      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6665                         VT, Int);
6666    }
6667  }
6668
6669  // (fneg (fmul c, x)) -> (fmul -c, x)
6670  if (N0.getOpcode() == ISD::FMUL) {
6671    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6672    if (CFP1) {
6673      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6674                         N0.getOperand(0),
6675                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6676                                     N0.getOperand(1)));
6677    }
6678  }
6679
6680  return SDValue();
6681}
6682
6683SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6684  SDValue N0 = N->getOperand(0);
6685  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6686  EVT VT = N->getValueType(0);
6687
6688  // fold (fceil c1) -> fceil(c1)
6689  if (N0CFP)
6690    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6691
6692  return SDValue();
6693}
6694
6695SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6696  SDValue N0 = N->getOperand(0);
6697  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6698  EVT VT = N->getValueType(0);
6699
6700  // fold (ftrunc c1) -> ftrunc(c1)
6701  if (N0CFP)
6702    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6703
6704  return SDValue();
6705}
6706
6707SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6708  SDValue N0 = N->getOperand(0);
6709  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6710  EVT VT = N->getValueType(0);
6711
6712  // fold (ffloor c1) -> ffloor(c1)
6713  if (N0CFP)
6714    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6715
6716  return SDValue();
6717}
6718
6719SDValue DAGCombiner::visitFABS(SDNode *N) {
6720  SDValue N0 = N->getOperand(0);
6721  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6722  EVT VT = N->getValueType(0);
6723
6724  if (VT.isVector()) {
6725    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6726    if (FoldedVOp.getNode()) return FoldedVOp;
6727  }
6728
6729  // fold (fabs c1) -> fabs(c1)
6730  if (N0CFP)
6731    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6732  // fold (fabs (fabs x)) -> (fabs x)
6733  if (N0.getOpcode() == ISD::FABS)
6734    return N->getOperand(0);
6735  // fold (fabs (fneg x)) -> (fabs x)
6736  // fold (fabs (fcopysign x, y)) -> (fabs x)
6737  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6738    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6739
6740  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6741  // constant pool values.
6742  if (!TLI.isFAbsFree(VT) &&
6743      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6744      N0.getOperand(0).getValueType().isInteger() &&
6745      !N0.getOperand(0).getValueType().isVector()) {
6746    SDValue Int = N0.getOperand(0);
6747    EVT IntVT = Int.getValueType();
6748    if (IntVT.isInteger() && !IntVT.isVector()) {
6749      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6750             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6751      AddToWorkList(Int.getNode());
6752      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6753                         N->getValueType(0), Int);
6754    }
6755  }
6756
6757  return SDValue();
6758}
6759
6760SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6761  SDValue Chain = N->getOperand(0);
6762  SDValue N1 = N->getOperand(1);
6763  SDValue N2 = N->getOperand(2);
6764
6765  // If N is a constant we could fold this into a fallthrough or unconditional
6766  // branch. However that doesn't happen very often in normal code, because
6767  // Instcombine/SimplifyCFG should have handled the available opportunities.
6768  // If we did this folding here, it would be necessary to update the
6769  // MachineBasicBlock CFG, which is awkward.
6770
6771  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6772  // on the target.
6773  if (N1.getOpcode() == ISD::SETCC &&
6774      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6775                                   N1.getOperand(0).getValueType())) {
6776    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6777                       Chain, N1.getOperand(2),
6778                       N1.getOperand(0), N1.getOperand(1), N2);
6779  }
6780
6781  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6782      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6783       (N1.getOperand(0).hasOneUse() &&
6784        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6785    SDNode *Trunc = 0;
6786    if (N1.getOpcode() == ISD::TRUNCATE) {
6787      // Look pass the truncate.
6788      Trunc = N1.getNode();
6789      N1 = N1.getOperand(0);
6790    }
6791
6792    // Match this pattern so that we can generate simpler code:
6793    //
6794    //   %a = ...
6795    //   %b = and i32 %a, 2
6796    //   %c = srl i32 %b, 1
6797    //   brcond i32 %c ...
6798    //
6799    // into
6800    //
6801    //   %a = ...
6802    //   %b = and i32 %a, 2
6803    //   %c = setcc eq %b, 0
6804    //   brcond %c ...
6805    //
6806    // This applies only when the AND constant value has one bit set and the
6807    // SRL constant is equal to the log2 of the AND constant. The back-end is
6808    // smart enough to convert the result into a TEST/JMP sequence.
6809    SDValue Op0 = N1.getOperand(0);
6810    SDValue Op1 = N1.getOperand(1);
6811
6812    if (Op0.getOpcode() == ISD::AND &&
6813        Op1.getOpcode() == ISD::Constant) {
6814      SDValue AndOp1 = Op0.getOperand(1);
6815
6816      if (AndOp1.getOpcode() == ISD::Constant) {
6817        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6818
6819        if (AndConst.isPowerOf2() &&
6820            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6821          SDValue SetCC =
6822            DAG.getSetCC(N->getDebugLoc(),
6823                         TLI.getSetCCResultType(Op0.getValueType()),
6824                         Op0, DAG.getConstant(0, Op0.getValueType()),
6825                         ISD::SETNE);
6826
6827          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6828                                          MVT::Other, Chain, SetCC, N2);
6829          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6830          // will convert it back to (X & C1) >> C2.
6831          CombineTo(N, NewBRCond, false);
6832          // Truncate is dead.
6833          if (Trunc) {
6834            removeFromWorkList(Trunc);
6835            DAG.DeleteNode(Trunc);
6836          }
6837          // Replace the uses of SRL with SETCC
6838          WorkListRemover DeadNodes(*this);
6839          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6840          removeFromWorkList(N1.getNode());
6841          DAG.DeleteNode(N1.getNode());
6842          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6843        }
6844      }
6845    }
6846
6847    if (Trunc)
6848      // Restore N1 if the above transformation doesn't match.
6849      N1 = N->getOperand(1);
6850  }
6851
6852  // Transform br(xor(x, y)) -> br(x != y)
6853  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6854  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6855    SDNode *TheXor = N1.getNode();
6856    SDValue Op0 = TheXor->getOperand(0);
6857    SDValue Op1 = TheXor->getOperand(1);
6858    if (Op0.getOpcode() == Op1.getOpcode()) {
6859      // Avoid missing important xor optimizations.
6860      SDValue Tmp = visitXOR(TheXor);
6861      if (Tmp.getNode()) {
6862        if (Tmp.getNode() != TheXor) {
6863          DEBUG(dbgs() << "\nReplacing.8 ";
6864                TheXor->dump(&DAG);
6865                dbgs() << "\nWith: ";
6866                Tmp.getNode()->dump(&DAG);
6867                dbgs() << '\n');
6868          WorkListRemover DeadNodes(*this);
6869          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6870          removeFromWorkList(TheXor);
6871          DAG.DeleteNode(TheXor);
6872          return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6873                             MVT::Other, Chain, Tmp, N2);
6874        }
6875
6876        // visitXOR has changed XOR's operands or replaced the XOR completely,
6877        // bail out.
6878        return SDValue(N, 0);
6879      }
6880    }
6881
6882    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6883      bool Equal = false;
6884      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6885        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6886            Op0.getOpcode() == ISD::XOR) {
6887          TheXor = Op0.getNode();
6888          Equal = true;
6889        }
6890
6891      EVT SetCCVT = N1.getValueType();
6892      if (LegalTypes)
6893        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6894      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6895                                   SetCCVT,
6896                                   Op0, Op1,
6897                                   Equal ? ISD::SETEQ : ISD::SETNE);
6898      // Replace the uses of XOR with SETCC
6899      WorkListRemover DeadNodes(*this);
6900      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6901      removeFromWorkList(N1.getNode());
6902      DAG.DeleteNode(N1.getNode());
6903      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6904                         MVT::Other, Chain, SetCC, N2);
6905    }
6906  }
6907
6908  return SDValue();
6909}
6910
6911// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6912//
6913SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6914  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6915  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6916
6917  // If N is a constant we could fold this into a fallthrough or unconditional
6918  // branch. However that doesn't happen very often in normal code, because
6919  // Instcombine/SimplifyCFG should have handled the available opportunities.
6920  // If we did this folding here, it would be necessary to update the
6921  // MachineBasicBlock CFG, which is awkward.
6922
6923  // Use SimplifySetCC to simplify SETCC's.
6924  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6925                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6926                               false);
6927  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6928
6929  // fold to a simpler setcc
6930  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6931    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6932                       N->getOperand(0), Simp.getOperand(2),
6933                       Simp.getOperand(0), Simp.getOperand(1),
6934                       N->getOperand(4));
6935
6936  return SDValue();
6937}
6938
6939/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6940/// uses N as its base pointer and that N may be folded in the load / store
6941/// addressing mode.
6942static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6943                                    SelectionDAG &DAG,
6944                                    const TargetLowering &TLI) {
6945  EVT VT;
6946  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6947    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6948      return false;
6949    VT = Use->getValueType(0);
6950  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6951    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6952      return false;
6953    VT = ST->getValue().getValueType();
6954  } else
6955    return false;
6956
6957  TargetLowering::AddrMode AM;
6958  if (N->getOpcode() == ISD::ADD) {
6959    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6960    if (Offset)
6961      // [reg +/- imm]
6962      AM.BaseOffs = Offset->getSExtValue();
6963    else
6964      // [reg +/- reg]
6965      AM.Scale = 1;
6966  } else if (N->getOpcode() == ISD::SUB) {
6967    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6968    if (Offset)
6969      // [reg +/- imm]
6970      AM.BaseOffs = -Offset->getSExtValue();
6971    else
6972      // [reg +/- reg]
6973      AM.Scale = 1;
6974  } else
6975    return false;
6976
6977  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6978}
6979
6980/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6981/// pre-indexed load / store when the base pointer is an add or subtract
6982/// and it has other uses besides the load / store. After the
6983/// transformation, the new indexed load / store has effectively folded
6984/// the add / subtract in and all of its other uses are redirected to the
6985/// new load / store.
6986bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6987  if (Level < AfterLegalizeDAG)
6988    return false;
6989
6990  bool isLoad = true;
6991  SDValue Ptr;
6992  EVT VT;
6993  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6994    if (LD->isIndexed())
6995      return false;
6996    VT = LD->getMemoryVT();
6997    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6998        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6999      return false;
7000    Ptr = LD->getBasePtr();
7001  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7002    if (ST->isIndexed())
7003      return false;
7004    VT = ST->getMemoryVT();
7005    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7006        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7007      return false;
7008    Ptr = ST->getBasePtr();
7009    isLoad = false;
7010  } else {
7011    return false;
7012  }
7013
7014  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7015  // out.  There is no reason to make this a preinc/predec.
7016  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7017      Ptr.getNode()->hasOneUse())
7018    return false;
7019
7020  // Ask the target to do addressing mode selection.
7021  SDValue BasePtr;
7022  SDValue Offset;
7023  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7024  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7025    return false;
7026
7027  // Backends without true r+i pre-indexed forms may need to pass a
7028  // constant base with a variable offset so that constant coercion
7029  // will work with the patterns in canonical form.
7030  bool Swapped = false;
7031  if (isa<ConstantSDNode>(BasePtr)) {
7032    std::swap(BasePtr, Offset);
7033    Swapped = true;
7034  }
7035
7036  // Don't create a indexed load / store with zero offset.
7037  if (isa<ConstantSDNode>(Offset) &&
7038      cast<ConstantSDNode>(Offset)->isNullValue())
7039    return false;
7040
7041  // Try turning it into a pre-indexed load / store except when:
7042  // 1) The new base ptr is a frame index.
7043  // 2) If N is a store and the new base ptr is either the same as or is a
7044  //    predecessor of the value being stored.
7045  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7046  //    that would create a cycle.
7047  // 4) All uses are load / store ops that use it as old base ptr.
7048
7049  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7050  // (plus the implicit offset) to a register to preinc anyway.
7051  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7052    return false;
7053
7054  // Check #2.
7055  if (!isLoad) {
7056    SDValue Val = cast<StoreSDNode>(N)->getValue();
7057    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7058      return false;
7059  }
7060
7061  // If the offset is a constant, there may be other adds of constants that
7062  // can be folded with this one. We should do this to avoid having to keep
7063  // a copy of the original base pointer.
7064  SmallVector<SDNode *, 16> OtherUses;
7065  if (isa<ConstantSDNode>(Offset))
7066    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7067         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7068      SDNode *Use = *I;
7069      if (Use == Ptr.getNode())
7070        continue;
7071
7072      if (Use->isPredecessorOf(N))
7073        continue;
7074
7075      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7076        OtherUses.clear();
7077        break;
7078      }
7079
7080      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7081      if (Op1.getNode() == BasePtr.getNode())
7082        std::swap(Op0, Op1);
7083      assert(Op0.getNode() == BasePtr.getNode() &&
7084             "Use of ADD/SUB but not an operand");
7085
7086      if (!isa<ConstantSDNode>(Op1)) {
7087        OtherUses.clear();
7088        break;
7089      }
7090
7091      // FIXME: In some cases, we can be smarter about this.
7092      if (Op1.getValueType() != Offset.getValueType()) {
7093        OtherUses.clear();
7094        break;
7095      }
7096
7097      OtherUses.push_back(Use);
7098    }
7099
7100  if (Swapped)
7101    std::swap(BasePtr, Offset);
7102
7103  // Now check for #3 and #4.
7104  bool RealUse = false;
7105
7106  // Caches for hasPredecessorHelper
7107  SmallPtrSet<const SDNode *, 32> Visited;
7108  SmallVector<const SDNode *, 16> Worklist;
7109
7110  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7111         E = Ptr.getNode()->use_end(); I != E; ++I) {
7112    SDNode *Use = *I;
7113    if (Use == N)
7114      continue;
7115    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7116      return false;
7117
7118    // If Ptr may be folded in addressing mode of other use, then it's
7119    // not profitable to do this transformation.
7120    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7121      RealUse = true;
7122  }
7123
7124  if (!RealUse)
7125    return false;
7126
7127  SDValue Result;
7128  if (isLoad)
7129    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7130                                BasePtr, Offset, AM);
7131  else
7132    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7133                                 BasePtr, Offset, AM);
7134  ++PreIndexedNodes;
7135  ++NodesCombined;
7136  DEBUG(dbgs() << "\nReplacing.4 ";
7137        N->dump(&DAG);
7138        dbgs() << "\nWith: ";
7139        Result.getNode()->dump(&DAG);
7140        dbgs() << '\n');
7141  WorkListRemover DeadNodes(*this);
7142  if (isLoad) {
7143    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7144    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7145  } else {
7146    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7147  }
7148
7149  // Finally, since the node is now dead, remove it from the graph.
7150  DAG.DeleteNode(N);
7151
7152  if (Swapped)
7153    std::swap(BasePtr, Offset);
7154
7155  // Replace other uses of BasePtr that can be updated to use Ptr
7156  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7157    unsigned OffsetIdx = 1;
7158    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7159      OffsetIdx = 0;
7160    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7161           BasePtr.getNode() && "Expected BasePtr operand");
7162
7163    // We need to replace ptr0 in the following expression:
7164    //   x0 * offset0 + y0 * ptr0 = t0
7165    // knowing that
7166    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7167    //
7168    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7169    // indexed load/store and the expresion that needs to be re-written.
7170    //
7171    // Therefore, we have:
7172    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7173
7174    ConstantSDNode *CN =
7175      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7176    int X0, X1, Y0, Y1;
7177    APInt Offset0 = CN->getAPIntValue();
7178    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7179
7180    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7181    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7182    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7183    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7184
7185    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7186
7187    APInt CNV = Offset0;
7188    if (X0 < 0) CNV = -CNV;
7189    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7190    else CNV = CNV - Offset1;
7191
7192    // We can now generate the new expression.
7193    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7194    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7195
7196    SDValue NewUse = DAG.getNode(Opcode,
7197                                 OtherUses[i]->getDebugLoc(),
7198                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7199    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7200    removeFromWorkList(OtherUses[i]);
7201    DAG.DeleteNode(OtherUses[i]);
7202  }
7203
7204  // Replace the uses of Ptr with uses of the updated base value.
7205  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7206  removeFromWorkList(Ptr.getNode());
7207  DAG.DeleteNode(Ptr.getNode());
7208
7209  return true;
7210}
7211
7212/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7213/// add / sub of the base pointer node into a post-indexed load / store.
7214/// The transformation folded the add / subtract into the new indexed
7215/// load / store effectively and all of its uses are redirected to the
7216/// new load / store.
7217bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7218  if (Level < AfterLegalizeDAG)
7219    return false;
7220
7221  bool isLoad = true;
7222  SDValue Ptr;
7223  EVT VT;
7224  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7225    if (LD->isIndexed())
7226      return false;
7227    VT = LD->getMemoryVT();
7228    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7229        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7230      return false;
7231    Ptr = LD->getBasePtr();
7232  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7233    if (ST->isIndexed())
7234      return false;
7235    VT = ST->getMemoryVT();
7236    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7237        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7238      return false;
7239    Ptr = ST->getBasePtr();
7240    isLoad = false;
7241  } else {
7242    return false;
7243  }
7244
7245  if (Ptr.getNode()->hasOneUse())
7246    return false;
7247
7248  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7249         E = Ptr.getNode()->use_end(); I != E; ++I) {
7250    SDNode *Op = *I;
7251    if (Op == N ||
7252        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7253      continue;
7254
7255    SDValue BasePtr;
7256    SDValue Offset;
7257    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7258    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7259      // Don't create a indexed load / store with zero offset.
7260      if (isa<ConstantSDNode>(Offset) &&
7261          cast<ConstantSDNode>(Offset)->isNullValue())
7262        continue;
7263
7264      // Try turning it into a post-indexed load / store except when
7265      // 1) All uses are load / store ops that use it as base ptr (and
7266      //    it may be folded as addressing mmode).
7267      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7268      //    nor a successor of N. Otherwise, if Op is folded that would
7269      //    create a cycle.
7270
7271      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7272        continue;
7273
7274      // Check for #1.
7275      bool TryNext = false;
7276      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7277             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7278        SDNode *Use = *II;
7279        if (Use == Ptr.getNode())
7280          continue;
7281
7282        // If all the uses are load / store addresses, then don't do the
7283        // transformation.
7284        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7285          bool RealUse = false;
7286          for (SDNode::use_iterator III = Use->use_begin(),
7287                 EEE = Use->use_end(); III != EEE; ++III) {
7288            SDNode *UseUse = *III;
7289            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7290              RealUse = true;
7291          }
7292
7293          if (!RealUse) {
7294            TryNext = true;
7295            break;
7296          }
7297        }
7298      }
7299
7300      if (TryNext)
7301        continue;
7302
7303      // Check for #2
7304      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7305        SDValue Result = isLoad
7306          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7307                               BasePtr, Offset, AM)
7308          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7309                                BasePtr, Offset, AM);
7310        ++PostIndexedNodes;
7311        ++NodesCombined;
7312        DEBUG(dbgs() << "\nReplacing.5 ";
7313              N->dump(&DAG);
7314              dbgs() << "\nWith: ";
7315              Result.getNode()->dump(&DAG);
7316              dbgs() << '\n');
7317        WorkListRemover DeadNodes(*this);
7318        if (isLoad) {
7319          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7320          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7321        } else {
7322          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7323        }
7324
7325        // Finally, since the node is now dead, remove it from the graph.
7326        DAG.DeleteNode(N);
7327
7328        // Replace the uses of Use with uses of the updated base value.
7329        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7330                                      Result.getValue(isLoad ? 1 : 0));
7331        removeFromWorkList(Op);
7332        DAG.DeleteNode(Op);
7333        return true;
7334      }
7335    }
7336  }
7337
7338  return false;
7339}
7340
7341SDValue DAGCombiner::visitLOAD(SDNode *N) {
7342  LoadSDNode *LD  = cast<LoadSDNode>(N);
7343  SDValue Chain = LD->getChain();
7344  SDValue Ptr   = LD->getBasePtr();
7345
7346  // If load is not volatile and there are no uses of the loaded value (and
7347  // the updated indexed value in case of indexed loads), change uses of the
7348  // chain value into uses of the chain input (i.e. delete the dead load).
7349  if (!LD->isVolatile()) {
7350    if (N->getValueType(1) == MVT::Other) {
7351      // Unindexed loads.
7352      if (!N->hasAnyUseOfValue(0)) {
7353        // It's not safe to use the two value CombineTo variant here. e.g.
7354        // v1, chain2 = load chain1, loc
7355        // v2, chain3 = load chain2, loc
7356        // v3         = add v2, c
7357        // Now we replace use of chain2 with chain1.  This makes the second load
7358        // isomorphic to the one we are deleting, and thus makes this load live.
7359        DEBUG(dbgs() << "\nReplacing.6 ";
7360              N->dump(&DAG);
7361              dbgs() << "\nWith chain: ";
7362              Chain.getNode()->dump(&DAG);
7363              dbgs() << "\n");
7364        WorkListRemover DeadNodes(*this);
7365        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7366
7367        if (N->use_empty()) {
7368          removeFromWorkList(N);
7369          DAG.DeleteNode(N);
7370        }
7371
7372        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7373      }
7374    } else {
7375      // Indexed loads.
7376      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7377      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7378        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7379        DEBUG(dbgs() << "\nReplacing.7 ";
7380              N->dump(&DAG);
7381              dbgs() << "\nWith: ";
7382              Undef.getNode()->dump(&DAG);
7383              dbgs() << " and 2 other values\n");
7384        WorkListRemover DeadNodes(*this);
7385        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7386        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7387                                      DAG.getUNDEF(N->getValueType(1)));
7388        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7389        removeFromWorkList(N);
7390        DAG.DeleteNode(N);
7391        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7392      }
7393    }
7394  }
7395
7396  // If this load is directly stored, replace the load value with the stored
7397  // value.
7398  // TODO: Handle store large -> read small portion.
7399  // TODO: Handle TRUNCSTORE/LOADEXT
7400  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7401    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7402      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7403      if (PrevST->getBasePtr() == Ptr &&
7404          PrevST->getValue().getValueType() == N->getValueType(0))
7405      return CombineTo(N, Chain.getOperand(1), Chain);
7406    }
7407  }
7408
7409  // Try to infer better alignment information than the load already has.
7410  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7411    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7412      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7413        SDValue NewLoad =
7414               DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7415                              LD->getValueType(0),
7416                              Chain, Ptr, LD->getPointerInfo(),
7417                              LD->getMemoryVT(),
7418                              LD->isVolatile(), LD->isNonTemporal(), Align);
7419        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7420      }
7421    }
7422  }
7423
7424  if (CombinerAA) {
7425    // Walk up chain skipping non-aliasing memory nodes.
7426    SDValue BetterChain = FindBetterChain(N, Chain);
7427
7428    // If there is a better chain.
7429    if (Chain != BetterChain) {
7430      SDValue ReplLoad;
7431
7432      // Replace the chain to void dependency.
7433      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7434        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7435                               BetterChain, Ptr, LD->getPointerInfo(),
7436                               LD->isVolatile(), LD->isNonTemporal(),
7437                               LD->isInvariant(), LD->getAlignment());
7438      } else {
7439        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7440                                  LD->getValueType(0),
7441                                  BetterChain, Ptr, LD->getPointerInfo(),
7442                                  LD->getMemoryVT(),
7443                                  LD->isVolatile(),
7444                                  LD->isNonTemporal(),
7445                                  LD->getAlignment());
7446      }
7447
7448      // Create token factor to keep old chain connected.
7449      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7450                                  MVT::Other, Chain, ReplLoad.getValue(1));
7451
7452      // Make sure the new and old chains are cleaned up.
7453      AddToWorkList(Token.getNode());
7454
7455      // Replace uses with load result and token factor. Don't add users
7456      // to work list.
7457      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7458    }
7459  }
7460
7461  // Try transforming N to an indexed load.
7462  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7463    return SDValue(N, 0);
7464
7465  return SDValue();
7466}
7467
7468/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7469/// load is having specific bytes cleared out.  If so, return the byte size
7470/// being masked out and the shift amount.
7471static std::pair<unsigned, unsigned>
7472CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7473  std::pair<unsigned, unsigned> Result(0, 0);
7474
7475  // Check for the structure we're looking for.
7476  if (V->getOpcode() != ISD::AND ||
7477      !isa<ConstantSDNode>(V->getOperand(1)) ||
7478      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7479    return Result;
7480
7481  // Check the chain and pointer.
7482  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7483  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7484
7485  // The store should be chained directly to the load or be an operand of a
7486  // tokenfactor.
7487  if (LD == Chain.getNode())
7488    ; // ok.
7489  else if (Chain->getOpcode() != ISD::TokenFactor)
7490    return Result; // Fail.
7491  else {
7492    bool isOk = false;
7493    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7494      if (Chain->getOperand(i).getNode() == LD) {
7495        isOk = true;
7496        break;
7497      }
7498    if (!isOk) return Result;
7499  }
7500
7501  // This only handles simple types.
7502  if (V.getValueType() != MVT::i16 &&
7503      V.getValueType() != MVT::i32 &&
7504      V.getValueType() != MVT::i64)
7505    return Result;
7506
7507  // Check the constant mask.  Invert it so that the bits being masked out are
7508  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7509  // follow the sign bit for uniformity.
7510  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7511  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7512  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7513  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7514  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7515  if (NotMaskLZ == 64) return Result;  // All zero mask.
7516
7517  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7518  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7519    return Result;
7520
7521  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7522  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7523    NotMaskLZ -= 64-V.getValueSizeInBits();
7524
7525  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7526  switch (MaskedBytes) {
7527  case 1:
7528  case 2:
7529  case 4: break;
7530  default: return Result; // All one mask, or 5-byte mask.
7531  }
7532
7533  // Verify that the first bit starts at a multiple of mask so that the access
7534  // is aligned the same as the access width.
7535  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7536
7537  Result.first = MaskedBytes;
7538  Result.second = NotMaskTZ/8;
7539  return Result;
7540}
7541
7542
7543/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7544/// provides a value as specified by MaskInfo.  If so, replace the specified
7545/// store with a narrower store of truncated IVal.
7546static SDNode *
7547ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7548                                SDValue IVal, StoreSDNode *St,
7549                                DAGCombiner *DC) {
7550  unsigned NumBytes = MaskInfo.first;
7551  unsigned ByteShift = MaskInfo.second;
7552  SelectionDAG &DAG = DC->getDAG();
7553
7554  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7555  // that uses this.  If not, this is not a replacement.
7556  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7557                                  ByteShift*8, (ByteShift+NumBytes)*8);
7558  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7559
7560  // Check that it is legal on the target to do this.  It is legal if the new
7561  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7562  // legalization.
7563  MVT VT = MVT::getIntegerVT(NumBytes*8);
7564  if (!DC->isTypeLegal(VT))
7565    return 0;
7566
7567  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7568  // shifted by ByteShift and truncated down to NumBytes.
7569  if (ByteShift)
7570    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7571                       DAG.getConstant(ByteShift*8,
7572                                    DC->getShiftAmountTy(IVal.getValueType())));
7573
7574  // Figure out the offset for the store and the alignment of the access.
7575  unsigned StOffset;
7576  unsigned NewAlign = St->getAlignment();
7577
7578  if (DAG.getTargetLoweringInfo().isLittleEndian())
7579    StOffset = ByteShift;
7580  else
7581    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7582
7583  SDValue Ptr = St->getBasePtr();
7584  if (StOffset) {
7585    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7586                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7587    NewAlign = MinAlign(NewAlign, StOffset);
7588  }
7589
7590  // Truncate down to the new size.
7591  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7592
7593  ++OpsNarrowed;
7594  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7595                      St->getPointerInfo().getWithOffset(StOffset),
7596                      false, false, NewAlign).getNode();
7597}
7598
7599
7600/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7601/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7602/// of the loaded bits, try narrowing the load and store if it would end up
7603/// being a win for performance or code size.
7604SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7605  StoreSDNode *ST  = cast<StoreSDNode>(N);
7606  if (ST->isVolatile())
7607    return SDValue();
7608
7609  SDValue Chain = ST->getChain();
7610  SDValue Value = ST->getValue();
7611  SDValue Ptr   = ST->getBasePtr();
7612  EVT VT = Value.getValueType();
7613
7614  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7615    return SDValue();
7616
7617  unsigned Opc = Value.getOpcode();
7618
7619  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7620  // is a byte mask indicating a consecutive number of bytes, check to see if
7621  // Y is known to provide just those bytes.  If so, we try to replace the
7622  // load + replace + store sequence with a single (narrower) store, which makes
7623  // the load dead.
7624  if (Opc == ISD::OR) {
7625    std::pair<unsigned, unsigned> MaskedLoad;
7626    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7627    if (MaskedLoad.first)
7628      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7629                                                  Value.getOperand(1), ST,this))
7630        return SDValue(NewST, 0);
7631
7632    // Or is commutative, so try swapping X and Y.
7633    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7634    if (MaskedLoad.first)
7635      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7636                                                  Value.getOperand(0), ST,this))
7637        return SDValue(NewST, 0);
7638  }
7639
7640  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7641      Value.getOperand(1).getOpcode() != ISD::Constant)
7642    return SDValue();
7643
7644  SDValue N0 = Value.getOperand(0);
7645  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7646      Chain == SDValue(N0.getNode(), 1)) {
7647    LoadSDNode *LD = cast<LoadSDNode>(N0);
7648    if (LD->getBasePtr() != Ptr ||
7649        LD->getPointerInfo().getAddrSpace() !=
7650        ST->getPointerInfo().getAddrSpace())
7651      return SDValue();
7652
7653    // Find the type to narrow it the load / op / store to.
7654    SDValue N1 = Value.getOperand(1);
7655    unsigned BitWidth = N1.getValueSizeInBits();
7656    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7657    if (Opc == ISD::AND)
7658      Imm ^= APInt::getAllOnesValue(BitWidth);
7659    if (Imm == 0 || Imm.isAllOnesValue())
7660      return SDValue();
7661    unsigned ShAmt = Imm.countTrailingZeros();
7662    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7663    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7664    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7665    while (NewBW < BitWidth &&
7666           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7667             TLI.isNarrowingProfitable(VT, NewVT))) {
7668      NewBW = NextPowerOf2(NewBW);
7669      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7670    }
7671    if (NewBW >= BitWidth)
7672      return SDValue();
7673
7674    // If the lsb changed does not start at the type bitwidth boundary,
7675    // start at the previous one.
7676    if (ShAmt % NewBW)
7677      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7678    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7679                                   std::min(BitWidth, ShAmt + NewBW));
7680    if ((Imm & Mask) == Imm) {
7681      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7682      if (Opc == ISD::AND)
7683        NewImm ^= APInt::getAllOnesValue(NewBW);
7684      uint64_t PtrOff = ShAmt / 8;
7685      // For big endian targets, we need to adjust the offset to the pointer to
7686      // load the correct bytes.
7687      if (TLI.isBigEndian())
7688        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7689
7690      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7691      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7692      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7693        return SDValue();
7694
7695      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7696                                   Ptr.getValueType(), Ptr,
7697                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7698      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7699                                  LD->getChain(), NewPtr,
7700                                  LD->getPointerInfo().getWithOffset(PtrOff),
7701                                  LD->isVolatile(), LD->isNonTemporal(),
7702                                  LD->isInvariant(), NewAlign);
7703      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7704                                   DAG.getConstant(NewImm, NewVT));
7705      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7706                                   NewVal, NewPtr,
7707                                   ST->getPointerInfo().getWithOffset(PtrOff),
7708                                   false, false, NewAlign);
7709
7710      AddToWorkList(NewPtr.getNode());
7711      AddToWorkList(NewLD.getNode());
7712      AddToWorkList(NewVal.getNode());
7713      WorkListRemover DeadNodes(*this);
7714      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7715      ++OpsNarrowed;
7716      return NewST;
7717    }
7718  }
7719
7720  return SDValue();
7721}
7722
7723/// TransformFPLoadStorePair - For a given floating point load / store pair,
7724/// if the load value isn't used by any other operations, then consider
7725/// transforming the pair to integer load / store operations if the target
7726/// deems the transformation profitable.
7727SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7728  StoreSDNode *ST  = cast<StoreSDNode>(N);
7729  SDValue Chain = ST->getChain();
7730  SDValue Value = ST->getValue();
7731  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7732      Value.hasOneUse() &&
7733      Chain == SDValue(Value.getNode(), 1)) {
7734    LoadSDNode *LD = cast<LoadSDNode>(Value);
7735    EVT VT = LD->getMemoryVT();
7736    if (!VT.isFloatingPoint() ||
7737        VT != ST->getMemoryVT() ||
7738        LD->isNonTemporal() ||
7739        ST->isNonTemporal() ||
7740        LD->getPointerInfo().getAddrSpace() != 0 ||
7741        ST->getPointerInfo().getAddrSpace() != 0)
7742      return SDValue();
7743
7744    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7745    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7746        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7747        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7748        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7749      return SDValue();
7750
7751    unsigned LDAlign = LD->getAlignment();
7752    unsigned STAlign = ST->getAlignment();
7753    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7754    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7755    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7756      return SDValue();
7757
7758    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7759                                LD->getChain(), LD->getBasePtr(),
7760                                LD->getPointerInfo(),
7761                                false, false, false, LDAlign);
7762
7763    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7764                                 NewLD, ST->getBasePtr(),
7765                                 ST->getPointerInfo(),
7766                                 false, false, STAlign);
7767
7768    AddToWorkList(NewLD.getNode());
7769    AddToWorkList(NewST.getNode());
7770    WorkListRemover DeadNodes(*this);
7771    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7772    ++LdStFP2Int;
7773    return NewST;
7774  }
7775
7776  return SDValue();
7777}
7778
7779/// Helper struct to parse and store a memory address as base + index + offset.
7780/// We ignore sign extensions when it is safe to do so.
7781/// The following two expressions are not equivalent. To differentiate we need
7782/// to store whether there was a sign extension involved in the index
7783/// computation.
7784///  (load (i64 add (i64 copyfromreg %c)
7785///                 (i64 signextend (add (i8 load %index)
7786///                                      (i8 1))))
7787/// vs
7788///
7789/// (load (i64 add (i64 copyfromreg %c)
7790///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7791///                                         (i32 1)))))
7792struct BaseIndexOffset {
7793  SDValue Base;
7794  SDValue Index;
7795  int64_t Offset;
7796  bool IsIndexSignExt;
7797
7798  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7799
7800  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7801                  bool IsIndexSignExt) :
7802    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7803
7804  bool equalBaseIndex(const BaseIndexOffset &Other) {
7805    return Other.Base == Base && Other.Index == Index &&
7806      Other.IsIndexSignExt == IsIndexSignExt;
7807  }
7808
7809  /// Parses tree in Ptr for base, index, offset addresses.
7810  static BaseIndexOffset match(SDValue Ptr) {
7811    bool IsIndexSignExt = false;
7812
7813    // Just Base or possibly anything else.
7814    if (Ptr->getOpcode() != ISD::ADD)
7815      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7816
7817    // Base + offset.
7818    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7819      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7820      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7821                              IsIndexSignExt);
7822    }
7823
7824    // Look at Base + Index + Offset cases.
7825    SDValue Base = Ptr->getOperand(0);
7826    SDValue IndexOffset = Ptr->getOperand(1);
7827
7828    // Skip signextends.
7829    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7830      IndexOffset = IndexOffset->getOperand(0);
7831      IsIndexSignExt = true;
7832    }
7833
7834    // Either the case of Base + Index (no offset) or something else.
7835    if (IndexOffset->getOpcode() != ISD::ADD)
7836      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7837
7838    // Now we have the case of Base + Index + offset.
7839    SDValue Index = IndexOffset->getOperand(0);
7840    SDValue Offset = IndexOffset->getOperand(1);
7841
7842    if (!isa<ConstantSDNode>(Offset))
7843      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7844
7845    // Ignore signextends.
7846    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7847      Index = Index->getOperand(0);
7848      IsIndexSignExt = true;
7849    } else IsIndexSignExt = false;
7850
7851    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7852    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7853  }
7854};
7855
7856/// Holds a pointer to an LSBaseSDNode as well as information on where it
7857/// is located in a sequence of memory operations connected by a chain.
7858struct MemOpLink {
7859  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7860    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7861  // Ptr to the mem node.
7862  LSBaseSDNode *MemNode;
7863  // Offset from the base ptr.
7864  int64_t OffsetFromBase;
7865  // What is the sequence number of this mem node.
7866  // Lowest mem operand in the DAG starts at zero.
7867  unsigned SequenceNum;
7868};
7869
7870/// Sorts store nodes in a link according to their offset from a shared
7871// base ptr.
7872struct ConsecutiveMemoryChainSorter {
7873  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7874    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7875  }
7876};
7877
7878bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7879  EVT MemVT = St->getMemoryVT();
7880  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7881  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7882    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7883
7884  // Don't merge vectors into wider inputs.
7885  if (MemVT.isVector() || !MemVT.isSimple())
7886    return false;
7887
7888  // Perform an early exit check. Do not bother looking at stored values that
7889  // are not constants or loads.
7890  SDValue StoredVal = St->getValue();
7891  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7892  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7893      !IsLoadSrc)
7894    return false;
7895
7896  // Only look at ends of store sequences.
7897  SDValue Chain = SDValue(St, 1);
7898  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7899    return false;
7900
7901  // This holds the base pointer, index, and the offset in bytes from the base
7902  // pointer.
7903  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
7904
7905  // We must have a base and an offset.
7906  if (!BasePtr.Base.getNode())
7907    return false;
7908
7909  // Do not handle stores to undef base pointers.
7910  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
7911    return false;
7912
7913  // Save the LoadSDNodes that we find in the chain.
7914  // We need to make sure that these nodes do not interfere with
7915  // any of the store nodes.
7916  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7917
7918  // Save the StoreSDNodes that we find in the chain.
7919  SmallVector<MemOpLink, 8> StoreNodes;
7920
7921  // Walk up the chain and look for nodes with offsets from the same
7922  // base pointer. Stop when reaching an instruction with a different kind
7923  // or instruction which has a different base pointer.
7924  unsigned Seq = 0;
7925  StoreSDNode *Index = St;
7926  while (Index) {
7927    // If the chain has more than one use, then we can't reorder the mem ops.
7928    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7929      break;
7930
7931    // Find the base pointer and offset for this memory node.
7932    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
7933
7934    // Check that the base pointer is the same as the original one.
7935    if (!Ptr.equalBaseIndex(BasePtr))
7936      break;
7937
7938    // Check that the alignment is the same.
7939    if (Index->getAlignment() != St->getAlignment())
7940      break;
7941
7942    // The memory operands must not be volatile.
7943    if (Index->isVolatile() || Index->isIndexed())
7944      break;
7945
7946    // No truncation.
7947    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7948      if (St->isTruncatingStore())
7949        break;
7950
7951    // The stored memory type must be the same.
7952    if (Index->getMemoryVT() != MemVT)
7953      break;
7954
7955    // We do not allow unaligned stores because we want to prevent overriding
7956    // stores.
7957    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7958      break;
7959
7960    // We found a potential memory operand to merge.
7961    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
7962
7963    // Find the next memory operand in the chain. If the next operand in the
7964    // chain is a store then move up and continue the scan with the next
7965    // memory operand. If the next operand is a load save it and use alias
7966    // information to check if it interferes with anything.
7967    SDNode *NextInChain = Index->getChain().getNode();
7968    while (1) {
7969      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7970        // We found a store node. Use it for the next iteration.
7971        Index = STn;
7972        break;
7973      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7974        // Save the load node for later. Continue the scan.
7975        AliasLoadNodes.push_back(Ldn);
7976        NextInChain = Ldn->getChain().getNode();
7977        continue;
7978      } else {
7979        Index = NULL;
7980        break;
7981      }
7982    }
7983  }
7984
7985  // Check if there is anything to merge.
7986  if (StoreNodes.size() < 2)
7987    return false;
7988
7989  // Sort the memory operands according to their distance from the base pointer.
7990  std::sort(StoreNodes.begin(), StoreNodes.end(),
7991            ConsecutiveMemoryChainSorter());
7992
7993  // Scan the memory operations on the chain and find the first non-consecutive
7994  // store memory address.
7995  unsigned LastConsecutiveStore = 0;
7996  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7997  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
7998
7999    // Check that the addresses are consecutive starting from the second
8000    // element in the list of stores.
8001    if (i > 0) {
8002      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8003      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8004        break;
8005    }
8006
8007    bool Alias = false;
8008    // Check if this store interferes with any of the loads that we found.
8009    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8010      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8011        Alias = true;
8012        break;
8013      }
8014    // We found a load that alias with this store. Stop the sequence.
8015    if (Alias)
8016      break;
8017
8018    // Mark this node as useful.
8019    LastConsecutiveStore = i;
8020  }
8021
8022  // The node with the lowest store address.
8023  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8024
8025  // Store the constants into memory as one consecutive store.
8026  if (!IsLoadSrc) {
8027    unsigned LastLegalType = 0;
8028    unsigned LastLegalVectorType = 0;
8029    bool NonZero = false;
8030    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8031      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8032      SDValue StoredVal = St->getValue();
8033
8034      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8035        NonZero |= !C->isNullValue();
8036      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8037        NonZero |= !C->getConstantFPValue()->isNullValue();
8038      } else {
8039        // Non constant.
8040        break;
8041      }
8042
8043      // Find a legal type for the constant store.
8044      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8045      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8046      if (TLI.isTypeLegal(StoreTy))
8047        LastLegalType = i+1;
8048      // Or check whether a truncstore is legal.
8049      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8050               TargetLowering::TypePromoteInteger) {
8051        EVT LegalizedStoredValueTy =
8052          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8053        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8054          LastLegalType = i+1;
8055      }
8056
8057      // Find a legal type for the vector store.
8058      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8059      if (TLI.isTypeLegal(Ty))
8060        LastLegalVectorType = i + 1;
8061    }
8062
8063    // We only use vectors if the constant is known to be zero and the
8064    // function is not marked with the noimplicitfloat attribute.
8065    if (NonZero || NoVectors)
8066      LastLegalVectorType = 0;
8067
8068    // Check if we found a legal integer type to store.
8069    if (LastLegalType == 0 && LastLegalVectorType == 0)
8070      return false;
8071
8072    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8073    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8074
8075    // Make sure we have something to merge.
8076    if (NumElem < 2)
8077      return false;
8078
8079    unsigned EarliestNodeUsed = 0;
8080    for (unsigned i=0; i < NumElem; ++i) {
8081      // Find a chain for the new wide-store operand. Notice that some
8082      // of the store nodes that we found may not be selected for inclusion
8083      // in the wide store. The chain we use needs to be the chain of the
8084      // earliest store node which is *used* and replaced by the wide store.
8085      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8086        EarliestNodeUsed = i;
8087    }
8088
8089    // The earliest Node in the DAG.
8090    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8091    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
8092
8093    SDValue StoredVal;
8094    if (UseVector) {
8095      // Find a legal type for the vector store.
8096      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8097      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8098      StoredVal = DAG.getConstant(0, Ty);
8099    } else {
8100      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8101      APInt StoreInt(StoreBW, 0);
8102
8103      // Construct a single integer constant which is made of the smaller
8104      // constant inputs.
8105      bool IsLE = TLI.isLittleEndian();
8106      for (unsigned i = 0; i < NumElem ; ++i) {
8107        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8108        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8109        SDValue Val = St->getValue();
8110        StoreInt<<=ElementSizeBytes*8;
8111        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8112          StoreInt|=C->getAPIntValue().zext(StoreBW);
8113        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8114          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8115        } else {
8116          assert(false && "Invalid constant element type");
8117        }
8118      }
8119
8120      // Create the new Load and Store operations.
8121      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8122      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8123    }
8124
8125    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8126                                    FirstInChain->getBasePtr(),
8127                                    FirstInChain->getPointerInfo(),
8128                                    false, false,
8129                                    FirstInChain->getAlignment());
8130
8131    // Replace the first store with the new store
8132    CombineTo(EarliestOp, NewStore);
8133    // Erase all other stores.
8134    for (unsigned i = 0; i < NumElem ; ++i) {
8135      if (StoreNodes[i].MemNode == EarliestOp)
8136        continue;
8137      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8138      // ReplaceAllUsesWith will replace all uses that existed when it was
8139      // called, but graph optimizations may cause new ones to appear. For
8140      // example, the case in pr14333 looks like
8141      //
8142      //  St's chain -> St -> another store -> X
8143      //
8144      // And the only difference from St to the other store is the chain.
8145      // When we change it's chain to be St's chain they become identical,
8146      // get CSEed and the net result is that X is now a use of St.
8147      // Since we know that St is redundant, just iterate.
8148      while (!St->use_empty())
8149        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8150      removeFromWorkList(St);
8151      DAG.DeleteNode(St);
8152    }
8153
8154    return true;
8155  }
8156
8157  // Below we handle the case of multiple consecutive stores that
8158  // come from multiple consecutive loads. We merge them into a single
8159  // wide load and a single wide store.
8160
8161  // Look for load nodes which are used by the stored values.
8162  SmallVector<MemOpLink, 8> LoadNodes;
8163
8164  // Find acceptable loads. Loads need to have the same chain (token factor),
8165  // must not be zext, volatile, indexed, and they must be consecutive.
8166  BaseIndexOffset LdBasePtr;
8167  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8168    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8169    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8170    if (!Ld) break;
8171
8172    // Loads must only have one use.
8173    if (!Ld->hasNUsesOfValue(1, 0))
8174      break;
8175
8176    // Check that the alignment is the same as the stores.
8177    if (Ld->getAlignment() != St->getAlignment())
8178      break;
8179
8180    // The memory operands must not be volatile.
8181    if (Ld->isVolatile() || Ld->isIndexed())
8182      break;
8183
8184    // We do not accept ext loads.
8185    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8186      break;
8187
8188    // The stored memory type must be the same.
8189    if (Ld->getMemoryVT() != MemVT)
8190      break;
8191
8192    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8193    // If this is not the first ptr that we check.
8194    if (LdBasePtr.Base.getNode()) {
8195      // The base ptr must be the same.
8196      if (!LdPtr.equalBaseIndex(LdBasePtr))
8197        break;
8198    } else {
8199      // Check that all other base pointers are the same as this one.
8200      LdBasePtr = LdPtr;
8201    }
8202
8203    // We found a potential memory operand to merge.
8204    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8205  }
8206
8207  if (LoadNodes.size() < 2)
8208    return false;
8209
8210  // Scan the memory operations on the chain and find the first non-consecutive
8211  // load memory address. These variables hold the index in the store node
8212  // array.
8213  unsigned LastConsecutiveLoad = 0;
8214  // This variable refers to the size and not index in the array.
8215  unsigned LastLegalVectorType = 0;
8216  unsigned LastLegalIntegerType = 0;
8217  StartAddress = LoadNodes[0].OffsetFromBase;
8218  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8219  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8220    // All loads much share the same chain.
8221    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8222      break;
8223
8224    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8225    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8226      break;
8227    LastConsecutiveLoad = i;
8228
8229    // Find a legal type for the vector store.
8230    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8231    if (TLI.isTypeLegal(StoreTy))
8232      LastLegalVectorType = i + 1;
8233
8234    // Find a legal type for the integer store.
8235    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8236    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8237    if (TLI.isTypeLegal(StoreTy))
8238      LastLegalIntegerType = i + 1;
8239    // Or check whether a truncstore and extload is legal.
8240    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8241             TargetLowering::TypePromoteInteger) {
8242      EVT LegalizedStoredValueTy =
8243        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8244      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8245          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8246          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8247          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8248        LastLegalIntegerType = i+1;
8249    }
8250  }
8251
8252  // Only use vector types if the vector type is larger than the integer type.
8253  // If they are the same, use integers.
8254  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8255  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8256
8257  // We add +1 here because the LastXXX variables refer to location while
8258  // the NumElem refers to array/index size.
8259  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8260  NumElem = std::min(LastLegalType, NumElem);
8261
8262  if (NumElem < 2)
8263    return false;
8264
8265  // The earliest Node in the DAG.
8266  unsigned EarliestNodeUsed = 0;
8267  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8268  for (unsigned i=1; i<NumElem; ++i) {
8269    // Find a chain for the new wide-store operand. Notice that some
8270    // of the store nodes that we found may not be selected for inclusion
8271    // in the wide store. The chain we use needs to be the chain of the
8272    // earliest store node which is *used* and replaced by the wide store.
8273    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8274      EarliestNodeUsed = i;
8275  }
8276
8277  // Find if it is better to use vectors or integers to load and store
8278  // to memory.
8279  EVT JointMemOpVT;
8280  if (UseVectorTy) {
8281    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8282  } else {
8283    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8284    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8285  }
8286
8287  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
8288  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
8289
8290  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8291  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8292                                FirstLoad->getChain(),
8293                                FirstLoad->getBasePtr(),
8294                                FirstLoad->getPointerInfo(),
8295                                false, false, false,
8296                                FirstLoad->getAlignment());
8297
8298  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8299                                  FirstInChain->getBasePtr(),
8300                                  FirstInChain->getPointerInfo(), false, false,
8301                                  FirstInChain->getAlignment());
8302
8303  // Replace one of the loads with the new load.
8304  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8305  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8306                                SDValue(NewLoad.getNode(), 1));
8307
8308  // Remove the rest of the load chains.
8309  for (unsigned i = 1; i < NumElem ; ++i) {
8310    // Replace all chain users of the old load nodes with the chain of the new
8311    // load node.
8312    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8313    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8314  }
8315
8316  // Replace the first store with the new store.
8317  CombineTo(EarliestOp, NewStore);
8318  // Erase all other stores.
8319  for (unsigned i = 0; i < NumElem ; ++i) {
8320    // Remove all Store nodes.
8321    if (StoreNodes[i].MemNode == EarliestOp)
8322      continue;
8323    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8324    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8325    removeFromWorkList(St);
8326    DAG.DeleteNode(St);
8327  }
8328
8329  return true;
8330}
8331
8332SDValue DAGCombiner::visitSTORE(SDNode *N) {
8333  StoreSDNode *ST  = cast<StoreSDNode>(N);
8334  SDValue Chain = ST->getChain();
8335  SDValue Value = ST->getValue();
8336  SDValue Ptr   = ST->getBasePtr();
8337
8338  // If this is a store of a bit convert, store the input value if the
8339  // resultant store does not need a higher alignment than the original.
8340  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8341      ST->isUnindexed()) {
8342    unsigned OrigAlign = ST->getAlignment();
8343    EVT SVT = Value.getOperand(0).getValueType();
8344    unsigned Align = TLI.getDataLayout()->
8345      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8346    if (Align <= OrigAlign &&
8347        ((!LegalOperations && !ST->isVolatile()) ||
8348         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8349      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8350                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8351                          ST->isNonTemporal(), OrigAlign);
8352  }
8353
8354  // Turn 'store undef, Ptr' -> nothing.
8355  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8356    return Chain;
8357
8358  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8359  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8360    // NOTE: If the original store is volatile, this transform must not increase
8361    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8362    // processor operation but an i64 (which is not legal) requires two.  So the
8363    // transform should not be done in this case.
8364    if (Value.getOpcode() != ISD::TargetConstantFP) {
8365      SDValue Tmp;
8366      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8367      default: llvm_unreachable("Unknown FP type");
8368      case MVT::f16:    // We don't do this for these yet.
8369      case MVT::f80:
8370      case MVT::f128:
8371      case MVT::ppcf128:
8372        break;
8373      case MVT::f32:
8374        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8375            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8376          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8377                              bitcastToAPInt().getZExtValue(), MVT::i32);
8378          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8379                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8380                              ST->isNonTemporal(), ST->getAlignment());
8381        }
8382        break;
8383      case MVT::f64:
8384        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8385             !ST->isVolatile()) ||
8386            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8387          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8388                                getZExtValue(), MVT::i64);
8389          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8390                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8391                              ST->isNonTemporal(), ST->getAlignment());
8392        }
8393
8394        if (!ST->isVolatile() &&
8395            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8396          // Many FP stores are not made apparent until after legalize, e.g. for
8397          // argument passing.  Since this is so common, custom legalize the
8398          // 64-bit integer store into two 32-bit stores.
8399          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8400          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8401          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8402          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8403
8404          unsigned Alignment = ST->getAlignment();
8405          bool isVolatile = ST->isVolatile();
8406          bool isNonTemporal = ST->isNonTemporal();
8407
8408          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8409                                     Ptr, ST->getPointerInfo(),
8410                                     isVolatile, isNonTemporal,
8411                                     ST->getAlignment());
8412          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8413                            DAG.getConstant(4, Ptr.getValueType()));
8414          Alignment = MinAlign(Alignment, 4U);
8415          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8416                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8417                                     isVolatile, isNonTemporal,
8418                                     Alignment);
8419          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8420                             St0, St1);
8421        }
8422
8423        break;
8424      }
8425    }
8426  }
8427
8428  // Try to infer better alignment information than the store already has.
8429  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8430    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8431      if (Align > ST->getAlignment())
8432        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8433                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8434                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8435    }
8436  }
8437
8438  // Try transforming a pair floating point load / store ops to integer
8439  // load / store ops.
8440  SDValue NewST = TransformFPLoadStorePair(N);
8441  if (NewST.getNode())
8442    return NewST;
8443
8444  if (CombinerAA) {
8445    // Walk up chain skipping non-aliasing memory nodes.
8446    SDValue BetterChain = FindBetterChain(N, Chain);
8447
8448    // If there is a better chain.
8449    if (Chain != BetterChain) {
8450      SDValue ReplStore;
8451
8452      // Replace the chain to avoid dependency.
8453      if (ST->isTruncatingStore()) {
8454        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8455                                      ST->getPointerInfo(),
8456                                      ST->getMemoryVT(), ST->isVolatile(),
8457                                      ST->isNonTemporal(), ST->getAlignment());
8458      } else {
8459        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8460                                 ST->getPointerInfo(),
8461                                 ST->isVolatile(), ST->isNonTemporal(),
8462                                 ST->getAlignment());
8463      }
8464
8465      // Create token to keep both nodes around.
8466      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8467                                  MVT::Other, Chain, ReplStore);
8468
8469      // Make sure the new and old chains are cleaned up.
8470      AddToWorkList(Token.getNode());
8471
8472      // Don't add users to work list.
8473      return CombineTo(N, Token, false);
8474    }
8475  }
8476
8477  // Try transforming N to an indexed store.
8478  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8479    return SDValue(N, 0);
8480
8481  // FIXME: is there such a thing as a truncating indexed store?
8482  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8483      Value.getValueType().isInteger()) {
8484    // See if we can simplify the input to this truncstore with knowledge that
8485    // only the low bits are being used.  For example:
8486    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8487    SDValue Shorter =
8488      GetDemandedBits(Value,
8489                      APInt::getLowBitsSet(
8490                        Value.getValueType().getScalarType().getSizeInBits(),
8491                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8492    AddToWorkList(Value.getNode());
8493    if (Shorter.getNode())
8494      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8495                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8496                               ST->isVolatile(), ST->isNonTemporal(),
8497                               ST->getAlignment());
8498
8499    // Otherwise, see if we can simplify the operation with
8500    // SimplifyDemandedBits, which only works if the value has a single use.
8501    if (SimplifyDemandedBits(Value,
8502                        APInt::getLowBitsSet(
8503                          Value.getValueType().getScalarType().getSizeInBits(),
8504                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8505      return SDValue(N, 0);
8506  }
8507
8508  // If this is a load followed by a store to the same location, then the store
8509  // is dead/noop.
8510  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8511    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8512        ST->isUnindexed() && !ST->isVolatile() &&
8513        // There can't be any side effects between the load and store, such as
8514        // a call or store.
8515        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8516      // The store is dead, remove it.
8517      return Chain;
8518    }
8519  }
8520
8521  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8522  // truncating store.  We can do this even if this is already a truncstore.
8523  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8524      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8525      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8526                            ST->getMemoryVT())) {
8527    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8528                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8529                             ST->isVolatile(), ST->isNonTemporal(),
8530                             ST->getAlignment());
8531  }
8532
8533  // Only perform this optimization before the types are legal, because we
8534  // don't want to perform this optimization on every DAGCombine invocation.
8535  if (!LegalTypes) {
8536    bool EverChanged = false;
8537
8538    do {
8539      // There can be multiple store sequences on the same chain.
8540      // Keep trying to merge store sequences until we are unable to do so
8541      // or until we merge the last store on the chain.
8542      bool Changed = MergeConsecutiveStores(ST);
8543      EverChanged |= Changed;
8544      if (!Changed) break;
8545    } while (ST->getOpcode() != ISD::DELETED_NODE);
8546
8547    if (EverChanged)
8548      return SDValue(N, 0);
8549  }
8550
8551  return ReduceLoadOpStoreWidth(N);
8552}
8553
8554SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8555  SDValue InVec = N->getOperand(0);
8556  SDValue InVal = N->getOperand(1);
8557  SDValue EltNo = N->getOperand(2);
8558  DebugLoc dl = N->getDebugLoc();
8559
8560  // If the inserted element is an UNDEF, just use the input vector.
8561  if (InVal.getOpcode() == ISD::UNDEF)
8562    return InVec;
8563
8564  EVT VT = InVec.getValueType();
8565
8566  // If we can't generate a legal BUILD_VECTOR, exit
8567  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8568    return SDValue();
8569
8570  // Check that we know which element is being inserted
8571  if (!isa<ConstantSDNode>(EltNo))
8572    return SDValue();
8573  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8574
8575  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8576  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8577  // vector elements.
8578  SmallVector<SDValue, 8> Ops;
8579  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8580    Ops.append(InVec.getNode()->op_begin(),
8581               InVec.getNode()->op_end());
8582  } else if (InVec.getOpcode() == ISD::UNDEF) {
8583    unsigned NElts = VT.getVectorNumElements();
8584    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8585  } else {
8586    return SDValue();
8587  }
8588
8589  // Insert the element
8590  if (Elt < Ops.size()) {
8591    // All the operands of BUILD_VECTOR must have the same type;
8592    // we enforce that here.
8593    EVT OpVT = Ops[0].getValueType();
8594    if (InVal.getValueType() != OpVT)
8595      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8596                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8597                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8598    Ops[Elt] = InVal;
8599  }
8600
8601  // Return the new vector
8602  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8603                     VT, &Ops[0], Ops.size());
8604}
8605
8606SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8607  // (vextract (scalar_to_vector val, 0) -> val
8608  SDValue InVec = N->getOperand(0);
8609  EVT VT = InVec.getValueType();
8610  EVT NVT = N->getValueType(0);
8611
8612  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8613    // Check if the result type doesn't match the inserted element type. A
8614    // SCALAR_TO_VECTOR may truncate the inserted element and the
8615    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8616    SDValue InOp = InVec.getOperand(0);
8617    if (InOp.getValueType() != NVT) {
8618      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8619      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8620    }
8621    return InOp;
8622  }
8623
8624  SDValue EltNo = N->getOperand(1);
8625  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8626
8627  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8628  // We only perform this optimization before the op legalization phase because
8629  // we may introduce new vector instructions which are not backed by TD
8630  // patterns. For example on AVX, extracting elements from a wide vector
8631  // without using extract_subvector.
8632  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8633      && ConstEltNo && !LegalOperations) {
8634    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8635    int NumElem = VT.getVectorNumElements();
8636    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8637    // Find the new index to extract from.
8638    int OrigElt = SVOp->getMaskElt(Elt);
8639
8640    // Extracting an undef index is undef.
8641    if (OrigElt == -1)
8642      return DAG.getUNDEF(NVT);
8643
8644    // Select the right vector half to extract from.
8645    if (OrigElt < NumElem) {
8646      InVec = InVec->getOperand(0);
8647    } else {
8648      InVec = InVec->getOperand(1);
8649      OrigElt -= NumElem;
8650    }
8651
8652    EVT IndexTy = N->getOperand(1).getValueType();
8653    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8654                       InVec, DAG.getConstant(OrigElt, IndexTy));
8655  }
8656
8657  // Perform only after legalization to ensure build_vector / vector_shuffle
8658  // optimizations have already been done.
8659  if (!LegalOperations) return SDValue();
8660
8661  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8662  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8663  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8664
8665  if (ConstEltNo) {
8666    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8667    bool NewLoad = false;
8668    bool BCNumEltsChanged = false;
8669    EVT ExtVT = VT.getVectorElementType();
8670    EVT LVT = ExtVT;
8671
8672    // If the result of load has to be truncated, then it's not necessarily
8673    // profitable.
8674    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8675      return SDValue();
8676
8677    if (InVec.getOpcode() == ISD::BITCAST) {
8678      // Don't duplicate a load with other uses.
8679      if (!InVec.hasOneUse())
8680        return SDValue();
8681
8682      EVT BCVT = InVec.getOperand(0).getValueType();
8683      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8684        return SDValue();
8685      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8686        BCNumEltsChanged = true;
8687      InVec = InVec.getOperand(0);
8688      ExtVT = BCVT.getVectorElementType();
8689      NewLoad = true;
8690    }
8691
8692    LoadSDNode *LN0 = NULL;
8693    const ShuffleVectorSDNode *SVN = NULL;
8694    if (ISD::isNormalLoad(InVec.getNode())) {
8695      LN0 = cast<LoadSDNode>(InVec);
8696    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8697               InVec.getOperand(0).getValueType() == ExtVT &&
8698               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8699      // Don't duplicate a load with other uses.
8700      if (!InVec.hasOneUse())
8701        return SDValue();
8702
8703      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8704    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8705      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8706      // =>
8707      // (load $addr+1*size)
8708
8709      // Don't duplicate a load with other uses.
8710      if (!InVec.hasOneUse())
8711        return SDValue();
8712
8713      // If the bit convert changed the number of elements, it is unsafe
8714      // to examine the mask.
8715      if (BCNumEltsChanged)
8716        return SDValue();
8717
8718      // Select the input vector, guarding against out of range extract vector.
8719      unsigned NumElems = VT.getVectorNumElements();
8720      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8721      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8722
8723      if (InVec.getOpcode() == ISD::BITCAST) {
8724        // Don't duplicate a load with other uses.
8725        if (!InVec.hasOneUse())
8726          return SDValue();
8727
8728        InVec = InVec.getOperand(0);
8729      }
8730      if (ISD::isNormalLoad(InVec.getNode())) {
8731        LN0 = cast<LoadSDNode>(InVec);
8732        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8733      }
8734    }
8735
8736    // Make sure we found a non-volatile load and the extractelement is
8737    // the only use.
8738    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8739      return SDValue();
8740
8741    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8742    if (Elt == -1)
8743      return DAG.getUNDEF(LVT);
8744
8745    unsigned Align = LN0->getAlignment();
8746    if (NewLoad) {
8747      // Check the resultant load doesn't need a higher alignment than the
8748      // original load.
8749      unsigned NewAlign =
8750        TLI.getDataLayout()
8751            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8752
8753      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8754        return SDValue();
8755
8756      Align = NewAlign;
8757    }
8758
8759    SDValue NewPtr = LN0->getBasePtr();
8760    unsigned PtrOff = 0;
8761
8762    if (Elt) {
8763      PtrOff = LVT.getSizeInBits() * Elt / 8;
8764      EVT PtrType = NewPtr.getValueType();
8765      if (TLI.isBigEndian())
8766        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8767      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8768                           DAG.getConstant(PtrOff, PtrType));
8769    }
8770
8771    // The replacement we need to do here is a little tricky: we need to
8772    // replace an extractelement of a load with a load.
8773    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8774    // Note that this replacement assumes that the extractvalue is the only
8775    // use of the load; that's okay because we don't want to perform this
8776    // transformation in other cases anyway.
8777    SDValue Load;
8778    SDValue Chain;
8779    if (NVT.bitsGT(LVT)) {
8780      // If the result type of vextract is wider than the load, then issue an
8781      // extending load instead.
8782      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8783        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8784      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8785                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8786                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8787      Chain = Load.getValue(1);
8788    } else {
8789      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8790                         LN0->getPointerInfo().getWithOffset(PtrOff),
8791                         LN0->isVolatile(), LN0->isNonTemporal(),
8792                         LN0->isInvariant(), Align);
8793      Chain = Load.getValue(1);
8794      if (NVT.bitsLT(LVT))
8795        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8796      else
8797        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8798    }
8799    WorkListRemover DeadNodes(*this);
8800    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8801    SDValue To[] = { Load, Chain };
8802    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8803    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8804    // worklist explicitly as well.
8805    AddToWorkList(Load.getNode());
8806    AddUsersToWorkList(Load.getNode()); // Add users too
8807    // Make sure to revisit this node to clean it up; it will usually be dead.
8808    AddToWorkList(N);
8809    return SDValue(N, 0);
8810  }
8811
8812  return SDValue();
8813}
8814
8815// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8816SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8817  // We perform this optimization post type-legalization because
8818  // the type-legalizer often scalarizes integer-promoted vectors.
8819  // Performing this optimization before may create bit-casts which
8820  // will be type-legalized to complex code sequences.
8821  // We perform this optimization only before the operation legalizer because we
8822  // may introduce illegal operations.
8823  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8824    return SDValue();
8825
8826  unsigned NumInScalars = N->getNumOperands();
8827  DebugLoc dl = N->getDebugLoc();
8828  EVT VT = N->getValueType(0);
8829
8830  // Check to see if this is a BUILD_VECTOR of a bunch of values
8831  // which come from any_extend or zero_extend nodes. If so, we can create
8832  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8833  // optimizations. We do not handle sign-extend because we can't fill the sign
8834  // using shuffles.
8835  EVT SourceType = MVT::Other;
8836  bool AllAnyExt = true;
8837
8838  for (unsigned i = 0; i != NumInScalars; ++i) {
8839    SDValue In = N->getOperand(i);
8840    // Ignore undef inputs.
8841    if (In.getOpcode() == ISD::UNDEF) continue;
8842
8843    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8844    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8845
8846    // Abort if the element is not an extension.
8847    if (!ZeroExt && !AnyExt) {
8848      SourceType = MVT::Other;
8849      break;
8850    }
8851
8852    // The input is a ZeroExt or AnyExt. Check the original type.
8853    EVT InTy = In.getOperand(0).getValueType();
8854
8855    // Check that all of the widened source types are the same.
8856    if (SourceType == MVT::Other)
8857      // First time.
8858      SourceType = InTy;
8859    else if (InTy != SourceType) {
8860      // Multiple income types. Abort.
8861      SourceType = MVT::Other;
8862      break;
8863    }
8864
8865    // Check if all of the extends are ANY_EXTENDs.
8866    AllAnyExt &= AnyExt;
8867  }
8868
8869  // In order to have valid types, all of the inputs must be extended from the
8870  // same source type and all of the inputs must be any or zero extend.
8871  // Scalar sizes must be a power of two.
8872  EVT OutScalarTy = VT.getScalarType();
8873  bool ValidTypes = SourceType != MVT::Other &&
8874                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8875                 isPowerOf2_32(SourceType.getSizeInBits());
8876
8877  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8878  // turn into a single shuffle instruction.
8879  if (!ValidTypes)
8880    return SDValue();
8881
8882  bool isLE = TLI.isLittleEndian();
8883  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8884  assert(ElemRatio > 1 && "Invalid element size ratio");
8885  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8886                               DAG.getConstant(0, SourceType);
8887
8888  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8889  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8890
8891  // Populate the new build_vector
8892  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8893    SDValue Cast = N->getOperand(i);
8894    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8895            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8896            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8897    SDValue In;
8898    if (Cast.getOpcode() == ISD::UNDEF)
8899      In = DAG.getUNDEF(SourceType);
8900    else
8901      In = Cast->getOperand(0);
8902    unsigned Index = isLE ? (i * ElemRatio) :
8903                            (i * ElemRatio + (ElemRatio - 1));
8904
8905    assert(Index < Ops.size() && "Invalid index");
8906    Ops[Index] = In;
8907  }
8908
8909  // The type of the new BUILD_VECTOR node.
8910  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8911  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8912         "Invalid vector size");
8913  // Check if the new vector type is legal.
8914  if (!isTypeLegal(VecVT)) return SDValue();
8915
8916  // Make the new BUILD_VECTOR.
8917  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8918
8919  // The new BUILD_VECTOR node has the potential to be further optimized.
8920  AddToWorkList(BV.getNode());
8921  // Bitcast to the desired type.
8922  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8923}
8924
8925SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8926  EVT VT = N->getValueType(0);
8927
8928  unsigned NumInScalars = N->getNumOperands();
8929  DebugLoc dl = N->getDebugLoc();
8930
8931  EVT SrcVT = MVT::Other;
8932  unsigned Opcode = ISD::DELETED_NODE;
8933  unsigned NumDefs = 0;
8934
8935  for (unsigned i = 0; i != NumInScalars; ++i) {
8936    SDValue In = N->getOperand(i);
8937    unsigned Opc = In.getOpcode();
8938
8939    if (Opc == ISD::UNDEF)
8940      continue;
8941
8942    // If all scalar values are floats and converted from integers.
8943    if (Opcode == ISD::DELETED_NODE &&
8944        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8945      Opcode = Opc;
8946    }
8947
8948    if (Opc != Opcode)
8949      return SDValue();
8950
8951    EVT InVT = In.getOperand(0).getValueType();
8952
8953    // If all scalar values are typed differently, bail out. It's chosen to
8954    // simplify BUILD_VECTOR of integer types.
8955    if (SrcVT == MVT::Other)
8956      SrcVT = InVT;
8957    if (SrcVT != InVT)
8958      return SDValue();
8959    NumDefs++;
8960  }
8961
8962  // If the vector has just one element defined, it's not worth to fold it into
8963  // a vectorized one.
8964  if (NumDefs < 2)
8965    return SDValue();
8966
8967  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8968         && "Should only handle conversion from integer to float.");
8969  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8970
8971  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8972
8973  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
8974    return SDValue();
8975
8976  SmallVector<SDValue, 8> Opnds;
8977  for (unsigned i = 0; i != NumInScalars; ++i) {
8978    SDValue In = N->getOperand(i);
8979
8980    if (In.getOpcode() == ISD::UNDEF)
8981      Opnds.push_back(DAG.getUNDEF(SrcVT));
8982    else
8983      Opnds.push_back(In.getOperand(0));
8984  }
8985  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8986                           &Opnds[0], Opnds.size());
8987  AddToWorkList(BV.getNode());
8988
8989  return DAG.getNode(Opcode, dl, VT, BV);
8990}
8991
8992SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8993  unsigned NumInScalars = N->getNumOperands();
8994  DebugLoc dl = N->getDebugLoc();
8995  EVT VT = N->getValueType(0);
8996
8997  // A vector built entirely of undefs is undef.
8998  if (ISD::allOperandsUndef(N))
8999    return DAG.getUNDEF(VT);
9000
9001  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9002  if (V.getNode())
9003    return V;
9004
9005  V = reduceBuildVecConvertToConvertBuildVec(N);
9006  if (V.getNode())
9007    return V;
9008
9009  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9010  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9011  // at most two distinct vectors, turn this into a shuffle node.
9012
9013  // May only combine to shuffle after legalize if shuffle is legal.
9014  if (LegalOperations &&
9015      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9016    return SDValue();
9017
9018  SDValue VecIn1, VecIn2;
9019  for (unsigned i = 0; i != NumInScalars; ++i) {
9020    // Ignore undef inputs.
9021    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9022
9023    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9024    // constant index, bail out.
9025    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9026        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9027      VecIn1 = VecIn2 = SDValue(0, 0);
9028      break;
9029    }
9030
9031    // We allow up to two distinct input vectors.
9032    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9033    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9034      continue;
9035
9036    if (VecIn1.getNode() == 0) {
9037      VecIn1 = ExtractedFromVec;
9038    } else if (VecIn2.getNode() == 0) {
9039      VecIn2 = ExtractedFromVec;
9040    } else {
9041      // Too many inputs.
9042      VecIn1 = VecIn2 = SDValue(0, 0);
9043      break;
9044    }
9045  }
9046
9047    // If everything is good, we can make a shuffle operation.
9048  if (VecIn1.getNode()) {
9049    SmallVector<int, 8> Mask;
9050    for (unsigned i = 0; i != NumInScalars; ++i) {
9051      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9052        Mask.push_back(-1);
9053        continue;
9054      }
9055
9056      // If extracting from the first vector, just use the index directly.
9057      SDValue Extract = N->getOperand(i);
9058      SDValue ExtVal = Extract.getOperand(1);
9059      if (Extract.getOperand(0) == VecIn1) {
9060        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9061        if (ExtIndex > VT.getVectorNumElements())
9062          return SDValue();
9063
9064        Mask.push_back(ExtIndex);
9065        continue;
9066      }
9067
9068      // Otherwise, use InIdx + VecSize
9069      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9070      Mask.push_back(Idx+NumInScalars);
9071    }
9072
9073    // We can't generate a shuffle node with mismatched input and output types.
9074    // Attempt to transform a single input vector to the correct type.
9075    if ((VT != VecIn1.getValueType())) {
9076      // We don't support shuffeling between TWO values of different types.
9077      if (VecIn2.getNode() != 0)
9078        return SDValue();
9079
9080      // We only support widening of vectors which are half the size of the
9081      // output registers. For example XMM->YMM widening on X86 with AVX.
9082      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9083        return SDValue();
9084
9085      // If the input vector type has a different base type to the output
9086      // vector type, bail out.
9087      if (VecIn1.getValueType().getVectorElementType() !=
9088          VT.getVectorElementType())
9089        return SDValue();
9090
9091      // Widen the input vector by adding undef values.
9092      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9093                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9094    }
9095
9096    // If VecIn2 is unused then change it to undef.
9097    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9098
9099    // Check that we were able to transform all incoming values to the same
9100    // type.
9101    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9102        VecIn1.getValueType() != VT)
9103          return SDValue();
9104
9105    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9106    if (!isTypeLegal(VT))
9107      return SDValue();
9108
9109    // Return the new VECTOR_SHUFFLE node.
9110    SDValue Ops[2];
9111    Ops[0] = VecIn1;
9112    Ops[1] = VecIn2;
9113    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9114  }
9115
9116  return SDValue();
9117}
9118
9119SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9120  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9121  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9122  // inputs come from at most two distinct vectors, turn this into a shuffle
9123  // node.
9124
9125  // If we only have one input vector, we don't need to do any concatenation.
9126  if (N->getNumOperands() == 1)
9127    return N->getOperand(0);
9128
9129  // Check if all of the operands are undefs.
9130  if (ISD::allOperandsUndef(N))
9131    return DAG.getUNDEF(N->getValueType(0));
9132
9133  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9134  // nodes often generate nop CONCAT_VECTOR nodes.
9135  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9136  // place the incoming vectors at the exact same location.
9137  SDValue SingleSource = SDValue();
9138  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9139
9140  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9141    SDValue Op = N->getOperand(i);
9142
9143    if (Op.getOpcode() == ISD::UNDEF)
9144      continue;
9145
9146    // Check if this is the identity extract:
9147    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9148      return SDValue();
9149
9150    // Find the single incoming vector for the extract_subvector.
9151    if (SingleSource.getNode()) {
9152      if (Op.getOperand(0) != SingleSource)
9153        return SDValue();
9154    } else {
9155      SingleSource = Op.getOperand(0);
9156
9157      // Check the source type is the same as the type of the result.
9158      // If not, this concat may extend the vector, so we can not
9159      // optimize it away.
9160      if (SingleSource.getValueType() != N->getValueType(0))
9161        return SDValue();
9162    }
9163
9164    unsigned IdentityIndex = i * PartNumElem;
9165    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9166    // The extract index must be constant.
9167    if (!CS)
9168      return SDValue();
9169
9170    // Check that we are reading from the identity index.
9171    if (CS->getZExtValue() != IdentityIndex)
9172      return SDValue();
9173  }
9174
9175  if (SingleSource.getNode())
9176    return SingleSource;
9177
9178  return SDValue();
9179}
9180
9181SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9182  EVT NVT = N->getValueType(0);
9183  SDValue V = N->getOperand(0);
9184
9185  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9186    // Combine:
9187    //    (extract_subvec (concat V1, V2, ...), i)
9188    // Into:
9189    //    Vi if possible
9190    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9191    if (V->getOperand(0).getValueType() != NVT)
9192      return SDValue();
9193    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9194    unsigned NumElems = NVT.getVectorNumElements();
9195    assert((Idx % NumElems) == 0 &&
9196           "IDX in concat is not a multiple of the result vector length.");
9197    return V->getOperand(Idx / NumElems);
9198  }
9199
9200  // Skip bitcasting
9201  if (V->getOpcode() == ISD::BITCAST)
9202    V = V.getOperand(0);
9203
9204  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9205    DebugLoc dl = N->getDebugLoc();
9206    // Handle only simple case where vector being inserted and vector
9207    // being extracted are of same type, and are half size of larger vectors.
9208    EVT BigVT = V->getOperand(0).getValueType();
9209    EVT SmallVT = V->getOperand(1).getValueType();
9210    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9211      return SDValue();
9212
9213    // Only handle cases where both indexes are constants with the same type.
9214    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9215    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9216
9217    if (InsIdx && ExtIdx &&
9218        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9219        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9220      // Combine:
9221      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9222      // Into:
9223      //    indices are equal or bit offsets are equal => V1
9224      //    otherwise => (extract_subvec V1, ExtIdx)
9225      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9226          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9227        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9228      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9229                         DAG.getNode(ISD::BITCAST, dl,
9230                                     N->getOperand(0).getValueType(),
9231                                     V->getOperand(0)), N->getOperand(1));
9232    }
9233  }
9234
9235  return SDValue();
9236}
9237
9238// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9239static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9240  EVT VT = N->getValueType(0);
9241  unsigned NumElts = VT.getVectorNumElements();
9242
9243  SDValue N0 = N->getOperand(0);
9244  SDValue N1 = N->getOperand(1);
9245  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9246
9247  SmallVector<SDValue, 4> Ops;
9248  EVT ConcatVT = N0.getOperand(0).getValueType();
9249  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9250  unsigned NumConcats = NumElts / NumElemsPerConcat;
9251
9252  // Look at every vector that's inserted. We're looking for exact
9253  // subvector-sized copies from a concatenated vector
9254  for (unsigned I = 0; I != NumConcats; ++I) {
9255    // Make sure we're dealing with a copy.
9256    unsigned Begin = I * NumElemsPerConcat;
9257    if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9258      return SDValue();
9259
9260    for (unsigned J = 1; J != NumElemsPerConcat; ++J) {
9261      if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9262        return SDValue();
9263    }
9264
9265    unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9266    if (FirstElt < N0.getNumOperands())
9267      Ops.push_back(N0.getOperand(FirstElt));
9268    else
9269      Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9270  }
9271
9272  return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT, Ops.data(),
9273                     Ops.size());
9274}
9275
9276SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9277  EVT VT = N->getValueType(0);
9278  unsigned NumElts = VT.getVectorNumElements();
9279
9280  SDValue N0 = N->getOperand(0);
9281  SDValue N1 = N->getOperand(1);
9282
9283  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9284
9285  // Canonicalize shuffle undef, undef -> undef
9286  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9287    return DAG.getUNDEF(VT);
9288
9289  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9290
9291  // Canonicalize shuffle v, v -> v, undef
9292  if (N0 == N1) {
9293    SmallVector<int, 8> NewMask;
9294    for (unsigned i = 0; i != NumElts; ++i) {
9295      int Idx = SVN->getMaskElt(i);
9296      if (Idx >= (int)NumElts) Idx -= NumElts;
9297      NewMask.push_back(Idx);
9298    }
9299    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
9300                                &NewMask[0]);
9301  }
9302
9303  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9304  if (N0.getOpcode() == ISD::UNDEF) {
9305    SmallVector<int, 8> NewMask;
9306    for (unsigned i = 0; i != NumElts; ++i) {
9307      int Idx = SVN->getMaskElt(i);
9308      if (Idx >= 0) {
9309        if (Idx < (int)NumElts)
9310          Idx += NumElts;
9311        else
9312          Idx -= NumElts;
9313      }
9314      NewMask.push_back(Idx);
9315    }
9316    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
9317                                &NewMask[0]);
9318  }
9319
9320  // Remove references to rhs if it is undef
9321  if (N1.getOpcode() == ISD::UNDEF) {
9322    bool Changed = false;
9323    SmallVector<int, 8> NewMask;
9324    for (unsigned i = 0; i != NumElts; ++i) {
9325      int Idx = SVN->getMaskElt(i);
9326      if (Idx >= (int)NumElts) {
9327        Idx = -1;
9328        Changed = true;
9329      }
9330      NewMask.push_back(Idx);
9331    }
9332    if (Changed)
9333      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
9334  }
9335
9336  // If it is a splat, check if the argument vector is another splat or a
9337  // build_vector with all scalar elements the same.
9338  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9339    SDNode *V = N0.getNode();
9340
9341    // If this is a bit convert that changes the element type of the vector but
9342    // not the number of vector elements, look through it.  Be careful not to
9343    // look though conversions that change things like v4f32 to v2f64.
9344    if (V->getOpcode() == ISD::BITCAST) {
9345      SDValue ConvInput = V->getOperand(0);
9346      if (ConvInput.getValueType().isVector() &&
9347          ConvInput.getValueType().getVectorNumElements() == NumElts)
9348        V = ConvInput.getNode();
9349    }
9350
9351    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9352      assert(V->getNumOperands() == NumElts &&
9353             "BUILD_VECTOR has wrong number of operands");
9354      SDValue Base;
9355      bool AllSame = true;
9356      for (unsigned i = 0; i != NumElts; ++i) {
9357        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9358          Base = V->getOperand(i);
9359          break;
9360        }
9361      }
9362      // Splat of <u, u, u, u>, return <u, u, u, u>
9363      if (!Base.getNode())
9364        return N0;
9365      for (unsigned i = 0; i != NumElts; ++i) {
9366        if (V->getOperand(i) != Base) {
9367          AllSame = false;
9368          break;
9369        }
9370      }
9371      // Splat of <x, x, x, x>, return <x, x, x, x>
9372      if (AllSame)
9373        return N0;
9374    }
9375  }
9376
9377  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9378      Level < AfterLegalizeVectorOps &&
9379      (N1.getOpcode() == ISD::UNDEF ||
9380      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9381       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9382    SDValue V = partitionShuffleOfConcats(N, DAG);
9383
9384    if (V.getNode())
9385      return V;
9386  }
9387
9388  // If this shuffle node is simply a swizzle of another shuffle node,
9389  // and it reverses the swizzle of the previous shuffle then we can
9390  // optimize shuffle(shuffle(x, undef), undef) -> x.
9391  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9392      N1.getOpcode() == ISD::UNDEF) {
9393
9394    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9395
9396    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9397    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9398      return SDValue();
9399
9400    // The incoming shuffle must be of the same type as the result of the
9401    // current shuffle.
9402    assert(OtherSV->getOperand(0).getValueType() == VT &&
9403           "Shuffle types don't match");
9404
9405    for (unsigned i = 0; i != NumElts; ++i) {
9406      int Idx = SVN->getMaskElt(i);
9407      assert(Idx < (int)NumElts && "Index references undef operand");
9408      // Next, this index comes from the first value, which is the incoming
9409      // shuffle. Adopt the incoming index.
9410      if (Idx >= 0)
9411        Idx = OtherSV->getMaskElt(Idx);
9412
9413      // The combined shuffle must map each index to itself.
9414      if (Idx >= 0 && (unsigned)Idx != i)
9415        return SDValue();
9416    }
9417
9418    return OtherSV->getOperand(0);
9419  }
9420
9421  return SDValue();
9422}
9423
9424/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9425/// an AND to a vector_shuffle with the destination vector and a zero vector.
9426/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9427///      vector_shuffle V, Zero, <0, 4, 2, 4>
9428SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9429  EVT VT = N->getValueType(0);
9430  DebugLoc dl = N->getDebugLoc();
9431  SDValue LHS = N->getOperand(0);
9432  SDValue RHS = N->getOperand(1);
9433  if (N->getOpcode() == ISD::AND) {
9434    if (RHS.getOpcode() == ISD::BITCAST)
9435      RHS = RHS.getOperand(0);
9436    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9437      SmallVector<int, 8> Indices;
9438      unsigned NumElts = RHS.getNumOperands();
9439      for (unsigned i = 0; i != NumElts; ++i) {
9440        SDValue Elt = RHS.getOperand(i);
9441        if (!isa<ConstantSDNode>(Elt))
9442          return SDValue();
9443
9444        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9445          Indices.push_back(i);
9446        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9447          Indices.push_back(NumElts);
9448        else
9449          return SDValue();
9450      }
9451
9452      // Let's see if the target supports this vector_shuffle.
9453      EVT RVT = RHS.getValueType();
9454      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9455        return SDValue();
9456
9457      // Return the new VECTOR_SHUFFLE node.
9458      EVT EltVT = RVT.getVectorElementType();
9459      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9460                                     DAG.getConstant(0, EltVT));
9461      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9462                                 RVT, &ZeroOps[0], ZeroOps.size());
9463      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9464      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9465      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9466    }
9467  }
9468
9469  return SDValue();
9470}
9471
9472/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9473SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9474  assert(N->getValueType(0).isVector() &&
9475         "SimplifyVBinOp only works on vectors!");
9476
9477  SDValue LHS = N->getOperand(0);
9478  SDValue RHS = N->getOperand(1);
9479  SDValue Shuffle = XformToShuffleWithZero(N);
9480  if (Shuffle.getNode()) return Shuffle;
9481
9482  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9483  // this operation.
9484  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9485      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9486    SmallVector<SDValue, 8> Ops;
9487    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9488      SDValue LHSOp = LHS.getOperand(i);
9489      SDValue RHSOp = RHS.getOperand(i);
9490      // If these two elements can't be folded, bail out.
9491      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9492           LHSOp.getOpcode() != ISD::Constant &&
9493           LHSOp.getOpcode() != ISD::ConstantFP) ||
9494          (RHSOp.getOpcode() != ISD::UNDEF &&
9495           RHSOp.getOpcode() != ISD::Constant &&
9496           RHSOp.getOpcode() != ISD::ConstantFP))
9497        break;
9498
9499      // Can't fold divide by zero.
9500      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9501          N->getOpcode() == ISD::FDIV) {
9502        if ((RHSOp.getOpcode() == ISD::Constant &&
9503             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9504            (RHSOp.getOpcode() == ISD::ConstantFP &&
9505             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9506          break;
9507      }
9508
9509      EVT VT = LHSOp.getValueType();
9510      EVT RVT = RHSOp.getValueType();
9511      if (RVT != VT) {
9512        // Integer BUILD_VECTOR operands may have types larger than the element
9513        // size (e.g., when the element type is not legal).  Prior to type
9514        // legalization, the types may not match between the two BUILD_VECTORS.
9515        // Truncate one of the operands to make them match.
9516        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9517          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9518        } else {
9519          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9520          VT = RVT;
9521        }
9522      }
9523      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9524                                   LHSOp, RHSOp);
9525      if (FoldOp.getOpcode() != ISD::UNDEF &&
9526          FoldOp.getOpcode() != ISD::Constant &&
9527          FoldOp.getOpcode() != ISD::ConstantFP)
9528        break;
9529      Ops.push_back(FoldOp);
9530      AddToWorkList(FoldOp.getNode());
9531    }
9532
9533    if (Ops.size() == LHS.getNumOperands())
9534      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9535                         LHS.getValueType(), &Ops[0], Ops.size());
9536  }
9537
9538  return SDValue();
9539}
9540
9541/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9542SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9543  assert(N->getValueType(0).isVector() &&
9544         "SimplifyVUnaryOp only works on vectors!");
9545
9546  SDValue N0 = N->getOperand(0);
9547
9548  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9549    return SDValue();
9550
9551  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9552  SmallVector<SDValue, 8> Ops;
9553  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9554    SDValue Op = N0.getOperand(i);
9555    if (Op.getOpcode() != ISD::UNDEF &&
9556        Op.getOpcode() != ISD::ConstantFP)
9557      break;
9558    EVT EltVT = Op.getValueType();
9559    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9560    if (FoldOp.getOpcode() != ISD::UNDEF &&
9561        FoldOp.getOpcode() != ISD::ConstantFP)
9562      break;
9563    Ops.push_back(FoldOp);
9564    AddToWorkList(FoldOp.getNode());
9565  }
9566
9567  if (Ops.size() != N0.getNumOperands())
9568    return SDValue();
9569
9570  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9571                     N0.getValueType(), &Ops[0], Ops.size());
9572}
9573
9574SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9575                                    SDValue N1, SDValue N2){
9576  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9577
9578  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9579                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9580
9581  // If we got a simplified select_cc node back from SimplifySelectCC, then
9582  // break it down into a new SETCC node, and a new SELECT node, and then return
9583  // the SELECT node, since we were called with a SELECT node.
9584  if (SCC.getNode()) {
9585    // Check to see if we got a select_cc back (to turn into setcc/select).
9586    // Otherwise, just return whatever node we got back, like fabs.
9587    if (SCC.getOpcode() == ISD::SELECT_CC) {
9588      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9589                                  N0.getValueType(),
9590                                  SCC.getOperand(0), SCC.getOperand(1),
9591                                  SCC.getOperand(4));
9592      AddToWorkList(SETCC.getNode());
9593      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9594                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9595    }
9596
9597    return SCC;
9598  }
9599  return SDValue();
9600}
9601
9602/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9603/// are the two values being selected between, see if we can simplify the
9604/// select.  Callers of this should assume that TheSelect is deleted if this
9605/// returns true.  As such, they should return the appropriate thing (e.g. the
9606/// node) back to the top-level of the DAG combiner loop to avoid it being
9607/// looked at.
9608bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9609                                    SDValue RHS) {
9610
9611  // Cannot simplify select with vector condition
9612  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9613
9614  // If this is a select from two identical things, try to pull the operation
9615  // through the select.
9616  if (LHS.getOpcode() != RHS.getOpcode() ||
9617      !LHS.hasOneUse() || !RHS.hasOneUse())
9618    return false;
9619
9620  // If this is a load and the token chain is identical, replace the select
9621  // of two loads with a load through a select of the address to load from.
9622  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9623  // constants have been dropped into the constant pool.
9624  if (LHS.getOpcode() == ISD::LOAD) {
9625    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9626    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9627
9628    // Token chains must be identical.
9629    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9630        // Do not let this transformation reduce the number of volatile loads.
9631        LLD->isVolatile() || RLD->isVolatile() ||
9632        // If this is an EXTLOAD, the VT's must match.
9633        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9634        // If this is an EXTLOAD, the kind of extension must match.
9635        (LLD->getExtensionType() != RLD->getExtensionType() &&
9636         // The only exception is if one of the extensions is anyext.
9637         LLD->getExtensionType() != ISD::EXTLOAD &&
9638         RLD->getExtensionType() != ISD::EXTLOAD) ||
9639        // FIXME: this discards src value information.  This is
9640        // over-conservative. It would be beneficial to be able to remember
9641        // both potential memory locations.  Since we are discarding
9642        // src value info, don't do the transformation if the memory
9643        // locations are not in the default address space.
9644        LLD->getPointerInfo().getAddrSpace() != 0 ||
9645        RLD->getPointerInfo().getAddrSpace() != 0 ||
9646        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9647                                      LLD->getBasePtr().getValueType()))
9648      return false;
9649
9650    // Check that the select condition doesn't reach either load.  If so,
9651    // folding this will induce a cycle into the DAG.  If not, this is safe to
9652    // xform, so create a select of the addresses.
9653    SDValue Addr;
9654    if (TheSelect->getOpcode() == ISD::SELECT) {
9655      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9656      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9657          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9658        return false;
9659      // The loads must not depend on one another.
9660      if (LLD->isPredecessorOf(RLD) ||
9661          RLD->isPredecessorOf(LLD))
9662        return false;
9663      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9664                         LLD->getBasePtr().getValueType(),
9665                         TheSelect->getOperand(0), LLD->getBasePtr(),
9666                         RLD->getBasePtr());
9667    } else {  // Otherwise SELECT_CC
9668      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9669      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9670
9671      if ((LLD->hasAnyUseOfValue(1) &&
9672           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9673          (RLD->hasAnyUseOfValue(1) &&
9674           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9675        return false;
9676
9677      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9678                         LLD->getBasePtr().getValueType(),
9679                         TheSelect->getOperand(0),
9680                         TheSelect->getOperand(1),
9681                         LLD->getBasePtr(), RLD->getBasePtr(),
9682                         TheSelect->getOperand(4));
9683    }
9684
9685    SDValue Load;
9686    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9687      Load = DAG.getLoad(TheSelect->getValueType(0),
9688                         TheSelect->getDebugLoc(),
9689                         // FIXME: Discards pointer info.
9690                         LLD->getChain(), Addr, MachinePointerInfo(),
9691                         LLD->isVolatile(), LLD->isNonTemporal(),
9692                         LLD->isInvariant(), LLD->getAlignment());
9693    } else {
9694      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9695                            RLD->getExtensionType() : LLD->getExtensionType(),
9696                            TheSelect->getDebugLoc(),
9697                            TheSelect->getValueType(0),
9698                            // FIXME: Discards pointer info.
9699                            LLD->getChain(), Addr, MachinePointerInfo(),
9700                            LLD->getMemoryVT(), LLD->isVolatile(),
9701                            LLD->isNonTemporal(), LLD->getAlignment());
9702    }
9703
9704    // Users of the select now use the result of the load.
9705    CombineTo(TheSelect, Load);
9706
9707    // Users of the old loads now use the new load's chain.  We know the
9708    // old-load value is dead now.
9709    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9710    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9711    return true;
9712  }
9713
9714  return false;
9715}
9716
9717/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9718/// where 'cond' is the comparison specified by CC.
9719SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9720                                      SDValue N2, SDValue N3,
9721                                      ISD::CondCode CC, bool NotExtCompare) {
9722  // (x ? y : y) -> y.
9723  if (N2 == N3) return N2;
9724
9725  EVT VT = N2.getValueType();
9726  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9727  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9728  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9729
9730  // Determine if the condition we're dealing with is constant
9731  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9732                              N0, N1, CC, DL, false);
9733  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9734  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9735
9736  // fold select_cc true, x, y -> x
9737  if (SCCC && !SCCC->isNullValue())
9738    return N2;
9739  // fold select_cc false, x, y -> y
9740  if (SCCC && SCCC->isNullValue())
9741    return N3;
9742
9743  // Check to see if we can simplify the select into an fabs node
9744  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9745    // Allow either -0.0 or 0.0
9746    if (CFP->getValueAPF().isZero()) {
9747      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9748      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9749          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9750          N2 == N3.getOperand(0))
9751        return DAG.getNode(ISD::FABS, DL, VT, N0);
9752
9753      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9754      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9755          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9756          N2.getOperand(0) == N3)
9757        return DAG.getNode(ISD::FABS, DL, VT, N3);
9758    }
9759  }
9760
9761  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9762  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9763  // in it.  This is a win when the constant is not otherwise available because
9764  // it replaces two constant pool loads with one.  We only do this if the FP
9765  // type is known to be legal, because if it isn't, then we are before legalize
9766  // types an we want the other legalization to happen first (e.g. to avoid
9767  // messing with soft float) and if the ConstantFP is not legal, because if
9768  // it is legal, we may not need to store the FP constant in a constant pool.
9769  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9770    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9771      if (TLI.isTypeLegal(N2.getValueType()) &&
9772          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9773           TargetLowering::Legal) &&
9774          // If both constants have multiple uses, then we won't need to do an
9775          // extra load, they are likely around in registers for other users.
9776          (TV->hasOneUse() || FV->hasOneUse())) {
9777        Constant *Elts[] = {
9778          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9779          const_cast<ConstantFP*>(TV->getConstantFPValue())
9780        };
9781        Type *FPTy = Elts[0]->getType();
9782        const DataLayout &TD = *TLI.getDataLayout();
9783
9784        // Create a ConstantArray of the two constants.
9785        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9786        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9787                                            TD.getPrefTypeAlignment(FPTy));
9788        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9789
9790        // Get the offsets to the 0 and 1 element of the array so that we can
9791        // select between them.
9792        SDValue Zero = DAG.getIntPtrConstant(0);
9793        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9794        SDValue One = DAG.getIntPtrConstant(EltSize);
9795
9796        SDValue Cond = DAG.getSetCC(DL,
9797                                    TLI.getSetCCResultType(N0.getValueType()),
9798                                    N0, N1, CC);
9799        AddToWorkList(Cond.getNode());
9800        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9801                                        Cond, One, Zero);
9802        AddToWorkList(CstOffset.getNode());
9803        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9804                            CstOffset);
9805        AddToWorkList(CPIdx.getNode());
9806        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9807                           MachinePointerInfo::getConstantPool(), false,
9808                           false, false, Alignment);
9809
9810      }
9811    }
9812
9813  // Check to see if we can perform the "gzip trick", transforming
9814  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9815  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9816      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9817       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9818    EVT XType = N0.getValueType();
9819    EVT AType = N2.getValueType();
9820    if (XType.bitsGE(AType)) {
9821      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9822      // single-bit constant.
9823      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9824        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9825        ShCtV = XType.getSizeInBits()-ShCtV-1;
9826        SDValue ShCt = DAG.getConstant(ShCtV,
9827                                       getShiftAmountTy(N0.getValueType()));
9828        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9829                                    XType, N0, ShCt);
9830        AddToWorkList(Shift.getNode());
9831
9832        if (XType.bitsGT(AType)) {
9833          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9834          AddToWorkList(Shift.getNode());
9835        }
9836
9837        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9838      }
9839
9840      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9841                                  XType, N0,
9842                                  DAG.getConstant(XType.getSizeInBits()-1,
9843                                         getShiftAmountTy(N0.getValueType())));
9844      AddToWorkList(Shift.getNode());
9845
9846      if (XType.bitsGT(AType)) {
9847        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9848        AddToWorkList(Shift.getNode());
9849      }
9850
9851      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9852    }
9853  }
9854
9855  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9856  // where y is has a single bit set.
9857  // A plaintext description would be, we can turn the SELECT_CC into an AND
9858  // when the condition can be materialized as an all-ones register.  Any
9859  // single bit-test can be materialized as an all-ones register with
9860  // shift-left and shift-right-arith.
9861  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9862      N0->getValueType(0) == VT &&
9863      N1C && N1C->isNullValue() &&
9864      N2C && N2C->isNullValue()) {
9865    SDValue AndLHS = N0->getOperand(0);
9866    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9867    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9868      // Shift the tested bit over the sign bit.
9869      APInt AndMask = ConstAndRHS->getAPIntValue();
9870      SDValue ShlAmt =
9871        DAG.getConstant(AndMask.countLeadingZeros(),
9872                        getShiftAmountTy(AndLHS.getValueType()));
9873      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9874
9875      // Now arithmetic right shift it all the way over, so the result is either
9876      // all-ones, or zero.
9877      SDValue ShrAmt =
9878        DAG.getConstant(AndMask.getBitWidth()-1,
9879                        getShiftAmountTy(Shl.getValueType()));
9880      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9881
9882      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9883    }
9884  }
9885
9886  // fold select C, 16, 0 -> shl C, 4
9887  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9888    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9889      TargetLowering::ZeroOrOneBooleanContent) {
9890
9891    // If the caller doesn't want us to simplify this into a zext of a compare,
9892    // don't do it.
9893    if (NotExtCompare && N2C->getAPIntValue() == 1)
9894      return SDValue();
9895
9896    // Get a SetCC of the condition
9897    // NOTE: Don't create a SETCC if it's not legal on this target.
9898    if (!LegalOperations ||
9899        TLI.isOperationLegal(ISD::SETCC,
9900          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9901      SDValue Temp, SCC;
9902      // cast from setcc result type to select result type
9903      if (LegalTypes) {
9904        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9905                            N0, N1, CC);
9906        if (N2.getValueType().bitsLT(SCC.getValueType()))
9907          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9908                                        N2.getValueType());
9909        else
9910          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9911                             N2.getValueType(), SCC);
9912      } else {
9913        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9914        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9915                           N2.getValueType(), SCC);
9916      }
9917
9918      AddToWorkList(SCC.getNode());
9919      AddToWorkList(Temp.getNode());
9920
9921      if (N2C->getAPIntValue() == 1)
9922        return Temp;
9923
9924      // shl setcc result by log2 n2c
9925      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9926                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9927                                         getShiftAmountTy(Temp.getValueType())));
9928    }
9929  }
9930
9931  // Check to see if this is the equivalent of setcc
9932  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9933  // otherwise, go ahead with the folds.
9934  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9935    EVT XType = N0.getValueType();
9936    if (!LegalOperations ||
9937        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9938      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9939      if (Res.getValueType() != VT)
9940        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9941      return Res;
9942    }
9943
9944    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9945    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9946        (!LegalOperations ||
9947         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9948      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9949      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9950                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9951                                       getShiftAmountTy(Ctlz.getValueType())));
9952    }
9953    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9954    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9955      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9956                                  XType, DAG.getConstant(0, XType), N0);
9957      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9958      return DAG.getNode(ISD::SRL, DL, XType,
9959                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9960                         DAG.getConstant(XType.getSizeInBits()-1,
9961                                         getShiftAmountTy(XType)));
9962    }
9963    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9964    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9965      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9966                                 DAG.getConstant(XType.getSizeInBits()-1,
9967                                         getShiftAmountTy(N0.getValueType())));
9968      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9969    }
9970  }
9971
9972  // Check to see if this is an integer abs.
9973  // select_cc setg[te] X,  0,  X, -X ->
9974  // select_cc setgt    X, -1,  X, -X ->
9975  // select_cc setl[te] X,  0, -X,  X ->
9976  // select_cc setlt    X,  1, -X,  X ->
9977  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9978  if (N1C) {
9979    ConstantSDNode *SubC = NULL;
9980    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9981         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9982        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9983      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9984    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9985              (N1C->isOne() && CC == ISD::SETLT)) &&
9986             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9987      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9988
9989    EVT XType = N0.getValueType();
9990    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9991      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9992                                  N0,
9993                                  DAG.getConstant(XType.getSizeInBits()-1,
9994                                         getShiftAmountTy(N0.getValueType())));
9995      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9996                                XType, N0, Shift);
9997      AddToWorkList(Shift.getNode());
9998      AddToWorkList(Add.getNode());
9999      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10000    }
10001  }
10002
10003  return SDValue();
10004}
10005
10006/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10007SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10008                                   SDValue N1, ISD::CondCode Cond,
10009                                   DebugLoc DL, bool foldBooleans) {
10010  TargetLowering::DAGCombinerInfo
10011    DagCombineInfo(DAG, Level, false, this);
10012  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10013}
10014
10015/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10016/// return a DAG expression to select that will generate the same value by
10017/// multiplying by a magic number.  See:
10018/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10019SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10020  std::vector<SDNode*> Built;
10021  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10022
10023  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10024       ii != ee; ++ii)
10025    AddToWorkList(*ii);
10026  return S;
10027}
10028
10029/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10030/// return a DAG expression to select that will generate the same value by
10031/// multiplying by a magic number.  See:
10032/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10033SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10034  std::vector<SDNode*> Built;
10035  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10036
10037  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10038       ii != ee; ++ii)
10039    AddToWorkList(*ii);
10040  return S;
10041}
10042
10043/// FindBaseOffset - Return true if base is a frame index, which is known not
10044// to alias with anything but itself.  Provides base object and offset as
10045// results.
10046static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10047                           const GlobalValue *&GV, const void *&CV) {
10048  // Assume it is a primitive operation.
10049  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10050
10051  // If it's an adding a simple constant then integrate the offset.
10052  if (Base.getOpcode() == ISD::ADD) {
10053    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10054      Base = Base.getOperand(0);
10055      Offset += C->getZExtValue();
10056    }
10057  }
10058
10059  // Return the underlying GlobalValue, and update the Offset.  Return false
10060  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10061  // by multiple nodes with different offsets.
10062  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10063    GV = G->getGlobal();
10064    Offset += G->getOffset();
10065    return false;
10066  }
10067
10068  // Return the underlying Constant value, and update the Offset.  Return false
10069  // for ConstantSDNodes since the same constant pool entry may be represented
10070  // by multiple nodes with different offsets.
10071  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10072    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10073                                         : (const void *)C->getConstVal();
10074    Offset += C->getOffset();
10075    return false;
10076  }
10077  // If it's any of the following then it can't alias with anything but itself.
10078  return isa<FrameIndexSDNode>(Base);
10079}
10080
10081/// isAlias - Return true if there is any possibility that the two addresses
10082/// overlap.
10083bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10084                          const Value *SrcValue1, int SrcValueOffset1,
10085                          unsigned SrcValueAlign1,
10086                          const MDNode *TBAAInfo1,
10087                          SDValue Ptr2, int64_t Size2,
10088                          const Value *SrcValue2, int SrcValueOffset2,
10089                          unsigned SrcValueAlign2,
10090                          const MDNode *TBAAInfo2) const {
10091  // If they are the same then they must be aliases.
10092  if (Ptr1 == Ptr2) return true;
10093
10094  // Gather base node and offset information.
10095  SDValue Base1, Base2;
10096  int64_t Offset1, Offset2;
10097  const GlobalValue *GV1, *GV2;
10098  const void *CV1, *CV2;
10099  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10100  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10101
10102  // If they have a same base address then check to see if they overlap.
10103  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10104    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10105
10106  // It is possible for different frame indices to alias each other, mostly
10107  // when tail call optimization reuses return address slots for arguments.
10108  // To catch this case, look up the actual index of frame indices to compute
10109  // the real alias relationship.
10110  if (isFrameIndex1 && isFrameIndex2) {
10111    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10112    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10113    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10114    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10115  }
10116
10117  // Otherwise, if we know what the bases are, and they aren't identical, then
10118  // we know they cannot alias.
10119  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10120    return false;
10121
10122  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10123  // compared to the size and offset of the access, we may be able to prove they
10124  // do not alias.  This check is conservative for now to catch cases created by
10125  // splitting vector types.
10126  if ((SrcValueAlign1 == SrcValueAlign2) &&
10127      (SrcValueOffset1 != SrcValueOffset2) &&
10128      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10129    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10130    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10131
10132    // There is no overlap between these relatively aligned accesses of similar
10133    // size, return no alias.
10134    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10135      return false;
10136  }
10137
10138  if (CombinerGlobalAA) {
10139    // Use alias analysis information.
10140    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10141    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10142    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10143    AliasAnalysis::AliasResult AAResult =
10144      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10145               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10146    if (AAResult == AliasAnalysis::NoAlias)
10147      return false;
10148  }
10149
10150  // Otherwise we have to assume they alias.
10151  return true;
10152}
10153
10154bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10155  SDValue Ptr0, Ptr1;
10156  int64_t Size0, Size1;
10157  const Value *SrcValue0, *SrcValue1;
10158  int SrcValueOffset0, SrcValueOffset1;
10159  unsigned SrcValueAlign0, SrcValueAlign1;
10160  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10161  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10162                SrcValueAlign0, SrcTBAAInfo0);
10163  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10164                SrcValueAlign1, SrcTBAAInfo1);
10165  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10166                 SrcValueAlign0, SrcTBAAInfo0,
10167                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10168                 SrcValueAlign1, SrcTBAAInfo1);
10169}
10170
10171/// FindAliasInfo - Extracts the relevant alias information from the memory
10172/// node.  Returns true if the operand was a load.
10173bool DAGCombiner::FindAliasInfo(SDNode *N,
10174                                SDValue &Ptr, int64_t &Size,
10175                                const Value *&SrcValue,
10176                                int &SrcValueOffset,
10177                                unsigned &SrcValueAlign,
10178                                const MDNode *&TBAAInfo) const {
10179  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10180
10181  Ptr = LS->getBasePtr();
10182  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10183  SrcValue = LS->getSrcValue();
10184  SrcValueOffset = LS->getSrcValueOffset();
10185  SrcValueAlign = LS->getOriginalAlignment();
10186  TBAAInfo = LS->getTBAAInfo();
10187  return isa<LoadSDNode>(LS);
10188}
10189
10190/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10191/// looking for aliasing nodes and adding them to the Aliases vector.
10192void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10193                                   SmallVector<SDValue, 8> &Aliases) {
10194  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10195  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10196
10197  // Get alias information for node.
10198  SDValue Ptr;
10199  int64_t Size;
10200  const Value *SrcValue;
10201  int SrcValueOffset;
10202  unsigned SrcValueAlign;
10203  const MDNode *SrcTBAAInfo;
10204  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10205                              SrcValueAlign, SrcTBAAInfo);
10206
10207  // Starting off.
10208  Chains.push_back(OriginalChain);
10209  unsigned Depth = 0;
10210
10211  // Look at each chain and determine if it is an alias.  If so, add it to the
10212  // aliases list.  If not, then continue up the chain looking for the next
10213  // candidate.
10214  while (!Chains.empty()) {
10215    SDValue Chain = Chains.back();
10216    Chains.pop_back();
10217
10218    // For TokenFactor nodes, look at each operand and only continue up the
10219    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10220    // find more and revert to original chain since the xform is unlikely to be
10221    // profitable.
10222    //
10223    // FIXME: The depth check could be made to return the last non-aliasing
10224    // chain we found before we hit a tokenfactor rather than the original
10225    // chain.
10226    if (Depth > 6 || Aliases.size() == 2) {
10227      Aliases.clear();
10228      Aliases.push_back(OriginalChain);
10229      break;
10230    }
10231
10232    // Don't bother if we've been before.
10233    if (!Visited.insert(Chain.getNode()))
10234      continue;
10235
10236    switch (Chain.getOpcode()) {
10237    case ISD::EntryToken:
10238      // Entry token is ideal chain operand, but handled in FindBetterChain.
10239      break;
10240
10241    case ISD::LOAD:
10242    case ISD::STORE: {
10243      // Get alias information for Chain.
10244      SDValue OpPtr;
10245      int64_t OpSize;
10246      const Value *OpSrcValue;
10247      int OpSrcValueOffset;
10248      unsigned OpSrcValueAlign;
10249      const MDNode *OpSrcTBAAInfo;
10250      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10251                                    OpSrcValue, OpSrcValueOffset,
10252                                    OpSrcValueAlign,
10253                                    OpSrcTBAAInfo);
10254
10255      // If chain is alias then stop here.
10256      if (!(IsLoad && IsOpLoad) &&
10257          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10258                  SrcTBAAInfo,
10259                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10260                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10261        Aliases.push_back(Chain);
10262      } else {
10263        // Look further up the chain.
10264        Chains.push_back(Chain.getOperand(0));
10265        ++Depth;
10266      }
10267      break;
10268    }
10269
10270    case ISD::TokenFactor:
10271      // We have to check each of the operands of the token factor for "small"
10272      // token factors, so we queue them up.  Adding the operands to the queue
10273      // (stack) in reverse order maintains the original order and increases the
10274      // likelihood that getNode will find a matching token factor (CSE.)
10275      if (Chain.getNumOperands() > 16) {
10276        Aliases.push_back(Chain);
10277        break;
10278      }
10279      for (unsigned n = Chain.getNumOperands(); n;)
10280        Chains.push_back(Chain.getOperand(--n));
10281      ++Depth;
10282      break;
10283
10284    default:
10285      // For all other instructions we will just have to take what we can get.
10286      Aliases.push_back(Chain);
10287      break;
10288    }
10289  }
10290}
10291
10292/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10293/// for a better chain (aliasing node.)
10294SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10295  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10296
10297  // Accumulate all the aliases to this node.
10298  GatherAllAliases(N, OldChain, Aliases);
10299
10300  // If no operands then chain to entry token.
10301  if (Aliases.size() == 0)
10302    return DAG.getEntryNode();
10303
10304  // If a single operand then chain to it.  We don't need to revisit it.
10305  if (Aliases.size() == 1)
10306    return Aliases[0];
10307
10308  // Construct a custom tailored token factor.
10309  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
10310                     &Aliases[0], Aliases.size());
10311}
10312
10313// SelectionDAG::Combine - This is the entry point for the file.
10314//
10315void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10316                           CodeGenOpt::Level OptLevel) {
10317  /// run - This is the main entry point to this class.
10318  ///
10319  DAGCombiner(*this, AA, OptLevel).Run(Level);
10320}
10321