DAGCombiner.cpp revision 77f0b7a50a08614b5ffd58f1864b68a9a30d0cb0
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(UI->getUser());
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitBUILD_PAIR(SDNode *N);
181    SDOperand visitFADD(SDNode *N);
182    SDOperand visitFSUB(SDNode *N);
183    SDOperand visitFMUL(SDNode *N);
184    SDOperand visitFDIV(SDNode *N);
185    SDOperand visitFREM(SDNode *N);
186    SDOperand visitFCOPYSIGN(SDNode *N);
187    SDOperand visitSINT_TO_FP(SDNode *N);
188    SDOperand visitUINT_TO_FP(SDNode *N);
189    SDOperand visitFP_TO_SINT(SDNode *N);
190    SDOperand visitFP_TO_UINT(SDNode *N);
191    SDOperand visitFP_ROUND(SDNode *N);
192    SDOperand visitFP_ROUND_INREG(SDNode *N);
193    SDOperand visitFP_EXTEND(SDNode *N);
194    SDOperand visitFNEG(SDNode *N);
195    SDOperand visitFABS(SDNode *N);
196    SDOperand visitBRCOND(SDNode *N);
197    SDOperand visitBR_CC(SDNode *N);
198    SDOperand visitLOAD(SDNode *N);
199    SDOperand visitSTORE(SDNode *N);
200    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
201    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
202    SDOperand visitBUILD_VECTOR(SDNode *N);
203    SDOperand visitCONCAT_VECTORS(SDNode *N);
204    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
205
206    SDOperand XformToShuffleWithZero(SDNode *N);
207    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
208
209    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
210
211    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
212    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
213    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
214    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
215                               SDOperand N3, ISD::CondCode CC,
216                               bool NotExtCompare = false);
217    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
218                            ISD::CondCode Cond, bool foldBooleans = true);
219    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
220                                         unsigned HiOp);
221    SDOperand CombineConsecutiveLoads(SDNode *N, MVT::ValueType VT);
222    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
223    SDOperand BuildSDIV(SDNode *N);
224    SDOperand BuildUDIV(SDNode *N);
225    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
226    SDOperand ReduceLoadWidth(SDNode *N);
227
228    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
229
230    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
231    /// looking for aliasing nodes and adding them to the Aliases vector.
232    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
233                          SmallVector<SDOperand, 8> &Aliases);
234
235    /// isAlias - Return true if there is any possibility that the two addresses
236    /// overlap.
237    bool isAlias(SDOperand Ptr1, int64_t Size1,
238                 const Value *SrcValue1, int SrcValueOffset1,
239                 SDOperand Ptr2, int64_t Size2,
240                 const Value *SrcValue2, int SrcValueOffset2);
241
242    /// FindAliasInfo - Extracts the relevant alias information from the memory
243    /// node.  Returns true if the operand was a load.
244    bool FindAliasInfo(SDNode *N,
245                       SDOperand &Ptr, int64_t &Size,
246                       const Value *&SrcValue, int &SrcValueOffset);
247
248    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
249    /// looking for a better chain (aliasing node.)
250    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
251
252public:
253    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
254      : DAG(D),
255        TLI(D.getTargetLoweringInfo()),
256        AfterLegalize(false),
257        AA(A) {}
258
259    /// Run - runs the dag combiner on all nodes in the work list
260    void Run(bool RunningAfterLegalize);
261  };
262}
263
264
265namespace {
266/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
267/// nodes from the worklist.
268class VISIBILITY_HIDDEN WorkListRemover :
269  public SelectionDAG::DAGUpdateListener {
270  DAGCombiner &DC;
271public:
272  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
273
274  virtual void NodeDeleted(SDNode *N) {
275    DC.removeFromWorkList(N);
276  }
277
278  virtual void NodeUpdated(SDNode *N) {
279    // Ignore updates.
280  }
281};
282}
283
284//===----------------------------------------------------------------------===//
285//  TargetLowering::DAGCombinerInfo implementation
286//===----------------------------------------------------------------------===//
287
288void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
289  ((DAGCombiner*)DC)->AddToWorkList(N);
290}
291
292SDOperand TargetLowering::DAGCombinerInfo::
293CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
294  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
295}
296
297SDOperand TargetLowering::DAGCombinerInfo::
298CombineTo(SDNode *N, SDOperand Res) {
299  return ((DAGCombiner*)DC)->CombineTo(N, Res);
300}
301
302
303SDOperand TargetLowering::DAGCombinerInfo::
304CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
305  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
306}
307
308
309//===----------------------------------------------------------------------===//
310// Helper Functions
311//===----------------------------------------------------------------------===//
312
313/// isNegatibleForFree - Return 1 if we can compute the negated form of the
314/// specified expression for the same cost as the expression itself, or 2 if we
315/// can compute the negated form more cheaply than the expression itself.
316static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
317                               unsigned Depth = 0) {
318  // No compile time optimizations on this type.
319  if (Op.getValueType() == MVT::ppcf128)
320    return 0;
321
322  // fneg is removable even if it has multiple uses.
323  if (Op.getOpcode() == ISD::FNEG) return 2;
324
325  // Don't allow anything with multiple uses.
326  if (!Op.hasOneUse()) return 0;
327
328  // Don't recurse exponentially.
329  if (Depth > 6) return 0;
330
331  switch (Op.getOpcode()) {
332  default: return false;
333  case ISD::ConstantFP:
334    // Don't invert constant FP values after legalize.  The negated constant
335    // isn't necessarily legal.
336    return AfterLegalize ? 0 : 1;
337  case ISD::FADD:
338    // FIXME: determine better conditions for this xform.
339    if (!UnsafeFPMath) return 0;
340
341    // -(A+B) -> -A - B
342    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
343      return V;
344    // -(A+B) -> -B - A
345    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
346  case ISD::FSUB:
347    // We can't turn -(A-B) into B-A when we honor signed zeros.
348    if (!UnsafeFPMath) return 0;
349
350    // -(A-B) -> B-A
351    return 1;
352
353  case ISD::FMUL:
354  case ISD::FDIV:
355    if (HonorSignDependentRoundingFPMath()) return 0;
356
357    // -(X*Y) -> (-X * Y) or (X*-Y)
358    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
359      return V;
360
361    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
362
363  case ISD::FP_EXTEND:
364  case ISD::FP_ROUND:
365  case ISD::FSIN:
366    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
367  }
368}
369
370/// GetNegatedExpression - If isNegatibleForFree returns true, this function
371/// returns the newly negated expression.
372static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
373                                      bool AfterLegalize, unsigned Depth = 0) {
374  // fneg is removable even if it has multiple uses.
375  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
376
377  // Don't allow anything with multiple uses.
378  assert(Op.hasOneUse() && "Unknown reuse!");
379
380  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
381  switch (Op.getOpcode()) {
382  default: assert(0 && "Unknown code");
383  case ISD::ConstantFP: {
384    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
385    V.changeSign();
386    return DAG.getConstantFP(V, Op.getValueType());
387  }
388  case ISD::FADD:
389    // FIXME: determine better conditions for this xform.
390    assert(UnsafeFPMath);
391
392    // -(A+B) -> -A - B
393    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
394      return DAG.getNode(ISD::FSUB, Op.getValueType(),
395                         GetNegatedExpression(Op.getOperand(0), DAG,
396                                              AfterLegalize, Depth+1),
397                         Op.getOperand(1));
398    // -(A+B) -> -B - A
399    return DAG.getNode(ISD::FSUB, Op.getValueType(),
400                       GetNegatedExpression(Op.getOperand(1), DAG,
401                                            AfterLegalize, Depth+1),
402                       Op.getOperand(0));
403  case ISD::FSUB:
404    // We can't turn -(A-B) into B-A when we honor signed zeros.
405    assert(UnsafeFPMath);
406
407    // -(0-B) -> B
408    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
409      if (N0CFP->getValueAPF().isZero())
410        return Op.getOperand(1);
411
412    // -(A-B) -> B-A
413    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
414                       Op.getOperand(0));
415
416  case ISD::FMUL:
417  case ISD::FDIV:
418    assert(!HonorSignDependentRoundingFPMath());
419
420    // -(X*Y) -> -X * Y
421    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
422      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
423                         GetNegatedExpression(Op.getOperand(0), DAG,
424                                              AfterLegalize, Depth+1),
425                         Op.getOperand(1));
426
427    // -(X*Y) -> X * -Y
428    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
429                       Op.getOperand(0),
430                       GetNegatedExpression(Op.getOperand(1), DAG,
431                                            AfterLegalize, Depth+1));
432
433  case ISD::FP_EXTEND:
434  case ISD::FSIN:
435    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
436                       GetNegatedExpression(Op.getOperand(0), DAG,
437                                            AfterLegalize, Depth+1));
438  case ISD::FP_ROUND:
439      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
440                         GetNegatedExpression(Op.getOperand(0), DAG,
441                                              AfterLegalize, Depth+1),
442                         Op.getOperand(1));
443  }
444}
445
446
447// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
448// that selects between the values 1 and 0, making it equivalent to a setcc.
449// Also, set the incoming LHS, RHS, and CC references to the appropriate
450// nodes based on the type of node we are checking.  This simplifies life a
451// bit for the callers.
452static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
453                              SDOperand &CC) {
454  if (N.getOpcode() == ISD::SETCC) {
455    LHS = N.getOperand(0);
456    RHS = N.getOperand(1);
457    CC  = N.getOperand(2);
458    return true;
459  }
460  if (N.getOpcode() == ISD::SELECT_CC &&
461      N.getOperand(2).getOpcode() == ISD::Constant &&
462      N.getOperand(3).getOpcode() == ISD::Constant &&
463      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
464      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
465    LHS = N.getOperand(0);
466    RHS = N.getOperand(1);
467    CC  = N.getOperand(4);
468    return true;
469  }
470  return false;
471}
472
473// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
474// one use.  If this is true, it allows the users to invert the operation for
475// free when it is profitable to do so.
476static bool isOneUseSetCC(SDOperand N) {
477  SDOperand N0, N1, N2;
478  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
479    return true;
480  return false;
481}
482
483SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
484  MVT::ValueType VT = N0.getValueType();
485  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
486  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
487  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
488    if (isa<ConstantSDNode>(N1)) {
489      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
490      AddToWorkList(OpNode.Val);
491      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
492    } else if (N0.hasOneUse()) {
493      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
494      AddToWorkList(OpNode.Val);
495      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
496    }
497  }
498  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
499  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
500  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
501    if (isa<ConstantSDNode>(N0)) {
502      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
503      AddToWorkList(OpNode.Val);
504      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
505    } else if (N1.hasOneUse()) {
506      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
507      AddToWorkList(OpNode.Val);
508      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
509    }
510  }
511  return SDOperand();
512}
513
514SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
515                                 bool AddTo) {
516  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
517  ++NodesCombined;
518  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
519  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
520  DOUT << " and " << NumTo-1 << " other values\n";
521  WorkListRemover DeadNodes(*this);
522  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
523
524  if (AddTo) {
525    // Push the new nodes and any users onto the worklist
526    for (unsigned i = 0, e = NumTo; i != e; ++i) {
527      AddToWorkList(To[i].Val);
528      AddUsersToWorkList(To[i].Val);
529    }
530  }
531
532  // Nodes can be reintroduced into the worklist.  Make sure we do not
533  // process a node that has been replaced.
534  removeFromWorkList(N);
535
536  // Finally, since the node is now dead, remove it from the graph.
537  DAG.DeleteNode(N);
538  return SDOperand(N, 0);
539}
540
541/// SimplifyDemandedBits - Check the specified integer node value to see if
542/// it can be simplified or if things it uses can be simplified by bit
543/// propagation.  If so, return true.
544bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
545  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
546  APInt KnownZero, KnownOne;
547  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
548    return false;
549
550  // Revisit the node.
551  AddToWorkList(Op.Val);
552
553  // Replace the old value with the new one.
554  ++NodesCombined;
555  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
556  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
557  DOUT << '\n';
558
559  // Replace all uses.  If any nodes become isomorphic to other nodes and
560  // are deleted, make sure to remove them from our worklist.
561  WorkListRemover DeadNodes(*this);
562  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
563
564  // Push the new node and any (possibly new) users onto the worklist.
565  AddToWorkList(TLO.New.Val);
566  AddUsersToWorkList(TLO.New.Val);
567
568  // Finally, if the node is now dead, remove it from the graph.  The node
569  // may not be dead if the replacement process recursively simplified to
570  // something else needing this node.
571  if (TLO.Old.Val->use_empty()) {
572    removeFromWorkList(TLO.Old.Val);
573
574    // If the operands of this node are only used by the node, they will now
575    // be dead.  Make sure to visit them first to delete dead nodes early.
576    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
577      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
578        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
579
580    DAG.DeleteNode(TLO.Old.Val);
581  }
582  return true;
583}
584
585//===----------------------------------------------------------------------===//
586//  Main DAG Combiner implementation
587//===----------------------------------------------------------------------===//
588
589void DAGCombiner::Run(bool RunningAfterLegalize) {
590  // set the instance variable, so that the various visit routines may use it.
591  AfterLegalize = RunningAfterLegalize;
592
593  // Add all the dag nodes to the worklist.
594  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
595       E = DAG.allnodes_end(); I != E; ++I)
596    WorkList.push_back(I);
597
598  // Create a dummy node (which is not added to allnodes), that adds a reference
599  // to the root node, preventing it from being deleted, and tracking any
600  // changes of the root.
601  HandleSDNode Dummy(DAG.getRoot());
602
603  // The root of the dag may dangle to deleted nodes until the dag combiner is
604  // done.  Set it to null to avoid confusion.
605  DAG.setRoot(SDOperand());
606
607  // while the worklist isn't empty, inspect the node on the end of it and
608  // try and combine it.
609  while (!WorkList.empty()) {
610    SDNode *N = WorkList.back();
611    WorkList.pop_back();
612
613    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
614    // N is deleted from the DAG, since they too may now be dead or may have a
615    // reduced number of uses, allowing other xforms.
616    if (N->use_empty() && N != &Dummy) {
617      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
618        AddToWorkList(N->getOperand(i).Val);
619
620      DAG.DeleteNode(N);
621      continue;
622    }
623
624    SDOperand RV = combine(N);
625
626    if (RV.Val == 0)
627      continue;
628
629    ++NodesCombined;
630
631    // If we get back the same node we passed in, rather than a new node or
632    // zero, we know that the node must have defined multiple values and
633    // CombineTo was used.  Since CombineTo takes care of the worklist
634    // mechanics for us, we have no work to do in this case.
635    if (RV.Val == N)
636      continue;
637
638    assert(N->getOpcode() != ISD::DELETED_NODE &&
639           RV.Val->getOpcode() != ISD::DELETED_NODE &&
640           "Node was deleted but visit returned new node!");
641
642    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
643    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
644    DOUT << '\n';
645    WorkListRemover DeadNodes(*this);
646    if (N->getNumValues() == RV.Val->getNumValues())
647      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
648    else {
649      assert(N->getValueType(0) == RV.getValueType() &&
650             N->getNumValues() == 1 && "Type mismatch");
651      SDOperand OpV = RV;
652      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
653    }
654
655    // Push the new node and any users onto the worklist
656    AddToWorkList(RV.Val);
657    AddUsersToWorkList(RV.Val);
658
659    // Add any uses of the old node to the worklist in case this node is the
660    // last one that uses them.  They may become dead after this node is
661    // deleted.
662    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
663      AddToWorkList(N->getOperand(i).Val);
664
665    // Nodes can be reintroduced into the worklist.  Make sure we do not
666    // process a node that has been replaced.
667    removeFromWorkList(N);
668
669    // Finally, since the node is now dead, remove it from the graph.
670    DAG.DeleteNode(N);
671  }
672
673  // If the root changed (e.g. it was a dead load, update the root).
674  DAG.setRoot(Dummy.getValue());
675}
676
677SDOperand DAGCombiner::visit(SDNode *N) {
678  switch(N->getOpcode()) {
679  default: break;
680  case ISD::TokenFactor:        return visitTokenFactor(N);
681  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
682  case ISD::ADD:                return visitADD(N);
683  case ISD::SUB:                return visitSUB(N);
684  case ISD::ADDC:               return visitADDC(N);
685  case ISD::ADDE:               return visitADDE(N);
686  case ISD::MUL:                return visitMUL(N);
687  case ISD::SDIV:               return visitSDIV(N);
688  case ISD::UDIV:               return visitUDIV(N);
689  case ISD::SREM:               return visitSREM(N);
690  case ISD::UREM:               return visitUREM(N);
691  case ISD::MULHU:              return visitMULHU(N);
692  case ISD::MULHS:              return visitMULHS(N);
693  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
694  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
695  case ISD::SDIVREM:            return visitSDIVREM(N);
696  case ISD::UDIVREM:            return visitUDIVREM(N);
697  case ISD::AND:                return visitAND(N);
698  case ISD::OR:                 return visitOR(N);
699  case ISD::XOR:                return visitXOR(N);
700  case ISD::SHL:                return visitSHL(N);
701  case ISD::SRA:                return visitSRA(N);
702  case ISD::SRL:                return visitSRL(N);
703  case ISD::CTLZ:               return visitCTLZ(N);
704  case ISD::CTTZ:               return visitCTTZ(N);
705  case ISD::CTPOP:              return visitCTPOP(N);
706  case ISD::SELECT:             return visitSELECT(N);
707  case ISD::SELECT_CC:          return visitSELECT_CC(N);
708  case ISD::SETCC:              return visitSETCC(N);
709  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
710  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
711  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
712  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
713  case ISD::TRUNCATE:           return visitTRUNCATE(N);
714  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
715  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
716  case ISD::FADD:               return visitFADD(N);
717  case ISD::FSUB:               return visitFSUB(N);
718  case ISD::FMUL:               return visitFMUL(N);
719  case ISD::FDIV:               return visitFDIV(N);
720  case ISD::FREM:               return visitFREM(N);
721  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
722  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
723  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
724  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
725  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
726  case ISD::FP_ROUND:           return visitFP_ROUND(N);
727  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
728  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
729  case ISD::FNEG:               return visitFNEG(N);
730  case ISD::FABS:               return visitFABS(N);
731  case ISD::BRCOND:             return visitBRCOND(N);
732  case ISD::BR_CC:              return visitBR_CC(N);
733  case ISD::LOAD:               return visitLOAD(N);
734  case ISD::STORE:              return visitSTORE(N);
735  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
736  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
737  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
738  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
739  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
740  }
741  return SDOperand();
742}
743
744SDOperand DAGCombiner::combine(SDNode *N) {
745
746  SDOperand RV = visit(N);
747
748  // If nothing happened, try a target-specific DAG combine.
749  if (RV.Val == 0) {
750    assert(N->getOpcode() != ISD::DELETED_NODE &&
751           "Node was deleted but visit returned NULL!");
752
753    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
754        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
755
756      // Expose the DAG combiner to the target combiner impls.
757      TargetLowering::DAGCombinerInfo
758        DagCombineInfo(DAG, !AfterLegalize, false, this);
759
760      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
761    }
762  }
763
764  // If N is a commutative binary node, try commuting it to enable more
765  // sdisel CSE.
766  if (RV.Val == 0 &&
767      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
768      N->getNumValues() == 1) {
769    SDOperand N0 = N->getOperand(0);
770    SDOperand N1 = N->getOperand(1);
771    // Constant operands are canonicalized to RHS.
772    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
773      SDOperand Ops[] = { N1, N0 };
774      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
775                                            Ops, 2);
776      if (CSENode)
777        return SDOperand(CSENode, 0);
778    }
779  }
780
781  return RV;
782}
783
784/// getInputChainForNode - Given a node, return its input chain if it has one,
785/// otherwise return a null sd operand.
786static SDOperand getInputChainForNode(SDNode *N) {
787  if (unsigned NumOps = N->getNumOperands()) {
788    if (N->getOperand(0).getValueType() == MVT::Other)
789      return N->getOperand(0);
790    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
791      return N->getOperand(NumOps-1);
792    for (unsigned i = 1; i < NumOps-1; ++i)
793      if (N->getOperand(i).getValueType() == MVT::Other)
794        return N->getOperand(i);
795  }
796  return SDOperand(0, 0);
797}
798
799SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
800  // If N has two operands, where one has an input chain equal to the other,
801  // the 'other' chain is redundant.
802  if (N->getNumOperands() == 2) {
803    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
804      return N->getOperand(0);
805    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
806      return N->getOperand(1);
807  }
808
809  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
810  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
811  SmallPtrSet<SDNode*, 16> SeenOps;
812  bool Changed = false;             // If we should replace this token factor.
813
814  // Start out with this token factor.
815  TFs.push_back(N);
816
817  // Iterate through token factors.  The TFs grows when new token factors are
818  // encountered.
819  for (unsigned i = 0; i < TFs.size(); ++i) {
820    SDNode *TF = TFs[i];
821
822    // Check each of the operands.
823    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
824      SDOperand Op = TF->getOperand(i);
825
826      switch (Op.getOpcode()) {
827      case ISD::EntryToken:
828        // Entry tokens don't need to be added to the list. They are
829        // rededundant.
830        Changed = true;
831        break;
832
833      case ISD::TokenFactor:
834        if ((CombinerAA || Op.hasOneUse()) &&
835            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
836          // Queue up for processing.
837          TFs.push_back(Op.Val);
838          // Clean up in case the token factor is removed.
839          AddToWorkList(Op.Val);
840          Changed = true;
841          break;
842        }
843        // Fall thru
844
845      default:
846        // Only add if it isn't already in the list.
847        if (SeenOps.insert(Op.Val))
848          Ops.push_back(Op);
849        else
850          Changed = true;
851        break;
852      }
853    }
854  }
855
856  SDOperand Result;
857
858  // If we've change things around then replace token factor.
859  if (Changed) {
860    if (Ops.empty()) {
861      // The entry token is the only possible outcome.
862      Result = DAG.getEntryNode();
863    } else {
864      // New and improved token factor.
865      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
866    }
867
868    // Don't add users to work list.
869    return CombineTo(N, Result, false);
870  }
871
872  return Result;
873}
874
875/// MERGE_VALUES can always be eliminated.
876SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
877  WorkListRemover DeadNodes(*this);
878  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
879    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
880                                  &DeadNodes);
881  removeFromWorkList(N);
882  DAG.DeleteNode(N);
883  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
884}
885
886
887static
888SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
889  MVT::ValueType VT = N0.getValueType();
890  SDOperand N00 = N0.getOperand(0);
891  SDOperand N01 = N0.getOperand(1);
892  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
893  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
894      isa<ConstantSDNode>(N00.getOperand(1))) {
895    N0 = DAG.getNode(ISD::ADD, VT,
896                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
897                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
898    return DAG.getNode(ISD::ADD, VT, N0, N1);
899  }
900  return SDOperand();
901}
902
903static
904SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
905                              SelectionDAG &DAG) {
906  MVT::ValueType VT = N->getValueType(0);
907  unsigned Opc = N->getOpcode();
908  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
909  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
910  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
911  ISD::CondCode CC = ISD::SETCC_INVALID;
912  if (isSlctCC)
913    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
914  else {
915    SDOperand CCOp = Slct.getOperand(0);
916    if (CCOp.getOpcode() == ISD::SETCC)
917      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
918  }
919
920  bool DoXform = false;
921  bool InvCC = false;
922  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
923          "Bad input!");
924  if (LHS.getOpcode() == ISD::Constant &&
925      cast<ConstantSDNode>(LHS)->isNullValue())
926    DoXform = true;
927  else if (CC != ISD::SETCC_INVALID &&
928           RHS.getOpcode() == ISD::Constant &&
929           cast<ConstantSDNode>(RHS)->isNullValue()) {
930    std::swap(LHS, RHS);
931    SDOperand Op0 = Slct.getOperand(0);
932    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
933                                : Op0.getOperand(0).getValueType());
934    CC = ISD::getSetCCInverse(CC, isInt);
935    DoXform = true;
936    InvCC = true;
937  }
938
939  if (DoXform) {
940    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
941    if (isSlctCC)
942      return DAG.getSelectCC(OtherOp, Result,
943                             Slct.getOperand(0), Slct.getOperand(1), CC);
944    SDOperand CCOp = Slct.getOperand(0);
945    if (InvCC)
946      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
947                          CCOp.getOperand(1), CC);
948    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
949  }
950  return SDOperand();
951}
952
953SDOperand DAGCombiner::visitADD(SDNode *N) {
954  SDOperand N0 = N->getOperand(0);
955  SDOperand N1 = N->getOperand(1);
956  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
957  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
958  MVT::ValueType VT = N0.getValueType();
959
960  // fold vector ops
961  if (MVT::isVector(VT)) {
962    SDOperand FoldedVOp = SimplifyVBinOp(N);
963    if (FoldedVOp.Val) return FoldedVOp;
964  }
965
966  // fold (add x, undef) -> undef
967  if (N0.getOpcode() == ISD::UNDEF)
968    return N0;
969  if (N1.getOpcode() == ISD::UNDEF)
970    return N1;
971  // fold (add c1, c2) -> c1+c2
972  if (N0C && N1C)
973    return DAG.getConstant(N0C->getAPIntValue() + N1C->getAPIntValue(), VT);
974  // canonicalize constant to RHS
975  if (N0C && !N1C)
976    return DAG.getNode(ISD::ADD, VT, N1, N0);
977  // fold (add x, 0) -> x
978  if (N1C && N1C->isNullValue())
979    return N0;
980  // fold ((c1-A)+c2) -> (c1+c2)-A
981  if (N1C && N0.getOpcode() == ISD::SUB)
982    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
983      return DAG.getNode(ISD::SUB, VT,
984                         DAG.getConstant(N1C->getAPIntValue()+
985                                         N0C->getAPIntValue(), VT),
986                         N0.getOperand(1));
987  // reassociate add
988  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
989  if (RADD.Val != 0)
990    return RADD;
991  // fold ((0-A) + B) -> B-A
992  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
993      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
994    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
995  // fold (A + (0-B)) -> A-B
996  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
997      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
998    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
999  // fold (A+(B-A)) -> B
1000  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1001    return N1.getOperand(0);
1002
1003  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
1004    return SDOperand(N, 0);
1005
1006  // fold (a+b) -> (a|b) iff a and b share no bits.
1007  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
1008    APInt LHSZero, LHSOne;
1009    APInt RHSZero, RHSOne;
1010    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1011    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1012    if (LHSZero.getBoolValue()) {
1013      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1014
1015      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1016      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1017      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1018          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1019        return DAG.getNode(ISD::OR, VT, N0, N1);
1020    }
1021  }
1022
1023  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1024  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1025    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1026    if (Result.Val) return Result;
1027  }
1028  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1029    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1030    if (Result.Val) return Result;
1031  }
1032
1033  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1034  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1035    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1036    if (Result.Val) return Result;
1037  }
1038  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1039    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1040    if (Result.Val) return Result;
1041  }
1042
1043  return SDOperand();
1044}
1045
1046SDOperand DAGCombiner::visitADDC(SDNode *N) {
1047  SDOperand N0 = N->getOperand(0);
1048  SDOperand N1 = N->getOperand(1);
1049  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1050  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1051  MVT::ValueType VT = N0.getValueType();
1052
1053  // If the flag result is dead, turn this into an ADD.
1054  if (N->hasNUsesOfValue(0, 1))
1055    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1056                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1057
1058  // canonicalize constant to RHS.
1059  if (N0C && !N1C) {
1060    SDOperand Ops[] = { N1, N0 };
1061    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1062  }
1063
1064  // fold (addc x, 0) -> x + no carry out
1065  if (N1C && N1C->isNullValue())
1066    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1067
1068  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1069  APInt LHSZero, LHSOne;
1070  APInt RHSZero, RHSOne;
1071  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1072  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1073  if (LHSZero.getBoolValue()) {
1074    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1075
1076    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1077    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1078    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1079        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1080      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1081                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1082  }
1083
1084  return SDOperand();
1085}
1086
1087SDOperand DAGCombiner::visitADDE(SDNode *N) {
1088  SDOperand N0 = N->getOperand(0);
1089  SDOperand N1 = N->getOperand(1);
1090  SDOperand CarryIn = N->getOperand(2);
1091  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1092  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1093  //MVT::ValueType VT = N0.getValueType();
1094
1095  // canonicalize constant to RHS
1096  if (N0C && !N1C) {
1097    SDOperand Ops[] = { N1, N0, CarryIn };
1098    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1099  }
1100
1101  // fold (adde x, y, false) -> (addc x, y)
1102  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1103    SDOperand Ops[] = { N1, N0 };
1104    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1105  }
1106
1107  return SDOperand();
1108}
1109
1110
1111
1112SDOperand DAGCombiner::visitSUB(SDNode *N) {
1113  SDOperand N0 = N->getOperand(0);
1114  SDOperand N1 = N->getOperand(1);
1115  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1116  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1117  MVT::ValueType VT = N0.getValueType();
1118
1119  // fold vector ops
1120  if (MVT::isVector(VT)) {
1121    SDOperand FoldedVOp = SimplifyVBinOp(N);
1122    if (FoldedVOp.Val) return FoldedVOp;
1123  }
1124
1125  // fold (sub x, x) -> 0
1126  if (N0 == N1)
1127    return DAG.getConstant(0, N->getValueType(0));
1128  // fold (sub c1, c2) -> c1-c2
1129  if (N0C && N1C)
1130    return DAG.getNode(ISD::SUB, VT, N0, N1);
1131  // fold (sub x, c) -> (add x, -c)
1132  if (N1C)
1133    return DAG.getNode(ISD::ADD, VT, N0,
1134                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1135  // fold (A+B)-A -> B
1136  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1137    return N0.getOperand(1);
1138  // fold (A+B)-B -> A
1139  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1140    return N0.getOperand(0);
1141  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1142  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1143    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1144    if (Result.Val) return Result;
1145  }
1146  // If either operand of a sub is undef, the result is undef
1147  if (N0.getOpcode() == ISD::UNDEF)
1148    return N0;
1149  if (N1.getOpcode() == ISD::UNDEF)
1150    return N1;
1151
1152  return SDOperand();
1153}
1154
1155SDOperand DAGCombiner::visitMUL(SDNode *N) {
1156  SDOperand N0 = N->getOperand(0);
1157  SDOperand N1 = N->getOperand(1);
1158  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1159  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1160  MVT::ValueType VT = N0.getValueType();
1161
1162  // fold vector ops
1163  if (MVT::isVector(VT)) {
1164    SDOperand FoldedVOp = SimplifyVBinOp(N);
1165    if (FoldedVOp.Val) return FoldedVOp;
1166  }
1167
1168  // fold (mul x, undef) -> 0
1169  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1170    return DAG.getConstant(0, VT);
1171  // fold (mul c1, c2) -> c1*c2
1172  if (N0C && N1C)
1173    return DAG.getNode(ISD::MUL, VT, N0, N1);
1174  // canonicalize constant to RHS
1175  if (N0C && !N1C)
1176    return DAG.getNode(ISD::MUL, VT, N1, N0);
1177  // fold (mul x, 0) -> 0
1178  if (N1C && N1C->isNullValue())
1179    return N1;
1180  // fold (mul x, -1) -> 0-x
1181  if (N1C && N1C->isAllOnesValue())
1182    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1183  // fold (mul x, (1 << c)) -> x << c
1184  if (N1C && N1C->getAPIntValue().isPowerOf2())
1185    return DAG.getNode(ISD::SHL, VT, N0,
1186                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1187                                       TLI.getShiftAmountTy()));
1188  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1189  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1190    // FIXME: If the input is something that is easily negated (e.g. a
1191    // single-use add), we should put the negate there.
1192    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1193                       DAG.getNode(ISD::SHL, VT, N0,
1194                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1195                                            TLI.getShiftAmountTy())));
1196  }
1197
1198  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1199  if (N1C && N0.getOpcode() == ISD::SHL &&
1200      isa<ConstantSDNode>(N0.getOperand(1))) {
1201    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1202    AddToWorkList(C3.Val);
1203    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1204  }
1205
1206  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1207  // use.
1208  {
1209    SDOperand Sh(0,0), Y(0,0);
1210    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1211    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1212        N0.Val->hasOneUse()) {
1213      Sh = N0; Y = N1;
1214    } else if (N1.getOpcode() == ISD::SHL &&
1215               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1216      Sh = N1; Y = N0;
1217    }
1218    if (Sh.Val) {
1219      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1220      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1221    }
1222  }
1223  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1224  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1225      isa<ConstantSDNode>(N0.getOperand(1))) {
1226    return DAG.getNode(ISD::ADD, VT,
1227                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1228                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1229  }
1230
1231  // reassociate mul
1232  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1233  if (RMUL.Val != 0)
1234    return RMUL;
1235
1236  return SDOperand();
1237}
1238
1239SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1240  SDOperand N0 = N->getOperand(0);
1241  SDOperand N1 = N->getOperand(1);
1242  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1243  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1244  MVT::ValueType VT = N->getValueType(0);
1245
1246  // fold vector ops
1247  if (MVT::isVector(VT)) {
1248    SDOperand FoldedVOp = SimplifyVBinOp(N);
1249    if (FoldedVOp.Val) return FoldedVOp;
1250  }
1251
1252  // fold (sdiv c1, c2) -> c1/c2
1253  if (N0C && N1C && !N1C->isNullValue())
1254    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1255  // fold (sdiv X, 1) -> X
1256  if (N1C && N1C->getSignExtended() == 1LL)
1257    return N0;
1258  // fold (sdiv X, -1) -> 0-X
1259  if (N1C && N1C->isAllOnesValue())
1260    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1261  // If we know the sign bits of both operands are zero, strength reduce to a
1262  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1263  if (!MVT::isVector(VT)) {
1264    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1265      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1266  }
1267  // fold (sdiv X, pow2) -> simple ops after legalize
1268  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap() &&
1269      (isPowerOf2_64(N1C->getSignExtended()) ||
1270       isPowerOf2_64(-N1C->getSignExtended()))) {
1271    // If dividing by powers of two is cheap, then don't perform the following
1272    // fold.
1273    if (TLI.isPow2DivCheap())
1274      return SDOperand();
1275    int64_t pow2 = N1C->getSignExtended();
1276    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1277    unsigned lg2 = Log2_64(abs2);
1278    // Splat the sign bit into the register
1279    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1280                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1281                                                TLI.getShiftAmountTy()));
1282    AddToWorkList(SGN.Val);
1283    // Add (N0 < 0) ? abs2 - 1 : 0;
1284    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1285                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1286                                                TLI.getShiftAmountTy()));
1287    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1288    AddToWorkList(SRL.Val);
1289    AddToWorkList(ADD.Val);    // Divide by pow2
1290    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1291                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1292    // If we're dividing by a positive value, we're done.  Otherwise, we must
1293    // negate the result.
1294    if (pow2 > 0)
1295      return SRA;
1296    AddToWorkList(SRA.Val);
1297    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1298  }
1299  // if integer divide is expensive and we satisfy the requirements, emit an
1300  // alternate sequence.
1301  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1302      !TLI.isIntDivCheap()) {
1303    SDOperand Op = BuildSDIV(N);
1304    if (Op.Val) return Op;
1305  }
1306
1307  // undef / X -> 0
1308  if (N0.getOpcode() == ISD::UNDEF)
1309    return DAG.getConstant(0, VT);
1310  // X / undef -> undef
1311  if (N1.getOpcode() == ISD::UNDEF)
1312    return N1;
1313
1314  return SDOperand();
1315}
1316
1317SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1318  SDOperand N0 = N->getOperand(0);
1319  SDOperand N1 = N->getOperand(1);
1320  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1321  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1322  MVT::ValueType VT = N->getValueType(0);
1323
1324  // fold vector ops
1325  if (MVT::isVector(VT)) {
1326    SDOperand FoldedVOp = SimplifyVBinOp(N);
1327    if (FoldedVOp.Val) return FoldedVOp;
1328  }
1329
1330  // fold (udiv c1, c2) -> c1/c2
1331  if (N0C && N1C && !N1C->isNullValue())
1332    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1333  // fold (udiv x, (1 << c)) -> x >>u c
1334  if (N1C && N1C->getAPIntValue().isPowerOf2())
1335    return DAG.getNode(ISD::SRL, VT, N0,
1336                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1337                                       TLI.getShiftAmountTy()));
1338  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1339  if (N1.getOpcode() == ISD::SHL) {
1340    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1341      if (SHC->getAPIntValue().isPowerOf2()) {
1342        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1343        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1344                                    DAG.getConstant(SHC->getAPIntValue()
1345                                                                    .logBase2(),
1346                                                    ADDVT));
1347        AddToWorkList(Add.Val);
1348        return DAG.getNode(ISD::SRL, VT, N0, Add);
1349      }
1350    }
1351  }
1352  // fold (udiv x, c) -> alternate
1353  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1354    SDOperand Op = BuildUDIV(N);
1355    if (Op.Val) return Op;
1356  }
1357
1358  // undef / X -> 0
1359  if (N0.getOpcode() == ISD::UNDEF)
1360    return DAG.getConstant(0, VT);
1361  // X / undef -> undef
1362  if (N1.getOpcode() == ISD::UNDEF)
1363    return N1;
1364
1365  return SDOperand();
1366}
1367
1368SDOperand DAGCombiner::visitSREM(SDNode *N) {
1369  SDOperand N0 = N->getOperand(0);
1370  SDOperand N1 = N->getOperand(1);
1371  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1372  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1373  MVT::ValueType VT = N->getValueType(0);
1374
1375  // fold (srem c1, c2) -> c1%c2
1376  if (N0C && N1C && !N1C->isNullValue())
1377    return DAG.getNode(ISD::SREM, VT, N0, N1);
1378  // If we know the sign bits of both operands are zero, strength reduce to a
1379  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1380  if (!MVT::isVector(VT)) {
1381    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1382      return DAG.getNode(ISD::UREM, VT, N0, N1);
1383  }
1384
1385  // If X/C can be simplified by the division-by-constant logic, lower
1386  // X%C to the equivalent of X-X/C*C.
1387  if (N1C && !N1C->isNullValue()) {
1388    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1389    AddToWorkList(Div.Val);
1390    SDOperand OptimizedDiv = combine(Div.Val);
1391    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1392      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1393      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1394      AddToWorkList(Mul.Val);
1395      return Sub;
1396    }
1397  }
1398
1399  // undef % X -> 0
1400  if (N0.getOpcode() == ISD::UNDEF)
1401    return DAG.getConstant(0, VT);
1402  // X % undef -> undef
1403  if (N1.getOpcode() == ISD::UNDEF)
1404    return N1;
1405
1406  return SDOperand();
1407}
1408
1409SDOperand DAGCombiner::visitUREM(SDNode *N) {
1410  SDOperand N0 = N->getOperand(0);
1411  SDOperand N1 = N->getOperand(1);
1412  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1413  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1414  MVT::ValueType VT = N->getValueType(0);
1415
1416  // fold (urem c1, c2) -> c1%c2
1417  if (N0C && N1C && !N1C->isNullValue())
1418    return DAG.getNode(ISD::UREM, VT, N0, N1);
1419  // fold (urem x, pow2) -> (and x, pow2-1)
1420  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
1421    return DAG.getNode(ISD::AND, VT, N0,
1422                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
1423  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1424  if (N1.getOpcode() == ISD::SHL) {
1425    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1426      if (SHC->getAPIntValue().isPowerOf2()) {
1427        SDOperand Add =
1428          DAG.getNode(ISD::ADD, VT, N1,
1429                 DAG.getConstant(APInt::getAllOnesValue(MVT::getSizeInBits(VT)),
1430                                 VT));
1431        AddToWorkList(Add.Val);
1432        return DAG.getNode(ISD::AND, VT, N0, Add);
1433      }
1434    }
1435  }
1436
1437  // If X/C can be simplified by the division-by-constant logic, lower
1438  // X%C to the equivalent of X-X/C*C.
1439  if (N1C && !N1C->isNullValue()) {
1440    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1441    SDOperand OptimizedDiv = combine(Div.Val);
1442    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1443      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1444      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1445      AddToWorkList(Mul.Val);
1446      return Sub;
1447    }
1448  }
1449
1450  // undef % X -> 0
1451  if (N0.getOpcode() == ISD::UNDEF)
1452    return DAG.getConstant(0, VT);
1453  // X % undef -> undef
1454  if (N1.getOpcode() == ISD::UNDEF)
1455    return N1;
1456
1457  return SDOperand();
1458}
1459
1460SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1461  SDOperand N0 = N->getOperand(0);
1462  SDOperand N1 = N->getOperand(1);
1463  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1464  MVT::ValueType VT = N->getValueType(0);
1465
1466  // fold (mulhs x, 0) -> 0
1467  if (N1C && N1C->isNullValue())
1468    return N1;
1469  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1470  if (N1C && N1C->getAPIntValue() == 1)
1471    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1472                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1473                                       TLI.getShiftAmountTy()));
1474  // fold (mulhs x, undef) -> 0
1475  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1476    return DAG.getConstant(0, VT);
1477
1478  return SDOperand();
1479}
1480
1481SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1482  SDOperand N0 = N->getOperand(0);
1483  SDOperand N1 = N->getOperand(1);
1484  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1485  MVT::ValueType VT = N->getValueType(0);
1486
1487  // fold (mulhu x, 0) -> 0
1488  if (N1C && N1C->isNullValue())
1489    return N1;
1490  // fold (mulhu x, 1) -> 0
1491  if (N1C && N1C->getAPIntValue() == 1)
1492    return DAG.getConstant(0, N0.getValueType());
1493  // fold (mulhu x, undef) -> 0
1494  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1495    return DAG.getConstant(0, VT);
1496
1497  return SDOperand();
1498}
1499
1500/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1501/// compute two values. LoOp and HiOp give the opcodes for the two computations
1502/// that are being performed. Return true if a simplification was made.
1503///
1504SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1505                                                  unsigned HiOp) {
1506  // If the high half is not needed, just compute the low half.
1507  bool HiExists = N->hasAnyUseOfValue(1);
1508  if (!HiExists &&
1509      (!AfterLegalize ||
1510       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1511    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1512                                N->getNumOperands());
1513    return CombineTo(N, Res, Res);
1514  }
1515
1516  // If the low half is not needed, just compute the high half.
1517  bool LoExists = N->hasAnyUseOfValue(0);
1518  if (!LoExists &&
1519      (!AfterLegalize ||
1520       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1521    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1522                                N->getNumOperands());
1523    return CombineTo(N, Res, Res);
1524  }
1525
1526  // If both halves are used, return as it is.
1527  if (LoExists && HiExists)
1528    return SDOperand();
1529
1530  // If the two computed results can be simplified separately, separate them.
1531  if (LoExists) {
1532    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1533                               N->op_begin(), N->getNumOperands());
1534    AddToWorkList(Lo.Val);
1535    SDOperand LoOpt = combine(Lo.Val);
1536    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1537        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1538      return CombineTo(N, LoOpt, LoOpt);
1539  }
1540
1541  if (HiExists) {
1542    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1543                               N->op_begin(), N->getNumOperands());
1544    AddToWorkList(Hi.Val);
1545    SDOperand HiOpt = combine(Hi.Val);
1546    if (HiOpt.Val && HiOpt != Hi &&
1547        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1548      return CombineTo(N, HiOpt, HiOpt);
1549  }
1550  return SDOperand();
1551}
1552
1553SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1554  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1555  if (Res.Val) return Res;
1556
1557  return SDOperand();
1558}
1559
1560SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1561  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1562  if (Res.Val) return Res;
1563
1564  return SDOperand();
1565}
1566
1567SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1568  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1569  if (Res.Val) return Res;
1570
1571  return SDOperand();
1572}
1573
1574SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1575  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1576  if (Res.Val) return Res;
1577
1578  return SDOperand();
1579}
1580
1581/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1582/// two operands of the same opcode, try to simplify it.
1583SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1584  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1585  MVT::ValueType VT = N0.getValueType();
1586  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1587
1588  // For each of OP in AND/OR/XOR:
1589  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1590  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1591  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1592  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1593  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1594       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1595      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1596    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1597                                   N0.getOperand(0).getValueType(),
1598                                   N0.getOperand(0), N1.getOperand(0));
1599    AddToWorkList(ORNode.Val);
1600    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1601  }
1602
1603  // For each of OP in SHL/SRL/SRA/AND...
1604  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1605  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1606  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1607  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1608       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1609      N0.getOperand(1) == N1.getOperand(1)) {
1610    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1611                                   N0.getOperand(0).getValueType(),
1612                                   N0.getOperand(0), N1.getOperand(0));
1613    AddToWorkList(ORNode.Val);
1614    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1615  }
1616
1617  return SDOperand();
1618}
1619
1620SDOperand DAGCombiner::visitAND(SDNode *N) {
1621  SDOperand N0 = N->getOperand(0);
1622  SDOperand N1 = N->getOperand(1);
1623  SDOperand LL, LR, RL, RR, CC0, CC1;
1624  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1626  MVT::ValueType VT = N1.getValueType();
1627  unsigned BitWidth = MVT::getSizeInBits(VT);
1628
1629  // fold vector ops
1630  if (MVT::isVector(VT)) {
1631    SDOperand FoldedVOp = SimplifyVBinOp(N);
1632    if (FoldedVOp.Val) return FoldedVOp;
1633  }
1634
1635  // fold (and x, undef) -> 0
1636  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1637    return DAG.getConstant(0, VT);
1638  // fold (and c1, c2) -> c1&c2
1639  if (N0C && N1C)
1640    return DAG.getNode(ISD::AND, VT, N0, N1);
1641  // canonicalize constant to RHS
1642  if (N0C && !N1C)
1643    return DAG.getNode(ISD::AND, VT, N1, N0);
1644  // fold (and x, -1) -> x
1645  if (N1C && N1C->isAllOnesValue())
1646    return N0;
1647  // if (and x, c) is known to be zero, return 0
1648  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1649                                   APInt::getAllOnesValue(BitWidth)))
1650    return DAG.getConstant(0, VT);
1651  // reassociate and
1652  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1653  if (RAND.Val != 0)
1654    return RAND;
1655  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1656  if (N1C && N0.getOpcode() == ISD::OR)
1657    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1658      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
1659        return N1;
1660  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1661  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1662    SDOperand N0Op0 = N0.getOperand(0);
1663    APInt Mask = ~N1C->getAPIntValue();
1664    Mask.trunc(N0Op0.getValueSizeInBits());
1665    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1666      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1667                                   N0Op0);
1668
1669      // Replace uses of the AND with uses of the Zero extend node.
1670      CombineTo(N, Zext);
1671
1672      // We actually want to replace all uses of the any_extend with the
1673      // zero_extend, to avoid duplicating things.  This will later cause this
1674      // AND to be folded.
1675      CombineTo(N0.Val, Zext);
1676      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1677    }
1678  }
1679  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1680  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1681    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1682    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1683
1684    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1685        MVT::isInteger(LL.getValueType())) {
1686      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1687      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
1688        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1689        AddToWorkList(ORNode.Val);
1690        return DAG.getSetCC(VT, ORNode, LR, Op1);
1691      }
1692      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1693      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1694        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1695        AddToWorkList(ANDNode.Val);
1696        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1697      }
1698      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1699      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1700        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1701        AddToWorkList(ORNode.Val);
1702        return DAG.getSetCC(VT, ORNode, LR, Op1);
1703      }
1704    }
1705    // canonicalize equivalent to ll == rl
1706    if (LL == RR && LR == RL) {
1707      Op1 = ISD::getSetCCSwappedOperands(Op1);
1708      std::swap(RL, RR);
1709    }
1710    if (LL == RL && LR == RR) {
1711      bool isInteger = MVT::isInteger(LL.getValueType());
1712      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1713      if (Result != ISD::SETCC_INVALID)
1714        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1715    }
1716  }
1717
1718  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1719  if (N0.getOpcode() == N1.getOpcode()) {
1720    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1721    if (Tmp.Val) return Tmp;
1722  }
1723
1724  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1725  // fold (and (sra)) -> (and (srl)) when possible.
1726  if (!MVT::isVector(VT) &&
1727      SimplifyDemandedBits(SDOperand(N, 0)))
1728    return SDOperand(N, 0);
1729  // fold (zext_inreg (extload x)) -> (zextload x)
1730  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1731    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1732    MVT::ValueType EVT = LN0->getMemoryVT();
1733    // If we zero all the possible extended bits, then we can turn this into
1734    // a zextload if we are running before legalize or the operation is legal.
1735    unsigned BitWidth = N1.getValueSizeInBits();
1736    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1737                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1738        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1739      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1740                                         LN0->getBasePtr(), LN0->getSrcValue(),
1741                                         LN0->getSrcValueOffset(), EVT,
1742                                         LN0->isVolatile(),
1743                                         LN0->getAlignment());
1744      AddToWorkList(N);
1745      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1746      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1747    }
1748  }
1749  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1750  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1751      N0.hasOneUse()) {
1752    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1753    MVT::ValueType EVT = LN0->getMemoryVT();
1754    // If we zero all the possible extended bits, then we can turn this into
1755    // a zextload if we are running before legalize or the operation is legal.
1756    unsigned BitWidth = N1.getValueSizeInBits();
1757    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1758                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1759        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1760      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1761                                         LN0->getBasePtr(), LN0->getSrcValue(),
1762                                         LN0->getSrcValueOffset(), EVT,
1763                                         LN0->isVolatile(),
1764                                         LN0->getAlignment());
1765      AddToWorkList(N);
1766      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1767      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1768    }
1769  }
1770
1771  // fold (and (load x), 255) -> (zextload x, i8)
1772  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1773  if (N1C && N0.getOpcode() == ISD::LOAD) {
1774    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1775    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1776        LN0->isUnindexed() && N0.hasOneUse()) {
1777      MVT::ValueType EVT, LoadedVT;
1778      if (N1C->getAPIntValue() == 255)
1779        EVT = MVT::i8;
1780      else if (N1C->getAPIntValue() == 65535)
1781        EVT = MVT::i16;
1782      else if (N1C->getAPIntValue() == ~0U)
1783        EVT = MVT::i32;
1784      else
1785        EVT = MVT::Other;
1786
1787      LoadedVT = LN0->getMemoryVT();
1788      if (EVT != MVT::Other && LoadedVT > EVT &&
1789          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1790        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1791        // For big endian targets, we need to add an offset to the pointer to
1792        // load the correct bytes.  For little endian systems, we merely need to
1793        // read fewer bytes from the same pointer.
1794        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1795        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1796        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1797        unsigned Alignment = LN0->getAlignment();
1798        SDOperand NewPtr = LN0->getBasePtr();
1799        if (TLI.isBigEndian()) {
1800          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1801                               DAG.getConstant(PtrOff, PtrType));
1802          Alignment = MinAlign(Alignment, PtrOff);
1803        }
1804        AddToWorkList(NewPtr.Val);
1805        SDOperand Load =
1806          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1807                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1808                         LN0->isVolatile(), Alignment);
1809        AddToWorkList(N);
1810        CombineTo(N0.Val, Load, Load.getValue(1));
1811        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1812      }
1813    }
1814  }
1815
1816  return SDOperand();
1817}
1818
1819SDOperand DAGCombiner::visitOR(SDNode *N) {
1820  SDOperand N0 = N->getOperand(0);
1821  SDOperand N1 = N->getOperand(1);
1822  SDOperand LL, LR, RL, RR, CC0, CC1;
1823  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1824  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1825  MVT::ValueType VT = N1.getValueType();
1826
1827  // fold vector ops
1828  if (MVT::isVector(VT)) {
1829    SDOperand FoldedVOp = SimplifyVBinOp(N);
1830    if (FoldedVOp.Val) return FoldedVOp;
1831  }
1832
1833  // fold (or x, undef) -> -1
1834  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1835    return DAG.getConstant(~0ULL, VT);
1836  // fold (or c1, c2) -> c1|c2
1837  if (N0C && N1C)
1838    return DAG.getNode(ISD::OR, VT, N0, N1);
1839  // canonicalize constant to RHS
1840  if (N0C && !N1C)
1841    return DAG.getNode(ISD::OR, VT, N1, N0);
1842  // fold (or x, 0) -> x
1843  if (N1C && N1C->isNullValue())
1844    return N0;
1845  // fold (or x, -1) -> -1
1846  if (N1C && N1C->isAllOnesValue())
1847    return N1;
1848  // fold (or x, c) -> c iff (x & ~c) == 0
1849  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1850    return N1;
1851  // reassociate or
1852  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1853  if (ROR.Val != 0)
1854    return ROR;
1855  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1856  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1857             isa<ConstantSDNode>(N0.getOperand(1))) {
1858    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1859    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1860                                                 N1),
1861                       DAG.getConstant(N1C->getAPIntValue() |
1862                                       C1->getAPIntValue(), VT));
1863  }
1864  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1865  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1866    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1867    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1868
1869    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1870        MVT::isInteger(LL.getValueType())) {
1871      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1872      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1873      if (cast<ConstantSDNode>(LR)->isNullValue() &&
1874          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1875        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1876        AddToWorkList(ORNode.Val);
1877        return DAG.getSetCC(VT, ORNode, LR, Op1);
1878      }
1879      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1880      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1881      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1882          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1883        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1884        AddToWorkList(ANDNode.Val);
1885        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1886      }
1887    }
1888    // canonicalize equivalent to ll == rl
1889    if (LL == RR && LR == RL) {
1890      Op1 = ISD::getSetCCSwappedOperands(Op1);
1891      std::swap(RL, RR);
1892    }
1893    if (LL == RL && LR == RR) {
1894      bool isInteger = MVT::isInteger(LL.getValueType());
1895      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1896      if (Result != ISD::SETCC_INVALID)
1897        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1898    }
1899  }
1900
1901  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1902  if (N0.getOpcode() == N1.getOpcode()) {
1903    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1904    if (Tmp.Val) return Tmp;
1905  }
1906
1907  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1908  if (N0.getOpcode() == ISD::AND &&
1909      N1.getOpcode() == ISD::AND &&
1910      N0.getOperand(1).getOpcode() == ISD::Constant &&
1911      N1.getOperand(1).getOpcode() == ISD::Constant &&
1912      // Don't increase # computations.
1913      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1914    // We can only do this xform if we know that bits from X that are set in C2
1915    // but not in C1 are already zero.  Likewise for Y.
1916    const APInt &LHSMask =
1917      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1918    const APInt &RHSMask =
1919      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1920
1921    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1922        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1923      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1924      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1925    }
1926  }
1927
1928
1929  // See if this is some rotate idiom.
1930  if (SDNode *Rot = MatchRotate(N0, N1))
1931    return SDOperand(Rot, 0);
1932
1933  return SDOperand();
1934}
1935
1936
1937/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1938static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1939  if (Op.getOpcode() == ISD::AND) {
1940    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1941      Mask = Op.getOperand(1);
1942      Op = Op.getOperand(0);
1943    } else {
1944      return false;
1945    }
1946  }
1947
1948  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1949    Shift = Op;
1950    return true;
1951  }
1952  return false;
1953}
1954
1955
1956// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1957// idioms for rotate, and if the target supports rotation instructions, generate
1958// a rot[lr].
1959SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1960  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1961  MVT::ValueType VT = LHS.getValueType();
1962  if (!TLI.isTypeLegal(VT)) return 0;
1963
1964  // The target must have at least one rotate flavor.
1965  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1966  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1967  if (!HasROTL && !HasROTR) return 0;
1968
1969  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1970  SDOperand LHSShift;   // The shift.
1971  SDOperand LHSMask;    // AND value if any.
1972  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1973    return 0; // Not part of a rotate.
1974
1975  SDOperand RHSShift;   // The shift.
1976  SDOperand RHSMask;    // AND value if any.
1977  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1978    return 0; // Not part of a rotate.
1979
1980  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1981    return 0;   // Not shifting the same value.
1982
1983  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1984    return 0;   // Shifts must disagree.
1985
1986  // Canonicalize shl to left side in a shl/srl pair.
1987  if (RHSShift.getOpcode() == ISD::SHL) {
1988    std::swap(LHS, RHS);
1989    std::swap(LHSShift, RHSShift);
1990    std::swap(LHSMask , RHSMask );
1991  }
1992
1993  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1994  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1995  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1996  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1997
1998  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1999  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
2000  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
2001      RHSShiftAmt.getOpcode() == ISD::Constant) {
2002    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
2003    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
2004    if ((LShVal + RShVal) != OpSizeInBits)
2005      return 0;
2006
2007    SDOperand Rot;
2008    if (HasROTL)
2009      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
2010    else
2011      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
2012
2013    // If there is an AND of either shifted operand, apply it to the result.
2014    if (LHSMask.Val || RHSMask.Val) {
2015      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
2016
2017      if (LHSMask.Val) {
2018        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
2019        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
2020      }
2021      if (RHSMask.Val) {
2022        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
2023        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
2024      }
2025
2026      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
2027    }
2028
2029    return Rot.Val;
2030  }
2031
2032  // If there is a mask here, and we have a variable shift, we can't be sure
2033  // that we're masking out the right stuff.
2034  if (LHSMask.Val || RHSMask.Val)
2035    return 0;
2036
2037  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2038  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2039  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2040      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2041    if (ConstantSDNode *SUBC =
2042          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2043      if (SUBC->getAPIntValue() == OpSizeInBits) {
2044        if (HasROTL)
2045          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2046        else
2047          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2048      }
2049    }
2050  }
2051
2052  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2053  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2054  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2055      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2056    if (ConstantSDNode *SUBC =
2057          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2058      if (SUBC->getAPIntValue() == OpSizeInBits) {
2059        if (HasROTL)
2060          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2061        else
2062          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2063      }
2064    }
2065  }
2066
2067  // Look for sign/zext/any-extended cases:
2068  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2069       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2070       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2071      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2072       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2073       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2074    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2075    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2076    if (RExtOp0.getOpcode() == ISD::SUB &&
2077        RExtOp0.getOperand(1) == LExtOp0) {
2078      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2079      //   (rotr x, y)
2080      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2081      //   (rotl x, (sub 32, y))
2082      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2083        if (SUBC->getAPIntValue() == OpSizeInBits) {
2084          if (HasROTL)
2085            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2086          else
2087            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2088        }
2089      }
2090    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2091               RExtOp0 == LExtOp0.getOperand(1)) {
2092      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2093      //   (rotl x, y)
2094      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2095      //   (rotr x, (sub 32, y))
2096      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2097        if (SUBC->getAPIntValue() == OpSizeInBits) {
2098          if (HasROTL)
2099            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2100          else
2101            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2102        }
2103      }
2104    }
2105  }
2106
2107  return 0;
2108}
2109
2110
2111SDOperand DAGCombiner::visitXOR(SDNode *N) {
2112  SDOperand N0 = N->getOperand(0);
2113  SDOperand N1 = N->getOperand(1);
2114  SDOperand LHS, RHS, CC;
2115  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2116  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2117  MVT::ValueType VT = N0.getValueType();
2118
2119  // fold vector ops
2120  if (MVT::isVector(VT)) {
2121    SDOperand FoldedVOp = SimplifyVBinOp(N);
2122    if (FoldedVOp.Val) return FoldedVOp;
2123  }
2124
2125  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
2126  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
2127    return DAG.getConstant(0, VT);
2128  // fold (xor x, undef) -> undef
2129  if (N0.getOpcode() == ISD::UNDEF)
2130    return N0;
2131  if (N1.getOpcode() == ISD::UNDEF)
2132    return N1;
2133  // fold (xor c1, c2) -> c1^c2
2134  if (N0C && N1C)
2135    return DAG.getNode(ISD::XOR, VT, N0, N1);
2136  // canonicalize constant to RHS
2137  if (N0C && !N1C)
2138    return DAG.getNode(ISD::XOR, VT, N1, N0);
2139  // fold (xor x, 0) -> x
2140  if (N1C && N1C->isNullValue())
2141    return N0;
2142  // reassociate xor
2143  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2144  if (RXOR.Val != 0)
2145    return RXOR;
2146  // fold !(x cc y) -> (x !cc y)
2147  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2148    bool isInt = MVT::isInteger(LHS.getValueType());
2149    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2150                                               isInt);
2151    if (N0.getOpcode() == ISD::SETCC)
2152      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2153    if (N0.getOpcode() == ISD::SELECT_CC)
2154      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2155    assert(0 && "Unhandled SetCC Equivalent!");
2156    abort();
2157  }
2158  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2159  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2160      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2161    SDOperand V = N0.getOperand(0);
2162    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2163                    DAG.getConstant(1, V.getValueType()));
2164    AddToWorkList(V.Val);
2165    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2166  }
2167
2168  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2169  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
2170      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2171    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2172    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2173      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2174      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2175      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2176      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2177      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2178    }
2179  }
2180  // fold !(x or y) -> (!x and !y) iff x or y are constants
2181  if (N1C && N1C->isAllOnesValue() &&
2182      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2183    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2184    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2185      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2186      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2187      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2188      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2189      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2190    }
2191  }
2192  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2193  if (N1C && N0.getOpcode() == ISD::XOR) {
2194    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2195    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2196    if (N00C)
2197      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2198                         DAG.getConstant(N1C->getAPIntValue()^
2199                                         N00C->getAPIntValue(), VT));
2200    if (N01C)
2201      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2202                         DAG.getConstant(N1C->getAPIntValue()^
2203                                         N01C->getAPIntValue(), VT));
2204  }
2205  // fold (xor x, x) -> 0
2206  if (N0 == N1) {
2207    if (!MVT::isVector(VT)) {
2208      return DAG.getConstant(0, VT);
2209    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2210      // Produce a vector of zeros.
2211      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2212      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2213      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2214    }
2215  }
2216
2217  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2218  if (N0.getOpcode() == N1.getOpcode()) {
2219    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2220    if (Tmp.Val) return Tmp;
2221  }
2222
2223  // Simplify the expression using non-local knowledge.
2224  if (!MVT::isVector(VT) &&
2225      SimplifyDemandedBits(SDOperand(N, 0)))
2226    return SDOperand(N, 0);
2227
2228  return SDOperand();
2229}
2230
2231/// visitShiftByConstant - Handle transforms common to the three shifts, when
2232/// the shift amount is a constant.
2233SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2234  SDNode *LHS = N->getOperand(0).Val;
2235  if (!LHS->hasOneUse()) return SDOperand();
2236
2237  // We want to pull some binops through shifts, so that we have (and (shift))
2238  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2239  // thing happens with address calculations, so it's important to canonicalize
2240  // it.
2241  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2242
2243  switch (LHS->getOpcode()) {
2244  default: return SDOperand();
2245  case ISD::OR:
2246  case ISD::XOR:
2247    HighBitSet = false; // We can only transform sra if the high bit is clear.
2248    break;
2249  case ISD::AND:
2250    HighBitSet = true;  // We can only transform sra if the high bit is set.
2251    break;
2252  case ISD::ADD:
2253    if (N->getOpcode() != ISD::SHL)
2254      return SDOperand(); // only shl(add) not sr[al](add).
2255    HighBitSet = false; // We can only transform sra if the high bit is clear.
2256    break;
2257  }
2258
2259  // We require the RHS of the binop to be a constant as well.
2260  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2261  if (!BinOpCst) return SDOperand();
2262
2263
2264  // FIXME: disable this for unless the input to the binop is a shift by a
2265  // constant.  If it is not a shift, it pessimizes some common cases like:
2266  //
2267  //void foo(int *X, int i) { X[i & 1235] = 1; }
2268  //int bar(int *X, int i) { return X[i & 255]; }
2269  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2270  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2271       BinOpLHSVal->getOpcode() != ISD::SRA &&
2272       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2273      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2274    return SDOperand();
2275
2276  MVT::ValueType VT = N->getValueType(0);
2277
2278  // If this is a signed shift right, and the high bit is modified
2279  // by the logical operation, do not perform the transformation.
2280  // The highBitSet boolean indicates the value of the high bit of
2281  // the constant which would cause it to be modified for this
2282  // operation.
2283  if (N->getOpcode() == ISD::SRA) {
2284    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2285    if (BinOpRHSSignSet != HighBitSet)
2286      return SDOperand();
2287  }
2288
2289  // Fold the constants, shifting the binop RHS by the shift amount.
2290  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2291                                 LHS->getOperand(1), N->getOperand(1));
2292
2293  // Create the new shift.
2294  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2295                                   N->getOperand(1));
2296
2297  // Create the new binop.
2298  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2299}
2300
2301
2302SDOperand DAGCombiner::visitSHL(SDNode *N) {
2303  SDOperand N0 = N->getOperand(0);
2304  SDOperand N1 = N->getOperand(1);
2305  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2306  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2307  MVT::ValueType VT = N0.getValueType();
2308  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2309
2310  // fold (shl c1, c2) -> c1<<c2
2311  if (N0C && N1C)
2312    return DAG.getNode(ISD::SHL, VT, N0, N1);
2313  // fold (shl 0, x) -> 0
2314  if (N0C && N0C->isNullValue())
2315    return N0;
2316  // fold (shl x, c >= size(x)) -> undef
2317  if (N1C && N1C->getValue() >= OpSizeInBits)
2318    return DAG.getNode(ISD::UNDEF, VT);
2319  // fold (shl x, 0) -> x
2320  if (N1C && N1C->isNullValue())
2321    return N0;
2322  // if (shl x, c) is known to be zero, return 0
2323  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2324                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2325    return DAG.getConstant(0, VT);
2326  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2327    return SDOperand(N, 0);
2328  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2329  if (N1C && N0.getOpcode() == ISD::SHL &&
2330      N0.getOperand(1).getOpcode() == ISD::Constant) {
2331    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2332    uint64_t c2 = N1C->getValue();
2333    if (c1 + c2 > OpSizeInBits)
2334      return DAG.getConstant(0, VT);
2335    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2336                       DAG.getConstant(c1 + c2, N1.getValueType()));
2337  }
2338  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2339  //                               (srl (and x, -1 << c1), c1-c2)
2340  if (N1C && N0.getOpcode() == ISD::SRL &&
2341      N0.getOperand(1).getOpcode() == ISD::Constant) {
2342    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2343    uint64_t c2 = N1C->getValue();
2344    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2345                                 DAG.getConstant(~0ULL << c1, VT));
2346    if (c2 > c1)
2347      return DAG.getNode(ISD::SHL, VT, Mask,
2348                         DAG.getConstant(c2-c1, N1.getValueType()));
2349    else
2350      return DAG.getNode(ISD::SRL, VT, Mask,
2351                         DAG.getConstant(c1-c2, N1.getValueType()));
2352  }
2353  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2354  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2355    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2356                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2357
2358  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2359}
2360
2361SDOperand DAGCombiner::visitSRA(SDNode *N) {
2362  SDOperand N0 = N->getOperand(0);
2363  SDOperand N1 = N->getOperand(1);
2364  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2365  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2366  MVT::ValueType VT = N0.getValueType();
2367
2368  // fold (sra c1, c2) -> c1>>c2
2369  if (N0C && N1C)
2370    return DAG.getNode(ISD::SRA, VT, N0, N1);
2371  // fold (sra 0, x) -> 0
2372  if (N0C && N0C->isNullValue())
2373    return N0;
2374  // fold (sra -1, x) -> -1
2375  if (N0C && N0C->isAllOnesValue())
2376    return N0;
2377  // fold (sra x, c >= size(x)) -> undef
2378  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2379    return DAG.getNode(ISD::UNDEF, VT);
2380  // fold (sra x, 0) -> x
2381  if (N1C && N1C->isNullValue())
2382    return N0;
2383  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2384  // sext_inreg.
2385  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2386    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2387    MVT::ValueType EVT;
2388    switch (LowBits) {
2389    default: EVT = MVT::Other; break;
2390    case  1: EVT = MVT::i1;    break;
2391    case  8: EVT = MVT::i8;    break;
2392    case 16: EVT = MVT::i16;   break;
2393    case 32: EVT = MVT::i32;   break;
2394    }
2395    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2396      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2397                         DAG.getValueType(EVT));
2398  }
2399
2400  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2401  if (N1C && N0.getOpcode() == ISD::SRA) {
2402    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2403      unsigned Sum = N1C->getValue() + C1->getValue();
2404      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2405      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2406                         DAG.getConstant(Sum, N1C->getValueType(0)));
2407    }
2408  }
2409
2410  // fold sra (shl X, m), result_size - n
2411  // -> (sign_extend (trunc (shl X, result_size - n - m))) for
2412  // result_size - n != m.
2413  // If truncate is free for the target sext(shl) is likely to result in better
2414  // code.
2415  if (N0.getOpcode() == ISD::SHL) {
2416    // Get the two constanst of the shifts, CN0 = m, CN = n.
2417    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2418    if (N01C && N1C) {
2419      // Determine what the truncate's result bitsize and type would be.
2420      unsigned VTValSize = MVT::getSizeInBits(VT);
2421      MVT::ValueType TruncVT = MVT::getIntegerType(VTValSize - N1C->getValue());
2422      // Determine the residual right-shift amount.
2423      unsigned ShiftAmt = N1C->getValue() - N01C->getValue();
2424
2425      // If the shift is not a no-op (in which case this should be just a sign
2426      // extend already), the truncated to type is legal, sign_extend is legal
2427      // on that type, and the the truncate to that type is both legal and free,
2428      // perform the transform.
2429      if (ShiftAmt &&
2430          TLI.isTypeLegal(TruncVT) &&
2431          TLI.isOperationLegal(ISD::SIGN_EXTEND, TruncVT) &&
2432          TLI.isOperationLegal(ISD::TRUNCATE, VT) &&
2433          TLI.isTruncateFree(VT, TruncVT)) {
2434
2435          SDOperand Amt = DAG.getConstant(ShiftAmt, TLI.getShiftAmountTy());
2436          SDOperand Shift = DAG.getNode(ISD::SRL, VT, N0.getOperand(0), Amt);
2437          SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, TruncVT, Shift);
2438          return DAG.getNode(ISD::SIGN_EXTEND, N->getValueType(0), Trunc);
2439      }
2440    }
2441  }
2442
2443  // Simplify, based on bits shifted out of the LHS.
2444  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2445    return SDOperand(N, 0);
2446
2447
2448  // If the sign bit is known to be zero, switch this to a SRL.
2449  if (DAG.SignBitIsZero(N0))
2450    return DAG.getNode(ISD::SRL, VT, N0, N1);
2451
2452  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2453}
2454
2455SDOperand DAGCombiner::visitSRL(SDNode *N) {
2456  SDOperand N0 = N->getOperand(0);
2457  SDOperand N1 = N->getOperand(1);
2458  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2459  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2460  MVT::ValueType VT = N0.getValueType();
2461  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2462
2463  // fold (srl c1, c2) -> c1 >>u c2
2464  if (N0C && N1C)
2465    return DAG.getNode(ISD::SRL, VT, N0, N1);
2466  // fold (srl 0, x) -> 0
2467  if (N0C && N0C->isNullValue())
2468    return N0;
2469  // fold (srl x, c >= size(x)) -> undef
2470  if (N1C && N1C->getValue() >= OpSizeInBits)
2471    return DAG.getNode(ISD::UNDEF, VT);
2472  // fold (srl x, 0) -> x
2473  if (N1C && N1C->isNullValue())
2474    return N0;
2475  // if (srl x, c) is known to be zero, return 0
2476  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2477                                   APInt::getAllOnesValue(OpSizeInBits)))
2478    return DAG.getConstant(0, VT);
2479
2480  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2481  if (N1C && N0.getOpcode() == ISD::SRL &&
2482      N0.getOperand(1).getOpcode() == ISD::Constant) {
2483    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2484    uint64_t c2 = N1C->getValue();
2485    if (c1 + c2 > OpSizeInBits)
2486      return DAG.getConstant(0, VT);
2487    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2488                       DAG.getConstant(c1 + c2, N1.getValueType()));
2489  }
2490
2491  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2492  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2493    // Shifting in all undef bits?
2494    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2495    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2496      return DAG.getNode(ISD::UNDEF, VT);
2497
2498    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2499    AddToWorkList(SmallShift.Val);
2500    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2501  }
2502
2503  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2504  // bit, which is unmodified by sra.
2505  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2506    if (N0.getOpcode() == ISD::SRA)
2507      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2508  }
2509
2510  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2511  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2512      N1C->getAPIntValue() == Log2_32(MVT::getSizeInBits(VT))) {
2513    APInt KnownZero, KnownOne;
2514    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2515    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2516
2517    // If any of the input bits are KnownOne, then the input couldn't be all
2518    // zeros, thus the result of the srl will always be zero.
2519    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2520
2521    // If all of the bits input the to ctlz node are known to be zero, then
2522    // the result of the ctlz is "32" and the result of the shift is one.
2523    APInt UnknownBits = ~KnownZero & Mask;
2524    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2525
2526    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2527    if ((UnknownBits & (UnknownBits-1)) == 0) {
2528      // Okay, we know that only that the single bit specified by UnknownBits
2529      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2530      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2531      // to an SRL,XOR pair, which is likely to simplify more.
2532      unsigned ShAmt = UnknownBits.countTrailingZeros();
2533      SDOperand Op = N0.getOperand(0);
2534      if (ShAmt) {
2535        Op = DAG.getNode(ISD::SRL, VT, Op,
2536                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2537        AddToWorkList(Op.Val);
2538      }
2539      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2540    }
2541  }
2542
2543  // fold operands of srl based on knowledge that the low bits are not
2544  // demanded.
2545  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2546    return SDOperand(N, 0);
2547
2548  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2549}
2550
2551SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2552  SDOperand N0 = N->getOperand(0);
2553  MVT::ValueType VT = N->getValueType(0);
2554
2555  // fold (ctlz c1) -> c2
2556  if (isa<ConstantSDNode>(N0))
2557    return DAG.getNode(ISD::CTLZ, VT, N0);
2558  return SDOperand();
2559}
2560
2561SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2562  SDOperand N0 = N->getOperand(0);
2563  MVT::ValueType VT = N->getValueType(0);
2564
2565  // fold (cttz c1) -> c2
2566  if (isa<ConstantSDNode>(N0))
2567    return DAG.getNode(ISD::CTTZ, VT, N0);
2568  return SDOperand();
2569}
2570
2571SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2572  SDOperand N0 = N->getOperand(0);
2573  MVT::ValueType VT = N->getValueType(0);
2574
2575  // fold (ctpop c1) -> c2
2576  if (isa<ConstantSDNode>(N0))
2577    return DAG.getNode(ISD::CTPOP, VT, N0);
2578  return SDOperand();
2579}
2580
2581SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2582  SDOperand N0 = N->getOperand(0);
2583  SDOperand N1 = N->getOperand(1);
2584  SDOperand N2 = N->getOperand(2);
2585  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2586  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2587  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2588  MVT::ValueType VT = N->getValueType(0);
2589  MVT::ValueType VT0 = N0.getValueType();
2590
2591  // fold select C, X, X -> X
2592  if (N1 == N2)
2593    return N1;
2594  // fold select true, X, Y -> X
2595  if (N0C && !N0C->isNullValue())
2596    return N1;
2597  // fold select false, X, Y -> Y
2598  if (N0C && N0C->isNullValue())
2599    return N2;
2600  // fold select C, 1, X -> C | X
2601  if (MVT::i1 == VT && N1C && N1C->getAPIntValue() == 1)
2602    return DAG.getNode(ISD::OR, VT, N0, N2);
2603  // fold select C, 0, 1 -> ~C
2604  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2605      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
2606    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2607    if (VT == VT0)
2608      return XORNode;
2609    AddToWorkList(XORNode.Val);
2610    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2611      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2612    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2613  }
2614  // fold select C, 0, X -> ~C & X
2615  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2616    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2617    AddToWorkList(XORNode.Val);
2618    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2619  }
2620  // fold select C, X, 1 -> ~C | X
2621  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
2622    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2623    AddToWorkList(XORNode.Val);
2624    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2625  }
2626  // fold select C, X, 0 -> C & X
2627  // FIXME: this should check for C type == X type, not i1?
2628  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2629    return DAG.getNode(ISD::AND, VT, N0, N1);
2630  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2631  if (MVT::i1 == VT && N0 == N1)
2632    return DAG.getNode(ISD::OR, VT, N0, N2);
2633  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2634  if (MVT::i1 == VT && N0 == N2)
2635    return DAG.getNode(ISD::AND, VT, N0, N1);
2636
2637  // If we can fold this based on the true/false value, do so.
2638  if (SimplifySelectOps(N, N1, N2))
2639    return SDOperand(N, 0);  // Don't revisit N.
2640
2641  // fold selects based on a setcc into other things, such as min/max/abs
2642  if (N0.getOpcode() == ISD::SETCC) {
2643    // FIXME:
2644    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2645    // having to say they don't support SELECT_CC on every type the DAG knows
2646    // about, since there is no way to mark an opcode illegal at all value types
2647    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2648      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2649                         N1, N2, N0.getOperand(2));
2650    else
2651      return SimplifySelect(N0, N1, N2);
2652  }
2653  return SDOperand();
2654}
2655
2656SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2657  SDOperand N0 = N->getOperand(0);
2658  SDOperand N1 = N->getOperand(1);
2659  SDOperand N2 = N->getOperand(2);
2660  SDOperand N3 = N->getOperand(3);
2661  SDOperand N4 = N->getOperand(4);
2662  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2663
2664  // fold select_cc lhs, rhs, x, x, cc -> x
2665  if (N2 == N3)
2666    return N2;
2667
2668  // Determine if the condition we're dealing with is constant
2669  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
2670  if (SCC.Val) AddToWorkList(SCC.Val);
2671
2672  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2673    if (!SCCC->isNullValue())
2674      return N2;    // cond always true -> true val
2675    else
2676      return N3;    // cond always false -> false val
2677  }
2678
2679  // Fold to a simpler select_cc
2680  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2681    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2682                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2683                       SCC.getOperand(2));
2684
2685  // If we can fold this based on the true/false value, do so.
2686  if (SimplifySelectOps(N, N2, N3))
2687    return SDOperand(N, 0);  // Don't revisit N.
2688
2689  // fold select_cc into other things, such as min/max/abs
2690  return SimplifySelectCC(N0, N1, N2, N3, CC);
2691}
2692
2693SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2694  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2695                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2696}
2697
2698// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2699// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2700// transformation. Returns true if extension are possible and the above
2701// mentioned transformation is profitable.
2702static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2703                                    unsigned ExtOpc,
2704                                    SmallVector<SDNode*, 4> &ExtendNodes,
2705                                    TargetLowering &TLI) {
2706  bool HasCopyToRegUses = false;
2707  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2708  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2709       UI != UE; ++UI) {
2710    SDNode *User = UI->getUser();
2711    if (User == N)
2712      continue;
2713    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2714    if (User->getOpcode() == ISD::SETCC) {
2715      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2716      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2717        // Sign bits will be lost after a zext.
2718        return false;
2719      bool Add = false;
2720      for (unsigned i = 0; i != 2; ++i) {
2721        SDOperand UseOp = User->getOperand(i);
2722        if (UseOp == N0)
2723          continue;
2724        if (!isa<ConstantSDNode>(UseOp))
2725          return false;
2726        Add = true;
2727      }
2728      if (Add)
2729        ExtendNodes.push_back(User);
2730    } else {
2731      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2732        SDOperand UseOp = User->getOperand(i);
2733        if (UseOp == N0) {
2734          // If truncate from extended type to original load type is free
2735          // on this target, then it's ok to extend a CopyToReg.
2736          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2737            HasCopyToRegUses = true;
2738          else
2739            return false;
2740        }
2741      }
2742    }
2743  }
2744
2745  if (HasCopyToRegUses) {
2746    bool BothLiveOut = false;
2747    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2748         UI != UE; ++UI) {
2749      SDNode *User = UI->getUser();
2750      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2751        SDOperand UseOp = User->getOperand(i);
2752        if (UseOp.Val == N && UseOp.ResNo == 0) {
2753          BothLiveOut = true;
2754          break;
2755        }
2756      }
2757    }
2758    if (BothLiveOut)
2759      // Both unextended and extended values are live out. There had better be
2760      // good a reason for the transformation.
2761      return ExtendNodes.size();
2762  }
2763  return true;
2764}
2765
2766SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2767  SDOperand N0 = N->getOperand(0);
2768  MVT::ValueType VT = N->getValueType(0);
2769
2770  // fold (sext c1) -> c1
2771  if (isa<ConstantSDNode>(N0))
2772    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2773
2774  // fold (sext (sext x)) -> (sext x)
2775  // fold (sext (aext x)) -> (sext x)
2776  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2777    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2778
2779  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2780  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2781  if (N0.getOpcode() == ISD::TRUNCATE) {
2782    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2783    if (NarrowLoad.Val) {
2784      if (NarrowLoad.Val != N0.Val)
2785        CombineTo(N0.Val, NarrowLoad);
2786      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2787    }
2788  }
2789
2790  // See if the value being truncated is already sign extended.  If so, just
2791  // eliminate the trunc/sext pair.
2792  if (N0.getOpcode() == ISD::TRUNCATE) {
2793    SDOperand Op = N0.getOperand(0);
2794    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2795    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2796    unsigned DestBits = MVT::getSizeInBits(VT);
2797    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2798
2799    if (OpBits == DestBits) {
2800      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2801      // bits, it is already ready.
2802      if (NumSignBits > DestBits-MidBits)
2803        return Op;
2804    } else if (OpBits < DestBits) {
2805      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2806      // bits, just sext from i32.
2807      if (NumSignBits > OpBits-MidBits)
2808        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2809    } else {
2810      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2811      // bits, just truncate to i32.
2812      if (NumSignBits > OpBits-MidBits)
2813        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2814    }
2815
2816    // fold (sext (truncate x)) -> (sextinreg x).
2817    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2818                                               N0.getValueType())) {
2819      if (Op.getValueType() < VT)
2820        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2821      else if (Op.getValueType() > VT)
2822        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2823      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2824                         DAG.getValueType(N0.getValueType()));
2825    }
2826  }
2827
2828  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2829  if (ISD::isNON_EXTLoad(N0.Val) &&
2830      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2831    bool DoXform = true;
2832    SmallVector<SDNode*, 4> SetCCs;
2833    if (!N0.hasOneUse())
2834      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2835    if (DoXform) {
2836      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2837      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2838                                         LN0->getBasePtr(), LN0->getSrcValue(),
2839                                         LN0->getSrcValueOffset(),
2840                                         N0.getValueType(),
2841                                         LN0->isVolatile(),
2842                                         LN0->getAlignment());
2843      CombineTo(N, ExtLoad);
2844      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2845      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2846      // Extend SetCC uses if necessary.
2847      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2848        SDNode *SetCC = SetCCs[i];
2849        SmallVector<SDOperand, 4> Ops;
2850        for (unsigned j = 0; j != 2; ++j) {
2851          SDOperand SOp = SetCC->getOperand(j);
2852          if (SOp == Trunc)
2853            Ops.push_back(ExtLoad);
2854          else
2855            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2856          }
2857        Ops.push_back(SetCC->getOperand(2));
2858        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2859                                     &Ops[0], Ops.size()));
2860      }
2861      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2862    }
2863  }
2864
2865  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2866  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2867  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2868      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2869    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2870    MVT::ValueType EVT = LN0->getMemoryVT();
2871    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2872      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2873                                         LN0->getBasePtr(), LN0->getSrcValue(),
2874                                         LN0->getSrcValueOffset(), EVT,
2875                                         LN0->isVolatile(),
2876                                         LN0->getAlignment());
2877      CombineTo(N, ExtLoad);
2878      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2879                ExtLoad.getValue(1));
2880      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2881    }
2882  }
2883
2884  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2885  if (N0.getOpcode() == ISD::SETCC) {
2886    SDOperand SCC =
2887      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2888                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2889                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2890    if (SCC.Val) return SCC;
2891  }
2892
2893  // fold (sext x) -> (zext x) if the sign bit is known zero.
2894  if ((!AfterLegalize || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
2895      DAG.SignBitIsZero(N0))
2896    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2897
2898  return SDOperand();
2899}
2900
2901SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2902  SDOperand N0 = N->getOperand(0);
2903  MVT::ValueType VT = N->getValueType(0);
2904
2905  // fold (zext c1) -> c1
2906  if (isa<ConstantSDNode>(N0))
2907    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2908  // fold (zext (zext x)) -> (zext x)
2909  // fold (zext (aext x)) -> (zext x)
2910  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2911    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2912
2913  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2914  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2915  if (N0.getOpcode() == ISD::TRUNCATE) {
2916    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2917    if (NarrowLoad.Val) {
2918      if (NarrowLoad.Val != N0.Val)
2919        CombineTo(N0.Val, NarrowLoad);
2920      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2921    }
2922  }
2923
2924  // fold (zext (truncate x)) -> (and x, mask)
2925  if (N0.getOpcode() == ISD::TRUNCATE &&
2926      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2927    SDOperand Op = N0.getOperand(0);
2928    if (Op.getValueType() < VT) {
2929      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2930    } else if (Op.getValueType() > VT) {
2931      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2932    }
2933    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2934  }
2935
2936  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2937  if (N0.getOpcode() == ISD::AND &&
2938      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2939      N0.getOperand(1).getOpcode() == ISD::Constant) {
2940    SDOperand X = N0.getOperand(0).getOperand(0);
2941    if (X.getValueType() < VT) {
2942      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2943    } else if (X.getValueType() > VT) {
2944      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2945    }
2946    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2947    Mask.zext(MVT::getSizeInBits(VT));
2948    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2949  }
2950
2951  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2952  if (ISD::isNON_EXTLoad(N0.Val) &&
2953      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2954    bool DoXform = true;
2955    SmallVector<SDNode*, 4> SetCCs;
2956    if (!N0.hasOneUse())
2957      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2958    if (DoXform) {
2959      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2960      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2961                                         LN0->getBasePtr(), LN0->getSrcValue(),
2962                                         LN0->getSrcValueOffset(),
2963                                         N0.getValueType(),
2964                                         LN0->isVolatile(),
2965                                         LN0->getAlignment());
2966      CombineTo(N, ExtLoad);
2967      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2968      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2969      // Extend SetCC uses if necessary.
2970      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2971        SDNode *SetCC = SetCCs[i];
2972        SmallVector<SDOperand, 4> Ops;
2973        for (unsigned j = 0; j != 2; ++j) {
2974          SDOperand SOp = SetCC->getOperand(j);
2975          if (SOp == Trunc)
2976            Ops.push_back(ExtLoad);
2977          else
2978            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2979          }
2980        Ops.push_back(SetCC->getOperand(2));
2981        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2982                                     &Ops[0], Ops.size()));
2983      }
2984      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2985    }
2986  }
2987
2988  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2989  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2990  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2991      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2992    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2993    MVT::ValueType EVT = LN0->getMemoryVT();
2994    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2995                                       LN0->getBasePtr(), LN0->getSrcValue(),
2996                                       LN0->getSrcValueOffset(), EVT,
2997                                       LN0->isVolatile(),
2998                                       LN0->getAlignment());
2999    CombineTo(N, ExtLoad);
3000    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3001              ExtLoad.getValue(1));
3002    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3003  }
3004
3005  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3006  if (N0.getOpcode() == ISD::SETCC) {
3007    SDOperand SCC =
3008      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3009                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3010                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3011    if (SCC.Val) return SCC;
3012  }
3013
3014  return SDOperand();
3015}
3016
3017SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
3018  SDOperand N0 = N->getOperand(0);
3019  MVT::ValueType VT = N->getValueType(0);
3020
3021  // fold (aext c1) -> c1
3022  if (isa<ConstantSDNode>(N0))
3023    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
3024  // fold (aext (aext x)) -> (aext x)
3025  // fold (aext (zext x)) -> (zext x)
3026  // fold (aext (sext x)) -> (sext x)
3027  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
3028      N0.getOpcode() == ISD::ZERO_EXTEND ||
3029      N0.getOpcode() == ISD::SIGN_EXTEND)
3030    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3031
3032  // fold (aext (truncate (load x))) -> (aext (smaller load x))
3033  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
3034  if (N0.getOpcode() == ISD::TRUNCATE) {
3035    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
3036    if (NarrowLoad.Val) {
3037      if (NarrowLoad.Val != N0.Val)
3038        CombineTo(N0.Val, NarrowLoad);
3039      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
3040    }
3041  }
3042
3043  // fold (aext (truncate x))
3044  if (N0.getOpcode() == ISD::TRUNCATE) {
3045    SDOperand TruncOp = N0.getOperand(0);
3046    if (TruncOp.getValueType() == VT)
3047      return TruncOp; // x iff x size == zext size.
3048    if (TruncOp.getValueType() > VT)
3049      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
3050    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
3051  }
3052
3053  // fold (aext (and (trunc x), cst)) -> (and x, cst).
3054  if (N0.getOpcode() == ISD::AND &&
3055      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
3056      N0.getOperand(1).getOpcode() == ISD::Constant) {
3057    SDOperand X = N0.getOperand(0).getOperand(0);
3058    if (X.getValueType() < VT) {
3059      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
3060    } else if (X.getValueType() > VT) {
3061      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3062    }
3063    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3064    Mask.zext(MVT::getSizeInBits(VT));
3065    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
3066  }
3067
3068  // fold (aext (load x)) -> (aext (truncate (extload x)))
3069  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3070      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3071    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3072    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3073                                       LN0->getBasePtr(), LN0->getSrcValue(),
3074                                       LN0->getSrcValueOffset(),
3075                                       N0.getValueType(),
3076                                       LN0->isVolatile(),
3077                                       LN0->getAlignment());
3078    CombineTo(N, ExtLoad);
3079    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3080              ExtLoad.getValue(1));
3081    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3082  }
3083
3084  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3085  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3086  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3087  if (N0.getOpcode() == ISD::LOAD &&
3088      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3089      N0.hasOneUse()) {
3090    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3091    MVT::ValueType EVT = LN0->getMemoryVT();
3092    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3093                                       LN0->getChain(), LN0->getBasePtr(),
3094                                       LN0->getSrcValue(),
3095                                       LN0->getSrcValueOffset(), EVT,
3096                                       LN0->isVolatile(),
3097                                       LN0->getAlignment());
3098    CombineTo(N, ExtLoad);
3099    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3100              ExtLoad.getValue(1));
3101    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3102  }
3103
3104  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3105  if (N0.getOpcode() == ISD::SETCC) {
3106    SDOperand SCC =
3107      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3108                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3109                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3110    if (SCC.Val)
3111      return SCC;
3112  }
3113
3114  return SDOperand();
3115}
3116
3117/// GetDemandedBits - See if the specified operand can be simplified with the
3118/// knowledge that only the bits specified by Mask are used.  If so, return the
3119/// simpler operand, otherwise return a null SDOperand.
3120SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3121  switch (V.getOpcode()) {
3122  default: break;
3123  case ISD::OR:
3124  case ISD::XOR:
3125    // If the LHS or RHS don't contribute bits to the or, drop them.
3126    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3127      return V.getOperand(1);
3128    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3129      return V.getOperand(0);
3130    break;
3131  case ISD::SRL:
3132    // Only look at single-use SRLs.
3133    if (!V.Val->hasOneUse())
3134      break;
3135    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3136      // See if we can recursively simplify the LHS.
3137      unsigned Amt = RHSC->getValue();
3138      APInt NewMask = Mask << Amt;
3139      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3140      if (SimplifyLHS.Val) {
3141        return DAG.getNode(ISD::SRL, V.getValueType(),
3142                           SimplifyLHS, V.getOperand(1));
3143      }
3144    }
3145  }
3146  return SDOperand();
3147}
3148
3149/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3150/// bits and then truncated to a narrower type and where N is a multiple
3151/// of number of bits of the narrower type, transform it to a narrower load
3152/// from address + N / num of bits of new type. If the result is to be
3153/// extended, also fold the extension to form a extending load.
3154SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3155  unsigned Opc = N->getOpcode();
3156  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3157  SDOperand N0 = N->getOperand(0);
3158  MVT::ValueType VT = N->getValueType(0);
3159  MVT::ValueType EVT = N->getValueType(0);
3160
3161  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3162  // extended to VT.
3163  if (Opc == ISD::SIGN_EXTEND_INREG) {
3164    ExtType = ISD::SEXTLOAD;
3165    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3166    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3167      return SDOperand();
3168  }
3169
3170  unsigned EVTBits = MVT::getSizeInBits(EVT);
3171  unsigned ShAmt = 0;
3172  bool CombineSRL =  false;
3173  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3174    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3175      ShAmt = N01->getValue();
3176      // Is the shift amount a multiple of size of VT?
3177      if ((ShAmt & (EVTBits-1)) == 0) {
3178        N0 = N0.getOperand(0);
3179        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3180          return SDOperand();
3181        CombineSRL = true;
3182      }
3183    }
3184  }
3185
3186  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3187      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3188      // zero extended form: by shrinking the load, we lose track of the fact
3189      // that it is already zero extended.
3190      // FIXME: This should be reevaluated.
3191      VT != MVT::i1) {
3192    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3193           "Cannot truncate to larger type!");
3194    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3195    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3196    // For big endian targets, we need to adjust the offset to the pointer to
3197    // load the correct bytes.
3198    if (TLI.isBigEndian()) {
3199      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3200      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3201      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3202    }
3203    uint64_t PtrOff =  ShAmt / 8;
3204    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3205    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3206                                   DAG.getConstant(PtrOff, PtrType));
3207    AddToWorkList(NewPtr.Val);
3208    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3209      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3210                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3211                    LN0->isVolatile(), NewAlign)
3212      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3213                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3214                       LN0->isVolatile(), NewAlign);
3215    AddToWorkList(N);
3216    if (CombineSRL) {
3217      WorkListRemover DeadNodes(*this);
3218      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3219                                    &DeadNodes);
3220      CombineTo(N->getOperand(0).Val, Load);
3221    } else
3222      CombineTo(N0.Val, Load, Load.getValue(1));
3223    if (ShAmt) {
3224      if (Opc == ISD::SIGN_EXTEND_INREG)
3225        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3226      else
3227        return DAG.getNode(Opc, VT, Load);
3228    }
3229    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3230  }
3231
3232  return SDOperand();
3233}
3234
3235
3236SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3237  SDOperand N0 = N->getOperand(0);
3238  SDOperand N1 = N->getOperand(1);
3239  MVT::ValueType VT = N->getValueType(0);
3240  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3241  unsigned VTBits = MVT::getSizeInBits(VT);
3242  unsigned EVTBits = MVT::getSizeInBits(EVT);
3243
3244  // fold (sext_in_reg c1) -> c1
3245  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3246    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3247
3248  // If the input is already sign extended, just drop the extension.
3249  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3250    return N0;
3251
3252  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3253  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3254      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3255    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3256  }
3257
3258  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3259  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3260    return DAG.getZeroExtendInReg(N0, EVT);
3261
3262  // fold operands of sext_in_reg based on knowledge that the top bits are not
3263  // demanded.
3264  if (SimplifyDemandedBits(SDOperand(N, 0)))
3265    return SDOperand(N, 0);
3266
3267  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3268  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3269  SDOperand NarrowLoad = ReduceLoadWidth(N);
3270  if (NarrowLoad.Val)
3271    return NarrowLoad;
3272
3273  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3274  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3275  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3276  if (N0.getOpcode() == ISD::SRL) {
3277    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3278      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3279        // We can turn this into an SRA iff the input to the SRL is already sign
3280        // extended enough.
3281        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3282        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3283          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3284      }
3285  }
3286
3287  // fold (sext_inreg (extload x)) -> (sextload x)
3288  if (ISD::isEXTLoad(N0.Val) &&
3289      ISD::isUNINDEXEDLoad(N0.Val) &&
3290      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3291      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3292    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3293    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3294                                       LN0->getBasePtr(), LN0->getSrcValue(),
3295                                       LN0->getSrcValueOffset(), EVT,
3296                                       LN0->isVolatile(),
3297                                       LN0->getAlignment());
3298    CombineTo(N, ExtLoad);
3299    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3300    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3301  }
3302  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3303  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3304      N0.hasOneUse() &&
3305      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3306      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3307    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3308    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3309                                       LN0->getBasePtr(), LN0->getSrcValue(),
3310                                       LN0->getSrcValueOffset(), EVT,
3311                                       LN0->isVolatile(),
3312                                       LN0->getAlignment());
3313    CombineTo(N, ExtLoad);
3314    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3315    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3316  }
3317  return SDOperand();
3318}
3319
3320SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3321  SDOperand N0 = N->getOperand(0);
3322  MVT::ValueType VT = N->getValueType(0);
3323
3324  // noop truncate
3325  if (N0.getValueType() == N->getValueType(0))
3326    return N0;
3327  // fold (truncate c1) -> c1
3328  if (isa<ConstantSDNode>(N0))
3329    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3330  // fold (truncate (truncate x)) -> (truncate x)
3331  if (N0.getOpcode() == ISD::TRUNCATE)
3332    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3333  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3334  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3335      N0.getOpcode() == ISD::ANY_EXTEND) {
3336    if (N0.getOperand(0).getValueType() < VT)
3337      // if the source is smaller than the dest, we still need an extend
3338      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3339    else if (N0.getOperand(0).getValueType() > VT)
3340      // if the source is larger than the dest, than we just need the truncate
3341      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3342    else
3343      // if the source and dest are the same type, we can drop both the extend
3344      // and the truncate
3345      return N0.getOperand(0);
3346  }
3347
3348  // See if we can simplify the input to this truncate through knowledge that
3349  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3350  // -> trunc y
3351  SDOperand Shorter =
3352    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3353                                             MVT::getSizeInBits(VT)));
3354  if (Shorter.Val)
3355    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3356
3357  // fold (truncate (load x)) -> (smaller load x)
3358  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3359  return ReduceLoadWidth(N);
3360}
3361
3362static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
3363  SDOperand Elt = N->getOperand(i);
3364  if (Elt.getOpcode() != ISD::MERGE_VALUES)
3365    return Elt.Val;
3366  return Elt.getOperand(Elt.ResNo).Val;
3367}
3368
3369/// CombineConsecutiveLoads - build_pair (load, load) -> load
3370/// if load locations are consecutive.
3371SDOperand DAGCombiner::CombineConsecutiveLoads(SDNode *N, MVT::ValueType VT) {
3372  assert(N->getOpcode() == ISD::BUILD_PAIR);
3373
3374  SDNode *LD1 = getBuildPairElt(N, 0);
3375  if (!ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse())
3376    return SDOperand();
3377  MVT::ValueType LD1VT = LD1->getValueType(0);
3378  SDNode *LD2 = getBuildPairElt(N, 1);
3379  const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3380  if (ISD::isNON_EXTLoad(LD2) &&
3381      LD2->hasOneUse() &&
3382      TLI.isConsecutiveLoad(LD2, LD1, MVT::getSizeInBits(LD1VT)/8, 1, MFI)) {
3383    LoadSDNode *LD = cast<LoadSDNode>(LD1);
3384    unsigned Align = LD->getAlignment();
3385    unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
3386      getABITypeAlignment(MVT::getTypeForValueType(VT));
3387    if ((!AfterLegalize || TLI.isTypeLegal(VT)) &&
3388        TLI.isOperationLegal(ISD::LOAD, VT) && NewAlign <= Align)
3389      return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(),
3390                         LD->getSrcValue(), LD->getSrcValueOffset(),
3391                         LD->isVolatile(), Align);
3392  }
3393  return SDOperand();
3394}
3395
3396SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3397  SDOperand N0 = N->getOperand(0);
3398  MVT::ValueType VT = N->getValueType(0);
3399
3400  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3401  // Only do this before legalize, since afterward the target may be depending
3402  // on the bitconvert.
3403  // First check to see if this is all constant.
3404  if (!AfterLegalize &&
3405      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3406      MVT::isVector(VT)) {
3407    bool isSimple = true;
3408    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3409      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3410          N0.getOperand(i).getOpcode() != ISD::Constant &&
3411          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3412        isSimple = false;
3413        break;
3414      }
3415
3416    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3417    assert(!MVT::isVector(DestEltVT) &&
3418           "Element type of vector ValueType must not be vector!");
3419    if (isSimple) {
3420      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3421    }
3422  }
3423
3424  // If the input is a constant, let getNode() fold it.
3425  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3426    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3427    if (Res.Val != N) return Res;
3428  }
3429
3430  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3431    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3432
3433  // fold (conv (load x)) -> (load (conv*)x)
3434  // If the resultant load doesn't need a higher alignment than the original!
3435  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3436      TLI.isOperationLegal(ISD::LOAD, VT)) {
3437    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3438    unsigned Align = TLI.getTargetMachine().getTargetData()->
3439      getABITypeAlignment(MVT::getTypeForValueType(VT));
3440    unsigned OrigAlign = LN0->getAlignment();
3441    if (Align <= OrigAlign) {
3442      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3443                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3444                                   LN0->isVolatile(), Align);
3445      AddToWorkList(N);
3446      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3447                Load.getValue(1));
3448      return Load;
3449    }
3450  }
3451
3452  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3453  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3454  // This often reduces constant pool loads.
3455  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3456      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3457    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3458    AddToWorkList(NewConv.Val);
3459
3460    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3461    if (N0.getOpcode() == ISD::FNEG)
3462      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3463    assert(N0.getOpcode() == ISD::FABS);
3464    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3465  }
3466
3467  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3468  // Note that we don't handle copysign(x,cst) because this can always be folded
3469  // to an fneg or fabs.
3470  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3471      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3472      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3473    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3474    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3475                              N0.getOperand(1));
3476    AddToWorkList(X.Val);
3477
3478    // If X has a different width than the result/lhs, sext it or truncate it.
3479    unsigned VTWidth = MVT::getSizeInBits(VT);
3480    if (OrigXWidth < VTWidth) {
3481      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3482      AddToWorkList(X.Val);
3483    } else if (OrigXWidth > VTWidth) {
3484      // To get the sign bit in the right place, we have to shift it right
3485      // before truncating.
3486      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3487                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3488      AddToWorkList(X.Val);
3489      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3490      AddToWorkList(X.Val);
3491    }
3492
3493    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3494    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3495    AddToWorkList(X.Val);
3496
3497    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3498    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3499    AddToWorkList(Cst.Val);
3500
3501    return DAG.getNode(ISD::OR, VT, X, Cst);
3502  }
3503
3504  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
3505  if (N0.getOpcode() == ISD::BUILD_PAIR) {
3506    SDOperand CombineLD = CombineConsecutiveLoads(N0.Val, VT);
3507    if (CombineLD.Val)
3508      return CombineLD;
3509  }
3510
3511  return SDOperand();
3512}
3513
3514SDOperand DAGCombiner::visitBUILD_PAIR(SDNode *N) {
3515  MVT::ValueType VT = N->getValueType(0);
3516  return CombineConsecutiveLoads(N, VT);
3517}
3518
3519/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3520/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3521/// destination element value type.
3522SDOperand DAGCombiner::
3523ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3524  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3525
3526  // If this is already the right type, we're done.
3527  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3528
3529  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3530  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3531
3532  // If this is a conversion of N elements of one type to N elements of another
3533  // type, convert each element.  This handles FP<->INT cases.
3534  if (SrcBitSize == DstBitSize) {
3535    SmallVector<SDOperand, 8> Ops;
3536    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3537      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3538      AddToWorkList(Ops.back().Val);
3539    }
3540    MVT::ValueType VT =
3541      MVT::getVectorType(DstEltVT,
3542                         MVT::getVectorNumElements(BV->getValueType(0)));
3543    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3544  }
3545
3546  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3547  // handle annoying details of growing/shrinking FP values, we convert them to
3548  // int first.
3549  if (MVT::isFloatingPoint(SrcEltVT)) {
3550    // Convert the input float vector to a int vector where the elements are the
3551    // same sizes.
3552    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3553    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3554    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3555    SrcEltVT = IntVT;
3556  }
3557
3558  // Now we know the input is an integer vector.  If the output is a FP type,
3559  // convert to integer first, then to FP of the right size.
3560  if (MVT::isFloatingPoint(DstEltVT)) {
3561    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3562    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3563    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3564
3565    // Next, convert to FP elements of the same size.
3566    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3567  }
3568
3569  // Okay, we know the src/dst types are both integers of differing types.
3570  // Handling growing first.
3571  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3572  if (SrcBitSize < DstBitSize) {
3573    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3574
3575    SmallVector<SDOperand, 8> Ops;
3576    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3577         i += NumInputsPerOutput) {
3578      bool isLE = TLI.isLittleEndian();
3579      APInt NewBits = APInt(DstBitSize, 0);
3580      bool EltIsUndef = true;
3581      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3582        // Shift the previously computed bits over.
3583        NewBits <<= SrcBitSize;
3584        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3585        if (Op.getOpcode() == ISD::UNDEF) continue;
3586        EltIsUndef = false;
3587
3588        NewBits |=
3589          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3590      }
3591
3592      if (EltIsUndef)
3593        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3594      else
3595        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3596    }
3597
3598    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3599    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3600  }
3601
3602  // Finally, this must be the case where we are shrinking elements: each input
3603  // turns into multiple outputs.
3604  bool isS2V = ISD::isScalarToVector(BV);
3605  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3606  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3607                                     NumOutputsPerInput * BV->getNumOperands());
3608  SmallVector<SDOperand, 8> Ops;
3609  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3610    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3611      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3612        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3613      continue;
3614    }
3615    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3616    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3617      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3618      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3619      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3620        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3621        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3622      OpVal = OpVal.lshr(DstBitSize);
3623    }
3624
3625    // For big endian targets, swap the order of the pieces of each element.
3626    if (TLI.isBigEndian())
3627      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3628  }
3629  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3630}
3631
3632
3633
3634SDOperand DAGCombiner::visitFADD(SDNode *N) {
3635  SDOperand N0 = N->getOperand(0);
3636  SDOperand N1 = N->getOperand(1);
3637  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3638  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3639  MVT::ValueType VT = N->getValueType(0);
3640
3641  // fold vector ops
3642  if (MVT::isVector(VT)) {
3643    SDOperand FoldedVOp = SimplifyVBinOp(N);
3644    if (FoldedVOp.Val) return FoldedVOp;
3645  }
3646
3647  // fold (fadd c1, c2) -> c1+c2
3648  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3649    return DAG.getNode(ISD::FADD, VT, N0, N1);
3650  // canonicalize constant to RHS
3651  if (N0CFP && !N1CFP)
3652    return DAG.getNode(ISD::FADD, VT, N1, N0);
3653  // fold (A + (-B)) -> A-B
3654  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3655    return DAG.getNode(ISD::FSUB, VT, N0,
3656                       GetNegatedExpression(N1, DAG, AfterLegalize));
3657  // fold ((-A) + B) -> B-A
3658  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3659    return DAG.getNode(ISD::FSUB, VT, N1,
3660                       GetNegatedExpression(N0, DAG, AfterLegalize));
3661
3662  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3663  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3664      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3665    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3666                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3667
3668  return SDOperand();
3669}
3670
3671SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3672  SDOperand N0 = N->getOperand(0);
3673  SDOperand N1 = N->getOperand(1);
3674  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3675  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3676  MVT::ValueType VT = N->getValueType(0);
3677
3678  // fold vector ops
3679  if (MVT::isVector(VT)) {
3680    SDOperand FoldedVOp = SimplifyVBinOp(N);
3681    if (FoldedVOp.Val) return FoldedVOp;
3682  }
3683
3684  // fold (fsub c1, c2) -> c1-c2
3685  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3686    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3687  // fold (0-B) -> -B
3688  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3689    if (isNegatibleForFree(N1, AfterLegalize))
3690      return GetNegatedExpression(N1, DAG, AfterLegalize);
3691    return DAG.getNode(ISD::FNEG, VT, N1);
3692  }
3693  // fold (A-(-B)) -> A+B
3694  if (isNegatibleForFree(N1, AfterLegalize))
3695    return DAG.getNode(ISD::FADD, VT, N0,
3696                       GetNegatedExpression(N1, DAG, AfterLegalize));
3697
3698  return SDOperand();
3699}
3700
3701SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3702  SDOperand N0 = N->getOperand(0);
3703  SDOperand N1 = N->getOperand(1);
3704  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3705  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3706  MVT::ValueType VT = N->getValueType(0);
3707
3708  // fold vector ops
3709  if (MVT::isVector(VT)) {
3710    SDOperand FoldedVOp = SimplifyVBinOp(N);
3711    if (FoldedVOp.Val) return FoldedVOp;
3712  }
3713
3714  // fold (fmul c1, c2) -> c1*c2
3715  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3716    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3717  // canonicalize constant to RHS
3718  if (N0CFP && !N1CFP)
3719    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3720  // fold (fmul X, 2.0) -> (fadd X, X)
3721  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3722    return DAG.getNode(ISD::FADD, VT, N0, N0);
3723  // fold (fmul X, -1.0) -> (fneg X)
3724  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3725    return DAG.getNode(ISD::FNEG, VT, N0);
3726
3727  // -X * -Y -> X*Y
3728  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3729    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3730      // Both can be negated for free, check to see if at least one is cheaper
3731      // negated.
3732      if (LHSNeg == 2 || RHSNeg == 2)
3733        return DAG.getNode(ISD::FMUL, VT,
3734                           GetNegatedExpression(N0, DAG, AfterLegalize),
3735                           GetNegatedExpression(N1, DAG, AfterLegalize));
3736    }
3737  }
3738
3739  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3740  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3741      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3742    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3743                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3744
3745  return SDOperand();
3746}
3747
3748SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3749  SDOperand N0 = N->getOperand(0);
3750  SDOperand N1 = N->getOperand(1);
3751  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3752  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3753  MVT::ValueType VT = N->getValueType(0);
3754
3755  // fold vector ops
3756  if (MVT::isVector(VT)) {
3757    SDOperand FoldedVOp = SimplifyVBinOp(N);
3758    if (FoldedVOp.Val) return FoldedVOp;
3759  }
3760
3761  // fold (fdiv c1, c2) -> c1/c2
3762  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3763    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3764
3765
3766  // -X / -Y -> X*Y
3767  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3768    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3769      // Both can be negated for free, check to see if at least one is cheaper
3770      // negated.
3771      if (LHSNeg == 2 || RHSNeg == 2)
3772        return DAG.getNode(ISD::FDIV, VT,
3773                           GetNegatedExpression(N0, DAG, AfterLegalize),
3774                           GetNegatedExpression(N1, DAG, AfterLegalize));
3775    }
3776  }
3777
3778  return SDOperand();
3779}
3780
3781SDOperand DAGCombiner::visitFREM(SDNode *N) {
3782  SDOperand N0 = N->getOperand(0);
3783  SDOperand N1 = N->getOperand(1);
3784  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3785  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3786  MVT::ValueType VT = N->getValueType(0);
3787
3788  // fold (frem c1, c2) -> fmod(c1,c2)
3789  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3790    return DAG.getNode(ISD::FREM, VT, N0, N1);
3791
3792  return SDOperand();
3793}
3794
3795SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3796  SDOperand N0 = N->getOperand(0);
3797  SDOperand N1 = N->getOperand(1);
3798  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3799  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3800  MVT::ValueType VT = N->getValueType(0);
3801
3802  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3803    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3804
3805  if (N1CFP) {
3806    const APFloat& V = N1CFP->getValueAPF();
3807    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3808    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3809    if (!V.isNegative())
3810      return DAG.getNode(ISD::FABS, VT, N0);
3811    else
3812      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3813  }
3814
3815  // copysign(fabs(x), y) -> copysign(x, y)
3816  // copysign(fneg(x), y) -> copysign(x, y)
3817  // copysign(copysign(x,z), y) -> copysign(x, y)
3818  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3819      N0.getOpcode() == ISD::FCOPYSIGN)
3820    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3821
3822  // copysign(x, abs(y)) -> abs(x)
3823  if (N1.getOpcode() == ISD::FABS)
3824    return DAG.getNode(ISD::FABS, VT, N0);
3825
3826  // copysign(x, copysign(y,z)) -> copysign(x, z)
3827  if (N1.getOpcode() == ISD::FCOPYSIGN)
3828    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3829
3830  // copysign(x, fp_extend(y)) -> copysign(x, y)
3831  // copysign(x, fp_round(y)) -> copysign(x, y)
3832  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3833    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3834
3835  return SDOperand();
3836}
3837
3838
3839
3840SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3841  SDOperand N0 = N->getOperand(0);
3842  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3843  MVT::ValueType VT = N->getValueType(0);
3844
3845  // fold (sint_to_fp c1) -> c1fp
3846  if (N0C && N0.getValueType() != MVT::ppcf128)
3847    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3848  return SDOperand();
3849}
3850
3851SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3852  SDOperand N0 = N->getOperand(0);
3853  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3854  MVT::ValueType VT = N->getValueType(0);
3855
3856  // fold (uint_to_fp c1) -> c1fp
3857  if (N0C && N0.getValueType() != MVT::ppcf128)
3858    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3859  return SDOperand();
3860}
3861
3862SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3863  SDOperand N0 = N->getOperand(0);
3864  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3865  MVT::ValueType VT = N->getValueType(0);
3866
3867  // fold (fp_to_sint c1fp) -> c1
3868  if (N0CFP)
3869    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3870  return SDOperand();
3871}
3872
3873SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3874  SDOperand N0 = N->getOperand(0);
3875  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3876  MVT::ValueType VT = N->getValueType(0);
3877
3878  // fold (fp_to_uint c1fp) -> c1
3879  if (N0CFP && VT != MVT::ppcf128)
3880    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3881  return SDOperand();
3882}
3883
3884SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3885  SDOperand N0 = N->getOperand(0);
3886  SDOperand N1 = N->getOperand(1);
3887  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3888  MVT::ValueType VT = N->getValueType(0);
3889
3890  // fold (fp_round c1fp) -> c1fp
3891  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3892    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3893
3894  // fold (fp_round (fp_extend x)) -> x
3895  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3896    return N0.getOperand(0);
3897
3898  // fold (fp_round (fp_round x)) -> (fp_round x)
3899  if (N0.getOpcode() == ISD::FP_ROUND) {
3900    // This is a value preserving truncation if both round's are.
3901    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3902                   N0.Val->getConstantOperandVal(1) == 1;
3903    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3904                       DAG.getIntPtrConstant(IsTrunc));
3905  }
3906
3907  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3908  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3909    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3910    AddToWorkList(Tmp.Val);
3911    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3912  }
3913
3914  return SDOperand();
3915}
3916
3917SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3918  SDOperand N0 = N->getOperand(0);
3919  MVT::ValueType VT = N->getValueType(0);
3920  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3921  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3922
3923  // fold (fp_round_inreg c1fp) -> c1fp
3924  if (N0CFP) {
3925    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3926    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3927  }
3928  return SDOperand();
3929}
3930
3931SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3932  SDOperand N0 = N->getOperand(0);
3933  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3934  MVT::ValueType VT = N->getValueType(0);
3935
3936  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3937  if (N->hasOneUse() &&
3938      N->use_begin()->getSDOperand().getOpcode() == ISD::FP_ROUND)
3939    return SDOperand();
3940
3941  // fold (fp_extend c1fp) -> c1fp
3942  if (N0CFP && VT != MVT::ppcf128)
3943    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3944
3945  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3946  // value of X.
3947  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3948    SDOperand In = N0.getOperand(0);
3949    if (In.getValueType() == VT) return In;
3950    if (VT < In.getValueType())
3951      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3952    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3953  }
3954
3955  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3956  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3957      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3958    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3959    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3960                                       LN0->getBasePtr(), LN0->getSrcValue(),
3961                                       LN0->getSrcValueOffset(),
3962                                       N0.getValueType(),
3963                                       LN0->isVolatile(),
3964                                       LN0->getAlignment());
3965    CombineTo(N, ExtLoad);
3966    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3967                                  DAG.getIntPtrConstant(1)),
3968              ExtLoad.getValue(1));
3969    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3970  }
3971
3972
3973  return SDOperand();
3974}
3975
3976SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3977  SDOperand N0 = N->getOperand(0);
3978
3979  if (isNegatibleForFree(N0, AfterLegalize))
3980    return GetNegatedExpression(N0, DAG, AfterLegalize);
3981
3982  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3983  // constant pool values.
3984  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3985      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3986      !MVT::isVector(N0.getOperand(0).getValueType())) {
3987    SDOperand Int = N0.getOperand(0);
3988    MVT::ValueType IntVT = Int.getValueType();
3989    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3990      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3991                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3992      AddToWorkList(Int.Val);
3993      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3994    }
3995  }
3996
3997  return SDOperand();
3998}
3999
4000SDOperand DAGCombiner::visitFABS(SDNode *N) {
4001  SDOperand N0 = N->getOperand(0);
4002  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
4003  MVT::ValueType VT = N->getValueType(0);
4004
4005  // fold (fabs c1) -> fabs(c1)
4006  if (N0CFP && VT != MVT::ppcf128)
4007    return DAG.getNode(ISD::FABS, VT, N0);
4008  // fold (fabs (fabs x)) -> (fabs x)
4009  if (N0.getOpcode() == ISD::FABS)
4010    return N->getOperand(0);
4011  // fold (fabs (fneg x)) -> (fabs x)
4012  // fold (fabs (fcopysign x, y)) -> (fabs x)
4013  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
4014    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
4015
4016  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
4017  // constant pool values.
4018  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
4019      MVT::isInteger(N0.getOperand(0).getValueType()) &&
4020      !MVT::isVector(N0.getOperand(0).getValueType())) {
4021    SDOperand Int = N0.getOperand(0);
4022    MVT::ValueType IntVT = Int.getValueType();
4023    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
4024      Int = DAG.getNode(ISD::AND, IntVT, Int,
4025                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
4026      AddToWorkList(Int.Val);
4027      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
4028    }
4029  }
4030
4031  return SDOperand();
4032}
4033
4034SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
4035  SDOperand Chain = N->getOperand(0);
4036  SDOperand N1 = N->getOperand(1);
4037  SDOperand N2 = N->getOperand(2);
4038  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4039
4040  // never taken branch, fold to chain
4041  if (N1C && N1C->isNullValue())
4042    return Chain;
4043  // unconditional branch
4044  if (N1C && N1C->getAPIntValue() == 1)
4045    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
4046  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
4047  // on the target.
4048  if (N1.getOpcode() == ISD::SETCC &&
4049      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
4050    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
4051                       N1.getOperand(0), N1.getOperand(1), N2);
4052  }
4053  return SDOperand();
4054}
4055
4056// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
4057//
4058SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
4059  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
4060  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
4061
4062  // Use SimplifySetCC  to simplify SETCC's.
4063  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
4064  if (Simp.Val) AddToWorkList(Simp.Val);
4065
4066  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
4067
4068  // fold br_cc true, dest -> br dest (unconditional branch)
4069  if (SCCC && !SCCC->isNullValue())
4070    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
4071                       N->getOperand(4));
4072  // fold br_cc false, dest -> unconditional fall through
4073  if (SCCC && SCCC->isNullValue())
4074    return N->getOperand(0);
4075
4076  // fold to a simpler setcc
4077  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
4078    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
4079                       Simp.getOperand(2), Simp.getOperand(0),
4080                       Simp.getOperand(1), N->getOperand(4));
4081  return SDOperand();
4082}
4083
4084
4085/// CombineToPreIndexedLoadStore - Try turning a load / store and a
4086/// pre-indexed load / store when the base pointer is a add or subtract
4087/// and it has other uses besides the load / store. After the
4088/// transformation, the new indexed load / store has effectively folded
4089/// the add / subtract in and all of its other uses are redirected to the
4090/// new load / store.
4091bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
4092  if (!AfterLegalize)
4093    return false;
4094
4095  bool isLoad = true;
4096  SDOperand Ptr;
4097  MVT::ValueType VT;
4098  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4099    if (LD->isIndexed())
4100      return false;
4101    VT = LD->getMemoryVT();
4102    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
4103        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
4104      return false;
4105    Ptr = LD->getBasePtr();
4106  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4107    if (ST->isIndexed())
4108      return false;
4109    VT = ST->getMemoryVT();
4110    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
4111        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
4112      return false;
4113    Ptr = ST->getBasePtr();
4114    isLoad = false;
4115  } else
4116    return false;
4117
4118  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4119  // out.  There is no reason to make this a preinc/predec.
4120  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4121      Ptr.Val->hasOneUse())
4122    return false;
4123
4124  // Ask the target to do addressing mode selection.
4125  SDOperand BasePtr;
4126  SDOperand Offset;
4127  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4128  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4129    return false;
4130  // Don't create a indexed load / store with zero offset.
4131  if (isa<ConstantSDNode>(Offset) &&
4132      cast<ConstantSDNode>(Offset)->isNullValue())
4133    return false;
4134
4135  // Try turning it into a pre-indexed load / store except when:
4136  // 1) The new base ptr is a frame index.
4137  // 2) If N is a store and the new base ptr is either the same as or is a
4138  //    predecessor of the value being stored.
4139  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4140  //    that would create a cycle.
4141  // 4) All uses are load / store ops that use it as old base ptr.
4142
4143  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4144  // (plus the implicit offset) to a register to preinc anyway.
4145  if (isa<FrameIndexSDNode>(BasePtr))
4146    return false;
4147
4148  // Check #2.
4149  if (!isLoad) {
4150    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4151    if (Val == BasePtr || BasePtr.Val->isPredecessorOf(Val.Val))
4152      return false;
4153  }
4154
4155  // Now check for #3 and #4.
4156  bool RealUse = false;
4157  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4158         E = Ptr.Val->use_end(); I != E; ++I) {
4159    SDNode *Use = I->getUser();
4160    if (Use == N)
4161      continue;
4162    if (Use->isPredecessorOf(N))
4163      return false;
4164
4165    if (!((Use->getOpcode() == ISD::LOAD &&
4166           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4167          (Use->getOpcode() == ISD::STORE &&
4168           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4169      RealUse = true;
4170  }
4171  if (!RealUse)
4172    return false;
4173
4174  SDOperand Result;
4175  if (isLoad)
4176    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4177  else
4178    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4179  ++PreIndexedNodes;
4180  ++NodesCombined;
4181  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4182  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4183  DOUT << '\n';
4184  WorkListRemover DeadNodes(*this);
4185  if (isLoad) {
4186    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4187                                  &DeadNodes);
4188    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4189                                  &DeadNodes);
4190  } else {
4191    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4192                                  &DeadNodes);
4193  }
4194
4195  // Finally, since the node is now dead, remove it from the graph.
4196  DAG.DeleteNode(N);
4197
4198  // Replace the uses of Ptr with uses of the updated base value.
4199  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4200                                &DeadNodes);
4201  removeFromWorkList(Ptr.Val);
4202  DAG.DeleteNode(Ptr.Val);
4203
4204  return true;
4205}
4206
4207/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4208/// add / sub of the base pointer node into a post-indexed load / store.
4209/// The transformation folded the add / subtract into the new indexed
4210/// load / store effectively and all of its uses are redirected to the
4211/// new load / store.
4212bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4213  if (!AfterLegalize)
4214    return false;
4215
4216  bool isLoad = true;
4217  SDOperand Ptr;
4218  MVT::ValueType VT;
4219  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4220    if (LD->isIndexed())
4221      return false;
4222    VT = LD->getMemoryVT();
4223    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4224        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4225      return false;
4226    Ptr = LD->getBasePtr();
4227  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4228    if (ST->isIndexed())
4229      return false;
4230    VT = ST->getMemoryVT();
4231    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4232        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4233      return false;
4234    Ptr = ST->getBasePtr();
4235    isLoad = false;
4236  } else
4237    return false;
4238
4239  if (Ptr.Val->hasOneUse())
4240    return false;
4241
4242  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4243         E = Ptr.Val->use_end(); I != E; ++I) {
4244    SDNode *Op = I->getUser();
4245    if (Op == N ||
4246        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4247      continue;
4248
4249    SDOperand BasePtr;
4250    SDOperand Offset;
4251    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4252    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4253      if (Ptr == Offset)
4254        std::swap(BasePtr, Offset);
4255      if (Ptr != BasePtr)
4256        continue;
4257      // Don't create a indexed load / store with zero offset.
4258      if (isa<ConstantSDNode>(Offset) &&
4259          cast<ConstantSDNode>(Offset)->isNullValue())
4260        continue;
4261
4262      // Try turning it into a post-indexed load / store except when
4263      // 1) All uses are load / store ops that use it as base ptr.
4264      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4265      //    nor a successor of N. Otherwise, if Op is folded that would
4266      //    create a cycle.
4267
4268      // Check for #1.
4269      bool TryNext = false;
4270      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4271             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4272        SDNode *Use = II->getUser();
4273        if (Use == Ptr.Val)
4274          continue;
4275
4276        // If all the uses are load / store addresses, then don't do the
4277        // transformation.
4278        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4279          bool RealUse = false;
4280          for (SDNode::use_iterator III = Use->use_begin(),
4281                 EEE = Use->use_end(); III != EEE; ++III) {
4282            SDNode *UseUse = III->getUser();
4283            if (!((UseUse->getOpcode() == ISD::LOAD &&
4284                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4285                  (UseUse->getOpcode() == ISD::STORE &&
4286                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4287              RealUse = true;
4288          }
4289
4290          if (!RealUse) {
4291            TryNext = true;
4292            break;
4293          }
4294        }
4295      }
4296      if (TryNext)
4297        continue;
4298
4299      // Check for #2
4300      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
4301        SDOperand Result = isLoad
4302          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4303          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4304        ++PostIndexedNodes;
4305        ++NodesCombined;
4306        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4307        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4308        DOUT << '\n';
4309        WorkListRemover DeadNodes(*this);
4310        if (isLoad) {
4311          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4312                                        &DeadNodes);
4313          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4314                                        &DeadNodes);
4315        } else {
4316          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4317                                        &DeadNodes);
4318        }
4319
4320        // Finally, since the node is now dead, remove it from the graph.
4321        DAG.DeleteNode(N);
4322
4323        // Replace the uses of Use with uses of the updated base value.
4324        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4325                                      Result.getValue(isLoad ? 1 : 0),
4326                                      &DeadNodes);
4327        removeFromWorkList(Op);
4328        DAG.DeleteNode(Op);
4329        return true;
4330      }
4331    }
4332  }
4333  return false;
4334}
4335
4336/// InferAlignment - If we can infer some alignment information from this
4337/// pointer, return it.
4338static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4339  // If this is a direct reference to a stack slot, use information about the
4340  // stack slot's alignment.
4341  int FrameIdx = 1 << 31;
4342  int64_t FrameOffset = 0;
4343  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4344    FrameIdx = FI->getIndex();
4345  } else if (Ptr.getOpcode() == ISD::ADD &&
4346             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4347             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4348    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4349    FrameOffset = Ptr.getConstantOperandVal(1);
4350  }
4351
4352  if (FrameIdx != (1 << 31)) {
4353    // FIXME: Handle FI+CST.
4354    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4355    if (MFI.isFixedObjectIndex(FrameIdx)) {
4356      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4357
4358      // The alignment of the frame index can be determined from its offset from
4359      // the incoming frame position.  If the frame object is at offset 32 and
4360      // the stack is guaranteed to be 16-byte aligned, then we know that the
4361      // object is 16-byte aligned.
4362      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4363      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4364
4365      // Finally, the frame object itself may have a known alignment.  Factor
4366      // the alignment + offset into a new alignment.  For example, if we know
4367      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4368      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4369      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4370      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4371                                      FrameOffset);
4372      return std::max(Align, FIInfoAlign);
4373    }
4374  }
4375
4376  return 0;
4377}
4378
4379SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4380  LoadSDNode *LD  = cast<LoadSDNode>(N);
4381  SDOperand Chain = LD->getChain();
4382  SDOperand Ptr   = LD->getBasePtr();
4383
4384  // Try to infer better alignment information than the load already has.
4385  if (LD->isUnindexed()) {
4386    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4387      if (Align > LD->getAlignment())
4388        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4389                              Chain, Ptr, LD->getSrcValue(),
4390                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4391                              LD->isVolatile(), Align);
4392    }
4393  }
4394
4395
4396  // If load is not volatile and there are no uses of the loaded value (and
4397  // the updated indexed value in case of indexed loads), change uses of the
4398  // chain value into uses of the chain input (i.e. delete the dead load).
4399  if (!LD->isVolatile()) {
4400    if (N->getValueType(1) == MVT::Other) {
4401      // Unindexed loads.
4402      if (N->hasNUsesOfValue(0, 0)) {
4403        // It's not safe to use the two value CombineTo variant here. e.g.
4404        // v1, chain2 = load chain1, loc
4405        // v2, chain3 = load chain2, loc
4406        // v3         = add v2, c
4407        // Now we replace use of chain2 with chain1.  This makes the second load
4408        // isomorphic to the one we are deleting, and thus makes this load live.
4409        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4410        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4411        DOUT << "\n";
4412        WorkListRemover DeadNodes(*this);
4413        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4414        if (N->use_empty()) {
4415          removeFromWorkList(N);
4416          DAG.DeleteNode(N);
4417        }
4418        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4419      }
4420    } else {
4421      // Indexed loads.
4422      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4423      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4424        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4425        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4426        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4427        DOUT << " and 2 other values\n";
4428        WorkListRemover DeadNodes(*this);
4429        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4430        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4431                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4432                                      &DeadNodes);
4433        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4434        removeFromWorkList(N);
4435        DAG.DeleteNode(N);
4436        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4437      }
4438    }
4439  }
4440
4441  // If this load is directly stored, replace the load value with the stored
4442  // value.
4443  // TODO: Handle store large -> read small portion.
4444  // TODO: Handle TRUNCSTORE/LOADEXT
4445  if (LD->getExtensionType() == ISD::NON_EXTLOAD &&
4446      !LD->isVolatile()) {
4447    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4448      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4449      if (PrevST->getBasePtr() == Ptr &&
4450          PrevST->getValue().getValueType() == N->getValueType(0))
4451      return CombineTo(N, Chain.getOperand(1), Chain);
4452    }
4453  }
4454
4455  if (CombinerAA) {
4456    // Walk up chain skipping non-aliasing memory nodes.
4457    SDOperand BetterChain = FindBetterChain(N, Chain);
4458
4459    // If there is a better chain.
4460    if (Chain != BetterChain) {
4461      SDOperand ReplLoad;
4462
4463      // Replace the chain to void dependency.
4464      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4465        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4466                               LD->getSrcValue(), LD->getSrcValueOffset(),
4467                               LD->isVolatile(), LD->getAlignment());
4468      } else {
4469        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4470                                  LD->getValueType(0),
4471                                  BetterChain, Ptr, LD->getSrcValue(),
4472                                  LD->getSrcValueOffset(),
4473                                  LD->getMemoryVT(),
4474                                  LD->isVolatile(),
4475                                  LD->getAlignment());
4476      }
4477
4478      // Create token factor to keep old chain connected.
4479      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4480                                    Chain, ReplLoad.getValue(1));
4481
4482      // Replace uses with load result and token factor. Don't add users
4483      // to work list.
4484      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4485    }
4486  }
4487
4488  // Try transforming N to an indexed load.
4489  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4490    return SDOperand(N, 0);
4491
4492  return SDOperand();
4493}
4494
4495
4496SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4497  StoreSDNode *ST  = cast<StoreSDNode>(N);
4498  SDOperand Chain = ST->getChain();
4499  SDOperand Value = ST->getValue();
4500  SDOperand Ptr   = ST->getBasePtr();
4501
4502  // Try to infer better alignment information than the store already has.
4503  if (ST->isUnindexed()) {
4504    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4505      if (Align > ST->getAlignment())
4506        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4507                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4508                                 ST->isVolatile(), Align);
4509    }
4510  }
4511
4512  // If this is a store of a bit convert, store the input value if the
4513  // resultant store does not need a higher alignment than the original.
4514  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4515      ST->isUnindexed()) {
4516    unsigned Align = ST->getAlignment();
4517    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4518    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4519      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4520    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4521      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4522                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4523  }
4524
4525  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4526  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4527    if (Value.getOpcode() != ISD::TargetConstantFP) {
4528      SDOperand Tmp;
4529      switch (CFP->getValueType(0)) {
4530      default: assert(0 && "Unknown FP type");
4531      case MVT::f80:    // We don't do this for these yet.
4532      case MVT::f128:
4533      case MVT::ppcf128:
4534        break;
4535      case MVT::f32:
4536        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4537          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4538                              convertToAPInt().getZExtValue(), MVT::i32);
4539          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4540                              ST->getSrcValueOffset(), ST->isVolatile(),
4541                              ST->getAlignment());
4542        }
4543        break;
4544      case MVT::f64:
4545        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4546          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4547                                  getZExtValue(), MVT::i64);
4548          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4549                              ST->getSrcValueOffset(), ST->isVolatile(),
4550                              ST->getAlignment());
4551        } else if (TLI.isTypeLegal(MVT::i32)) {
4552          // Many FP stores are not made apparent until after legalize, e.g. for
4553          // argument passing.  Since this is so common, custom legalize the
4554          // 64-bit integer store into two 32-bit stores.
4555          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4556          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4557          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4558          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4559
4560          int SVOffset = ST->getSrcValueOffset();
4561          unsigned Alignment = ST->getAlignment();
4562          bool isVolatile = ST->isVolatile();
4563
4564          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4565                                       ST->getSrcValueOffset(),
4566                                       isVolatile, ST->getAlignment());
4567          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4568                            DAG.getConstant(4, Ptr.getValueType()));
4569          SVOffset += 4;
4570          Alignment = MinAlign(Alignment, 4U);
4571          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4572                                       SVOffset, isVolatile, Alignment);
4573          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4574        }
4575        break;
4576      }
4577    }
4578  }
4579
4580  if (CombinerAA) {
4581    // Walk up chain skipping non-aliasing memory nodes.
4582    SDOperand BetterChain = FindBetterChain(N, Chain);
4583
4584    // If there is a better chain.
4585    if (Chain != BetterChain) {
4586      // Replace the chain to avoid dependency.
4587      SDOperand ReplStore;
4588      if (ST->isTruncatingStore()) {
4589        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4590                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4591                                      ST->getMemoryVT(),
4592                                      ST->isVolatile(), ST->getAlignment());
4593      } else {
4594        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4595                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4596                                 ST->isVolatile(), ST->getAlignment());
4597      }
4598
4599      // Create token to keep both nodes around.
4600      SDOperand Token =
4601        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4602
4603      // Don't add users to work list.
4604      return CombineTo(N, Token, false);
4605    }
4606  }
4607
4608  // Try transforming N to an indexed store.
4609  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4610    return SDOperand(N, 0);
4611
4612  // FIXME: is there such a thing as a truncating indexed store?
4613  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4614      MVT::isInteger(Value.getValueType())) {
4615    // See if we can simplify the input to this truncstore with knowledge that
4616    // only the low bits are being used.  For example:
4617    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4618    SDOperand Shorter =
4619      GetDemandedBits(Value,
4620                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4621                                      MVT::getSizeInBits(ST->getMemoryVT())));
4622    AddToWorkList(Value.Val);
4623    if (Shorter.Val)
4624      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4625                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4626                               ST->isVolatile(), ST->getAlignment());
4627
4628    // Otherwise, see if we can simplify the operation with
4629    // SimplifyDemandedBits, which only works if the value has a single use.
4630    if (SimplifyDemandedBits(Value,
4631                             APInt::getLowBitsSet(
4632                               Value.getValueSizeInBits(),
4633                               MVT::getSizeInBits(ST->getMemoryVT()))))
4634      return SDOperand(N, 0);
4635  }
4636
4637  // If this is a load followed by a store to the same location, then the store
4638  // is dead/noop.
4639  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4640    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4641        ST->isUnindexed() && !ST->isVolatile() &&
4642        // There can't be any side effects between the load and store, such as
4643        // a call or store.
4644        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4645      // The store is dead, remove it.
4646      return Chain;
4647    }
4648  }
4649
4650  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4651  // truncating store.  We can do this even if this is already a truncstore.
4652  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4653      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4654      Value.Val->hasOneUse() && ST->isUnindexed() &&
4655      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4656                            ST->getMemoryVT())) {
4657    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4658                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4659                             ST->isVolatile(), ST->getAlignment());
4660  }
4661
4662  return SDOperand();
4663}
4664
4665SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4666  SDOperand InVec = N->getOperand(0);
4667  SDOperand InVal = N->getOperand(1);
4668  SDOperand EltNo = N->getOperand(2);
4669
4670  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4671  // vector with the inserted element.
4672  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4673    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4674    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4675    if (Elt < Ops.size())
4676      Ops[Elt] = InVal;
4677    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4678                       &Ops[0], Ops.size());
4679  }
4680
4681  return SDOperand();
4682}
4683
4684SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4685  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
4686  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
4687  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
4688
4689  // Perform only after legalization to ensure build_vector / vector_shuffle
4690  // optimizations have already been done.
4691  if (!AfterLegalize) return SDOperand();
4692
4693  SDOperand InVec = N->getOperand(0);
4694  SDOperand EltNo = N->getOperand(1);
4695
4696  if (isa<ConstantSDNode>(EltNo)) {
4697    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4698    bool NewLoad = false;
4699    MVT::ValueType VT = InVec.getValueType();
4700    MVT::ValueType EVT = MVT::getVectorElementType(VT);
4701    MVT::ValueType LVT = EVT;
4702    if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4703      MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4704      if (!MVT::isVector(BCVT)
4705          || (MVT::getSizeInBits(EVT) >
4706              MVT::getSizeInBits(MVT::getVectorElementType(BCVT))))
4707        return SDOperand();
4708      InVec = InVec.getOperand(0);
4709      EVT = MVT::getVectorElementType(BCVT);
4710      NewLoad = true;
4711    }
4712
4713    LoadSDNode *LN0 = NULL;
4714    if (ISD::isNormalLoad(InVec.Val))
4715      LN0 = cast<LoadSDNode>(InVec);
4716    else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4717             InVec.getOperand(0).getValueType() == EVT &&
4718             ISD::isNormalLoad(InVec.getOperand(0).Val)) {
4719      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4720    } else if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
4721      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
4722      // =>
4723      // (load $addr+1*size)
4724      unsigned Idx = cast<ConstantSDNode>(InVec.getOperand(2).
4725                                          getOperand(Elt))->getValue();
4726      unsigned NumElems = InVec.getOperand(2).getNumOperands();
4727      InVec = (Idx < NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
4728      if (InVec.getOpcode() == ISD::BIT_CONVERT)
4729        InVec = InVec.getOperand(0);
4730      if (ISD::isNormalLoad(InVec.Val)) {
4731        LN0 = cast<LoadSDNode>(InVec);
4732        Elt = (Idx < NumElems) ? Idx : Idx - NumElems;
4733      }
4734    }
4735    if (!LN0 || !LN0->hasOneUse())
4736      return SDOperand();
4737
4738    unsigned Align = LN0->getAlignment();
4739    if (NewLoad) {
4740      // Check the resultant load doesn't need a higher alignment than the
4741      // original load.
4742      unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4743        getABITypeAlignment(MVT::getTypeForValueType(LVT));
4744      if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4745        return SDOperand();
4746      Align = NewAlign;
4747    }
4748
4749    SDOperand NewPtr = LN0->getBasePtr();
4750    if (Elt) {
4751      unsigned PtrOff = MVT::getSizeInBits(LVT) * Elt / 8;
4752      MVT::ValueType PtrType = NewPtr.getValueType();
4753      if (TLI.isBigEndian())
4754        PtrOff = MVT::getSizeInBits(VT) / 8 - PtrOff;
4755      NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
4756                           DAG.getConstant(PtrOff, PtrType));
4757    }
4758    return DAG.getLoad(LVT, LN0->getChain(), NewPtr,
4759                       LN0->getSrcValue(), LN0->getSrcValueOffset(),
4760                       LN0->isVolatile(), Align);
4761  }
4762  return SDOperand();
4763}
4764
4765
4766SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4767  unsigned NumInScalars = N->getNumOperands();
4768  MVT::ValueType VT = N->getValueType(0);
4769  unsigned NumElts = MVT::getVectorNumElements(VT);
4770  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4771
4772  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4773  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4774  // at most two distinct vectors, turn this into a shuffle node.
4775  SDOperand VecIn1, VecIn2;
4776  for (unsigned i = 0; i != NumInScalars; ++i) {
4777    // Ignore undef inputs.
4778    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4779
4780    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4781    // constant index, bail out.
4782    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4783        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4784      VecIn1 = VecIn2 = SDOperand(0, 0);
4785      break;
4786    }
4787
4788    // If the input vector type disagrees with the result of the build_vector,
4789    // we can't make a shuffle.
4790    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4791    if (ExtractedFromVec.getValueType() != VT) {
4792      VecIn1 = VecIn2 = SDOperand(0, 0);
4793      break;
4794    }
4795
4796    // Otherwise, remember this.  We allow up to two distinct input vectors.
4797    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4798      continue;
4799
4800    if (VecIn1.Val == 0) {
4801      VecIn1 = ExtractedFromVec;
4802    } else if (VecIn2.Val == 0) {
4803      VecIn2 = ExtractedFromVec;
4804    } else {
4805      // Too many inputs.
4806      VecIn1 = VecIn2 = SDOperand(0, 0);
4807      break;
4808    }
4809  }
4810
4811  // If everything is good, we can make a shuffle operation.
4812  if (VecIn1.Val) {
4813    SmallVector<SDOperand, 8> BuildVecIndices;
4814    for (unsigned i = 0; i != NumInScalars; ++i) {
4815      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4816        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4817        continue;
4818      }
4819
4820      SDOperand Extract = N->getOperand(i);
4821
4822      // If extracting from the first vector, just use the index directly.
4823      if (Extract.getOperand(0) == VecIn1) {
4824        BuildVecIndices.push_back(Extract.getOperand(1));
4825        continue;
4826      }
4827
4828      // Otherwise, use InIdx + VecSize
4829      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4830      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4831    }
4832
4833    // Add count and size info.
4834    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4835
4836    // Return the new VECTOR_SHUFFLE node.
4837    SDOperand Ops[5];
4838    Ops[0] = VecIn1;
4839    if (VecIn2.Val) {
4840      Ops[1] = VecIn2;
4841    } else {
4842      // Use an undef build_vector as input for the second operand.
4843      std::vector<SDOperand> UnOps(NumInScalars,
4844                                   DAG.getNode(ISD::UNDEF,
4845                                               EltType));
4846      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4847                           &UnOps[0], UnOps.size());
4848      AddToWorkList(Ops[1].Val);
4849    }
4850    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4851                         &BuildVecIndices[0], BuildVecIndices.size());
4852    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4853  }
4854
4855  return SDOperand();
4856}
4857
4858SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4859  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4860  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4861  // inputs come from at most two distinct vectors, turn this into a shuffle
4862  // node.
4863
4864  // If we only have one input vector, we don't need to do any concatenation.
4865  if (N->getNumOperands() == 1) {
4866    return N->getOperand(0);
4867  }
4868
4869  return SDOperand();
4870}
4871
4872SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4873  SDOperand ShufMask = N->getOperand(2);
4874  unsigned NumElts = ShufMask.getNumOperands();
4875
4876  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4877  bool isIdentity = true;
4878  for (unsigned i = 0; i != NumElts; ++i) {
4879    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4880        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4881      isIdentity = false;
4882      break;
4883    }
4884  }
4885  if (isIdentity) return N->getOperand(0);
4886
4887  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4888  isIdentity = true;
4889  for (unsigned i = 0; i != NumElts; ++i) {
4890    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4891        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4892      isIdentity = false;
4893      break;
4894    }
4895  }
4896  if (isIdentity) return N->getOperand(1);
4897
4898  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4899  // needed at all.
4900  bool isUnary = true;
4901  bool isSplat = true;
4902  int VecNum = -1;
4903  unsigned BaseIdx = 0;
4904  for (unsigned i = 0; i != NumElts; ++i)
4905    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4906      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4907      int V = (Idx < NumElts) ? 0 : 1;
4908      if (VecNum == -1) {
4909        VecNum = V;
4910        BaseIdx = Idx;
4911      } else {
4912        if (BaseIdx != Idx)
4913          isSplat = false;
4914        if (VecNum != V) {
4915          isUnary = false;
4916          break;
4917        }
4918      }
4919    }
4920
4921  SDOperand N0 = N->getOperand(0);
4922  SDOperand N1 = N->getOperand(1);
4923  // Normalize unary shuffle so the RHS is undef.
4924  if (isUnary && VecNum == 1)
4925    std::swap(N0, N1);
4926
4927  // If it is a splat, check if the argument vector is a build_vector with
4928  // all scalar elements the same.
4929  if (isSplat) {
4930    SDNode *V = N0.Val;
4931
4932    // If this is a bit convert that changes the element type of the vector but
4933    // not the number of vector elements, look through it.  Be careful not to
4934    // look though conversions that change things like v4f32 to v2f64.
4935    if (V->getOpcode() == ISD::BIT_CONVERT) {
4936      SDOperand ConvInput = V->getOperand(0);
4937      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4938        V = ConvInput.Val;
4939    }
4940
4941    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4942      unsigned NumElems = V->getNumOperands();
4943      if (NumElems > BaseIdx) {
4944        SDOperand Base;
4945        bool AllSame = true;
4946        for (unsigned i = 0; i != NumElems; ++i) {
4947          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4948            Base = V->getOperand(i);
4949            break;
4950          }
4951        }
4952        // Splat of <u, u, u, u>, return <u, u, u, u>
4953        if (!Base.Val)
4954          return N0;
4955        for (unsigned i = 0; i != NumElems; ++i) {
4956          if (V->getOperand(i) != Base) {
4957            AllSame = false;
4958            break;
4959          }
4960        }
4961        // Splat of <x, x, x, x>, return <x, x, x, x>
4962        if (AllSame)
4963          return N0;
4964      }
4965    }
4966  }
4967
4968  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4969  // into an undef.
4970  if (isUnary || N0 == N1) {
4971    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4972    // first operand.
4973    SmallVector<SDOperand, 8> MappedOps;
4974    for (unsigned i = 0; i != NumElts; ++i) {
4975      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4976          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4977        MappedOps.push_back(ShufMask.getOperand(i));
4978      } else {
4979        unsigned NewIdx =
4980          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4981        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4982      }
4983    }
4984    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4985                           &MappedOps[0], MappedOps.size());
4986    AddToWorkList(ShufMask.Val);
4987    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4988                       N0,
4989                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4990                       ShufMask);
4991  }
4992
4993  return SDOperand();
4994}
4995
4996/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4997/// an AND to a vector_shuffle with the destination vector and a zero vector.
4998/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4999///      vector_shuffle V, Zero, <0, 4, 2, 4>
5000SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
5001  SDOperand LHS = N->getOperand(0);
5002  SDOperand RHS = N->getOperand(1);
5003  if (N->getOpcode() == ISD::AND) {
5004    if (RHS.getOpcode() == ISD::BIT_CONVERT)
5005      RHS = RHS.getOperand(0);
5006    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
5007      std::vector<SDOperand> IdxOps;
5008      unsigned NumOps = RHS.getNumOperands();
5009      unsigned NumElts = NumOps;
5010      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
5011      for (unsigned i = 0; i != NumElts; ++i) {
5012        SDOperand Elt = RHS.getOperand(i);
5013        if (!isa<ConstantSDNode>(Elt))
5014          return SDOperand();
5015        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
5016          IdxOps.push_back(DAG.getConstant(i, EVT));
5017        else if (cast<ConstantSDNode>(Elt)->isNullValue())
5018          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
5019        else
5020          return SDOperand();
5021      }
5022
5023      // Let's see if the target supports this vector_shuffle.
5024      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
5025        return SDOperand();
5026
5027      // Return the new VECTOR_SHUFFLE node.
5028      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
5029      std::vector<SDOperand> Ops;
5030      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
5031      Ops.push_back(LHS);
5032      AddToWorkList(LHS.Val);
5033      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
5034      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
5035                                &ZeroOps[0], ZeroOps.size()));
5036      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
5037                                &IdxOps[0], IdxOps.size()));
5038      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
5039                                     &Ops[0], Ops.size());
5040      if (VT != LHS.getValueType()) {
5041        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
5042      }
5043      return Result;
5044    }
5045  }
5046  return SDOperand();
5047}
5048
5049/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
5050SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
5051  // After legalize, the target may be depending on adds and other
5052  // binary ops to provide legal ways to construct constants or other
5053  // things. Simplifying them may result in a loss of legality.
5054  if (AfterLegalize) return SDOperand();
5055
5056  MVT::ValueType VT = N->getValueType(0);
5057  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
5058
5059  MVT::ValueType EltType = MVT::getVectorElementType(VT);
5060  SDOperand LHS = N->getOperand(0);
5061  SDOperand RHS = N->getOperand(1);
5062  SDOperand Shuffle = XformToShuffleWithZero(N);
5063  if (Shuffle.Val) return Shuffle;
5064
5065  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
5066  // this operation.
5067  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
5068      RHS.getOpcode() == ISD::BUILD_VECTOR) {
5069    SmallVector<SDOperand, 8> Ops;
5070    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
5071      SDOperand LHSOp = LHS.getOperand(i);
5072      SDOperand RHSOp = RHS.getOperand(i);
5073      // If these two elements can't be folded, bail out.
5074      if ((LHSOp.getOpcode() != ISD::UNDEF &&
5075           LHSOp.getOpcode() != ISD::Constant &&
5076           LHSOp.getOpcode() != ISD::ConstantFP) ||
5077          (RHSOp.getOpcode() != ISD::UNDEF &&
5078           RHSOp.getOpcode() != ISD::Constant &&
5079           RHSOp.getOpcode() != ISD::ConstantFP))
5080        break;
5081      // Can't fold divide by zero.
5082      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
5083          N->getOpcode() == ISD::FDIV) {
5084        if ((RHSOp.getOpcode() == ISD::Constant &&
5085             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
5086            (RHSOp.getOpcode() == ISD::ConstantFP &&
5087             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
5088          break;
5089      }
5090      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
5091      AddToWorkList(Ops.back().Val);
5092      assert((Ops.back().getOpcode() == ISD::UNDEF ||
5093              Ops.back().getOpcode() == ISD::Constant ||
5094              Ops.back().getOpcode() == ISD::ConstantFP) &&
5095             "Scalar binop didn't fold!");
5096    }
5097
5098    if (Ops.size() == LHS.getNumOperands()) {
5099      MVT::ValueType VT = LHS.getValueType();
5100      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
5101    }
5102  }
5103
5104  return SDOperand();
5105}
5106
5107SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
5108  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
5109
5110  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
5111                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
5112  // If we got a simplified select_cc node back from SimplifySelectCC, then
5113  // break it down into a new SETCC node, and a new SELECT node, and then return
5114  // the SELECT node, since we were called with a SELECT node.
5115  if (SCC.Val) {
5116    // Check to see if we got a select_cc back (to turn into setcc/select).
5117    // Otherwise, just return whatever node we got back, like fabs.
5118    if (SCC.getOpcode() == ISD::SELECT_CC) {
5119      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
5120                                    SCC.getOperand(0), SCC.getOperand(1),
5121                                    SCC.getOperand(4));
5122      AddToWorkList(SETCC.Val);
5123      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
5124                         SCC.getOperand(3), SETCC);
5125    }
5126    return SCC;
5127  }
5128  return SDOperand();
5129}
5130
5131/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
5132/// are the two values being selected between, see if we can simplify the
5133/// select.  Callers of this should assume that TheSelect is deleted if this
5134/// returns true.  As such, they should return the appropriate thing (e.g. the
5135/// node) back to the top-level of the DAG combiner loop to avoid it being
5136/// looked at.
5137///
5138bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
5139                                    SDOperand RHS) {
5140
5141  // If this is a select from two identical things, try to pull the operation
5142  // through the select.
5143  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
5144    // If this is a load and the token chain is identical, replace the select
5145    // of two loads with a load through a select of the address to load from.
5146    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
5147    // constants have been dropped into the constant pool.
5148    if (LHS.getOpcode() == ISD::LOAD &&
5149        // Token chains must be identical.
5150        LHS.getOperand(0) == RHS.getOperand(0)) {
5151      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5152      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5153
5154      // If this is an EXTLOAD, the VT's must match.
5155      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5156        // FIXME: this conflates two src values, discarding one.  This is not
5157        // the right thing to do, but nothing uses srcvalues now.  When they do,
5158        // turn SrcValue into a list of locations.
5159        SDOperand Addr;
5160        if (TheSelect->getOpcode() == ISD::SELECT) {
5161          // Check that the condition doesn't reach either load.  If so, folding
5162          // this will induce a cycle into the DAG.
5163          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5164              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val)) {
5165            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5166                               TheSelect->getOperand(0), LLD->getBasePtr(),
5167                               RLD->getBasePtr());
5168          }
5169        } else {
5170          // Check that the condition doesn't reach either load.  If so, folding
5171          // this will induce a cycle into the DAG.
5172          if (!LLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5173              !RLD->isPredecessorOf(TheSelect->getOperand(0).Val) &&
5174              !LLD->isPredecessorOf(TheSelect->getOperand(1).Val) &&
5175              !RLD->isPredecessorOf(TheSelect->getOperand(1).Val)) {
5176            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5177                             TheSelect->getOperand(0),
5178                             TheSelect->getOperand(1),
5179                             LLD->getBasePtr(), RLD->getBasePtr(),
5180                             TheSelect->getOperand(4));
5181          }
5182        }
5183
5184        if (Addr.Val) {
5185          SDOperand Load;
5186          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5187            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5188                               Addr,LLD->getSrcValue(),
5189                               LLD->getSrcValueOffset(),
5190                               LLD->isVolatile(),
5191                               LLD->getAlignment());
5192          else {
5193            Load = DAG.getExtLoad(LLD->getExtensionType(),
5194                                  TheSelect->getValueType(0),
5195                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5196                                  LLD->getSrcValueOffset(),
5197                                  LLD->getMemoryVT(),
5198                                  LLD->isVolatile(),
5199                                  LLD->getAlignment());
5200          }
5201          // Users of the select now use the result of the load.
5202          CombineTo(TheSelect, Load);
5203
5204          // Users of the old loads now use the new load's chain.  We know the
5205          // old-load value is dead now.
5206          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5207          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5208          return true;
5209        }
5210      }
5211    }
5212  }
5213
5214  return false;
5215}
5216
5217SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5218                                        SDOperand N2, SDOperand N3,
5219                                        ISD::CondCode CC, bool NotExtCompare) {
5220
5221  MVT::ValueType VT = N2.getValueType();
5222  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5223  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5224  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5225
5226  // Determine if the condition we're dealing with is constant
5227  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultType(N0), N0, N1, CC, false);
5228  if (SCC.Val) AddToWorkList(SCC.Val);
5229  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5230
5231  // fold select_cc true, x, y -> x
5232  if (SCCC && !SCCC->isNullValue())
5233    return N2;
5234  // fold select_cc false, x, y -> y
5235  if (SCCC && SCCC->isNullValue())
5236    return N3;
5237
5238  // Check to see if we can simplify the select into an fabs node
5239  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5240    // Allow either -0.0 or 0.0
5241    if (CFP->getValueAPF().isZero()) {
5242      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5243      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5244          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5245          N2 == N3.getOperand(0))
5246        return DAG.getNode(ISD::FABS, VT, N0);
5247
5248      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5249      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5250          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5251          N2.getOperand(0) == N3)
5252        return DAG.getNode(ISD::FABS, VT, N3);
5253    }
5254  }
5255
5256  // Check to see if we can perform the "gzip trick", transforming
5257  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5258  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5259      MVT::isInteger(N0.getValueType()) &&
5260      MVT::isInteger(N2.getValueType()) &&
5261      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
5262       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5263    MVT::ValueType XType = N0.getValueType();
5264    MVT::ValueType AType = N2.getValueType();
5265    if (XType >= AType) {
5266      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5267      // single-bit constant.
5268      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
5269        unsigned ShCtV = N2C->getAPIntValue().logBase2();
5270        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5271        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5272        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5273        AddToWorkList(Shift.Val);
5274        if (XType > AType) {
5275          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5276          AddToWorkList(Shift.Val);
5277        }
5278        return DAG.getNode(ISD::AND, AType, Shift, N2);
5279      }
5280      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5281                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5282                                                    TLI.getShiftAmountTy()));
5283      AddToWorkList(Shift.Val);
5284      if (XType > AType) {
5285        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5286        AddToWorkList(Shift.Val);
5287      }
5288      return DAG.getNode(ISD::AND, AType, Shift, N2);
5289    }
5290  }
5291
5292  // fold select C, 16, 0 -> shl C, 4
5293  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
5294      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5295
5296    // If the caller doesn't want us to simplify this into a zext of a compare,
5297    // don't do it.
5298    if (NotExtCompare && N2C->getAPIntValue() == 1)
5299      return SDOperand();
5300
5301    // Get a SetCC of the condition
5302    // FIXME: Should probably make sure that setcc is legal if we ever have a
5303    // target where it isn't.
5304    SDOperand Temp, SCC;
5305    // cast from setcc result type to select result type
5306    if (AfterLegalize) {
5307      SCC  = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5308      if (N2.getValueType() < SCC.getValueType())
5309        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5310      else
5311        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5312    } else {
5313      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5314      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5315    }
5316    AddToWorkList(SCC.Val);
5317    AddToWorkList(Temp.Val);
5318
5319    if (N2C->getAPIntValue() == 1)
5320      return Temp;
5321    // shl setcc result by log2 n2c
5322    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5323                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
5324                                       TLI.getShiftAmountTy()));
5325  }
5326
5327  // Check to see if this is the equivalent of setcc
5328  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5329  // otherwise, go ahead with the folds.
5330  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
5331    MVT::ValueType XType = N0.getValueType();
5332    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(N0))) {
5333      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultType(N0), N0, N1, CC);
5334      if (Res.getValueType() != VT)
5335        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5336      return Res;
5337    }
5338
5339    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5340    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5341        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5342      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5343      return DAG.getNode(ISD::SRL, XType, Ctlz,
5344                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5345                                         TLI.getShiftAmountTy()));
5346    }
5347    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5348    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5349      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5350                                    N0);
5351      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5352                                    DAG.getConstant(~0ULL, XType));
5353      return DAG.getNode(ISD::SRL, XType,
5354                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5355                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5356                                         TLI.getShiftAmountTy()));
5357    }
5358    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5359    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5360      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5361                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5362                                                   TLI.getShiftAmountTy()));
5363      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5364    }
5365  }
5366
5367  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5368  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5369  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5370      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5371      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5372    MVT::ValueType XType = N0.getValueType();
5373    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5374                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5375                                                  TLI.getShiftAmountTy()));
5376    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5377    AddToWorkList(Shift.Val);
5378    AddToWorkList(Add.Val);
5379    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5380  }
5381  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5382  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5383  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5384      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5385    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5386      MVT::ValueType XType = N0.getValueType();
5387      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5388        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5389                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5390                                                      TLI.getShiftAmountTy()));
5391        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5392        AddToWorkList(Shift.Val);
5393        AddToWorkList(Add.Val);
5394        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5395      }
5396    }
5397  }
5398
5399  return SDOperand();
5400}
5401
5402/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5403SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5404                                     SDOperand N1, ISD::CondCode Cond,
5405                                     bool foldBooleans) {
5406  TargetLowering::DAGCombinerInfo
5407    DagCombineInfo(DAG, !AfterLegalize, false, this);
5408  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5409}
5410
5411/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5412/// return a DAG expression to select that will generate the same value by
5413/// multiplying by a magic number.  See:
5414/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5415SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5416  std::vector<SDNode*> Built;
5417  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5418
5419  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5420       ii != ee; ++ii)
5421    AddToWorkList(*ii);
5422  return S;
5423}
5424
5425/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5426/// return a DAG expression to select that will generate the same value by
5427/// multiplying by a magic number.  See:
5428/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5429SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5430  std::vector<SDNode*> Built;
5431  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5432
5433  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5434       ii != ee; ++ii)
5435    AddToWorkList(*ii);
5436  return S;
5437}
5438
5439/// FindBaseOffset - Return true if base is known not to alias with anything
5440/// but itself.  Provides base object and offset as results.
5441static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5442  // Assume it is a primitive operation.
5443  Base = Ptr; Offset = 0;
5444
5445  // If it's an adding a simple constant then integrate the offset.
5446  if (Base.getOpcode() == ISD::ADD) {
5447    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5448      Base = Base.getOperand(0);
5449      Offset += C->getValue();
5450    }
5451  }
5452
5453  // If it's any of the following then it can't alias with anything but itself.
5454  return isa<FrameIndexSDNode>(Base) ||
5455         isa<ConstantPoolSDNode>(Base) ||
5456         isa<GlobalAddressSDNode>(Base);
5457}
5458
5459/// isAlias - Return true if there is any possibility that the two addresses
5460/// overlap.
5461bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5462                          const Value *SrcValue1, int SrcValueOffset1,
5463                          SDOperand Ptr2, int64_t Size2,
5464                          const Value *SrcValue2, int SrcValueOffset2)
5465{
5466  // If they are the same then they must be aliases.
5467  if (Ptr1 == Ptr2) return true;
5468
5469  // Gather base node and offset information.
5470  SDOperand Base1, Base2;
5471  int64_t Offset1, Offset2;
5472  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5473  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5474
5475  // If they have a same base address then...
5476  if (Base1 == Base2) {
5477    // Check to see if the addresses overlap.
5478    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5479  }
5480
5481  // If we know both bases then they can't alias.
5482  if (KnownBase1 && KnownBase2) return false;
5483
5484  if (CombinerGlobalAA) {
5485    // Use alias analysis information.
5486    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5487    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5488    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5489    AliasAnalysis::AliasResult AAResult =
5490                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5491    if (AAResult == AliasAnalysis::NoAlias)
5492      return false;
5493  }
5494
5495  // Otherwise we have to assume they alias.
5496  return true;
5497}
5498
5499/// FindAliasInfo - Extracts the relevant alias information from the memory
5500/// node.  Returns true if the operand was a load.
5501bool DAGCombiner::FindAliasInfo(SDNode *N,
5502                        SDOperand &Ptr, int64_t &Size,
5503                        const Value *&SrcValue, int &SrcValueOffset) {
5504  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5505    Ptr = LD->getBasePtr();
5506    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5507    SrcValue = LD->getSrcValue();
5508    SrcValueOffset = LD->getSrcValueOffset();
5509    return true;
5510  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5511    Ptr = ST->getBasePtr();
5512    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5513    SrcValue = ST->getSrcValue();
5514    SrcValueOffset = ST->getSrcValueOffset();
5515  } else {
5516    assert(0 && "FindAliasInfo expected a memory operand");
5517  }
5518
5519  return false;
5520}
5521
5522/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5523/// looking for aliasing nodes and adding them to the Aliases vector.
5524void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5525                                   SmallVector<SDOperand, 8> &Aliases) {
5526  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5527  std::set<SDNode *> Visited;           // Visited node set.
5528
5529  // Get alias information for node.
5530  SDOperand Ptr;
5531  int64_t Size;
5532  const Value *SrcValue;
5533  int SrcValueOffset;
5534  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5535
5536  // Starting off.
5537  Chains.push_back(OriginalChain);
5538
5539  // Look at each chain and determine if it is an alias.  If so, add it to the
5540  // aliases list.  If not, then continue up the chain looking for the next
5541  // candidate.
5542  while (!Chains.empty()) {
5543    SDOperand Chain = Chains.back();
5544    Chains.pop_back();
5545
5546     // Don't bother if we've been before.
5547    if (Visited.find(Chain.Val) != Visited.end()) continue;
5548    Visited.insert(Chain.Val);
5549
5550    switch (Chain.getOpcode()) {
5551    case ISD::EntryToken:
5552      // Entry token is ideal chain operand, but handled in FindBetterChain.
5553      break;
5554
5555    case ISD::LOAD:
5556    case ISD::STORE: {
5557      // Get alias information for Chain.
5558      SDOperand OpPtr;
5559      int64_t OpSize;
5560      const Value *OpSrcValue;
5561      int OpSrcValueOffset;
5562      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5563                                    OpSrcValue, OpSrcValueOffset);
5564
5565      // If chain is alias then stop here.
5566      if (!(IsLoad && IsOpLoad) &&
5567          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5568                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5569        Aliases.push_back(Chain);
5570      } else {
5571        // Look further up the chain.
5572        Chains.push_back(Chain.getOperand(0));
5573        // Clean up old chain.
5574        AddToWorkList(Chain.Val);
5575      }
5576      break;
5577    }
5578
5579    case ISD::TokenFactor:
5580      // We have to check each of the operands of the token factor, so we queue
5581      // then up.  Adding the  operands to the queue (stack) in reverse order
5582      // maintains the original order and increases the likelihood that getNode
5583      // will find a matching token factor (CSE.)
5584      for (unsigned n = Chain.getNumOperands(); n;)
5585        Chains.push_back(Chain.getOperand(--n));
5586      // Eliminate the token factor if we can.
5587      AddToWorkList(Chain.Val);
5588      break;
5589
5590    default:
5591      // For all other instructions we will just have to take what we can get.
5592      Aliases.push_back(Chain);
5593      break;
5594    }
5595  }
5596}
5597
5598/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5599/// for a better chain (aliasing node.)
5600SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5601  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5602
5603  // Accumulate all the aliases to this node.
5604  GatherAllAliases(N, OldChain, Aliases);
5605
5606  if (Aliases.size() == 0) {
5607    // If no operands then chain to entry token.
5608    return DAG.getEntryNode();
5609  } else if (Aliases.size() == 1) {
5610    // If a single operand then chain to it.  We don't need to revisit it.
5611    return Aliases[0];
5612  }
5613
5614  // Construct a custom tailored token factor.
5615  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5616                                   &Aliases[0], Aliases.size());
5617
5618  // Make sure the old chain gets cleaned up.
5619  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5620
5621  return NewChain;
5622}
5623
5624// SelectionDAG::Combine - This is the entry point for the file.
5625//
5626void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5627  if (!RunningAfterLegalize && ViewDAGCombine1)
5628    viewGraph();
5629  if (RunningAfterLegalize && ViewDAGCombine2)
5630    viewGraph();
5631  /// run - This is the main entry point to this class.
5632  ///
5633  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5634}
5635