DAGCombiner.cpp revision 831737d329a727f53a1fb0572f7b7a8127208881
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/DataLayout.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitSELECT_CC(SDNode *N);
209    SDValue visitSETCC(SDNode *N);
210    SDValue visitSIGN_EXTEND(SDNode *N);
211    SDValue visitZERO_EXTEND(SDNode *N);
212    SDValue visitANY_EXTEND(SDNode *N);
213    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
214    SDValue visitTRUNCATE(SDNode *N);
215    SDValue visitBITCAST(SDNode *N);
216    SDValue visitBUILD_PAIR(SDNode *N);
217    SDValue visitFADD(SDNode *N);
218    SDValue visitFSUB(SDNode *N);
219    SDValue visitFMUL(SDNode *N);
220    SDValue visitFMA(SDNode *N);
221    SDValue visitFDIV(SDNode *N);
222    SDValue visitFREM(SDNode *N);
223    SDValue visitFCOPYSIGN(SDNode *N);
224    SDValue visitSINT_TO_FP(SDNode *N);
225    SDValue visitUINT_TO_FP(SDNode *N);
226    SDValue visitFP_TO_SINT(SDNode *N);
227    SDValue visitFP_TO_UINT(SDNode *N);
228    SDValue visitFP_ROUND(SDNode *N);
229    SDValue visitFP_ROUND_INREG(SDNode *N);
230    SDValue visitFP_EXTEND(SDNode *N);
231    SDValue visitFNEG(SDNode *N);
232    SDValue visitFABS(SDNode *N);
233    SDValue visitFCEIL(SDNode *N);
234    SDValue visitFTRUNC(SDNode *N);
235    SDValue visitFFLOOR(SDNode *N);
236    SDValue visitBRCOND(SDNode *N);
237    SDValue visitBR_CC(SDNode *N);
238    SDValue visitLOAD(SDNode *N);
239    SDValue visitSTORE(SDNode *N);
240    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
241    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
242    SDValue visitBUILD_VECTOR(SDNode *N);
243    SDValue visitCONCAT_VECTORS(SDNode *N);
244    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
245    SDValue visitVECTOR_SHUFFLE(SDNode *N);
246    SDValue visitMEMBARRIER(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          DebugLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVector<SDValue, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
330    }
331
332    /// isTypeLegal - This method returns true if we are running before type
333    /// legalization or if the specified VT is legal.
334    bool isTypeLegal(const EVT &VT) {
335      if (!LegalTypes) return true;
336      return TLI.isTypeLegal(VT);
337    }
338  };
339}
340
341
342namespace {
343/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
344/// nodes from the worklist.
345class WorkListRemover : public SelectionDAG::DAGUpdateListener {
346  DAGCombiner &DC;
347public:
348  explicit WorkListRemover(DAGCombiner &dc)
349    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
350
351  virtual void NodeDeleted(SDNode *N, SDNode *E) {
352    DC.removeFromWorkList(N);
353  }
354};
355}
356
357//===----------------------------------------------------------------------===//
358//  TargetLowering::DAGCombinerInfo implementation
359//===----------------------------------------------------------------------===//
360
361void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
362  ((DAGCombiner*)DC)->AddToWorkList(N);
363}
364
365void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
366  ((DAGCombiner*)DC)->removeFromWorkList(N);
367}
368
369SDValue TargetLowering::DAGCombinerInfo::
370CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
371  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
372}
373
374SDValue TargetLowering::DAGCombinerInfo::
375CombineTo(SDNode *N, SDValue Res, bool AddTo) {
376  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
377}
378
379
380SDValue TargetLowering::DAGCombinerInfo::
381CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
382  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
383}
384
385void TargetLowering::DAGCombinerInfo::
386CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
387  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
388}
389
390//===----------------------------------------------------------------------===//
391// Helper Functions
392//===----------------------------------------------------------------------===//
393
394/// isNegatibleForFree - Return 1 if we can compute the negated form of the
395/// specified expression for the same cost as the expression itself, or 2 if we
396/// can compute the negated form more cheaply than the expression itself.
397static char isNegatibleForFree(SDValue Op, bool LegalOperations,
398                               const TargetLowering &TLI,
399                               const TargetOptions *Options,
400                               unsigned Depth = 0) {
401  // fneg is removable even if it has multiple uses.
402  if (Op.getOpcode() == ISD::FNEG) return 2;
403
404  // Don't allow anything with multiple uses.
405  if (!Op.hasOneUse()) return 0;
406
407  // Don't recurse exponentially.
408  if (Depth > 6) return 0;
409
410  switch (Op.getOpcode()) {
411  default: return false;
412  case ISD::ConstantFP:
413    // Don't invert constant FP values after legalize.  The negated constant
414    // isn't necessarily legal.
415    return LegalOperations ? 0 : 1;
416  case ISD::FADD:
417    // FIXME: determine better conditions for this xform.
418    if (!Options->UnsafeFPMath) return 0;
419
420    // After operation legalization, it might not be legal to create new FSUBs.
421    if (LegalOperations &&
422        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
423      return 0;
424
425    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
426    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
427                                    Options, Depth + 1))
428      return V;
429    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
430    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
431                              Depth + 1);
432  case ISD::FSUB:
433    // We can't turn -(A-B) into B-A when we honor signed zeros.
434    if (!Options->UnsafeFPMath) return 0;
435
436    // fold (fneg (fsub A, B)) -> (fsub B, A)
437    return 1;
438
439  case ISD::FMUL:
440  case ISD::FDIV:
441    if (Options->HonorSignDependentRoundingFPMath()) return 0;
442
443    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
444    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
445                                    Options, Depth + 1))
446      return V;
447
448    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
449                              Depth + 1);
450
451  case ISD::FP_EXTEND:
452  case ISD::FP_ROUND:
453  case ISD::FSIN:
454    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
455                              Depth + 1);
456  }
457}
458
459/// GetNegatedExpression - If isNegatibleForFree returns true, this function
460/// returns the newly negated expression.
461static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
462                                    bool LegalOperations, unsigned Depth = 0) {
463  // fneg is removable even if it has multiple uses.
464  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
465
466  // Don't allow anything with multiple uses.
467  assert(Op.hasOneUse() && "Unknown reuse!");
468
469  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
470  switch (Op.getOpcode()) {
471  default: llvm_unreachable("Unknown code");
472  case ISD::ConstantFP: {
473    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
474    V.changeSign();
475    return DAG.getConstantFP(V, Op.getValueType());
476  }
477  case ISD::FADD:
478    // FIXME: determine better conditions for this xform.
479    assert(DAG.getTarget().Options.UnsafeFPMath);
480
481    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
482    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
483                           DAG.getTargetLoweringInfo(),
484                           &DAG.getTarget().Options, Depth+1))
485      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
486                         GetNegatedExpression(Op.getOperand(0), DAG,
487                                              LegalOperations, Depth+1),
488                         Op.getOperand(1));
489    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
490    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
491                       GetNegatedExpression(Op.getOperand(1), DAG,
492                                            LegalOperations, Depth+1),
493                       Op.getOperand(0));
494  case ISD::FSUB:
495    // We can't turn -(A-B) into B-A when we honor signed zeros.
496    assert(DAG.getTarget().Options.UnsafeFPMath);
497
498    // fold (fneg (fsub 0, B)) -> B
499    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
500      if (N0CFP->getValueAPF().isZero())
501        return Op.getOperand(1);
502
503    // fold (fneg (fsub A, B)) -> (fsub B, A)
504    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
505                       Op.getOperand(1), Op.getOperand(0));
506
507  case ISD::FMUL:
508  case ISD::FDIV:
509    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
510
511    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519
520    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
521    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
522                       Op.getOperand(0),
523                       GetNegatedExpression(Op.getOperand(1), DAG,
524                                            LegalOperations, Depth+1));
525
526  case ISD::FP_EXTEND:
527  case ISD::FSIN:
528    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
529                       GetNegatedExpression(Op.getOperand(0), DAG,
530                                            LegalOperations, Depth+1));
531  case ISD::FP_ROUND:
532      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
533                         GetNegatedExpression(Op.getOperand(0), DAG,
534                                              LegalOperations, Depth+1),
535                         Op.getOperand(1));
536  }
537}
538
539
540// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
541// that selects between the values 1 and 0, making it equivalent to a setcc.
542// Also, set the incoming LHS, RHS, and CC references to the appropriate
543// nodes based on the type of node we are checking.  This simplifies life a
544// bit for the callers.
545static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
546                              SDValue &CC) {
547  if (N.getOpcode() == ISD::SETCC) {
548    LHS = N.getOperand(0);
549    RHS = N.getOperand(1);
550    CC  = N.getOperand(2);
551    return true;
552  }
553  if (N.getOpcode() == ISD::SELECT_CC &&
554      N.getOperand(2).getOpcode() == ISD::Constant &&
555      N.getOperand(3).getOpcode() == ISD::Constant &&
556      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
557      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
558    LHS = N.getOperand(0);
559    RHS = N.getOperand(1);
560    CC  = N.getOperand(4);
561    return true;
562  }
563  return false;
564}
565
566// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
567// one use.  If this is true, it allows the users to invert the operation for
568// free when it is profitable to do so.
569static bool isOneUseSetCC(SDValue N) {
570  SDValue N0, N1, N2;
571  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
572    return true;
573  return false;
574}
575
576SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
577                                    SDValue N0, SDValue N1) {
578  EVT VT = N0.getValueType();
579  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
580    if (isa<ConstantSDNode>(N1)) {
581      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
582      SDValue OpNode =
583        DAG.FoldConstantArithmetic(Opc, VT,
584                                   cast<ConstantSDNode>(N0.getOperand(1)),
585                                   cast<ConstantSDNode>(N1));
586      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
587    }
588    if (N0.hasOneUse()) {
589      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
590      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
591                                   N0.getOperand(0), N1);
592      AddToWorkList(OpNode.getNode());
593      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
594    }
595  }
596
597  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
598    if (isa<ConstantSDNode>(N0)) {
599      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
600      SDValue OpNode =
601        DAG.FoldConstantArithmetic(Opc, VT,
602                                   cast<ConstantSDNode>(N1.getOperand(1)),
603                                   cast<ConstantSDNode>(N0));
604      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
605    }
606    if (N1.hasOneUse()) {
607      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
608      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
609                                   N1.getOperand(0), N0);
610      AddToWorkList(OpNode.getNode());
611      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
612    }
613  }
614
615  return SDValue();
616}
617
618SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
619                               bool AddTo) {
620  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
621  ++NodesCombined;
622  DEBUG(dbgs() << "\nReplacing.1 ";
623        N->dump(&DAG);
624        dbgs() << "\nWith: ";
625        To[0].getNode()->dump(&DAG);
626        dbgs() << " and " << NumTo-1 << " other values\n";
627        for (unsigned i = 0, e = NumTo; i != e; ++i)
628          assert((!To[i].getNode() ||
629                  N->getValueType(i) == To[i].getValueType()) &&
630                 "Cannot combine value to value of different type!"));
631  WorkListRemover DeadNodes(*this);
632  DAG.ReplaceAllUsesWith(N, To);
633  if (AddTo) {
634    // Push the new nodes and any users onto the worklist
635    for (unsigned i = 0, e = NumTo; i != e; ++i) {
636      if (To[i].getNode()) {
637        AddToWorkList(To[i].getNode());
638        AddUsersToWorkList(To[i].getNode());
639      }
640    }
641  }
642
643  // Finally, if the node is now dead, remove it from the graph.  The node
644  // may not be dead if the replacement process recursively simplified to
645  // something else needing this node.
646  if (N->use_empty()) {
647    // Nodes can be reintroduced into the worklist.  Make sure we do not
648    // process a node that has been replaced.
649    removeFromWorkList(N);
650
651    // Finally, since the node is now dead, remove it from the graph.
652    DAG.DeleteNode(N);
653  }
654  return SDValue(N, 0);
655}
656
657void DAGCombiner::
658CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
659  // Replace all uses.  If any nodes become isomorphic to other nodes and
660  // are deleted, make sure to remove them from our worklist.
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
663
664  // Push the new node and any (possibly new) users onto the worklist.
665  AddToWorkList(TLO.New.getNode());
666  AddUsersToWorkList(TLO.New.getNode());
667
668  // Finally, if the node is now dead, remove it from the graph.  The node
669  // may not be dead if the replacement process recursively simplified to
670  // something else needing this node.
671  if (TLO.Old.getNode()->use_empty()) {
672    removeFromWorkList(TLO.Old.getNode());
673
674    // If the operands of this node are only used by the node, they will now
675    // be dead.  Make sure to visit them first to delete dead nodes early.
676    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
677      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
678        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
679
680    DAG.DeleteNode(TLO.Old.getNode());
681  }
682}
683
684/// SimplifyDemandedBits - Check the specified integer node value to see if
685/// it can be simplified or if things it uses can be simplified by bit
686/// propagation.  If so, return true.
687bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
688  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
689  APInt KnownZero, KnownOne;
690  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
691    return false;
692
693  // Revisit the node.
694  AddToWorkList(Op.getNode());
695
696  // Replace the old value with the new one.
697  ++NodesCombined;
698  DEBUG(dbgs() << "\nReplacing.2 ";
699        TLO.Old.getNode()->dump(&DAG);
700        dbgs() << "\nWith: ";
701        TLO.New.getNode()->dump(&DAG);
702        dbgs() << '\n');
703
704  CommitTargetLoweringOpt(TLO);
705  return true;
706}
707
708void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
709  DebugLoc dl = Load->getDebugLoc();
710  EVT VT = Load->getValueType(0);
711  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
712
713  DEBUG(dbgs() << "\nReplacing.9 ";
714        Load->dump(&DAG);
715        dbgs() << "\nWith: ";
716        Trunc.getNode()->dump(&DAG);
717        dbgs() << '\n');
718  WorkListRemover DeadNodes(*this);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
720  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
721  removeFromWorkList(Load);
722  DAG.DeleteNode(Load);
723  AddToWorkList(Trunc.getNode());
724}
725
726SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
727  Replace = false;
728  DebugLoc dl = Op.getDebugLoc();
729  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
730    EVT MemVT = LD->getMemoryVT();
731    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
732      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
733                                                  : ISD::EXTLOAD)
734      : LD->getExtensionType();
735    Replace = true;
736    return DAG.getExtLoad(ExtType, dl, PVT,
737                          LD->getChain(), LD->getBasePtr(),
738                          LD->getPointerInfo(),
739                          MemVT, LD->isVolatile(),
740                          LD->isNonTemporal(), LD->getAlignment());
741  }
742
743  unsigned Opc = Op.getOpcode();
744  switch (Opc) {
745  default: break;
746  case ISD::AssertSext:
747    return DAG.getNode(ISD::AssertSext, dl, PVT,
748                       SExtPromoteOperand(Op.getOperand(0), PVT),
749                       Op.getOperand(1));
750  case ISD::AssertZext:
751    return DAG.getNode(ISD::AssertZext, dl, PVT,
752                       ZExtPromoteOperand(Op.getOperand(0), PVT),
753                       Op.getOperand(1));
754  case ISD::Constant: {
755    unsigned ExtOpc =
756      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
757    return DAG.getNode(ExtOpc, dl, PVT, Op);
758  }
759  }
760
761  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
762    return SDValue();
763  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
764}
765
766SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
767  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
768    return SDValue();
769  EVT OldVT = Op.getValueType();
770  DebugLoc dl = Op.getDebugLoc();
771  bool Replace = false;
772  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
773  if (NewOp.getNode() == 0)
774    return SDValue();
775  AddToWorkList(NewOp.getNode());
776
777  if (Replace)
778    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
779  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
780                     DAG.getValueType(OldVT));
781}
782
783SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
784  EVT OldVT = Op.getValueType();
785  DebugLoc dl = Op.getDebugLoc();
786  bool Replace = false;
787  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
788  if (NewOp.getNode() == 0)
789    return SDValue();
790  AddToWorkList(NewOp.getNode());
791
792  if (Replace)
793    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
794  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
795}
796
797/// PromoteIntBinOp - Promote the specified integer binary operation if the
798/// target indicates it is beneficial. e.g. On x86, it's usually better to
799/// promote i16 operations to i32 since i16 instructions are longer.
800SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
801  if (!LegalOperations)
802    return SDValue();
803
804  EVT VT = Op.getValueType();
805  if (VT.isVector() || !VT.isInteger())
806    return SDValue();
807
808  // If operation type is 'undesirable', e.g. i16 on x86, consider
809  // promoting it.
810  unsigned Opc = Op.getOpcode();
811  if (TLI.isTypeDesirableForOp(Opc, VT))
812    return SDValue();
813
814  EVT PVT = VT;
815  // Consult target whether it is a good idea to promote this operation and
816  // what's the right type to promote it to.
817  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
818    assert(PVT != VT && "Don't know what type to promote to!");
819
820    bool Replace0 = false;
821    SDValue N0 = Op.getOperand(0);
822    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
823    if (NN0.getNode() == 0)
824      return SDValue();
825
826    bool Replace1 = false;
827    SDValue N1 = Op.getOperand(1);
828    SDValue NN1;
829    if (N0 == N1)
830      NN1 = NN0;
831    else {
832      NN1 = PromoteOperand(N1, PVT, Replace1);
833      if (NN1.getNode() == 0)
834        return SDValue();
835    }
836
837    AddToWorkList(NN0.getNode());
838    if (NN1.getNode())
839      AddToWorkList(NN1.getNode());
840
841    if (Replace0)
842      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
843    if (Replace1)
844      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
845
846    DEBUG(dbgs() << "\nPromoting ";
847          Op.getNode()->dump(&DAG));
848    DebugLoc dl = Op.getDebugLoc();
849    return DAG.getNode(ISD::TRUNCATE, dl, VT,
850                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
851  }
852  return SDValue();
853}
854
855/// PromoteIntShiftOp - Promote the specified integer shift operation if the
856/// target indicates it is beneficial. e.g. On x86, it's usually better to
857/// promote i16 operations to i32 since i16 instructions are longer.
858SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
859  if (!LegalOperations)
860    return SDValue();
861
862  EVT VT = Op.getValueType();
863  if (VT.isVector() || !VT.isInteger())
864    return SDValue();
865
866  // If operation type is 'undesirable', e.g. i16 on x86, consider
867  // promoting it.
868  unsigned Opc = Op.getOpcode();
869  if (TLI.isTypeDesirableForOp(Opc, VT))
870    return SDValue();
871
872  EVT PVT = VT;
873  // Consult target whether it is a good idea to promote this operation and
874  // what's the right type to promote it to.
875  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
876    assert(PVT != VT && "Don't know what type to promote to!");
877
878    bool Replace = false;
879    SDValue N0 = Op.getOperand(0);
880    if (Opc == ISD::SRA)
881      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
882    else if (Opc == ISD::SRL)
883      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
884    else
885      N0 = PromoteOperand(N0, PVT, Replace);
886    if (N0.getNode() == 0)
887      return SDValue();
888
889    AddToWorkList(N0.getNode());
890    if (Replace)
891      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
892
893    DEBUG(dbgs() << "\nPromoting ";
894          Op.getNode()->dump(&DAG));
895    DebugLoc dl = Op.getDebugLoc();
896    return DAG.getNode(ISD::TRUNCATE, dl, VT,
897                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
898  }
899  return SDValue();
900}
901
902SDValue DAGCombiner::PromoteExtend(SDValue Op) {
903  if (!LegalOperations)
904    return SDValue();
905
906  EVT VT = Op.getValueType();
907  if (VT.isVector() || !VT.isInteger())
908    return SDValue();
909
910  // If operation type is 'undesirable', e.g. i16 on x86, consider
911  // promoting it.
912  unsigned Opc = Op.getOpcode();
913  if (TLI.isTypeDesirableForOp(Opc, VT))
914    return SDValue();
915
916  EVT PVT = VT;
917  // Consult target whether it is a good idea to promote this operation and
918  // what's the right type to promote it to.
919  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
920    assert(PVT != VT && "Don't know what type to promote to!");
921    // fold (aext (aext x)) -> (aext x)
922    // fold (aext (zext x)) -> (zext x)
923    // fold (aext (sext x)) -> (sext x)
924    DEBUG(dbgs() << "\nPromoting ";
925          Op.getNode()->dump(&DAG));
926    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
927  }
928  return SDValue();
929}
930
931bool DAGCombiner::PromoteLoad(SDValue Op) {
932  if (!LegalOperations)
933    return false;
934
935  EVT VT = Op.getValueType();
936  if (VT.isVector() || !VT.isInteger())
937    return false;
938
939  // If operation type is 'undesirable', e.g. i16 on x86, consider
940  // promoting it.
941  unsigned Opc = Op.getOpcode();
942  if (TLI.isTypeDesirableForOp(Opc, VT))
943    return false;
944
945  EVT PVT = VT;
946  // Consult target whether it is a good idea to promote this operation and
947  // what's the right type to promote it to.
948  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
949    assert(PVT != VT && "Don't know what type to promote to!");
950
951    DebugLoc dl = Op.getDebugLoc();
952    SDNode *N = Op.getNode();
953    LoadSDNode *LD = cast<LoadSDNode>(N);
954    EVT MemVT = LD->getMemoryVT();
955    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
956      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
957                                                  : ISD::EXTLOAD)
958      : LD->getExtensionType();
959    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
960                                   LD->getChain(), LD->getBasePtr(),
961                                   LD->getPointerInfo(),
962                                   MemVT, LD->isVolatile(),
963                                   LD->isNonTemporal(), LD->getAlignment());
964    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
965
966    DEBUG(dbgs() << "\nPromoting ";
967          N->dump(&DAG);
968          dbgs() << "\nTo: ";
969          Result.getNode()->dump(&DAG);
970          dbgs() << '\n');
971    WorkListRemover DeadNodes(*this);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
973    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
974    removeFromWorkList(N);
975    DAG.DeleteNode(N);
976    AddToWorkList(Result.getNode());
977    return true;
978  }
979  return false;
980}
981
982
983//===----------------------------------------------------------------------===//
984//  Main DAG Combiner implementation
985//===----------------------------------------------------------------------===//
986
987void DAGCombiner::Run(CombineLevel AtLevel) {
988  // set the instance variables, so that the various visit routines may use it.
989  Level = AtLevel;
990  LegalOperations = Level >= AfterLegalizeVectorOps;
991  LegalTypes = Level >= AfterLegalizeTypes;
992
993  // Add all the dag nodes to the worklist.
994  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
995       E = DAG.allnodes_end(); I != E; ++I)
996    AddToWorkList(I);
997
998  // Create a dummy node (which is not added to allnodes), that adds a reference
999  // to the root node, preventing it from being deleted, and tracking any
1000  // changes of the root.
1001  HandleSDNode Dummy(DAG.getRoot());
1002
1003  // The root of the dag may dangle to deleted nodes until the dag combiner is
1004  // done.  Set it to null to avoid confusion.
1005  DAG.setRoot(SDValue());
1006
1007  // while the worklist isn't empty, find a node and
1008  // try and combine it.
1009  while (!WorkListContents.empty()) {
1010    SDNode *N;
1011    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1012    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1013    // worklist *should* contain, and check the node we want to visit is should
1014    // actually be visited.
1015    do {
1016      N = WorkListOrder.pop_back_val();
1017    } while (!WorkListContents.erase(N));
1018
1019    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1020    // N is deleted from the DAG, since they too may now be dead or may have a
1021    // reduced number of uses, allowing other xforms.
1022    if (N->use_empty() && N != &Dummy) {
1023      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1024        AddToWorkList(N->getOperand(i).getNode());
1025
1026      DAG.DeleteNode(N);
1027      continue;
1028    }
1029
1030    SDValue RV = combine(N);
1031
1032    if (RV.getNode() == 0)
1033      continue;
1034
1035    ++NodesCombined;
1036
1037    // If we get back the same node we passed in, rather than a new node or
1038    // zero, we know that the node must have defined multiple values and
1039    // CombineTo was used.  Since CombineTo takes care of the worklist
1040    // mechanics for us, we have no work to do in this case.
1041    if (RV.getNode() == N)
1042      continue;
1043
1044    assert(N->getOpcode() != ISD::DELETED_NODE &&
1045           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1046           "Node was deleted but visit returned new node!");
1047
1048    DEBUG(dbgs() << "\nReplacing.3 ";
1049          N->dump(&DAG);
1050          dbgs() << "\nWith: ";
1051          RV.getNode()->dump(&DAG);
1052          dbgs() << '\n');
1053
1054    // Transfer debug value.
1055    DAG.TransferDbgValues(SDValue(N, 0), RV);
1056    WorkListRemover DeadNodes(*this);
1057    if (N->getNumValues() == RV.getNode()->getNumValues())
1058      DAG.ReplaceAllUsesWith(N, RV.getNode());
1059    else {
1060      assert(N->getValueType(0) == RV.getValueType() &&
1061             N->getNumValues() == 1 && "Type mismatch");
1062      SDValue OpV = RV;
1063      DAG.ReplaceAllUsesWith(N, &OpV);
1064    }
1065
1066    // Push the new node and any users onto the worklist
1067    AddToWorkList(RV.getNode());
1068    AddUsersToWorkList(RV.getNode());
1069
1070    // Add any uses of the old node to the worklist in case this node is the
1071    // last one that uses them.  They may become dead after this node is
1072    // deleted.
1073    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1074      AddToWorkList(N->getOperand(i).getNode());
1075
1076    // Finally, if the node is now dead, remove it from the graph.  The node
1077    // may not be dead if the replacement process recursively simplified to
1078    // something else needing this node.
1079    if (N->use_empty()) {
1080      // Nodes can be reintroduced into the worklist.  Make sure we do not
1081      // process a node that has been replaced.
1082      removeFromWorkList(N);
1083
1084      // Finally, since the node is now dead, remove it from the graph.
1085      DAG.DeleteNode(N);
1086    }
1087  }
1088
1089  // If the root changed (e.g. it was a dead load, update the root).
1090  DAG.setRoot(Dummy.getValue());
1091  DAG.RemoveDeadNodes();
1092}
1093
1094SDValue DAGCombiner::visit(SDNode *N) {
1095  switch (N->getOpcode()) {
1096  default: break;
1097  case ISD::TokenFactor:        return visitTokenFactor(N);
1098  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1099  case ISD::ADD:                return visitADD(N);
1100  case ISD::SUB:                return visitSUB(N);
1101  case ISD::ADDC:               return visitADDC(N);
1102  case ISD::SUBC:               return visitSUBC(N);
1103  case ISD::ADDE:               return visitADDE(N);
1104  case ISD::SUBE:               return visitSUBE(N);
1105  case ISD::MUL:                return visitMUL(N);
1106  case ISD::SDIV:               return visitSDIV(N);
1107  case ISD::UDIV:               return visitUDIV(N);
1108  case ISD::SREM:               return visitSREM(N);
1109  case ISD::UREM:               return visitUREM(N);
1110  case ISD::MULHU:              return visitMULHU(N);
1111  case ISD::MULHS:              return visitMULHS(N);
1112  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1113  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1114  case ISD::SMULO:              return visitSMULO(N);
1115  case ISD::UMULO:              return visitUMULO(N);
1116  case ISD::SDIVREM:            return visitSDIVREM(N);
1117  case ISD::UDIVREM:            return visitUDIVREM(N);
1118  case ISD::AND:                return visitAND(N);
1119  case ISD::OR:                 return visitOR(N);
1120  case ISD::XOR:                return visitXOR(N);
1121  case ISD::SHL:                return visitSHL(N);
1122  case ISD::SRA:                return visitSRA(N);
1123  case ISD::SRL:                return visitSRL(N);
1124  case ISD::CTLZ:               return visitCTLZ(N);
1125  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1126  case ISD::CTTZ:               return visitCTTZ(N);
1127  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1128  case ISD::CTPOP:              return visitCTPOP(N);
1129  case ISD::SELECT:             return visitSELECT(N);
1130  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1131  case ISD::SETCC:              return visitSETCC(N);
1132  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1133  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1134  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1135  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1136  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1137  case ISD::BITCAST:            return visitBITCAST(N);
1138  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1139  case ISD::FADD:               return visitFADD(N);
1140  case ISD::FSUB:               return visitFSUB(N);
1141  case ISD::FMUL:               return visitFMUL(N);
1142  case ISD::FMA:                return visitFMA(N);
1143  case ISD::FDIV:               return visitFDIV(N);
1144  case ISD::FREM:               return visitFREM(N);
1145  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1146  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1147  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1148  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1149  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1150  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1151  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1152  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1153  case ISD::FNEG:               return visitFNEG(N);
1154  case ISD::FABS:               return visitFABS(N);
1155  case ISD::FFLOOR:             return visitFFLOOR(N);
1156  case ISD::FCEIL:              return visitFCEIL(N);
1157  case ISD::FTRUNC:             return visitFTRUNC(N);
1158  case ISD::BRCOND:             return visitBRCOND(N);
1159  case ISD::BR_CC:              return visitBR_CC(N);
1160  case ISD::LOAD:               return visitLOAD(N);
1161  case ISD::STORE:              return visitSTORE(N);
1162  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1163  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1164  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1165  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1166  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1167  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1168  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1169  }
1170  return SDValue();
1171}
1172
1173SDValue DAGCombiner::combine(SDNode *N) {
1174  SDValue RV = visit(N);
1175
1176  // If nothing happened, try a target-specific DAG combine.
1177  if (RV.getNode() == 0) {
1178    assert(N->getOpcode() != ISD::DELETED_NODE &&
1179           "Node was deleted but visit returned NULL!");
1180
1181    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1182        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1183
1184      // Expose the DAG combiner to the target combiner impls.
1185      TargetLowering::DAGCombinerInfo
1186        DagCombineInfo(DAG, Level, false, this);
1187
1188      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1189    }
1190  }
1191
1192  // If nothing happened still, try promoting the operation.
1193  if (RV.getNode() == 0) {
1194    switch (N->getOpcode()) {
1195    default: break;
1196    case ISD::ADD:
1197    case ISD::SUB:
1198    case ISD::MUL:
1199    case ISD::AND:
1200    case ISD::OR:
1201    case ISD::XOR:
1202      RV = PromoteIntBinOp(SDValue(N, 0));
1203      break;
1204    case ISD::SHL:
1205    case ISD::SRA:
1206    case ISD::SRL:
1207      RV = PromoteIntShiftOp(SDValue(N, 0));
1208      break;
1209    case ISD::SIGN_EXTEND:
1210    case ISD::ZERO_EXTEND:
1211    case ISD::ANY_EXTEND:
1212      RV = PromoteExtend(SDValue(N, 0));
1213      break;
1214    case ISD::LOAD:
1215      if (PromoteLoad(SDValue(N, 0)))
1216        RV = SDValue(N, 0);
1217      break;
1218    }
1219  }
1220
1221  // If N is a commutative binary node, try commuting it to enable more
1222  // sdisel CSE.
1223  if (RV.getNode() == 0 &&
1224      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1225      N->getNumValues() == 1) {
1226    SDValue N0 = N->getOperand(0);
1227    SDValue N1 = N->getOperand(1);
1228
1229    // Constant operands are canonicalized to RHS.
1230    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1231      SDValue Ops[] = { N1, N0 };
1232      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1233                                            Ops, 2);
1234      if (CSENode)
1235        return SDValue(CSENode, 0);
1236    }
1237  }
1238
1239  return RV;
1240}
1241
1242/// getInputChainForNode - Given a node, return its input chain if it has one,
1243/// otherwise return a null sd operand.
1244static SDValue getInputChainForNode(SDNode *N) {
1245  if (unsigned NumOps = N->getNumOperands()) {
1246    if (N->getOperand(0).getValueType() == MVT::Other)
1247      return N->getOperand(0);
1248    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1249      return N->getOperand(NumOps-1);
1250    for (unsigned i = 1; i < NumOps-1; ++i)
1251      if (N->getOperand(i).getValueType() == MVT::Other)
1252        return N->getOperand(i);
1253  }
1254  return SDValue();
1255}
1256
1257SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1258  // If N has two operands, where one has an input chain equal to the other,
1259  // the 'other' chain is redundant.
1260  if (N->getNumOperands() == 2) {
1261    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1262      return N->getOperand(0);
1263    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1264      return N->getOperand(1);
1265  }
1266
1267  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1268  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1269  SmallPtrSet<SDNode*, 16> SeenOps;
1270  bool Changed = false;             // If we should replace this token factor.
1271
1272  // Start out with this token factor.
1273  TFs.push_back(N);
1274
1275  // Iterate through token factors.  The TFs grows when new token factors are
1276  // encountered.
1277  for (unsigned i = 0; i < TFs.size(); ++i) {
1278    SDNode *TF = TFs[i];
1279
1280    // Check each of the operands.
1281    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1282      SDValue Op = TF->getOperand(i);
1283
1284      switch (Op.getOpcode()) {
1285      case ISD::EntryToken:
1286        // Entry tokens don't need to be added to the list. They are
1287        // rededundant.
1288        Changed = true;
1289        break;
1290
1291      case ISD::TokenFactor:
1292        if (Op.hasOneUse() &&
1293            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1294          // Queue up for processing.
1295          TFs.push_back(Op.getNode());
1296          // Clean up in case the token factor is removed.
1297          AddToWorkList(Op.getNode());
1298          Changed = true;
1299          break;
1300        }
1301        // Fall thru
1302
1303      default:
1304        // Only add if it isn't already in the list.
1305        if (SeenOps.insert(Op.getNode()))
1306          Ops.push_back(Op);
1307        else
1308          Changed = true;
1309        break;
1310      }
1311    }
1312  }
1313
1314  SDValue Result;
1315
1316  // If we've change things around then replace token factor.
1317  if (Changed) {
1318    if (Ops.empty()) {
1319      // The entry token is the only possible outcome.
1320      Result = DAG.getEntryNode();
1321    } else {
1322      // New and improved token factor.
1323      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1324                           MVT::Other, &Ops[0], Ops.size());
1325    }
1326
1327    // Don't add users to work list.
1328    return CombineTo(N, Result, false);
1329  }
1330
1331  return Result;
1332}
1333
1334/// MERGE_VALUES can always be eliminated.
1335SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1336  WorkListRemover DeadNodes(*this);
1337  // Replacing results may cause a different MERGE_VALUES to suddenly
1338  // be CSE'd with N, and carry its uses with it. Iterate until no
1339  // uses remain, to ensure that the node can be safely deleted.
1340  // First add the users of this node to the work list so that they
1341  // can be tried again once they have new operands.
1342  AddUsersToWorkList(N);
1343  do {
1344    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1345      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1346  } while (!N->use_empty());
1347  removeFromWorkList(N);
1348  DAG.DeleteNode(N);
1349  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1350}
1351
1352static
1353SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1354                              SelectionDAG &DAG) {
1355  EVT VT = N0.getValueType();
1356  SDValue N00 = N0.getOperand(0);
1357  SDValue N01 = N0.getOperand(1);
1358  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1359
1360  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1361      isa<ConstantSDNode>(N00.getOperand(1))) {
1362    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1363    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1364                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1365                                 N00.getOperand(0), N01),
1366                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1367                                 N00.getOperand(1), N01));
1368    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1369  }
1370
1371  return SDValue();
1372}
1373
1374SDValue DAGCombiner::visitADD(SDNode *N) {
1375  SDValue N0 = N->getOperand(0);
1376  SDValue N1 = N->getOperand(1);
1377  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1378  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1379  EVT VT = N0.getValueType();
1380
1381  // fold vector ops
1382  if (VT.isVector()) {
1383    SDValue FoldedVOp = SimplifyVBinOp(N);
1384    if (FoldedVOp.getNode()) return FoldedVOp;
1385
1386    // fold (add x, 0) -> x, vector edition
1387    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1388      return N0;
1389    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1390      return N1;
1391  }
1392
1393  // fold (add x, undef) -> undef
1394  if (N0.getOpcode() == ISD::UNDEF)
1395    return N0;
1396  if (N1.getOpcode() == ISD::UNDEF)
1397    return N1;
1398  // fold (add c1, c2) -> c1+c2
1399  if (N0C && N1C)
1400    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1401  // canonicalize constant to RHS
1402  if (N0C && !N1C)
1403    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1404  // fold (add x, 0) -> x
1405  if (N1C && N1C->isNullValue())
1406    return N0;
1407  // fold (add Sym, c) -> Sym+c
1408  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1409    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1410        GA->getOpcode() == ISD::GlobalAddress)
1411      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1412                                  GA->getOffset() +
1413                                    (uint64_t)N1C->getSExtValue());
1414  // fold ((c1-A)+c2) -> (c1+c2)-A
1415  if (N1C && N0.getOpcode() == ISD::SUB)
1416    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1417      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1418                         DAG.getConstant(N1C->getAPIntValue()+
1419                                         N0C->getAPIntValue(), VT),
1420                         N0.getOperand(1));
1421  // reassociate add
1422  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1423  if (RADD.getNode() != 0)
1424    return RADD;
1425  // fold ((0-A) + B) -> B-A
1426  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1427      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1428    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1429  // fold (A + (0-B)) -> A-B
1430  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1431      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1432    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1433  // fold (A+(B-A)) -> B
1434  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1435    return N1.getOperand(0);
1436  // fold ((B-A)+A) -> B
1437  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1438    return N0.getOperand(0);
1439  // fold (A+(B-(A+C))) to (B-C)
1440  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1441      N0 == N1.getOperand(1).getOperand(0))
1442    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1443                       N1.getOperand(1).getOperand(1));
1444  // fold (A+(B-(C+A))) to (B-C)
1445  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1446      N0 == N1.getOperand(1).getOperand(1))
1447    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1448                       N1.getOperand(1).getOperand(0));
1449  // fold (A+((B-A)+or-C)) to (B+or-C)
1450  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1451      N1.getOperand(0).getOpcode() == ISD::SUB &&
1452      N0 == N1.getOperand(0).getOperand(1))
1453    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1454                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1455
1456  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1457  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1458    SDValue N00 = N0.getOperand(0);
1459    SDValue N01 = N0.getOperand(1);
1460    SDValue N10 = N1.getOperand(0);
1461    SDValue N11 = N1.getOperand(1);
1462
1463    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1464      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1465                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1466                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1467  }
1468
1469  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1470    return SDValue(N, 0);
1471
1472  // fold (a+b) -> (a|b) iff a and b share no bits.
1473  if (VT.isInteger() && !VT.isVector()) {
1474    APInt LHSZero, LHSOne;
1475    APInt RHSZero, RHSOne;
1476    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1477
1478    if (LHSZero.getBoolValue()) {
1479      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1480
1481      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1482      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1483      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1484        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1485    }
1486  }
1487
1488  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1489  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1490    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1491    if (Result.getNode()) return Result;
1492  }
1493  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1494    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1495    if (Result.getNode()) return Result;
1496  }
1497
1498  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1499  if (N1.getOpcode() == ISD::SHL &&
1500      N1.getOperand(0).getOpcode() == ISD::SUB)
1501    if (ConstantSDNode *C =
1502          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1503      if (C->getAPIntValue() == 0)
1504        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1505                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1506                                       N1.getOperand(0).getOperand(1),
1507                                       N1.getOperand(1)));
1508  if (N0.getOpcode() == ISD::SHL &&
1509      N0.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1514                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1515                                       N0.getOperand(0).getOperand(1),
1516                                       N0.getOperand(1)));
1517
1518  if (N1.getOpcode() == ISD::AND) {
1519    SDValue AndOp0 = N1.getOperand(0);
1520    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1521    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1522    unsigned DestBits = VT.getScalarType().getSizeInBits();
1523
1524    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1525    // and similar xforms where the inner op is either ~0 or 0.
1526    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1527      DebugLoc DL = N->getDebugLoc();
1528      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1529    }
1530  }
1531
1532  // add (sext i1), X -> sub X, (zext i1)
1533  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1534      N0.getOperand(0).getValueType() == MVT::i1 &&
1535      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1536    DebugLoc DL = N->getDebugLoc();
1537    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1538    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1539  }
1540
1541  return SDValue();
1542}
1543
1544SDValue DAGCombiner::visitADDC(SDNode *N) {
1545  SDValue N0 = N->getOperand(0);
1546  SDValue N1 = N->getOperand(1);
1547  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1548  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1549  EVT VT = N0.getValueType();
1550
1551  // If the flag result is dead, turn this into an ADD.
1552  if (!N->hasAnyUseOfValue(1))
1553    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1554                     DAG.getNode(ISD::CARRY_FALSE,
1555                                 N->getDebugLoc(), MVT::Glue));
1556
1557  // canonicalize constant to RHS.
1558  if (N0C && !N1C)
1559    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1560
1561  // fold (addc x, 0) -> x + no carry out
1562  if (N1C && N1C->isNullValue())
1563    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1564                                        N->getDebugLoc(), MVT::Glue));
1565
1566  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1567  APInt LHSZero, LHSOne;
1568  APInt RHSZero, RHSOne;
1569  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1570
1571  if (LHSZero.getBoolValue()) {
1572    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1573
1574    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1575    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1576    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1577      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1578                       DAG.getNode(ISD::CARRY_FALSE,
1579                                   N->getDebugLoc(), MVT::Glue));
1580  }
1581
1582  return SDValue();
1583}
1584
1585SDValue DAGCombiner::visitADDE(SDNode *N) {
1586  SDValue N0 = N->getOperand(0);
1587  SDValue N1 = N->getOperand(1);
1588  SDValue CarryIn = N->getOperand(2);
1589  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1590  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1591
1592  // canonicalize constant to RHS
1593  if (N0C && !N1C)
1594    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1595                       N1, N0, CarryIn);
1596
1597  // fold (adde x, y, false) -> (addc x, y)
1598  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1599    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1600
1601  return SDValue();
1602}
1603
1604// Since it may not be valid to emit a fold to zero for vector initializers
1605// check if we can before folding.
1606static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1607                             SelectionDAG &DAG, bool LegalOperations) {
1608  if (!VT.isVector()) {
1609    return DAG.getConstant(0, VT);
1610  }
1611  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1612    // Produce a vector of zeros.
1613    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1614    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1615    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1616      &Ops[0], Ops.size());
1617  }
1618  return SDValue();
1619}
1620
1621SDValue DAGCombiner::visitSUB(SDNode *N) {
1622  SDValue N0 = N->getOperand(0);
1623  SDValue N1 = N->getOperand(1);
1624  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1626  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1627    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1628  EVT VT = N0.getValueType();
1629
1630  // fold vector ops
1631  if (VT.isVector()) {
1632    SDValue FoldedVOp = SimplifyVBinOp(N);
1633    if (FoldedVOp.getNode()) return FoldedVOp;
1634
1635    // fold (sub x, 0) -> x, vector edition
1636    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1637      return N0;
1638  }
1639
1640  // fold (sub x, x) -> 0
1641  // FIXME: Refactor this and xor and other similar operations together.
1642  if (N0 == N1)
1643    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1644  // fold (sub c1, c2) -> c1-c2
1645  if (N0C && N1C)
1646    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1647  // fold (sub x, c) -> (add x, -c)
1648  if (N1C)
1649    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1650                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1651  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1652  if (N0C && N0C->isAllOnesValue())
1653    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1654  // fold A-(A-B) -> B
1655  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1656    return N1.getOperand(1);
1657  // fold (A+B)-A -> B
1658  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1659    return N0.getOperand(1);
1660  // fold (A+B)-B -> A
1661  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1662    return N0.getOperand(0);
1663  // fold C2-(A+C1) -> (C2-C1)-A
1664  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1665    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1666                                   VT);
1667    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1668                       N1.getOperand(0));
1669  }
1670  // fold ((A+(B+or-C))-B) -> A+or-C
1671  if (N0.getOpcode() == ISD::ADD &&
1672      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1673       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1674      N0.getOperand(1).getOperand(0) == N1)
1675    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1676                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1677  // fold ((A+(C+B))-B) -> A+C
1678  if (N0.getOpcode() == ISD::ADD &&
1679      N0.getOperand(1).getOpcode() == ISD::ADD &&
1680      N0.getOperand(1).getOperand(1) == N1)
1681    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1682                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1683  // fold ((A-(B-C))-C) -> A-B
1684  if (N0.getOpcode() == ISD::SUB &&
1685      N0.getOperand(1).getOpcode() == ISD::SUB &&
1686      N0.getOperand(1).getOperand(1) == N1)
1687    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1688                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1689
1690  // If either operand of a sub is undef, the result is undef
1691  if (N0.getOpcode() == ISD::UNDEF)
1692    return N0;
1693  if (N1.getOpcode() == ISD::UNDEF)
1694    return N1;
1695
1696  // If the relocation model supports it, consider symbol offsets.
1697  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1698    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1699      // fold (sub Sym, c) -> Sym-c
1700      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1701        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1702                                    GA->getOffset() -
1703                                      (uint64_t)N1C->getSExtValue());
1704      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1705      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1706        if (GA->getGlobal() == GB->getGlobal())
1707          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1708                                 VT);
1709    }
1710
1711  return SDValue();
1712}
1713
1714SDValue DAGCombiner::visitSUBC(SDNode *N) {
1715  SDValue N0 = N->getOperand(0);
1716  SDValue N1 = N->getOperand(1);
1717  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1719  EVT VT = N0.getValueType();
1720
1721  // If the flag result is dead, turn this into an SUB.
1722  if (!N->hasAnyUseOfValue(1))
1723    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1724                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1725                                 MVT::Glue));
1726
1727  // fold (subc x, x) -> 0 + no borrow
1728  if (N0 == N1)
1729    return CombineTo(N, DAG.getConstant(0, VT),
1730                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1731                                 MVT::Glue));
1732
1733  // fold (subc x, 0) -> x + no borrow
1734  if (N1C && N1C->isNullValue())
1735    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1736                                        MVT::Glue));
1737
1738  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1739  if (N0C && N0C->isAllOnesValue())
1740    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1741                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1742                                 MVT::Glue));
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBE(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  SDValue CarryIn = N->getOperand(2);
1751
1752  // fold (sube x, y, false) -> (subc x, y)
1753  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1754    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1755
1756  return SDValue();
1757}
1758
1759SDValue DAGCombiner::visitMUL(SDNode *N) {
1760  SDValue N0 = N->getOperand(0);
1761  SDValue N1 = N->getOperand(1);
1762  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1763  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1764  EVT VT = N0.getValueType();
1765
1766  // fold vector ops
1767  if (VT.isVector()) {
1768    SDValue FoldedVOp = SimplifyVBinOp(N);
1769    if (FoldedVOp.getNode()) return FoldedVOp;
1770  }
1771
1772  // fold (mul x, undef) -> 0
1773  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1774    return DAG.getConstant(0, VT);
1775  // fold (mul c1, c2) -> c1*c2
1776  if (N0C && N1C)
1777    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1778  // canonicalize constant to RHS
1779  if (N0C && !N1C)
1780    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1781  // fold (mul x, 0) -> 0
1782  if (N1C && N1C->isNullValue())
1783    return N1;
1784  // fold (mul x, -1) -> 0-x
1785  if (N1C && N1C->isAllOnesValue())
1786    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1787                       DAG.getConstant(0, VT), N0);
1788  // fold (mul x, (1 << c)) -> x << c
1789  if (N1C && N1C->getAPIntValue().isPowerOf2())
1790    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1791                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1792                                       getShiftAmountTy(N0.getValueType())));
1793  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1794  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1795    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1796    // FIXME: If the input is something that is easily negated (e.g. a
1797    // single-use add), we should put the negate there.
1798    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1799                       DAG.getConstant(0, VT),
1800                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1801                            DAG.getConstant(Log2Val,
1802                                      getShiftAmountTy(N0.getValueType()))));
1803  }
1804  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1805  if (N1C && N0.getOpcode() == ISD::SHL &&
1806      isa<ConstantSDNode>(N0.getOperand(1))) {
1807    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1808                             N1, N0.getOperand(1));
1809    AddToWorkList(C3.getNode());
1810    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1811                       N0.getOperand(0), C3);
1812  }
1813
1814  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1815  // use.
1816  {
1817    SDValue Sh(0,0), Y(0,0);
1818    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1819    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1820        N0.getNode()->hasOneUse()) {
1821      Sh = N0; Y = N1;
1822    } else if (N1.getOpcode() == ISD::SHL &&
1823               isa<ConstantSDNode>(N1.getOperand(1)) &&
1824               N1.getNode()->hasOneUse()) {
1825      Sh = N1; Y = N0;
1826    }
1827
1828    if (Sh.getNode()) {
1829      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1830                                Sh.getOperand(0), Y);
1831      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1832                         Mul, Sh.getOperand(1));
1833    }
1834  }
1835
1836  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1837  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1838      isa<ConstantSDNode>(N0.getOperand(1)))
1839    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1840                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1841                                   N0.getOperand(0), N1),
1842                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1843                                   N0.getOperand(1), N1));
1844
1845  // reassociate mul
1846  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1847  if (RMUL.getNode() != 0)
1848    return RMUL;
1849
1850  return SDValue();
1851}
1852
1853SDValue DAGCombiner::visitSDIV(SDNode *N) {
1854  SDValue N0 = N->getOperand(0);
1855  SDValue N1 = N->getOperand(1);
1856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1857  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1858  EVT VT = N->getValueType(0);
1859
1860  // fold vector ops
1861  if (VT.isVector()) {
1862    SDValue FoldedVOp = SimplifyVBinOp(N);
1863    if (FoldedVOp.getNode()) return FoldedVOp;
1864  }
1865
1866  // fold (sdiv c1, c2) -> c1/c2
1867  if (N0C && N1C && !N1C->isNullValue())
1868    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1869  // fold (sdiv X, 1) -> X
1870  if (N1C && N1C->getAPIntValue() == 1LL)
1871    return N0;
1872  // fold (sdiv X, -1) -> 0-X
1873  if (N1C && N1C->isAllOnesValue())
1874    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1875                       DAG.getConstant(0, VT), N0);
1876  // If we know the sign bits of both operands are zero, strength reduce to a
1877  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1878  if (!VT.isVector()) {
1879    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1880      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1881                         N0, N1);
1882  }
1883  // fold (sdiv X, pow2) -> simple ops after legalize
1884  if (N1C && !N1C->isNullValue() &&
1885      (N1C->getAPIntValue().isPowerOf2() ||
1886       (-N1C->getAPIntValue()).isPowerOf2())) {
1887    // If dividing by powers of two is cheap, then don't perform the following
1888    // fold.
1889    if (TLI.isPow2DivCheap())
1890      return SDValue();
1891
1892    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1893
1894    // Splat the sign bit into the register
1895    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1896                              DAG.getConstant(VT.getSizeInBits()-1,
1897                                       getShiftAmountTy(N0.getValueType())));
1898    AddToWorkList(SGN.getNode());
1899
1900    // Add (N0 < 0) ? abs2 - 1 : 0;
1901    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1902                              DAG.getConstant(VT.getSizeInBits() - lg2,
1903                                       getShiftAmountTy(SGN.getValueType())));
1904    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1905    AddToWorkList(SRL.getNode());
1906    AddToWorkList(ADD.getNode());    // Divide by pow2
1907    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1908                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1909
1910    // If we're dividing by a positive value, we're done.  Otherwise, we must
1911    // negate the result.
1912    if (N1C->getAPIntValue().isNonNegative())
1913      return SRA;
1914
1915    AddToWorkList(SRA.getNode());
1916    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1917                       DAG.getConstant(0, VT), SRA);
1918  }
1919
1920  // if integer divide is expensive and we satisfy the requirements, emit an
1921  // alternate sequence.
1922  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1923    SDValue Op = BuildSDIV(N);
1924    if (Op.getNode()) return Op;
1925  }
1926
1927  // undef / X -> 0
1928  if (N0.getOpcode() == ISD::UNDEF)
1929    return DAG.getConstant(0, VT);
1930  // X / undef -> undef
1931  if (N1.getOpcode() == ISD::UNDEF)
1932    return N1;
1933
1934  return SDValue();
1935}
1936
1937SDValue DAGCombiner::visitUDIV(SDNode *N) {
1938  SDValue N0 = N->getOperand(0);
1939  SDValue N1 = N->getOperand(1);
1940  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1942  EVT VT = N->getValueType(0);
1943
1944  // fold vector ops
1945  if (VT.isVector()) {
1946    SDValue FoldedVOp = SimplifyVBinOp(N);
1947    if (FoldedVOp.getNode()) return FoldedVOp;
1948  }
1949
1950  // fold (udiv c1, c2) -> c1/c2
1951  if (N0C && N1C && !N1C->isNullValue())
1952    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1953  // fold (udiv x, (1 << c)) -> x >>u c
1954  if (N1C && N1C->getAPIntValue().isPowerOf2())
1955    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1956                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1957                                       getShiftAmountTy(N0.getValueType())));
1958  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1959  if (N1.getOpcode() == ISD::SHL) {
1960    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1961      if (SHC->getAPIntValue().isPowerOf2()) {
1962        EVT ADDVT = N1.getOperand(1).getValueType();
1963        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1964                                  N1.getOperand(1),
1965                                  DAG.getConstant(SHC->getAPIntValue()
1966                                                                  .logBase2(),
1967                                                  ADDVT));
1968        AddToWorkList(Add.getNode());
1969        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1970      }
1971    }
1972  }
1973  // fold (udiv x, c) -> alternate
1974  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1975    SDValue Op = BuildUDIV(N);
1976    if (Op.getNode()) return Op;
1977  }
1978
1979  // undef / X -> 0
1980  if (N0.getOpcode() == ISD::UNDEF)
1981    return DAG.getConstant(0, VT);
1982  // X / undef -> undef
1983  if (N1.getOpcode() == ISD::UNDEF)
1984    return N1;
1985
1986  return SDValue();
1987}
1988
1989SDValue DAGCombiner::visitSREM(SDNode *N) {
1990  SDValue N0 = N->getOperand(0);
1991  SDValue N1 = N->getOperand(1);
1992  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1994  EVT VT = N->getValueType(0);
1995
1996  // fold (srem c1, c2) -> c1%c2
1997  if (N0C && N1C && !N1C->isNullValue())
1998    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1999  // If we know the sign bits of both operands are zero, strength reduce to a
2000  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2001  if (!VT.isVector()) {
2002    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2003      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
2004  }
2005
2006  // If X/C can be simplified by the division-by-constant logic, lower
2007  // X%C to the equivalent of X-X/C*C.
2008  if (N1C && !N1C->isNullValue()) {
2009    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
2010    AddToWorkList(Div.getNode());
2011    SDValue OptimizedDiv = combine(Div.getNode());
2012    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2013      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2014                                OptimizedDiv, N1);
2015      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2016      AddToWorkList(Mul.getNode());
2017      return Sub;
2018    }
2019  }
2020
2021  // undef % X -> 0
2022  if (N0.getOpcode() == ISD::UNDEF)
2023    return DAG.getConstant(0, VT);
2024  // X % undef -> undef
2025  if (N1.getOpcode() == ISD::UNDEF)
2026    return N1;
2027
2028  return SDValue();
2029}
2030
2031SDValue DAGCombiner::visitUREM(SDNode *N) {
2032  SDValue N0 = N->getOperand(0);
2033  SDValue N1 = N->getOperand(1);
2034  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2035  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2036  EVT VT = N->getValueType(0);
2037
2038  // fold (urem c1, c2) -> c1%c2
2039  if (N0C && N1C && !N1C->isNullValue())
2040    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2041  // fold (urem x, pow2) -> (and x, pow2-1)
2042  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2043    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2044                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2045  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2046  if (N1.getOpcode() == ISD::SHL) {
2047    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2048      if (SHC->getAPIntValue().isPowerOf2()) {
2049        SDValue Add =
2050          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2051                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2052                                 VT));
2053        AddToWorkList(Add.getNode());
2054        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2055      }
2056    }
2057  }
2058
2059  // If X/C can be simplified by the division-by-constant logic, lower
2060  // X%C to the equivalent of X-X/C*C.
2061  if (N1C && !N1C->isNullValue()) {
2062    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2063    AddToWorkList(Div.getNode());
2064    SDValue OptimizedDiv = combine(Div.getNode());
2065    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2066      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2067                                OptimizedDiv, N1);
2068      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2069      AddToWorkList(Mul.getNode());
2070      return Sub;
2071    }
2072  }
2073
2074  // undef % X -> 0
2075  if (N0.getOpcode() == ISD::UNDEF)
2076    return DAG.getConstant(0, VT);
2077  // X % undef -> undef
2078  if (N1.getOpcode() == ISD::UNDEF)
2079    return N1;
2080
2081  return SDValue();
2082}
2083
2084SDValue DAGCombiner::visitMULHS(SDNode *N) {
2085  SDValue N0 = N->getOperand(0);
2086  SDValue N1 = N->getOperand(1);
2087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2088  EVT VT = N->getValueType(0);
2089  DebugLoc DL = N->getDebugLoc();
2090
2091  // fold (mulhs x, 0) -> 0
2092  if (N1C && N1C->isNullValue())
2093    return N1;
2094  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2095  if (N1C && N1C->getAPIntValue() == 1)
2096    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2097                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2098                                       getShiftAmountTy(N0.getValueType())));
2099  // fold (mulhs x, undef) -> 0
2100  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2101    return DAG.getConstant(0, VT);
2102
2103  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2104  // plus a shift.
2105  if (VT.isSimple() && !VT.isVector()) {
2106    MVT Simple = VT.getSimpleVT();
2107    unsigned SimpleSize = Simple.getSizeInBits();
2108    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2109    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2110      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2111      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2112      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2113      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2114            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2115      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2116    }
2117  }
2118
2119  return SDValue();
2120}
2121
2122SDValue DAGCombiner::visitMULHU(SDNode *N) {
2123  SDValue N0 = N->getOperand(0);
2124  SDValue N1 = N->getOperand(1);
2125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2126  EVT VT = N->getValueType(0);
2127  DebugLoc DL = N->getDebugLoc();
2128
2129  // fold (mulhu x, 0) -> 0
2130  if (N1C && N1C->isNullValue())
2131    return N1;
2132  // fold (mulhu x, 1) -> 0
2133  if (N1C && N1C->getAPIntValue() == 1)
2134    return DAG.getConstant(0, N0.getValueType());
2135  // fold (mulhu x, undef) -> 0
2136  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2137    return DAG.getConstant(0, VT);
2138
2139  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2140  // plus a shift.
2141  if (VT.isSimple() && !VT.isVector()) {
2142    MVT Simple = VT.getSimpleVT();
2143    unsigned SimpleSize = Simple.getSizeInBits();
2144    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2145    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2146      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2147      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2148      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2149      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2150            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2151      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2152    }
2153  }
2154
2155  return SDValue();
2156}
2157
2158/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2159/// compute two values. LoOp and HiOp give the opcodes for the two computations
2160/// that are being performed. Return true if a simplification was made.
2161///
2162SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2163                                                unsigned HiOp) {
2164  // If the high half is not needed, just compute the low half.
2165  bool HiExists = N->hasAnyUseOfValue(1);
2166  if (!HiExists &&
2167      (!LegalOperations ||
2168       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2169    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2170                              N->op_begin(), N->getNumOperands());
2171    return CombineTo(N, Res, Res);
2172  }
2173
2174  // If the low half is not needed, just compute the high half.
2175  bool LoExists = N->hasAnyUseOfValue(0);
2176  if (!LoExists &&
2177      (!LegalOperations ||
2178       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2179    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2180                              N->op_begin(), N->getNumOperands());
2181    return CombineTo(N, Res, Res);
2182  }
2183
2184  // If both halves are used, return as it is.
2185  if (LoExists && HiExists)
2186    return SDValue();
2187
2188  // If the two computed results can be simplified separately, separate them.
2189  if (LoExists) {
2190    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2191                             N->op_begin(), N->getNumOperands());
2192    AddToWorkList(Lo.getNode());
2193    SDValue LoOpt = combine(Lo.getNode());
2194    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2195        (!LegalOperations ||
2196         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2197      return CombineTo(N, LoOpt, LoOpt);
2198  }
2199
2200  if (HiExists) {
2201    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2202                             N->op_begin(), N->getNumOperands());
2203    AddToWorkList(Hi.getNode());
2204    SDValue HiOpt = combine(Hi.getNode());
2205    if (HiOpt.getNode() && HiOpt != Hi &&
2206        (!LegalOperations ||
2207         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2208      return CombineTo(N, HiOpt, HiOpt);
2209  }
2210
2211  return SDValue();
2212}
2213
2214SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2215  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2216  if (Res.getNode()) return Res;
2217
2218  EVT VT = N->getValueType(0);
2219  DebugLoc DL = N->getDebugLoc();
2220
2221  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2222  // plus a shift.
2223  if (VT.isSimple() && !VT.isVector()) {
2224    MVT Simple = VT.getSimpleVT();
2225    unsigned SimpleSize = Simple.getSizeInBits();
2226    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2227    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2228      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2229      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2230      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2231      // Compute the high part as N1.
2232      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2233            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2234      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2235      // Compute the low part as N0.
2236      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2237      return CombineTo(N, Lo, Hi);
2238    }
2239  }
2240
2241  return SDValue();
2242}
2243
2244SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2245  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2246  if (Res.getNode()) return Res;
2247
2248  EVT VT = N->getValueType(0);
2249  DebugLoc DL = N->getDebugLoc();
2250
2251  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2252  // plus a shift.
2253  if (VT.isSimple() && !VT.isVector()) {
2254    MVT Simple = VT.getSimpleVT();
2255    unsigned SimpleSize = Simple.getSizeInBits();
2256    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2257    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2258      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2259      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2260      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2261      // Compute the high part as N1.
2262      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2263            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2264      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2265      // Compute the low part as N0.
2266      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2267      return CombineTo(N, Lo, Hi);
2268    }
2269  }
2270
2271  return SDValue();
2272}
2273
2274SDValue DAGCombiner::visitSMULO(SDNode *N) {
2275  // (smulo x, 2) -> (saddo x, x)
2276  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2277    if (C2->getAPIntValue() == 2)
2278      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2279                         N->getOperand(0), N->getOperand(0));
2280
2281  return SDValue();
2282}
2283
2284SDValue DAGCombiner::visitUMULO(SDNode *N) {
2285  // (umulo x, 2) -> (uaddo x, x)
2286  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2287    if (C2->getAPIntValue() == 2)
2288      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2289                         N->getOperand(0), N->getOperand(0));
2290
2291  return SDValue();
2292}
2293
2294SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2295  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2296  if (Res.getNode()) return Res;
2297
2298  return SDValue();
2299}
2300
2301SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2302  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2303  if (Res.getNode()) return Res;
2304
2305  return SDValue();
2306}
2307
2308/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2309/// two operands of the same opcode, try to simplify it.
2310SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2311  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2312  EVT VT = N0.getValueType();
2313  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2314
2315  // Bail early if none of these transforms apply.
2316  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2317
2318  // For each of OP in AND/OR/XOR:
2319  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2320  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2321  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2322  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2323  //
2324  // do not sink logical op inside of a vector extend, since it may combine
2325  // into a vsetcc.
2326  EVT Op0VT = N0.getOperand(0).getValueType();
2327  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2328       N0.getOpcode() == ISD::SIGN_EXTEND ||
2329       // Avoid infinite looping with PromoteIntBinOp.
2330       (N0.getOpcode() == ISD::ANY_EXTEND &&
2331        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2332       (N0.getOpcode() == ISD::TRUNCATE &&
2333        (!TLI.isZExtFree(VT, Op0VT) ||
2334         !TLI.isTruncateFree(Op0VT, VT)) &&
2335        TLI.isTypeLegal(Op0VT))) &&
2336      !VT.isVector() &&
2337      Op0VT == N1.getOperand(0).getValueType() &&
2338      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2339    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2340                                 N0.getOperand(0).getValueType(),
2341                                 N0.getOperand(0), N1.getOperand(0));
2342    AddToWorkList(ORNode.getNode());
2343    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2344  }
2345
2346  // For each of OP in SHL/SRL/SRA/AND...
2347  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2348  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2349  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2350  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2351       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2352      N0.getOperand(1) == N1.getOperand(1)) {
2353    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2354                                 N0.getOperand(0).getValueType(),
2355                                 N0.getOperand(0), N1.getOperand(0));
2356    AddToWorkList(ORNode.getNode());
2357    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2358                       ORNode, N0.getOperand(1));
2359  }
2360
2361  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2362  // Only perform this optimization after type legalization and before
2363  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2364  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2365  // we don't want to undo this promotion.
2366  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2367  // on scalars.
2368  if ((N0.getOpcode() == ISD::BITCAST ||
2369       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2370      Level == AfterLegalizeTypes) {
2371    SDValue In0 = N0.getOperand(0);
2372    SDValue In1 = N1.getOperand(0);
2373    EVT In0Ty = In0.getValueType();
2374    EVT In1Ty = In1.getValueType();
2375    DebugLoc DL = N->getDebugLoc();
2376    // If both incoming values are integers, and the original types are the
2377    // same.
2378    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2379      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2380      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2381      AddToWorkList(Op.getNode());
2382      return BC;
2383    }
2384  }
2385
2386  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2387  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2388  // If both shuffles use the same mask, and both shuffle within a single
2389  // vector, then it is worthwhile to move the swizzle after the operation.
2390  // The type-legalizer generates this pattern when loading illegal
2391  // vector types from memory. In many cases this allows additional shuffle
2392  // optimizations.
2393  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2394      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2395      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2396    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2397    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2398
2399    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2400           "Inputs to shuffles are not the same type");
2401
2402    unsigned NumElts = VT.getVectorNumElements();
2403
2404    // Check that both shuffles use the same mask. The masks are known to be of
2405    // the same length because the result vector type is the same.
2406    bool SameMask = true;
2407    for (unsigned i = 0; i != NumElts; ++i) {
2408      int Idx0 = SVN0->getMaskElt(i);
2409      int Idx1 = SVN1->getMaskElt(i);
2410      if (Idx0 != Idx1) {
2411        SameMask = false;
2412        break;
2413      }
2414    }
2415
2416    if (SameMask) {
2417      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2418                               N0.getOperand(0), N1.getOperand(0));
2419      AddToWorkList(Op.getNode());
2420      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2421                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2422    }
2423  }
2424
2425  return SDValue();
2426}
2427
2428SDValue DAGCombiner::visitAND(SDNode *N) {
2429  SDValue N0 = N->getOperand(0);
2430  SDValue N1 = N->getOperand(1);
2431  SDValue LL, LR, RL, RR, CC0, CC1;
2432  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2433  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2434  EVT VT = N1.getValueType();
2435  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2436
2437  // fold vector ops
2438  if (VT.isVector()) {
2439    SDValue FoldedVOp = SimplifyVBinOp(N);
2440    if (FoldedVOp.getNode()) return FoldedVOp;
2441
2442    // fold (and x, 0) -> 0, vector edition
2443    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2444      return N0;
2445    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2446      return N1;
2447
2448    // fold (and x, -1) -> x, vector edition
2449    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2450      return N1;
2451    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2452      return N0;
2453  }
2454
2455  // fold (and x, undef) -> 0
2456  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2457    return DAG.getConstant(0, VT);
2458  // fold (and c1, c2) -> c1&c2
2459  if (N0C && N1C)
2460    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2461  // canonicalize constant to RHS
2462  if (N0C && !N1C)
2463    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2464  // fold (and x, -1) -> x
2465  if (N1C && N1C->isAllOnesValue())
2466    return N0;
2467  // if (and x, c) is known to be zero, return 0
2468  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2469                                   APInt::getAllOnesValue(BitWidth)))
2470    return DAG.getConstant(0, VT);
2471  // reassociate and
2472  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2473  if (RAND.getNode() != 0)
2474    return RAND;
2475  // fold (and (or x, C), D) -> D if (C & D) == D
2476  if (N1C && N0.getOpcode() == ISD::OR)
2477    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2478      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2479        return N1;
2480  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2481  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2482    SDValue N0Op0 = N0.getOperand(0);
2483    APInt Mask = ~N1C->getAPIntValue();
2484    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2485    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2486      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2487                                 N0.getValueType(), N0Op0);
2488
2489      // Replace uses of the AND with uses of the Zero extend node.
2490      CombineTo(N, Zext);
2491
2492      // We actually want to replace all uses of the any_extend with the
2493      // zero_extend, to avoid duplicating things.  This will later cause this
2494      // AND to be folded.
2495      CombineTo(N0.getNode(), Zext);
2496      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2497    }
2498  }
2499  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2500  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2501  // already be zero by virtue of the width of the base type of the load.
2502  //
2503  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2504  // more cases.
2505  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2506       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2507      N0.getOpcode() == ISD::LOAD) {
2508    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2509                                         N0 : N0.getOperand(0) );
2510
2511    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2512    // This can be a pure constant or a vector splat, in which case we treat the
2513    // vector as a scalar and use the splat value.
2514    APInt Constant = APInt::getNullValue(1);
2515    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2516      Constant = C->getAPIntValue();
2517    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2518      APInt SplatValue, SplatUndef;
2519      unsigned SplatBitSize;
2520      bool HasAnyUndefs;
2521      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2522                                             SplatBitSize, HasAnyUndefs);
2523      if (IsSplat) {
2524        // Undef bits can contribute to a possible optimisation if set, so
2525        // set them.
2526        SplatValue |= SplatUndef;
2527
2528        // The splat value may be something like "0x00FFFFFF", which means 0 for
2529        // the first vector value and FF for the rest, repeating. We need a mask
2530        // that will apply equally to all members of the vector, so AND all the
2531        // lanes of the constant together.
2532        EVT VT = Vector->getValueType(0);
2533        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2534
2535        // If the splat value has been compressed to a bitlength lower
2536        // than the size of the vector lane, we need to re-expand it to
2537        // the lane size.
2538        if (BitWidth > SplatBitSize)
2539          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2540               SplatBitSize < BitWidth;
2541               SplatBitSize = SplatBitSize * 2)
2542            SplatValue |= SplatValue.shl(SplatBitSize);
2543
2544        Constant = APInt::getAllOnesValue(BitWidth);
2545        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2546          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2547      }
2548    }
2549
2550    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2551    // actually legal and isn't going to get expanded, else this is a false
2552    // optimisation.
2553    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2554                                                    Load->getMemoryVT());
2555
2556    // Resize the constant to the same size as the original memory access before
2557    // extension. If it is still the AllOnesValue then this AND is completely
2558    // unneeded.
2559    Constant =
2560      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2561
2562    bool B;
2563    switch (Load->getExtensionType()) {
2564    default: B = false; break;
2565    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2566    case ISD::ZEXTLOAD:
2567    case ISD::NON_EXTLOAD: B = true; break;
2568    }
2569
2570    if (B && Constant.isAllOnesValue()) {
2571      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2572      // preserve semantics once we get rid of the AND.
2573      SDValue NewLoad(Load, 0);
2574      if (Load->getExtensionType() == ISD::EXTLOAD) {
2575        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2576                              Load->getValueType(0), Load->getDebugLoc(),
2577                              Load->getChain(), Load->getBasePtr(),
2578                              Load->getOffset(), Load->getMemoryVT(),
2579                              Load->getMemOperand());
2580        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2581        if (Load->getNumValues() == 3) {
2582          // PRE/POST_INC loads have 3 values.
2583          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2584                           NewLoad.getValue(2) };
2585          CombineTo(Load, To, 3, true);
2586        } else {
2587          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2588        }
2589      }
2590
2591      // Fold the AND away, taking care not to fold to the old load node if we
2592      // replaced it.
2593      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2594
2595      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2596    }
2597  }
2598  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2599  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2600    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2601    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2602
2603    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2604        LL.getValueType().isInteger()) {
2605      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2606      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2607        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2608                                     LR.getValueType(), LL, RL);
2609        AddToWorkList(ORNode.getNode());
2610        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2611      }
2612      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2613      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2614        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2615                                      LR.getValueType(), LL, RL);
2616        AddToWorkList(ANDNode.getNode());
2617        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2618      }
2619      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2620      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2621        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2622                                     LR.getValueType(), LL, RL);
2623        AddToWorkList(ORNode.getNode());
2624        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2625      }
2626    }
2627    // canonicalize equivalent to ll == rl
2628    if (LL == RR && LR == RL) {
2629      Op1 = ISD::getSetCCSwappedOperands(Op1);
2630      std::swap(RL, RR);
2631    }
2632    if (LL == RL && LR == RR) {
2633      bool isInteger = LL.getValueType().isInteger();
2634      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2635      if (Result != ISD::SETCC_INVALID &&
2636          (!LegalOperations ||
2637           TLI.isCondCodeLegal(Result, LL.getSimpleValueType())))
2638        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2639                            LL, LR, Result);
2640    }
2641  }
2642
2643  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2644  if (N0.getOpcode() == N1.getOpcode()) {
2645    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2646    if (Tmp.getNode()) return Tmp;
2647  }
2648
2649  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2650  // fold (and (sra)) -> (and (srl)) when possible.
2651  if (!VT.isVector() &&
2652      SimplifyDemandedBits(SDValue(N, 0)))
2653    return SDValue(N, 0);
2654
2655  // fold (zext_inreg (extload x)) -> (zextload x)
2656  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2657    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2658    EVT MemVT = LN0->getMemoryVT();
2659    // If we zero all the possible extended bits, then we can turn this into
2660    // a zextload if we are running before legalize or the operation is legal.
2661    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2662    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2663                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2664        ((!LegalOperations && !LN0->isVolatile()) ||
2665         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2666      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2667                                       LN0->getChain(), LN0->getBasePtr(),
2668                                       LN0->getPointerInfo(), MemVT,
2669                                       LN0->isVolatile(), LN0->isNonTemporal(),
2670                                       LN0->getAlignment());
2671      AddToWorkList(N);
2672      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2673      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2674    }
2675  }
2676  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2677  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2678      N0.hasOneUse()) {
2679    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2680    EVT MemVT = LN0->getMemoryVT();
2681    // If we zero all the possible extended bits, then we can turn this into
2682    // a zextload if we are running before legalize or the operation is legal.
2683    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2684    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2685                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2686        ((!LegalOperations && !LN0->isVolatile()) ||
2687         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2688      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2689                                       LN0->getChain(),
2690                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2691                                       MemVT,
2692                                       LN0->isVolatile(), LN0->isNonTemporal(),
2693                                       LN0->getAlignment());
2694      AddToWorkList(N);
2695      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2696      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2697    }
2698  }
2699
2700  // fold (and (load x), 255) -> (zextload x, i8)
2701  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2702  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2703  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2704              (N0.getOpcode() == ISD::ANY_EXTEND &&
2705               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2706    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2707    LoadSDNode *LN0 = HasAnyExt
2708      ? cast<LoadSDNode>(N0.getOperand(0))
2709      : cast<LoadSDNode>(N0);
2710    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2711        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2712      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2713      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2714        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2715        EVT LoadedVT = LN0->getMemoryVT();
2716
2717        if (ExtVT == LoadedVT &&
2718            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2719          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2720
2721          SDValue NewLoad =
2722            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2723                           LN0->getChain(), LN0->getBasePtr(),
2724                           LN0->getPointerInfo(),
2725                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2726                           LN0->getAlignment());
2727          AddToWorkList(N);
2728          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2729          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2730        }
2731
2732        // Do not change the width of a volatile load.
2733        // Do not generate loads of non-round integer types since these can
2734        // be expensive (and would be wrong if the type is not byte sized).
2735        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2736            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2737          EVT PtrType = LN0->getOperand(1).getValueType();
2738
2739          unsigned Alignment = LN0->getAlignment();
2740          SDValue NewPtr = LN0->getBasePtr();
2741
2742          // For big endian targets, we need to add an offset to the pointer
2743          // to load the correct bytes.  For little endian systems, we merely
2744          // need to read fewer bytes from the same pointer.
2745          if (TLI.isBigEndian()) {
2746            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2747            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2748            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2749            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2750                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2751            Alignment = MinAlign(Alignment, PtrOff);
2752          }
2753
2754          AddToWorkList(NewPtr.getNode());
2755
2756          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2757          SDValue Load =
2758            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2759                           LN0->getChain(), NewPtr,
2760                           LN0->getPointerInfo(),
2761                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2762                           Alignment);
2763          AddToWorkList(N);
2764          CombineTo(LN0, Load, Load.getValue(1));
2765          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2766        }
2767      }
2768    }
2769  }
2770
2771  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2772      VT.getSizeInBits() <= 64) {
2773    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2774      APInt ADDC = ADDI->getAPIntValue();
2775      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2776        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2777        // immediate for an add, but it is legal if its top c2 bits are set,
2778        // transform the ADD so the immediate doesn't need to be materialized
2779        // in a register.
2780        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2781          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2782                                             SRLI->getZExtValue());
2783          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2784            ADDC |= Mask;
2785            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2786              SDValue NewAdd =
2787                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2788                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2789              CombineTo(N0.getNode(), NewAdd);
2790              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2791            }
2792          }
2793        }
2794      }
2795    }
2796  }
2797
2798  return SDValue();
2799}
2800
2801/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2802///
2803SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2804                                        bool DemandHighBits) {
2805  if (!LegalOperations)
2806    return SDValue();
2807
2808  EVT VT = N->getValueType(0);
2809  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2810    return SDValue();
2811  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2812    return SDValue();
2813
2814  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2815  bool LookPassAnd0 = false;
2816  bool LookPassAnd1 = false;
2817  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2818      std::swap(N0, N1);
2819  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2820      std::swap(N0, N1);
2821  if (N0.getOpcode() == ISD::AND) {
2822    if (!N0.getNode()->hasOneUse())
2823      return SDValue();
2824    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2825    if (!N01C || N01C->getZExtValue() != 0xFF00)
2826      return SDValue();
2827    N0 = N0.getOperand(0);
2828    LookPassAnd0 = true;
2829  }
2830
2831  if (N1.getOpcode() == ISD::AND) {
2832    if (!N1.getNode()->hasOneUse())
2833      return SDValue();
2834    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2835    if (!N11C || N11C->getZExtValue() != 0xFF)
2836      return SDValue();
2837    N1 = N1.getOperand(0);
2838    LookPassAnd1 = true;
2839  }
2840
2841  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2842    std::swap(N0, N1);
2843  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2844    return SDValue();
2845  if (!N0.getNode()->hasOneUse() ||
2846      !N1.getNode()->hasOneUse())
2847    return SDValue();
2848
2849  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2850  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2851  if (!N01C || !N11C)
2852    return SDValue();
2853  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2854    return SDValue();
2855
2856  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2857  SDValue N00 = N0->getOperand(0);
2858  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2859    if (!N00.getNode()->hasOneUse())
2860      return SDValue();
2861    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2862    if (!N001C || N001C->getZExtValue() != 0xFF)
2863      return SDValue();
2864    N00 = N00.getOperand(0);
2865    LookPassAnd0 = true;
2866  }
2867
2868  SDValue N10 = N1->getOperand(0);
2869  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2870    if (!N10.getNode()->hasOneUse())
2871      return SDValue();
2872    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2873    if (!N101C || N101C->getZExtValue() != 0xFF00)
2874      return SDValue();
2875    N10 = N10.getOperand(0);
2876    LookPassAnd1 = true;
2877  }
2878
2879  if (N00 != N10)
2880    return SDValue();
2881
2882  // Make sure everything beyond the low halfword is zero since the SRL 16
2883  // will clear the top bits.
2884  unsigned OpSizeInBits = VT.getSizeInBits();
2885  if (DemandHighBits && OpSizeInBits > 16 &&
2886      (!LookPassAnd0 || !LookPassAnd1) &&
2887      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2888    return SDValue();
2889
2890  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2891  if (OpSizeInBits > 16)
2892    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2893                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2894  return Res;
2895}
2896
2897/// isBSwapHWordElement - Return true if the specified node is an element
2898/// that makes up a 32-bit packed halfword byteswap. i.e.
2899/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2900static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2901  if (!N.getNode()->hasOneUse())
2902    return false;
2903
2904  unsigned Opc = N.getOpcode();
2905  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2906    return false;
2907
2908  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2909  if (!N1C)
2910    return false;
2911
2912  unsigned Num;
2913  switch (N1C->getZExtValue()) {
2914  default:
2915    return false;
2916  case 0xFF:       Num = 0; break;
2917  case 0xFF00:     Num = 1; break;
2918  case 0xFF0000:   Num = 2; break;
2919  case 0xFF000000: Num = 3; break;
2920  }
2921
2922  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2923  SDValue N0 = N.getOperand(0);
2924  if (Opc == ISD::AND) {
2925    if (Num == 0 || Num == 2) {
2926      // (x >> 8) & 0xff
2927      // (x >> 8) & 0xff0000
2928      if (N0.getOpcode() != ISD::SRL)
2929        return false;
2930      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2931      if (!C || C->getZExtValue() != 8)
2932        return false;
2933    } else {
2934      // (x << 8) & 0xff00
2935      // (x << 8) & 0xff000000
2936      if (N0.getOpcode() != ISD::SHL)
2937        return false;
2938      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2939      if (!C || C->getZExtValue() != 8)
2940        return false;
2941    }
2942  } else if (Opc == ISD::SHL) {
2943    // (x & 0xff) << 8
2944    // (x & 0xff0000) << 8
2945    if (Num != 0 && Num != 2)
2946      return false;
2947    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2948    if (!C || C->getZExtValue() != 8)
2949      return false;
2950  } else { // Opc == ISD::SRL
2951    // (x & 0xff00) >> 8
2952    // (x & 0xff000000) >> 8
2953    if (Num != 1 && Num != 3)
2954      return false;
2955    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2956    if (!C || C->getZExtValue() != 8)
2957      return false;
2958  }
2959
2960  if (Parts[Num])
2961    return false;
2962
2963  Parts[Num] = N0.getOperand(0).getNode();
2964  return true;
2965}
2966
2967/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2968/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2969/// => (rotl (bswap x), 16)
2970SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2971  if (!LegalOperations)
2972    return SDValue();
2973
2974  EVT VT = N->getValueType(0);
2975  if (VT != MVT::i32)
2976    return SDValue();
2977  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2978    return SDValue();
2979
2980  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2981  // Look for either
2982  // (or (or (and), (and)), (or (and), (and)))
2983  // (or (or (or (and), (and)), (and)), (and))
2984  if (N0.getOpcode() != ISD::OR)
2985    return SDValue();
2986  SDValue N00 = N0.getOperand(0);
2987  SDValue N01 = N0.getOperand(1);
2988
2989  if (N1.getOpcode() == ISD::OR &&
2990      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
2991    // (or (or (and), (and)), (or (and), (and)))
2992    SDValue N000 = N00.getOperand(0);
2993    if (!isBSwapHWordElement(N000, Parts))
2994      return SDValue();
2995
2996    SDValue N001 = N00.getOperand(1);
2997    if (!isBSwapHWordElement(N001, Parts))
2998      return SDValue();
2999    SDValue N010 = N01.getOperand(0);
3000    if (!isBSwapHWordElement(N010, Parts))
3001      return SDValue();
3002    SDValue N011 = N01.getOperand(1);
3003    if (!isBSwapHWordElement(N011, Parts))
3004      return SDValue();
3005  } else {
3006    // (or (or (or (and), (and)), (and)), (and))
3007    if (!isBSwapHWordElement(N1, Parts))
3008      return SDValue();
3009    if (!isBSwapHWordElement(N01, Parts))
3010      return SDValue();
3011    if (N00.getOpcode() != ISD::OR)
3012      return SDValue();
3013    SDValue N000 = N00.getOperand(0);
3014    if (!isBSwapHWordElement(N000, Parts))
3015      return SDValue();
3016    SDValue N001 = N00.getOperand(1);
3017    if (!isBSwapHWordElement(N001, Parts))
3018      return SDValue();
3019  }
3020
3021  // Make sure the parts are all coming from the same node.
3022  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3023    return SDValue();
3024
3025  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3026                              SDValue(Parts[0],0));
3027
3028  // Result of the bswap should be rotated by 16. If it's not legal, than
3029  // do  (x << 16) | (x >> 16).
3030  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3031  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3032    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3033  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3034    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3035  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3036                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3037                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3038}
3039
3040SDValue DAGCombiner::visitOR(SDNode *N) {
3041  SDValue N0 = N->getOperand(0);
3042  SDValue N1 = N->getOperand(1);
3043  SDValue LL, LR, RL, RR, CC0, CC1;
3044  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3045  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3046  EVT VT = N1.getValueType();
3047
3048  // fold vector ops
3049  if (VT.isVector()) {
3050    SDValue FoldedVOp = SimplifyVBinOp(N);
3051    if (FoldedVOp.getNode()) return FoldedVOp;
3052
3053    // fold (or x, 0) -> x, vector edition
3054    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3055      return N1;
3056    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3057      return N0;
3058
3059    // fold (or x, -1) -> -1, vector edition
3060    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3061      return N0;
3062    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3063      return N1;
3064  }
3065
3066  // fold (or x, undef) -> -1
3067  if (!LegalOperations &&
3068      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3069    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3070    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3071  }
3072  // fold (or c1, c2) -> c1|c2
3073  if (N0C && N1C)
3074    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3075  // canonicalize constant to RHS
3076  if (N0C && !N1C)
3077    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3078  // fold (or x, 0) -> x
3079  if (N1C && N1C->isNullValue())
3080    return N0;
3081  // fold (or x, -1) -> -1
3082  if (N1C && N1C->isAllOnesValue())
3083    return N1;
3084  // fold (or x, c) -> c iff (x & ~c) == 0
3085  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3086    return N1;
3087
3088  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3089  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3090  if (BSwap.getNode() != 0)
3091    return BSwap;
3092  BSwap = MatchBSwapHWordLow(N, N0, N1);
3093  if (BSwap.getNode() != 0)
3094    return BSwap;
3095
3096  // reassociate or
3097  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3098  if (ROR.getNode() != 0)
3099    return ROR;
3100  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3101  // iff (c1 & c2) == 0.
3102  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3103             isa<ConstantSDNode>(N0.getOperand(1))) {
3104    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3105    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3106      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3107                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3108                                     N0.getOperand(0), N1),
3109                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3110  }
3111  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3112  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3113    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3114    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3115
3116    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3117        LL.getValueType().isInteger()) {
3118      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3119      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3120      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3121          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3122        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3123                                     LR.getValueType(), LL, RL);
3124        AddToWorkList(ORNode.getNode());
3125        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3126      }
3127      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3128      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3129      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3130          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3131        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3132                                      LR.getValueType(), LL, RL);
3133        AddToWorkList(ANDNode.getNode());
3134        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3135      }
3136    }
3137    // canonicalize equivalent to ll == rl
3138    if (LL == RR && LR == RL) {
3139      Op1 = ISD::getSetCCSwappedOperands(Op1);
3140      std::swap(RL, RR);
3141    }
3142    if (LL == RL && LR == RR) {
3143      bool isInteger = LL.getValueType().isInteger();
3144      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3145      if (Result != ISD::SETCC_INVALID &&
3146          (!LegalOperations ||
3147           TLI.isCondCodeLegal(Result, LL.getSimpleValueType())))
3148        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3149                            LL, LR, Result);
3150    }
3151  }
3152
3153  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3154  if (N0.getOpcode() == N1.getOpcode()) {
3155    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3156    if (Tmp.getNode()) return Tmp;
3157  }
3158
3159  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3160  if (N0.getOpcode() == ISD::AND &&
3161      N1.getOpcode() == ISD::AND &&
3162      N0.getOperand(1).getOpcode() == ISD::Constant &&
3163      N1.getOperand(1).getOpcode() == ISD::Constant &&
3164      // Don't increase # computations.
3165      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3166    // We can only do this xform if we know that bits from X that are set in C2
3167    // but not in C1 are already zero.  Likewise for Y.
3168    const APInt &LHSMask =
3169      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3170    const APInt &RHSMask =
3171      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3172
3173    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3174        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3175      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3176                              N0.getOperand(0), N1.getOperand(0));
3177      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3178                         DAG.getConstant(LHSMask | RHSMask, VT));
3179    }
3180  }
3181
3182  // See if this is some rotate idiom.
3183  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3184    return SDValue(Rot, 0);
3185
3186  // Simplify the operands using demanded-bits information.
3187  if (!VT.isVector() &&
3188      SimplifyDemandedBits(SDValue(N, 0)))
3189    return SDValue(N, 0);
3190
3191  return SDValue();
3192}
3193
3194/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3195static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3196  if (Op.getOpcode() == ISD::AND) {
3197    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3198      Mask = Op.getOperand(1);
3199      Op = Op.getOperand(0);
3200    } else {
3201      return false;
3202    }
3203  }
3204
3205  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3206    Shift = Op;
3207    return true;
3208  }
3209
3210  return false;
3211}
3212
3213// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3214// idioms for rotate, and if the target supports rotation instructions, generate
3215// a rot[lr].
3216SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3217  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3218  EVT VT = LHS.getValueType();
3219  if (!TLI.isTypeLegal(VT)) return 0;
3220
3221  // The target must have at least one rotate flavor.
3222  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3223  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3224  if (!HasROTL && !HasROTR) return 0;
3225
3226  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3227  SDValue LHSShift;   // The shift.
3228  SDValue LHSMask;    // AND value if any.
3229  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3230    return 0; // Not part of a rotate.
3231
3232  SDValue RHSShift;   // The shift.
3233  SDValue RHSMask;    // AND value if any.
3234  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3235    return 0; // Not part of a rotate.
3236
3237  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3238    return 0;   // Not shifting the same value.
3239
3240  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3241    return 0;   // Shifts must disagree.
3242
3243  // Canonicalize shl to left side in a shl/srl pair.
3244  if (RHSShift.getOpcode() == ISD::SHL) {
3245    std::swap(LHS, RHS);
3246    std::swap(LHSShift, RHSShift);
3247    std::swap(LHSMask , RHSMask );
3248  }
3249
3250  unsigned OpSizeInBits = VT.getSizeInBits();
3251  SDValue LHSShiftArg = LHSShift.getOperand(0);
3252  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3253  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3254
3255  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3256  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3257  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3258      RHSShiftAmt.getOpcode() == ISD::Constant) {
3259    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3260    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3261    if ((LShVal + RShVal) != OpSizeInBits)
3262      return 0;
3263
3264    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3265                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3266
3267    // If there is an AND of either shifted operand, apply it to the result.
3268    if (LHSMask.getNode() || RHSMask.getNode()) {
3269      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3270
3271      if (LHSMask.getNode()) {
3272        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3273        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3274      }
3275      if (RHSMask.getNode()) {
3276        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3277        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3278      }
3279
3280      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3281    }
3282
3283    return Rot.getNode();
3284  }
3285
3286  // If there is a mask here, and we have a variable shift, we can't be sure
3287  // that we're masking out the right stuff.
3288  if (LHSMask.getNode() || RHSMask.getNode())
3289    return 0;
3290
3291  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3292  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3293  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3294      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3295    if (ConstantSDNode *SUBC =
3296          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3297      if (SUBC->getAPIntValue() == OpSizeInBits) {
3298        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3299                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3300      }
3301    }
3302  }
3303
3304  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3305  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3306  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3307      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3308    if (ConstantSDNode *SUBC =
3309          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3310      if (SUBC->getAPIntValue() == OpSizeInBits) {
3311        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3312                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3313      }
3314    }
3315  }
3316
3317  // Look for sign/zext/any-extended or truncate cases:
3318  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3319       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3320       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3321       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3322      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3323       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3324       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3325       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3326    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3327    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3328    if (RExtOp0.getOpcode() == ISD::SUB &&
3329        RExtOp0.getOperand(1) == LExtOp0) {
3330      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3331      //   (rotl x, y)
3332      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3333      //   (rotr x, (sub 32, y))
3334      if (ConstantSDNode *SUBC =
3335            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3336        if (SUBC->getAPIntValue() == OpSizeInBits) {
3337          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3338                             LHSShiftArg,
3339                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3340        }
3341      }
3342    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3343               RExtOp0 == LExtOp0.getOperand(1)) {
3344      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3345      //   (rotr x, y)
3346      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3347      //   (rotl x, (sub 32, y))
3348      if (ConstantSDNode *SUBC =
3349            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3350        if (SUBC->getAPIntValue() == OpSizeInBits) {
3351          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3352                             LHSShiftArg,
3353                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3354        }
3355      }
3356    }
3357  }
3358
3359  return 0;
3360}
3361
3362SDValue DAGCombiner::visitXOR(SDNode *N) {
3363  SDValue N0 = N->getOperand(0);
3364  SDValue N1 = N->getOperand(1);
3365  SDValue LHS, RHS, CC;
3366  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3367  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3368  EVT VT = N0.getValueType();
3369
3370  // fold vector ops
3371  if (VT.isVector()) {
3372    SDValue FoldedVOp = SimplifyVBinOp(N);
3373    if (FoldedVOp.getNode()) return FoldedVOp;
3374
3375    // fold (xor x, 0) -> x, vector edition
3376    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3377      return N1;
3378    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3379      return N0;
3380  }
3381
3382  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3383  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3384    return DAG.getConstant(0, VT);
3385  // fold (xor x, undef) -> undef
3386  if (N0.getOpcode() == ISD::UNDEF)
3387    return N0;
3388  if (N1.getOpcode() == ISD::UNDEF)
3389    return N1;
3390  // fold (xor c1, c2) -> c1^c2
3391  if (N0C && N1C)
3392    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3393  // canonicalize constant to RHS
3394  if (N0C && !N1C)
3395    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3396  // fold (xor x, 0) -> x
3397  if (N1C && N1C->isNullValue())
3398    return N0;
3399  // reassociate xor
3400  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3401  if (RXOR.getNode() != 0)
3402    return RXOR;
3403
3404  // fold !(x cc y) -> (x !cc y)
3405  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3406    bool isInt = LHS.getValueType().isInteger();
3407    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3408                                               isInt);
3409
3410    if (!LegalOperations ||
3411        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3412      switch (N0.getOpcode()) {
3413      default:
3414        llvm_unreachable("Unhandled SetCC Equivalent!");
3415      case ISD::SETCC:
3416        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3417      case ISD::SELECT_CC:
3418        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3419                               N0.getOperand(3), NotCC);
3420      }
3421    }
3422  }
3423
3424  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3425  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3426      N0.getNode()->hasOneUse() &&
3427      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3428    SDValue V = N0.getOperand(0);
3429    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3430                    DAG.getConstant(1, V.getValueType()));
3431    AddToWorkList(V.getNode());
3432    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3433  }
3434
3435  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3436  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3437      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3438    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3439    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3440      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3441      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3442      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3443      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3444      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3445    }
3446  }
3447  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3448  if (N1C && N1C->isAllOnesValue() &&
3449      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3450    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3451    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3452      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3453      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3454      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3455      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3456      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3457    }
3458  }
3459  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3460  if (N1C && N0.getOpcode() == ISD::XOR) {
3461    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3462    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3463    if (N00C)
3464      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3465                         DAG.getConstant(N1C->getAPIntValue() ^
3466                                         N00C->getAPIntValue(), VT));
3467    if (N01C)
3468      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3469                         DAG.getConstant(N1C->getAPIntValue() ^
3470                                         N01C->getAPIntValue(), VT));
3471  }
3472  // fold (xor x, x) -> 0
3473  if (N0 == N1)
3474    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3475
3476  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3477  if (N0.getOpcode() == N1.getOpcode()) {
3478    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3479    if (Tmp.getNode()) return Tmp;
3480  }
3481
3482  // Simplify the expression using non-local knowledge.
3483  if (!VT.isVector() &&
3484      SimplifyDemandedBits(SDValue(N, 0)))
3485    return SDValue(N, 0);
3486
3487  return SDValue();
3488}
3489
3490/// visitShiftByConstant - Handle transforms common to the three shifts, when
3491/// the shift amount is a constant.
3492SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3493  SDNode *LHS = N->getOperand(0).getNode();
3494  if (!LHS->hasOneUse()) return SDValue();
3495
3496  // We want to pull some binops through shifts, so that we have (and (shift))
3497  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3498  // thing happens with address calculations, so it's important to canonicalize
3499  // it.
3500  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3501
3502  switch (LHS->getOpcode()) {
3503  default: return SDValue();
3504  case ISD::OR:
3505  case ISD::XOR:
3506    HighBitSet = false; // We can only transform sra if the high bit is clear.
3507    break;
3508  case ISD::AND:
3509    HighBitSet = true;  // We can only transform sra if the high bit is set.
3510    break;
3511  case ISD::ADD:
3512    if (N->getOpcode() != ISD::SHL)
3513      return SDValue(); // only shl(add) not sr[al](add).
3514    HighBitSet = false; // We can only transform sra if the high bit is clear.
3515    break;
3516  }
3517
3518  // We require the RHS of the binop to be a constant as well.
3519  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3520  if (!BinOpCst) return SDValue();
3521
3522  // FIXME: disable this unless the input to the binop is a shift by a constant.
3523  // If it is not a shift, it pessimizes some common cases like:
3524  //
3525  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3526  //    int bar(int *X, int i) { return X[i & 255]; }
3527  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3528  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3529       BinOpLHSVal->getOpcode() != ISD::SRA &&
3530       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3531      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3532    return SDValue();
3533
3534  EVT VT = N->getValueType(0);
3535
3536  // If this is a signed shift right, and the high bit is modified by the
3537  // logical operation, do not perform the transformation. The highBitSet
3538  // boolean indicates the value of the high bit of the constant which would
3539  // cause it to be modified for this operation.
3540  if (N->getOpcode() == ISD::SRA) {
3541    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3542    if (BinOpRHSSignSet != HighBitSet)
3543      return SDValue();
3544  }
3545
3546  // Fold the constants, shifting the binop RHS by the shift amount.
3547  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3548                               N->getValueType(0),
3549                               LHS->getOperand(1), N->getOperand(1));
3550
3551  // Create the new shift.
3552  SDValue NewShift = DAG.getNode(N->getOpcode(),
3553                                 LHS->getOperand(0).getDebugLoc(),
3554                                 VT, LHS->getOperand(0), N->getOperand(1));
3555
3556  // Create the new binop.
3557  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3558}
3559
3560SDValue DAGCombiner::visitSHL(SDNode *N) {
3561  SDValue N0 = N->getOperand(0);
3562  SDValue N1 = N->getOperand(1);
3563  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3564  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3565  EVT VT = N0.getValueType();
3566  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3567
3568  // fold (shl c1, c2) -> c1<<c2
3569  if (N0C && N1C)
3570    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3571  // fold (shl 0, x) -> 0
3572  if (N0C && N0C->isNullValue())
3573    return N0;
3574  // fold (shl x, c >= size(x)) -> undef
3575  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3576    return DAG.getUNDEF(VT);
3577  // fold (shl x, 0) -> x
3578  if (N1C && N1C->isNullValue())
3579    return N0;
3580  // fold (shl undef, x) -> 0
3581  if (N0.getOpcode() == ISD::UNDEF)
3582    return DAG.getConstant(0, VT);
3583  // if (shl x, c) is known to be zero, return 0
3584  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3585                            APInt::getAllOnesValue(OpSizeInBits)))
3586    return DAG.getConstant(0, VT);
3587  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3588  if (N1.getOpcode() == ISD::TRUNCATE &&
3589      N1.getOperand(0).getOpcode() == ISD::AND &&
3590      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3591    SDValue N101 = N1.getOperand(0).getOperand(1);
3592    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3593      EVT TruncVT = N1.getValueType();
3594      SDValue N100 = N1.getOperand(0).getOperand(0);
3595      APInt TruncC = N101C->getAPIntValue();
3596      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3597      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3598                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3599                                     DAG.getNode(ISD::TRUNCATE,
3600                                                 N->getDebugLoc(),
3601                                                 TruncVT, N100),
3602                                     DAG.getConstant(TruncC, TruncVT)));
3603    }
3604  }
3605
3606  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3607    return SDValue(N, 0);
3608
3609  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3610  if (N1C && N0.getOpcode() == ISD::SHL &&
3611      N0.getOperand(1).getOpcode() == ISD::Constant) {
3612    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3613    uint64_t c2 = N1C->getZExtValue();
3614    if (c1 + c2 >= OpSizeInBits)
3615      return DAG.getConstant(0, VT);
3616    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3617                       DAG.getConstant(c1 + c2, N1.getValueType()));
3618  }
3619
3620  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3621  // For this to be valid, the second form must not preserve any of the bits
3622  // that are shifted out by the inner shift in the first form.  This means
3623  // the outer shift size must be >= the number of bits added by the ext.
3624  // As a corollary, we don't care what kind of ext it is.
3625  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3626              N0.getOpcode() == ISD::ANY_EXTEND ||
3627              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3628      N0.getOperand(0).getOpcode() == ISD::SHL &&
3629      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3630    uint64_t c1 =
3631      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3632    uint64_t c2 = N1C->getZExtValue();
3633    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3634    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3635    if (c2 >= OpSizeInBits - InnerShiftSize) {
3636      if (c1 + c2 >= OpSizeInBits)
3637        return DAG.getConstant(0, VT);
3638      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3639                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3640                                     N0.getOperand(0)->getOperand(0)),
3641                         DAG.getConstant(c1 + c2, N1.getValueType()));
3642    }
3643  }
3644
3645  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3646  //                               (and (srl x, (sub c1, c2), MASK)
3647  // Only fold this if the inner shift has no other uses -- if it does, folding
3648  // this will increase the total number of instructions.
3649  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3650      N0.getOperand(1).getOpcode() == ISD::Constant) {
3651    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3652    if (c1 < VT.getSizeInBits()) {
3653      uint64_t c2 = N1C->getZExtValue();
3654      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3655                                         VT.getSizeInBits() - c1);
3656      SDValue Shift;
3657      if (c2 > c1) {
3658        Mask = Mask.shl(c2-c1);
3659        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3660                            DAG.getConstant(c2-c1, N1.getValueType()));
3661      } else {
3662        Mask = Mask.lshr(c1-c2);
3663        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3664                            DAG.getConstant(c1-c2, N1.getValueType()));
3665      }
3666      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3667                         DAG.getConstant(Mask, VT));
3668    }
3669  }
3670  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3671  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3672    SDValue HiBitsMask =
3673      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3674                                            VT.getSizeInBits() -
3675                                              N1C->getZExtValue()),
3676                      VT);
3677    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3678                       HiBitsMask);
3679  }
3680
3681  if (N1C) {
3682    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3683    if (NewSHL.getNode())
3684      return NewSHL;
3685  }
3686
3687  return SDValue();
3688}
3689
3690SDValue DAGCombiner::visitSRA(SDNode *N) {
3691  SDValue N0 = N->getOperand(0);
3692  SDValue N1 = N->getOperand(1);
3693  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3694  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3695  EVT VT = N0.getValueType();
3696  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3697
3698  // fold (sra c1, c2) -> (sra c1, c2)
3699  if (N0C && N1C)
3700    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3701  // fold (sra 0, x) -> 0
3702  if (N0C && N0C->isNullValue())
3703    return N0;
3704  // fold (sra -1, x) -> -1
3705  if (N0C && N0C->isAllOnesValue())
3706    return N0;
3707  // fold (sra x, (setge c, size(x))) -> undef
3708  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3709    return DAG.getUNDEF(VT);
3710  // fold (sra x, 0) -> x
3711  if (N1C && N1C->isNullValue())
3712    return N0;
3713  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3714  // sext_inreg.
3715  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3716    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3717    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3718    if (VT.isVector())
3719      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3720                               ExtVT, VT.getVectorNumElements());
3721    if ((!LegalOperations ||
3722         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3723      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3724                         N0.getOperand(0), DAG.getValueType(ExtVT));
3725  }
3726
3727  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3728  if (N1C && N0.getOpcode() == ISD::SRA) {
3729    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3730      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3731      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3732      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3733                         DAG.getConstant(Sum, N1C->getValueType(0)));
3734    }
3735  }
3736
3737  // fold (sra (shl X, m), (sub result_size, n))
3738  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3739  // result_size - n != m.
3740  // If truncate is free for the target sext(shl) is likely to result in better
3741  // code.
3742  if (N0.getOpcode() == ISD::SHL) {
3743    // Get the two constanst of the shifts, CN0 = m, CN = n.
3744    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3745    if (N01C && N1C) {
3746      // Determine what the truncate's result bitsize and type would be.
3747      EVT TruncVT =
3748        EVT::getIntegerVT(*DAG.getContext(),
3749                          OpSizeInBits - N1C->getZExtValue());
3750      // Determine the residual right-shift amount.
3751      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3752
3753      // If the shift is not a no-op (in which case this should be just a sign
3754      // extend already), the truncated to type is legal, sign_extend is legal
3755      // on that type, and the truncate to that type is both legal and free,
3756      // perform the transform.
3757      if ((ShiftAmt > 0) &&
3758          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3759          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3760          TLI.isTruncateFree(VT, TruncVT)) {
3761
3762          SDValue Amt = DAG.getConstant(ShiftAmt,
3763              getShiftAmountTy(N0.getOperand(0).getValueType()));
3764          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3765                                      N0.getOperand(0), Amt);
3766          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3767                                      Shift);
3768          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3769                             N->getValueType(0), Trunc);
3770      }
3771    }
3772  }
3773
3774  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3775  if (N1.getOpcode() == ISD::TRUNCATE &&
3776      N1.getOperand(0).getOpcode() == ISD::AND &&
3777      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3778    SDValue N101 = N1.getOperand(0).getOperand(1);
3779    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3780      EVT TruncVT = N1.getValueType();
3781      SDValue N100 = N1.getOperand(0).getOperand(0);
3782      APInt TruncC = N101C->getAPIntValue();
3783      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3784      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3785                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3786                                     TruncVT,
3787                                     DAG.getNode(ISD::TRUNCATE,
3788                                                 N->getDebugLoc(),
3789                                                 TruncVT, N100),
3790                                     DAG.getConstant(TruncC, TruncVT)));
3791    }
3792  }
3793
3794  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3795  //      if c1 is equal to the number of bits the trunc removes
3796  if (N0.getOpcode() == ISD::TRUNCATE &&
3797      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3798       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3799      N0.getOperand(0).hasOneUse() &&
3800      N0.getOperand(0).getOperand(1).hasOneUse() &&
3801      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3802    EVT LargeVT = N0.getOperand(0).getValueType();
3803    ConstantSDNode *LargeShiftAmt =
3804      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3805
3806    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3807        LargeShiftAmt->getZExtValue()) {
3808      SDValue Amt =
3809        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3810              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3811      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3812                                N0.getOperand(0).getOperand(0), Amt);
3813      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3814    }
3815  }
3816
3817  // Simplify, based on bits shifted out of the LHS.
3818  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3819    return SDValue(N, 0);
3820
3821
3822  // If the sign bit is known to be zero, switch this to a SRL.
3823  if (DAG.SignBitIsZero(N0))
3824    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3825
3826  if (N1C) {
3827    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3828    if (NewSRA.getNode())
3829      return NewSRA;
3830  }
3831
3832  return SDValue();
3833}
3834
3835SDValue DAGCombiner::visitSRL(SDNode *N) {
3836  SDValue N0 = N->getOperand(0);
3837  SDValue N1 = N->getOperand(1);
3838  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3839  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3840  EVT VT = N0.getValueType();
3841  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3842
3843  // fold (srl c1, c2) -> c1 >>u c2
3844  if (N0C && N1C)
3845    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3846  // fold (srl 0, x) -> 0
3847  if (N0C && N0C->isNullValue())
3848    return N0;
3849  // fold (srl x, c >= size(x)) -> undef
3850  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3851    return DAG.getUNDEF(VT);
3852  // fold (srl x, 0) -> x
3853  if (N1C && N1C->isNullValue())
3854    return N0;
3855  // if (srl x, c) is known to be zero, return 0
3856  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3857                                   APInt::getAllOnesValue(OpSizeInBits)))
3858    return DAG.getConstant(0, VT);
3859
3860  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3861  if (N1C && N0.getOpcode() == ISD::SRL &&
3862      N0.getOperand(1).getOpcode() == ISD::Constant) {
3863    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3864    uint64_t c2 = N1C->getZExtValue();
3865    if (c1 + c2 >= OpSizeInBits)
3866      return DAG.getConstant(0, VT);
3867    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3868                       DAG.getConstant(c1 + c2, N1.getValueType()));
3869  }
3870
3871  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3872  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3873      N0.getOperand(0).getOpcode() == ISD::SRL &&
3874      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3875    uint64_t c1 =
3876      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3877    uint64_t c2 = N1C->getZExtValue();
3878    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3879    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3880    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3881    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3882    if (c1 + OpSizeInBits == InnerShiftSize) {
3883      if (c1 + c2 >= InnerShiftSize)
3884        return DAG.getConstant(0, VT);
3885      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3886                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3887                                     N0.getOperand(0)->getOperand(0),
3888                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3889    }
3890  }
3891
3892  // fold (srl (shl x, c), c) -> (and x, cst2)
3893  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3894      N0.getValueSizeInBits() <= 64) {
3895    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3896    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3897                       DAG.getConstant(~0ULL >> ShAmt, VT));
3898  }
3899
3900
3901  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3902  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3903    // Shifting in all undef bits?
3904    EVT SmallVT = N0.getOperand(0).getValueType();
3905    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3906      return DAG.getUNDEF(VT);
3907
3908    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3909      uint64_t ShiftAmt = N1C->getZExtValue();
3910      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3911                                       N0.getOperand(0),
3912                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3913      AddToWorkList(SmallShift.getNode());
3914      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3915    }
3916  }
3917
3918  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3919  // bit, which is unmodified by sra.
3920  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3921    if (N0.getOpcode() == ISD::SRA)
3922      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3923  }
3924
3925  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3926  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3927      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3928    APInt KnownZero, KnownOne;
3929    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3930
3931    // If any of the input bits are KnownOne, then the input couldn't be all
3932    // zeros, thus the result of the srl will always be zero.
3933    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3934
3935    // If all of the bits input the to ctlz node are known to be zero, then
3936    // the result of the ctlz is "32" and the result of the shift is one.
3937    APInt UnknownBits = ~KnownZero;
3938    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3939
3940    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3941    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3942      // Okay, we know that only that the single bit specified by UnknownBits
3943      // could be set on input to the CTLZ node. If this bit is set, the SRL
3944      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3945      // to an SRL/XOR pair, which is likely to simplify more.
3946      unsigned ShAmt = UnknownBits.countTrailingZeros();
3947      SDValue Op = N0.getOperand(0);
3948
3949      if (ShAmt) {
3950        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3951                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3952        AddToWorkList(Op.getNode());
3953      }
3954
3955      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3956                         Op, DAG.getConstant(1, VT));
3957    }
3958  }
3959
3960  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3961  if (N1.getOpcode() == ISD::TRUNCATE &&
3962      N1.getOperand(0).getOpcode() == ISD::AND &&
3963      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3964    SDValue N101 = N1.getOperand(0).getOperand(1);
3965    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3966      EVT TruncVT = N1.getValueType();
3967      SDValue N100 = N1.getOperand(0).getOperand(0);
3968      APInt TruncC = N101C->getAPIntValue();
3969      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3970      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3971                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3972                                     TruncVT,
3973                                     DAG.getNode(ISD::TRUNCATE,
3974                                                 N->getDebugLoc(),
3975                                                 TruncVT, N100),
3976                                     DAG.getConstant(TruncC, TruncVT)));
3977    }
3978  }
3979
3980  // fold operands of srl based on knowledge that the low bits are not
3981  // demanded.
3982  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3983    return SDValue(N, 0);
3984
3985  if (N1C) {
3986    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3987    if (NewSRL.getNode())
3988      return NewSRL;
3989  }
3990
3991  // Attempt to convert a srl of a load into a narrower zero-extending load.
3992  SDValue NarrowLoad = ReduceLoadWidth(N);
3993  if (NarrowLoad.getNode())
3994    return NarrowLoad;
3995
3996  // Here is a common situation. We want to optimize:
3997  //
3998  //   %a = ...
3999  //   %b = and i32 %a, 2
4000  //   %c = srl i32 %b, 1
4001  //   brcond i32 %c ...
4002  //
4003  // into
4004  //
4005  //   %a = ...
4006  //   %b = and %a, 2
4007  //   %c = setcc eq %b, 0
4008  //   brcond %c ...
4009  //
4010  // However when after the source operand of SRL is optimized into AND, the SRL
4011  // itself may not be optimized further. Look for it and add the BRCOND into
4012  // the worklist.
4013  if (N->hasOneUse()) {
4014    SDNode *Use = *N->use_begin();
4015    if (Use->getOpcode() == ISD::BRCOND)
4016      AddToWorkList(Use);
4017    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4018      // Also look pass the truncate.
4019      Use = *Use->use_begin();
4020      if (Use->getOpcode() == ISD::BRCOND)
4021        AddToWorkList(Use);
4022    }
4023  }
4024
4025  return SDValue();
4026}
4027
4028SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4029  SDValue N0 = N->getOperand(0);
4030  EVT VT = N->getValueType(0);
4031
4032  // fold (ctlz c1) -> c2
4033  if (isa<ConstantSDNode>(N0))
4034    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
4035  return SDValue();
4036}
4037
4038SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4039  SDValue N0 = N->getOperand(0);
4040  EVT VT = N->getValueType(0);
4041
4042  // fold (ctlz_zero_undef c1) -> c2
4043  if (isa<ConstantSDNode>(N0))
4044    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4045  return SDValue();
4046}
4047
4048SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4049  SDValue N0 = N->getOperand(0);
4050  EVT VT = N->getValueType(0);
4051
4052  // fold (cttz c1) -> c2
4053  if (isa<ConstantSDNode>(N0))
4054    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4055  return SDValue();
4056}
4057
4058SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4059  SDValue N0 = N->getOperand(0);
4060  EVT VT = N->getValueType(0);
4061
4062  // fold (cttz_zero_undef c1) -> c2
4063  if (isa<ConstantSDNode>(N0))
4064    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4065  return SDValue();
4066}
4067
4068SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4069  SDValue N0 = N->getOperand(0);
4070  EVT VT = N->getValueType(0);
4071
4072  // fold (ctpop c1) -> c2
4073  if (isa<ConstantSDNode>(N0))
4074    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4075  return SDValue();
4076}
4077
4078SDValue DAGCombiner::visitSELECT(SDNode *N) {
4079  SDValue N0 = N->getOperand(0);
4080  SDValue N1 = N->getOperand(1);
4081  SDValue N2 = N->getOperand(2);
4082  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4083  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4084  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4085  EVT VT = N->getValueType(0);
4086  EVT VT0 = N0.getValueType();
4087
4088  // fold (select C, X, X) -> X
4089  if (N1 == N2)
4090    return N1;
4091  // fold (select true, X, Y) -> X
4092  if (N0C && !N0C->isNullValue())
4093    return N1;
4094  // fold (select false, X, Y) -> Y
4095  if (N0C && N0C->isNullValue())
4096    return N2;
4097  // fold (select C, 1, X) -> (or C, X)
4098  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4099    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4100  // fold (select C, 0, 1) -> (xor C, 1)
4101  if (VT.isInteger() &&
4102      (VT0 == MVT::i1 ||
4103       (VT0.isInteger() &&
4104        TLI.getBooleanContents(false) ==
4105        TargetLowering::ZeroOrOneBooleanContent)) &&
4106      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4107    SDValue XORNode;
4108    if (VT == VT0)
4109      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4110                         N0, DAG.getConstant(1, VT0));
4111    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4112                          N0, DAG.getConstant(1, VT0));
4113    AddToWorkList(XORNode.getNode());
4114    if (VT.bitsGT(VT0))
4115      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4116    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4117  }
4118  // fold (select C, 0, X) -> (and (not C), X)
4119  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4120    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4121    AddToWorkList(NOTNode.getNode());
4122    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4123  }
4124  // fold (select C, X, 1) -> (or (not C), X)
4125  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4126    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4127    AddToWorkList(NOTNode.getNode());
4128    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4129  }
4130  // fold (select C, X, 0) -> (and C, X)
4131  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4132    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4133  // fold (select X, X, Y) -> (or X, Y)
4134  // fold (select X, 1, Y) -> (or X, Y)
4135  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4136    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4137  // fold (select X, Y, X) -> (and X, Y)
4138  // fold (select X, Y, 0) -> (and X, Y)
4139  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4140    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4141
4142  // If we can fold this based on the true/false value, do so.
4143  if (SimplifySelectOps(N, N1, N2))
4144    return SDValue(N, 0);  // Don't revisit N.
4145
4146  // fold selects based on a setcc into other things, such as min/max/abs
4147  if (N0.getOpcode() == ISD::SETCC) {
4148    // FIXME:
4149    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4150    // having to say they don't support SELECT_CC on every type the DAG knows
4151    // about, since there is no way to mark an opcode illegal at all value types
4152    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4153        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4154      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4155                         N0.getOperand(0), N0.getOperand(1),
4156                         N1, N2, N0.getOperand(2));
4157    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4158  }
4159
4160  return SDValue();
4161}
4162
4163SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4164  SDValue N0 = N->getOperand(0);
4165  SDValue N1 = N->getOperand(1);
4166  SDValue N2 = N->getOperand(2);
4167  SDValue N3 = N->getOperand(3);
4168  SDValue N4 = N->getOperand(4);
4169  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4170
4171  // fold select_cc lhs, rhs, x, x, cc -> x
4172  if (N2 == N3)
4173    return N2;
4174
4175  // Determine if the condition we're dealing with is constant
4176  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4177                              N0, N1, CC, N->getDebugLoc(), false);
4178  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4179
4180  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4181    if (!SCCC->isNullValue())
4182      return N2;    // cond always true -> true val
4183    else
4184      return N3;    // cond always false -> false val
4185  }
4186
4187  // Fold to a simpler select_cc
4188  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4189    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4190                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4191                       SCC.getOperand(2));
4192
4193  // If we can fold this based on the true/false value, do so.
4194  if (SimplifySelectOps(N, N2, N3))
4195    return SDValue(N, 0);  // Don't revisit N.
4196
4197  // fold select_cc into other things, such as min/max/abs
4198  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4199}
4200
4201SDValue DAGCombiner::visitSETCC(SDNode *N) {
4202  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4203                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4204                       N->getDebugLoc());
4205}
4206
4207// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4208// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4209// transformation. Returns true if extension are possible and the above
4210// mentioned transformation is profitable.
4211static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4212                                    unsigned ExtOpc,
4213                                    SmallVector<SDNode*, 4> &ExtendNodes,
4214                                    const TargetLowering &TLI) {
4215  bool HasCopyToRegUses = false;
4216  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4217  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4218                            UE = N0.getNode()->use_end();
4219       UI != UE; ++UI) {
4220    SDNode *User = *UI;
4221    if (User == N)
4222      continue;
4223    if (UI.getUse().getResNo() != N0.getResNo())
4224      continue;
4225    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4226    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4227      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4228      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4229        // Sign bits will be lost after a zext.
4230        return false;
4231      bool Add = false;
4232      for (unsigned i = 0; i != 2; ++i) {
4233        SDValue UseOp = User->getOperand(i);
4234        if (UseOp == N0)
4235          continue;
4236        if (!isa<ConstantSDNode>(UseOp))
4237          return false;
4238        Add = true;
4239      }
4240      if (Add)
4241        ExtendNodes.push_back(User);
4242      continue;
4243    }
4244    // If truncates aren't free and there are users we can't
4245    // extend, it isn't worthwhile.
4246    if (!isTruncFree)
4247      return false;
4248    // Remember if this value is live-out.
4249    if (User->getOpcode() == ISD::CopyToReg)
4250      HasCopyToRegUses = true;
4251  }
4252
4253  if (HasCopyToRegUses) {
4254    bool BothLiveOut = false;
4255    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4256         UI != UE; ++UI) {
4257      SDUse &Use = UI.getUse();
4258      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4259        BothLiveOut = true;
4260        break;
4261      }
4262    }
4263    if (BothLiveOut)
4264      // Both unextended and extended values are live out. There had better be
4265      // a good reason for the transformation.
4266      return ExtendNodes.size();
4267  }
4268  return true;
4269}
4270
4271void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4272                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4273                                  ISD::NodeType ExtType) {
4274  // Extend SetCC uses if necessary.
4275  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4276    SDNode *SetCC = SetCCs[i];
4277    SmallVector<SDValue, 4> Ops;
4278
4279    for (unsigned j = 0; j != 2; ++j) {
4280      SDValue SOp = SetCC->getOperand(j);
4281      if (SOp == Trunc)
4282        Ops.push_back(ExtLoad);
4283      else
4284        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4285    }
4286
4287    Ops.push_back(SetCC->getOperand(2));
4288    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4289                                 &Ops[0], Ops.size()));
4290  }
4291}
4292
4293SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4294  SDValue N0 = N->getOperand(0);
4295  EVT VT = N->getValueType(0);
4296
4297  // fold (sext c1) -> c1
4298  if (isa<ConstantSDNode>(N0))
4299    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4300
4301  // fold (sext (sext x)) -> (sext x)
4302  // fold (sext (aext x)) -> (sext x)
4303  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4304    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4305                       N0.getOperand(0));
4306
4307  if (N0.getOpcode() == ISD::TRUNCATE) {
4308    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4309    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4310    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4311    if (NarrowLoad.getNode()) {
4312      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4313      if (NarrowLoad.getNode() != N0.getNode()) {
4314        CombineTo(N0.getNode(), NarrowLoad);
4315        // CombineTo deleted the truncate, if needed, but not what's under it.
4316        AddToWorkList(oye);
4317      }
4318      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4319    }
4320
4321    // See if the value being truncated is already sign extended.  If so, just
4322    // eliminate the trunc/sext pair.
4323    SDValue Op = N0.getOperand(0);
4324    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4325    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4326    unsigned DestBits = VT.getScalarType().getSizeInBits();
4327    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4328
4329    if (OpBits == DestBits) {
4330      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4331      // bits, it is already ready.
4332      if (NumSignBits > DestBits-MidBits)
4333        return Op;
4334    } else if (OpBits < DestBits) {
4335      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4336      // bits, just sext from i32.
4337      if (NumSignBits > OpBits-MidBits)
4338        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4339    } else {
4340      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4341      // bits, just truncate to i32.
4342      if (NumSignBits > OpBits-MidBits)
4343        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4344    }
4345
4346    // fold (sext (truncate x)) -> (sextinreg x).
4347    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4348                                                 N0.getValueType())) {
4349      if (OpBits < DestBits)
4350        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4351      else if (OpBits > DestBits)
4352        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4353      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4354                         DAG.getValueType(N0.getValueType()));
4355    }
4356  }
4357
4358  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4359  // None of the supported targets knows how to perform load and sign extend
4360  // on vectors in one instruction.  We only perform this transformation on
4361  // scalars.
4362  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4363      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4364       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4365    bool DoXform = true;
4366    SmallVector<SDNode*, 4> SetCCs;
4367    if (!N0.hasOneUse())
4368      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4369    if (DoXform) {
4370      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4371      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4372                                       LN0->getChain(),
4373                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4374                                       N0.getValueType(),
4375                                       LN0->isVolatile(), LN0->isNonTemporal(),
4376                                       LN0->getAlignment());
4377      CombineTo(N, ExtLoad);
4378      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4379                                  N0.getValueType(), ExtLoad);
4380      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4381      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4382                      ISD::SIGN_EXTEND);
4383      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4384    }
4385  }
4386
4387  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4388  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4389  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4390      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4391    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4392    EVT MemVT = LN0->getMemoryVT();
4393    if ((!LegalOperations && !LN0->isVolatile()) ||
4394        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4395      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4396                                       LN0->getChain(),
4397                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4398                                       MemVT,
4399                                       LN0->isVolatile(), LN0->isNonTemporal(),
4400                                       LN0->getAlignment());
4401      CombineTo(N, ExtLoad);
4402      CombineTo(N0.getNode(),
4403                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4404                            N0.getValueType(), ExtLoad),
4405                ExtLoad.getValue(1));
4406      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4407    }
4408  }
4409
4410  // fold (sext (and/or/xor (load x), cst)) ->
4411  //      (and/or/xor (sextload x), (sext cst))
4412  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4413       N0.getOpcode() == ISD::XOR) &&
4414      isa<LoadSDNode>(N0.getOperand(0)) &&
4415      N0.getOperand(1).getOpcode() == ISD::Constant &&
4416      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4417      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4418    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4419    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4420      bool DoXform = true;
4421      SmallVector<SDNode*, 4> SetCCs;
4422      if (!N0.hasOneUse())
4423        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4424                                          SetCCs, TLI);
4425      if (DoXform) {
4426        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4427                                         LN0->getChain(), LN0->getBasePtr(),
4428                                         LN0->getPointerInfo(),
4429                                         LN0->getMemoryVT(),
4430                                         LN0->isVolatile(),
4431                                         LN0->isNonTemporal(),
4432                                         LN0->getAlignment());
4433        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4434        Mask = Mask.sext(VT.getSizeInBits());
4435        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4436                                  ExtLoad, DAG.getConstant(Mask, VT));
4437        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4438                                    N0.getOperand(0).getDebugLoc(),
4439                                    N0.getOperand(0).getValueType(), ExtLoad);
4440        CombineTo(N, And);
4441        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4442        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4443                        ISD::SIGN_EXTEND);
4444        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4445      }
4446    }
4447  }
4448
4449  if (N0.getOpcode() == ISD::SETCC) {
4450    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4451    // Only do this before legalize for now.
4452    if (VT.isVector() && !LegalOperations) {
4453      EVT N0VT = N0.getOperand(0).getValueType();
4454      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4455      // of the same size as the compared operands. Only optimize sext(setcc())
4456      // if this is the case.
4457      EVT SVT = TLI.getSetCCResultType(N0VT);
4458
4459      // We know that the # elements of the results is the same as the
4460      // # elements of the compare (and the # elements of the compare result
4461      // for that matter).  Check to see that they are the same size.  If so,
4462      // we know that the element size of the sext'd result matches the
4463      // element size of the compare operands.
4464      if (VT.getSizeInBits() == SVT.getSizeInBits())
4465        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4466                             N0.getOperand(1),
4467                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4468      // If the desired elements are smaller or larger than the source
4469      // elements we can use a matching integer vector type and then
4470      // truncate/sign extend
4471      EVT MatchingElementType =
4472        EVT::getIntegerVT(*DAG.getContext(),
4473                          N0VT.getScalarType().getSizeInBits());
4474      EVT MatchingVectorType =
4475        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4476                         N0VT.getVectorNumElements());
4477
4478      if (SVT == MatchingVectorType) {
4479        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4480                               N0.getOperand(0), N0.getOperand(1),
4481                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4482        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4483      }
4484    }
4485
4486    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4487    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4488    SDValue NegOne =
4489      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4490    SDValue SCC =
4491      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4492                       NegOne, DAG.getConstant(0, VT),
4493                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4494    if (SCC.getNode()) return SCC;
4495    if (!LegalOperations ||
4496        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4497      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4498                         DAG.getSetCC(N->getDebugLoc(),
4499                                      TLI.getSetCCResultType(VT),
4500                                      N0.getOperand(0), N0.getOperand(1),
4501                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4502                         NegOne, DAG.getConstant(0, VT));
4503  }
4504
4505  // fold (sext x) -> (zext x) if the sign bit is known zero.
4506  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4507      DAG.SignBitIsZero(N0))
4508    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4509
4510  return SDValue();
4511}
4512
4513// isTruncateOf - If N is a truncate of some other value, return true, record
4514// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4515// This function computes KnownZero to avoid a duplicated call to
4516// ComputeMaskedBits in the caller.
4517static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4518                         APInt &KnownZero) {
4519  APInt KnownOne;
4520  if (N->getOpcode() == ISD::TRUNCATE) {
4521    Op = N->getOperand(0);
4522    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4523    return true;
4524  }
4525
4526  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4527      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4528    return false;
4529
4530  SDValue Op0 = N->getOperand(0);
4531  SDValue Op1 = N->getOperand(1);
4532  assert(Op0.getValueType() == Op1.getValueType());
4533
4534  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4535  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4536  if (COp0 && COp0->isNullValue())
4537    Op = Op1;
4538  else if (COp1 && COp1->isNullValue())
4539    Op = Op0;
4540  else
4541    return false;
4542
4543  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4544
4545  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4546    return false;
4547
4548  return true;
4549}
4550
4551SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4552  SDValue N0 = N->getOperand(0);
4553  EVT VT = N->getValueType(0);
4554
4555  // fold (zext c1) -> c1
4556  if (isa<ConstantSDNode>(N0))
4557    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4558  // fold (zext (zext x)) -> (zext x)
4559  // fold (zext (aext x)) -> (zext x)
4560  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4561    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4562                       N0.getOperand(0));
4563
4564  // fold (zext (truncate x)) -> (zext x) or
4565  //      (zext (truncate x)) -> (truncate x)
4566  // This is valid when the truncated bits of x are already zero.
4567  // FIXME: We should extend this to work for vectors too.
4568  SDValue Op;
4569  APInt KnownZero;
4570  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4571    APInt TruncatedBits =
4572      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4573      APInt(Op.getValueSizeInBits(), 0) :
4574      APInt::getBitsSet(Op.getValueSizeInBits(),
4575                        N0.getValueSizeInBits(),
4576                        std::min(Op.getValueSizeInBits(),
4577                                 VT.getSizeInBits()));
4578    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4579      if (VT.bitsGT(Op.getValueType()))
4580        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4581      if (VT.bitsLT(Op.getValueType()))
4582        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4583
4584      return Op;
4585    }
4586  }
4587
4588  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4589  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4590  if (N0.getOpcode() == ISD::TRUNCATE) {
4591    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4592    if (NarrowLoad.getNode()) {
4593      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4594      if (NarrowLoad.getNode() != N0.getNode()) {
4595        CombineTo(N0.getNode(), NarrowLoad);
4596        // CombineTo deleted the truncate, if needed, but not what's under it.
4597        AddToWorkList(oye);
4598      }
4599      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4600    }
4601  }
4602
4603  // fold (zext (truncate x)) -> (and x, mask)
4604  if (N0.getOpcode() == ISD::TRUNCATE &&
4605      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4606
4607    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4608    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4609    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4610    if (NarrowLoad.getNode()) {
4611      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4612      if (NarrowLoad.getNode() != N0.getNode()) {
4613        CombineTo(N0.getNode(), NarrowLoad);
4614        // CombineTo deleted the truncate, if needed, but not what's under it.
4615        AddToWorkList(oye);
4616      }
4617      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4618    }
4619
4620    SDValue Op = N0.getOperand(0);
4621    if (Op.getValueType().bitsLT(VT)) {
4622      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4623      AddToWorkList(Op.getNode());
4624    } else if (Op.getValueType().bitsGT(VT)) {
4625      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4626      AddToWorkList(Op.getNode());
4627    }
4628    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4629                                  N0.getValueType().getScalarType());
4630  }
4631
4632  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4633  // if either of the casts is not free.
4634  if (N0.getOpcode() == ISD::AND &&
4635      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4636      N0.getOperand(1).getOpcode() == ISD::Constant &&
4637      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4638                           N0.getValueType()) ||
4639       !TLI.isZExtFree(N0.getValueType(), VT))) {
4640    SDValue X = N0.getOperand(0).getOperand(0);
4641    if (X.getValueType().bitsLT(VT)) {
4642      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4643    } else if (X.getValueType().bitsGT(VT)) {
4644      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4645    }
4646    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4647    Mask = Mask.zext(VT.getSizeInBits());
4648    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4649                       X, DAG.getConstant(Mask, VT));
4650  }
4651
4652  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4653  // None of the supported targets knows how to perform load and vector_zext
4654  // on vectors in one instruction.  We only perform this transformation on
4655  // scalars.
4656  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4657      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4658       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4659    bool DoXform = true;
4660    SmallVector<SDNode*, 4> SetCCs;
4661    if (!N0.hasOneUse())
4662      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4663    if (DoXform) {
4664      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4665      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4666                                       LN0->getChain(),
4667                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4668                                       N0.getValueType(),
4669                                       LN0->isVolatile(), LN0->isNonTemporal(),
4670                                       LN0->getAlignment());
4671      CombineTo(N, ExtLoad);
4672      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4673                                  N0.getValueType(), ExtLoad);
4674      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4675
4676      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4677                      ISD::ZERO_EXTEND);
4678      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4679    }
4680  }
4681
4682  // fold (zext (and/or/xor (load x), cst)) ->
4683  //      (and/or/xor (zextload x), (zext cst))
4684  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4685       N0.getOpcode() == ISD::XOR) &&
4686      isa<LoadSDNode>(N0.getOperand(0)) &&
4687      N0.getOperand(1).getOpcode() == ISD::Constant &&
4688      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4689      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4690    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4691    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4692      bool DoXform = true;
4693      SmallVector<SDNode*, 4> SetCCs;
4694      if (!N0.hasOneUse())
4695        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4696                                          SetCCs, TLI);
4697      if (DoXform) {
4698        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4699                                         LN0->getChain(), LN0->getBasePtr(),
4700                                         LN0->getPointerInfo(),
4701                                         LN0->getMemoryVT(),
4702                                         LN0->isVolatile(),
4703                                         LN0->isNonTemporal(),
4704                                         LN0->getAlignment());
4705        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4706        Mask = Mask.zext(VT.getSizeInBits());
4707        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4708                                  ExtLoad, DAG.getConstant(Mask, VT));
4709        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4710                                    N0.getOperand(0).getDebugLoc(),
4711                                    N0.getOperand(0).getValueType(), ExtLoad);
4712        CombineTo(N, And);
4713        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4714        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4715                        ISD::ZERO_EXTEND);
4716        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4717      }
4718    }
4719  }
4720
4721  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4722  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4723  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4724      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4725    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4726    EVT MemVT = LN0->getMemoryVT();
4727    if ((!LegalOperations && !LN0->isVolatile()) ||
4728        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4729      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4730                                       LN0->getChain(),
4731                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4732                                       MemVT,
4733                                       LN0->isVolatile(), LN0->isNonTemporal(),
4734                                       LN0->getAlignment());
4735      CombineTo(N, ExtLoad);
4736      CombineTo(N0.getNode(),
4737                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4738                            ExtLoad),
4739                ExtLoad.getValue(1));
4740      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4741    }
4742  }
4743
4744  if (N0.getOpcode() == ISD::SETCC) {
4745    if (!LegalOperations && VT.isVector()) {
4746      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4747      // Only do this before legalize for now.
4748      EVT N0VT = N0.getOperand(0).getValueType();
4749      EVT EltVT = VT.getVectorElementType();
4750      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4751                                    DAG.getConstant(1, EltVT));
4752      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4753        // We know that the # elements of the results is the same as the
4754        // # elements of the compare (and the # elements of the compare result
4755        // for that matter).  Check to see that they are the same size.  If so,
4756        // we know that the element size of the sext'd result matches the
4757        // element size of the compare operands.
4758        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4759                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4760                                         N0.getOperand(1),
4761                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4762                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4763                                       &OneOps[0], OneOps.size()));
4764
4765      // If the desired elements are smaller or larger than the source
4766      // elements we can use a matching integer vector type and then
4767      // truncate/sign extend
4768      EVT MatchingElementType =
4769        EVT::getIntegerVT(*DAG.getContext(),
4770                          N0VT.getScalarType().getSizeInBits());
4771      EVT MatchingVectorType =
4772        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4773                         N0VT.getVectorNumElements());
4774      SDValue VsetCC =
4775        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4776                      N0.getOperand(1),
4777                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4778      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4779                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4780                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4781                                     &OneOps[0], OneOps.size()));
4782    }
4783
4784    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4785    SDValue SCC =
4786      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4787                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4788                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4789    if (SCC.getNode()) return SCC;
4790  }
4791
4792  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4793  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4794      isa<ConstantSDNode>(N0.getOperand(1)) &&
4795      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4796      N0.hasOneUse()) {
4797    SDValue ShAmt = N0.getOperand(1);
4798    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4799    if (N0.getOpcode() == ISD::SHL) {
4800      SDValue InnerZExt = N0.getOperand(0);
4801      // If the original shl may be shifting out bits, do not perform this
4802      // transformation.
4803      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4804        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4805      if (ShAmtVal > KnownZeroBits)
4806        return SDValue();
4807    }
4808
4809    DebugLoc DL = N->getDebugLoc();
4810
4811    // Ensure that the shift amount is wide enough for the shifted value.
4812    if (VT.getSizeInBits() >= 256)
4813      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4814
4815    return DAG.getNode(N0.getOpcode(), DL, VT,
4816                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4817                       ShAmt);
4818  }
4819
4820  return SDValue();
4821}
4822
4823SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4824  SDValue N0 = N->getOperand(0);
4825  EVT VT = N->getValueType(0);
4826
4827  // fold (aext c1) -> c1
4828  if (isa<ConstantSDNode>(N0))
4829    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4830  // fold (aext (aext x)) -> (aext x)
4831  // fold (aext (zext x)) -> (zext x)
4832  // fold (aext (sext x)) -> (sext x)
4833  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4834      N0.getOpcode() == ISD::ZERO_EXTEND ||
4835      N0.getOpcode() == ISD::SIGN_EXTEND)
4836    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4837
4838  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4839  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4840  if (N0.getOpcode() == ISD::TRUNCATE) {
4841    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4842    if (NarrowLoad.getNode()) {
4843      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4844      if (NarrowLoad.getNode() != N0.getNode()) {
4845        CombineTo(N0.getNode(), NarrowLoad);
4846        // CombineTo deleted the truncate, if needed, but not what's under it.
4847        AddToWorkList(oye);
4848      }
4849      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4850    }
4851  }
4852
4853  // fold (aext (truncate x))
4854  if (N0.getOpcode() == ISD::TRUNCATE) {
4855    SDValue TruncOp = N0.getOperand(0);
4856    if (TruncOp.getValueType() == VT)
4857      return TruncOp; // x iff x size == zext size.
4858    if (TruncOp.getValueType().bitsGT(VT))
4859      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4860    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4861  }
4862
4863  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4864  // if the trunc is not free.
4865  if (N0.getOpcode() == ISD::AND &&
4866      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4867      N0.getOperand(1).getOpcode() == ISD::Constant &&
4868      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4869                          N0.getValueType())) {
4870    SDValue X = N0.getOperand(0).getOperand(0);
4871    if (X.getValueType().bitsLT(VT)) {
4872      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4873    } else if (X.getValueType().bitsGT(VT)) {
4874      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4875    }
4876    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4877    Mask = Mask.zext(VT.getSizeInBits());
4878    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4879                       X, DAG.getConstant(Mask, VT));
4880  }
4881
4882  // fold (aext (load x)) -> (aext (truncate (extload x)))
4883  // None of the supported targets knows how to perform load and any_ext
4884  // on vectors in one instruction.  We only perform this transformation on
4885  // scalars.
4886  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4887      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4888       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4889    bool DoXform = true;
4890    SmallVector<SDNode*, 4> SetCCs;
4891    if (!N0.hasOneUse())
4892      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4893    if (DoXform) {
4894      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4895      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4896                                       LN0->getChain(),
4897                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4898                                       N0.getValueType(),
4899                                       LN0->isVolatile(), LN0->isNonTemporal(),
4900                                       LN0->getAlignment());
4901      CombineTo(N, ExtLoad);
4902      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4903                                  N0.getValueType(), ExtLoad);
4904      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4905      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4906                      ISD::ANY_EXTEND);
4907      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4908    }
4909  }
4910
4911  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4912  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4913  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4914  if (N0.getOpcode() == ISD::LOAD &&
4915      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4916      N0.hasOneUse()) {
4917    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4918    EVT MemVT = LN0->getMemoryVT();
4919    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4920                                     VT, LN0->getChain(), LN0->getBasePtr(),
4921                                     LN0->getPointerInfo(), MemVT,
4922                                     LN0->isVolatile(), LN0->isNonTemporal(),
4923                                     LN0->getAlignment());
4924    CombineTo(N, ExtLoad);
4925    CombineTo(N0.getNode(),
4926              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4927                          N0.getValueType(), ExtLoad),
4928              ExtLoad.getValue(1));
4929    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4930  }
4931
4932  if (N0.getOpcode() == ISD::SETCC) {
4933    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4934    // Only do this before legalize for now.
4935    if (VT.isVector() && !LegalOperations) {
4936      EVT N0VT = N0.getOperand(0).getValueType();
4937        // We know that the # elements of the results is the same as the
4938        // # elements of the compare (and the # elements of the compare result
4939        // for that matter).  Check to see that they are the same size.  If so,
4940        // we know that the element size of the sext'd result matches the
4941        // element size of the compare operands.
4942      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4943        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4944                             N0.getOperand(1),
4945                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4946      // If the desired elements are smaller or larger than the source
4947      // elements we can use a matching integer vector type and then
4948      // truncate/sign extend
4949      else {
4950        EVT MatchingElementType =
4951          EVT::getIntegerVT(*DAG.getContext(),
4952                            N0VT.getScalarType().getSizeInBits());
4953        EVT MatchingVectorType =
4954          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4955                           N0VT.getVectorNumElements());
4956        SDValue VsetCC =
4957          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4958                        N0.getOperand(1),
4959                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4960        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4961      }
4962    }
4963
4964    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4965    SDValue SCC =
4966      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4967                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4968                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4969    if (SCC.getNode())
4970      return SCC;
4971  }
4972
4973  return SDValue();
4974}
4975
4976/// GetDemandedBits - See if the specified operand can be simplified with the
4977/// knowledge that only the bits specified by Mask are used.  If so, return the
4978/// simpler operand, otherwise return a null SDValue.
4979SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4980  switch (V.getOpcode()) {
4981  default: break;
4982  case ISD::Constant: {
4983    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4984    assert(CV != 0 && "Const value should be ConstSDNode.");
4985    const APInt &CVal = CV->getAPIntValue();
4986    APInt NewVal = CVal & Mask;
4987    if (NewVal != CVal) {
4988      return DAG.getConstant(NewVal, V.getValueType());
4989    }
4990    break;
4991  }
4992  case ISD::OR:
4993  case ISD::XOR:
4994    // If the LHS or RHS don't contribute bits to the or, drop them.
4995    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4996      return V.getOperand(1);
4997    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4998      return V.getOperand(0);
4999    break;
5000  case ISD::SRL:
5001    // Only look at single-use SRLs.
5002    if (!V.getNode()->hasOneUse())
5003      break;
5004    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5005      // See if we can recursively simplify the LHS.
5006      unsigned Amt = RHSC->getZExtValue();
5007
5008      // Watch out for shift count overflow though.
5009      if (Amt >= Mask.getBitWidth()) break;
5010      APInt NewMask = Mask << Amt;
5011      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5012      if (SimplifyLHS.getNode())
5013        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
5014                           SimplifyLHS, V.getOperand(1));
5015    }
5016  }
5017  return SDValue();
5018}
5019
5020/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5021/// bits and then truncated to a narrower type and where N is a multiple
5022/// of number of bits of the narrower type, transform it to a narrower load
5023/// from address + N / num of bits of new type. If the result is to be
5024/// extended, also fold the extension to form a extending load.
5025SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5026  unsigned Opc = N->getOpcode();
5027
5028  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5029  SDValue N0 = N->getOperand(0);
5030  EVT VT = N->getValueType(0);
5031  EVT ExtVT = VT;
5032
5033  // This transformation isn't valid for vector loads.
5034  if (VT.isVector())
5035    return SDValue();
5036
5037  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5038  // extended to VT.
5039  if (Opc == ISD::SIGN_EXTEND_INREG) {
5040    ExtType = ISD::SEXTLOAD;
5041    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5042  } else if (Opc == ISD::SRL) {
5043    // Another special-case: SRL is basically zero-extending a narrower value.
5044    ExtType = ISD::ZEXTLOAD;
5045    N0 = SDValue(N, 0);
5046    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5047    if (!N01) return SDValue();
5048    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5049                              VT.getSizeInBits() - N01->getZExtValue());
5050  }
5051  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5052    return SDValue();
5053
5054  unsigned EVTBits = ExtVT.getSizeInBits();
5055
5056  // Do not generate loads of non-round integer types since these can
5057  // be expensive (and would be wrong if the type is not byte sized).
5058  if (!ExtVT.isRound())
5059    return SDValue();
5060
5061  unsigned ShAmt = 0;
5062  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5063    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5064      ShAmt = N01->getZExtValue();
5065      // Is the shift amount a multiple of size of VT?
5066      if ((ShAmt & (EVTBits-1)) == 0) {
5067        N0 = N0.getOperand(0);
5068        // Is the load width a multiple of size of VT?
5069        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5070          return SDValue();
5071      }
5072
5073      // At this point, we must have a load or else we can't do the transform.
5074      if (!isa<LoadSDNode>(N0)) return SDValue();
5075
5076      // Because a SRL must be assumed to *need* to zero-extend the high bits
5077      // (as opposed to anyext the high bits), we can't combine the zextload
5078      // lowering of SRL and an sextload.
5079      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5080        return SDValue();
5081
5082      // If the shift amount is larger than the input type then we're not
5083      // accessing any of the loaded bytes.  If the load was a zextload/extload
5084      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5085      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5086        return SDValue();
5087    }
5088  }
5089
5090  // If the load is shifted left (and the result isn't shifted back right),
5091  // we can fold the truncate through the shift.
5092  unsigned ShLeftAmt = 0;
5093  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5094      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5095    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5096      ShLeftAmt = N01->getZExtValue();
5097      N0 = N0.getOperand(0);
5098    }
5099  }
5100
5101  // If we haven't found a load, we can't narrow it.  Don't transform one with
5102  // multiple uses, this would require adding a new load.
5103  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5104      // Don't change the width of a volatile load.
5105      cast<LoadSDNode>(N0)->isVolatile())
5106    return SDValue();
5107
5108  // Verify that we are actually reducing a load width here.
5109  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5110    return SDValue();
5111
5112  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5113  EVT PtrType = N0.getOperand(1).getValueType();
5114
5115  if (PtrType == MVT::Untyped || PtrType.isExtended())
5116    // It's not possible to generate a constant of extended or untyped type.
5117    return SDValue();
5118
5119  // For big endian targets, we need to adjust the offset to the pointer to
5120  // load the correct bytes.
5121  if (TLI.isBigEndian()) {
5122    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5123    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5124    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5125  }
5126
5127  uint64_t PtrOff = ShAmt / 8;
5128  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5129  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5130                               PtrType, LN0->getBasePtr(),
5131                               DAG.getConstant(PtrOff, PtrType));
5132  AddToWorkList(NewPtr.getNode());
5133
5134  SDValue Load;
5135  if (ExtType == ISD::NON_EXTLOAD)
5136    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5137                        LN0->getPointerInfo().getWithOffset(PtrOff),
5138                        LN0->isVolatile(), LN0->isNonTemporal(),
5139                        LN0->isInvariant(), NewAlign);
5140  else
5141    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5142                          LN0->getPointerInfo().getWithOffset(PtrOff),
5143                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5144                          NewAlign);
5145
5146  // Replace the old load's chain with the new load's chain.
5147  WorkListRemover DeadNodes(*this);
5148  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5149
5150  // Shift the result left, if we've swallowed a left shift.
5151  SDValue Result = Load;
5152  if (ShLeftAmt != 0) {
5153    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5154    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5155      ShImmTy = VT;
5156    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5157                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5158  }
5159
5160  // Return the new loaded value.
5161  return Result;
5162}
5163
5164SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5165  SDValue N0 = N->getOperand(0);
5166  SDValue N1 = N->getOperand(1);
5167  EVT VT = N->getValueType(0);
5168  EVT EVT = cast<VTSDNode>(N1)->getVT();
5169  unsigned VTBits = VT.getScalarType().getSizeInBits();
5170  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5171
5172  // fold (sext_in_reg c1) -> c1
5173  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5174    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5175
5176  // If the input is already sign extended, just drop the extension.
5177  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5178    return N0;
5179
5180  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5181  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5182      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5183    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5184                       N0.getOperand(0), N1);
5185  }
5186
5187  // fold (sext_in_reg (sext x)) -> (sext x)
5188  // fold (sext_in_reg (aext x)) -> (sext x)
5189  // if x is small enough.
5190  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5191    SDValue N00 = N0.getOperand(0);
5192    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5193        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5194      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5195  }
5196
5197  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5198  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5199    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5200
5201  // fold operands of sext_in_reg based on knowledge that the top bits are not
5202  // demanded.
5203  if (SimplifyDemandedBits(SDValue(N, 0)))
5204    return SDValue(N, 0);
5205
5206  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5207  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5208  SDValue NarrowLoad = ReduceLoadWidth(N);
5209  if (NarrowLoad.getNode())
5210    return NarrowLoad;
5211
5212  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5213  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5214  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5215  if (N0.getOpcode() == ISD::SRL) {
5216    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5217      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5218        // We can turn this into an SRA iff the input to the SRL is already sign
5219        // extended enough.
5220        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5221        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5222          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5223                             N0.getOperand(0), N0.getOperand(1));
5224      }
5225  }
5226
5227  // fold (sext_inreg (extload x)) -> (sextload x)
5228  if (ISD::isEXTLoad(N0.getNode()) &&
5229      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5230      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5231      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5232       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5233    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5234    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5235                                     LN0->getChain(),
5236                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5237                                     EVT,
5238                                     LN0->isVolatile(), LN0->isNonTemporal(),
5239                                     LN0->getAlignment());
5240    CombineTo(N, ExtLoad);
5241    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5242    AddToWorkList(ExtLoad.getNode());
5243    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5244  }
5245  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5246  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5247      N0.hasOneUse() &&
5248      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5249      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5250       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5251    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5252    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5253                                     LN0->getChain(),
5254                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5255                                     EVT,
5256                                     LN0->isVolatile(), LN0->isNonTemporal(),
5257                                     LN0->getAlignment());
5258    CombineTo(N, ExtLoad);
5259    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5260    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5261  }
5262
5263  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5264  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5265    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5266                                       N0.getOperand(1), false);
5267    if (BSwap.getNode() != 0)
5268      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5269                         BSwap, N1);
5270  }
5271
5272  return SDValue();
5273}
5274
5275SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5276  SDValue N0 = N->getOperand(0);
5277  EVT VT = N->getValueType(0);
5278  bool isLE = TLI.isLittleEndian();
5279
5280  // noop truncate
5281  if (N0.getValueType() == N->getValueType(0))
5282    return N0;
5283  // fold (truncate c1) -> c1
5284  if (isa<ConstantSDNode>(N0))
5285    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5286  // fold (truncate (truncate x)) -> (truncate x)
5287  if (N0.getOpcode() == ISD::TRUNCATE)
5288    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5289  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5290  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5291      N0.getOpcode() == ISD::SIGN_EXTEND ||
5292      N0.getOpcode() == ISD::ANY_EXTEND) {
5293    if (N0.getOperand(0).getValueType().bitsLT(VT))
5294      // if the source is smaller than the dest, we still need an extend
5295      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5296                         N0.getOperand(0));
5297    if (N0.getOperand(0).getValueType().bitsGT(VT))
5298      // if the source is larger than the dest, than we just need the truncate
5299      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5300    // if the source and dest are the same type, we can drop both the extend
5301    // and the truncate.
5302    return N0.getOperand(0);
5303  }
5304
5305  // Fold extract-and-trunc into a narrow extract. For example:
5306  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5307  //   i32 y = TRUNCATE(i64 x)
5308  //        -- becomes --
5309  //   v16i8 b = BITCAST (v2i64 val)
5310  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5311  //
5312  // Note: We only run this optimization after type legalization (which often
5313  // creates this pattern) and before operation legalization after which
5314  // we need to be more careful about the vector instructions that we generate.
5315  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5316      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5317
5318    EVT VecTy = N0.getOperand(0).getValueType();
5319    EVT ExTy = N0.getValueType();
5320    EVT TrTy = N->getValueType(0);
5321
5322    unsigned NumElem = VecTy.getVectorNumElements();
5323    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5324
5325    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5326    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5327
5328    SDValue EltNo = N0->getOperand(1);
5329    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5330      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5331      EVT IndexTy = N0->getOperand(1).getValueType();
5332      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5333
5334      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5335                              NVT, N0.getOperand(0));
5336
5337      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5338                         N->getDebugLoc(), TrTy, V,
5339                         DAG.getConstant(Index, IndexTy));
5340    }
5341  }
5342
5343  // See if we can simplify the input to this truncate through knowledge that
5344  // only the low bits are being used.
5345  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5346  // Currently we only perform this optimization on scalars because vectors
5347  // may have different active low bits.
5348  if (!VT.isVector()) {
5349    SDValue Shorter =
5350      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5351                                               VT.getSizeInBits()));
5352    if (Shorter.getNode())
5353      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5354  }
5355  // fold (truncate (load x)) -> (smaller load x)
5356  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5357  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5358    SDValue Reduced = ReduceLoadWidth(N);
5359    if (Reduced.getNode())
5360      return Reduced;
5361  }
5362  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5363  // where ... are all 'undef'.
5364  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5365    SmallVector<EVT, 8> VTs;
5366    SDValue V;
5367    unsigned Idx = 0;
5368    unsigned NumDefs = 0;
5369
5370    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5371      SDValue X = N0.getOperand(i);
5372      if (X.getOpcode() != ISD::UNDEF) {
5373        V = X;
5374        Idx = i;
5375        NumDefs++;
5376      }
5377      // Stop if more than one members are non-undef.
5378      if (NumDefs > 1)
5379        break;
5380      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5381                                     VT.getVectorElementType(),
5382                                     X.getValueType().getVectorNumElements()));
5383    }
5384
5385    if (NumDefs == 0)
5386      return DAG.getUNDEF(VT);
5387
5388    if (NumDefs == 1) {
5389      assert(V.getNode() && "The single defined operand is empty!");
5390      SmallVector<SDValue, 8> Opnds;
5391      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5392        if (i != Idx) {
5393          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5394          continue;
5395        }
5396        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5397        AddToWorkList(NV.getNode());
5398        Opnds.push_back(NV);
5399      }
5400      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5401                         &Opnds[0], Opnds.size());
5402    }
5403  }
5404
5405  // Simplify the operands using demanded-bits information.
5406  if (!VT.isVector() &&
5407      SimplifyDemandedBits(SDValue(N, 0)))
5408    return SDValue(N, 0);
5409
5410  return SDValue();
5411}
5412
5413static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5414  SDValue Elt = N->getOperand(i);
5415  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5416    return Elt.getNode();
5417  return Elt.getOperand(Elt.getResNo()).getNode();
5418}
5419
5420/// CombineConsecutiveLoads - build_pair (load, load) -> load
5421/// if load locations are consecutive.
5422SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5423  assert(N->getOpcode() == ISD::BUILD_PAIR);
5424
5425  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5426  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5427  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5428      LD1->getPointerInfo().getAddrSpace() !=
5429         LD2->getPointerInfo().getAddrSpace())
5430    return SDValue();
5431  EVT LD1VT = LD1->getValueType(0);
5432
5433  if (ISD::isNON_EXTLoad(LD2) &&
5434      LD2->hasOneUse() &&
5435      // If both are volatile this would reduce the number of volatile loads.
5436      // If one is volatile it might be ok, but play conservative and bail out.
5437      !LD1->isVolatile() &&
5438      !LD2->isVolatile() &&
5439      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5440    unsigned Align = LD1->getAlignment();
5441    unsigned NewAlign = TLI.getDataLayout()->
5442      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5443
5444    if (NewAlign <= Align &&
5445        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5446      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5447                         LD1->getBasePtr(), LD1->getPointerInfo(),
5448                         false, false, false, Align);
5449  }
5450
5451  return SDValue();
5452}
5453
5454SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5455  SDValue N0 = N->getOperand(0);
5456  EVT VT = N->getValueType(0);
5457
5458  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5459  // Only do this before legalize, since afterward the target may be depending
5460  // on the bitconvert.
5461  // First check to see if this is all constant.
5462  if (!LegalTypes &&
5463      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5464      VT.isVector()) {
5465    bool isSimple = true;
5466    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5467      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5468          N0.getOperand(i).getOpcode() != ISD::Constant &&
5469          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5470        isSimple = false;
5471        break;
5472      }
5473
5474    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5475    assert(!DestEltVT.isVector() &&
5476           "Element type of vector ValueType must not be vector!");
5477    if (isSimple)
5478      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5479  }
5480
5481  // If the input is a constant, let getNode fold it.
5482  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5483    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5484    if (Res.getNode() != N) {
5485      if (!LegalOperations ||
5486          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5487        return Res;
5488
5489      // Folding it resulted in an illegal node, and it's too late to
5490      // do that. Clean up the old node and forego the transformation.
5491      // Ideally this won't happen very often, because instcombine
5492      // and the earlier dagcombine runs (where illegal nodes are
5493      // permitted) should have folded most of them already.
5494      DAG.DeleteNode(Res.getNode());
5495    }
5496  }
5497
5498  // (conv (conv x, t1), t2) -> (conv x, t2)
5499  if (N0.getOpcode() == ISD::BITCAST)
5500    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5501                       N0.getOperand(0));
5502
5503  // fold (conv (load x)) -> (load (conv*)x)
5504  // If the resultant load doesn't need a higher alignment than the original!
5505  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5506      // Do not change the width of a volatile load.
5507      !cast<LoadSDNode>(N0)->isVolatile() &&
5508      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5509    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5510    unsigned Align = TLI.getDataLayout()->
5511      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5512    unsigned OrigAlign = LN0->getAlignment();
5513
5514    if (Align <= OrigAlign) {
5515      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5516                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5517                                 LN0->isVolatile(), LN0->isNonTemporal(),
5518                                 LN0->isInvariant(), OrigAlign);
5519      AddToWorkList(N);
5520      CombineTo(N0.getNode(),
5521                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5522                            N0.getValueType(), Load),
5523                Load.getValue(1));
5524      return Load;
5525    }
5526  }
5527
5528  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5529  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5530  // This often reduces constant pool loads.
5531  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5532       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5533      N0.getNode()->hasOneUse() && VT.isInteger() &&
5534      !VT.isVector() && !N0.getValueType().isVector()) {
5535    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5536                                  N0.getOperand(0));
5537    AddToWorkList(NewConv.getNode());
5538
5539    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5540    if (N0.getOpcode() == ISD::FNEG)
5541      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5542                         NewConv, DAG.getConstant(SignBit, VT));
5543    assert(N0.getOpcode() == ISD::FABS);
5544    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5545                       NewConv, DAG.getConstant(~SignBit, VT));
5546  }
5547
5548  // fold (bitconvert (fcopysign cst, x)) ->
5549  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5550  // Note that we don't handle (copysign x, cst) because this can always be
5551  // folded to an fneg or fabs.
5552  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5553      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5554      VT.isInteger() && !VT.isVector()) {
5555    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5556    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5557    if (isTypeLegal(IntXVT)) {
5558      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5559                              IntXVT, N0.getOperand(1));
5560      AddToWorkList(X.getNode());
5561
5562      // If X has a different width than the result/lhs, sext it or truncate it.
5563      unsigned VTWidth = VT.getSizeInBits();
5564      if (OrigXWidth < VTWidth) {
5565        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5566        AddToWorkList(X.getNode());
5567      } else if (OrigXWidth > VTWidth) {
5568        // To get the sign bit in the right place, we have to shift it right
5569        // before truncating.
5570        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5571                        X.getValueType(), X,
5572                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5573        AddToWorkList(X.getNode());
5574        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5575        AddToWorkList(X.getNode());
5576      }
5577
5578      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5579      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5580                      X, DAG.getConstant(SignBit, VT));
5581      AddToWorkList(X.getNode());
5582
5583      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5584                                VT, N0.getOperand(0));
5585      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5586                        Cst, DAG.getConstant(~SignBit, VT));
5587      AddToWorkList(Cst.getNode());
5588
5589      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5590    }
5591  }
5592
5593  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5594  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5595    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5596    if (CombineLD.getNode())
5597      return CombineLD;
5598  }
5599
5600  return SDValue();
5601}
5602
5603SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5604  EVT VT = N->getValueType(0);
5605  return CombineConsecutiveLoads(N, VT);
5606}
5607
5608/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5609/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5610/// destination element value type.
5611SDValue DAGCombiner::
5612ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5613  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5614
5615  // If this is already the right type, we're done.
5616  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5617
5618  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5619  unsigned DstBitSize = DstEltVT.getSizeInBits();
5620
5621  // If this is a conversion of N elements of one type to N elements of another
5622  // type, convert each element.  This handles FP<->INT cases.
5623  if (SrcBitSize == DstBitSize) {
5624    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5625                              BV->getValueType(0).getVectorNumElements());
5626
5627    // Due to the FP element handling below calling this routine recursively,
5628    // we can end up with a scalar-to-vector node here.
5629    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5630      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5631                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5632                                     DstEltVT, BV->getOperand(0)));
5633
5634    SmallVector<SDValue, 8> Ops;
5635    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5636      SDValue Op = BV->getOperand(i);
5637      // If the vector element type is not legal, the BUILD_VECTOR operands
5638      // are promoted and implicitly truncated.  Make that explicit here.
5639      if (Op.getValueType() != SrcEltVT)
5640        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5641      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5642                                DstEltVT, Op));
5643      AddToWorkList(Ops.back().getNode());
5644    }
5645    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5646                       &Ops[0], Ops.size());
5647  }
5648
5649  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5650  // handle annoying details of growing/shrinking FP values, we convert them to
5651  // int first.
5652  if (SrcEltVT.isFloatingPoint()) {
5653    // Convert the input float vector to a int vector where the elements are the
5654    // same sizes.
5655    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5656    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5657    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5658    SrcEltVT = IntVT;
5659  }
5660
5661  // Now we know the input is an integer vector.  If the output is a FP type,
5662  // convert to integer first, then to FP of the right size.
5663  if (DstEltVT.isFloatingPoint()) {
5664    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5665    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5666    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5667
5668    // Next, convert to FP elements of the same size.
5669    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5670  }
5671
5672  // Okay, we know the src/dst types are both integers of differing types.
5673  // Handling growing first.
5674  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5675  if (SrcBitSize < DstBitSize) {
5676    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5677
5678    SmallVector<SDValue, 8> Ops;
5679    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5680         i += NumInputsPerOutput) {
5681      bool isLE = TLI.isLittleEndian();
5682      APInt NewBits = APInt(DstBitSize, 0);
5683      bool EltIsUndef = true;
5684      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5685        // Shift the previously computed bits over.
5686        NewBits <<= SrcBitSize;
5687        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5688        if (Op.getOpcode() == ISD::UNDEF) continue;
5689        EltIsUndef = false;
5690
5691        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5692                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5693      }
5694
5695      if (EltIsUndef)
5696        Ops.push_back(DAG.getUNDEF(DstEltVT));
5697      else
5698        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5699    }
5700
5701    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5702    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5703                       &Ops[0], Ops.size());
5704  }
5705
5706  // Finally, this must be the case where we are shrinking elements: each input
5707  // turns into multiple outputs.
5708  bool isS2V = ISD::isScalarToVector(BV);
5709  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5710  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5711                            NumOutputsPerInput*BV->getNumOperands());
5712  SmallVector<SDValue, 8> Ops;
5713
5714  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5715    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5716      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5717        Ops.push_back(DAG.getUNDEF(DstEltVT));
5718      continue;
5719    }
5720
5721    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5722                  getAPIntValue().zextOrTrunc(SrcBitSize);
5723
5724    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5725      APInt ThisVal = OpVal.trunc(DstBitSize);
5726      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5727      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5728        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5729        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5730                           Ops[0]);
5731      OpVal = OpVal.lshr(DstBitSize);
5732    }
5733
5734    // For big endian targets, swap the order of the pieces of each element.
5735    if (TLI.isBigEndian())
5736      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5737  }
5738
5739  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5740                     &Ops[0], Ops.size());
5741}
5742
5743SDValue DAGCombiner::visitFADD(SDNode *N) {
5744  SDValue N0 = N->getOperand(0);
5745  SDValue N1 = N->getOperand(1);
5746  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5747  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5748  EVT VT = N->getValueType(0);
5749
5750  // fold vector ops
5751  if (VT.isVector()) {
5752    SDValue FoldedVOp = SimplifyVBinOp(N);
5753    if (FoldedVOp.getNode()) return FoldedVOp;
5754  }
5755
5756  // fold (fadd c1, c2) -> c1 + c2
5757  if (N0CFP && N1CFP)
5758    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5759  // canonicalize constant to RHS
5760  if (N0CFP && !N1CFP)
5761    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5762  // fold (fadd A, 0) -> A
5763  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5764      N1CFP->getValueAPF().isZero())
5765    return N0;
5766  // fold (fadd A, (fneg B)) -> (fsub A, B)
5767  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5768    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5769    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5770                       GetNegatedExpression(N1, DAG, LegalOperations));
5771  // fold (fadd (fneg A), B) -> (fsub B, A)
5772  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5773    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5774    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5775                       GetNegatedExpression(N0, DAG, LegalOperations));
5776
5777  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5778  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5779      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5780      isa<ConstantFPSDNode>(N0.getOperand(1)))
5781    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5782                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5783                                   N0.getOperand(1), N1));
5784
5785  // If allow, fold (fadd (fneg x), x) -> 0.0
5786  if (DAG.getTarget().Options.UnsafeFPMath &&
5787      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5788    return DAG.getConstantFP(0.0, VT);
5789  }
5790
5791    // If allow, fold (fadd x, (fneg x)) -> 0.0
5792  if (DAG.getTarget().Options.UnsafeFPMath &&
5793      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5794    return DAG.getConstantFP(0.0, VT);
5795  }
5796
5797  // In unsafe math mode, we can fold chains of FADD's of the same value
5798  // into multiplications.  This transform is not safe in general because
5799  // we are reducing the number of rounding steps.
5800  if (DAG.getTarget().Options.UnsafeFPMath &&
5801      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5802      !N0CFP && !N1CFP) {
5803    if (N0.getOpcode() == ISD::FMUL) {
5804      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5805      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5806
5807      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5808      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5809        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5810                                     SDValue(CFP00, 0),
5811                                     DAG.getConstantFP(1.0, VT));
5812        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5813                           N1, NewCFP);
5814      }
5815
5816      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5817      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5818        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5819                                     SDValue(CFP01, 0),
5820                                     DAG.getConstantFP(1.0, VT));
5821        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5822                           N1, NewCFP);
5823      }
5824
5825      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5826      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5827          N0.getOperand(0) == N1) {
5828        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5829                           N1, DAG.getConstantFP(3.0, VT));
5830      }
5831
5832      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5833      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5834          N1.getOperand(0) == N1.getOperand(1) &&
5835          N0.getOperand(1) == N1.getOperand(0)) {
5836        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5837                                     SDValue(CFP00, 0),
5838                                     DAG.getConstantFP(2.0, VT));
5839        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5840                           N0.getOperand(1), NewCFP);
5841      }
5842
5843      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5844      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5845          N1.getOperand(0) == N1.getOperand(1) &&
5846          N0.getOperand(0) == N1.getOperand(0)) {
5847        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5848                                     SDValue(CFP01, 0),
5849                                     DAG.getConstantFP(2.0, VT));
5850        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5851                           N0.getOperand(0), NewCFP);
5852      }
5853    }
5854
5855    if (N1.getOpcode() == ISD::FMUL) {
5856      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5857      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5858
5859      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5860      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5861        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5862                                     SDValue(CFP10, 0),
5863                                     DAG.getConstantFP(1.0, VT));
5864        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5865                           N0, NewCFP);
5866      }
5867
5868      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5869      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5870        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5871                                     SDValue(CFP11, 0),
5872                                     DAG.getConstantFP(1.0, VT));
5873        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5874                           N0, NewCFP);
5875      }
5876
5877      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5878      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5879          N1.getOperand(0) == N0) {
5880        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5881                           N0, DAG.getConstantFP(3.0, VT));
5882      }
5883
5884      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5885      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5886          N1.getOperand(0) == N1.getOperand(1) &&
5887          N0.getOperand(1) == N1.getOperand(0)) {
5888        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5889                                     SDValue(CFP10, 0),
5890                                     DAG.getConstantFP(2.0, VT));
5891        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5892                           N0.getOperand(1), NewCFP);
5893      }
5894
5895      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5896      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5897          N1.getOperand(0) == N1.getOperand(1) &&
5898          N0.getOperand(0) == N1.getOperand(0)) {
5899        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5900                                     SDValue(CFP11, 0),
5901                                     DAG.getConstantFP(2.0, VT));
5902        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5903                           N0.getOperand(0), NewCFP);
5904      }
5905    }
5906
5907    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5908    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5909        N0.getOperand(0) == N0.getOperand(1) &&
5910        N1.getOperand(0) == N1.getOperand(1) &&
5911        N0.getOperand(0) == N1.getOperand(0)) {
5912      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5913                         N0.getOperand(0),
5914                         DAG.getConstantFP(4.0, VT));
5915    }
5916  }
5917
5918  // FADD -> FMA combines:
5919  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5920       DAG.getTarget().Options.UnsafeFPMath) &&
5921      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5922      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5923
5924    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5925    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5926      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5927                         N0.getOperand(0), N0.getOperand(1), N1);
5928    }
5929
5930    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5931    // Note: Commutes FADD operands.
5932    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5933      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5934                         N1.getOperand(0), N1.getOperand(1), N0);
5935    }
5936  }
5937
5938  return SDValue();
5939}
5940
5941SDValue DAGCombiner::visitFSUB(SDNode *N) {
5942  SDValue N0 = N->getOperand(0);
5943  SDValue N1 = N->getOperand(1);
5944  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5945  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5946  EVT VT = N->getValueType(0);
5947  DebugLoc dl = N->getDebugLoc();
5948
5949  // fold vector ops
5950  if (VT.isVector()) {
5951    SDValue FoldedVOp = SimplifyVBinOp(N);
5952    if (FoldedVOp.getNode()) return FoldedVOp;
5953  }
5954
5955  // fold (fsub c1, c2) -> c1-c2
5956  if (N0CFP && N1CFP)
5957    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5958  // fold (fsub A, 0) -> A
5959  if (DAG.getTarget().Options.UnsafeFPMath &&
5960      N1CFP && N1CFP->getValueAPF().isZero())
5961    return N0;
5962  // fold (fsub 0, B) -> -B
5963  if (DAG.getTarget().Options.UnsafeFPMath &&
5964      N0CFP && N0CFP->getValueAPF().isZero()) {
5965    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5966      return GetNegatedExpression(N1, DAG, LegalOperations);
5967    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5968      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5969  }
5970  // fold (fsub A, (fneg B)) -> (fadd A, B)
5971  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5972    return DAG.getNode(ISD::FADD, dl, VT, N0,
5973                       GetNegatedExpression(N1, DAG, LegalOperations));
5974
5975  // If 'unsafe math' is enabled, fold
5976  //    (fsub x, x) -> 0.0 &
5977  //    (fsub x, (fadd x, y)) -> (fneg y) &
5978  //    (fsub x, (fadd y, x)) -> (fneg y)
5979  if (DAG.getTarget().Options.UnsafeFPMath) {
5980    if (N0 == N1)
5981      return DAG.getConstantFP(0.0f, VT);
5982
5983    if (N1.getOpcode() == ISD::FADD) {
5984      SDValue N10 = N1->getOperand(0);
5985      SDValue N11 = N1->getOperand(1);
5986
5987      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5988                                          &DAG.getTarget().Options))
5989        return GetNegatedExpression(N11, DAG, LegalOperations);
5990      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5991                                               &DAG.getTarget().Options))
5992        return GetNegatedExpression(N10, DAG, LegalOperations);
5993    }
5994  }
5995
5996  // FSUB -> FMA combines:
5997  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5998       DAG.getTarget().Options.UnsafeFPMath) &&
5999      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6000      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6001
6002    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6003    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6004      return DAG.getNode(ISD::FMA, dl, VT,
6005                         N0.getOperand(0), N0.getOperand(1),
6006                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6007    }
6008
6009    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6010    // Note: Commutes FSUB operands.
6011    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6012      return DAG.getNode(ISD::FMA, dl, VT,
6013                         DAG.getNode(ISD::FNEG, dl, VT,
6014                         N1.getOperand(0)),
6015                         N1.getOperand(1), N0);
6016    }
6017
6018    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6019    if (N0.getOpcode() == ISD::FNEG &&
6020        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6021        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6022      SDValue N00 = N0.getOperand(0).getOperand(0);
6023      SDValue N01 = N0.getOperand(0).getOperand(1);
6024      return DAG.getNode(ISD::FMA, dl, VT,
6025                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6026                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6027    }
6028  }
6029
6030  return SDValue();
6031}
6032
6033SDValue DAGCombiner::visitFMUL(SDNode *N) {
6034  SDValue N0 = N->getOperand(0);
6035  SDValue N1 = N->getOperand(1);
6036  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6037  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6038  EVT VT = N->getValueType(0);
6039  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6040
6041  // fold vector ops
6042  if (VT.isVector()) {
6043    SDValue FoldedVOp = SimplifyVBinOp(N);
6044    if (FoldedVOp.getNode()) return FoldedVOp;
6045  }
6046
6047  // fold (fmul c1, c2) -> c1*c2
6048  if (N0CFP && N1CFP)
6049    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6050  // canonicalize constant to RHS
6051  if (N0CFP && !N1CFP)
6052    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6053  // fold (fmul A, 0) -> 0
6054  if (DAG.getTarget().Options.UnsafeFPMath &&
6055      N1CFP && N1CFP->getValueAPF().isZero())
6056    return N1;
6057  // fold (fmul A, 0) -> 0, vector edition.
6058  if (DAG.getTarget().Options.UnsafeFPMath &&
6059      ISD::isBuildVectorAllZeros(N1.getNode()))
6060    return N1;
6061  // fold (fmul A, 1.0) -> A
6062  if (N1CFP && N1CFP->isExactlyValue(1.0))
6063    return N0;
6064  // fold (fmul X, 2.0) -> (fadd X, X)
6065  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6066    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6067  // fold (fmul X, -1.0) -> (fneg X)
6068  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6069    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6070      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6071
6072  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6073  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6074                                       &DAG.getTarget().Options)) {
6075    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6076                                         &DAG.getTarget().Options)) {
6077      // Both can be negated for free, check to see if at least one is cheaper
6078      // negated.
6079      if (LHSNeg == 2 || RHSNeg == 2)
6080        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6081                           GetNegatedExpression(N0, DAG, LegalOperations),
6082                           GetNegatedExpression(N1, DAG, LegalOperations));
6083    }
6084  }
6085
6086  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6087  if (DAG.getTarget().Options.UnsafeFPMath &&
6088      N1CFP && N0.getOpcode() == ISD::FMUL &&
6089      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6090    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6091                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6092                                   N0.getOperand(1), N1));
6093
6094  return SDValue();
6095}
6096
6097SDValue DAGCombiner::visitFMA(SDNode *N) {
6098  SDValue N0 = N->getOperand(0);
6099  SDValue N1 = N->getOperand(1);
6100  SDValue N2 = N->getOperand(2);
6101  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6102  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6103  EVT VT = N->getValueType(0);
6104  DebugLoc dl = N->getDebugLoc();
6105
6106  if (DAG.getTarget().Options.UnsafeFPMath) {
6107    if (N0CFP && N0CFP->isZero())
6108      return N2;
6109    if (N1CFP && N1CFP->isZero())
6110      return N2;
6111  }
6112  if (N0CFP && N0CFP->isExactlyValue(1.0))
6113    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6114  if (N1CFP && N1CFP->isExactlyValue(1.0))
6115    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6116
6117  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6118  if (N0CFP && !N1CFP)
6119    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6120
6121  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6122  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6123      N2.getOpcode() == ISD::FMUL &&
6124      N0 == N2.getOperand(0) &&
6125      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6126    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6127                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6128  }
6129
6130
6131  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6132  if (DAG.getTarget().Options.UnsafeFPMath &&
6133      N0.getOpcode() == ISD::FMUL && N1CFP &&
6134      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6135    return DAG.getNode(ISD::FMA, dl, VT,
6136                       N0.getOperand(0),
6137                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6138                       N2);
6139  }
6140
6141  // (fma x, 1, y) -> (fadd x, y)
6142  // (fma x, -1, y) -> (fadd (fneg x), y)
6143  if (N1CFP) {
6144    if (N1CFP->isExactlyValue(1.0))
6145      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6146
6147    if (N1CFP->isExactlyValue(-1.0) &&
6148        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6149      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6150      AddToWorkList(RHSNeg.getNode());
6151      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6152    }
6153  }
6154
6155  // (fma x, c, x) -> (fmul x, (c+1))
6156  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6157    return DAG.getNode(ISD::FMUL, dl, VT,
6158                       N0,
6159                       DAG.getNode(ISD::FADD, dl, VT,
6160                                   N1, DAG.getConstantFP(1.0, VT)));
6161  }
6162
6163  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6164  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6165      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6166    return DAG.getNode(ISD::FMUL, dl, VT,
6167                       N0,
6168                       DAG.getNode(ISD::FADD, dl, VT,
6169                                   N1, DAG.getConstantFP(-1.0, VT)));
6170  }
6171
6172
6173  return SDValue();
6174}
6175
6176SDValue DAGCombiner::visitFDIV(SDNode *N) {
6177  SDValue N0 = N->getOperand(0);
6178  SDValue N1 = N->getOperand(1);
6179  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6180  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6181  EVT VT = N->getValueType(0);
6182  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6183
6184  // fold vector ops
6185  if (VT.isVector()) {
6186    SDValue FoldedVOp = SimplifyVBinOp(N);
6187    if (FoldedVOp.getNode()) return FoldedVOp;
6188  }
6189
6190  // fold (fdiv c1, c2) -> c1/c2
6191  if (N0CFP && N1CFP)
6192    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6193
6194  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6195  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6196    // Compute the reciprocal 1.0 / c2.
6197    APFloat N1APF = N1CFP->getValueAPF();
6198    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6199    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6200    // Only do the transform if the reciprocal is a legal fp immediate that
6201    // isn't too nasty (eg NaN, denormal, ...).
6202    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6203        (!LegalOperations ||
6204         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6205         // backend)... we should handle this gracefully after Legalize.
6206         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6207         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6208         TLI.isFPImmLegal(Recip, VT)))
6209      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6210                         DAG.getConstantFP(Recip, VT));
6211  }
6212
6213  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6214  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6215                                       &DAG.getTarget().Options)) {
6216    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6217                                         &DAG.getTarget().Options)) {
6218      // Both can be negated for free, check to see if at least one is cheaper
6219      // negated.
6220      if (LHSNeg == 2 || RHSNeg == 2)
6221        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6222                           GetNegatedExpression(N0, DAG, LegalOperations),
6223                           GetNegatedExpression(N1, DAG, LegalOperations));
6224    }
6225  }
6226
6227  return SDValue();
6228}
6229
6230SDValue DAGCombiner::visitFREM(SDNode *N) {
6231  SDValue N0 = N->getOperand(0);
6232  SDValue N1 = N->getOperand(1);
6233  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6234  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6235  EVT VT = N->getValueType(0);
6236
6237  // fold (frem c1, c2) -> fmod(c1,c2)
6238  if (N0CFP && N1CFP)
6239    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6240
6241  return SDValue();
6242}
6243
6244SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6245  SDValue N0 = N->getOperand(0);
6246  SDValue N1 = N->getOperand(1);
6247  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6248  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6249  EVT VT = N->getValueType(0);
6250
6251  if (N0CFP && N1CFP)  // Constant fold
6252    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6253
6254  if (N1CFP) {
6255    const APFloat& V = N1CFP->getValueAPF();
6256    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6257    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6258    if (!V.isNegative()) {
6259      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6260        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6261    } else {
6262      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6263        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6264                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6265    }
6266  }
6267
6268  // copysign(fabs(x), y) -> copysign(x, y)
6269  // copysign(fneg(x), y) -> copysign(x, y)
6270  // copysign(copysign(x,z), y) -> copysign(x, y)
6271  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6272      N0.getOpcode() == ISD::FCOPYSIGN)
6273    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6274                       N0.getOperand(0), N1);
6275
6276  // copysign(x, abs(y)) -> abs(x)
6277  if (N1.getOpcode() == ISD::FABS)
6278    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6279
6280  // copysign(x, copysign(y,z)) -> copysign(x, z)
6281  if (N1.getOpcode() == ISD::FCOPYSIGN)
6282    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6283                       N0, N1.getOperand(1));
6284
6285  // copysign(x, fp_extend(y)) -> copysign(x, y)
6286  // copysign(x, fp_round(y)) -> copysign(x, y)
6287  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6288    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6289                       N0, N1.getOperand(0));
6290
6291  return SDValue();
6292}
6293
6294SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6295  SDValue N0 = N->getOperand(0);
6296  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6297  EVT VT = N->getValueType(0);
6298  EVT OpVT = N0.getValueType();
6299
6300  // fold (sint_to_fp c1) -> c1fp
6301  if (N0C &&
6302      // ...but only if the target supports immediate floating-point values
6303      (!LegalOperations ||
6304       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6305    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6306
6307  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6308  // but UINT_TO_FP is legal on this target, try to convert.
6309  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6310      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6311    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6312    if (DAG.SignBitIsZero(N0))
6313      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6314  }
6315
6316  // The next optimizations are desireable only if SELECT_CC can be lowered.
6317  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6318  // having to say they don't support SELECT_CC on every type the DAG knows
6319  // about, since there is no way to mark an opcode illegal at all value types
6320  // (See also visitSELECT)
6321  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6322    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6323    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6324        !VT.isVector() &&
6325        (!LegalOperations ||
6326         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6327      SDValue Ops[] =
6328        { N0.getOperand(0), N0.getOperand(1),
6329          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6330          N0.getOperand(2) };
6331      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6332    }
6333
6334    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6335    //      (select_cc x, y, 1.0, 0.0,, cc)
6336    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6337        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6338        (!LegalOperations ||
6339         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6340      SDValue Ops[] =
6341        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6342          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6343          N0.getOperand(0).getOperand(2) };
6344      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6345    }
6346  }
6347
6348  return SDValue();
6349}
6350
6351SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6352  SDValue N0 = N->getOperand(0);
6353  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6354  EVT VT = N->getValueType(0);
6355  EVT OpVT = N0.getValueType();
6356
6357  // fold (uint_to_fp c1) -> c1fp
6358  if (N0C &&
6359      // ...but only if the target supports immediate floating-point values
6360      (!LegalOperations ||
6361       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6362    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6363
6364  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6365  // but SINT_TO_FP is legal on this target, try to convert.
6366  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6367      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6368    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6369    if (DAG.SignBitIsZero(N0))
6370      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6371  }
6372
6373  // The next optimizations are desireable only if SELECT_CC can be lowered.
6374  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6375  // having to say they don't support SELECT_CC on every type the DAG knows
6376  // about, since there is no way to mark an opcode illegal at all value types
6377  // (See also visitSELECT)
6378  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6379    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6380
6381    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6382        (!LegalOperations ||
6383         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6384      SDValue Ops[] =
6385        { N0.getOperand(0), N0.getOperand(1),
6386          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6387          N0.getOperand(2) };
6388      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6389    }
6390  }
6391
6392  return SDValue();
6393}
6394
6395SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6396  SDValue N0 = N->getOperand(0);
6397  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6398  EVT VT = N->getValueType(0);
6399
6400  // fold (fp_to_sint c1fp) -> c1
6401  if (N0CFP)
6402    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6403
6404  return SDValue();
6405}
6406
6407SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6408  SDValue N0 = N->getOperand(0);
6409  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6410  EVT VT = N->getValueType(0);
6411
6412  // fold (fp_to_uint c1fp) -> c1
6413  if (N0CFP)
6414    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6415
6416  return SDValue();
6417}
6418
6419SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6420  SDValue N0 = N->getOperand(0);
6421  SDValue N1 = N->getOperand(1);
6422  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6423  EVT VT = N->getValueType(0);
6424
6425  // fold (fp_round c1fp) -> c1fp
6426  if (N0CFP)
6427    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6428
6429  // fold (fp_round (fp_extend x)) -> x
6430  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6431    return N0.getOperand(0);
6432
6433  // fold (fp_round (fp_round x)) -> (fp_round x)
6434  if (N0.getOpcode() == ISD::FP_ROUND) {
6435    // This is a value preserving truncation if both round's are.
6436    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6437                   N0.getNode()->getConstantOperandVal(1) == 1;
6438    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6439                       DAG.getIntPtrConstant(IsTrunc));
6440  }
6441
6442  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6443  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6444    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6445                              N0.getOperand(0), N1);
6446    AddToWorkList(Tmp.getNode());
6447    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6448                       Tmp, N0.getOperand(1));
6449  }
6450
6451  return SDValue();
6452}
6453
6454SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6455  SDValue N0 = N->getOperand(0);
6456  EVT VT = N->getValueType(0);
6457  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6458  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6459
6460  // fold (fp_round_inreg c1fp) -> c1fp
6461  if (N0CFP && isTypeLegal(EVT)) {
6462    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6463    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6464  }
6465
6466  return SDValue();
6467}
6468
6469SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6470  SDValue N0 = N->getOperand(0);
6471  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6472  EVT VT = N->getValueType(0);
6473
6474  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6475  if (N->hasOneUse() &&
6476      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6477    return SDValue();
6478
6479  // fold (fp_extend c1fp) -> c1fp
6480  if (N0CFP)
6481    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6482
6483  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6484  // value of X.
6485  if (N0.getOpcode() == ISD::FP_ROUND
6486      && N0.getNode()->getConstantOperandVal(1) == 1) {
6487    SDValue In = N0.getOperand(0);
6488    if (In.getValueType() == VT) return In;
6489    if (VT.bitsLT(In.getValueType()))
6490      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6491                         In, N0.getOperand(1));
6492    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6493  }
6494
6495  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6496  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6497      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6498       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6499    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6500    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6501                                     LN0->getChain(),
6502                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6503                                     N0.getValueType(),
6504                                     LN0->isVolatile(), LN0->isNonTemporal(),
6505                                     LN0->getAlignment());
6506    CombineTo(N, ExtLoad);
6507    CombineTo(N0.getNode(),
6508              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6509                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6510              ExtLoad.getValue(1));
6511    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6512  }
6513
6514  return SDValue();
6515}
6516
6517SDValue DAGCombiner::visitFNEG(SDNode *N) {
6518  SDValue N0 = N->getOperand(0);
6519  EVT VT = N->getValueType(0);
6520
6521  if (VT.isVector()) {
6522    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6523    if (FoldedVOp.getNode()) return FoldedVOp;
6524  }
6525
6526  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6527                         &DAG.getTarget().Options))
6528    return GetNegatedExpression(N0, DAG, LegalOperations);
6529
6530  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6531  // constant pool values.
6532  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6533      !VT.isVector() &&
6534      N0.getNode()->hasOneUse() &&
6535      N0.getOperand(0).getValueType().isInteger()) {
6536    SDValue Int = N0.getOperand(0);
6537    EVT IntVT = Int.getValueType();
6538    if (IntVT.isInteger() && !IntVT.isVector()) {
6539      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6540              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6541      AddToWorkList(Int.getNode());
6542      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6543                         VT, Int);
6544    }
6545  }
6546
6547  // (fneg (fmul c, x)) -> (fmul -c, x)
6548  if (N0.getOpcode() == ISD::FMUL) {
6549    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6550    if (CFP1) {
6551      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6552                         N0.getOperand(0),
6553                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6554                                     N0.getOperand(1)));
6555    }
6556  }
6557
6558  return SDValue();
6559}
6560
6561SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6562  SDValue N0 = N->getOperand(0);
6563  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6564  EVT VT = N->getValueType(0);
6565
6566  // fold (fceil c1) -> fceil(c1)
6567  if (N0CFP)
6568    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6569
6570  return SDValue();
6571}
6572
6573SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6574  SDValue N0 = N->getOperand(0);
6575  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6576  EVT VT = N->getValueType(0);
6577
6578  // fold (ftrunc c1) -> ftrunc(c1)
6579  if (N0CFP)
6580    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6581
6582  return SDValue();
6583}
6584
6585SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6586  SDValue N0 = N->getOperand(0);
6587  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6588  EVT VT = N->getValueType(0);
6589
6590  // fold (ffloor c1) -> ffloor(c1)
6591  if (N0CFP)
6592    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6593
6594  return SDValue();
6595}
6596
6597SDValue DAGCombiner::visitFABS(SDNode *N) {
6598  SDValue N0 = N->getOperand(0);
6599  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6600  EVT VT = N->getValueType(0);
6601
6602  if (VT.isVector()) {
6603    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6604    if (FoldedVOp.getNode()) return FoldedVOp;
6605  }
6606
6607  // fold (fabs c1) -> fabs(c1)
6608  if (N0CFP)
6609    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6610  // fold (fabs (fabs x)) -> (fabs x)
6611  if (N0.getOpcode() == ISD::FABS)
6612    return N->getOperand(0);
6613  // fold (fabs (fneg x)) -> (fabs x)
6614  // fold (fabs (fcopysign x, y)) -> (fabs x)
6615  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6616    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6617
6618  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6619  // constant pool values.
6620  if (!TLI.isFAbsFree(VT) &&
6621      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6622      N0.getOperand(0).getValueType().isInteger() &&
6623      !N0.getOperand(0).getValueType().isVector()) {
6624    SDValue Int = N0.getOperand(0);
6625    EVT IntVT = Int.getValueType();
6626    if (IntVT.isInteger() && !IntVT.isVector()) {
6627      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6628             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6629      AddToWorkList(Int.getNode());
6630      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6631                         N->getValueType(0), Int);
6632    }
6633  }
6634
6635  return SDValue();
6636}
6637
6638SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6639  SDValue Chain = N->getOperand(0);
6640  SDValue N1 = N->getOperand(1);
6641  SDValue N2 = N->getOperand(2);
6642
6643  // If N is a constant we could fold this into a fallthrough or unconditional
6644  // branch. However that doesn't happen very often in normal code, because
6645  // Instcombine/SimplifyCFG should have handled the available opportunities.
6646  // If we did this folding here, it would be necessary to update the
6647  // MachineBasicBlock CFG, which is awkward.
6648
6649  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6650  // on the target.
6651  if (N1.getOpcode() == ISD::SETCC &&
6652      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6653    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6654                       Chain, N1.getOperand(2),
6655                       N1.getOperand(0), N1.getOperand(1), N2);
6656  }
6657
6658  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6659      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6660       (N1.getOperand(0).hasOneUse() &&
6661        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6662    SDNode *Trunc = 0;
6663    if (N1.getOpcode() == ISD::TRUNCATE) {
6664      // Look pass the truncate.
6665      Trunc = N1.getNode();
6666      N1 = N1.getOperand(0);
6667    }
6668
6669    // Match this pattern so that we can generate simpler code:
6670    //
6671    //   %a = ...
6672    //   %b = and i32 %a, 2
6673    //   %c = srl i32 %b, 1
6674    //   brcond i32 %c ...
6675    //
6676    // into
6677    //
6678    //   %a = ...
6679    //   %b = and i32 %a, 2
6680    //   %c = setcc eq %b, 0
6681    //   brcond %c ...
6682    //
6683    // This applies only when the AND constant value has one bit set and the
6684    // SRL constant is equal to the log2 of the AND constant. The back-end is
6685    // smart enough to convert the result into a TEST/JMP sequence.
6686    SDValue Op0 = N1.getOperand(0);
6687    SDValue Op1 = N1.getOperand(1);
6688
6689    if (Op0.getOpcode() == ISD::AND &&
6690        Op1.getOpcode() == ISD::Constant) {
6691      SDValue AndOp1 = Op0.getOperand(1);
6692
6693      if (AndOp1.getOpcode() == ISD::Constant) {
6694        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6695
6696        if (AndConst.isPowerOf2() &&
6697            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6698          SDValue SetCC =
6699            DAG.getSetCC(N->getDebugLoc(),
6700                         TLI.getSetCCResultType(Op0.getValueType()),
6701                         Op0, DAG.getConstant(0, Op0.getValueType()),
6702                         ISD::SETNE);
6703
6704          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6705                                          MVT::Other, Chain, SetCC, N2);
6706          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6707          // will convert it back to (X & C1) >> C2.
6708          CombineTo(N, NewBRCond, false);
6709          // Truncate is dead.
6710          if (Trunc) {
6711            removeFromWorkList(Trunc);
6712            DAG.DeleteNode(Trunc);
6713          }
6714          // Replace the uses of SRL with SETCC
6715          WorkListRemover DeadNodes(*this);
6716          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6717          removeFromWorkList(N1.getNode());
6718          DAG.DeleteNode(N1.getNode());
6719          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6720        }
6721      }
6722    }
6723
6724    if (Trunc)
6725      // Restore N1 if the above transformation doesn't match.
6726      N1 = N->getOperand(1);
6727  }
6728
6729  // Transform br(xor(x, y)) -> br(x != y)
6730  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6731  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6732    SDNode *TheXor = N1.getNode();
6733    SDValue Op0 = TheXor->getOperand(0);
6734    SDValue Op1 = TheXor->getOperand(1);
6735    if (Op0.getOpcode() == Op1.getOpcode()) {
6736      // Avoid missing important xor optimizations.
6737      SDValue Tmp = visitXOR(TheXor);
6738      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6739        DEBUG(dbgs() << "\nReplacing.8 ";
6740              TheXor->dump(&DAG);
6741              dbgs() << "\nWith: ";
6742              Tmp.getNode()->dump(&DAG);
6743              dbgs() << '\n');
6744        WorkListRemover DeadNodes(*this);
6745        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6746        removeFromWorkList(TheXor);
6747        DAG.DeleteNode(TheXor);
6748        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6749                           MVT::Other, Chain, Tmp, N2);
6750      }
6751    }
6752
6753    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6754      bool Equal = false;
6755      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6756        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6757            Op0.getOpcode() == ISD::XOR) {
6758          TheXor = Op0.getNode();
6759          Equal = true;
6760        }
6761
6762      EVT SetCCVT = N1.getValueType();
6763      if (LegalTypes)
6764        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6765      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6766                                   SetCCVT,
6767                                   Op0, Op1,
6768                                   Equal ? ISD::SETEQ : ISD::SETNE);
6769      // Replace the uses of XOR with SETCC
6770      WorkListRemover DeadNodes(*this);
6771      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6772      removeFromWorkList(N1.getNode());
6773      DAG.DeleteNode(N1.getNode());
6774      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6775                         MVT::Other, Chain, SetCC, N2);
6776    }
6777  }
6778
6779  return SDValue();
6780}
6781
6782// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6783//
6784SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6785  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6786  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6787
6788  // If N is a constant we could fold this into a fallthrough or unconditional
6789  // branch. However that doesn't happen very often in normal code, because
6790  // Instcombine/SimplifyCFG should have handled the available opportunities.
6791  // If we did this folding here, it would be necessary to update the
6792  // MachineBasicBlock CFG, which is awkward.
6793
6794  // Use SimplifySetCC to simplify SETCC's.
6795  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6796                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6797                               false);
6798  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6799
6800  // fold to a simpler setcc
6801  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6802    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6803                       N->getOperand(0), Simp.getOperand(2),
6804                       Simp.getOperand(0), Simp.getOperand(1),
6805                       N->getOperand(4));
6806
6807  return SDValue();
6808}
6809
6810/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6811/// uses N as its base pointer and that N may be folded in the load / store
6812/// addressing mode.
6813static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6814                                    SelectionDAG &DAG,
6815                                    const TargetLowering &TLI) {
6816  EVT VT;
6817  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6818    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6819      return false;
6820    VT = Use->getValueType(0);
6821  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6822    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6823      return false;
6824    VT = ST->getValue().getValueType();
6825  } else
6826    return false;
6827
6828  AddrMode AM;
6829  if (N->getOpcode() == ISD::ADD) {
6830    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6831    if (Offset)
6832      // [reg +/- imm]
6833      AM.BaseOffs = Offset->getSExtValue();
6834    else
6835      // [reg +/- reg]
6836      AM.Scale = 1;
6837  } else if (N->getOpcode() == ISD::SUB) {
6838    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6839    if (Offset)
6840      // [reg +/- imm]
6841      AM.BaseOffs = -Offset->getSExtValue();
6842    else
6843      // [reg +/- reg]
6844      AM.Scale = 1;
6845  } else
6846    return false;
6847
6848  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6849}
6850
6851/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6852/// pre-indexed load / store when the base pointer is an add or subtract
6853/// and it has other uses besides the load / store. After the
6854/// transformation, the new indexed load / store has effectively folded
6855/// the add / subtract in and all of its other uses are redirected to the
6856/// new load / store.
6857bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6858  if (Level < AfterLegalizeDAG)
6859    return false;
6860
6861  bool isLoad = true;
6862  SDValue Ptr;
6863  EVT VT;
6864  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6865    if (LD->isIndexed())
6866      return false;
6867    VT = LD->getMemoryVT();
6868    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6869        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6870      return false;
6871    Ptr = LD->getBasePtr();
6872  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6873    if (ST->isIndexed())
6874      return false;
6875    VT = ST->getMemoryVT();
6876    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6877        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6878      return false;
6879    Ptr = ST->getBasePtr();
6880    isLoad = false;
6881  } else {
6882    return false;
6883  }
6884
6885  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6886  // out.  There is no reason to make this a preinc/predec.
6887  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6888      Ptr.getNode()->hasOneUse())
6889    return false;
6890
6891  // Ask the target to do addressing mode selection.
6892  SDValue BasePtr;
6893  SDValue Offset;
6894  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6895  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6896    return false;
6897  // Don't create a indexed load / store with zero offset.
6898  if (isa<ConstantSDNode>(Offset) &&
6899      cast<ConstantSDNode>(Offset)->isNullValue())
6900    return false;
6901
6902  // Try turning it into a pre-indexed load / store except when:
6903  // 1) The new base ptr is a frame index.
6904  // 2) If N is a store and the new base ptr is either the same as or is a
6905  //    predecessor of the value being stored.
6906  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6907  //    that would create a cycle.
6908  // 4) All uses are load / store ops that use it as old base ptr.
6909
6910  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6911  // (plus the implicit offset) to a register to preinc anyway.
6912  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6913    return false;
6914
6915  // Check #2.
6916  if (!isLoad) {
6917    SDValue Val = cast<StoreSDNode>(N)->getValue();
6918    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6919      return false;
6920  }
6921
6922  // Now check for #3 and #4.
6923  bool RealUse = false;
6924
6925  // Caches for hasPredecessorHelper
6926  SmallPtrSet<const SDNode *, 32> Visited;
6927  SmallVector<const SDNode *, 16> Worklist;
6928
6929  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6930         E = Ptr.getNode()->use_end(); I != E; ++I) {
6931    SDNode *Use = *I;
6932    if (Use == N)
6933      continue;
6934    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6935      return false;
6936
6937    // If Ptr may be folded in addressing mode of other use, then it's
6938    // not profitable to do this transformation.
6939    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6940      RealUse = true;
6941  }
6942
6943  if (!RealUse)
6944    return false;
6945
6946  SDValue Result;
6947  if (isLoad)
6948    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6949                                BasePtr, Offset, AM);
6950  else
6951    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6952                                 BasePtr, Offset, AM);
6953  ++PreIndexedNodes;
6954  ++NodesCombined;
6955  DEBUG(dbgs() << "\nReplacing.4 ";
6956        N->dump(&DAG);
6957        dbgs() << "\nWith: ";
6958        Result.getNode()->dump(&DAG);
6959        dbgs() << '\n');
6960  WorkListRemover DeadNodes(*this);
6961  if (isLoad) {
6962    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6963    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6964  } else {
6965    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6966  }
6967
6968  // Finally, since the node is now dead, remove it from the graph.
6969  DAG.DeleteNode(N);
6970
6971  // Replace the uses of Ptr with uses of the updated base value.
6972  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6973  removeFromWorkList(Ptr.getNode());
6974  DAG.DeleteNode(Ptr.getNode());
6975
6976  return true;
6977}
6978
6979/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6980/// add / sub of the base pointer node into a post-indexed load / store.
6981/// The transformation folded the add / subtract into the new indexed
6982/// load / store effectively and all of its uses are redirected to the
6983/// new load / store.
6984bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6985  if (Level < AfterLegalizeDAG)
6986    return false;
6987
6988  bool isLoad = true;
6989  SDValue Ptr;
6990  EVT VT;
6991  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6992    if (LD->isIndexed())
6993      return false;
6994    VT = LD->getMemoryVT();
6995    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6996        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6997      return false;
6998    Ptr = LD->getBasePtr();
6999  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7000    if (ST->isIndexed())
7001      return false;
7002    VT = ST->getMemoryVT();
7003    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7004        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7005      return false;
7006    Ptr = ST->getBasePtr();
7007    isLoad = false;
7008  } else {
7009    return false;
7010  }
7011
7012  if (Ptr.getNode()->hasOneUse())
7013    return false;
7014
7015  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7016         E = Ptr.getNode()->use_end(); I != E; ++I) {
7017    SDNode *Op = *I;
7018    if (Op == N ||
7019        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7020      continue;
7021
7022    SDValue BasePtr;
7023    SDValue Offset;
7024    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7025    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7026      // Don't create a indexed load / store with zero offset.
7027      if (isa<ConstantSDNode>(Offset) &&
7028          cast<ConstantSDNode>(Offset)->isNullValue())
7029        continue;
7030
7031      // Try turning it into a post-indexed load / store except when
7032      // 1) All uses are load / store ops that use it as base ptr (and
7033      //    it may be folded as addressing mmode).
7034      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7035      //    nor a successor of N. Otherwise, if Op is folded that would
7036      //    create a cycle.
7037
7038      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7039        continue;
7040
7041      // Check for #1.
7042      bool TryNext = false;
7043      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7044             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7045        SDNode *Use = *II;
7046        if (Use == Ptr.getNode())
7047          continue;
7048
7049        // If all the uses are load / store addresses, then don't do the
7050        // transformation.
7051        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7052          bool RealUse = false;
7053          for (SDNode::use_iterator III = Use->use_begin(),
7054                 EEE = Use->use_end(); III != EEE; ++III) {
7055            SDNode *UseUse = *III;
7056            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7057              RealUse = true;
7058          }
7059
7060          if (!RealUse) {
7061            TryNext = true;
7062            break;
7063          }
7064        }
7065      }
7066
7067      if (TryNext)
7068        continue;
7069
7070      // Check for #2
7071      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7072        SDValue Result = isLoad
7073          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7074                               BasePtr, Offset, AM)
7075          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7076                                BasePtr, Offset, AM);
7077        ++PostIndexedNodes;
7078        ++NodesCombined;
7079        DEBUG(dbgs() << "\nReplacing.5 ";
7080              N->dump(&DAG);
7081              dbgs() << "\nWith: ";
7082              Result.getNode()->dump(&DAG);
7083              dbgs() << '\n');
7084        WorkListRemover DeadNodes(*this);
7085        if (isLoad) {
7086          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7087          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7088        } else {
7089          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7090        }
7091
7092        // Finally, since the node is now dead, remove it from the graph.
7093        DAG.DeleteNode(N);
7094
7095        // Replace the uses of Use with uses of the updated base value.
7096        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7097                                      Result.getValue(isLoad ? 1 : 0));
7098        removeFromWorkList(Op);
7099        DAG.DeleteNode(Op);
7100        return true;
7101      }
7102    }
7103  }
7104
7105  return false;
7106}
7107
7108SDValue DAGCombiner::visitLOAD(SDNode *N) {
7109  LoadSDNode *LD  = cast<LoadSDNode>(N);
7110  SDValue Chain = LD->getChain();
7111  SDValue Ptr   = LD->getBasePtr();
7112
7113  // If load is not volatile and there are no uses of the loaded value (and
7114  // the updated indexed value in case of indexed loads), change uses of the
7115  // chain value into uses of the chain input (i.e. delete the dead load).
7116  if (!LD->isVolatile()) {
7117    if (N->getValueType(1) == MVT::Other) {
7118      // Unindexed loads.
7119      if (!N->hasAnyUseOfValue(0)) {
7120        // It's not safe to use the two value CombineTo variant here. e.g.
7121        // v1, chain2 = load chain1, loc
7122        // v2, chain3 = load chain2, loc
7123        // v3         = add v2, c
7124        // Now we replace use of chain2 with chain1.  This makes the second load
7125        // isomorphic to the one we are deleting, and thus makes this load live.
7126        DEBUG(dbgs() << "\nReplacing.6 ";
7127              N->dump(&DAG);
7128              dbgs() << "\nWith chain: ";
7129              Chain.getNode()->dump(&DAG);
7130              dbgs() << "\n");
7131        WorkListRemover DeadNodes(*this);
7132        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7133
7134        if (N->use_empty()) {
7135          removeFromWorkList(N);
7136          DAG.DeleteNode(N);
7137        }
7138
7139        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7140      }
7141    } else {
7142      // Indexed loads.
7143      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7144      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7145        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7146        DEBUG(dbgs() << "\nReplacing.7 ";
7147              N->dump(&DAG);
7148              dbgs() << "\nWith: ";
7149              Undef.getNode()->dump(&DAG);
7150              dbgs() << " and 2 other values\n");
7151        WorkListRemover DeadNodes(*this);
7152        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7153        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7154                                      DAG.getUNDEF(N->getValueType(1)));
7155        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7156        removeFromWorkList(N);
7157        DAG.DeleteNode(N);
7158        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7159      }
7160    }
7161  }
7162
7163  // If this load is directly stored, replace the load value with the stored
7164  // value.
7165  // TODO: Handle store large -> read small portion.
7166  // TODO: Handle TRUNCSTORE/LOADEXT
7167  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7168    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7169      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7170      if (PrevST->getBasePtr() == Ptr &&
7171          PrevST->getValue().getValueType() == N->getValueType(0))
7172      return CombineTo(N, Chain.getOperand(1), Chain);
7173    }
7174  }
7175
7176  // Try to infer better alignment information than the load already has.
7177  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7178    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7179      if (Align > LD->getAlignment())
7180        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7181                              LD->getValueType(0),
7182                              Chain, Ptr, LD->getPointerInfo(),
7183                              LD->getMemoryVT(),
7184                              LD->isVolatile(), LD->isNonTemporal(), Align);
7185    }
7186  }
7187
7188  if (CombinerAA) {
7189    // Walk up chain skipping non-aliasing memory nodes.
7190    SDValue BetterChain = FindBetterChain(N, Chain);
7191
7192    // If there is a better chain.
7193    if (Chain != BetterChain) {
7194      SDValue ReplLoad;
7195
7196      // Replace the chain to void dependency.
7197      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7198        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7199                               BetterChain, Ptr, LD->getPointerInfo(),
7200                               LD->isVolatile(), LD->isNonTemporal(),
7201                               LD->isInvariant(), LD->getAlignment());
7202      } else {
7203        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7204                                  LD->getValueType(0),
7205                                  BetterChain, Ptr, LD->getPointerInfo(),
7206                                  LD->getMemoryVT(),
7207                                  LD->isVolatile(),
7208                                  LD->isNonTemporal(),
7209                                  LD->getAlignment());
7210      }
7211
7212      // Create token factor to keep old chain connected.
7213      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7214                                  MVT::Other, Chain, ReplLoad.getValue(1));
7215
7216      // Make sure the new and old chains are cleaned up.
7217      AddToWorkList(Token.getNode());
7218
7219      // Replace uses with load result and token factor. Don't add users
7220      // to work list.
7221      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7222    }
7223  }
7224
7225  // Try transforming N to an indexed load.
7226  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7227    return SDValue(N, 0);
7228
7229  return SDValue();
7230}
7231
7232/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7233/// load is having specific bytes cleared out.  If so, return the byte size
7234/// being masked out and the shift amount.
7235static std::pair<unsigned, unsigned>
7236CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7237  std::pair<unsigned, unsigned> Result(0, 0);
7238
7239  // Check for the structure we're looking for.
7240  if (V->getOpcode() != ISD::AND ||
7241      !isa<ConstantSDNode>(V->getOperand(1)) ||
7242      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7243    return Result;
7244
7245  // Check the chain and pointer.
7246  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7247  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7248
7249  // The store should be chained directly to the load or be an operand of a
7250  // tokenfactor.
7251  if (LD == Chain.getNode())
7252    ; // ok.
7253  else if (Chain->getOpcode() != ISD::TokenFactor)
7254    return Result; // Fail.
7255  else {
7256    bool isOk = false;
7257    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7258      if (Chain->getOperand(i).getNode() == LD) {
7259        isOk = true;
7260        break;
7261      }
7262    if (!isOk) return Result;
7263  }
7264
7265  // This only handles simple types.
7266  if (V.getValueType() != MVT::i16 &&
7267      V.getValueType() != MVT::i32 &&
7268      V.getValueType() != MVT::i64)
7269    return Result;
7270
7271  // Check the constant mask.  Invert it so that the bits being masked out are
7272  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7273  // follow the sign bit for uniformity.
7274  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7275  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7276  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7277  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7278  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7279  if (NotMaskLZ == 64) return Result;  // All zero mask.
7280
7281  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7282  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7283    return Result;
7284
7285  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7286  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7287    NotMaskLZ -= 64-V.getValueSizeInBits();
7288
7289  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7290  switch (MaskedBytes) {
7291  case 1:
7292  case 2:
7293  case 4: break;
7294  default: return Result; // All one mask, or 5-byte mask.
7295  }
7296
7297  // Verify that the first bit starts at a multiple of mask so that the access
7298  // is aligned the same as the access width.
7299  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7300
7301  Result.first = MaskedBytes;
7302  Result.second = NotMaskTZ/8;
7303  return Result;
7304}
7305
7306
7307/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7308/// provides a value as specified by MaskInfo.  If so, replace the specified
7309/// store with a narrower store of truncated IVal.
7310static SDNode *
7311ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7312                                SDValue IVal, StoreSDNode *St,
7313                                DAGCombiner *DC) {
7314  unsigned NumBytes = MaskInfo.first;
7315  unsigned ByteShift = MaskInfo.second;
7316  SelectionDAG &DAG = DC->getDAG();
7317
7318  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7319  // that uses this.  If not, this is not a replacement.
7320  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7321                                  ByteShift*8, (ByteShift+NumBytes)*8);
7322  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7323
7324  // Check that it is legal on the target to do this.  It is legal if the new
7325  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7326  // legalization.
7327  MVT VT = MVT::getIntegerVT(NumBytes*8);
7328  if (!DC->isTypeLegal(VT))
7329    return 0;
7330
7331  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7332  // shifted by ByteShift and truncated down to NumBytes.
7333  if (ByteShift)
7334    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7335                       DAG.getConstant(ByteShift*8,
7336                                    DC->getShiftAmountTy(IVal.getValueType())));
7337
7338  // Figure out the offset for the store and the alignment of the access.
7339  unsigned StOffset;
7340  unsigned NewAlign = St->getAlignment();
7341
7342  if (DAG.getTargetLoweringInfo().isLittleEndian())
7343    StOffset = ByteShift;
7344  else
7345    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7346
7347  SDValue Ptr = St->getBasePtr();
7348  if (StOffset) {
7349    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7350                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7351    NewAlign = MinAlign(NewAlign, StOffset);
7352  }
7353
7354  // Truncate down to the new size.
7355  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7356
7357  ++OpsNarrowed;
7358  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7359                      St->getPointerInfo().getWithOffset(StOffset),
7360                      false, false, NewAlign).getNode();
7361}
7362
7363
7364/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7365/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7366/// of the loaded bits, try narrowing the load and store if it would end up
7367/// being a win for performance or code size.
7368SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7369  StoreSDNode *ST  = cast<StoreSDNode>(N);
7370  if (ST->isVolatile())
7371    return SDValue();
7372
7373  SDValue Chain = ST->getChain();
7374  SDValue Value = ST->getValue();
7375  SDValue Ptr   = ST->getBasePtr();
7376  EVT VT = Value.getValueType();
7377
7378  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7379    return SDValue();
7380
7381  unsigned Opc = Value.getOpcode();
7382
7383  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7384  // is a byte mask indicating a consecutive number of bytes, check to see if
7385  // Y is known to provide just those bytes.  If so, we try to replace the
7386  // load + replace + store sequence with a single (narrower) store, which makes
7387  // the load dead.
7388  if (Opc == ISD::OR) {
7389    std::pair<unsigned, unsigned> MaskedLoad;
7390    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7391    if (MaskedLoad.first)
7392      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7393                                                  Value.getOperand(1), ST,this))
7394        return SDValue(NewST, 0);
7395
7396    // Or is commutative, so try swapping X and Y.
7397    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7398    if (MaskedLoad.first)
7399      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7400                                                  Value.getOperand(0), ST,this))
7401        return SDValue(NewST, 0);
7402  }
7403
7404  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7405      Value.getOperand(1).getOpcode() != ISD::Constant)
7406    return SDValue();
7407
7408  SDValue N0 = Value.getOperand(0);
7409  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7410      Chain == SDValue(N0.getNode(), 1)) {
7411    LoadSDNode *LD = cast<LoadSDNode>(N0);
7412    if (LD->getBasePtr() != Ptr ||
7413        LD->getPointerInfo().getAddrSpace() !=
7414        ST->getPointerInfo().getAddrSpace())
7415      return SDValue();
7416
7417    // Find the type to narrow it the load / op / store to.
7418    SDValue N1 = Value.getOperand(1);
7419    unsigned BitWidth = N1.getValueSizeInBits();
7420    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7421    if (Opc == ISD::AND)
7422      Imm ^= APInt::getAllOnesValue(BitWidth);
7423    if (Imm == 0 || Imm.isAllOnesValue())
7424      return SDValue();
7425    unsigned ShAmt = Imm.countTrailingZeros();
7426    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7427    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7428    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7429    while (NewBW < BitWidth &&
7430           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7431             TLI.isNarrowingProfitable(VT, NewVT))) {
7432      NewBW = NextPowerOf2(NewBW);
7433      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7434    }
7435    if (NewBW >= BitWidth)
7436      return SDValue();
7437
7438    // If the lsb changed does not start at the type bitwidth boundary,
7439    // start at the previous one.
7440    if (ShAmt % NewBW)
7441      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7442    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7443                                   std::min(BitWidth, ShAmt + NewBW));
7444    if ((Imm & Mask) == Imm) {
7445      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7446      if (Opc == ISD::AND)
7447        NewImm ^= APInt::getAllOnesValue(NewBW);
7448      uint64_t PtrOff = ShAmt / 8;
7449      // For big endian targets, we need to adjust the offset to the pointer to
7450      // load the correct bytes.
7451      if (TLI.isBigEndian())
7452        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7453
7454      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7455      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7456      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7457        return SDValue();
7458
7459      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7460                                   Ptr.getValueType(), Ptr,
7461                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7462      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7463                                  LD->getChain(), NewPtr,
7464                                  LD->getPointerInfo().getWithOffset(PtrOff),
7465                                  LD->isVolatile(), LD->isNonTemporal(),
7466                                  LD->isInvariant(), NewAlign);
7467      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7468                                   DAG.getConstant(NewImm, NewVT));
7469      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7470                                   NewVal, NewPtr,
7471                                   ST->getPointerInfo().getWithOffset(PtrOff),
7472                                   false, false, NewAlign);
7473
7474      AddToWorkList(NewPtr.getNode());
7475      AddToWorkList(NewLD.getNode());
7476      AddToWorkList(NewVal.getNode());
7477      WorkListRemover DeadNodes(*this);
7478      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7479      ++OpsNarrowed;
7480      return NewST;
7481    }
7482  }
7483
7484  return SDValue();
7485}
7486
7487/// TransformFPLoadStorePair - For a given floating point load / store pair,
7488/// if the load value isn't used by any other operations, then consider
7489/// transforming the pair to integer load / store operations if the target
7490/// deems the transformation profitable.
7491SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7492  StoreSDNode *ST  = cast<StoreSDNode>(N);
7493  SDValue Chain = ST->getChain();
7494  SDValue Value = ST->getValue();
7495  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7496      Value.hasOneUse() &&
7497      Chain == SDValue(Value.getNode(), 1)) {
7498    LoadSDNode *LD = cast<LoadSDNode>(Value);
7499    EVT VT = LD->getMemoryVT();
7500    if (!VT.isFloatingPoint() ||
7501        VT != ST->getMemoryVT() ||
7502        LD->isNonTemporal() ||
7503        ST->isNonTemporal() ||
7504        LD->getPointerInfo().getAddrSpace() != 0 ||
7505        ST->getPointerInfo().getAddrSpace() != 0)
7506      return SDValue();
7507
7508    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7509    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7510        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7511        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7512        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7513      return SDValue();
7514
7515    unsigned LDAlign = LD->getAlignment();
7516    unsigned STAlign = ST->getAlignment();
7517    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7518    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7519    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7520      return SDValue();
7521
7522    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7523                                LD->getChain(), LD->getBasePtr(),
7524                                LD->getPointerInfo(),
7525                                false, false, false, LDAlign);
7526
7527    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7528                                 NewLD, ST->getBasePtr(),
7529                                 ST->getPointerInfo(),
7530                                 false, false, STAlign);
7531
7532    AddToWorkList(NewLD.getNode());
7533    AddToWorkList(NewST.getNode());
7534    WorkListRemover DeadNodes(*this);
7535    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7536    ++LdStFP2Int;
7537    return NewST;
7538  }
7539
7540  return SDValue();
7541}
7542
7543/// Returns the base pointer and an integer offset from that object.
7544static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7545  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7546    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7547    SDValue Base = Ptr->getOperand(0);
7548    return std::make_pair(Base, Offset);
7549  }
7550
7551  return std::make_pair(Ptr, 0);
7552}
7553
7554/// Holds a pointer to an LSBaseSDNode as well as information on where it
7555/// is located in a sequence of memory operations connected by a chain.
7556struct MemOpLink {
7557  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7558    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7559  // Ptr to the mem node.
7560  LSBaseSDNode *MemNode;
7561  // Offset from the base ptr.
7562  int64_t OffsetFromBase;
7563  // What is the sequence number of this mem node.
7564  // Lowest mem operand in the DAG starts at zero.
7565  unsigned SequenceNum;
7566};
7567
7568/// Sorts store nodes in a link according to their offset from a shared
7569// base ptr.
7570struct ConsecutiveMemoryChainSorter {
7571  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7572    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7573  }
7574};
7575
7576bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7577  EVT MemVT = St->getMemoryVT();
7578  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7579
7580  // Don't merge vectors into wider inputs.
7581  if (MemVT.isVector() || !MemVT.isSimple())
7582    return false;
7583
7584  // Perform an early exit check. Do not bother looking at stored values that
7585  // are not constants or loads.
7586  SDValue StoredVal = St->getValue();
7587  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7588  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7589      !IsLoadSrc)
7590    return false;
7591
7592  // Only look at ends of store sequences.
7593  SDValue Chain = SDValue(St, 1);
7594  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7595    return false;
7596
7597  // This holds the base pointer and the offset in bytes from the base pointer.
7598  std::pair<SDValue, int64_t> BasePtr =
7599      GetPointerBaseAndOffset(St->getBasePtr());
7600
7601  // We must have a base and an offset.
7602  if (!BasePtr.first.getNode())
7603    return false;
7604
7605  // Do not handle stores to undef base pointers.
7606  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7607    return false;
7608
7609  // Save the LoadSDNodes that we find in the chain.
7610  // We need to make sure that these nodes do not interfere with
7611  // any of the store nodes.
7612  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7613
7614  // Save the StoreSDNodes that we find in the chain.
7615  SmallVector<MemOpLink, 8> StoreNodes;
7616
7617  // Walk up the chain and look for nodes with offsets from the same
7618  // base pointer. Stop when reaching an instruction with a different kind
7619  // or instruction which has a different base pointer.
7620  unsigned Seq = 0;
7621  StoreSDNode *Index = St;
7622  while (Index) {
7623    // If the chain has more than one use, then we can't reorder the mem ops.
7624    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7625      break;
7626
7627    // Find the base pointer and offset for this memory node.
7628    std::pair<SDValue, int64_t> Ptr =
7629      GetPointerBaseAndOffset(Index->getBasePtr());
7630
7631    // Check that the base pointer is the same as the original one.
7632    if (Ptr.first.getNode() != BasePtr.first.getNode())
7633      break;
7634
7635    // Check that the alignment is the same.
7636    if (Index->getAlignment() != St->getAlignment())
7637      break;
7638
7639    // The memory operands must not be volatile.
7640    if (Index->isVolatile() || Index->isIndexed())
7641      break;
7642
7643    // No truncation.
7644    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7645      if (St->isTruncatingStore())
7646        break;
7647
7648    // The stored memory type must be the same.
7649    if (Index->getMemoryVT() != MemVT)
7650      break;
7651
7652    // We do not allow unaligned stores because we want to prevent overriding
7653    // stores.
7654    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7655      break;
7656
7657    // We found a potential memory operand to merge.
7658    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7659
7660    // Find the next memory operand in the chain. If the next operand in the
7661    // chain is a store then move up and continue the scan with the next
7662    // memory operand. If the next operand is a load save it and use alias
7663    // information to check if it interferes with anything.
7664    SDNode *NextInChain = Index->getChain().getNode();
7665    while (1) {
7666      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7667        // We found a store node. Use it for the next iteration.
7668        Index = STn;
7669        break;
7670      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7671        // Save the load node for later. Continue the scan.
7672        AliasLoadNodes.push_back(Ldn);
7673        NextInChain = Ldn->getChain().getNode();
7674        continue;
7675      } else {
7676        Index = NULL;
7677        break;
7678      }
7679    }
7680  }
7681
7682  // Check if there is anything to merge.
7683  if (StoreNodes.size() < 2)
7684    return false;
7685
7686  // Sort the memory operands according to their distance from the base pointer.
7687  std::sort(StoreNodes.begin(), StoreNodes.end(),
7688            ConsecutiveMemoryChainSorter());
7689
7690  // Scan the memory operations on the chain and find the first non-consecutive
7691  // store memory address.
7692  unsigned LastConsecutiveStore = 0;
7693  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7694  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
7695
7696    // Check that the addresses are consecutive starting from the second
7697    // element in the list of stores.
7698    if (i > 0) {
7699      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7700      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7701        break;
7702    }
7703
7704    bool Alias = false;
7705    // Check if this store interferes with any of the loads that we found.
7706    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
7707      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
7708        Alias = true;
7709        break;
7710      }
7711    // We found a load that alias with this store. Stop the sequence.
7712    if (Alias)
7713      break;
7714
7715    // Mark this node as useful.
7716    LastConsecutiveStore = i;
7717  }
7718
7719  // The node with the lowest store address.
7720  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7721
7722  // Store the constants into memory as one consecutive store.
7723  if (!IsLoadSrc) {
7724    unsigned LastLegalType = 0;
7725    unsigned LastLegalVectorType = 0;
7726    bool NonZero = false;
7727    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7728      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7729      SDValue StoredVal = St->getValue();
7730
7731      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7732        NonZero |= !C->isNullValue();
7733      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7734        NonZero |= !C->getConstantFPValue()->isNullValue();
7735      } else {
7736        // Non constant.
7737        break;
7738      }
7739
7740      // Find a legal type for the constant store.
7741      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7742      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7743      if (TLI.isTypeLegal(StoreTy))
7744        LastLegalType = i+1;
7745
7746      // Find a legal type for the vector store.
7747      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7748      if (TLI.isTypeLegal(Ty))
7749        LastLegalVectorType = i + 1;
7750    }
7751
7752    // We only use vectors if the constant is known to be zero and the
7753    // function is not marked with the noimplicitfloat attribute.
7754    if (NonZero || (DAG.getMachineFunction().getFunction()->getAttributes().
7755                    hasAttribute(AttributeSet::FunctionIndex,
7756                                 Attribute::NoImplicitFloat)))
7757      LastLegalVectorType = 0;
7758
7759    // Check if we found a legal integer type to store.
7760    if (LastLegalType == 0 && LastLegalVectorType == 0)
7761      return false;
7762
7763    bool UseVector = LastLegalVectorType > LastLegalType;
7764    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7765
7766    // Make sure we have something to merge.
7767    if (NumElem < 2)
7768      return false;
7769
7770    unsigned EarliestNodeUsed = 0;
7771    for (unsigned i=0; i < NumElem; ++i) {
7772      // Find a chain for the new wide-store operand. Notice that some
7773      // of the store nodes that we found may not be selected for inclusion
7774      // in the wide store. The chain we use needs to be the chain of the
7775      // earliest store node which is *used* and replaced by the wide store.
7776      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7777        EarliestNodeUsed = i;
7778    }
7779
7780    // The earliest Node in the DAG.
7781    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7782    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7783
7784    SDValue StoredVal;
7785    if (UseVector) {
7786      // Find a legal type for the vector store.
7787      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7788      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7789      StoredVal = DAG.getConstant(0, Ty);
7790    } else {
7791      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7792      APInt StoreInt(StoreBW, 0);
7793
7794      // Construct a single integer constant which is made of the smaller
7795      // constant inputs.
7796      bool IsLE = TLI.isLittleEndian();
7797      for (unsigned i = 0; i < NumElem ; ++i) {
7798        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7799        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7800        SDValue Val = St->getValue();
7801        StoreInt<<=ElementSizeBytes*8;
7802        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7803          StoreInt|=C->getAPIntValue().zext(StoreBW);
7804        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7805          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7806        } else {
7807          assert(false && "Invalid constant element type");
7808        }
7809      }
7810
7811      // Create the new Load and Store operations.
7812      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7813      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7814    }
7815
7816    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7817                                    FirstInChain->getBasePtr(),
7818                                    FirstInChain->getPointerInfo(),
7819                                    false, false,
7820                                    FirstInChain->getAlignment());
7821
7822    // Replace the first store with the new store
7823    CombineTo(EarliestOp, NewStore);
7824    // Erase all other stores.
7825    for (unsigned i = 0; i < NumElem ; ++i) {
7826      if (StoreNodes[i].MemNode == EarliestOp)
7827        continue;
7828      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7829      // ReplaceAllUsesWith will replace all uses that existed when it was
7830      // called, but graph optimizations may cause new ones to appear. For
7831      // example, the case in pr14333 looks like
7832      //
7833      //  St's chain -> St -> another store -> X
7834      //
7835      // And the only difference from St to the other store is the chain.
7836      // When we change it's chain to be St's chain they become identical,
7837      // get CSEed and the net result is that X is now a use of St.
7838      // Since we know that St is redundant, just iterate.
7839      while (!St->use_empty())
7840        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
7841      removeFromWorkList(St);
7842      DAG.DeleteNode(St);
7843    }
7844
7845    return true;
7846  }
7847
7848  // Below we handle the case of multiple consecutive stores that
7849  // come from multiple consecutive loads. We merge them into a single
7850  // wide load and a single wide store.
7851
7852  // Look for load nodes which are used by the stored values.
7853  SmallVector<MemOpLink, 8> LoadNodes;
7854
7855  // Find acceptable loads. Loads need to have the same chain (token factor),
7856  // must not be zext, volatile, indexed, and they must be consecutive.
7857  SDValue LdBasePtr;
7858  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7859    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7860    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7861    if (!Ld) break;
7862
7863    // Loads must only have one use.
7864    if (!Ld->hasNUsesOfValue(1, 0))
7865      break;
7866
7867    // Check that the alignment is the same as the stores.
7868    if (Ld->getAlignment() != St->getAlignment())
7869      break;
7870
7871    // The memory operands must not be volatile.
7872    if (Ld->isVolatile() || Ld->isIndexed())
7873      break;
7874
7875    // We do not accept ext loads.
7876    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7877      break;
7878
7879    // The stored memory type must be the same.
7880    if (Ld->getMemoryVT() != MemVT)
7881      break;
7882
7883    std::pair<SDValue, int64_t> LdPtr =
7884    GetPointerBaseAndOffset(Ld->getBasePtr());
7885
7886    // If this is not the first ptr that we check.
7887    if (LdBasePtr.getNode()) {
7888      // The base ptr must be the same.
7889      if (LdPtr.first != LdBasePtr)
7890        break;
7891    } else {
7892      // Check that all other base pointers are the same as this one.
7893      LdBasePtr = LdPtr.first;
7894    }
7895
7896    // We found a potential memory operand to merge.
7897    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7898  }
7899
7900  if (LoadNodes.size() < 2)
7901    return false;
7902
7903  // Scan the memory operations on the chain and find the first non-consecutive
7904  // load memory address. These variables hold the index in the store node
7905  // array.
7906  unsigned LastConsecutiveLoad = 0;
7907  // This variable refers to the size and not index in the array.
7908  unsigned LastLegalVectorType = 0;
7909  unsigned LastLegalIntegerType = 0;
7910  StartAddress = LoadNodes[0].OffsetFromBase;
7911  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7912  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7913    // All loads much share the same chain.
7914    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7915      break;
7916
7917    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7918    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7919      break;
7920    LastConsecutiveLoad = i;
7921
7922    // Find a legal type for the vector store.
7923    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7924    if (TLI.isTypeLegal(StoreTy))
7925      LastLegalVectorType = i + 1;
7926
7927    // Find a legal type for the integer store.
7928    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7929    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7930    if (TLI.isTypeLegal(StoreTy))
7931      LastLegalIntegerType = i + 1;
7932  }
7933
7934  // Only use vector types if the vector type is larger than the integer type.
7935  // If they are the same, use integers.
7936  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7937  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7938
7939  // We add +1 here because the LastXXX variables refer to location while
7940  // the NumElem refers to array/index size.
7941  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7942  NumElem = std::min(LastLegalType, NumElem);
7943
7944  if (NumElem < 2)
7945    return false;
7946
7947  // The earliest Node in the DAG.
7948  unsigned EarliestNodeUsed = 0;
7949  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7950  for (unsigned i=1; i<NumElem; ++i) {
7951    // Find a chain for the new wide-store operand. Notice that some
7952    // of the store nodes that we found may not be selected for inclusion
7953    // in the wide store. The chain we use needs to be the chain of the
7954    // earliest store node which is *used* and replaced by the wide store.
7955    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7956      EarliestNodeUsed = i;
7957  }
7958
7959  // Find if it is better to use vectors or integers to load and store
7960  // to memory.
7961  EVT JointMemOpVT;
7962  if (UseVectorTy) {
7963    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7964  } else {
7965    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7966    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7967  }
7968
7969  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7970  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7971
7972  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7973  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7974                                FirstLoad->getChain(),
7975                                FirstLoad->getBasePtr(),
7976                                FirstLoad->getPointerInfo(),
7977                                false, false, false,
7978                                FirstLoad->getAlignment());
7979
7980  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7981                                  FirstInChain->getBasePtr(),
7982                                  FirstInChain->getPointerInfo(), false, false,
7983                                  FirstInChain->getAlignment());
7984
7985  // Replace one of the loads with the new load.
7986  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7987  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7988                                SDValue(NewLoad.getNode(), 1));
7989
7990  // Remove the rest of the load chains.
7991  for (unsigned i = 1; i < NumElem ; ++i) {
7992    // Replace all chain users of the old load nodes with the chain of the new
7993    // load node.
7994    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7995    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7996  }
7997
7998  // Replace the first store with the new store.
7999  CombineTo(EarliestOp, NewStore);
8000  // Erase all other stores.
8001  for (unsigned i = 0; i < NumElem ; ++i) {
8002    // Remove all Store nodes.
8003    if (StoreNodes[i].MemNode == EarliestOp)
8004      continue;
8005    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8006    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8007    removeFromWorkList(St);
8008    DAG.DeleteNode(St);
8009  }
8010
8011  return true;
8012}
8013
8014SDValue DAGCombiner::visitSTORE(SDNode *N) {
8015  StoreSDNode *ST  = cast<StoreSDNode>(N);
8016  SDValue Chain = ST->getChain();
8017  SDValue Value = ST->getValue();
8018  SDValue Ptr   = ST->getBasePtr();
8019
8020  // If this is a store of a bit convert, store the input value if the
8021  // resultant store does not need a higher alignment than the original.
8022  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8023      ST->isUnindexed()) {
8024    unsigned OrigAlign = ST->getAlignment();
8025    EVT SVT = Value.getOperand(0).getValueType();
8026    unsigned Align = TLI.getDataLayout()->
8027      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8028    if (Align <= OrigAlign &&
8029        ((!LegalOperations && !ST->isVolatile()) ||
8030         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8031      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8032                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8033                          ST->isNonTemporal(), OrigAlign);
8034  }
8035
8036  // Turn 'store undef, Ptr' -> nothing.
8037  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8038    return Chain;
8039
8040  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8041  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8042    // NOTE: If the original store is volatile, this transform must not increase
8043    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8044    // processor operation but an i64 (which is not legal) requires two.  So the
8045    // transform should not be done in this case.
8046    if (Value.getOpcode() != ISD::TargetConstantFP) {
8047      SDValue Tmp;
8048      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8049      default: llvm_unreachable("Unknown FP type");
8050      case MVT::f16:    // We don't do this for these yet.
8051      case MVT::f80:
8052      case MVT::f128:
8053      case MVT::ppcf128:
8054        break;
8055      case MVT::f32:
8056        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8057            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8058          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8059                              bitcastToAPInt().getZExtValue(), MVT::i32);
8060          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8061                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8062                              ST->isNonTemporal(), ST->getAlignment());
8063        }
8064        break;
8065      case MVT::f64:
8066        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8067             !ST->isVolatile()) ||
8068            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8069          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8070                                getZExtValue(), MVT::i64);
8071          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8072                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8073                              ST->isNonTemporal(), ST->getAlignment());
8074        }
8075
8076        if (!ST->isVolatile() &&
8077            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8078          // Many FP stores are not made apparent until after legalize, e.g. for
8079          // argument passing.  Since this is so common, custom legalize the
8080          // 64-bit integer store into two 32-bit stores.
8081          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8082          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8083          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8084          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8085
8086          unsigned Alignment = ST->getAlignment();
8087          bool isVolatile = ST->isVolatile();
8088          bool isNonTemporal = ST->isNonTemporal();
8089
8090          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8091                                     Ptr, ST->getPointerInfo(),
8092                                     isVolatile, isNonTemporal,
8093                                     ST->getAlignment());
8094          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8095                            DAG.getConstant(4, Ptr.getValueType()));
8096          Alignment = MinAlign(Alignment, 4U);
8097          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8098                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8099                                     isVolatile, isNonTemporal,
8100                                     Alignment);
8101          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8102                             St0, St1);
8103        }
8104
8105        break;
8106      }
8107    }
8108  }
8109
8110  // Try to infer better alignment information than the store already has.
8111  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8112    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8113      if (Align > ST->getAlignment())
8114        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8115                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8116                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8117    }
8118  }
8119
8120  // Try transforming a pair floating point load / store ops to integer
8121  // load / store ops.
8122  SDValue NewST = TransformFPLoadStorePair(N);
8123  if (NewST.getNode())
8124    return NewST;
8125
8126  if (CombinerAA) {
8127    // Walk up chain skipping non-aliasing memory nodes.
8128    SDValue BetterChain = FindBetterChain(N, Chain);
8129
8130    // If there is a better chain.
8131    if (Chain != BetterChain) {
8132      SDValue ReplStore;
8133
8134      // Replace the chain to avoid dependency.
8135      if (ST->isTruncatingStore()) {
8136        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8137                                      ST->getPointerInfo(),
8138                                      ST->getMemoryVT(), ST->isVolatile(),
8139                                      ST->isNonTemporal(), ST->getAlignment());
8140      } else {
8141        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8142                                 ST->getPointerInfo(),
8143                                 ST->isVolatile(), ST->isNonTemporal(),
8144                                 ST->getAlignment());
8145      }
8146
8147      // Create token to keep both nodes around.
8148      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8149                                  MVT::Other, Chain, ReplStore);
8150
8151      // Make sure the new and old chains are cleaned up.
8152      AddToWorkList(Token.getNode());
8153
8154      // Don't add users to work list.
8155      return CombineTo(N, Token, false);
8156    }
8157  }
8158
8159  // Try transforming N to an indexed store.
8160  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8161    return SDValue(N, 0);
8162
8163  // FIXME: is there such a thing as a truncating indexed store?
8164  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8165      Value.getValueType().isInteger()) {
8166    // See if we can simplify the input to this truncstore with knowledge that
8167    // only the low bits are being used.  For example:
8168    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8169    SDValue Shorter =
8170      GetDemandedBits(Value,
8171                      APInt::getLowBitsSet(
8172                        Value.getValueType().getScalarType().getSizeInBits(),
8173                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8174    AddToWorkList(Value.getNode());
8175    if (Shorter.getNode())
8176      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8177                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8178                               ST->isVolatile(), ST->isNonTemporal(),
8179                               ST->getAlignment());
8180
8181    // Otherwise, see if we can simplify the operation with
8182    // SimplifyDemandedBits, which only works if the value has a single use.
8183    if (SimplifyDemandedBits(Value,
8184                        APInt::getLowBitsSet(
8185                          Value.getValueType().getScalarType().getSizeInBits(),
8186                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8187      return SDValue(N, 0);
8188  }
8189
8190  // If this is a load followed by a store to the same location, then the store
8191  // is dead/noop.
8192  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8193    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8194        ST->isUnindexed() && !ST->isVolatile() &&
8195        // There can't be any side effects between the load and store, such as
8196        // a call or store.
8197        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8198      // The store is dead, remove it.
8199      return Chain;
8200    }
8201  }
8202
8203  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8204  // truncating store.  We can do this even if this is already a truncstore.
8205  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8206      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8207      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8208                            ST->getMemoryVT())) {
8209    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8210                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8211                             ST->isVolatile(), ST->isNonTemporal(),
8212                             ST->getAlignment());
8213  }
8214
8215  // Only perform this optimization before the types are legal, because we
8216  // don't want to perform this optimization on every DAGCombine invocation.
8217  if (!LegalTypes) {
8218    bool EverChanged = false;
8219
8220    do {
8221      // There can be multiple store sequences on the same chain.
8222      // Keep trying to merge store sequences until we are unable to do so
8223      // or until we merge the last store on the chain.
8224      bool Changed = MergeConsecutiveStores(ST);
8225      EverChanged |= Changed;
8226      if (!Changed) break;
8227    } while (ST->getOpcode() != ISD::DELETED_NODE);
8228
8229    if (EverChanged)
8230      return SDValue(N, 0);
8231  }
8232
8233  return ReduceLoadOpStoreWidth(N);
8234}
8235
8236SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8237  SDValue InVec = N->getOperand(0);
8238  SDValue InVal = N->getOperand(1);
8239  SDValue EltNo = N->getOperand(2);
8240  DebugLoc dl = N->getDebugLoc();
8241
8242  // If the inserted element is an UNDEF, just use the input vector.
8243  if (InVal.getOpcode() == ISD::UNDEF)
8244    return InVec;
8245
8246  EVT VT = InVec.getValueType();
8247
8248  // If we can't generate a legal BUILD_VECTOR, exit
8249  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8250    return SDValue();
8251
8252  // Check that we know which element is being inserted
8253  if (!isa<ConstantSDNode>(EltNo))
8254    return SDValue();
8255  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8256
8257  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8258  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8259  // vector elements.
8260  SmallVector<SDValue, 8> Ops;
8261  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8262    Ops.append(InVec.getNode()->op_begin(),
8263               InVec.getNode()->op_end());
8264  } else if (InVec.getOpcode() == ISD::UNDEF) {
8265    unsigned NElts = VT.getVectorNumElements();
8266    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8267  } else {
8268    return SDValue();
8269  }
8270
8271  // Insert the element
8272  if (Elt < Ops.size()) {
8273    // All the operands of BUILD_VECTOR must have the same type;
8274    // we enforce that here.
8275    EVT OpVT = Ops[0].getValueType();
8276    if (InVal.getValueType() != OpVT)
8277      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8278                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8279                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8280    Ops[Elt] = InVal;
8281  }
8282
8283  // Return the new vector
8284  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8285                     VT, &Ops[0], Ops.size());
8286}
8287
8288SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8289  // (vextract (scalar_to_vector val, 0) -> val
8290  SDValue InVec = N->getOperand(0);
8291  EVT VT = InVec.getValueType();
8292  EVT NVT = N->getValueType(0);
8293
8294  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8295    // Check if the result type doesn't match the inserted element type. A
8296    // SCALAR_TO_VECTOR may truncate the inserted element and the
8297    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8298    SDValue InOp = InVec.getOperand(0);
8299    if (InOp.getValueType() != NVT) {
8300      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8301      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8302    }
8303    return InOp;
8304  }
8305
8306  SDValue EltNo = N->getOperand(1);
8307  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8308
8309  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8310  // We only perform this optimization before the op legalization phase because
8311  // we may introduce new vector instructions which are not backed by TD
8312  // patterns. For example on AVX, extracting elements from a wide vector
8313  // without using extract_subvector.
8314  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8315      && ConstEltNo && !LegalOperations) {
8316    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8317    int NumElem = VT.getVectorNumElements();
8318    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8319    // Find the new index to extract from.
8320    int OrigElt = SVOp->getMaskElt(Elt);
8321
8322    // Extracting an undef index is undef.
8323    if (OrigElt == -1)
8324      return DAG.getUNDEF(NVT);
8325
8326    // Select the right vector half to extract from.
8327    if (OrigElt < NumElem) {
8328      InVec = InVec->getOperand(0);
8329    } else {
8330      InVec = InVec->getOperand(1);
8331      OrigElt -= NumElem;
8332    }
8333
8334    EVT IndexTy = N->getOperand(1).getValueType();
8335    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8336                       InVec, DAG.getConstant(OrigElt, IndexTy));
8337  }
8338
8339  // Perform only after legalization to ensure build_vector / vector_shuffle
8340  // optimizations have already been done.
8341  if (!LegalOperations) return SDValue();
8342
8343  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8344  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8345  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8346
8347  if (ConstEltNo) {
8348    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8349    bool NewLoad = false;
8350    bool BCNumEltsChanged = false;
8351    EVT ExtVT = VT.getVectorElementType();
8352    EVT LVT = ExtVT;
8353
8354    // If the result of load has to be truncated, then it's not necessarily
8355    // profitable.
8356    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8357      return SDValue();
8358
8359    if (InVec.getOpcode() == ISD::BITCAST) {
8360      // Don't duplicate a load with other uses.
8361      if (!InVec.hasOneUse())
8362        return SDValue();
8363
8364      EVT BCVT = InVec.getOperand(0).getValueType();
8365      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8366        return SDValue();
8367      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8368        BCNumEltsChanged = true;
8369      InVec = InVec.getOperand(0);
8370      ExtVT = BCVT.getVectorElementType();
8371      NewLoad = true;
8372    }
8373
8374    LoadSDNode *LN0 = NULL;
8375    const ShuffleVectorSDNode *SVN = NULL;
8376    if (ISD::isNormalLoad(InVec.getNode())) {
8377      LN0 = cast<LoadSDNode>(InVec);
8378    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8379               InVec.getOperand(0).getValueType() == ExtVT &&
8380               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8381      // Don't duplicate a load with other uses.
8382      if (!InVec.hasOneUse())
8383        return SDValue();
8384
8385      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8386    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8387      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8388      // =>
8389      // (load $addr+1*size)
8390
8391      // Don't duplicate a load with other uses.
8392      if (!InVec.hasOneUse())
8393        return SDValue();
8394
8395      // If the bit convert changed the number of elements, it is unsafe
8396      // to examine the mask.
8397      if (BCNumEltsChanged)
8398        return SDValue();
8399
8400      // Select the input vector, guarding against out of range extract vector.
8401      unsigned NumElems = VT.getVectorNumElements();
8402      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8403      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8404
8405      if (InVec.getOpcode() == ISD::BITCAST) {
8406        // Don't duplicate a load with other uses.
8407        if (!InVec.hasOneUse())
8408          return SDValue();
8409
8410        InVec = InVec.getOperand(0);
8411      }
8412      if (ISD::isNormalLoad(InVec.getNode())) {
8413        LN0 = cast<LoadSDNode>(InVec);
8414        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8415      }
8416    }
8417
8418    // Make sure we found a non-volatile load and the extractelement is
8419    // the only use.
8420    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8421      return SDValue();
8422
8423    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8424    if (Elt == -1)
8425      return DAG.getUNDEF(LVT);
8426
8427    unsigned Align = LN0->getAlignment();
8428    if (NewLoad) {
8429      // Check the resultant load doesn't need a higher alignment than the
8430      // original load.
8431      unsigned NewAlign =
8432        TLI.getDataLayout()
8433            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8434
8435      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8436        return SDValue();
8437
8438      Align = NewAlign;
8439    }
8440
8441    SDValue NewPtr = LN0->getBasePtr();
8442    unsigned PtrOff = 0;
8443
8444    if (Elt) {
8445      PtrOff = LVT.getSizeInBits() * Elt / 8;
8446      EVT PtrType = NewPtr.getValueType();
8447      if (TLI.isBigEndian())
8448        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8449      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8450                           DAG.getConstant(PtrOff, PtrType));
8451    }
8452
8453    // The replacement we need to do here is a little tricky: we need to
8454    // replace an extractelement of a load with a load.
8455    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8456    // Note that this replacement assumes that the extractvalue is the only
8457    // use of the load; that's okay because we don't want to perform this
8458    // transformation in other cases anyway.
8459    SDValue Load;
8460    SDValue Chain;
8461    if (NVT.bitsGT(LVT)) {
8462      // If the result type of vextract is wider than the load, then issue an
8463      // extending load instead.
8464      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8465        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8466      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8467                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8468                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8469      Chain = Load.getValue(1);
8470    } else {
8471      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8472                         LN0->getPointerInfo().getWithOffset(PtrOff),
8473                         LN0->isVolatile(), LN0->isNonTemporal(),
8474                         LN0->isInvariant(), Align);
8475      Chain = Load.getValue(1);
8476      if (NVT.bitsLT(LVT))
8477        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8478      else
8479        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8480    }
8481    WorkListRemover DeadNodes(*this);
8482    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8483    SDValue To[] = { Load, Chain };
8484    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8485    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8486    // worklist explicitly as well.
8487    AddToWorkList(Load.getNode());
8488    AddUsersToWorkList(Load.getNode()); // Add users too
8489    // Make sure to revisit this node to clean it up; it will usually be dead.
8490    AddToWorkList(N);
8491    return SDValue(N, 0);
8492  }
8493
8494  return SDValue();
8495}
8496
8497// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8498SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8499  // We perform this optimization post type-legalization because
8500  // the type-legalizer often scalarizes integer-promoted vectors.
8501  // Performing this optimization before may create bit-casts which
8502  // will be type-legalized to complex code sequences.
8503  // We perform this optimization only before the operation legalizer because we
8504  // may introduce illegal operations.
8505  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8506    return SDValue();
8507
8508  unsigned NumInScalars = N->getNumOperands();
8509  DebugLoc dl = N->getDebugLoc();
8510  EVT VT = N->getValueType(0);
8511
8512  // Check to see if this is a BUILD_VECTOR of a bunch of values
8513  // which come from any_extend or zero_extend nodes. If so, we can create
8514  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8515  // optimizations. We do not handle sign-extend because we can't fill the sign
8516  // using shuffles.
8517  EVT SourceType = MVT::Other;
8518  bool AllAnyExt = true;
8519
8520  for (unsigned i = 0; i != NumInScalars; ++i) {
8521    SDValue In = N->getOperand(i);
8522    // Ignore undef inputs.
8523    if (In.getOpcode() == ISD::UNDEF) continue;
8524
8525    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8526    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8527
8528    // Abort if the element is not an extension.
8529    if (!ZeroExt && !AnyExt) {
8530      SourceType = MVT::Other;
8531      break;
8532    }
8533
8534    // The input is a ZeroExt or AnyExt. Check the original type.
8535    EVT InTy = In.getOperand(0).getValueType();
8536
8537    // Check that all of the widened source types are the same.
8538    if (SourceType == MVT::Other)
8539      // First time.
8540      SourceType = InTy;
8541    else if (InTy != SourceType) {
8542      // Multiple income types. Abort.
8543      SourceType = MVT::Other;
8544      break;
8545    }
8546
8547    // Check if all of the extends are ANY_EXTENDs.
8548    AllAnyExt &= AnyExt;
8549  }
8550
8551  // In order to have valid types, all of the inputs must be extended from the
8552  // same source type and all of the inputs must be any or zero extend.
8553  // Scalar sizes must be a power of two.
8554  EVT OutScalarTy = VT.getScalarType();
8555  bool ValidTypes = SourceType != MVT::Other &&
8556                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8557                 isPowerOf2_32(SourceType.getSizeInBits());
8558
8559  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8560  // turn into a single shuffle instruction.
8561  if (!ValidTypes)
8562    return SDValue();
8563
8564  bool isLE = TLI.isLittleEndian();
8565  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8566  assert(ElemRatio > 1 && "Invalid element size ratio");
8567  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8568                               DAG.getConstant(0, SourceType);
8569
8570  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8571  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8572
8573  // Populate the new build_vector
8574  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8575    SDValue Cast = N->getOperand(i);
8576    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8577            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8578            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8579    SDValue In;
8580    if (Cast.getOpcode() == ISD::UNDEF)
8581      In = DAG.getUNDEF(SourceType);
8582    else
8583      In = Cast->getOperand(0);
8584    unsigned Index = isLE ? (i * ElemRatio) :
8585                            (i * ElemRatio + (ElemRatio - 1));
8586
8587    assert(Index < Ops.size() && "Invalid index");
8588    Ops[Index] = In;
8589  }
8590
8591  // The type of the new BUILD_VECTOR node.
8592  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8593  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8594         "Invalid vector size");
8595  // Check if the new vector type is legal.
8596  if (!isTypeLegal(VecVT)) return SDValue();
8597
8598  // Make the new BUILD_VECTOR.
8599  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8600
8601  // The new BUILD_VECTOR node has the potential to be further optimized.
8602  AddToWorkList(BV.getNode());
8603  // Bitcast to the desired type.
8604  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8605}
8606
8607SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8608  EVT VT = N->getValueType(0);
8609
8610  unsigned NumInScalars = N->getNumOperands();
8611  DebugLoc dl = N->getDebugLoc();
8612
8613  EVT SrcVT = MVT::Other;
8614  unsigned Opcode = ISD::DELETED_NODE;
8615  unsigned NumDefs = 0;
8616
8617  for (unsigned i = 0; i != NumInScalars; ++i) {
8618    SDValue In = N->getOperand(i);
8619    unsigned Opc = In.getOpcode();
8620
8621    if (Opc == ISD::UNDEF)
8622      continue;
8623
8624    // If all scalar values are floats and converted from integers.
8625    if (Opcode == ISD::DELETED_NODE &&
8626        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8627      Opcode = Opc;
8628      // If not supported by target, bail out.
8629      if (TLI.getOperationAction(Opcode, VT) != TargetLowering::Legal &&
8630          TLI.getOperationAction(Opcode, VT) != TargetLowering::Custom)
8631        return SDValue();
8632    }
8633    if (Opc != Opcode)
8634      return SDValue();
8635
8636    EVT InVT = In.getOperand(0).getValueType();
8637
8638    // If all scalar values are typed differently, bail out. It's chosen to
8639    // simplify BUILD_VECTOR of integer types.
8640    if (SrcVT == MVT::Other)
8641      SrcVT = InVT;
8642    if (SrcVT != InVT)
8643      return SDValue();
8644    NumDefs++;
8645  }
8646
8647  // If the vector has just one element defined, it's not worth to fold it into
8648  // a vectorized one.
8649  if (NumDefs < 2)
8650    return SDValue();
8651
8652  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8653         && "Should only handle conversion from integer to float.");
8654  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8655
8656  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8657  SmallVector<SDValue, 8> Opnds;
8658  for (unsigned i = 0; i != NumInScalars; ++i) {
8659    SDValue In = N->getOperand(i);
8660
8661    if (In.getOpcode() == ISD::UNDEF)
8662      Opnds.push_back(DAG.getUNDEF(SrcVT));
8663    else
8664      Opnds.push_back(In.getOperand(0));
8665  }
8666  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8667                           &Opnds[0], Opnds.size());
8668  AddToWorkList(BV.getNode());
8669
8670  return DAG.getNode(Opcode, dl, VT, BV);
8671}
8672
8673SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8674  unsigned NumInScalars = N->getNumOperands();
8675  DebugLoc dl = N->getDebugLoc();
8676  EVT VT = N->getValueType(0);
8677
8678  // A vector built entirely of undefs is undef.
8679  if (ISD::allOperandsUndef(N))
8680    return DAG.getUNDEF(VT);
8681
8682  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8683  if (V.getNode())
8684    return V;
8685
8686  V = reduceBuildVecConvertToConvertBuildVec(N);
8687  if (V.getNode())
8688    return V;
8689
8690  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8691  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8692  // at most two distinct vectors, turn this into a shuffle node.
8693
8694  // May only combine to shuffle after legalize if shuffle is legal.
8695  if (LegalOperations &&
8696      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8697    return SDValue();
8698
8699  SDValue VecIn1, VecIn2;
8700  for (unsigned i = 0; i != NumInScalars; ++i) {
8701    // Ignore undef inputs.
8702    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8703
8704    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8705    // constant index, bail out.
8706    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8707        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8708      VecIn1 = VecIn2 = SDValue(0, 0);
8709      break;
8710    }
8711
8712    // We allow up to two distinct input vectors.
8713    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8714    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8715      continue;
8716
8717    if (VecIn1.getNode() == 0) {
8718      VecIn1 = ExtractedFromVec;
8719    } else if (VecIn2.getNode() == 0) {
8720      VecIn2 = ExtractedFromVec;
8721    } else {
8722      // Too many inputs.
8723      VecIn1 = VecIn2 = SDValue(0, 0);
8724      break;
8725    }
8726  }
8727
8728    // If everything is good, we can make a shuffle operation.
8729  if (VecIn1.getNode()) {
8730    SmallVector<int, 8> Mask;
8731    for (unsigned i = 0; i != NumInScalars; ++i) {
8732      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8733        Mask.push_back(-1);
8734        continue;
8735      }
8736
8737      // If extracting from the first vector, just use the index directly.
8738      SDValue Extract = N->getOperand(i);
8739      SDValue ExtVal = Extract.getOperand(1);
8740      if (Extract.getOperand(0) == VecIn1) {
8741        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8742        if (ExtIndex > VT.getVectorNumElements())
8743          return SDValue();
8744
8745        Mask.push_back(ExtIndex);
8746        continue;
8747      }
8748
8749      // Otherwise, use InIdx + VecSize
8750      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8751      Mask.push_back(Idx+NumInScalars);
8752    }
8753
8754    // We can't generate a shuffle node with mismatched input and output types.
8755    // Attempt to transform a single input vector to the correct type.
8756    if ((VT != VecIn1.getValueType())) {
8757      // We don't support shuffeling between TWO values of different types.
8758      if (VecIn2.getNode() != 0)
8759        return SDValue();
8760
8761      // We only support widening of vectors which are half the size of the
8762      // output registers. For example XMM->YMM widening on X86 with AVX.
8763      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8764        return SDValue();
8765
8766      // If the input vector type has a different base type to the output
8767      // vector type, bail out.
8768      if (VecIn1.getValueType().getVectorElementType() !=
8769          VT.getVectorElementType())
8770        return SDValue();
8771
8772      // Widen the input vector by adding undef values.
8773      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8774                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8775    }
8776
8777    // If VecIn2 is unused then change it to undef.
8778    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8779
8780    // Check that we were able to transform all incoming values to the same
8781    // type.
8782    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8783        VecIn1.getValueType() != VT)
8784          return SDValue();
8785
8786    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8787    if (!isTypeLegal(VT))
8788      return SDValue();
8789
8790    // Return the new VECTOR_SHUFFLE node.
8791    SDValue Ops[2];
8792    Ops[0] = VecIn1;
8793    Ops[1] = VecIn2;
8794    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8795  }
8796
8797  return SDValue();
8798}
8799
8800SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8801  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8802  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8803  // inputs come from at most two distinct vectors, turn this into a shuffle
8804  // node.
8805
8806  // If we only have one input vector, we don't need to do any concatenation.
8807  if (N->getNumOperands() == 1)
8808    return N->getOperand(0);
8809
8810  // Check if all of the operands are undefs.
8811  if (ISD::allOperandsUndef(N))
8812    return DAG.getUNDEF(N->getValueType(0));
8813
8814  return SDValue();
8815}
8816
8817SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8818  EVT NVT = N->getValueType(0);
8819  SDValue V = N->getOperand(0);
8820
8821  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8822    // Handle only simple case where vector being inserted and vector
8823    // being extracted are of same type, and are half size of larger vectors.
8824    EVT BigVT = V->getOperand(0).getValueType();
8825    EVT SmallVT = V->getOperand(1).getValueType();
8826    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8827      return SDValue();
8828
8829    // Only handle cases where both indexes are constants with the same type.
8830    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8831    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8832
8833    if (InsIdx && ExtIdx &&
8834        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8835        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8836      // Combine:
8837      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8838      // Into:
8839      //    indices are equal => V1
8840      //    otherwise => (extract_subvec V1, ExtIdx)
8841      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8842        return V->getOperand(1);
8843      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8844                         V->getOperand(0), N->getOperand(1));
8845    }
8846  }
8847
8848  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
8849    // Combine:
8850    //    (extract_subvec (concat V1, V2, ...), i)
8851    // Into:
8852    //    Vi if possible
8853    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
8854    if (V->getOperand(0).getValueType() != NVT)
8855      return SDValue();
8856    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8857    unsigned NumElems = NVT.getVectorNumElements();
8858    assert((Idx % NumElems) == 0 &&
8859           "IDX in concat is not a multiple of the result vector length.");
8860    return V->getOperand(Idx / NumElems);
8861  }
8862
8863  return SDValue();
8864}
8865
8866SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8867  EVT VT = N->getValueType(0);
8868  unsigned NumElts = VT.getVectorNumElements();
8869
8870  SDValue N0 = N->getOperand(0);
8871  SDValue N1 = N->getOperand(1);
8872
8873  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8874
8875  // Canonicalize shuffle undef, undef -> undef
8876  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8877    return DAG.getUNDEF(VT);
8878
8879  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8880
8881  // Canonicalize shuffle v, v -> v, undef
8882  if (N0 == N1) {
8883    SmallVector<int, 8> NewMask;
8884    for (unsigned i = 0; i != NumElts; ++i) {
8885      int Idx = SVN->getMaskElt(i);
8886      if (Idx >= (int)NumElts) Idx -= NumElts;
8887      NewMask.push_back(Idx);
8888    }
8889    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8890                                &NewMask[0]);
8891  }
8892
8893  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8894  if (N0.getOpcode() == ISD::UNDEF) {
8895    SmallVector<int, 8> NewMask;
8896    for (unsigned i = 0; i != NumElts; ++i) {
8897      int Idx = SVN->getMaskElt(i);
8898      if (Idx >= 0) {
8899        if (Idx < (int)NumElts)
8900          Idx += NumElts;
8901        else
8902          Idx -= NumElts;
8903      }
8904      NewMask.push_back(Idx);
8905    }
8906    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8907                                &NewMask[0]);
8908  }
8909
8910  // Remove references to rhs if it is undef
8911  if (N1.getOpcode() == ISD::UNDEF) {
8912    bool Changed = false;
8913    SmallVector<int, 8> NewMask;
8914    for (unsigned i = 0; i != NumElts; ++i) {
8915      int Idx = SVN->getMaskElt(i);
8916      if (Idx >= (int)NumElts) {
8917        Idx = -1;
8918        Changed = true;
8919      }
8920      NewMask.push_back(Idx);
8921    }
8922    if (Changed)
8923      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8924  }
8925
8926  // If it is a splat, check if the argument vector is another splat or a
8927  // build_vector with all scalar elements the same.
8928  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8929    SDNode *V = N0.getNode();
8930
8931    // If this is a bit convert that changes the element type of the vector but
8932    // not the number of vector elements, look through it.  Be careful not to
8933    // look though conversions that change things like v4f32 to v2f64.
8934    if (V->getOpcode() == ISD::BITCAST) {
8935      SDValue ConvInput = V->getOperand(0);
8936      if (ConvInput.getValueType().isVector() &&
8937          ConvInput.getValueType().getVectorNumElements() == NumElts)
8938        V = ConvInput.getNode();
8939    }
8940
8941    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8942      assert(V->getNumOperands() == NumElts &&
8943             "BUILD_VECTOR has wrong number of operands");
8944      SDValue Base;
8945      bool AllSame = true;
8946      for (unsigned i = 0; i != NumElts; ++i) {
8947        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8948          Base = V->getOperand(i);
8949          break;
8950        }
8951      }
8952      // Splat of <u, u, u, u>, return <u, u, u, u>
8953      if (!Base.getNode())
8954        return N0;
8955      for (unsigned i = 0; i != NumElts; ++i) {
8956        if (V->getOperand(i) != Base) {
8957          AllSame = false;
8958          break;
8959        }
8960      }
8961      // Splat of <x, x, x, x>, return <x, x, x, x>
8962      if (AllSame)
8963        return N0;
8964    }
8965  }
8966
8967  // If this shuffle node is simply a swizzle of another shuffle node,
8968  // and it reverses the swizzle of the previous shuffle then we can
8969  // optimize shuffle(shuffle(x, undef), undef) -> x.
8970  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8971      N1.getOpcode() == ISD::UNDEF) {
8972
8973    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8974
8975    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8976    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8977      return SDValue();
8978
8979    // The incoming shuffle must be of the same type as the result of the
8980    // current shuffle.
8981    assert(OtherSV->getOperand(0).getValueType() == VT &&
8982           "Shuffle types don't match");
8983
8984    for (unsigned i = 0; i != NumElts; ++i) {
8985      int Idx = SVN->getMaskElt(i);
8986      assert(Idx < (int)NumElts && "Index references undef operand");
8987      // Next, this index comes from the first value, which is the incoming
8988      // shuffle. Adopt the incoming index.
8989      if (Idx >= 0)
8990        Idx = OtherSV->getMaskElt(Idx);
8991
8992      // The combined shuffle must map each index to itself.
8993      if (Idx >= 0 && (unsigned)Idx != i)
8994        return SDValue();
8995    }
8996
8997    return OtherSV->getOperand(0);
8998  }
8999
9000  return SDValue();
9001}
9002
9003SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
9004  if (!TLI.getShouldFoldAtomicFences())
9005    return SDValue();
9006
9007  SDValue atomic = N->getOperand(0);
9008  switch (atomic.getOpcode()) {
9009    case ISD::ATOMIC_CMP_SWAP:
9010    case ISD::ATOMIC_SWAP:
9011    case ISD::ATOMIC_LOAD_ADD:
9012    case ISD::ATOMIC_LOAD_SUB:
9013    case ISD::ATOMIC_LOAD_AND:
9014    case ISD::ATOMIC_LOAD_OR:
9015    case ISD::ATOMIC_LOAD_XOR:
9016    case ISD::ATOMIC_LOAD_NAND:
9017    case ISD::ATOMIC_LOAD_MIN:
9018    case ISD::ATOMIC_LOAD_MAX:
9019    case ISD::ATOMIC_LOAD_UMIN:
9020    case ISD::ATOMIC_LOAD_UMAX:
9021      break;
9022    default:
9023      return SDValue();
9024  }
9025
9026  SDValue fence = atomic.getOperand(0);
9027  if (fence.getOpcode() != ISD::MEMBARRIER)
9028    return SDValue();
9029
9030  switch (atomic.getOpcode()) {
9031    case ISD::ATOMIC_CMP_SWAP:
9032      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9033                                    fence.getOperand(0),
9034                                    atomic.getOperand(1), atomic.getOperand(2),
9035                                    atomic.getOperand(3)), atomic.getResNo());
9036    case ISD::ATOMIC_SWAP:
9037    case ISD::ATOMIC_LOAD_ADD:
9038    case ISD::ATOMIC_LOAD_SUB:
9039    case ISD::ATOMIC_LOAD_AND:
9040    case ISD::ATOMIC_LOAD_OR:
9041    case ISD::ATOMIC_LOAD_XOR:
9042    case ISD::ATOMIC_LOAD_NAND:
9043    case ISD::ATOMIC_LOAD_MIN:
9044    case ISD::ATOMIC_LOAD_MAX:
9045    case ISD::ATOMIC_LOAD_UMIN:
9046    case ISD::ATOMIC_LOAD_UMAX:
9047      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9048                                    fence.getOperand(0),
9049                                    atomic.getOperand(1), atomic.getOperand(2)),
9050                     atomic.getResNo());
9051    default:
9052      return SDValue();
9053  }
9054}
9055
9056/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9057/// an AND to a vector_shuffle with the destination vector and a zero vector.
9058/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9059///      vector_shuffle V, Zero, <0, 4, 2, 4>
9060SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9061  EVT VT = N->getValueType(0);
9062  DebugLoc dl = N->getDebugLoc();
9063  SDValue LHS = N->getOperand(0);
9064  SDValue RHS = N->getOperand(1);
9065  if (N->getOpcode() == ISD::AND) {
9066    if (RHS.getOpcode() == ISD::BITCAST)
9067      RHS = RHS.getOperand(0);
9068    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9069      SmallVector<int, 8> Indices;
9070      unsigned NumElts = RHS.getNumOperands();
9071      for (unsigned i = 0; i != NumElts; ++i) {
9072        SDValue Elt = RHS.getOperand(i);
9073        if (!isa<ConstantSDNode>(Elt))
9074          return SDValue();
9075
9076        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9077          Indices.push_back(i);
9078        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9079          Indices.push_back(NumElts);
9080        else
9081          return SDValue();
9082      }
9083
9084      // Let's see if the target supports this vector_shuffle.
9085      EVT RVT = RHS.getValueType();
9086      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9087        return SDValue();
9088
9089      // Return the new VECTOR_SHUFFLE node.
9090      EVT EltVT = RVT.getVectorElementType();
9091      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9092                                     DAG.getConstant(0, EltVT));
9093      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9094                                 RVT, &ZeroOps[0], ZeroOps.size());
9095      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9096      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9097      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9098    }
9099  }
9100
9101  return SDValue();
9102}
9103
9104/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9105SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9106  // After legalize, the target may be depending on adds and other
9107  // binary ops to provide legal ways to construct constants or other
9108  // things. Simplifying them may result in a loss of legality.
9109  if (LegalOperations) return SDValue();
9110
9111  assert(N->getValueType(0).isVector() &&
9112         "SimplifyVBinOp only works on vectors!");
9113
9114  SDValue LHS = N->getOperand(0);
9115  SDValue RHS = N->getOperand(1);
9116  SDValue Shuffle = XformToShuffleWithZero(N);
9117  if (Shuffle.getNode()) return Shuffle;
9118
9119  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9120  // this operation.
9121  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9122      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9123    SmallVector<SDValue, 8> Ops;
9124    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9125      SDValue LHSOp = LHS.getOperand(i);
9126      SDValue RHSOp = RHS.getOperand(i);
9127      // If these two elements can't be folded, bail out.
9128      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9129           LHSOp.getOpcode() != ISD::Constant &&
9130           LHSOp.getOpcode() != ISD::ConstantFP) ||
9131          (RHSOp.getOpcode() != ISD::UNDEF &&
9132           RHSOp.getOpcode() != ISD::Constant &&
9133           RHSOp.getOpcode() != ISD::ConstantFP))
9134        break;
9135
9136      // Can't fold divide by zero.
9137      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9138          N->getOpcode() == ISD::FDIV) {
9139        if ((RHSOp.getOpcode() == ISD::Constant &&
9140             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9141            (RHSOp.getOpcode() == ISD::ConstantFP &&
9142             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9143          break;
9144      }
9145
9146      EVT VT = LHSOp.getValueType();
9147      EVT RVT = RHSOp.getValueType();
9148      if (RVT != VT) {
9149        // Integer BUILD_VECTOR operands may have types larger than the element
9150        // size (e.g., when the element type is not legal).  Prior to type
9151        // legalization, the types may not match between the two BUILD_VECTORS.
9152        // Truncate one of the operands to make them match.
9153        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9154          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9155        } else {
9156          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9157          VT = RVT;
9158        }
9159      }
9160      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9161                                   LHSOp, RHSOp);
9162      if (FoldOp.getOpcode() != ISD::UNDEF &&
9163          FoldOp.getOpcode() != ISD::Constant &&
9164          FoldOp.getOpcode() != ISD::ConstantFP)
9165        break;
9166      Ops.push_back(FoldOp);
9167      AddToWorkList(FoldOp.getNode());
9168    }
9169
9170    if (Ops.size() == LHS.getNumOperands())
9171      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9172                         LHS.getValueType(), &Ops[0], Ops.size());
9173  }
9174
9175  return SDValue();
9176}
9177
9178/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9179SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9180  // After legalize, the target may be depending on adds and other
9181  // binary ops to provide legal ways to construct constants or other
9182  // things. Simplifying them may result in a loss of legality.
9183  if (LegalOperations) return SDValue();
9184
9185  assert(N->getValueType(0).isVector() &&
9186         "SimplifyVUnaryOp only works on vectors!");
9187
9188  SDValue N0 = N->getOperand(0);
9189
9190  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9191    return SDValue();
9192
9193  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9194  SmallVector<SDValue, 8> Ops;
9195  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9196    SDValue Op = N0.getOperand(i);
9197    if (Op.getOpcode() != ISD::UNDEF &&
9198        Op.getOpcode() != ISD::ConstantFP)
9199      break;
9200    EVT EltVT = Op.getValueType();
9201    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9202    if (FoldOp.getOpcode() != ISD::UNDEF &&
9203        FoldOp.getOpcode() != ISD::ConstantFP)
9204      break;
9205    Ops.push_back(FoldOp);
9206    AddToWorkList(FoldOp.getNode());
9207  }
9208
9209  if (Ops.size() != N0.getNumOperands())
9210    return SDValue();
9211
9212  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9213                     N0.getValueType(), &Ops[0], Ops.size());
9214}
9215
9216SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9217                                    SDValue N1, SDValue N2){
9218  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9219
9220  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9221                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9222
9223  // If we got a simplified select_cc node back from SimplifySelectCC, then
9224  // break it down into a new SETCC node, and a new SELECT node, and then return
9225  // the SELECT node, since we were called with a SELECT node.
9226  if (SCC.getNode()) {
9227    // Check to see if we got a select_cc back (to turn into setcc/select).
9228    // Otherwise, just return whatever node we got back, like fabs.
9229    if (SCC.getOpcode() == ISD::SELECT_CC) {
9230      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9231                                  N0.getValueType(),
9232                                  SCC.getOperand(0), SCC.getOperand(1),
9233                                  SCC.getOperand(4));
9234      AddToWorkList(SETCC.getNode());
9235      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9236                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9237    }
9238
9239    return SCC;
9240  }
9241  return SDValue();
9242}
9243
9244/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9245/// are the two values being selected between, see if we can simplify the
9246/// select.  Callers of this should assume that TheSelect is deleted if this
9247/// returns true.  As such, they should return the appropriate thing (e.g. the
9248/// node) back to the top-level of the DAG combiner loop to avoid it being
9249/// looked at.
9250bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9251                                    SDValue RHS) {
9252
9253  // Cannot simplify select with vector condition
9254  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9255
9256  // If this is a select from two identical things, try to pull the operation
9257  // through the select.
9258  if (LHS.getOpcode() != RHS.getOpcode() ||
9259      !LHS.hasOneUse() || !RHS.hasOneUse())
9260    return false;
9261
9262  // If this is a load and the token chain is identical, replace the select
9263  // of two loads with a load through a select of the address to load from.
9264  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9265  // constants have been dropped into the constant pool.
9266  if (LHS.getOpcode() == ISD::LOAD) {
9267    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9268    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9269
9270    // Token chains must be identical.
9271    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9272        // Do not let this transformation reduce the number of volatile loads.
9273        LLD->isVolatile() || RLD->isVolatile() ||
9274        // If this is an EXTLOAD, the VT's must match.
9275        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9276        // If this is an EXTLOAD, the kind of extension must match.
9277        (LLD->getExtensionType() != RLD->getExtensionType() &&
9278         // The only exception is if one of the extensions is anyext.
9279         LLD->getExtensionType() != ISD::EXTLOAD &&
9280         RLD->getExtensionType() != ISD::EXTLOAD) ||
9281        // FIXME: this discards src value information.  This is
9282        // over-conservative. It would be beneficial to be able to remember
9283        // both potential memory locations.  Since we are discarding
9284        // src value info, don't do the transformation if the memory
9285        // locations are not in the default address space.
9286        LLD->getPointerInfo().getAddrSpace() != 0 ||
9287        RLD->getPointerInfo().getAddrSpace() != 0)
9288      return false;
9289
9290    // Check that the select condition doesn't reach either load.  If so,
9291    // folding this will induce a cycle into the DAG.  If not, this is safe to
9292    // xform, so create a select of the addresses.
9293    SDValue Addr;
9294    if (TheSelect->getOpcode() == ISD::SELECT) {
9295      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9296      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9297          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9298        return false;
9299      // The loads must not depend on one another.
9300      if (LLD->isPredecessorOf(RLD) ||
9301          RLD->isPredecessorOf(LLD))
9302        return false;
9303      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9304                         LLD->getBasePtr().getValueType(),
9305                         TheSelect->getOperand(0), LLD->getBasePtr(),
9306                         RLD->getBasePtr());
9307    } else {  // Otherwise SELECT_CC
9308      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9309      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9310
9311      if ((LLD->hasAnyUseOfValue(1) &&
9312           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9313          (RLD->hasAnyUseOfValue(1) &&
9314           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9315        return false;
9316
9317      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9318                         LLD->getBasePtr().getValueType(),
9319                         TheSelect->getOperand(0),
9320                         TheSelect->getOperand(1),
9321                         LLD->getBasePtr(), RLD->getBasePtr(),
9322                         TheSelect->getOperand(4));
9323    }
9324
9325    SDValue Load;
9326    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9327      Load = DAG.getLoad(TheSelect->getValueType(0),
9328                         TheSelect->getDebugLoc(),
9329                         // FIXME: Discards pointer info.
9330                         LLD->getChain(), Addr, MachinePointerInfo(),
9331                         LLD->isVolatile(), LLD->isNonTemporal(),
9332                         LLD->isInvariant(), LLD->getAlignment());
9333    } else {
9334      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9335                            RLD->getExtensionType() : LLD->getExtensionType(),
9336                            TheSelect->getDebugLoc(),
9337                            TheSelect->getValueType(0),
9338                            // FIXME: Discards pointer info.
9339                            LLD->getChain(), Addr, MachinePointerInfo(),
9340                            LLD->getMemoryVT(), LLD->isVolatile(),
9341                            LLD->isNonTemporal(), LLD->getAlignment());
9342    }
9343
9344    // Users of the select now use the result of the load.
9345    CombineTo(TheSelect, Load);
9346
9347    // Users of the old loads now use the new load's chain.  We know the
9348    // old-load value is dead now.
9349    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9350    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9351    return true;
9352  }
9353
9354  return false;
9355}
9356
9357/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9358/// where 'cond' is the comparison specified by CC.
9359SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9360                                      SDValue N2, SDValue N3,
9361                                      ISD::CondCode CC, bool NotExtCompare) {
9362  // (x ? y : y) -> y.
9363  if (N2 == N3) return N2;
9364
9365  EVT VT = N2.getValueType();
9366  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9367  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9368  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9369
9370  // Determine if the condition we're dealing with is constant
9371  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9372                              N0, N1, CC, DL, false);
9373  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9374  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9375
9376  // fold select_cc true, x, y -> x
9377  if (SCCC && !SCCC->isNullValue())
9378    return N2;
9379  // fold select_cc false, x, y -> y
9380  if (SCCC && SCCC->isNullValue())
9381    return N3;
9382
9383  // Check to see if we can simplify the select into an fabs node
9384  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9385    // Allow either -0.0 or 0.0
9386    if (CFP->getValueAPF().isZero()) {
9387      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9388      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9389          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9390          N2 == N3.getOperand(0))
9391        return DAG.getNode(ISD::FABS, DL, VT, N0);
9392
9393      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9394      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9395          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9396          N2.getOperand(0) == N3)
9397        return DAG.getNode(ISD::FABS, DL, VT, N3);
9398    }
9399  }
9400
9401  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9402  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9403  // in it.  This is a win when the constant is not otherwise available because
9404  // it replaces two constant pool loads with one.  We only do this if the FP
9405  // type is known to be legal, because if it isn't, then we are before legalize
9406  // types an we want the other legalization to happen first (e.g. to avoid
9407  // messing with soft float) and if the ConstantFP is not legal, because if
9408  // it is legal, we may not need to store the FP constant in a constant pool.
9409  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9410    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9411      if (TLI.isTypeLegal(N2.getValueType()) &&
9412          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9413           TargetLowering::Legal) &&
9414          // If both constants have multiple uses, then we won't need to do an
9415          // extra load, they are likely around in registers for other users.
9416          (TV->hasOneUse() || FV->hasOneUse())) {
9417        Constant *Elts[] = {
9418          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9419          const_cast<ConstantFP*>(TV->getConstantFPValue())
9420        };
9421        Type *FPTy = Elts[0]->getType();
9422        const DataLayout &TD = *TLI.getDataLayout();
9423
9424        // Create a ConstantArray of the two constants.
9425        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9426        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9427                                            TD.getPrefTypeAlignment(FPTy));
9428        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9429
9430        // Get the offsets to the 0 and 1 element of the array so that we can
9431        // select between them.
9432        SDValue Zero = DAG.getIntPtrConstant(0);
9433        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9434        SDValue One = DAG.getIntPtrConstant(EltSize);
9435
9436        SDValue Cond = DAG.getSetCC(DL,
9437                                    TLI.getSetCCResultType(N0.getValueType()),
9438                                    N0, N1, CC);
9439        AddToWorkList(Cond.getNode());
9440        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9441                                        Cond, One, Zero);
9442        AddToWorkList(CstOffset.getNode());
9443        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9444                            CstOffset);
9445        AddToWorkList(CPIdx.getNode());
9446        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9447                           MachinePointerInfo::getConstantPool(), false,
9448                           false, false, Alignment);
9449
9450      }
9451    }
9452
9453  // Check to see if we can perform the "gzip trick", transforming
9454  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9455  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9456      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9457       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9458    EVT XType = N0.getValueType();
9459    EVT AType = N2.getValueType();
9460    if (XType.bitsGE(AType)) {
9461      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9462      // single-bit constant.
9463      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9464        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9465        ShCtV = XType.getSizeInBits()-ShCtV-1;
9466        SDValue ShCt = DAG.getConstant(ShCtV,
9467                                       getShiftAmountTy(N0.getValueType()));
9468        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9469                                    XType, N0, ShCt);
9470        AddToWorkList(Shift.getNode());
9471
9472        if (XType.bitsGT(AType)) {
9473          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9474          AddToWorkList(Shift.getNode());
9475        }
9476
9477        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9478      }
9479
9480      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9481                                  XType, N0,
9482                                  DAG.getConstant(XType.getSizeInBits()-1,
9483                                         getShiftAmountTy(N0.getValueType())));
9484      AddToWorkList(Shift.getNode());
9485
9486      if (XType.bitsGT(AType)) {
9487        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9488        AddToWorkList(Shift.getNode());
9489      }
9490
9491      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9492    }
9493  }
9494
9495  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9496  // where y is has a single bit set.
9497  // A plaintext description would be, we can turn the SELECT_CC into an AND
9498  // when the condition can be materialized as an all-ones register.  Any
9499  // single bit-test can be materialized as an all-ones register with
9500  // shift-left and shift-right-arith.
9501  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9502      N0->getValueType(0) == VT &&
9503      N1C && N1C->isNullValue() &&
9504      N2C && N2C->isNullValue()) {
9505    SDValue AndLHS = N0->getOperand(0);
9506    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9507    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9508      // Shift the tested bit over the sign bit.
9509      APInt AndMask = ConstAndRHS->getAPIntValue();
9510      SDValue ShlAmt =
9511        DAG.getConstant(AndMask.countLeadingZeros(),
9512                        getShiftAmountTy(AndLHS.getValueType()));
9513      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9514
9515      // Now arithmetic right shift it all the way over, so the result is either
9516      // all-ones, or zero.
9517      SDValue ShrAmt =
9518        DAG.getConstant(AndMask.getBitWidth()-1,
9519                        getShiftAmountTy(Shl.getValueType()));
9520      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9521
9522      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9523    }
9524  }
9525
9526  // fold select C, 16, 0 -> shl C, 4
9527  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9528    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9529      TargetLowering::ZeroOrOneBooleanContent) {
9530
9531    // If the caller doesn't want us to simplify this into a zext of a compare,
9532    // don't do it.
9533    if (NotExtCompare && N2C->getAPIntValue() == 1)
9534      return SDValue();
9535
9536    // Get a SetCC of the condition
9537    // NOTE: Don't create a SETCC if it's not legal on this target.
9538    if (!LegalOperations ||
9539        TLI.isOperationLegal(ISD::SETCC,
9540          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9541      SDValue Temp, SCC;
9542      // cast from setcc result type to select result type
9543      if (LegalTypes) {
9544        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9545                            N0, N1, CC);
9546        if (N2.getValueType().bitsLT(SCC.getValueType()))
9547          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9548                                        N2.getValueType());
9549        else
9550          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9551                             N2.getValueType(), SCC);
9552      } else {
9553        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9554        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9555                           N2.getValueType(), SCC);
9556      }
9557
9558      AddToWorkList(SCC.getNode());
9559      AddToWorkList(Temp.getNode());
9560
9561      if (N2C->getAPIntValue() == 1)
9562        return Temp;
9563
9564      // shl setcc result by log2 n2c
9565      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9566                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9567                                         getShiftAmountTy(Temp.getValueType())));
9568    }
9569  }
9570
9571  // Check to see if this is the equivalent of setcc
9572  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9573  // otherwise, go ahead with the folds.
9574  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9575    EVT XType = N0.getValueType();
9576    if (!LegalOperations ||
9577        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9578      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9579      if (Res.getValueType() != VT)
9580        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9581      return Res;
9582    }
9583
9584    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9585    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9586        (!LegalOperations ||
9587         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9588      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9589      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9590                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9591                                       getShiftAmountTy(Ctlz.getValueType())));
9592    }
9593    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9594    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9595      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9596                                  XType, DAG.getConstant(0, XType), N0);
9597      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9598      return DAG.getNode(ISD::SRL, DL, XType,
9599                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9600                         DAG.getConstant(XType.getSizeInBits()-1,
9601                                         getShiftAmountTy(XType)));
9602    }
9603    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9604    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9605      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9606                                 DAG.getConstant(XType.getSizeInBits()-1,
9607                                         getShiftAmountTy(N0.getValueType())));
9608      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9609    }
9610  }
9611
9612  // Check to see if this is an integer abs.
9613  // select_cc setg[te] X,  0,  X, -X ->
9614  // select_cc setgt    X, -1,  X, -X ->
9615  // select_cc setl[te] X,  0, -X,  X ->
9616  // select_cc setlt    X,  1, -X,  X ->
9617  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9618  if (N1C) {
9619    ConstantSDNode *SubC = NULL;
9620    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9621         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9622        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9623      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9624    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9625              (N1C->isOne() && CC == ISD::SETLT)) &&
9626             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9627      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9628
9629    EVT XType = N0.getValueType();
9630    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9631      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9632                                  N0,
9633                                  DAG.getConstant(XType.getSizeInBits()-1,
9634                                         getShiftAmountTy(N0.getValueType())));
9635      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9636                                XType, N0, Shift);
9637      AddToWorkList(Shift.getNode());
9638      AddToWorkList(Add.getNode());
9639      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9640    }
9641  }
9642
9643  return SDValue();
9644}
9645
9646/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9647SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9648                                   SDValue N1, ISD::CondCode Cond,
9649                                   DebugLoc DL, bool foldBooleans) {
9650  TargetLowering::DAGCombinerInfo
9651    DagCombineInfo(DAG, Level, false, this);
9652  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9653}
9654
9655/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9656/// return a DAG expression to select that will generate the same value by
9657/// multiplying by a magic number.  See:
9658/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9659SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9660  std::vector<SDNode*> Built;
9661  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9662
9663  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9664       ii != ee; ++ii)
9665    AddToWorkList(*ii);
9666  return S;
9667}
9668
9669/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9670/// return a DAG expression to select that will generate the same value by
9671/// multiplying by a magic number.  See:
9672/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9673SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9674  std::vector<SDNode*> Built;
9675  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9676
9677  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9678       ii != ee; ++ii)
9679    AddToWorkList(*ii);
9680  return S;
9681}
9682
9683/// FindBaseOffset - Return true if base is a frame index, which is known not
9684// to alias with anything but itself.  Provides base object and offset as
9685// results.
9686static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9687                           const GlobalValue *&GV, const void *&CV) {
9688  // Assume it is a primitive operation.
9689  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9690
9691  // If it's an adding a simple constant then integrate the offset.
9692  if (Base.getOpcode() == ISD::ADD) {
9693    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9694      Base = Base.getOperand(0);
9695      Offset += C->getZExtValue();
9696    }
9697  }
9698
9699  // Return the underlying GlobalValue, and update the Offset.  Return false
9700  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9701  // by multiple nodes with different offsets.
9702  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9703    GV = G->getGlobal();
9704    Offset += G->getOffset();
9705    return false;
9706  }
9707
9708  // Return the underlying Constant value, and update the Offset.  Return false
9709  // for ConstantSDNodes since the same constant pool entry may be represented
9710  // by multiple nodes with different offsets.
9711  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9712    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9713                                         : (const void *)C->getConstVal();
9714    Offset += C->getOffset();
9715    return false;
9716  }
9717  // If it's any of the following then it can't alias with anything but itself.
9718  return isa<FrameIndexSDNode>(Base);
9719}
9720
9721/// isAlias - Return true if there is any possibility that the two addresses
9722/// overlap.
9723bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9724                          const Value *SrcValue1, int SrcValueOffset1,
9725                          unsigned SrcValueAlign1,
9726                          const MDNode *TBAAInfo1,
9727                          SDValue Ptr2, int64_t Size2,
9728                          const Value *SrcValue2, int SrcValueOffset2,
9729                          unsigned SrcValueAlign2,
9730                          const MDNode *TBAAInfo2) const {
9731  // If they are the same then they must be aliases.
9732  if (Ptr1 == Ptr2) return true;
9733
9734  // Gather base node and offset information.
9735  SDValue Base1, Base2;
9736  int64_t Offset1, Offset2;
9737  const GlobalValue *GV1, *GV2;
9738  const void *CV1, *CV2;
9739  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9740  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9741
9742  // If they have a same base address then check to see if they overlap.
9743  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9744    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9745
9746  // It is possible for different frame indices to alias each other, mostly
9747  // when tail call optimization reuses return address slots for arguments.
9748  // To catch this case, look up the actual index of frame indices to compute
9749  // the real alias relationship.
9750  if (isFrameIndex1 && isFrameIndex2) {
9751    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9752    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9753    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9754    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9755  }
9756
9757  // Otherwise, if we know what the bases are, and they aren't identical, then
9758  // we know they cannot alias.
9759  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9760    return false;
9761
9762  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9763  // compared to the size and offset of the access, we may be able to prove they
9764  // do not alias.  This check is conservative for now to catch cases created by
9765  // splitting vector types.
9766  if ((SrcValueAlign1 == SrcValueAlign2) &&
9767      (SrcValueOffset1 != SrcValueOffset2) &&
9768      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9769    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9770    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9771
9772    // There is no overlap between these relatively aligned accesses of similar
9773    // size, return no alias.
9774    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9775      return false;
9776  }
9777
9778  if (CombinerGlobalAA) {
9779    // Use alias analysis information.
9780    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9781    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9782    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9783    AliasAnalysis::AliasResult AAResult =
9784      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9785               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9786    if (AAResult == AliasAnalysis::NoAlias)
9787      return false;
9788  }
9789
9790  // Otherwise we have to assume they alias.
9791  return true;
9792}
9793
9794bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
9795  SDValue Ptr0, Ptr1;
9796  int64_t Size0, Size1;
9797  const Value *SrcValue0, *SrcValue1;
9798  int SrcValueOffset0, SrcValueOffset1;
9799  unsigned SrcValueAlign0, SrcValueAlign1;
9800  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
9801  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
9802                SrcValueAlign0, SrcTBAAInfo0);
9803  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
9804                SrcValueAlign1, SrcTBAAInfo1);
9805  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
9806                 SrcValueAlign0, SrcTBAAInfo0,
9807                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
9808                 SrcValueAlign1, SrcTBAAInfo1);
9809}
9810
9811/// FindAliasInfo - Extracts the relevant alias information from the memory
9812/// node.  Returns true if the operand was a load.
9813bool DAGCombiner::FindAliasInfo(SDNode *N,
9814                                SDValue &Ptr, int64_t &Size,
9815                                const Value *&SrcValue,
9816                                int &SrcValueOffset,
9817                                unsigned &SrcValueAlign,
9818                                const MDNode *&TBAAInfo) const {
9819  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9820
9821  Ptr = LS->getBasePtr();
9822  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9823  SrcValue = LS->getSrcValue();
9824  SrcValueOffset = LS->getSrcValueOffset();
9825  SrcValueAlign = LS->getOriginalAlignment();
9826  TBAAInfo = LS->getTBAAInfo();
9827  return isa<LoadSDNode>(LS);
9828}
9829
9830/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9831/// looking for aliasing nodes and adding them to the Aliases vector.
9832void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9833                                   SmallVector<SDValue, 8> &Aliases) {
9834  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9835  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9836
9837  // Get alias information for node.
9838  SDValue Ptr;
9839  int64_t Size;
9840  const Value *SrcValue;
9841  int SrcValueOffset;
9842  unsigned SrcValueAlign;
9843  const MDNode *SrcTBAAInfo;
9844  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9845                              SrcValueAlign, SrcTBAAInfo);
9846
9847  // Starting off.
9848  Chains.push_back(OriginalChain);
9849  unsigned Depth = 0;
9850
9851  // Look at each chain and determine if it is an alias.  If so, add it to the
9852  // aliases list.  If not, then continue up the chain looking for the next
9853  // candidate.
9854  while (!Chains.empty()) {
9855    SDValue Chain = Chains.back();
9856    Chains.pop_back();
9857
9858    // For TokenFactor nodes, look at each operand and only continue up the
9859    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9860    // find more and revert to original chain since the xform is unlikely to be
9861    // profitable.
9862    //
9863    // FIXME: The depth check could be made to return the last non-aliasing
9864    // chain we found before we hit a tokenfactor rather than the original
9865    // chain.
9866    if (Depth > 6 || Aliases.size() == 2) {
9867      Aliases.clear();
9868      Aliases.push_back(OriginalChain);
9869      break;
9870    }
9871
9872    // Don't bother if we've been before.
9873    if (!Visited.insert(Chain.getNode()))
9874      continue;
9875
9876    switch (Chain.getOpcode()) {
9877    case ISD::EntryToken:
9878      // Entry token is ideal chain operand, but handled in FindBetterChain.
9879      break;
9880
9881    case ISD::LOAD:
9882    case ISD::STORE: {
9883      // Get alias information for Chain.
9884      SDValue OpPtr;
9885      int64_t OpSize;
9886      const Value *OpSrcValue;
9887      int OpSrcValueOffset;
9888      unsigned OpSrcValueAlign;
9889      const MDNode *OpSrcTBAAInfo;
9890      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9891                                    OpSrcValue, OpSrcValueOffset,
9892                                    OpSrcValueAlign,
9893                                    OpSrcTBAAInfo);
9894
9895      // If chain is alias then stop here.
9896      if (!(IsLoad && IsOpLoad) &&
9897          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9898                  SrcTBAAInfo,
9899                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9900                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9901        Aliases.push_back(Chain);
9902      } else {
9903        // Look further up the chain.
9904        Chains.push_back(Chain.getOperand(0));
9905        ++Depth;
9906      }
9907      break;
9908    }
9909
9910    case ISD::TokenFactor:
9911      // We have to check each of the operands of the token factor for "small"
9912      // token factors, so we queue them up.  Adding the operands to the queue
9913      // (stack) in reverse order maintains the original order and increases the
9914      // likelihood that getNode will find a matching token factor (CSE.)
9915      if (Chain.getNumOperands() > 16) {
9916        Aliases.push_back(Chain);
9917        break;
9918      }
9919      for (unsigned n = Chain.getNumOperands(); n;)
9920        Chains.push_back(Chain.getOperand(--n));
9921      ++Depth;
9922      break;
9923
9924    default:
9925      // For all other instructions we will just have to take what we can get.
9926      Aliases.push_back(Chain);
9927      break;
9928    }
9929  }
9930}
9931
9932/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9933/// for a better chain (aliasing node.)
9934SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9935  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9936
9937  // Accumulate all the aliases to this node.
9938  GatherAllAliases(N, OldChain, Aliases);
9939
9940  // If no operands then chain to entry token.
9941  if (Aliases.size() == 0)
9942    return DAG.getEntryNode();
9943
9944  // If a single operand then chain to it.  We don't need to revisit it.
9945  if (Aliases.size() == 1)
9946    return Aliases[0];
9947
9948  // Construct a custom tailored token factor.
9949  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9950                     &Aliases[0], Aliases.size());
9951}
9952
9953// SelectionDAG::Combine - This is the entry point for the file.
9954//
9955void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9956                           CodeGenOpt::Level OptLevel) {
9957  /// run - This is the main entry point to this class.
9958  ///
9959  DAGCombiner(*this, AA, OptLevel).Run(Level);
9960}
9961