DAGCombiner.cpp revision 83f743a4d5b4298893adaada0270ff2d832a50c7
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined   , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51  static cl::opt<bool>
52    CombinerAA("combiner-alias-analysis", cl::Hidden,
53               cl::desc("Turn on alias analysis during testing"));
54
55  static cl::opt<bool>
56    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57               cl::desc("Include global information in alias analysis"));
58
59  /// Hidden option to stress test load slicing, i.e., when this option
60  /// is enabled, load slicing bypasses most of its profitability guards.
61  static cl::opt<bool>
62  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63                    cl::desc("Bypass the profitability model of load "
64                             "slicing"),
65                    cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69  class DAGCombiner {
70    SelectionDAG &DAG;
71    const TargetLowering &TLI;
72    CombineLevel Level;
73    CodeGenOpt::Level OptLevel;
74    bool LegalOperations;
75    bool LegalTypes;
76    bool ForCodeSize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    //
80    // This has the semantics that when adding to the worklist,
81    // the item added must be next to be processed. It should
82    // also only appear once. The naive approach to this takes
83    // linear time.
84    //
85    // To reduce the insert/remove time to logarithmic, we use
86    // a set and a vector to maintain our worklist.
87    //
88    // The set contains the items on the worklist, but does not
89    // maintain the order they should be visited.
90    //
91    // The vector maintains the order nodes should be visited, but may
92    // contain duplicate or removed nodes. When choosing a node to
93    // visit, we pop off the order stack until we find an item that is
94    // also in the contents set. All operations are O(log N).
95    SmallPtrSet<SDNode*, 64> WorkListContents;
96    SmallVector<SDNode*, 64> WorkListOrder;
97
98    // AA - Used for DAG load/store alias analysis.
99    AliasAnalysis &AA;
100
101    /// AddUsersToWorkList - When an instruction is simplified, add all users of
102    /// the instruction to the work lists because they might get more simplified
103    /// now.
104    ///
105    void AddUsersToWorkList(SDNode *N) {
106      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107           UI != UE; ++UI)
108        AddToWorkList(*UI);
109    }
110
111    /// visit - call the node-specific routine that knows how to fold each
112    /// particular type of node.
113    SDValue visit(SDNode *N);
114
115  public:
116    /// AddToWorkList - Add to the work list making sure its instance is at the
117    /// back (next to be processed.)
118    void AddToWorkList(SDNode *N) {
119      WorkListContents.insert(N);
120      WorkListOrder.push_back(N);
121    }
122
123    /// removeFromWorkList - remove all instances of N from the worklist.
124    ///
125    void removeFromWorkList(SDNode *N) {
126      WorkListContents.erase(N);
127    }
128
129    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130                      bool AddTo = true);
131
132    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133      return CombineTo(N, &Res, 1, AddTo);
134    }
135
136    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137                      bool AddTo = true) {
138      SDValue To[] = { Res0, Res1 };
139      return CombineTo(N, To, 2, AddTo);
140    }
141
142    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144  private:
145
146    /// SimplifyDemandedBits - Check the specified integer node value to see if
147    /// it can be simplified or if things it uses can be simplified by bit
148    /// propagation.  If so, return true.
149    bool SimplifyDemandedBits(SDValue Op) {
150      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151      APInt Demanded = APInt::getAllOnesValue(BitWidth);
152      return SimplifyDemandedBits(Op, Demanded);
153    }
154
155    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157    bool CombineToPreIndexedLoadStore(SDNode *N);
158    bool CombineToPostIndexedLoadStore(SDNode *N);
159    bool SliceUpLoad(SDNode *N);
160
161    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165    SDValue PromoteIntBinOp(SDValue Op);
166    SDValue PromoteIntShiftOp(SDValue Op);
167    SDValue PromoteExtend(SDValue Op);
168    bool PromoteLoad(SDValue Op);
169
170    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172                         ISD::NodeType ExtType);
173
174    /// combine - call the node-specific routine that knows how to fold each
175    /// particular type of node. If that doesn't do anything, try the
176    /// target-specific DAG combines.
177    SDValue combine(SDNode *N);
178
179    // Visitation implementation - Implement dag node combining for different
180    // node types.  The semantics are as follows:
181    // Return Value:
182    //   SDValue.getNode() == 0 - No change was made
183    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
184    //   otherwise              - N should be replaced by the returned Operand.
185    //
186    SDValue visitTokenFactor(SDNode *N);
187    SDValue visitMERGE_VALUES(SDNode *N);
188    SDValue visitADD(SDNode *N);
189    SDValue visitSUB(SDNode *N);
190    SDValue visitADDC(SDNode *N);
191    SDValue visitSUBC(SDNode *N);
192    SDValue visitADDE(SDNode *N);
193    SDValue visitSUBE(SDNode *N);
194    SDValue visitMUL(SDNode *N);
195    SDValue visitSDIV(SDNode *N);
196    SDValue visitUDIV(SDNode *N);
197    SDValue visitSREM(SDNode *N);
198    SDValue visitUREM(SDNode *N);
199    SDValue visitMULHU(SDNode *N);
200    SDValue visitMULHS(SDNode *N);
201    SDValue visitSMUL_LOHI(SDNode *N);
202    SDValue visitUMUL_LOHI(SDNode *N);
203    SDValue visitSMULO(SDNode *N);
204    SDValue visitUMULO(SDNode *N);
205    SDValue visitSDIVREM(SDNode *N);
206    SDValue visitUDIVREM(SDNode *N);
207    SDValue visitAND(SDNode *N);
208    SDValue visitOR(SDNode *N);
209    SDValue visitXOR(SDNode *N);
210    SDValue SimplifyVBinOp(SDNode *N);
211    SDValue SimplifyVUnaryOp(SDNode *N);
212    SDValue visitSHL(SDNode *N);
213    SDValue visitSRA(SDNode *N);
214    SDValue visitSRL(SDNode *N);
215    SDValue visitCTLZ(SDNode *N);
216    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217    SDValue visitCTTZ(SDNode *N);
218    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219    SDValue visitCTPOP(SDNode *N);
220    SDValue visitSELECT(SDNode *N);
221    SDValue visitVSELECT(SDNode *N);
222    SDValue visitSELECT_CC(SDNode *N);
223    SDValue visitSETCC(SDNode *N);
224    SDValue visitSIGN_EXTEND(SDNode *N);
225    SDValue visitZERO_EXTEND(SDNode *N);
226    SDValue visitANY_EXTEND(SDNode *N);
227    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228    SDValue visitTRUNCATE(SDNode *N);
229    SDValue visitBITCAST(SDNode *N);
230    SDValue visitBUILD_PAIR(SDNode *N);
231    SDValue visitFADD(SDNode *N);
232    SDValue visitFSUB(SDNode *N);
233    SDValue visitFMUL(SDNode *N);
234    SDValue visitFMA(SDNode *N);
235    SDValue visitFDIV(SDNode *N);
236    SDValue visitFREM(SDNode *N);
237    SDValue visitFCOPYSIGN(SDNode *N);
238    SDValue visitSINT_TO_FP(SDNode *N);
239    SDValue visitUINT_TO_FP(SDNode *N);
240    SDValue visitFP_TO_SINT(SDNode *N);
241    SDValue visitFP_TO_UINT(SDNode *N);
242    SDValue visitFP_ROUND(SDNode *N);
243    SDValue visitFP_ROUND_INREG(SDNode *N);
244    SDValue visitFP_EXTEND(SDNode *N);
245    SDValue visitFNEG(SDNode *N);
246    SDValue visitFABS(SDNode *N);
247    SDValue visitFCEIL(SDNode *N);
248    SDValue visitFTRUNC(SDNode *N);
249    SDValue visitFFLOOR(SDNode *N);
250    SDValue visitBRCOND(SDNode *N);
251    SDValue visitBR_CC(SDNode *N);
252    SDValue visitLOAD(SDNode *N);
253    SDValue visitSTORE(SDNode *N);
254    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256    SDValue visitBUILD_VECTOR(SDNode *N);
257    SDValue visitCONCAT_VECTORS(SDNode *N);
258    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259    SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261    SDValue XformToShuffleWithZero(SDNode *N);
262    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270                             SDValue N3, ISD::CondCode CC,
271                             bool NotExtCompare = false);
272    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273                          SDLoc DL, bool foldBooleans = true);
274    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275                                         unsigned HiOp);
276    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278    SDValue BuildSDIV(SDNode *N);
279    SDValue BuildUDIV(SDNode *N);
280    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281                               bool DemandHighBits = true);
282    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284    SDValue ReduceLoadWidth(SDNode *N);
285    SDValue ReduceLoadOpStoreWidth(SDNode *N);
286    SDValue TransformFPLoadStorePair(SDNode *N);
287    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293    /// looking for aliasing nodes and adding them to the Aliases vector.
294    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295                          SmallVectorImpl<SDValue> &Aliases);
296
297    /// isAlias - Return true if there is any possibility that the two addresses
298    /// overlap.
299    bool isAlias(SDValue Ptr1, int64_t Size1,
300                 const Value *SrcValue1, int SrcValueOffset1,
301                 unsigned SrcValueAlign1,
302                 const MDNode *TBAAInfo1,
303                 SDValue Ptr2, int64_t Size2,
304                 const Value *SrcValue2, int SrcValueOffset2,
305                 unsigned SrcValueAlign2,
306                 const MDNode *TBAAInfo2) const;
307
308    /// isAlias - Return true if there is any possibility that the two addresses
309    /// overlap.
310    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDValue &Ptr, int64_t &Size,
316                       const Value *&SrcValue, int &SrcValueOffset,
317                       unsigned &SrcValueAlignment,
318                       const MDNode *&TBAAInfo) const;
319
320    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321    /// looking for a better chain (aliasing node.)
322    SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324    /// Merge consecutive store operations into a wide store.
325    /// This optimization uses wide integers or vectors when possible.
326    /// \return True if some memory operations were changed.
327    bool MergeConsecutiveStores(StoreSDNode *N);
328
329  public:
330    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333      AttributeSet FnAttrs =
334          DAG.getMachineFunction().getFunction()->getAttributes();
335      ForCodeSize =
336          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337                               Attribute::OptimizeForSize) ||
338          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339    }
340
341    /// Run - runs the dag combiner on all nodes in the work list
342    void Run(CombineLevel AtLevel);
343
344    SelectionDAG &getDAG() const { return DAG; }
345
346    /// getShiftAmountTy - Returns a type large enough to hold any valid
347    /// shift amount - before type legalization these can be huge.
348    EVT getShiftAmountTy(EVT LHSTy) {
349      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350      if (LHSTy.isVector())
351        return LHSTy;
352      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy) : TLI.getPointerTy();
353    }
354
355    /// isTypeLegal - This method returns true if we are running before type
356    /// legalization or if the specified VT is legal.
357    bool isTypeLegal(const EVT &VT) {
358      if (!LegalTypes) return true;
359      return TLI.isTypeLegal(VT);
360    }
361
362    /// getSetCCResultType - Convenience wrapper around
363    /// TargetLowering::getSetCCResultType
364    EVT getSetCCResultType(EVT VT) const {
365      return TLI.getSetCCResultType(*DAG.getContext(), VT);
366    }
367  };
368}
369
370
371namespace {
372/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
373/// nodes from the worklist.
374class WorkListRemover : public SelectionDAG::DAGUpdateListener {
375  DAGCombiner &DC;
376public:
377  explicit WorkListRemover(DAGCombiner &dc)
378    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
379
380  virtual void NodeDeleted(SDNode *N, SDNode *E) {
381    DC.removeFromWorkList(N);
382  }
383};
384}
385
386//===----------------------------------------------------------------------===//
387//  TargetLowering::DAGCombinerInfo implementation
388//===----------------------------------------------------------------------===//
389
390void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
391  ((DAGCombiner*)DC)->AddToWorkList(N);
392}
393
394void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
395  ((DAGCombiner*)DC)->removeFromWorkList(N);
396}
397
398SDValue TargetLowering::DAGCombinerInfo::
399CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
400  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
401}
402
403SDValue TargetLowering::DAGCombinerInfo::
404CombineTo(SDNode *N, SDValue Res, bool AddTo) {
405  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
406}
407
408
409SDValue TargetLowering::DAGCombinerInfo::
410CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
411  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
412}
413
414void TargetLowering::DAGCombinerInfo::
415CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
416  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
417}
418
419//===----------------------------------------------------------------------===//
420// Helper Functions
421//===----------------------------------------------------------------------===//
422
423/// isNegatibleForFree - Return 1 if we can compute the negated form of the
424/// specified expression for the same cost as the expression itself, or 2 if we
425/// can compute the negated form more cheaply than the expression itself.
426static char isNegatibleForFree(SDValue Op, bool LegalOperations,
427                               const TargetLowering &TLI,
428                               const TargetOptions *Options,
429                               unsigned Depth = 0) {
430  // fneg is removable even if it has multiple uses.
431  if (Op.getOpcode() == ISD::FNEG) return 2;
432
433  // Don't allow anything with multiple uses.
434  if (!Op.hasOneUse()) return 0;
435
436  // Don't recurse exponentially.
437  if (Depth > 6) return 0;
438
439  switch (Op.getOpcode()) {
440  default: return false;
441  case ISD::ConstantFP:
442    // Don't invert constant FP values after legalize.  The negated constant
443    // isn't necessarily legal.
444    return LegalOperations ? 0 : 1;
445  case ISD::FADD:
446    // FIXME: determine better conditions for this xform.
447    if (!Options->UnsafeFPMath) return 0;
448
449    // After operation legalization, it might not be legal to create new FSUBs.
450    if (LegalOperations &&
451        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
452      return 0;
453
454    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
455    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
456                                    Options, Depth + 1))
457      return V;
458    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
459    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
460                              Depth + 1);
461  case ISD::FSUB:
462    // We can't turn -(A-B) into B-A when we honor signed zeros.
463    if (!Options->UnsafeFPMath) return 0;
464
465    // fold (fneg (fsub A, B)) -> (fsub B, A)
466    return 1;
467
468  case ISD::FMUL:
469  case ISD::FDIV:
470    if (Options->HonorSignDependentRoundingFPMath()) return 0;
471
472    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
473    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
474                                    Options, Depth + 1))
475      return V;
476
477    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
478                              Depth + 1);
479
480  case ISD::FP_EXTEND:
481  case ISD::FP_ROUND:
482  case ISD::FSIN:
483    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
484                              Depth + 1);
485  }
486}
487
488/// GetNegatedExpression - If isNegatibleForFree returns true, this function
489/// returns the newly negated expression.
490static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
491                                    bool LegalOperations, unsigned Depth = 0) {
492  // fneg is removable even if it has multiple uses.
493  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
494
495  // Don't allow anything with multiple uses.
496  assert(Op.hasOneUse() && "Unknown reuse!");
497
498  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
499  switch (Op.getOpcode()) {
500  default: llvm_unreachable("Unknown code");
501  case ISD::ConstantFP: {
502    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
503    V.changeSign();
504    return DAG.getConstantFP(V, Op.getValueType());
505  }
506  case ISD::FADD:
507    // FIXME: determine better conditions for this xform.
508    assert(DAG.getTarget().Options.UnsafeFPMath);
509
510    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
511    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
512                           DAG.getTargetLoweringInfo(),
513                           &DAG.getTarget().Options, Depth+1))
514      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
515                         GetNegatedExpression(Op.getOperand(0), DAG,
516                                              LegalOperations, Depth+1),
517                         Op.getOperand(1));
518    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
519    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
520                       GetNegatedExpression(Op.getOperand(1), DAG,
521                                            LegalOperations, Depth+1),
522                       Op.getOperand(0));
523  case ISD::FSUB:
524    // We can't turn -(A-B) into B-A when we honor signed zeros.
525    assert(DAG.getTarget().Options.UnsafeFPMath);
526
527    // fold (fneg (fsub 0, B)) -> B
528    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
529      if (N0CFP->getValueAPF().isZero())
530        return Op.getOperand(1);
531
532    // fold (fneg (fsub A, B)) -> (fsub B, A)
533    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
534                       Op.getOperand(1), Op.getOperand(0));
535
536  case ISD::FMUL:
537  case ISD::FDIV:
538    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
539
540    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
541    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
542                           DAG.getTargetLoweringInfo(),
543                           &DAG.getTarget().Options, Depth+1))
544      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
545                         GetNegatedExpression(Op.getOperand(0), DAG,
546                                              LegalOperations, Depth+1),
547                         Op.getOperand(1));
548
549    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
550    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
551                       Op.getOperand(0),
552                       GetNegatedExpression(Op.getOperand(1), DAG,
553                                            LegalOperations, Depth+1));
554
555  case ISD::FP_EXTEND:
556  case ISD::FSIN:
557    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
558                       GetNegatedExpression(Op.getOperand(0), DAG,
559                                            LegalOperations, Depth+1));
560  case ISD::FP_ROUND:
561      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
562                         GetNegatedExpression(Op.getOperand(0), DAG,
563                                              LegalOperations, Depth+1),
564                         Op.getOperand(1));
565  }
566}
567
568
569// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
570// that selects between the values 1 and 0, making it equivalent to a setcc.
571// Also, set the incoming LHS, RHS, and CC references to the appropriate
572// nodes based on the type of node we are checking.  This simplifies life a
573// bit for the callers.
574static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
575                              SDValue &CC) {
576  if (N.getOpcode() == ISD::SETCC) {
577    LHS = N.getOperand(0);
578    RHS = N.getOperand(1);
579    CC  = N.getOperand(2);
580    return true;
581  }
582  if (N.getOpcode() == ISD::SELECT_CC &&
583      N.getOperand(2).getOpcode() == ISD::Constant &&
584      N.getOperand(3).getOpcode() == ISD::Constant &&
585      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
586      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
587    LHS = N.getOperand(0);
588    RHS = N.getOperand(1);
589    CC  = N.getOperand(4);
590    return true;
591  }
592  return false;
593}
594
595// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
596// one use.  If this is true, it allows the users to invert the operation for
597// free when it is profitable to do so.
598static bool isOneUseSetCC(SDValue N) {
599  SDValue N0, N1, N2;
600  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
601    return true;
602  return false;
603}
604
605SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
606                                    SDValue N0, SDValue N1) {
607  EVT VT = N0.getValueType();
608  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
609    if (isa<ConstantSDNode>(N1)) {
610      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
611      SDValue OpNode =
612        DAG.FoldConstantArithmetic(Opc, VT,
613                                   cast<ConstantSDNode>(N0.getOperand(1)),
614                                   cast<ConstantSDNode>(N1));
615      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
616    }
617    if (N0.hasOneUse()) {
618      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
619      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
620                                   N0.getOperand(0), N1);
621      AddToWorkList(OpNode.getNode());
622      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
623    }
624  }
625
626  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
627    if (isa<ConstantSDNode>(N0)) {
628      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
629      SDValue OpNode =
630        DAG.FoldConstantArithmetic(Opc, VT,
631                                   cast<ConstantSDNode>(N1.getOperand(1)),
632                                   cast<ConstantSDNode>(N0));
633      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
634    }
635    if (N1.hasOneUse()) {
636      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
637      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
638                                   N1.getOperand(0), N0);
639      AddToWorkList(OpNode.getNode());
640      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
641    }
642  }
643
644  return SDValue();
645}
646
647SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
648                               bool AddTo) {
649  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
650  ++NodesCombined;
651  DEBUG(dbgs() << "\nReplacing.1 ";
652        N->dump(&DAG);
653        dbgs() << "\nWith: ";
654        To[0].getNode()->dump(&DAG);
655        dbgs() << " and " << NumTo-1 << " other values\n";
656        for (unsigned i = 0, e = NumTo; i != e; ++i)
657          assert((!To[i].getNode() ||
658                  N->getValueType(i) == To[i].getValueType()) &&
659                 "Cannot combine value to value of different type!"));
660  WorkListRemover DeadNodes(*this);
661  DAG.ReplaceAllUsesWith(N, To);
662  if (AddTo) {
663    // Push the new nodes and any users onto the worklist
664    for (unsigned i = 0, e = NumTo; i != e; ++i) {
665      if (To[i].getNode()) {
666        AddToWorkList(To[i].getNode());
667        AddUsersToWorkList(To[i].getNode());
668      }
669    }
670  }
671
672  // Finally, if the node is now dead, remove it from the graph.  The node
673  // may not be dead if the replacement process recursively simplified to
674  // something else needing this node.
675  if (N->use_empty()) {
676    // Nodes can be reintroduced into the worklist.  Make sure we do not
677    // process a node that has been replaced.
678    removeFromWorkList(N);
679
680    // Finally, since the node is now dead, remove it from the graph.
681    DAG.DeleteNode(N);
682  }
683  return SDValue(N, 0);
684}
685
686void DAGCombiner::
687CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
688  // Replace all uses.  If any nodes become isomorphic to other nodes and
689  // are deleted, make sure to remove them from our worklist.
690  WorkListRemover DeadNodes(*this);
691  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
692
693  // Push the new node and any (possibly new) users onto the worklist.
694  AddToWorkList(TLO.New.getNode());
695  AddUsersToWorkList(TLO.New.getNode());
696
697  // Finally, if the node is now dead, remove it from the graph.  The node
698  // may not be dead if the replacement process recursively simplified to
699  // something else needing this node.
700  if (TLO.Old.getNode()->use_empty()) {
701    removeFromWorkList(TLO.Old.getNode());
702
703    // If the operands of this node are only used by the node, they will now
704    // be dead.  Make sure to visit them first to delete dead nodes early.
705    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
706      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
707        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
708
709    DAG.DeleteNode(TLO.Old.getNode());
710  }
711}
712
713/// SimplifyDemandedBits - Check the specified integer node value to see if
714/// it can be simplified or if things it uses can be simplified by bit
715/// propagation.  If so, return true.
716bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
717  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
718  APInt KnownZero, KnownOne;
719  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
720    return false;
721
722  // Revisit the node.
723  AddToWorkList(Op.getNode());
724
725  // Replace the old value with the new one.
726  ++NodesCombined;
727  DEBUG(dbgs() << "\nReplacing.2 ";
728        TLO.Old.getNode()->dump(&DAG);
729        dbgs() << "\nWith: ";
730        TLO.New.getNode()->dump(&DAG);
731        dbgs() << '\n');
732
733  CommitTargetLoweringOpt(TLO);
734  return true;
735}
736
737void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
738  SDLoc dl(Load);
739  EVT VT = Load->getValueType(0);
740  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
741
742  DEBUG(dbgs() << "\nReplacing.9 ";
743        Load->dump(&DAG);
744        dbgs() << "\nWith: ";
745        Trunc.getNode()->dump(&DAG);
746        dbgs() << '\n');
747  WorkListRemover DeadNodes(*this);
748  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
749  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
750  removeFromWorkList(Load);
751  DAG.DeleteNode(Load);
752  AddToWorkList(Trunc.getNode());
753}
754
755SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
756  Replace = false;
757  SDLoc dl(Op);
758  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
759    EVT MemVT = LD->getMemoryVT();
760    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
761      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
762                                                  : ISD::EXTLOAD)
763      : LD->getExtensionType();
764    Replace = true;
765    return DAG.getExtLoad(ExtType, dl, PVT,
766                          LD->getChain(), LD->getBasePtr(),
767                          LD->getPointerInfo(),
768                          MemVT, LD->isVolatile(),
769                          LD->isNonTemporal(), LD->getAlignment());
770  }
771
772  unsigned Opc = Op.getOpcode();
773  switch (Opc) {
774  default: break;
775  case ISD::AssertSext:
776    return DAG.getNode(ISD::AssertSext, dl, PVT,
777                       SExtPromoteOperand(Op.getOperand(0), PVT),
778                       Op.getOperand(1));
779  case ISD::AssertZext:
780    return DAG.getNode(ISD::AssertZext, dl, PVT,
781                       ZExtPromoteOperand(Op.getOperand(0), PVT),
782                       Op.getOperand(1));
783  case ISD::Constant: {
784    unsigned ExtOpc =
785      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
786    return DAG.getNode(ExtOpc, dl, PVT, Op);
787  }
788  }
789
790  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
791    return SDValue();
792  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
793}
794
795SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
796  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
797    return SDValue();
798  EVT OldVT = Op.getValueType();
799  SDLoc dl(Op);
800  bool Replace = false;
801  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
802  if (NewOp.getNode() == 0)
803    return SDValue();
804  AddToWorkList(NewOp.getNode());
805
806  if (Replace)
807    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
808  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
809                     DAG.getValueType(OldVT));
810}
811
812SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
813  EVT OldVT = Op.getValueType();
814  SDLoc dl(Op);
815  bool Replace = false;
816  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
817  if (NewOp.getNode() == 0)
818    return SDValue();
819  AddToWorkList(NewOp.getNode());
820
821  if (Replace)
822    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
823  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
824}
825
826/// PromoteIntBinOp - Promote the specified integer binary operation if the
827/// target indicates it is beneficial. e.g. On x86, it's usually better to
828/// promote i16 operations to i32 since i16 instructions are longer.
829SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
830  if (!LegalOperations)
831    return SDValue();
832
833  EVT VT = Op.getValueType();
834  if (VT.isVector() || !VT.isInteger())
835    return SDValue();
836
837  // If operation type is 'undesirable', e.g. i16 on x86, consider
838  // promoting it.
839  unsigned Opc = Op.getOpcode();
840  if (TLI.isTypeDesirableForOp(Opc, VT))
841    return SDValue();
842
843  EVT PVT = VT;
844  // Consult target whether it is a good idea to promote this operation and
845  // what's the right type to promote it to.
846  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
847    assert(PVT != VT && "Don't know what type to promote to!");
848
849    bool Replace0 = false;
850    SDValue N0 = Op.getOperand(0);
851    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
852    if (NN0.getNode() == 0)
853      return SDValue();
854
855    bool Replace1 = false;
856    SDValue N1 = Op.getOperand(1);
857    SDValue NN1;
858    if (N0 == N1)
859      NN1 = NN0;
860    else {
861      NN1 = PromoteOperand(N1, PVT, Replace1);
862      if (NN1.getNode() == 0)
863        return SDValue();
864    }
865
866    AddToWorkList(NN0.getNode());
867    if (NN1.getNode())
868      AddToWorkList(NN1.getNode());
869
870    if (Replace0)
871      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
872    if (Replace1)
873      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
874
875    DEBUG(dbgs() << "\nPromoting ";
876          Op.getNode()->dump(&DAG));
877    SDLoc dl(Op);
878    return DAG.getNode(ISD::TRUNCATE, dl, VT,
879                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
880  }
881  return SDValue();
882}
883
884/// PromoteIntShiftOp - Promote the specified integer shift operation if the
885/// target indicates it is beneficial. e.g. On x86, it's usually better to
886/// promote i16 operations to i32 since i16 instructions are longer.
887SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
888  if (!LegalOperations)
889    return SDValue();
890
891  EVT VT = Op.getValueType();
892  if (VT.isVector() || !VT.isInteger())
893    return SDValue();
894
895  // If operation type is 'undesirable', e.g. i16 on x86, consider
896  // promoting it.
897  unsigned Opc = Op.getOpcode();
898  if (TLI.isTypeDesirableForOp(Opc, VT))
899    return SDValue();
900
901  EVT PVT = VT;
902  // Consult target whether it is a good idea to promote this operation and
903  // what's the right type to promote it to.
904  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
905    assert(PVT != VT && "Don't know what type to promote to!");
906
907    bool Replace = false;
908    SDValue N0 = Op.getOperand(0);
909    if (Opc == ISD::SRA)
910      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
911    else if (Opc == ISD::SRL)
912      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
913    else
914      N0 = PromoteOperand(N0, PVT, Replace);
915    if (N0.getNode() == 0)
916      return SDValue();
917
918    AddToWorkList(N0.getNode());
919    if (Replace)
920      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
921
922    DEBUG(dbgs() << "\nPromoting ";
923          Op.getNode()->dump(&DAG));
924    SDLoc dl(Op);
925    return DAG.getNode(ISD::TRUNCATE, dl, VT,
926                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
927  }
928  return SDValue();
929}
930
931SDValue DAGCombiner::PromoteExtend(SDValue Op) {
932  if (!LegalOperations)
933    return SDValue();
934
935  EVT VT = Op.getValueType();
936  if (VT.isVector() || !VT.isInteger())
937    return SDValue();
938
939  // If operation type is 'undesirable', e.g. i16 on x86, consider
940  // promoting it.
941  unsigned Opc = Op.getOpcode();
942  if (TLI.isTypeDesirableForOp(Opc, VT))
943    return SDValue();
944
945  EVT PVT = VT;
946  // Consult target whether it is a good idea to promote this operation and
947  // what's the right type to promote it to.
948  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
949    assert(PVT != VT && "Don't know what type to promote to!");
950    // fold (aext (aext x)) -> (aext x)
951    // fold (aext (zext x)) -> (zext x)
952    // fold (aext (sext x)) -> (sext x)
953    DEBUG(dbgs() << "\nPromoting ";
954          Op.getNode()->dump(&DAG));
955    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
956  }
957  return SDValue();
958}
959
960bool DAGCombiner::PromoteLoad(SDValue Op) {
961  if (!LegalOperations)
962    return false;
963
964  EVT VT = Op.getValueType();
965  if (VT.isVector() || !VT.isInteger())
966    return false;
967
968  // If operation type is 'undesirable', e.g. i16 on x86, consider
969  // promoting it.
970  unsigned Opc = Op.getOpcode();
971  if (TLI.isTypeDesirableForOp(Opc, VT))
972    return false;
973
974  EVT PVT = VT;
975  // Consult target whether it is a good idea to promote this operation and
976  // what's the right type to promote it to.
977  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
978    assert(PVT != VT && "Don't know what type to promote to!");
979
980    SDLoc dl(Op);
981    SDNode *N = Op.getNode();
982    LoadSDNode *LD = cast<LoadSDNode>(N);
983    EVT MemVT = LD->getMemoryVT();
984    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
985      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
986                                                  : ISD::EXTLOAD)
987      : LD->getExtensionType();
988    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
989                                   LD->getChain(), LD->getBasePtr(),
990                                   LD->getPointerInfo(),
991                                   MemVT, LD->isVolatile(),
992                                   LD->isNonTemporal(), LD->getAlignment());
993    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
994
995    DEBUG(dbgs() << "\nPromoting ";
996          N->dump(&DAG);
997          dbgs() << "\nTo: ";
998          Result.getNode()->dump(&DAG);
999          dbgs() << '\n');
1000    WorkListRemover DeadNodes(*this);
1001    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1002    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1003    removeFromWorkList(N);
1004    DAG.DeleteNode(N);
1005    AddToWorkList(Result.getNode());
1006    return true;
1007  }
1008  return false;
1009}
1010
1011
1012//===----------------------------------------------------------------------===//
1013//  Main DAG Combiner implementation
1014//===----------------------------------------------------------------------===//
1015
1016void DAGCombiner::Run(CombineLevel AtLevel) {
1017  // set the instance variables, so that the various visit routines may use it.
1018  Level = AtLevel;
1019  LegalOperations = Level >= AfterLegalizeVectorOps;
1020  LegalTypes = Level >= AfterLegalizeTypes;
1021
1022  // Add all the dag nodes to the worklist.
1023  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1024       E = DAG.allnodes_end(); I != E; ++I)
1025    AddToWorkList(I);
1026
1027  // Create a dummy node (which is not added to allnodes), that adds a reference
1028  // to the root node, preventing it from being deleted, and tracking any
1029  // changes of the root.
1030  HandleSDNode Dummy(DAG.getRoot());
1031
1032  // The root of the dag may dangle to deleted nodes until the dag combiner is
1033  // done.  Set it to null to avoid confusion.
1034  DAG.setRoot(SDValue());
1035
1036  // while the worklist isn't empty, find a node and
1037  // try and combine it.
1038  while (!WorkListContents.empty()) {
1039    SDNode *N;
1040    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1041    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1042    // worklist *should* contain, and check the node we want to visit is should
1043    // actually be visited.
1044    do {
1045      N = WorkListOrder.pop_back_val();
1046    } while (!WorkListContents.erase(N));
1047
1048    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1049    // N is deleted from the DAG, since they too may now be dead or may have a
1050    // reduced number of uses, allowing other xforms.
1051    if (N->use_empty() && N != &Dummy) {
1052      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1053        AddToWorkList(N->getOperand(i).getNode());
1054
1055      DAG.DeleteNode(N);
1056      continue;
1057    }
1058
1059    SDValue RV = combine(N);
1060
1061    if (RV.getNode() == 0)
1062      continue;
1063
1064    ++NodesCombined;
1065
1066    // If we get back the same node we passed in, rather than a new node or
1067    // zero, we know that the node must have defined multiple values and
1068    // CombineTo was used.  Since CombineTo takes care of the worklist
1069    // mechanics for us, we have no work to do in this case.
1070    if (RV.getNode() == N)
1071      continue;
1072
1073    assert(N->getOpcode() != ISD::DELETED_NODE &&
1074           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1075           "Node was deleted but visit returned new node!");
1076
1077    DEBUG(dbgs() << "\nReplacing.3 ";
1078          N->dump(&DAG);
1079          dbgs() << "\nWith: ";
1080          RV.getNode()->dump(&DAG);
1081          dbgs() << '\n');
1082
1083    // Transfer debug value.
1084    DAG.TransferDbgValues(SDValue(N, 0), RV);
1085    WorkListRemover DeadNodes(*this);
1086    if (N->getNumValues() == RV.getNode()->getNumValues())
1087      DAG.ReplaceAllUsesWith(N, RV.getNode());
1088    else {
1089      assert(N->getValueType(0) == RV.getValueType() &&
1090             N->getNumValues() == 1 && "Type mismatch");
1091      SDValue OpV = RV;
1092      DAG.ReplaceAllUsesWith(N, &OpV);
1093    }
1094
1095    // Push the new node and any users onto the worklist
1096    AddToWorkList(RV.getNode());
1097    AddUsersToWorkList(RV.getNode());
1098
1099    // Add any uses of the old node to the worklist in case this node is the
1100    // last one that uses them.  They may become dead after this node is
1101    // deleted.
1102    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1103      AddToWorkList(N->getOperand(i).getNode());
1104
1105    // Finally, if the node is now dead, remove it from the graph.  The node
1106    // may not be dead if the replacement process recursively simplified to
1107    // something else needing this node.
1108    if (N->use_empty()) {
1109      // Nodes can be reintroduced into the worklist.  Make sure we do not
1110      // process a node that has been replaced.
1111      removeFromWorkList(N);
1112
1113      // Finally, since the node is now dead, remove it from the graph.
1114      DAG.DeleteNode(N);
1115    }
1116  }
1117
1118  // If the root changed (e.g. it was a dead load, update the root).
1119  DAG.setRoot(Dummy.getValue());
1120  DAG.RemoveDeadNodes();
1121}
1122
1123SDValue DAGCombiner::visit(SDNode *N) {
1124  switch (N->getOpcode()) {
1125  default: break;
1126  case ISD::TokenFactor:        return visitTokenFactor(N);
1127  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1128  case ISD::ADD:                return visitADD(N);
1129  case ISD::SUB:                return visitSUB(N);
1130  case ISD::ADDC:               return visitADDC(N);
1131  case ISD::SUBC:               return visitSUBC(N);
1132  case ISD::ADDE:               return visitADDE(N);
1133  case ISD::SUBE:               return visitSUBE(N);
1134  case ISD::MUL:                return visitMUL(N);
1135  case ISD::SDIV:               return visitSDIV(N);
1136  case ISD::UDIV:               return visitUDIV(N);
1137  case ISD::SREM:               return visitSREM(N);
1138  case ISD::UREM:               return visitUREM(N);
1139  case ISD::MULHU:              return visitMULHU(N);
1140  case ISD::MULHS:              return visitMULHS(N);
1141  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1142  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1143  case ISD::SMULO:              return visitSMULO(N);
1144  case ISD::UMULO:              return visitUMULO(N);
1145  case ISD::SDIVREM:            return visitSDIVREM(N);
1146  case ISD::UDIVREM:            return visitUDIVREM(N);
1147  case ISD::AND:                return visitAND(N);
1148  case ISD::OR:                 return visitOR(N);
1149  case ISD::XOR:                return visitXOR(N);
1150  case ISD::SHL:                return visitSHL(N);
1151  case ISD::SRA:                return visitSRA(N);
1152  case ISD::SRL:                return visitSRL(N);
1153  case ISD::CTLZ:               return visitCTLZ(N);
1154  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1155  case ISD::CTTZ:               return visitCTTZ(N);
1156  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1157  case ISD::CTPOP:              return visitCTPOP(N);
1158  case ISD::SELECT:             return visitSELECT(N);
1159  case ISD::VSELECT:            return visitVSELECT(N);
1160  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1161  case ISD::SETCC:              return visitSETCC(N);
1162  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1163  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1164  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1165  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1166  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1167  case ISD::BITCAST:            return visitBITCAST(N);
1168  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1169  case ISD::FADD:               return visitFADD(N);
1170  case ISD::FSUB:               return visitFSUB(N);
1171  case ISD::FMUL:               return visitFMUL(N);
1172  case ISD::FMA:                return visitFMA(N);
1173  case ISD::FDIV:               return visitFDIV(N);
1174  case ISD::FREM:               return visitFREM(N);
1175  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1176  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1177  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1178  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1179  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1180  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1181  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1182  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1183  case ISD::FNEG:               return visitFNEG(N);
1184  case ISD::FABS:               return visitFABS(N);
1185  case ISD::FFLOOR:             return visitFFLOOR(N);
1186  case ISD::FCEIL:              return visitFCEIL(N);
1187  case ISD::FTRUNC:             return visitFTRUNC(N);
1188  case ISD::BRCOND:             return visitBRCOND(N);
1189  case ISD::BR_CC:              return visitBR_CC(N);
1190  case ISD::LOAD:               return visitLOAD(N);
1191  case ISD::STORE:              return visitSTORE(N);
1192  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1193  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1194  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1195  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1196  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1197  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1198  }
1199  return SDValue();
1200}
1201
1202SDValue DAGCombiner::combine(SDNode *N) {
1203  SDValue RV = visit(N);
1204
1205  // If nothing happened, try a target-specific DAG combine.
1206  if (RV.getNode() == 0) {
1207    assert(N->getOpcode() != ISD::DELETED_NODE &&
1208           "Node was deleted but visit returned NULL!");
1209
1210    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1211        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1212
1213      // Expose the DAG combiner to the target combiner impls.
1214      TargetLowering::DAGCombinerInfo
1215        DagCombineInfo(DAG, Level, false, this);
1216
1217      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1218    }
1219  }
1220
1221  // If nothing happened still, try promoting the operation.
1222  if (RV.getNode() == 0) {
1223    switch (N->getOpcode()) {
1224    default: break;
1225    case ISD::ADD:
1226    case ISD::SUB:
1227    case ISD::MUL:
1228    case ISD::AND:
1229    case ISD::OR:
1230    case ISD::XOR:
1231      RV = PromoteIntBinOp(SDValue(N, 0));
1232      break;
1233    case ISD::SHL:
1234    case ISD::SRA:
1235    case ISD::SRL:
1236      RV = PromoteIntShiftOp(SDValue(N, 0));
1237      break;
1238    case ISD::SIGN_EXTEND:
1239    case ISD::ZERO_EXTEND:
1240    case ISD::ANY_EXTEND:
1241      RV = PromoteExtend(SDValue(N, 0));
1242      break;
1243    case ISD::LOAD:
1244      if (PromoteLoad(SDValue(N, 0)))
1245        RV = SDValue(N, 0);
1246      break;
1247    }
1248  }
1249
1250  // If N is a commutative binary node, try commuting it to enable more
1251  // sdisel CSE.
1252  if (RV.getNode() == 0 &&
1253      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1254      N->getNumValues() == 1) {
1255    SDValue N0 = N->getOperand(0);
1256    SDValue N1 = N->getOperand(1);
1257
1258    // Constant operands are canonicalized to RHS.
1259    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1260      SDValue Ops[] = { N1, N0 };
1261      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1262                                            Ops, 2);
1263      if (CSENode)
1264        return SDValue(CSENode, 0);
1265    }
1266  }
1267
1268  return RV;
1269}
1270
1271/// getInputChainForNode - Given a node, return its input chain if it has one,
1272/// otherwise return a null sd operand.
1273static SDValue getInputChainForNode(SDNode *N) {
1274  if (unsigned NumOps = N->getNumOperands()) {
1275    if (N->getOperand(0).getValueType() == MVT::Other)
1276      return N->getOperand(0);
1277    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1278      return N->getOperand(NumOps-1);
1279    for (unsigned i = 1; i < NumOps-1; ++i)
1280      if (N->getOperand(i).getValueType() == MVT::Other)
1281        return N->getOperand(i);
1282  }
1283  return SDValue();
1284}
1285
1286SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1287  // If N has two operands, where one has an input chain equal to the other,
1288  // the 'other' chain is redundant.
1289  if (N->getNumOperands() == 2) {
1290    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1291      return N->getOperand(0);
1292    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1293      return N->getOperand(1);
1294  }
1295
1296  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1297  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1298  SmallPtrSet<SDNode*, 16> SeenOps;
1299  bool Changed = false;             // If we should replace this token factor.
1300
1301  // Start out with this token factor.
1302  TFs.push_back(N);
1303
1304  // Iterate through token factors.  The TFs grows when new token factors are
1305  // encountered.
1306  for (unsigned i = 0; i < TFs.size(); ++i) {
1307    SDNode *TF = TFs[i];
1308
1309    // Check each of the operands.
1310    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1311      SDValue Op = TF->getOperand(i);
1312
1313      switch (Op.getOpcode()) {
1314      case ISD::EntryToken:
1315        // Entry tokens don't need to be added to the list. They are
1316        // rededundant.
1317        Changed = true;
1318        break;
1319
1320      case ISD::TokenFactor:
1321        if (Op.hasOneUse() &&
1322            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1323          // Queue up for processing.
1324          TFs.push_back(Op.getNode());
1325          // Clean up in case the token factor is removed.
1326          AddToWorkList(Op.getNode());
1327          Changed = true;
1328          break;
1329        }
1330        // Fall thru
1331
1332      default:
1333        // Only add if it isn't already in the list.
1334        if (SeenOps.insert(Op.getNode()))
1335          Ops.push_back(Op);
1336        else
1337          Changed = true;
1338        break;
1339      }
1340    }
1341  }
1342
1343  SDValue Result;
1344
1345  // If we've change things around then replace token factor.
1346  if (Changed) {
1347    if (Ops.empty()) {
1348      // The entry token is the only possible outcome.
1349      Result = DAG.getEntryNode();
1350    } else {
1351      // New and improved token factor.
1352      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1353                           MVT::Other, &Ops[0], Ops.size());
1354    }
1355
1356    // Don't add users to work list.
1357    return CombineTo(N, Result, false);
1358  }
1359
1360  return Result;
1361}
1362
1363/// MERGE_VALUES can always be eliminated.
1364SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1365  WorkListRemover DeadNodes(*this);
1366  // Replacing results may cause a different MERGE_VALUES to suddenly
1367  // be CSE'd with N, and carry its uses with it. Iterate until no
1368  // uses remain, to ensure that the node can be safely deleted.
1369  // First add the users of this node to the work list so that they
1370  // can be tried again once they have new operands.
1371  AddUsersToWorkList(N);
1372  do {
1373    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1374      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1375  } while (!N->use_empty());
1376  removeFromWorkList(N);
1377  DAG.DeleteNode(N);
1378  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1379}
1380
1381static
1382SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1383                              SelectionDAG &DAG) {
1384  EVT VT = N0.getValueType();
1385  SDValue N00 = N0.getOperand(0);
1386  SDValue N01 = N0.getOperand(1);
1387  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1388
1389  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1390      isa<ConstantSDNode>(N00.getOperand(1))) {
1391    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1392    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1393                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1394                                 N00.getOperand(0), N01),
1395                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1396                                 N00.getOperand(1), N01));
1397    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1398  }
1399
1400  return SDValue();
1401}
1402
1403SDValue DAGCombiner::visitADD(SDNode *N) {
1404  SDValue N0 = N->getOperand(0);
1405  SDValue N1 = N->getOperand(1);
1406  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1407  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1408  EVT VT = N0.getValueType();
1409
1410  // fold vector ops
1411  if (VT.isVector()) {
1412    SDValue FoldedVOp = SimplifyVBinOp(N);
1413    if (FoldedVOp.getNode()) return FoldedVOp;
1414
1415    // fold (add x, 0) -> x, vector edition
1416    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1417      return N0;
1418    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1419      return N1;
1420  }
1421
1422  // fold (add x, undef) -> undef
1423  if (N0.getOpcode() == ISD::UNDEF)
1424    return N0;
1425  if (N1.getOpcode() == ISD::UNDEF)
1426    return N1;
1427  // fold (add c1, c2) -> c1+c2
1428  if (N0C && N1C)
1429    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1430  // canonicalize constant to RHS
1431  if (N0C && !N1C)
1432    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1433  // fold (add x, 0) -> x
1434  if (N1C && N1C->isNullValue())
1435    return N0;
1436  // fold (add Sym, c) -> Sym+c
1437  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1438    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1439        GA->getOpcode() == ISD::GlobalAddress)
1440      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1441                                  GA->getOffset() +
1442                                    (uint64_t)N1C->getSExtValue());
1443  // fold ((c1-A)+c2) -> (c1+c2)-A
1444  if (N1C && N0.getOpcode() == ISD::SUB)
1445    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1446      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1447                         DAG.getConstant(N1C->getAPIntValue()+
1448                                         N0C->getAPIntValue(), VT),
1449                         N0.getOperand(1));
1450  // reassociate add
1451  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1452  if (RADD.getNode() != 0)
1453    return RADD;
1454  // fold ((0-A) + B) -> B-A
1455  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1456      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1457    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1458  // fold (A + (0-B)) -> A-B
1459  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1460      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1461    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1462  // fold (A+(B-A)) -> B
1463  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1464    return N1.getOperand(0);
1465  // fold ((B-A)+A) -> B
1466  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1467    return N0.getOperand(0);
1468  // fold (A+(B-(A+C))) to (B-C)
1469  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1470      N0 == N1.getOperand(1).getOperand(0))
1471    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1472                       N1.getOperand(1).getOperand(1));
1473  // fold (A+(B-(C+A))) to (B-C)
1474  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1475      N0 == N1.getOperand(1).getOperand(1))
1476    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1477                       N1.getOperand(1).getOperand(0));
1478  // fold (A+((B-A)+or-C)) to (B+or-C)
1479  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1480      N1.getOperand(0).getOpcode() == ISD::SUB &&
1481      N0 == N1.getOperand(0).getOperand(1))
1482    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1483                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1484
1485  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1486  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1487    SDValue N00 = N0.getOperand(0);
1488    SDValue N01 = N0.getOperand(1);
1489    SDValue N10 = N1.getOperand(0);
1490    SDValue N11 = N1.getOperand(1);
1491
1492    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1493      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1494                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1495                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1496  }
1497
1498  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1499    return SDValue(N, 0);
1500
1501  // fold (a+b) -> (a|b) iff a and b share no bits.
1502  if (VT.isInteger() && !VT.isVector()) {
1503    APInt LHSZero, LHSOne;
1504    APInt RHSZero, RHSOne;
1505    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1506
1507    if (LHSZero.getBoolValue()) {
1508      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1509
1510      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1511      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1512      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1513        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1514    }
1515  }
1516
1517  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1518  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1519    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1520    if (Result.getNode()) return Result;
1521  }
1522  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1523    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1524    if (Result.getNode()) return Result;
1525  }
1526
1527  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1528  if (N1.getOpcode() == ISD::SHL &&
1529      N1.getOperand(0).getOpcode() == ISD::SUB)
1530    if (ConstantSDNode *C =
1531          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1532      if (C->getAPIntValue() == 0)
1533        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1534                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1535                                       N1.getOperand(0).getOperand(1),
1536                                       N1.getOperand(1)));
1537  if (N0.getOpcode() == ISD::SHL &&
1538      N0.getOperand(0).getOpcode() == ISD::SUB)
1539    if (ConstantSDNode *C =
1540          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1541      if (C->getAPIntValue() == 0)
1542        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1543                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1544                                       N0.getOperand(0).getOperand(1),
1545                                       N0.getOperand(1)));
1546
1547  if (N1.getOpcode() == ISD::AND) {
1548    SDValue AndOp0 = N1.getOperand(0);
1549    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1550    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1551    unsigned DestBits = VT.getScalarType().getSizeInBits();
1552
1553    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1554    // and similar xforms where the inner op is either ~0 or 0.
1555    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1556      SDLoc DL(N);
1557      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1558    }
1559  }
1560
1561  // add (sext i1), X -> sub X, (zext i1)
1562  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1563      N0.getOperand(0).getValueType() == MVT::i1 &&
1564      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1565    SDLoc DL(N);
1566    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1567    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1568  }
1569
1570  return SDValue();
1571}
1572
1573SDValue DAGCombiner::visitADDC(SDNode *N) {
1574  SDValue N0 = N->getOperand(0);
1575  SDValue N1 = N->getOperand(1);
1576  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1577  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1578  EVT VT = N0.getValueType();
1579
1580  // If the flag result is dead, turn this into an ADD.
1581  if (!N->hasAnyUseOfValue(1))
1582    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1583                     DAG.getNode(ISD::CARRY_FALSE,
1584                                 SDLoc(N), MVT::Glue));
1585
1586  // canonicalize constant to RHS.
1587  if (N0C && !N1C)
1588    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1589
1590  // fold (addc x, 0) -> x + no carry out
1591  if (N1C && N1C->isNullValue())
1592    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1593                                        SDLoc(N), MVT::Glue));
1594
1595  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1596  APInt LHSZero, LHSOne;
1597  APInt RHSZero, RHSOne;
1598  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1599
1600  if (LHSZero.getBoolValue()) {
1601    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1602
1603    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1604    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1605    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1606      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1607                       DAG.getNode(ISD::CARRY_FALSE,
1608                                   SDLoc(N), MVT::Glue));
1609  }
1610
1611  return SDValue();
1612}
1613
1614SDValue DAGCombiner::visitADDE(SDNode *N) {
1615  SDValue N0 = N->getOperand(0);
1616  SDValue N1 = N->getOperand(1);
1617  SDValue CarryIn = N->getOperand(2);
1618  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1619  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1620
1621  // canonicalize constant to RHS
1622  if (N0C && !N1C)
1623    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1624                       N1, N0, CarryIn);
1625
1626  // fold (adde x, y, false) -> (addc x, y)
1627  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1628    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1629
1630  return SDValue();
1631}
1632
1633// Since it may not be valid to emit a fold to zero for vector initializers
1634// check if we can before folding.
1635static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1636                             SelectionDAG &DAG,
1637                             bool LegalOperations, bool LegalTypes) {
1638  if (!VT.isVector())
1639    return DAG.getConstant(0, VT);
1640  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1641    // Produce a vector of zeros.
1642    EVT ElemTy = VT.getVectorElementType();
1643    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1644                      TargetLowering::TypePromoteInteger)
1645      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1646    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1647           "Type for zero vector elements is not legal");
1648    SDValue El = DAG.getConstant(0, ElemTy);
1649    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1650    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1651      &Ops[0], Ops.size());
1652  }
1653  return SDValue();
1654}
1655
1656SDValue DAGCombiner::visitSUB(SDNode *N) {
1657  SDValue N0 = N->getOperand(0);
1658  SDValue N1 = N->getOperand(1);
1659  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1660  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1661  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1662    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1663  EVT VT = N0.getValueType();
1664
1665  // fold vector ops
1666  if (VT.isVector()) {
1667    SDValue FoldedVOp = SimplifyVBinOp(N);
1668    if (FoldedVOp.getNode()) return FoldedVOp;
1669
1670    // fold (sub x, 0) -> x, vector edition
1671    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1672      return N0;
1673  }
1674
1675  // fold (sub x, x) -> 0
1676  // FIXME: Refactor this and xor and other similar operations together.
1677  if (N0 == N1)
1678    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1679  // fold (sub c1, c2) -> c1-c2
1680  if (N0C && N1C)
1681    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1682  // fold (sub x, c) -> (add x, -c)
1683  if (N1C)
1684    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1685                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1686  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1687  if (N0C && N0C->isAllOnesValue())
1688    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1689  // fold A-(A-B) -> B
1690  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1691    return N1.getOperand(1);
1692  // fold (A+B)-A -> B
1693  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1694    return N0.getOperand(1);
1695  // fold (A+B)-B -> A
1696  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1697    return N0.getOperand(0);
1698  // fold C2-(A+C1) -> (C2-C1)-A
1699  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1700    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1701                                   VT);
1702    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1703                       N1.getOperand(0));
1704  }
1705  // fold ((A+(B+or-C))-B) -> A+or-C
1706  if (N0.getOpcode() == ISD::ADD &&
1707      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1708       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1709      N0.getOperand(1).getOperand(0) == N1)
1710    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1711                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1712  // fold ((A+(C+B))-B) -> A+C
1713  if (N0.getOpcode() == ISD::ADD &&
1714      N0.getOperand(1).getOpcode() == ISD::ADD &&
1715      N0.getOperand(1).getOperand(1) == N1)
1716    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1717                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1718  // fold ((A-(B-C))-C) -> A-B
1719  if (N0.getOpcode() == ISD::SUB &&
1720      N0.getOperand(1).getOpcode() == ISD::SUB &&
1721      N0.getOperand(1).getOperand(1) == N1)
1722    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1723                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1724
1725  // If either operand of a sub is undef, the result is undef
1726  if (N0.getOpcode() == ISD::UNDEF)
1727    return N0;
1728  if (N1.getOpcode() == ISD::UNDEF)
1729    return N1;
1730
1731  // If the relocation model supports it, consider symbol offsets.
1732  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1733    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1734      // fold (sub Sym, c) -> Sym-c
1735      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1736        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1737                                    GA->getOffset() -
1738                                      (uint64_t)N1C->getSExtValue());
1739      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1740      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1741        if (GA->getGlobal() == GB->getGlobal())
1742          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1743                                 VT);
1744    }
1745
1746  return SDValue();
1747}
1748
1749SDValue DAGCombiner::visitSUBC(SDNode *N) {
1750  SDValue N0 = N->getOperand(0);
1751  SDValue N1 = N->getOperand(1);
1752  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1753  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1754  EVT VT = N0.getValueType();
1755
1756  // If the flag result is dead, turn this into an SUB.
1757  if (!N->hasAnyUseOfValue(1))
1758    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1759                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1760                                 MVT::Glue));
1761
1762  // fold (subc x, x) -> 0 + no borrow
1763  if (N0 == N1)
1764    return CombineTo(N, DAG.getConstant(0, VT),
1765                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1766                                 MVT::Glue));
1767
1768  // fold (subc x, 0) -> x + no borrow
1769  if (N1C && N1C->isNullValue())
1770    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1771                                        MVT::Glue));
1772
1773  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1774  if (N0C && N0C->isAllOnesValue())
1775    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1776                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1777                                 MVT::Glue));
1778
1779  return SDValue();
1780}
1781
1782SDValue DAGCombiner::visitSUBE(SDNode *N) {
1783  SDValue N0 = N->getOperand(0);
1784  SDValue N1 = N->getOperand(1);
1785  SDValue CarryIn = N->getOperand(2);
1786
1787  // fold (sube x, y, false) -> (subc x, y)
1788  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1789    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1790
1791  return SDValue();
1792}
1793
1794/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
1795/// all the same constant or undefined.
1796static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1797  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1798  if (!C)
1799    return false;
1800
1801  APInt SplatUndef;
1802  unsigned SplatBitSize;
1803  bool HasAnyUndefs;
1804  EVT EltVT = N->getValueType(0).getVectorElementType();
1805  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1806                             HasAnyUndefs) &&
1807          EltVT.getSizeInBits() >= SplatBitSize);
1808}
1809
1810SDValue DAGCombiner::visitMUL(SDNode *N) {
1811  SDValue N0 = N->getOperand(0);
1812  SDValue N1 = N->getOperand(1);
1813  EVT VT = N0.getValueType();
1814
1815  // fold (mul x, undef) -> 0
1816  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1817    return DAG.getConstant(0, VT);
1818
1819  bool N0IsConst = false;
1820  bool N1IsConst = false;
1821  APInt ConstValue0, ConstValue1;
1822  // fold vector ops
1823  if (VT.isVector()) {
1824    SDValue FoldedVOp = SimplifyVBinOp(N);
1825    if (FoldedVOp.getNode()) return FoldedVOp;
1826
1827    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1828    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1829  } else {
1830    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1831    ConstValue0 = N0IsConst? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue() : APInt();
1832    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1833    ConstValue1 = N1IsConst? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue() : APInt();
1834  }
1835
1836  // fold (mul c1, c2) -> c1*c2
1837  if (N0IsConst && N1IsConst)
1838    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1839
1840  // canonicalize constant to RHS
1841  if (N0IsConst && !N1IsConst)
1842    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1843  // fold (mul x, 0) -> 0
1844  if (N1IsConst && ConstValue1 == 0)
1845    return N1;
1846  // We require a splat of the entire scalar bit width for non-contiguous
1847  // bit patterns.
1848  bool IsFullSplat =
1849    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1850  // fold (mul x, 1) -> x
1851  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1852    return N0;
1853  // fold (mul x, -1) -> 0-x
1854  if (N1IsConst && ConstValue1.isAllOnesValue())
1855    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1856                       DAG.getConstant(0, VT), N0);
1857  // fold (mul x, (1 << c)) -> x << c
1858  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1859    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1860                       DAG.getConstant(ConstValue1.logBase2(),
1861                                       getShiftAmountTy(N0.getValueType())));
1862  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1863  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1864    unsigned Log2Val = (-ConstValue1).logBase2();
1865    // FIXME: If the input is something that is easily negated (e.g. a
1866    // single-use add), we should put the negate there.
1867    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1868                       DAG.getConstant(0, VT),
1869                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1870                            DAG.getConstant(Log2Val,
1871                                      getShiftAmountTy(N0.getValueType()))));
1872  }
1873
1874  APInt Val;
1875  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1876  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1877      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1878                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1879    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1880                             N1, N0.getOperand(1));
1881    AddToWorkList(C3.getNode());
1882    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1883                       N0.getOperand(0), C3);
1884  }
1885
1886  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1887  // use.
1888  {
1889    SDValue Sh(0,0), Y(0,0);
1890    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1891    if (N0.getOpcode() == ISD::SHL &&
1892        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1893                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1894        N0.getNode()->hasOneUse()) {
1895      Sh = N0; Y = N1;
1896    } else if (N1.getOpcode() == ISD::SHL &&
1897               isa<ConstantSDNode>(N1.getOperand(1)) &&
1898               N1.getNode()->hasOneUse()) {
1899      Sh = N1; Y = N0;
1900    }
1901
1902    if (Sh.getNode()) {
1903      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1904                                Sh.getOperand(0), Y);
1905      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1906                         Mul, Sh.getOperand(1));
1907    }
1908  }
1909
1910  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1911  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1912      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1913                     isa<ConstantSDNode>(N0.getOperand(1))))
1914    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1915                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1916                                   N0.getOperand(0), N1),
1917                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1918                                   N0.getOperand(1), N1));
1919
1920  // reassociate mul
1921  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1922  if (RMUL.getNode() != 0)
1923    return RMUL;
1924
1925  return SDValue();
1926}
1927
1928SDValue DAGCombiner::visitSDIV(SDNode *N) {
1929  SDValue N0 = N->getOperand(0);
1930  SDValue N1 = N->getOperand(1);
1931  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1932  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1933  EVT VT = N->getValueType(0);
1934
1935  // fold vector ops
1936  if (VT.isVector()) {
1937    SDValue FoldedVOp = SimplifyVBinOp(N);
1938    if (FoldedVOp.getNode()) return FoldedVOp;
1939  }
1940
1941  // fold (sdiv c1, c2) -> c1/c2
1942  if (N0C && N1C && !N1C->isNullValue())
1943    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1944  // fold (sdiv X, 1) -> X
1945  if (N1C && N1C->getAPIntValue() == 1LL)
1946    return N0;
1947  // fold (sdiv X, -1) -> 0-X
1948  if (N1C && N1C->isAllOnesValue())
1949    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1950                       DAG.getConstant(0, VT), N0);
1951  // If we know the sign bits of both operands are zero, strength reduce to a
1952  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1953  if (!VT.isVector()) {
1954    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1955      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1956                         N0, N1);
1957  }
1958  // fold (sdiv X, pow2) -> simple ops after legalize
1959  if (N1C && !N1C->isNullValue() &&
1960      (N1C->getAPIntValue().isPowerOf2() ||
1961       (-N1C->getAPIntValue()).isPowerOf2())) {
1962    // If dividing by powers of two is cheap, then don't perform the following
1963    // fold.
1964    if (TLI.isPow2DivCheap())
1965      return SDValue();
1966
1967    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1968
1969    // Splat the sign bit into the register
1970    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1971                              DAG.getConstant(VT.getSizeInBits()-1,
1972                                       getShiftAmountTy(N0.getValueType())));
1973    AddToWorkList(SGN.getNode());
1974
1975    // Add (N0 < 0) ? abs2 - 1 : 0;
1976    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1977                              DAG.getConstant(VT.getSizeInBits() - lg2,
1978                                       getShiftAmountTy(SGN.getValueType())));
1979    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1980    AddToWorkList(SRL.getNode());
1981    AddToWorkList(ADD.getNode());    // Divide by pow2
1982    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1983                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1984
1985    // If we're dividing by a positive value, we're done.  Otherwise, we must
1986    // negate the result.
1987    if (N1C->getAPIntValue().isNonNegative())
1988      return SRA;
1989
1990    AddToWorkList(SRA.getNode());
1991    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1992                       DAG.getConstant(0, VT), SRA);
1993  }
1994
1995  // if integer divide is expensive and we satisfy the requirements, emit an
1996  // alternate sequence.
1997  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1998    SDValue Op = BuildSDIV(N);
1999    if (Op.getNode()) return Op;
2000  }
2001
2002  // undef / X -> 0
2003  if (N0.getOpcode() == ISD::UNDEF)
2004    return DAG.getConstant(0, VT);
2005  // X / undef -> undef
2006  if (N1.getOpcode() == ISD::UNDEF)
2007    return N1;
2008
2009  return SDValue();
2010}
2011
2012SDValue DAGCombiner::visitUDIV(SDNode *N) {
2013  SDValue N0 = N->getOperand(0);
2014  SDValue N1 = N->getOperand(1);
2015  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2017  EVT VT = N->getValueType(0);
2018
2019  // fold vector ops
2020  if (VT.isVector()) {
2021    SDValue FoldedVOp = SimplifyVBinOp(N);
2022    if (FoldedVOp.getNode()) return FoldedVOp;
2023  }
2024
2025  // fold (udiv c1, c2) -> c1/c2
2026  if (N0C && N1C && !N1C->isNullValue())
2027    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2028  // fold (udiv x, (1 << c)) -> x >>u c
2029  if (N1C && N1C->getAPIntValue().isPowerOf2())
2030    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2031                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2032                                       getShiftAmountTy(N0.getValueType())));
2033  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2034  if (N1.getOpcode() == ISD::SHL) {
2035    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2036      if (SHC->getAPIntValue().isPowerOf2()) {
2037        EVT ADDVT = N1.getOperand(1).getValueType();
2038        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2039                                  N1.getOperand(1),
2040                                  DAG.getConstant(SHC->getAPIntValue()
2041                                                                  .logBase2(),
2042                                                  ADDVT));
2043        AddToWorkList(Add.getNode());
2044        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2045      }
2046    }
2047  }
2048  // fold (udiv x, c) -> alternate
2049  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2050    SDValue Op = BuildUDIV(N);
2051    if (Op.getNode()) return Op;
2052  }
2053
2054  // undef / X -> 0
2055  if (N0.getOpcode() == ISD::UNDEF)
2056    return DAG.getConstant(0, VT);
2057  // X / undef -> undef
2058  if (N1.getOpcode() == ISD::UNDEF)
2059    return N1;
2060
2061  return SDValue();
2062}
2063
2064SDValue DAGCombiner::visitSREM(SDNode *N) {
2065  SDValue N0 = N->getOperand(0);
2066  SDValue N1 = N->getOperand(1);
2067  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2068  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2069  EVT VT = N->getValueType(0);
2070
2071  // fold (srem c1, c2) -> c1%c2
2072  if (N0C && N1C && !N1C->isNullValue())
2073    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2074  // If we know the sign bits of both operands are zero, strength reduce to a
2075  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2076  if (!VT.isVector()) {
2077    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2078      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2079  }
2080
2081  // If X/C can be simplified by the division-by-constant logic, lower
2082  // X%C to the equivalent of X-X/C*C.
2083  if (N1C && !N1C->isNullValue()) {
2084    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2085    AddToWorkList(Div.getNode());
2086    SDValue OptimizedDiv = combine(Div.getNode());
2087    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2088      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2089                                OptimizedDiv, N1);
2090      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2091      AddToWorkList(Mul.getNode());
2092      return Sub;
2093    }
2094  }
2095
2096  // undef % X -> 0
2097  if (N0.getOpcode() == ISD::UNDEF)
2098    return DAG.getConstant(0, VT);
2099  // X % undef -> undef
2100  if (N1.getOpcode() == ISD::UNDEF)
2101    return N1;
2102
2103  return SDValue();
2104}
2105
2106SDValue DAGCombiner::visitUREM(SDNode *N) {
2107  SDValue N0 = N->getOperand(0);
2108  SDValue N1 = N->getOperand(1);
2109  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2110  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2111  EVT VT = N->getValueType(0);
2112
2113  // fold (urem c1, c2) -> c1%c2
2114  if (N0C && N1C && !N1C->isNullValue())
2115    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2116  // fold (urem x, pow2) -> (and x, pow2-1)
2117  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2118    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2119                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2120  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2121  if (N1.getOpcode() == ISD::SHL) {
2122    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2123      if (SHC->getAPIntValue().isPowerOf2()) {
2124        SDValue Add =
2125          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2126                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2127                                 VT));
2128        AddToWorkList(Add.getNode());
2129        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2130      }
2131    }
2132  }
2133
2134  // If X/C can be simplified by the division-by-constant logic, lower
2135  // X%C to the equivalent of X-X/C*C.
2136  if (N1C && !N1C->isNullValue()) {
2137    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2138    AddToWorkList(Div.getNode());
2139    SDValue OptimizedDiv = combine(Div.getNode());
2140    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2141      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2142                                OptimizedDiv, N1);
2143      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2144      AddToWorkList(Mul.getNode());
2145      return Sub;
2146    }
2147  }
2148
2149  // undef % X -> 0
2150  if (N0.getOpcode() == ISD::UNDEF)
2151    return DAG.getConstant(0, VT);
2152  // X % undef -> undef
2153  if (N1.getOpcode() == ISD::UNDEF)
2154    return N1;
2155
2156  return SDValue();
2157}
2158
2159SDValue DAGCombiner::visitMULHS(SDNode *N) {
2160  SDValue N0 = N->getOperand(0);
2161  SDValue N1 = N->getOperand(1);
2162  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2163  EVT VT = N->getValueType(0);
2164  SDLoc DL(N);
2165
2166  // fold (mulhs x, 0) -> 0
2167  if (N1C && N1C->isNullValue())
2168    return N1;
2169  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2170  if (N1C && N1C->getAPIntValue() == 1)
2171    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2172                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2173                                       getShiftAmountTy(N0.getValueType())));
2174  // fold (mulhs x, undef) -> 0
2175  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2176    return DAG.getConstant(0, VT);
2177
2178  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2179  // plus a shift.
2180  if (VT.isSimple() && !VT.isVector()) {
2181    MVT Simple = VT.getSimpleVT();
2182    unsigned SimpleSize = Simple.getSizeInBits();
2183    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2184    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2185      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2186      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2187      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2188      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2189            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2190      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2191    }
2192  }
2193
2194  return SDValue();
2195}
2196
2197SDValue DAGCombiner::visitMULHU(SDNode *N) {
2198  SDValue N0 = N->getOperand(0);
2199  SDValue N1 = N->getOperand(1);
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2201  EVT VT = N->getValueType(0);
2202  SDLoc DL(N);
2203
2204  // fold (mulhu x, 0) -> 0
2205  if (N1C && N1C->isNullValue())
2206    return N1;
2207  // fold (mulhu x, 1) -> 0
2208  if (N1C && N1C->getAPIntValue() == 1)
2209    return DAG.getConstant(0, N0.getValueType());
2210  // fold (mulhu x, undef) -> 0
2211  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2212    return DAG.getConstant(0, VT);
2213
2214  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2215  // plus a shift.
2216  if (VT.isSimple() && !VT.isVector()) {
2217    MVT Simple = VT.getSimpleVT();
2218    unsigned SimpleSize = Simple.getSizeInBits();
2219    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2220    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2221      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2222      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2223      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2224      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2225            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2226      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2227    }
2228  }
2229
2230  return SDValue();
2231}
2232
2233/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2234/// compute two values. LoOp and HiOp give the opcodes for the two computations
2235/// that are being performed. Return true if a simplification was made.
2236///
2237SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2238                                                unsigned HiOp) {
2239  // If the high half is not needed, just compute the low half.
2240  bool HiExists = N->hasAnyUseOfValue(1);
2241  if (!HiExists &&
2242      (!LegalOperations ||
2243       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2244    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2245                              N->op_begin(), N->getNumOperands());
2246    return CombineTo(N, Res, Res);
2247  }
2248
2249  // If the low half is not needed, just compute the high half.
2250  bool LoExists = N->hasAnyUseOfValue(0);
2251  if (!LoExists &&
2252      (!LegalOperations ||
2253       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2254    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2255                              N->op_begin(), N->getNumOperands());
2256    return CombineTo(N, Res, Res);
2257  }
2258
2259  // If both halves are used, return as it is.
2260  if (LoExists && HiExists)
2261    return SDValue();
2262
2263  // If the two computed results can be simplified separately, separate them.
2264  if (LoExists) {
2265    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2266                             N->op_begin(), N->getNumOperands());
2267    AddToWorkList(Lo.getNode());
2268    SDValue LoOpt = combine(Lo.getNode());
2269    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2270        (!LegalOperations ||
2271         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2272      return CombineTo(N, LoOpt, LoOpt);
2273  }
2274
2275  if (HiExists) {
2276    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2277                             N->op_begin(), N->getNumOperands());
2278    AddToWorkList(Hi.getNode());
2279    SDValue HiOpt = combine(Hi.getNode());
2280    if (HiOpt.getNode() && HiOpt != Hi &&
2281        (!LegalOperations ||
2282         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2283      return CombineTo(N, HiOpt, HiOpt);
2284  }
2285
2286  return SDValue();
2287}
2288
2289SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2290  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2291  if (Res.getNode()) return Res;
2292
2293  EVT VT = N->getValueType(0);
2294  SDLoc DL(N);
2295
2296  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2297  // plus a shift.
2298  if (VT.isSimple() && !VT.isVector()) {
2299    MVT Simple = VT.getSimpleVT();
2300    unsigned SimpleSize = Simple.getSizeInBits();
2301    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2302    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2303      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2304      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2305      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2306      // Compute the high part as N1.
2307      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2308            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2309      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2310      // Compute the low part as N0.
2311      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2312      return CombineTo(N, Lo, Hi);
2313    }
2314  }
2315
2316  return SDValue();
2317}
2318
2319SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2320  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2321  if (Res.getNode()) return Res;
2322
2323  EVT VT = N->getValueType(0);
2324  SDLoc DL(N);
2325
2326  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2327  // plus a shift.
2328  if (VT.isSimple() && !VT.isVector()) {
2329    MVT Simple = VT.getSimpleVT();
2330    unsigned SimpleSize = Simple.getSizeInBits();
2331    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2332    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2333      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2334      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2335      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2336      // Compute the high part as N1.
2337      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2338            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2339      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2340      // Compute the low part as N0.
2341      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2342      return CombineTo(N, Lo, Hi);
2343    }
2344  }
2345
2346  return SDValue();
2347}
2348
2349SDValue DAGCombiner::visitSMULO(SDNode *N) {
2350  // (smulo x, 2) -> (saddo x, x)
2351  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2352    if (C2->getAPIntValue() == 2)
2353      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2354                         N->getOperand(0), N->getOperand(0));
2355
2356  return SDValue();
2357}
2358
2359SDValue DAGCombiner::visitUMULO(SDNode *N) {
2360  // (umulo x, 2) -> (uaddo x, x)
2361  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2362    if (C2->getAPIntValue() == 2)
2363      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2364                         N->getOperand(0), N->getOperand(0));
2365
2366  return SDValue();
2367}
2368
2369SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2370  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2371  if (Res.getNode()) return Res;
2372
2373  return SDValue();
2374}
2375
2376SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2377  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2378  if (Res.getNode()) return Res;
2379
2380  return SDValue();
2381}
2382
2383/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2384/// two operands of the same opcode, try to simplify it.
2385SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2386  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2387  EVT VT = N0.getValueType();
2388  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2389
2390  // Bail early if none of these transforms apply.
2391  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2392
2393  // For each of OP in AND/OR/XOR:
2394  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2395  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2396  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2397  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2398  //
2399  // do not sink logical op inside of a vector extend, since it may combine
2400  // into a vsetcc.
2401  EVT Op0VT = N0.getOperand(0).getValueType();
2402  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2403       N0.getOpcode() == ISD::SIGN_EXTEND ||
2404       // Avoid infinite looping with PromoteIntBinOp.
2405       (N0.getOpcode() == ISD::ANY_EXTEND &&
2406        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2407       (N0.getOpcode() == ISD::TRUNCATE &&
2408        (!TLI.isZExtFree(VT, Op0VT) ||
2409         !TLI.isTruncateFree(Op0VT, VT)) &&
2410        TLI.isTypeLegal(Op0VT))) &&
2411      !VT.isVector() &&
2412      Op0VT == N1.getOperand(0).getValueType() &&
2413      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2414    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2415                                 N0.getOperand(0).getValueType(),
2416                                 N0.getOperand(0), N1.getOperand(0));
2417    AddToWorkList(ORNode.getNode());
2418    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2419  }
2420
2421  // For each of OP in SHL/SRL/SRA/AND...
2422  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2423  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2424  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2425  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2426       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2427      N0.getOperand(1) == N1.getOperand(1)) {
2428    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2429                                 N0.getOperand(0).getValueType(),
2430                                 N0.getOperand(0), N1.getOperand(0));
2431    AddToWorkList(ORNode.getNode());
2432    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2433                       ORNode, N0.getOperand(1));
2434  }
2435
2436  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2437  // Only perform this optimization after type legalization and before
2438  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2439  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2440  // we don't want to undo this promotion.
2441  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2442  // on scalars.
2443  if ((N0.getOpcode() == ISD::BITCAST ||
2444       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2445      Level == AfterLegalizeTypes) {
2446    SDValue In0 = N0.getOperand(0);
2447    SDValue In1 = N1.getOperand(0);
2448    EVT In0Ty = In0.getValueType();
2449    EVT In1Ty = In1.getValueType();
2450    SDLoc DL(N);
2451    // If both incoming values are integers, and the original types are the
2452    // same.
2453    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2454      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2455      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2456      AddToWorkList(Op.getNode());
2457      return BC;
2458    }
2459  }
2460
2461  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2462  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2463  // If both shuffles use the same mask, and both shuffle within a single
2464  // vector, then it is worthwhile to move the swizzle after the operation.
2465  // The type-legalizer generates this pattern when loading illegal
2466  // vector types from memory. In many cases this allows additional shuffle
2467  // optimizations.
2468  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2469      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2470      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2471    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2472    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2473
2474    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2475           "Inputs to shuffles are not the same type");
2476
2477    unsigned NumElts = VT.getVectorNumElements();
2478
2479    // Check that both shuffles use the same mask. The masks are known to be of
2480    // the same length because the result vector type is the same.
2481    bool SameMask = true;
2482    for (unsigned i = 0; i != NumElts; ++i) {
2483      int Idx0 = SVN0->getMaskElt(i);
2484      int Idx1 = SVN1->getMaskElt(i);
2485      if (Idx0 != Idx1) {
2486        SameMask = false;
2487        break;
2488      }
2489    }
2490
2491    if (SameMask) {
2492      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2493                               N0.getOperand(0), N1.getOperand(0));
2494      AddToWorkList(Op.getNode());
2495      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2496                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2497    }
2498  }
2499
2500  return SDValue();
2501}
2502
2503SDValue DAGCombiner::visitAND(SDNode *N) {
2504  SDValue N0 = N->getOperand(0);
2505  SDValue N1 = N->getOperand(1);
2506  SDValue LL, LR, RL, RR, CC0, CC1;
2507  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2508  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2509  EVT VT = N1.getValueType();
2510  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2511
2512  // fold vector ops
2513  if (VT.isVector()) {
2514    SDValue FoldedVOp = SimplifyVBinOp(N);
2515    if (FoldedVOp.getNode()) return FoldedVOp;
2516
2517    // fold (and x, 0) -> 0, vector edition
2518    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2519      return N0;
2520    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2521      return N1;
2522
2523    // fold (and x, -1) -> x, vector edition
2524    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2525      return N1;
2526    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2527      return N0;
2528  }
2529
2530  // fold (and x, undef) -> 0
2531  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2532    return DAG.getConstant(0, VT);
2533  // fold (and c1, c2) -> c1&c2
2534  if (N0C && N1C)
2535    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2536  // canonicalize constant to RHS
2537  if (N0C && !N1C)
2538    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2539  // fold (and x, -1) -> x
2540  if (N1C && N1C->isAllOnesValue())
2541    return N0;
2542  // if (and x, c) is known to be zero, return 0
2543  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2544                                   APInt::getAllOnesValue(BitWidth)))
2545    return DAG.getConstant(0, VT);
2546  // reassociate and
2547  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2548  if (RAND.getNode() != 0)
2549    return RAND;
2550  // fold (and (or x, C), D) -> D if (C & D) == D
2551  if (N1C && N0.getOpcode() == ISD::OR)
2552    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2553      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2554        return N1;
2555  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2556  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2557    SDValue N0Op0 = N0.getOperand(0);
2558    APInt Mask = ~N1C->getAPIntValue();
2559    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2560    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2561      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2562                                 N0.getValueType(), N0Op0);
2563
2564      // Replace uses of the AND with uses of the Zero extend node.
2565      CombineTo(N, Zext);
2566
2567      // We actually want to replace all uses of the any_extend with the
2568      // zero_extend, to avoid duplicating things.  This will later cause this
2569      // AND to be folded.
2570      CombineTo(N0.getNode(), Zext);
2571      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2572    }
2573  }
2574  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2575  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2576  // already be zero by virtue of the width of the base type of the load.
2577  //
2578  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2579  // more cases.
2580  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2581       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2582      N0.getOpcode() == ISD::LOAD) {
2583    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2584                                         N0 : N0.getOperand(0) );
2585
2586    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2587    // This can be a pure constant or a vector splat, in which case we treat the
2588    // vector as a scalar and use the splat value.
2589    APInt Constant = APInt::getNullValue(1);
2590    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2591      Constant = C->getAPIntValue();
2592    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2593      APInt SplatValue, SplatUndef;
2594      unsigned SplatBitSize;
2595      bool HasAnyUndefs;
2596      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2597                                             SplatBitSize, HasAnyUndefs);
2598      if (IsSplat) {
2599        // Undef bits can contribute to a possible optimisation if set, so
2600        // set them.
2601        SplatValue |= SplatUndef;
2602
2603        // The splat value may be something like "0x00FFFFFF", which means 0 for
2604        // the first vector value and FF for the rest, repeating. We need a mask
2605        // that will apply equally to all members of the vector, so AND all the
2606        // lanes of the constant together.
2607        EVT VT = Vector->getValueType(0);
2608        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2609
2610        // If the splat value has been compressed to a bitlength lower
2611        // than the size of the vector lane, we need to re-expand it to
2612        // the lane size.
2613        if (BitWidth > SplatBitSize)
2614          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2615               SplatBitSize < BitWidth;
2616               SplatBitSize = SplatBitSize * 2)
2617            SplatValue |= SplatValue.shl(SplatBitSize);
2618
2619        Constant = APInt::getAllOnesValue(BitWidth);
2620        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2621          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2622      }
2623    }
2624
2625    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2626    // actually legal and isn't going to get expanded, else this is a false
2627    // optimisation.
2628    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2629                                                    Load->getMemoryVT());
2630
2631    // Resize the constant to the same size as the original memory access before
2632    // extension. If it is still the AllOnesValue then this AND is completely
2633    // unneeded.
2634    Constant =
2635      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2636
2637    bool B;
2638    switch (Load->getExtensionType()) {
2639    default: B = false; break;
2640    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2641    case ISD::ZEXTLOAD:
2642    case ISD::NON_EXTLOAD: B = true; break;
2643    }
2644
2645    if (B && Constant.isAllOnesValue()) {
2646      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2647      // preserve semantics once we get rid of the AND.
2648      SDValue NewLoad(Load, 0);
2649      if (Load->getExtensionType() == ISD::EXTLOAD) {
2650        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2651                              Load->getValueType(0), SDLoc(Load),
2652                              Load->getChain(), Load->getBasePtr(),
2653                              Load->getOffset(), Load->getMemoryVT(),
2654                              Load->getMemOperand());
2655        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2656        if (Load->getNumValues() == 3) {
2657          // PRE/POST_INC loads have 3 values.
2658          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2659                           NewLoad.getValue(2) };
2660          CombineTo(Load, To, 3, true);
2661        } else {
2662          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2663        }
2664      }
2665
2666      // Fold the AND away, taking care not to fold to the old load node if we
2667      // replaced it.
2668      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2669
2670      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2671    }
2672  }
2673  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2674  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2675    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2676    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2677
2678    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2679        LL.getValueType().isInteger()) {
2680      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2681      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2682        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2683                                     LR.getValueType(), LL, RL);
2684        AddToWorkList(ORNode.getNode());
2685        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2686      }
2687      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2688      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2689        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2690                                      LR.getValueType(), LL, RL);
2691        AddToWorkList(ANDNode.getNode());
2692        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2693      }
2694      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2695      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2696        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2697                                     LR.getValueType(), LL, RL);
2698        AddToWorkList(ORNode.getNode());
2699        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2700      }
2701    }
2702    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2703    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2704        Op0 == Op1 && LL.getValueType().isInteger() &&
2705      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2706                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2707                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2708                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2709      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2710                                    LL, DAG.getConstant(1, LL.getValueType()));
2711      AddToWorkList(ADDNode.getNode());
2712      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2713                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2714    }
2715    // canonicalize equivalent to ll == rl
2716    if (LL == RR && LR == RL) {
2717      Op1 = ISD::getSetCCSwappedOperands(Op1);
2718      std::swap(RL, RR);
2719    }
2720    if (LL == RL && LR == RR) {
2721      bool isInteger = LL.getValueType().isInteger();
2722      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2723      if (Result != ISD::SETCC_INVALID &&
2724          (!LegalOperations ||
2725           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2726            TLI.isOperationLegal(ISD::SETCC,
2727                            getSetCCResultType(N0.getSimpleValueType())))))
2728        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2729                            LL, LR, Result);
2730    }
2731  }
2732
2733  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2734  if (N0.getOpcode() == N1.getOpcode()) {
2735    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2736    if (Tmp.getNode()) return Tmp;
2737  }
2738
2739  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2740  // fold (and (sra)) -> (and (srl)) when possible.
2741  if (!VT.isVector() &&
2742      SimplifyDemandedBits(SDValue(N, 0)))
2743    return SDValue(N, 0);
2744
2745  // fold (zext_inreg (extload x)) -> (zextload x)
2746  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2747    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2748    EVT MemVT = LN0->getMemoryVT();
2749    // If we zero all the possible extended bits, then we can turn this into
2750    // a zextload if we are running before legalize or the operation is legal.
2751    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2752    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2753                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2754        ((!LegalOperations && !LN0->isVolatile()) ||
2755         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2756      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2757                                       LN0->getChain(), LN0->getBasePtr(),
2758                                       LN0->getPointerInfo(), MemVT,
2759                                       LN0->isVolatile(), LN0->isNonTemporal(),
2760                                       LN0->getAlignment());
2761      AddToWorkList(N);
2762      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2763      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2764    }
2765  }
2766  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2767  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2768      N0.hasOneUse()) {
2769    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2770    EVT MemVT = LN0->getMemoryVT();
2771    // If we zero all the possible extended bits, then we can turn this into
2772    // a zextload if we are running before legalize or the operation is legal.
2773    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2774    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2775                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2776        ((!LegalOperations && !LN0->isVolatile()) ||
2777         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2778      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2779                                       LN0->getChain(),
2780                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2781                                       MemVT,
2782                                       LN0->isVolatile(), LN0->isNonTemporal(),
2783                                       LN0->getAlignment());
2784      AddToWorkList(N);
2785      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2786      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2787    }
2788  }
2789
2790  // fold (and (load x), 255) -> (zextload x, i8)
2791  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2792  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2793  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2794              (N0.getOpcode() == ISD::ANY_EXTEND &&
2795               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2796    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2797    LoadSDNode *LN0 = HasAnyExt
2798      ? cast<LoadSDNode>(N0.getOperand(0))
2799      : cast<LoadSDNode>(N0);
2800    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2801        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2802      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2803      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2804        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2805        EVT LoadedVT = LN0->getMemoryVT();
2806
2807        if (ExtVT == LoadedVT &&
2808            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2809          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2810
2811          SDValue NewLoad =
2812            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2813                           LN0->getChain(), LN0->getBasePtr(),
2814                           LN0->getPointerInfo(),
2815                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2816                           LN0->getAlignment());
2817          AddToWorkList(N);
2818          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2819          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2820        }
2821
2822        // Do not change the width of a volatile load.
2823        // Do not generate loads of non-round integer types since these can
2824        // be expensive (and would be wrong if the type is not byte sized).
2825        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2826            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2827          EVT PtrType = LN0->getOperand(1).getValueType();
2828
2829          unsigned Alignment = LN0->getAlignment();
2830          SDValue NewPtr = LN0->getBasePtr();
2831
2832          // For big endian targets, we need to add an offset to the pointer
2833          // to load the correct bytes.  For little endian systems, we merely
2834          // need to read fewer bytes from the same pointer.
2835          if (TLI.isBigEndian()) {
2836            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2837            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2838            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2839            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2840                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2841            Alignment = MinAlign(Alignment, PtrOff);
2842          }
2843
2844          AddToWorkList(NewPtr.getNode());
2845
2846          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2847          SDValue Load =
2848            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2849                           LN0->getChain(), NewPtr,
2850                           LN0->getPointerInfo(),
2851                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2852                           Alignment);
2853          AddToWorkList(N);
2854          CombineTo(LN0, Load, Load.getValue(1));
2855          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2856        }
2857      }
2858    }
2859  }
2860
2861  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2862      VT.getSizeInBits() <= 64) {
2863    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2864      APInt ADDC = ADDI->getAPIntValue();
2865      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2866        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2867        // immediate for an add, but it is legal if its top c2 bits are set,
2868        // transform the ADD so the immediate doesn't need to be materialized
2869        // in a register.
2870        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2871          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2872                                             SRLI->getZExtValue());
2873          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2874            ADDC |= Mask;
2875            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2876              SDValue NewAdd =
2877                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2878                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2879              CombineTo(N0.getNode(), NewAdd);
2880              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2881            }
2882          }
2883        }
2884      }
2885    }
2886  }
2887
2888  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2889  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2890    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2891                                       N0.getOperand(1), false);
2892    if (BSwap.getNode())
2893      return BSwap;
2894  }
2895
2896  return SDValue();
2897}
2898
2899/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2900///
2901SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2902                                        bool DemandHighBits) {
2903  if (!LegalOperations)
2904    return SDValue();
2905
2906  EVT VT = N->getValueType(0);
2907  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2908    return SDValue();
2909  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2910    return SDValue();
2911
2912  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2913  bool LookPassAnd0 = false;
2914  bool LookPassAnd1 = false;
2915  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2916      std::swap(N0, N1);
2917  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2918      std::swap(N0, N1);
2919  if (N0.getOpcode() == ISD::AND) {
2920    if (!N0.getNode()->hasOneUse())
2921      return SDValue();
2922    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2923    if (!N01C || N01C->getZExtValue() != 0xFF00)
2924      return SDValue();
2925    N0 = N0.getOperand(0);
2926    LookPassAnd0 = true;
2927  }
2928
2929  if (N1.getOpcode() == ISD::AND) {
2930    if (!N1.getNode()->hasOneUse())
2931      return SDValue();
2932    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2933    if (!N11C || N11C->getZExtValue() != 0xFF)
2934      return SDValue();
2935    N1 = N1.getOperand(0);
2936    LookPassAnd1 = true;
2937  }
2938
2939  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2940    std::swap(N0, N1);
2941  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2942    return SDValue();
2943  if (!N0.getNode()->hasOneUse() ||
2944      !N1.getNode()->hasOneUse())
2945    return SDValue();
2946
2947  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2948  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2949  if (!N01C || !N11C)
2950    return SDValue();
2951  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2952    return SDValue();
2953
2954  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2955  SDValue N00 = N0->getOperand(0);
2956  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2957    if (!N00.getNode()->hasOneUse())
2958      return SDValue();
2959    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2960    if (!N001C || N001C->getZExtValue() != 0xFF)
2961      return SDValue();
2962    N00 = N00.getOperand(0);
2963    LookPassAnd0 = true;
2964  }
2965
2966  SDValue N10 = N1->getOperand(0);
2967  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2968    if (!N10.getNode()->hasOneUse())
2969      return SDValue();
2970    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2971    if (!N101C || N101C->getZExtValue() != 0xFF00)
2972      return SDValue();
2973    N10 = N10.getOperand(0);
2974    LookPassAnd1 = true;
2975  }
2976
2977  if (N00 != N10)
2978    return SDValue();
2979
2980  // Make sure everything beyond the low halfword gets set to zero since the SRL
2981  // 16 will clear the top bits.
2982  unsigned OpSizeInBits = VT.getSizeInBits();
2983  if (DemandHighBits && OpSizeInBits > 16) {
2984    // If the left-shift isn't masked out then the only way this is a bswap is
2985    // if all bits beyond the low 8 are 0. In that case the entire pattern
2986    // reduces to a left shift anyway: leave it for other parts of the combiner.
2987    if (!LookPassAnd0)
2988      return SDValue();
2989
2990    // However, if the right shift isn't masked out then it might be because
2991    // it's not needed. See if we can spot that too.
2992    if (!LookPassAnd1 &&
2993        !DAG.MaskedValueIsZero(
2994            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2995      return SDValue();
2996  }
2997
2998  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2999  if (OpSizeInBits > 16)
3000    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
3001                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
3002  return Res;
3003}
3004
3005/// isBSwapHWordElement - Return true if the specified node is an element
3006/// that makes up a 32-bit packed halfword byteswap. i.e.
3007/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3008static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
3009  if (!N.getNode()->hasOneUse())
3010    return false;
3011
3012  unsigned Opc = N.getOpcode();
3013  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3014    return false;
3015
3016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3017  if (!N1C)
3018    return false;
3019
3020  unsigned Num;
3021  switch (N1C->getZExtValue()) {
3022  default:
3023    return false;
3024  case 0xFF:       Num = 0; break;
3025  case 0xFF00:     Num = 1; break;
3026  case 0xFF0000:   Num = 2; break;
3027  case 0xFF000000: Num = 3; break;
3028  }
3029
3030  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3031  SDValue N0 = N.getOperand(0);
3032  if (Opc == ISD::AND) {
3033    if (Num == 0 || Num == 2) {
3034      // (x >> 8) & 0xff
3035      // (x >> 8) & 0xff0000
3036      if (N0.getOpcode() != ISD::SRL)
3037        return false;
3038      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3039      if (!C || C->getZExtValue() != 8)
3040        return false;
3041    } else {
3042      // (x << 8) & 0xff00
3043      // (x << 8) & 0xff000000
3044      if (N0.getOpcode() != ISD::SHL)
3045        return false;
3046      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3047      if (!C || C->getZExtValue() != 8)
3048        return false;
3049    }
3050  } else if (Opc == ISD::SHL) {
3051    // (x & 0xff) << 8
3052    // (x & 0xff0000) << 8
3053    if (Num != 0 && Num != 2)
3054      return false;
3055    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3056    if (!C || C->getZExtValue() != 8)
3057      return false;
3058  } else { // Opc == ISD::SRL
3059    // (x & 0xff00) >> 8
3060    // (x & 0xff000000) >> 8
3061    if (Num != 1 && Num != 3)
3062      return false;
3063    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3064    if (!C || C->getZExtValue() != 8)
3065      return false;
3066  }
3067
3068  if (Parts[Num])
3069    return false;
3070
3071  Parts[Num] = N0.getOperand(0).getNode();
3072  return true;
3073}
3074
3075/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3076/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3077/// => (rotl (bswap x), 16)
3078SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3079  if (!LegalOperations)
3080    return SDValue();
3081
3082  EVT VT = N->getValueType(0);
3083  if (VT != MVT::i32)
3084    return SDValue();
3085  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3086    return SDValue();
3087
3088  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3089  // Look for either
3090  // (or (or (and), (and)), (or (and), (and)))
3091  // (or (or (or (and), (and)), (and)), (and))
3092  if (N0.getOpcode() != ISD::OR)
3093    return SDValue();
3094  SDValue N00 = N0.getOperand(0);
3095  SDValue N01 = N0.getOperand(1);
3096
3097  if (N1.getOpcode() == ISD::OR &&
3098      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3099    // (or (or (and), (and)), (or (and), (and)))
3100    SDValue N000 = N00.getOperand(0);
3101    if (!isBSwapHWordElement(N000, Parts))
3102      return SDValue();
3103
3104    SDValue N001 = N00.getOperand(1);
3105    if (!isBSwapHWordElement(N001, Parts))
3106      return SDValue();
3107    SDValue N010 = N01.getOperand(0);
3108    if (!isBSwapHWordElement(N010, Parts))
3109      return SDValue();
3110    SDValue N011 = N01.getOperand(1);
3111    if (!isBSwapHWordElement(N011, Parts))
3112      return SDValue();
3113  } else {
3114    // (or (or (or (and), (and)), (and)), (and))
3115    if (!isBSwapHWordElement(N1, Parts))
3116      return SDValue();
3117    if (!isBSwapHWordElement(N01, Parts))
3118      return SDValue();
3119    if (N00.getOpcode() != ISD::OR)
3120      return SDValue();
3121    SDValue N000 = N00.getOperand(0);
3122    if (!isBSwapHWordElement(N000, Parts))
3123      return SDValue();
3124    SDValue N001 = N00.getOperand(1);
3125    if (!isBSwapHWordElement(N001, Parts))
3126      return SDValue();
3127  }
3128
3129  // Make sure the parts are all coming from the same node.
3130  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3131    return SDValue();
3132
3133  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3134                              SDValue(Parts[0],0));
3135
3136  // Result of the bswap should be rotated by 16. If it's not legal, then
3137  // do  (x << 16) | (x >> 16).
3138  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3139  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3140    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3141  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3142    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3143  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3144                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3145                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3146}
3147
3148SDValue DAGCombiner::visitOR(SDNode *N) {
3149  SDValue N0 = N->getOperand(0);
3150  SDValue N1 = N->getOperand(1);
3151  SDValue LL, LR, RL, RR, CC0, CC1;
3152  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3153  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3154  EVT VT = N1.getValueType();
3155
3156  // fold vector ops
3157  if (VT.isVector()) {
3158    SDValue FoldedVOp = SimplifyVBinOp(N);
3159    if (FoldedVOp.getNode()) return FoldedVOp;
3160
3161    // fold (or x, 0) -> x, vector edition
3162    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3163      return N1;
3164    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3165      return N0;
3166
3167    // fold (or x, -1) -> -1, vector edition
3168    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3169      return N0;
3170    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3171      return N1;
3172  }
3173
3174  // fold (or x, undef) -> -1
3175  if (!LegalOperations &&
3176      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3177    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3178    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3179  }
3180  // fold (or c1, c2) -> c1|c2
3181  if (N0C && N1C)
3182    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3183  // canonicalize constant to RHS
3184  if (N0C && !N1C)
3185    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3186  // fold (or x, 0) -> x
3187  if (N1C && N1C->isNullValue())
3188    return N0;
3189  // fold (or x, -1) -> -1
3190  if (N1C && N1C->isAllOnesValue())
3191    return N1;
3192  // fold (or x, c) -> c iff (x & ~c) == 0
3193  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3194    return N1;
3195
3196  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3197  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3198  if (BSwap.getNode() != 0)
3199    return BSwap;
3200  BSwap = MatchBSwapHWordLow(N, N0, N1);
3201  if (BSwap.getNode() != 0)
3202    return BSwap;
3203
3204  // reassociate or
3205  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3206  if (ROR.getNode() != 0)
3207    return ROR;
3208  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3209  // iff (c1 & c2) == 0.
3210  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3211             isa<ConstantSDNode>(N0.getOperand(1))) {
3212    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3213    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3214      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3215                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3216                                     N0.getOperand(0), N1),
3217                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3218  }
3219  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3220  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3221    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3222    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3223
3224    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3225        LL.getValueType().isInteger()) {
3226      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3227      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3228      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3229          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3230        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3231                                     LR.getValueType(), LL, RL);
3232        AddToWorkList(ORNode.getNode());
3233        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3234      }
3235      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3236      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3237      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3238          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3239        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3240                                      LR.getValueType(), LL, RL);
3241        AddToWorkList(ANDNode.getNode());
3242        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3243      }
3244    }
3245    // canonicalize equivalent to ll == rl
3246    if (LL == RR && LR == RL) {
3247      Op1 = ISD::getSetCCSwappedOperands(Op1);
3248      std::swap(RL, RR);
3249    }
3250    if (LL == RL && LR == RR) {
3251      bool isInteger = LL.getValueType().isInteger();
3252      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3253      if (Result != ISD::SETCC_INVALID &&
3254          (!LegalOperations ||
3255           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3256            TLI.isOperationLegal(ISD::SETCC,
3257              getSetCCResultType(N0.getValueType())))))
3258        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3259                            LL, LR, Result);
3260    }
3261  }
3262
3263  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3264  if (N0.getOpcode() == N1.getOpcode()) {
3265    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3266    if (Tmp.getNode()) return Tmp;
3267  }
3268
3269  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3270  if (N0.getOpcode() == ISD::AND &&
3271      N1.getOpcode() == ISD::AND &&
3272      N0.getOperand(1).getOpcode() == ISD::Constant &&
3273      N1.getOperand(1).getOpcode() == ISD::Constant &&
3274      // Don't increase # computations.
3275      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3276    // We can only do this xform if we know that bits from X that are set in C2
3277    // but not in C1 are already zero.  Likewise for Y.
3278    const APInt &LHSMask =
3279      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3280    const APInt &RHSMask =
3281      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3282
3283    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3284        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3285      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3286                              N0.getOperand(0), N1.getOperand(0));
3287      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3288                         DAG.getConstant(LHSMask | RHSMask, VT));
3289    }
3290  }
3291
3292  // See if this is some rotate idiom.
3293  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3294    return SDValue(Rot, 0);
3295
3296  // Simplify the operands using demanded-bits information.
3297  if (!VT.isVector() &&
3298      SimplifyDemandedBits(SDValue(N, 0)))
3299    return SDValue(N, 0);
3300
3301  return SDValue();
3302}
3303
3304/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3305static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3306  if (Op.getOpcode() == ISD::AND) {
3307    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3308      Mask = Op.getOperand(1);
3309      Op = Op.getOperand(0);
3310    } else {
3311      return false;
3312    }
3313  }
3314
3315  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3316    Shift = Op;
3317    return true;
3318  }
3319
3320  return false;
3321}
3322
3323// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3324// idioms for rotate, and if the target supports rotation instructions, generate
3325// a rot[lr].
3326SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3327  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3328  EVT VT = LHS.getValueType();
3329  if (!TLI.isTypeLegal(VT)) return 0;
3330
3331  // The target must have at least one rotate flavor.
3332  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3333  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3334  if (!HasROTL && !HasROTR) return 0;
3335
3336  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3337  SDValue LHSShift;   // The shift.
3338  SDValue LHSMask;    // AND value if any.
3339  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3340    return 0; // Not part of a rotate.
3341
3342  SDValue RHSShift;   // The shift.
3343  SDValue RHSMask;    // AND value if any.
3344  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3345    return 0; // Not part of a rotate.
3346
3347  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3348    return 0;   // Not shifting the same value.
3349
3350  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3351    return 0;   // Shifts must disagree.
3352
3353  // Canonicalize shl to left side in a shl/srl pair.
3354  if (RHSShift.getOpcode() == ISD::SHL) {
3355    std::swap(LHS, RHS);
3356    std::swap(LHSShift, RHSShift);
3357    std::swap(LHSMask , RHSMask );
3358  }
3359
3360  unsigned OpSizeInBits = VT.getSizeInBits();
3361  SDValue LHSShiftArg = LHSShift.getOperand(0);
3362  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3363  SDValue RHSShiftArg = RHSShift.getOperand(0);
3364  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3365
3366  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3367  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3368  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3369      RHSShiftAmt.getOpcode() == ISD::Constant) {
3370    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3371    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3372    if ((LShVal + RShVal) != OpSizeInBits)
3373      return 0;
3374
3375    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3376                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3377
3378    // If there is an AND of either shifted operand, apply it to the result.
3379    if (LHSMask.getNode() || RHSMask.getNode()) {
3380      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3381
3382      if (LHSMask.getNode()) {
3383        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3384        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3385      }
3386      if (RHSMask.getNode()) {
3387        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3388        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3389      }
3390
3391      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3392    }
3393
3394    return Rot.getNode();
3395  }
3396
3397  // If there is a mask here, and we have a variable shift, we can't be sure
3398  // that we're masking out the right stuff.
3399  if (LHSMask.getNode() || RHSMask.getNode())
3400    return 0;
3401
3402  // If the shift amount is sign/zext/any-extended just peel it off.
3403  SDValue LExtOp0 = LHSShiftAmt;
3404  SDValue RExtOp0 = RHSShiftAmt;
3405  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3406       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3407       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3408       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3409      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3410       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3411       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3412       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3413    LExtOp0 = LHSShiftAmt.getOperand(0);
3414    RExtOp0 = RHSShiftAmt.getOperand(0);
3415  }
3416
3417  if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3418    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3419    //   (rotl x, y)
3420    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3421    //   (rotr x, (sub 32, y))
3422    if (ConstantSDNode *SUBC =
3423            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3424      if (SUBC->getAPIntValue() == OpSizeInBits) {
3425        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3426                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3427      } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3428                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3429        // fold (or (shl (*ext x), (*ext y)),
3430        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3431        //   (*ext (rotl x, y))
3432        // fold (or (shl (*ext x), (*ext y)),
3433        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3434        //   (*ext (rotr x, (sub 32, y)))
3435        SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3436        EVT LArgVT = LArgExtOp0.getValueType();
3437        bool HasROTRWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTR, LArgVT);
3438        bool HasROTLWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTL, LArgVT);
3439        if (HasROTRWithLArg || HasROTLWithLArg) {
3440          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3441            SDValue V =
3442                DAG.getNode(HasROTLWithLArg ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3443                            LArgExtOp0, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3444            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3445          }
3446        }
3447      }
3448    }
3449  } else if (LExtOp0.getOpcode() == ISD::SUB &&
3450             RExtOp0 == LExtOp0.getOperand(1)) {
3451    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3452    //   (rotr x, y)
3453    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3454    //   (rotl x, (sub 32, y))
3455    if (ConstantSDNode *SUBC =
3456            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3457      if (SUBC->getAPIntValue() == OpSizeInBits) {
3458        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3459                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3460      } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3461                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3462        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3463        //          (srl (*ext x), (*ext y))) ->
3464        //   (*ext (rotl x, y))
3465        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3466        //          (srl (*ext x), (*ext y))) ->
3467        //   (*ext (rotr x, (sub 32, y)))
3468        SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3469        EVT RArgVT = RArgExtOp0.getValueType();
3470        bool HasROTRWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTR, RArgVT);
3471        bool HasROTLWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTL, RArgVT);
3472        if (HasROTRWithRArg || HasROTLWithRArg) {
3473          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3474            SDValue V =
3475                DAG.getNode(HasROTRWithRArg ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3476                            RArgExtOp0, HasROTR ? RHSShiftAmt : LHSShiftAmt);
3477            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3478          }
3479        }
3480      }
3481    }
3482  }
3483
3484  return 0;
3485}
3486
3487SDValue DAGCombiner::visitXOR(SDNode *N) {
3488  SDValue N0 = N->getOperand(0);
3489  SDValue N1 = N->getOperand(1);
3490  SDValue LHS, RHS, CC;
3491  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3492  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3493  EVT VT = N0.getValueType();
3494
3495  // fold vector ops
3496  if (VT.isVector()) {
3497    SDValue FoldedVOp = SimplifyVBinOp(N);
3498    if (FoldedVOp.getNode()) return FoldedVOp;
3499
3500    // fold (xor x, 0) -> x, vector edition
3501    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3502      return N1;
3503    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3504      return N0;
3505  }
3506
3507  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3508  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3509    return DAG.getConstant(0, VT);
3510  // fold (xor x, undef) -> undef
3511  if (N0.getOpcode() == ISD::UNDEF)
3512    return N0;
3513  if (N1.getOpcode() == ISD::UNDEF)
3514    return N1;
3515  // fold (xor c1, c2) -> c1^c2
3516  if (N0C && N1C)
3517    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3518  // canonicalize constant to RHS
3519  if (N0C && !N1C)
3520    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3521  // fold (xor x, 0) -> x
3522  if (N1C && N1C->isNullValue())
3523    return N0;
3524  // reassociate xor
3525  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3526  if (RXOR.getNode() != 0)
3527    return RXOR;
3528
3529  // fold !(x cc y) -> (x !cc y)
3530  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3531    bool isInt = LHS.getValueType().isInteger();
3532    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3533                                               isInt);
3534
3535    if (!LegalOperations ||
3536        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3537      switch (N0.getOpcode()) {
3538      default:
3539        llvm_unreachable("Unhandled SetCC Equivalent!");
3540      case ISD::SETCC:
3541        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3542      case ISD::SELECT_CC:
3543        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3544                               N0.getOperand(3), NotCC);
3545      }
3546    }
3547  }
3548
3549  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3550  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3551      N0.getNode()->hasOneUse() &&
3552      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3553    SDValue V = N0.getOperand(0);
3554    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3555                    DAG.getConstant(1, V.getValueType()));
3556    AddToWorkList(V.getNode());
3557    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3558  }
3559
3560  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3561  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3562      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3563    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3564    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3565      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3566      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3567      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3568      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3569      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3570    }
3571  }
3572  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3573  if (N1C && N1C->isAllOnesValue() &&
3574      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3575    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3576    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3577      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3578      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3579      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3580      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3581      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3582    }
3583  }
3584  // fold (xor (and x, y), y) -> (and (not x), y)
3585  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3586      N0->getOperand(1) == N1) {
3587    SDValue X = N0->getOperand(0);
3588    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3589    AddToWorkList(NotX.getNode());
3590    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3591  }
3592  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3593  if (N1C && N0.getOpcode() == ISD::XOR) {
3594    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3595    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3596    if (N00C)
3597      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3598                         DAG.getConstant(N1C->getAPIntValue() ^
3599                                         N00C->getAPIntValue(), VT));
3600    if (N01C)
3601      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3602                         DAG.getConstant(N1C->getAPIntValue() ^
3603                                         N01C->getAPIntValue(), VT));
3604  }
3605  // fold (xor x, x) -> 0
3606  if (N0 == N1)
3607    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3608
3609  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3610  if (N0.getOpcode() == N1.getOpcode()) {
3611    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3612    if (Tmp.getNode()) return Tmp;
3613  }
3614
3615  // Simplify the expression using non-local knowledge.
3616  if (!VT.isVector() &&
3617      SimplifyDemandedBits(SDValue(N, 0)))
3618    return SDValue(N, 0);
3619
3620  return SDValue();
3621}
3622
3623/// visitShiftByConstant - Handle transforms common to the three shifts, when
3624/// the shift amount is a constant.
3625SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3626  SDNode *LHS = N->getOperand(0).getNode();
3627  if (!LHS->hasOneUse()) return SDValue();
3628
3629  // We want to pull some binops through shifts, so that we have (and (shift))
3630  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3631  // thing happens with address calculations, so it's important to canonicalize
3632  // it.
3633  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3634
3635  switch (LHS->getOpcode()) {
3636  default: return SDValue();
3637  case ISD::OR:
3638  case ISD::XOR:
3639    HighBitSet = false; // We can only transform sra if the high bit is clear.
3640    break;
3641  case ISD::AND:
3642    HighBitSet = true;  // We can only transform sra if the high bit is set.
3643    break;
3644  case ISD::ADD:
3645    if (N->getOpcode() != ISD::SHL)
3646      return SDValue(); // only shl(add) not sr[al](add).
3647    HighBitSet = false; // We can only transform sra if the high bit is clear.
3648    break;
3649  }
3650
3651  // We require the RHS of the binop to be a constant as well.
3652  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3653  if (!BinOpCst) return SDValue();
3654
3655  // FIXME: disable this unless the input to the binop is a shift by a constant.
3656  // If it is not a shift, it pessimizes some common cases like:
3657  //
3658  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3659  //    int bar(int *X, int i) { return X[i & 255]; }
3660  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3661  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3662       BinOpLHSVal->getOpcode() != ISD::SRA &&
3663       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3664      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3665    return SDValue();
3666
3667  EVT VT = N->getValueType(0);
3668
3669  // If this is a signed shift right, and the high bit is modified by the
3670  // logical operation, do not perform the transformation. The highBitSet
3671  // boolean indicates the value of the high bit of the constant which would
3672  // cause it to be modified for this operation.
3673  if (N->getOpcode() == ISD::SRA) {
3674    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3675    if (BinOpRHSSignSet != HighBitSet)
3676      return SDValue();
3677  }
3678
3679  // Fold the constants, shifting the binop RHS by the shift amount.
3680  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3681                               N->getValueType(0),
3682                               LHS->getOperand(1), N->getOperand(1));
3683
3684  // Create the new shift.
3685  SDValue NewShift = DAG.getNode(N->getOpcode(),
3686                                 SDLoc(LHS->getOperand(0)),
3687                                 VT, LHS->getOperand(0), N->getOperand(1));
3688
3689  // Create the new binop.
3690  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3691}
3692
3693SDValue DAGCombiner::visitSHL(SDNode *N) {
3694  SDValue N0 = N->getOperand(0);
3695  SDValue N1 = N->getOperand(1);
3696  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3697  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3698  EVT VT = N0.getValueType();
3699  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3700
3701  // fold (shl c1, c2) -> c1<<c2
3702  if (N0C && N1C)
3703    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3704  // fold (shl 0, x) -> 0
3705  if (N0C && N0C->isNullValue())
3706    return N0;
3707  // fold (shl x, c >= size(x)) -> undef
3708  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3709    return DAG.getUNDEF(VT);
3710  // fold (shl x, 0) -> x
3711  if (N1C && N1C->isNullValue())
3712    return N0;
3713  // fold (shl undef, x) -> 0
3714  if (N0.getOpcode() == ISD::UNDEF)
3715    return DAG.getConstant(0, VT);
3716  // if (shl x, c) is known to be zero, return 0
3717  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3718                            APInt::getAllOnesValue(OpSizeInBits)))
3719    return DAG.getConstant(0, VT);
3720  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3721  if (N1.getOpcode() == ISD::TRUNCATE &&
3722      N1.getOperand(0).getOpcode() == ISD::AND &&
3723      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3724    SDValue N101 = N1.getOperand(0).getOperand(1);
3725    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3726      EVT TruncVT = N1.getValueType();
3727      SDValue N100 = N1.getOperand(0).getOperand(0);
3728      APInt TruncC = N101C->getAPIntValue();
3729      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3730      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3731                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3732                                     DAG.getNode(ISD::TRUNCATE,
3733                                                 SDLoc(N),
3734                                                 TruncVT, N100),
3735                                     DAG.getConstant(TruncC, TruncVT)));
3736    }
3737  }
3738
3739  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3740    return SDValue(N, 0);
3741
3742  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3743  if (N1C && N0.getOpcode() == ISD::SHL &&
3744      N0.getOperand(1).getOpcode() == ISD::Constant) {
3745    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3746    uint64_t c2 = N1C->getZExtValue();
3747    if (c1 + c2 >= OpSizeInBits)
3748      return DAG.getConstant(0, VT);
3749    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3750                       DAG.getConstant(c1 + c2, N1.getValueType()));
3751  }
3752
3753  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3754  // For this to be valid, the second form must not preserve any of the bits
3755  // that are shifted out by the inner shift in the first form.  This means
3756  // the outer shift size must be >= the number of bits added by the ext.
3757  // As a corollary, we don't care what kind of ext it is.
3758  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3759              N0.getOpcode() == ISD::ANY_EXTEND ||
3760              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3761      N0.getOperand(0).getOpcode() == ISD::SHL &&
3762      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3763    uint64_t c1 =
3764      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3765    uint64_t c2 = N1C->getZExtValue();
3766    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3767    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3768    if (c2 >= OpSizeInBits - InnerShiftSize) {
3769      if (c1 + c2 >= OpSizeInBits)
3770        return DAG.getConstant(0, VT);
3771      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3772                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3773                                     N0.getOperand(0)->getOperand(0)),
3774                         DAG.getConstant(c1 + c2, N1.getValueType()));
3775    }
3776  }
3777
3778  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3779  // Only fold this if the inner zext has no other uses to avoid increasing
3780  // the total number of instructions.
3781  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3782      N0.getOperand(0).getOpcode() == ISD::SRL &&
3783      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3784    uint64_t c1 =
3785      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3786    if (c1 < VT.getSizeInBits()) {
3787      uint64_t c2 = N1C->getZExtValue();
3788      if (c1 == c2) {
3789        SDValue NewOp0 = N0.getOperand(0);
3790        EVT CountVT = NewOp0.getOperand(1).getValueType();
3791        SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3792                                     NewOp0, DAG.getConstant(c2, CountVT));
3793        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3794      }
3795    }
3796  }
3797
3798  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3799  //                               (and (srl x, (sub c1, c2), MASK)
3800  // Only fold this if the inner shift has no other uses -- if it does, folding
3801  // this will increase the total number of instructions.
3802  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3803      N0.getOperand(1).getOpcode() == ISD::Constant) {
3804    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3805    if (c1 < VT.getSizeInBits()) {
3806      uint64_t c2 = N1C->getZExtValue();
3807      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3808                                         VT.getSizeInBits() - c1);
3809      SDValue Shift;
3810      if (c2 > c1) {
3811        Mask = Mask.shl(c2-c1);
3812        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3813                            DAG.getConstant(c2-c1, N1.getValueType()));
3814      } else {
3815        Mask = Mask.lshr(c1-c2);
3816        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3817                            DAG.getConstant(c1-c2, N1.getValueType()));
3818      }
3819      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3820                         DAG.getConstant(Mask, VT));
3821    }
3822  }
3823  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3824  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3825    SDValue HiBitsMask =
3826      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3827                                            VT.getSizeInBits() -
3828                                              N1C->getZExtValue()),
3829                      VT);
3830    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3831                       HiBitsMask);
3832  }
3833
3834  if (N1C) {
3835    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3836    if (NewSHL.getNode())
3837      return NewSHL;
3838  }
3839
3840  return SDValue();
3841}
3842
3843SDValue DAGCombiner::visitSRA(SDNode *N) {
3844  SDValue N0 = N->getOperand(0);
3845  SDValue N1 = N->getOperand(1);
3846  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3847  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3848  EVT VT = N0.getValueType();
3849  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3850
3851  // fold (sra c1, c2) -> (sra c1, c2)
3852  if (N0C && N1C)
3853    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3854  // fold (sra 0, x) -> 0
3855  if (N0C && N0C->isNullValue())
3856    return N0;
3857  // fold (sra -1, x) -> -1
3858  if (N0C && N0C->isAllOnesValue())
3859    return N0;
3860  // fold (sra x, (setge c, size(x))) -> undef
3861  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3862    return DAG.getUNDEF(VT);
3863  // fold (sra x, 0) -> x
3864  if (N1C && N1C->isNullValue())
3865    return N0;
3866  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3867  // sext_inreg.
3868  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3869    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3870    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3871    if (VT.isVector())
3872      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3873                               ExtVT, VT.getVectorNumElements());
3874    if ((!LegalOperations ||
3875         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3876      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3877                         N0.getOperand(0), DAG.getValueType(ExtVT));
3878  }
3879
3880  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3881  if (N1C && N0.getOpcode() == ISD::SRA) {
3882    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3883      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3884      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3885      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3886                         DAG.getConstant(Sum, N1C->getValueType(0)));
3887    }
3888  }
3889
3890  // fold (sra (shl X, m), (sub result_size, n))
3891  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3892  // result_size - n != m.
3893  // If truncate is free for the target sext(shl) is likely to result in better
3894  // code.
3895  if (N0.getOpcode() == ISD::SHL) {
3896    // Get the two constanst of the shifts, CN0 = m, CN = n.
3897    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3898    if (N01C && N1C) {
3899      // Determine what the truncate's result bitsize and type would be.
3900      EVT TruncVT =
3901        EVT::getIntegerVT(*DAG.getContext(),
3902                          OpSizeInBits - N1C->getZExtValue());
3903      // Determine the residual right-shift amount.
3904      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3905
3906      // If the shift is not a no-op (in which case this should be just a sign
3907      // extend already), the truncated to type is legal, sign_extend is legal
3908      // on that type, and the truncate to that type is both legal and free,
3909      // perform the transform.
3910      if ((ShiftAmt > 0) &&
3911          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3912          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3913          TLI.isTruncateFree(VT, TruncVT)) {
3914
3915          SDValue Amt = DAG.getConstant(ShiftAmt,
3916              getShiftAmountTy(N0.getOperand(0).getValueType()));
3917          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3918                                      N0.getOperand(0), Amt);
3919          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3920                                      Shift);
3921          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3922                             N->getValueType(0), Trunc);
3923      }
3924    }
3925  }
3926
3927  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3928  if (N1.getOpcode() == ISD::TRUNCATE &&
3929      N1.getOperand(0).getOpcode() == ISD::AND &&
3930      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3931    SDValue N101 = N1.getOperand(0).getOperand(1);
3932    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3933      EVT TruncVT = N1.getValueType();
3934      SDValue N100 = N1.getOperand(0).getOperand(0);
3935      APInt TruncC = N101C->getAPIntValue();
3936      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3937      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3938                         DAG.getNode(ISD::AND, SDLoc(N),
3939                                     TruncVT,
3940                                     DAG.getNode(ISD::TRUNCATE,
3941                                                 SDLoc(N),
3942                                                 TruncVT, N100),
3943                                     DAG.getConstant(TruncC, TruncVT)));
3944    }
3945  }
3946
3947  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3948  //      if c1 is equal to the number of bits the trunc removes
3949  if (N0.getOpcode() == ISD::TRUNCATE &&
3950      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3951       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3952      N0.getOperand(0).hasOneUse() &&
3953      N0.getOperand(0).getOperand(1).hasOneUse() &&
3954      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3955    EVT LargeVT = N0.getOperand(0).getValueType();
3956    ConstantSDNode *LargeShiftAmt =
3957      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3958
3959    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3960        LargeShiftAmt->getZExtValue()) {
3961      SDValue Amt =
3962        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3963              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3964      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3965                                N0.getOperand(0).getOperand(0), Amt);
3966      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3967    }
3968  }
3969
3970  // Simplify, based on bits shifted out of the LHS.
3971  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3972    return SDValue(N, 0);
3973
3974
3975  // If the sign bit is known to be zero, switch this to a SRL.
3976  if (DAG.SignBitIsZero(N0))
3977    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3978
3979  if (N1C) {
3980    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3981    if (NewSRA.getNode())
3982      return NewSRA;
3983  }
3984
3985  return SDValue();
3986}
3987
3988SDValue DAGCombiner::visitSRL(SDNode *N) {
3989  SDValue N0 = N->getOperand(0);
3990  SDValue N1 = N->getOperand(1);
3991  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3993  EVT VT = N0.getValueType();
3994  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3995
3996  // fold (srl c1, c2) -> c1 >>u c2
3997  if (N0C && N1C)
3998    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3999  // fold (srl 0, x) -> 0
4000  if (N0C && N0C->isNullValue())
4001    return N0;
4002  // fold (srl x, c >= size(x)) -> undef
4003  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4004    return DAG.getUNDEF(VT);
4005  // fold (srl x, 0) -> x
4006  if (N1C && N1C->isNullValue())
4007    return N0;
4008  // if (srl x, c) is known to be zero, return 0
4009  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4010                                   APInt::getAllOnesValue(OpSizeInBits)))
4011    return DAG.getConstant(0, VT);
4012
4013  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4014  if (N1C && N0.getOpcode() == ISD::SRL &&
4015      N0.getOperand(1).getOpcode() == ISD::Constant) {
4016    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
4017    uint64_t c2 = N1C->getZExtValue();
4018    if (c1 + c2 >= OpSizeInBits)
4019      return DAG.getConstant(0, VT);
4020    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4021                       DAG.getConstant(c1 + c2, N1.getValueType()));
4022  }
4023
4024  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4025  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4026      N0.getOperand(0).getOpcode() == ISD::SRL &&
4027      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4028    uint64_t c1 =
4029      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4030    uint64_t c2 = N1C->getZExtValue();
4031    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4032    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4033    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4034    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4035    if (c1 + OpSizeInBits == InnerShiftSize) {
4036      if (c1 + c2 >= InnerShiftSize)
4037        return DAG.getConstant(0, VT);
4038      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4039                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4040                                     N0.getOperand(0)->getOperand(0),
4041                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4042    }
4043  }
4044
4045  // fold (srl (shl x, c), c) -> (and x, cst2)
4046  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4047      N0.getValueSizeInBits() <= 64) {
4048    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4049    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4050                       DAG.getConstant(~0ULL >> ShAmt, VT));
4051  }
4052
4053  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4054  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4055    // Shifting in all undef bits?
4056    EVT SmallVT = N0.getOperand(0).getValueType();
4057    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4058      return DAG.getUNDEF(VT);
4059
4060    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4061      uint64_t ShiftAmt = N1C->getZExtValue();
4062      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4063                                       N0.getOperand(0),
4064                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4065      AddToWorkList(SmallShift.getNode());
4066      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4067      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4068                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4069                         DAG.getConstant(Mask, VT));
4070    }
4071  }
4072
4073  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4074  // bit, which is unmodified by sra.
4075  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4076    if (N0.getOpcode() == ISD::SRA)
4077      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4078  }
4079
4080  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4081  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4082      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4083    APInt KnownZero, KnownOne;
4084    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4085
4086    // If any of the input bits are KnownOne, then the input couldn't be all
4087    // zeros, thus the result of the srl will always be zero.
4088    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4089
4090    // If all of the bits input the to ctlz node are known to be zero, then
4091    // the result of the ctlz is "32" and the result of the shift is one.
4092    APInt UnknownBits = ~KnownZero;
4093    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4094
4095    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4096    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4097      // Okay, we know that only that the single bit specified by UnknownBits
4098      // could be set on input to the CTLZ node. If this bit is set, the SRL
4099      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4100      // to an SRL/XOR pair, which is likely to simplify more.
4101      unsigned ShAmt = UnknownBits.countTrailingZeros();
4102      SDValue Op = N0.getOperand(0);
4103
4104      if (ShAmt) {
4105        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4106                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4107        AddToWorkList(Op.getNode());
4108      }
4109
4110      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4111                         Op, DAG.getConstant(1, VT));
4112    }
4113  }
4114
4115  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4116  if (N1.getOpcode() == ISD::TRUNCATE &&
4117      N1.getOperand(0).getOpcode() == ISD::AND &&
4118      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4119    SDValue N101 = N1.getOperand(0).getOperand(1);
4120    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4121      EVT TruncVT = N1.getValueType();
4122      SDValue N100 = N1.getOperand(0).getOperand(0);
4123      APInt TruncC = N101C->getAPIntValue();
4124      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4125      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4126                         DAG.getNode(ISD::AND, SDLoc(N),
4127                                     TruncVT,
4128                                     DAG.getNode(ISD::TRUNCATE,
4129                                                 SDLoc(N),
4130                                                 TruncVT, N100),
4131                                     DAG.getConstant(TruncC, TruncVT)));
4132    }
4133  }
4134
4135  // fold operands of srl based on knowledge that the low bits are not
4136  // demanded.
4137  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4138    return SDValue(N, 0);
4139
4140  if (N1C) {
4141    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4142    if (NewSRL.getNode())
4143      return NewSRL;
4144  }
4145
4146  // Attempt to convert a srl of a load into a narrower zero-extending load.
4147  SDValue NarrowLoad = ReduceLoadWidth(N);
4148  if (NarrowLoad.getNode())
4149    return NarrowLoad;
4150
4151  // Here is a common situation. We want to optimize:
4152  //
4153  //   %a = ...
4154  //   %b = and i32 %a, 2
4155  //   %c = srl i32 %b, 1
4156  //   brcond i32 %c ...
4157  //
4158  // into
4159  //
4160  //   %a = ...
4161  //   %b = and %a, 2
4162  //   %c = setcc eq %b, 0
4163  //   brcond %c ...
4164  //
4165  // However when after the source operand of SRL is optimized into AND, the SRL
4166  // itself may not be optimized further. Look for it and add the BRCOND into
4167  // the worklist.
4168  if (N->hasOneUse()) {
4169    SDNode *Use = *N->use_begin();
4170    if (Use->getOpcode() == ISD::BRCOND)
4171      AddToWorkList(Use);
4172    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4173      // Also look pass the truncate.
4174      Use = *Use->use_begin();
4175      if (Use->getOpcode() == ISD::BRCOND)
4176        AddToWorkList(Use);
4177    }
4178  }
4179
4180  return SDValue();
4181}
4182
4183SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4184  SDValue N0 = N->getOperand(0);
4185  EVT VT = N->getValueType(0);
4186
4187  // fold (ctlz c1) -> c2
4188  if (isa<ConstantSDNode>(N0))
4189    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4190  return SDValue();
4191}
4192
4193SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4194  SDValue N0 = N->getOperand(0);
4195  EVT VT = N->getValueType(0);
4196
4197  // fold (ctlz_zero_undef c1) -> c2
4198  if (isa<ConstantSDNode>(N0))
4199    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4200  return SDValue();
4201}
4202
4203SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4204  SDValue N0 = N->getOperand(0);
4205  EVT VT = N->getValueType(0);
4206
4207  // fold (cttz c1) -> c2
4208  if (isa<ConstantSDNode>(N0))
4209    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4210  return SDValue();
4211}
4212
4213SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4214  SDValue N0 = N->getOperand(0);
4215  EVT VT = N->getValueType(0);
4216
4217  // fold (cttz_zero_undef c1) -> c2
4218  if (isa<ConstantSDNode>(N0))
4219    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4220  return SDValue();
4221}
4222
4223SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4224  SDValue N0 = N->getOperand(0);
4225  EVT VT = N->getValueType(0);
4226
4227  // fold (ctpop c1) -> c2
4228  if (isa<ConstantSDNode>(N0))
4229    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4230  return SDValue();
4231}
4232
4233SDValue DAGCombiner::visitSELECT(SDNode *N) {
4234  SDValue N0 = N->getOperand(0);
4235  SDValue N1 = N->getOperand(1);
4236  SDValue N2 = N->getOperand(2);
4237  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4238  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4239  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4240  EVT VT = N->getValueType(0);
4241  EVT VT0 = N0.getValueType();
4242
4243  // fold (select C, X, X) -> X
4244  if (N1 == N2)
4245    return N1;
4246  // fold (select true, X, Y) -> X
4247  if (N0C && !N0C->isNullValue())
4248    return N1;
4249  // fold (select false, X, Y) -> Y
4250  if (N0C && N0C->isNullValue())
4251    return N2;
4252  // fold (select C, 1, X) -> (or C, X)
4253  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4254    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4255  // fold (select C, 0, 1) -> (xor C, 1)
4256  if (VT.isInteger() &&
4257      (VT0 == MVT::i1 ||
4258       (VT0.isInteger() &&
4259        TLI.getBooleanContents(false) ==
4260        TargetLowering::ZeroOrOneBooleanContent)) &&
4261      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4262    SDValue XORNode;
4263    if (VT == VT0)
4264      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4265                         N0, DAG.getConstant(1, VT0));
4266    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4267                          N0, DAG.getConstant(1, VT0));
4268    AddToWorkList(XORNode.getNode());
4269    if (VT.bitsGT(VT0))
4270      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4271    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4272  }
4273  // fold (select C, 0, X) -> (and (not C), X)
4274  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4275    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4276    AddToWorkList(NOTNode.getNode());
4277    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4278  }
4279  // fold (select C, X, 1) -> (or (not C), X)
4280  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4281    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4282    AddToWorkList(NOTNode.getNode());
4283    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4284  }
4285  // fold (select C, X, 0) -> (and C, X)
4286  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4287    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4288  // fold (select X, X, Y) -> (or X, Y)
4289  // fold (select X, 1, Y) -> (or X, Y)
4290  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4291    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4292  // fold (select X, Y, X) -> (and X, Y)
4293  // fold (select X, Y, 0) -> (and X, Y)
4294  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4295    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4296
4297  // If we can fold this based on the true/false value, do so.
4298  if (SimplifySelectOps(N, N1, N2))
4299    return SDValue(N, 0);  // Don't revisit N.
4300
4301  // fold selects based on a setcc into other things, such as min/max/abs
4302  if (N0.getOpcode() == ISD::SETCC) {
4303    // FIXME:
4304    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4305    // having to say they don't support SELECT_CC on every type the DAG knows
4306    // about, since there is no way to mark an opcode illegal at all value types
4307    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4308        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4309      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4310                         N0.getOperand(0), N0.getOperand(1),
4311                         N1, N2, N0.getOperand(2));
4312    return SimplifySelect(SDLoc(N), N0, N1, N2);
4313  }
4314
4315  return SDValue();
4316}
4317
4318SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4319  SDValue N0 = N->getOperand(0);
4320  SDValue N1 = N->getOperand(1);
4321  SDValue N2 = N->getOperand(2);
4322  SDLoc DL(N);
4323
4324  // Canonicalize integer abs.
4325  // vselect (setg[te] X,  0),  X, -X ->
4326  // vselect (setgt    X, -1),  X, -X ->
4327  // vselect (setl[te] X,  0), -X,  X ->
4328  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4329  if (N0.getOpcode() == ISD::SETCC) {
4330    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4331    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4332    bool isAbs = false;
4333    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4334
4335    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4336         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4337        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4338      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4339    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4340             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4341      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4342
4343    if (isAbs) {
4344      EVT VT = LHS.getValueType();
4345      SDValue Shift = DAG.getNode(
4346          ISD::SRA, DL, VT, LHS,
4347          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4348      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4349      AddToWorkList(Shift.getNode());
4350      AddToWorkList(Add.getNode());
4351      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4352    }
4353  }
4354
4355  return SDValue();
4356}
4357
4358SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4359  SDValue N0 = N->getOperand(0);
4360  SDValue N1 = N->getOperand(1);
4361  SDValue N2 = N->getOperand(2);
4362  SDValue N3 = N->getOperand(3);
4363  SDValue N4 = N->getOperand(4);
4364  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4365
4366  // fold select_cc lhs, rhs, x, x, cc -> x
4367  if (N2 == N3)
4368    return N2;
4369
4370  // Determine if the condition we're dealing with is constant
4371  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4372                              N0, N1, CC, SDLoc(N), false);
4373  if (SCC.getNode()) {
4374    AddToWorkList(SCC.getNode());
4375
4376    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4377      if (!SCCC->isNullValue())
4378        return N2;    // cond always true -> true val
4379      else
4380        return N3;    // cond always false -> false val
4381    }
4382
4383    // Fold to a simpler select_cc
4384    if (SCC.getOpcode() == ISD::SETCC)
4385      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4386                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4387                         SCC.getOperand(2));
4388  }
4389
4390  // If we can fold this based on the true/false value, do so.
4391  if (SimplifySelectOps(N, N2, N3))
4392    return SDValue(N, 0);  // Don't revisit N.
4393
4394  // fold select_cc into other things, such as min/max/abs
4395  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4396}
4397
4398SDValue DAGCombiner::visitSETCC(SDNode *N) {
4399  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4400                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4401                       SDLoc(N));
4402}
4403
4404// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4405// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4406// transformation. Returns true if extension are possible and the above
4407// mentioned transformation is profitable.
4408static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4409                                    unsigned ExtOpc,
4410                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4411                                    const TargetLowering &TLI) {
4412  bool HasCopyToRegUses = false;
4413  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4414  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4415                            UE = N0.getNode()->use_end();
4416       UI != UE; ++UI) {
4417    SDNode *User = *UI;
4418    if (User == N)
4419      continue;
4420    if (UI.getUse().getResNo() != N0.getResNo())
4421      continue;
4422    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4423    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4424      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4425      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4426        // Sign bits will be lost after a zext.
4427        return false;
4428      bool Add = false;
4429      for (unsigned i = 0; i != 2; ++i) {
4430        SDValue UseOp = User->getOperand(i);
4431        if (UseOp == N0)
4432          continue;
4433        if (!isa<ConstantSDNode>(UseOp))
4434          return false;
4435        Add = true;
4436      }
4437      if (Add)
4438        ExtendNodes.push_back(User);
4439      continue;
4440    }
4441    // If truncates aren't free and there are users we can't
4442    // extend, it isn't worthwhile.
4443    if (!isTruncFree)
4444      return false;
4445    // Remember if this value is live-out.
4446    if (User->getOpcode() == ISD::CopyToReg)
4447      HasCopyToRegUses = true;
4448  }
4449
4450  if (HasCopyToRegUses) {
4451    bool BothLiveOut = false;
4452    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4453         UI != UE; ++UI) {
4454      SDUse &Use = UI.getUse();
4455      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4456        BothLiveOut = true;
4457        break;
4458      }
4459    }
4460    if (BothLiveOut)
4461      // Both unextended and extended values are live out. There had better be
4462      // a good reason for the transformation.
4463      return ExtendNodes.size();
4464  }
4465  return true;
4466}
4467
4468void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4469                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4470                                  ISD::NodeType ExtType) {
4471  // Extend SetCC uses if necessary.
4472  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4473    SDNode *SetCC = SetCCs[i];
4474    SmallVector<SDValue, 4> Ops;
4475
4476    for (unsigned j = 0; j != 2; ++j) {
4477      SDValue SOp = SetCC->getOperand(j);
4478      if (SOp == Trunc)
4479        Ops.push_back(ExtLoad);
4480      else
4481        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4482    }
4483
4484    Ops.push_back(SetCC->getOperand(2));
4485    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4486                                 &Ops[0], Ops.size()));
4487  }
4488}
4489
4490SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4491  SDValue N0 = N->getOperand(0);
4492  EVT VT = N->getValueType(0);
4493
4494  // fold (sext c1) -> c1
4495  if (isa<ConstantSDNode>(N0))
4496    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4497
4498  // fold (sext (sext x)) -> (sext x)
4499  // fold (sext (aext x)) -> (sext x)
4500  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4501    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4502                       N0.getOperand(0));
4503
4504  if (N0.getOpcode() == ISD::TRUNCATE) {
4505    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4506    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4507    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4508    if (NarrowLoad.getNode()) {
4509      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4510      if (NarrowLoad.getNode() != N0.getNode()) {
4511        CombineTo(N0.getNode(), NarrowLoad);
4512        // CombineTo deleted the truncate, if needed, but not what's under it.
4513        AddToWorkList(oye);
4514      }
4515      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4516    }
4517
4518    // See if the value being truncated is already sign extended.  If so, just
4519    // eliminate the trunc/sext pair.
4520    SDValue Op = N0.getOperand(0);
4521    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4522    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4523    unsigned DestBits = VT.getScalarType().getSizeInBits();
4524    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4525
4526    if (OpBits == DestBits) {
4527      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4528      // bits, it is already ready.
4529      if (NumSignBits > DestBits-MidBits)
4530        return Op;
4531    } else if (OpBits < DestBits) {
4532      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4533      // bits, just sext from i32.
4534      if (NumSignBits > OpBits-MidBits)
4535        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4536    } else {
4537      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4538      // bits, just truncate to i32.
4539      if (NumSignBits > OpBits-MidBits)
4540        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4541    }
4542
4543    // fold (sext (truncate x)) -> (sextinreg x).
4544    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4545                                                 N0.getValueType())) {
4546      if (OpBits < DestBits)
4547        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4548      else if (OpBits > DestBits)
4549        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4550      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4551                         DAG.getValueType(N0.getValueType()));
4552    }
4553  }
4554
4555  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4556  // None of the supported targets knows how to perform load and sign extend
4557  // on vectors in one instruction.  We only perform this transformation on
4558  // scalars.
4559  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4560      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4561       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4562    bool DoXform = true;
4563    SmallVector<SDNode*, 4> SetCCs;
4564    if (!N0.hasOneUse())
4565      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4566    if (DoXform) {
4567      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4568      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4569                                       LN0->getChain(),
4570                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4571                                       N0.getValueType(),
4572                                       LN0->isVolatile(), LN0->isNonTemporal(),
4573                                       LN0->getAlignment());
4574      CombineTo(N, ExtLoad);
4575      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4576                                  N0.getValueType(), ExtLoad);
4577      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4578      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4579                      ISD::SIGN_EXTEND);
4580      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4581    }
4582  }
4583
4584  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4585  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4586  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4587      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4588    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4589    EVT MemVT = LN0->getMemoryVT();
4590    if ((!LegalOperations && !LN0->isVolatile()) ||
4591        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4592      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4593                                       LN0->getChain(),
4594                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4595                                       MemVT,
4596                                       LN0->isVolatile(), LN0->isNonTemporal(),
4597                                       LN0->getAlignment());
4598      CombineTo(N, ExtLoad);
4599      CombineTo(N0.getNode(),
4600                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4601                            N0.getValueType(), ExtLoad),
4602                ExtLoad.getValue(1));
4603      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4604    }
4605  }
4606
4607  // fold (sext (and/or/xor (load x), cst)) ->
4608  //      (and/or/xor (sextload x), (sext cst))
4609  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4610       N0.getOpcode() == ISD::XOR) &&
4611      isa<LoadSDNode>(N0.getOperand(0)) &&
4612      N0.getOperand(1).getOpcode() == ISD::Constant &&
4613      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4614      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4615    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4616    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4617      bool DoXform = true;
4618      SmallVector<SDNode*, 4> SetCCs;
4619      if (!N0.hasOneUse())
4620        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4621                                          SetCCs, TLI);
4622      if (DoXform) {
4623        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4624                                         LN0->getChain(), LN0->getBasePtr(),
4625                                         LN0->getPointerInfo(),
4626                                         LN0->getMemoryVT(),
4627                                         LN0->isVolatile(),
4628                                         LN0->isNonTemporal(),
4629                                         LN0->getAlignment());
4630        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4631        Mask = Mask.sext(VT.getSizeInBits());
4632        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4633                                  ExtLoad, DAG.getConstant(Mask, VT));
4634        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4635                                    SDLoc(N0.getOperand(0)),
4636                                    N0.getOperand(0).getValueType(), ExtLoad);
4637        CombineTo(N, And);
4638        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4639        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4640                        ISD::SIGN_EXTEND);
4641        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4642      }
4643    }
4644  }
4645
4646  if (N0.getOpcode() == ISD::SETCC) {
4647    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4648    // Only do this before legalize for now.
4649    if (VT.isVector() && !LegalOperations &&
4650        TLI.getBooleanContents(true) ==
4651          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4652      EVT N0VT = N0.getOperand(0).getValueType();
4653      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4654      // of the same size as the compared operands. Only optimize sext(setcc())
4655      // if this is the case.
4656      EVT SVT = getSetCCResultType(N0VT);
4657
4658      // We know that the # elements of the results is the same as the
4659      // # elements of the compare (and the # elements of the compare result
4660      // for that matter).  Check to see that they are the same size.  If so,
4661      // we know that the element size of the sext'd result matches the
4662      // element size of the compare operands.
4663      if (VT.getSizeInBits() == SVT.getSizeInBits())
4664        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4665                             N0.getOperand(1),
4666                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4667
4668      // If the desired elements are smaller or larger than the source
4669      // elements we can use a matching integer vector type and then
4670      // truncate/sign extend
4671      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4672      if (SVT == MatchingVectorType) {
4673        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4674                               N0.getOperand(0), N0.getOperand(1),
4675                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4676        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4677      }
4678    }
4679
4680    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4681    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4682    SDValue NegOne =
4683      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4684    SDValue SCC =
4685      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4686                       NegOne, DAG.getConstant(0, VT),
4687                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4688    if (SCC.getNode()) return SCC;
4689    if (!VT.isVector() &&
4690        (!LegalOperations ||
4691         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4692      return DAG.getSelect(SDLoc(N), VT,
4693                           DAG.getSetCC(SDLoc(N),
4694                                        getSetCCResultType(VT),
4695                                        N0.getOperand(0), N0.getOperand(1),
4696                                        cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4697                           NegOne, DAG.getConstant(0, VT));
4698    }
4699  }
4700
4701  // fold (sext x) -> (zext x) if the sign bit is known zero.
4702  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4703      DAG.SignBitIsZero(N0))
4704    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4705
4706  return SDValue();
4707}
4708
4709// isTruncateOf - If N is a truncate of some other value, return true, record
4710// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4711// This function computes KnownZero to avoid a duplicated call to
4712// ComputeMaskedBits in the caller.
4713static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4714                         APInt &KnownZero) {
4715  APInt KnownOne;
4716  if (N->getOpcode() == ISD::TRUNCATE) {
4717    Op = N->getOperand(0);
4718    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4719    return true;
4720  }
4721
4722  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4723      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4724    return false;
4725
4726  SDValue Op0 = N->getOperand(0);
4727  SDValue Op1 = N->getOperand(1);
4728  assert(Op0.getValueType() == Op1.getValueType());
4729
4730  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4731  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4732  if (COp0 && COp0->isNullValue())
4733    Op = Op1;
4734  else if (COp1 && COp1->isNullValue())
4735    Op = Op0;
4736  else
4737    return false;
4738
4739  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4740
4741  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4742    return false;
4743
4744  return true;
4745}
4746
4747SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4748  SDValue N0 = N->getOperand(0);
4749  EVT VT = N->getValueType(0);
4750
4751  // fold (zext c1) -> c1
4752  if (isa<ConstantSDNode>(N0))
4753    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4754  // fold (zext (zext x)) -> (zext x)
4755  // fold (zext (aext x)) -> (zext x)
4756  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4757    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4758                       N0.getOperand(0));
4759
4760  // fold (zext (truncate x)) -> (zext x) or
4761  //      (zext (truncate x)) -> (truncate x)
4762  // This is valid when the truncated bits of x are already zero.
4763  // FIXME: We should extend this to work for vectors too.
4764  SDValue Op;
4765  APInt KnownZero;
4766  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4767    APInt TruncatedBits =
4768      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4769      APInt(Op.getValueSizeInBits(), 0) :
4770      APInt::getBitsSet(Op.getValueSizeInBits(),
4771                        N0.getValueSizeInBits(),
4772                        std::min(Op.getValueSizeInBits(),
4773                                 VT.getSizeInBits()));
4774    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4775      if (VT.bitsGT(Op.getValueType()))
4776        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4777      if (VT.bitsLT(Op.getValueType()))
4778        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4779
4780      return Op;
4781    }
4782  }
4783
4784  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4785  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4786  if (N0.getOpcode() == ISD::TRUNCATE) {
4787    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4788    if (NarrowLoad.getNode()) {
4789      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4790      if (NarrowLoad.getNode() != N0.getNode()) {
4791        CombineTo(N0.getNode(), NarrowLoad);
4792        // CombineTo deleted the truncate, if needed, but not what's under it.
4793        AddToWorkList(oye);
4794      }
4795      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4796    }
4797  }
4798
4799  // fold (zext (truncate x)) -> (and x, mask)
4800  if (N0.getOpcode() == ISD::TRUNCATE &&
4801      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4802
4803    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4804    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4805    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4806    if (NarrowLoad.getNode()) {
4807      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4808      if (NarrowLoad.getNode() != N0.getNode()) {
4809        CombineTo(N0.getNode(), NarrowLoad);
4810        // CombineTo deleted the truncate, if needed, but not what's under it.
4811        AddToWorkList(oye);
4812      }
4813      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4814    }
4815
4816    SDValue Op = N0.getOperand(0);
4817    if (Op.getValueType().bitsLT(VT)) {
4818      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4819      AddToWorkList(Op.getNode());
4820    } else if (Op.getValueType().bitsGT(VT)) {
4821      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4822      AddToWorkList(Op.getNode());
4823    }
4824    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4825                                  N0.getValueType().getScalarType());
4826  }
4827
4828  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4829  // if either of the casts is not free.
4830  if (N0.getOpcode() == ISD::AND &&
4831      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4832      N0.getOperand(1).getOpcode() == ISD::Constant &&
4833      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4834                           N0.getValueType()) ||
4835       !TLI.isZExtFree(N0.getValueType(), VT))) {
4836    SDValue X = N0.getOperand(0).getOperand(0);
4837    if (X.getValueType().bitsLT(VT)) {
4838      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4839    } else if (X.getValueType().bitsGT(VT)) {
4840      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4841    }
4842    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4843    Mask = Mask.zext(VT.getSizeInBits());
4844    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4845                       X, DAG.getConstant(Mask, VT));
4846  }
4847
4848  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4849  // None of the supported targets knows how to perform load and vector_zext
4850  // on vectors in one instruction.  We only perform this transformation on
4851  // scalars.
4852  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4853      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4854       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4855    bool DoXform = true;
4856    SmallVector<SDNode*, 4> SetCCs;
4857    if (!N0.hasOneUse())
4858      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4859    if (DoXform) {
4860      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4861      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4862                                       LN0->getChain(),
4863                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4864                                       N0.getValueType(),
4865                                       LN0->isVolatile(), LN0->isNonTemporal(),
4866                                       LN0->getAlignment());
4867      CombineTo(N, ExtLoad);
4868      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4869                                  N0.getValueType(), ExtLoad);
4870      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4871
4872      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4873                      ISD::ZERO_EXTEND);
4874      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4875    }
4876  }
4877
4878  // fold (zext (and/or/xor (load x), cst)) ->
4879  //      (and/or/xor (zextload x), (zext cst))
4880  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4881       N0.getOpcode() == ISD::XOR) &&
4882      isa<LoadSDNode>(N0.getOperand(0)) &&
4883      N0.getOperand(1).getOpcode() == ISD::Constant &&
4884      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4885      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4886    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4887    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4888      bool DoXform = true;
4889      SmallVector<SDNode*, 4> SetCCs;
4890      if (!N0.hasOneUse())
4891        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4892                                          SetCCs, TLI);
4893      if (DoXform) {
4894        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4895                                         LN0->getChain(), LN0->getBasePtr(),
4896                                         LN0->getPointerInfo(),
4897                                         LN0->getMemoryVT(),
4898                                         LN0->isVolatile(),
4899                                         LN0->isNonTemporal(),
4900                                         LN0->getAlignment());
4901        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4902        Mask = Mask.zext(VT.getSizeInBits());
4903        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4904                                  ExtLoad, DAG.getConstant(Mask, VT));
4905        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4906                                    SDLoc(N0.getOperand(0)),
4907                                    N0.getOperand(0).getValueType(), ExtLoad);
4908        CombineTo(N, And);
4909        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4910        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4911                        ISD::ZERO_EXTEND);
4912        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4913      }
4914    }
4915  }
4916
4917  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4918  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4919  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4920      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4921    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4922    EVT MemVT = LN0->getMemoryVT();
4923    if ((!LegalOperations && !LN0->isVolatile()) ||
4924        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4925      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4926                                       LN0->getChain(),
4927                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4928                                       MemVT,
4929                                       LN0->isVolatile(), LN0->isNonTemporal(),
4930                                       LN0->getAlignment());
4931      CombineTo(N, ExtLoad);
4932      CombineTo(N0.getNode(),
4933                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4934                            ExtLoad),
4935                ExtLoad.getValue(1));
4936      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4937    }
4938  }
4939
4940  if (N0.getOpcode() == ISD::SETCC) {
4941    if (!LegalOperations && VT.isVector()) {
4942      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4943      // Only do this before legalize for now.
4944      EVT N0VT = N0.getOperand(0).getValueType();
4945      EVT EltVT = VT.getVectorElementType();
4946      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4947                                    DAG.getConstant(1, EltVT));
4948      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4949        // We know that the # elements of the results is the same as the
4950        // # elements of the compare (and the # elements of the compare result
4951        // for that matter).  Check to see that they are the same size.  If so,
4952        // we know that the element size of the sext'd result matches the
4953        // element size of the compare operands.
4954        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4955                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4956                                         N0.getOperand(1),
4957                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4958                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4959                                       &OneOps[0], OneOps.size()));
4960
4961      // If the desired elements are smaller or larger than the source
4962      // elements we can use a matching integer vector type and then
4963      // truncate/sign extend
4964      EVT MatchingElementType =
4965        EVT::getIntegerVT(*DAG.getContext(),
4966                          N0VT.getScalarType().getSizeInBits());
4967      EVT MatchingVectorType =
4968        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4969                         N0VT.getVectorNumElements());
4970      SDValue VsetCC =
4971        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4972                      N0.getOperand(1),
4973                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4974      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4975                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4976                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4977                                     &OneOps[0], OneOps.size()));
4978    }
4979
4980    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4981    SDValue SCC =
4982      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4983                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4984                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4985    if (SCC.getNode()) return SCC;
4986  }
4987
4988  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4989  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4990      isa<ConstantSDNode>(N0.getOperand(1)) &&
4991      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4992      N0.hasOneUse()) {
4993    SDValue ShAmt = N0.getOperand(1);
4994    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4995    if (N0.getOpcode() == ISD::SHL) {
4996      SDValue InnerZExt = N0.getOperand(0);
4997      // If the original shl may be shifting out bits, do not perform this
4998      // transformation.
4999      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
5000        InnerZExt.getOperand(0).getValueType().getSizeInBits();
5001      if (ShAmtVal > KnownZeroBits)
5002        return SDValue();
5003    }
5004
5005    SDLoc DL(N);
5006
5007    // Ensure that the shift amount is wide enough for the shifted value.
5008    if (VT.getSizeInBits() >= 256)
5009      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
5010
5011    return DAG.getNode(N0.getOpcode(), DL, VT,
5012                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5013                       ShAmt);
5014  }
5015
5016  return SDValue();
5017}
5018
5019SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5020  SDValue N0 = N->getOperand(0);
5021  EVT VT = N->getValueType(0);
5022
5023  // fold (aext c1) -> c1
5024  if (isa<ConstantSDNode>(N0))
5025    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5026  // fold (aext (aext x)) -> (aext x)
5027  // fold (aext (zext x)) -> (zext x)
5028  // fold (aext (sext x)) -> (sext x)
5029  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5030      N0.getOpcode() == ISD::ZERO_EXTEND ||
5031      N0.getOpcode() == ISD::SIGN_EXTEND)
5032    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5033
5034  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5035  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5036  if (N0.getOpcode() == ISD::TRUNCATE) {
5037    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5038    if (NarrowLoad.getNode()) {
5039      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5040      if (NarrowLoad.getNode() != N0.getNode()) {
5041        CombineTo(N0.getNode(), NarrowLoad);
5042        // CombineTo deleted the truncate, if needed, but not what's under it.
5043        AddToWorkList(oye);
5044      }
5045      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5046    }
5047  }
5048
5049  // fold (aext (truncate x))
5050  if (N0.getOpcode() == ISD::TRUNCATE) {
5051    SDValue TruncOp = N0.getOperand(0);
5052    if (TruncOp.getValueType() == VT)
5053      return TruncOp; // x iff x size == zext size.
5054    if (TruncOp.getValueType().bitsGT(VT))
5055      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5056    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5057  }
5058
5059  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5060  // if the trunc is not free.
5061  if (N0.getOpcode() == ISD::AND &&
5062      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5063      N0.getOperand(1).getOpcode() == ISD::Constant &&
5064      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5065                          N0.getValueType())) {
5066    SDValue X = N0.getOperand(0).getOperand(0);
5067    if (X.getValueType().bitsLT(VT)) {
5068      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5069    } else if (X.getValueType().bitsGT(VT)) {
5070      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5071    }
5072    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5073    Mask = Mask.zext(VT.getSizeInBits());
5074    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5075                       X, DAG.getConstant(Mask, VT));
5076  }
5077
5078  // fold (aext (load x)) -> (aext (truncate (extload x)))
5079  // None of the supported targets knows how to perform load and any_ext
5080  // on vectors in one instruction.  We only perform this transformation on
5081  // scalars.
5082  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5083      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5084       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5085    bool DoXform = true;
5086    SmallVector<SDNode*, 4> SetCCs;
5087    if (!N0.hasOneUse())
5088      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5089    if (DoXform) {
5090      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5091      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5092                                       LN0->getChain(),
5093                                       LN0->getBasePtr(), LN0->getPointerInfo(),
5094                                       N0.getValueType(),
5095                                       LN0->isVolatile(), LN0->isNonTemporal(),
5096                                       LN0->getAlignment());
5097      CombineTo(N, ExtLoad);
5098      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5099                                  N0.getValueType(), ExtLoad);
5100      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5101      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5102                      ISD::ANY_EXTEND);
5103      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5104    }
5105  }
5106
5107  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5108  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5109  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5110  if (N0.getOpcode() == ISD::LOAD &&
5111      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5112      N0.hasOneUse()) {
5113    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5114    EVT MemVT = LN0->getMemoryVT();
5115    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5116                                     VT, LN0->getChain(), LN0->getBasePtr(),
5117                                     LN0->getPointerInfo(), MemVT,
5118                                     LN0->isVolatile(), LN0->isNonTemporal(),
5119                                     LN0->getAlignment());
5120    CombineTo(N, ExtLoad);
5121    CombineTo(N0.getNode(),
5122              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5123                          N0.getValueType(), ExtLoad),
5124              ExtLoad.getValue(1));
5125    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5126  }
5127
5128  if (N0.getOpcode() == ISD::SETCC) {
5129    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5130    // Only do this before legalize for now.
5131    if (VT.isVector() && !LegalOperations) {
5132      EVT N0VT = N0.getOperand(0).getValueType();
5133        // We know that the # elements of the results is the same as the
5134        // # elements of the compare (and the # elements of the compare result
5135        // for that matter).  Check to see that they are the same size.  If so,
5136        // we know that the element size of the sext'd result matches the
5137        // element size of the compare operands.
5138      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5139        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5140                             N0.getOperand(1),
5141                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5142      // If the desired elements are smaller or larger than the source
5143      // elements we can use a matching integer vector type and then
5144      // truncate/sign extend
5145      else {
5146        EVT MatchingElementType =
5147          EVT::getIntegerVT(*DAG.getContext(),
5148                            N0VT.getScalarType().getSizeInBits());
5149        EVT MatchingVectorType =
5150          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5151                           N0VT.getVectorNumElements());
5152        SDValue VsetCC =
5153          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5154                        N0.getOperand(1),
5155                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5156        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5157      }
5158    }
5159
5160    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5161    SDValue SCC =
5162      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5163                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5164                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5165    if (SCC.getNode())
5166      return SCC;
5167  }
5168
5169  return SDValue();
5170}
5171
5172/// GetDemandedBits - See if the specified operand can be simplified with the
5173/// knowledge that only the bits specified by Mask are used.  If so, return the
5174/// simpler operand, otherwise return a null SDValue.
5175SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5176  switch (V.getOpcode()) {
5177  default: break;
5178  case ISD::Constant: {
5179    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5180    assert(CV != 0 && "Const value should be ConstSDNode.");
5181    const APInt &CVal = CV->getAPIntValue();
5182    APInt NewVal = CVal & Mask;
5183    if (NewVal != CVal)
5184      return DAG.getConstant(NewVal, V.getValueType());
5185    break;
5186  }
5187  case ISD::OR:
5188  case ISD::XOR:
5189    // If the LHS or RHS don't contribute bits to the or, drop them.
5190    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5191      return V.getOperand(1);
5192    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5193      return V.getOperand(0);
5194    break;
5195  case ISD::SRL:
5196    // Only look at single-use SRLs.
5197    if (!V.getNode()->hasOneUse())
5198      break;
5199    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5200      // See if we can recursively simplify the LHS.
5201      unsigned Amt = RHSC->getZExtValue();
5202
5203      // Watch out for shift count overflow though.
5204      if (Amt >= Mask.getBitWidth()) break;
5205      APInt NewMask = Mask << Amt;
5206      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5207      if (SimplifyLHS.getNode())
5208        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5209                           SimplifyLHS, V.getOperand(1));
5210    }
5211  }
5212  return SDValue();
5213}
5214
5215/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5216/// bits and then truncated to a narrower type and where N is a multiple
5217/// of number of bits of the narrower type, transform it to a narrower load
5218/// from address + N / num of bits of new type. If the result is to be
5219/// extended, also fold the extension to form a extending load.
5220SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5221  unsigned Opc = N->getOpcode();
5222
5223  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5224  SDValue N0 = N->getOperand(0);
5225  EVT VT = N->getValueType(0);
5226  EVT ExtVT = VT;
5227
5228  // This transformation isn't valid for vector loads.
5229  if (VT.isVector())
5230    return SDValue();
5231
5232  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5233  // extended to VT.
5234  if (Opc == ISD::SIGN_EXTEND_INREG) {
5235    ExtType = ISD::SEXTLOAD;
5236    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5237  } else if (Opc == ISD::SRL) {
5238    // Another special-case: SRL is basically zero-extending a narrower value.
5239    ExtType = ISD::ZEXTLOAD;
5240    N0 = SDValue(N, 0);
5241    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5242    if (!N01) return SDValue();
5243    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5244                              VT.getSizeInBits() - N01->getZExtValue());
5245  }
5246  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5247    return SDValue();
5248
5249  unsigned EVTBits = ExtVT.getSizeInBits();
5250
5251  // Do not generate loads of non-round integer types since these can
5252  // be expensive (and would be wrong if the type is not byte sized).
5253  if (!ExtVT.isRound())
5254    return SDValue();
5255
5256  unsigned ShAmt = 0;
5257  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5258    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5259      ShAmt = N01->getZExtValue();
5260      // Is the shift amount a multiple of size of VT?
5261      if ((ShAmt & (EVTBits-1)) == 0) {
5262        N0 = N0.getOperand(0);
5263        // Is the load width a multiple of size of VT?
5264        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5265          return SDValue();
5266      }
5267
5268      // At this point, we must have a load or else we can't do the transform.
5269      if (!isa<LoadSDNode>(N0)) return SDValue();
5270
5271      // Because a SRL must be assumed to *need* to zero-extend the high bits
5272      // (as opposed to anyext the high bits), we can't combine the zextload
5273      // lowering of SRL and an sextload.
5274      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5275        return SDValue();
5276
5277      // If the shift amount is larger than the input type then we're not
5278      // accessing any of the loaded bytes.  If the load was a zextload/extload
5279      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5280      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5281        return SDValue();
5282    }
5283  }
5284
5285  // If the load is shifted left (and the result isn't shifted back right),
5286  // we can fold the truncate through the shift.
5287  unsigned ShLeftAmt = 0;
5288  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5289      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5290    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5291      ShLeftAmt = N01->getZExtValue();
5292      N0 = N0.getOperand(0);
5293    }
5294  }
5295
5296  // If we haven't found a load, we can't narrow it.  Don't transform one with
5297  // multiple uses, this would require adding a new load.
5298  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5299    return SDValue();
5300
5301  // Don't change the width of a volatile load.
5302  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5303  if (LN0->isVolatile())
5304    return SDValue();
5305
5306  // Verify that we are actually reducing a load width here.
5307  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5308    return SDValue();
5309
5310  // For the transform to be legal, the load must produce only two values
5311  // (the value loaded and the chain).  Don't transform a pre-increment
5312  // load, for example, which produces an extra value.  Otherwise the
5313  // transformation is not equivalent, and the downstream logic to replace
5314  // uses gets things wrong.
5315  if (LN0->getNumValues() > 2)
5316    return SDValue();
5317
5318  // If the load that we're shrinking is an extload and we're not just
5319  // discarding the extension we can't simply shrink the load. Bail.
5320  // TODO: It would be possible to merge the extensions in some cases.
5321  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5322      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5323    return SDValue();
5324
5325  EVT PtrType = N0.getOperand(1).getValueType();
5326
5327  if (PtrType == MVT::Untyped || PtrType.isExtended())
5328    // It's not possible to generate a constant of extended or untyped type.
5329    return SDValue();
5330
5331  // For big endian targets, we need to adjust the offset to the pointer to
5332  // load the correct bytes.
5333  if (TLI.isBigEndian()) {
5334    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5335    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5336    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5337  }
5338
5339  uint64_t PtrOff = ShAmt / 8;
5340  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5341  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5342                               PtrType, LN0->getBasePtr(),
5343                               DAG.getConstant(PtrOff, PtrType));
5344  AddToWorkList(NewPtr.getNode());
5345
5346  SDValue Load;
5347  if (ExtType == ISD::NON_EXTLOAD)
5348    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5349                        LN0->getPointerInfo().getWithOffset(PtrOff),
5350                        LN0->isVolatile(), LN0->isNonTemporal(),
5351                        LN0->isInvariant(), NewAlign);
5352  else
5353    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5354                          LN0->getPointerInfo().getWithOffset(PtrOff),
5355                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5356                          NewAlign);
5357
5358  // Replace the old load's chain with the new load's chain.
5359  WorkListRemover DeadNodes(*this);
5360  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5361
5362  // Shift the result left, if we've swallowed a left shift.
5363  SDValue Result = Load;
5364  if (ShLeftAmt != 0) {
5365    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5366    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5367      ShImmTy = VT;
5368    // If the shift amount is as large as the result size (but, presumably,
5369    // no larger than the source) then the useful bits of the result are
5370    // zero; we can't simply return the shortened shift, because the result
5371    // of that operation is undefined.
5372    if (ShLeftAmt >= VT.getSizeInBits())
5373      Result = DAG.getConstant(0, VT);
5374    else
5375      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5376                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5377  }
5378
5379  // Return the new loaded value.
5380  return Result;
5381}
5382
5383SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5384  SDValue N0 = N->getOperand(0);
5385  SDValue N1 = N->getOperand(1);
5386  EVT VT = N->getValueType(0);
5387  EVT EVT = cast<VTSDNode>(N1)->getVT();
5388  unsigned VTBits = VT.getScalarType().getSizeInBits();
5389  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5390
5391  // fold (sext_in_reg c1) -> c1
5392  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5393    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5394
5395  // If the input is already sign extended, just drop the extension.
5396  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5397    return N0;
5398
5399  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5400  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5401      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5402    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5403                       N0.getOperand(0), N1);
5404
5405  // fold (sext_in_reg (sext x)) -> (sext x)
5406  // fold (sext_in_reg (aext x)) -> (sext x)
5407  // if x is small enough.
5408  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5409    SDValue N00 = N0.getOperand(0);
5410    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5411        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5412      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5413  }
5414
5415  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5416  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5417    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5418
5419  // fold operands of sext_in_reg based on knowledge that the top bits are not
5420  // demanded.
5421  if (SimplifyDemandedBits(SDValue(N, 0)))
5422    return SDValue(N, 0);
5423
5424  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5425  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5426  SDValue NarrowLoad = ReduceLoadWidth(N);
5427  if (NarrowLoad.getNode())
5428    return NarrowLoad;
5429
5430  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5431  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5432  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5433  if (N0.getOpcode() == ISD::SRL) {
5434    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5435      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5436        // We can turn this into an SRA iff the input to the SRL is already sign
5437        // extended enough.
5438        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5439        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5440          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5441                             N0.getOperand(0), N0.getOperand(1));
5442      }
5443  }
5444
5445  // fold (sext_inreg (extload x)) -> (sextload x)
5446  if (ISD::isEXTLoad(N0.getNode()) &&
5447      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5448      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5449      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5450       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5451    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5452    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5453                                     LN0->getChain(),
5454                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5455                                     EVT,
5456                                     LN0->isVolatile(), LN0->isNonTemporal(),
5457                                     LN0->getAlignment());
5458    CombineTo(N, ExtLoad);
5459    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5460    AddToWorkList(ExtLoad.getNode());
5461    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5462  }
5463  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5464  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5465      N0.hasOneUse() &&
5466      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5467      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5468       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5469    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5470    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5471                                     LN0->getChain(),
5472                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5473                                     EVT,
5474                                     LN0->isVolatile(), LN0->isNonTemporal(),
5475                                     LN0->getAlignment());
5476    CombineTo(N, ExtLoad);
5477    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5478    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5479  }
5480
5481  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5482  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5483    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5484                                       N0.getOperand(1), false);
5485    if (BSwap.getNode() != 0)
5486      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5487                         BSwap, N1);
5488  }
5489
5490  return SDValue();
5491}
5492
5493SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5494  SDValue N0 = N->getOperand(0);
5495  EVT VT = N->getValueType(0);
5496  bool isLE = TLI.isLittleEndian();
5497
5498  // noop truncate
5499  if (N0.getValueType() == N->getValueType(0))
5500    return N0;
5501  // fold (truncate c1) -> c1
5502  if (isa<ConstantSDNode>(N0))
5503    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5504  // fold (truncate (truncate x)) -> (truncate x)
5505  if (N0.getOpcode() == ISD::TRUNCATE)
5506    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5507  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5508  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5509      N0.getOpcode() == ISD::SIGN_EXTEND ||
5510      N0.getOpcode() == ISD::ANY_EXTEND) {
5511    if (N0.getOperand(0).getValueType().bitsLT(VT))
5512      // if the source is smaller than the dest, we still need an extend
5513      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5514                         N0.getOperand(0));
5515    if (N0.getOperand(0).getValueType().bitsGT(VT))
5516      // if the source is larger than the dest, than we just need the truncate
5517      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5518    // if the source and dest are the same type, we can drop both the extend
5519    // and the truncate.
5520    return N0.getOperand(0);
5521  }
5522
5523  // Fold extract-and-trunc into a narrow extract. For example:
5524  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5525  //   i32 y = TRUNCATE(i64 x)
5526  //        -- becomes --
5527  //   v16i8 b = BITCAST (v2i64 val)
5528  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5529  //
5530  // Note: We only run this optimization after type legalization (which often
5531  // creates this pattern) and before operation legalization after which
5532  // we need to be more careful about the vector instructions that we generate.
5533  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5534      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5535
5536    EVT VecTy = N0.getOperand(0).getValueType();
5537    EVT ExTy = N0.getValueType();
5538    EVT TrTy = N->getValueType(0);
5539
5540    unsigned NumElem = VecTy.getVectorNumElements();
5541    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5542
5543    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5544    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5545
5546    SDValue EltNo = N0->getOperand(1);
5547    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5548      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5549      EVT IndexTy = TLI.getVectorIdxTy();
5550      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5551
5552      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5553                              NVT, N0.getOperand(0));
5554
5555      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5556                         SDLoc(N), TrTy, V,
5557                         DAG.getConstant(Index, IndexTy));
5558    }
5559  }
5560
5561  // Fold a series of buildvector, bitcast, and truncate if possible.
5562  // For example fold
5563  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5564  //   (2xi32 (buildvector x, y)).
5565  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5566      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5567      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5568      N0.getOperand(0).hasOneUse()) {
5569
5570    SDValue BuildVect = N0.getOperand(0);
5571    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5572    EVT TruncVecEltTy = VT.getVectorElementType();
5573
5574    // Check that the element types match.
5575    if (BuildVectEltTy == TruncVecEltTy) {
5576      // Now we only need to compute the offset of the truncated elements.
5577      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5578      unsigned TruncVecNumElts = VT.getVectorNumElements();
5579      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5580
5581      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5582             "Invalid number of elements");
5583
5584      SmallVector<SDValue, 8> Opnds;
5585      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5586        Opnds.push_back(BuildVect.getOperand(i));
5587
5588      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5589                         Opnds.size());
5590    }
5591  }
5592
5593  // See if we can simplify the input to this truncate through knowledge that
5594  // only the low bits are being used.
5595  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5596  // Currently we only perform this optimization on scalars because vectors
5597  // may have different active low bits.
5598  if (!VT.isVector()) {
5599    SDValue Shorter =
5600      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5601                                               VT.getSizeInBits()));
5602    if (Shorter.getNode())
5603      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5604  }
5605  // fold (truncate (load x)) -> (smaller load x)
5606  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5607  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5608    SDValue Reduced = ReduceLoadWidth(N);
5609    if (Reduced.getNode())
5610      return Reduced;
5611  }
5612  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5613  // where ... are all 'undef'.
5614  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5615    SmallVector<EVT, 8> VTs;
5616    SDValue V;
5617    unsigned Idx = 0;
5618    unsigned NumDefs = 0;
5619
5620    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5621      SDValue X = N0.getOperand(i);
5622      if (X.getOpcode() != ISD::UNDEF) {
5623        V = X;
5624        Idx = i;
5625        NumDefs++;
5626      }
5627      // Stop if more than one members are non-undef.
5628      if (NumDefs > 1)
5629        break;
5630      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5631                                     VT.getVectorElementType(),
5632                                     X.getValueType().getVectorNumElements()));
5633    }
5634
5635    if (NumDefs == 0)
5636      return DAG.getUNDEF(VT);
5637
5638    if (NumDefs == 1) {
5639      assert(V.getNode() && "The single defined operand is empty!");
5640      SmallVector<SDValue, 8> Opnds;
5641      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5642        if (i != Idx) {
5643          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5644          continue;
5645        }
5646        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5647        AddToWorkList(NV.getNode());
5648        Opnds.push_back(NV);
5649      }
5650      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5651                         &Opnds[0], Opnds.size());
5652    }
5653  }
5654
5655  // Simplify the operands using demanded-bits information.
5656  if (!VT.isVector() &&
5657      SimplifyDemandedBits(SDValue(N, 0)))
5658    return SDValue(N, 0);
5659
5660  return SDValue();
5661}
5662
5663static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5664  SDValue Elt = N->getOperand(i);
5665  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5666    return Elt.getNode();
5667  return Elt.getOperand(Elt.getResNo()).getNode();
5668}
5669
5670/// CombineConsecutiveLoads - build_pair (load, load) -> load
5671/// if load locations are consecutive.
5672SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5673  assert(N->getOpcode() == ISD::BUILD_PAIR);
5674
5675  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5676  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5677  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5678      LD1->getPointerInfo().getAddrSpace() !=
5679         LD2->getPointerInfo().getAddrSpace())
5680    return SDValue();
5681  EVT LD1VT = LD1->getValueType(0);
5682
5683  if (ISD::isNON_EXTLoad(LD2) &&
5684      LD2->hasOneUse() &&
5685      // If both are volatile this would reduce the number of volatile loads.
5686      // If one is volatile it might be ok, but play conservative and bail out.
5687      !LD1->isVolatile() &&
5688      !LD2->isVolatile() &&
5689      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5690    unsigned Align = LD1->getAlignment();
5691    unsigned NewAlign = TLI.getDataLayout()->
5692      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5693
5694    if (NewAlign <= Align &&
5695        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5696      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5697                         LD1->getBasePtr(), LD1->getPointerInfo(),
5698                         false, false, false, Align);
5699  }
5700
5701  return SDValue();
5702}
5703
5704SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5705  SDValue N0 = N->getOperand(0);
5706  EVT VT = N->getValueType(0);
5707
5708  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5709  // Only do this before legalize, since afterward the target may be depending
5710  // on the bitconvert.
5711  // First check to see if this is all constant.
5712  if (!LegalTypes &&
5713      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5714      VT.isVector()) {
5715    bool isSimple = true;
5716    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5717      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5718          N0.getOperand(i).getOpcode() != ISD::Constant &&
5719          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5720        isSimple = false;
5721        break;
5722      }
5723
5724    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5725    assert(!DestEltVT.isVector() &&
5726           "Element type of vector ValueType must not be vector!");
5727    if (isSimple)
5728      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5729  }
5730
5731  // If the input is a constant, let getNode fold it.
5732  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5733    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5734    if (Res.getNode() != N) {
5735      if (!LegalOperations ||
5736          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5737        return Res;
5738
5739      // Folding it resulted in an illegal node, and it's too late to
5740      // do that. Clean up the old node and forego the transformation.
5741      // Ideally this won't happen very often, because instcombine
5742      // and the earlier dagcombine runs (where illegal nodes are
5743      // permitted) should have folded most of them already.
5744      DAG.DeleteNode(Res.getNode());
5745    }
5746  }
5747
5748  // (conv (conv x, t1), t2) -> (conv x, t2)
5749  if (N0.getOpcode() == ISD::BITCAST)
5750    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5751                       N0.getOperand(0));
5752
5753  // fold (conv (load x)) -> (load (conv*)x)
5754  // If the resultant load doesn't need a higher alignment than the original!
5755  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5756      // Do not change the width of a volatile load.
5757      !cast<LoadSDNode>(N0)->isVolatile() &&
5758      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5759    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5760    unsigned Align = TLI.getDataLayout()->
5761      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5762    unsigned OrigAlign = LN0->getAlignment();
5763
5764    if (Align <= OrigAlign) {
5765      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5766                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5767                                 LN0->isVolatile(), LN0->isNonTemporal(),
5768                                 LN0->isInvariant(), OrigAlign);
5769      AddToWorkList(N);
5770      CombineTo(N0.getNode(),
5771                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5772                            N0.getValueType(), Load),
5773                Load.getValue(1));
5774      return Load;
5775    }
5776  }
5777
5778  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5779  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5780  // This often reduces constant pool loads.
5781  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5782       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5783      N0.getNode()->hasOneUse() && VT.isInteger() &&
5784      !VT.isVector() && !N0.getValueType().isVector()) {
5785    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5786                                  N0.getOperand(0));
5787    AddToWorkList(NewConv.getNode());
5788
5789    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5790    if (N0.getOpcode() == ISD::FNEG)
5791      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5792                         NewConv, DAG.getConstant(SignBit, VT));
5793    assert(N0.getOpcode() == ISD::FABS);
5794    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5795                       NewConv, DAG.getConstant(~SignBit, VT));
5796  }
5797
5798  // fold (bitconvert (fcopysign cst, x)) ->
5799  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5800  // Note that we don't handle (copysign x, cst) because this can always be
5801  // folded to an fneg or fabs.
5802  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5803      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5804      VT.isInteger() && !VT.isVector()) {
5805    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5806    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5807    if (isTypeLegal(IntXVT)) {
5808      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5809                              IntXVT, N0.getOperand(1));
5810      AddToWorkList(X.getNode());
5811
5812      // If X has a different width than the result/lhs, sext it or truncate it.
5813      unsigned VTWidth = VT.getSizeInBits();
5814      if (OrigXWidth < VTWidth) {
5815        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5816        AddToWorkList(X.getNode());
5817      } else if (OrigXWidth > VTWidth) {
5818        // To get the sign bit in the right place, we have to shift it right
5819        // before truncating.
5820        X = DAG.getNode(ISD::SRL, SDLoc(X),
5821                        X.getValueType(), X,
5822                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5823        AddToWorkList(X.getNode());
5824        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5825        AddToWorkList(X.getNode());
5826      }
5827
5828      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5829      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5830                      X, DAG.getConstant(SignBit, VT));
5831      AddToWorkList(X.getNode());
5832
5833      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5834                                VT, N0.getOperand(0));
5835      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5836                        Cst, DAG.getConstant(~SignBit, VT));
5837      AddToWorkList(Cst.getNode());
5838
5839      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5840    }
5841  }
5842
5843  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5844  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5845    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5846    if (CombineLD.getNode())
5847      return CombineLD;
5848  }
5849
5850  return SDValue();
5851}
5852
5853SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5854  EVT VT = N->getValueType(0);
5855  return CombineConsecutiveLoads(N, VT);
5856}
5857
5858/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5859/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5860/// destination element value type.
5861SDValue DAGCombiner::
5862ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5863  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5864
5865  // If this is already the right type, we're done.
5866  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5867
5868  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5869  unsigned DstBitSize = DstEltVT.getSizeInBits();
5870
5871  // If this is a conversion of N elements of one type to N elements of another
5872  // type, convert each element.  This handles FP<->INT cases.
5873  if (SrcBitSize == DstBitSize) {
5874    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5875                              BV->getValueType(0).getVectorNumElements());
5876
5877    // Due to the FP element handling below calling this routine recursively,
5878    // we can end up with a scalar-to-vector node here.
5879    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5880      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5881                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5882                                     DstEltVT, BV->getOperand(0)));
5883
5884    SmallVector<SDValue, 8> Ops;
5885    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5886      SDValue Op = BV->getOperand(i);
5887      // If the vector element type is not legal, the BUILD_VECTOR operands
5888      // are promoted and implicitly truncated.  Make that explicit here.
5889      if (Op.getValueType() != SrcEltVT)
5890        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5891      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5892                                DstEltVT, Op));
5893      AddToWorkList(Ops.back().getNode());
5894    }
5895    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5896                       &Ops[0], Ops.size());
5897  }
5898
5899  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5900  // handle annoying details of growing/shrinking FP values, we convert them to
5901  // int first.
5902  if (SrcEltVT.isFloatingPoint()) {
5903    // Convert the input float vector to a int vector where the elements are the
5904    // same sizes.
5905    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5906    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5907    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5908    SrcEltVT = IntVT;
5909  }
5910
5911  // Now we know the input is an integer vector.  If the output is a FP type,
5912  // convert to integer first, then to FP of the right size.
5913  if (DstEltVT.isFloatingPoint()) {
5914    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5915    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5916    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5917
5918    // Next, convert to FP elements of the same size.
5919    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5920  }
5921
5922  // Okay, we know the src/dst types are both integers of differing types.
5923  // Handling growing first.
5924  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5925  if (SrcBitSize < DstBitSize) {
5926    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5927
5928    SmallVector<SDValue, 8> Ops;
5929    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5930         i += NumInputsPerOutput) {
5931      bool isLE = TLI.isLittleEndian();
5932      APInt NewBits = APInt(DstBitSize, 0);
5933      bool EltIsUndef = true;
5934      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5935        // Shift the previously computed bits over.
5936        NewBits <<= SrcBitSize;
5937        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5938        if (Op.getOpcode() == ISD::UNDEF) continue;
5939        EltIsUndef = false;
5940
5941        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5942                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5943      }
5944
5945      if (EltIsUndef)
5946        Ops.push_back(DAG.getUNDEF(DstEltVT));
5947      else
5948        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5949    }
5950
5951    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5952    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5953                       &Ops[0], Ops.size());
5954  }
5955
5956  // Finally, this must be the case where we are shrinking elements: each input
5957  // turns into multiple outputs.
5958  bool isS2V = ISD::isScalarToVector(BV);
5959  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5960  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5961                            NumOutputsPerInput*BV->getNumOperands());
5962  SmallVector<SDValue, 8> Ops;
5963
5964  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5965    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5966      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5967        Ops.push_back(DAG.getUNDEF(DstEltVT));
5968      continue;
5969    }
5970
5971    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5972                  getAPIntValue().zextOrTrunc(SrcBitSize);
5973
5974    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5975      APInt ThisVal = OpVal.trunc(DstBitSize);
5976      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5977      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5978        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5979        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5980                           Ops[0]);
5981      OpVal = OpVal.lshr(DstBitSize);
5982    }
5983
5984    // For big endian targets, swap the order of the pieces of each element.
5985    if (TLI.isBigEndian())
5986      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5987  }
5988
5989  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5990                     &Ops[0], Ops.size());
5991}
5992
5993SDValue DAGCombiner::visitFADD(SDNode *N) {
5994  SDValue N0 = N->getOperand(0);
5995  SDValue N1 = N->getOperand(1);
5996  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5997  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5998  EVT VT = N->getValueType(0);
5999
6000  // fold vector ops
6001  if (VT.isVector()) {
6002    SDValue FoldedVOp = SimplifyVBinOp(N);
6003    if (FoldedVOp.getNode()) return FoldedVOp;
6004  }
6005
6006  // fold (fadd c1, c2) -> c1 + c2
6007  if (N0CFP && N1CFP)
6008    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
6009  // canonicalize constant to RHS
6010  if (N0CFP && !N1CFP)
6011    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
6012  // fold (fadd A, 0) -> A
6013  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6014      N1CFP->getValueAPF().isZero())
6015    return N0;
6016  // fold (fadd A, (fneg B)) -> (fsub A, B)
6017  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6018    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6019    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6020                       GetNegatedExpression(N1, DAG, LegalOperations));
6021  // fold (fadd (fneg A), B) -> (fsub B, A)
6022  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6023    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6024    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6025                       GetNegatedExpression(N0, DAG, LegalOperations));
6026
6027  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6028  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6029      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6030      isa<ConstantFPSDNode>(N0.getOperand(1)))
6031    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6032                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6033                                   N0.getOperand(1), N1));
6034
6035  // No FP constant should be created after legalization as Instruction
6036  // Selection pass has hard time in dealing with FP constant.
6037  //
6038  // We don't need test this condition for transformation like following, as
6039  // the DAG being transformed implies it is legal to take FP constant as
6040  // operand.
6041  //
6042  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6043  //
6044  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6045
6046  // If allow, fold (fadd (fneg x), x) -> 0.0
6047  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6048      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6049    return DAG.getConstantFP(0.0, VT);
6050
6051    // If allow, fold (fadd x, (fneg x)) -> 0.0
6052  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6053      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6054    return DAG.getConstantFP(0.0, VT);
6055
6056  // In unsafe math mode, we can fold chains of FADD's of the same value
6057  // into multiplications.  This transform is not safe in general because
6058  // we are reducing the number of rounding steps.
6059  if (DAG.getTarget().Options.UnsafeFPMath &&
6060      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6061      !N0CFP && !N1CFP) {
6062    if (N0.getOpcode() == ISD::FMUL) {
6063      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6064      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6065
6066      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6067      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6068        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6069                                     SDValue(CFP00, 0),
6070                                     DAG.getConstantFP(1.0, VT));
6071        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6072                           N1, NewCFP);
6073      }
6074
6075      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6076      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6077        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6078                                     SDValue(CFP01, 0),
6079                                     DAG.getConstantFP(1.0, VT));
6080        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6081                           N1, NewCFP);
6082      }
6083
6084      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6085      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6086          N1.getOperand(0) == N1.getOperand(1) &&
6087          N0.getOperand(1) == N1.getOperand(0)) {
6088        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6089                                     SDValue(CFP00, 0),
6090                                     DAG.getConstantFP(2.0, VT));
6091        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6092                           N0.getOperand(1), NewCFP);
6093      }
6094
6095      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6096      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6097          N1.getOperand(0) == N1.getOperand(1) &&
6098          N0.getOperand(0) == N1.getOperand(0)) {
6099        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6100                                     SDValue(CFP01, 0),
6101                                     DAG.getConstantFP(2.0, VT));
6102        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6103                           N0.getOperand(0), NewCFP);
6104      }
6105    }
6106
6107    if (N1.getOpcode() == ISD::FMUL) {
6108      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6109      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6110
6111      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6112      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6113        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6114                                     SDValue(CFP10, 0),
6115                                     DAG.getConstantFP(1.0, VT));
6116        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6117                           N0, NewCFP);
6118      }
6119
6120      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6121      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6122        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6123                                     SDValue(CFP11, 0),
6124                                     DAG.getConstantFP(1.0, VT));
6125        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6126                           N0, NewCFP);
6127      }
6128
6129
6130      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6131      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6132          N0.getOperand(0) == N0.getOperand(1) &&
6133          N1.getOperand(1) == N0.getOperand(0)) {
6134        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6135                                     SDValue(CFP10, 0),
6136                                     DAG.getConstantFP(2.0, VT));
6137        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6138                           N1.getOperand(1), NewCFP);
6139      }
6140
6141      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6142      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6143          N0.getOperand(0) == N0.getOperand(1) &&
6144          N1.getOperand(0) == N0.getOperand(0)) {
6145        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6146                                     SDValue(CFP11, 0),
6147                                     DAG.getConstantFP(2.0, VT));
6148        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6149                           N1.getOperand(0), NewCFP);
6150      }
6151    }
6152
6153    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6154      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6155      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6156      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6157          (N0.getOperand(0) == N1))
6158        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6159                           N1, DAG.getConstantFP(3.0, VT));
6160    }
6161
6162    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6163      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6164      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6165      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6166          N1.getOperand(0) == N0)
6167        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6168                           N0, DAG.getConstantFP(3.0, VT));
6169    }
6170
6171    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6172    if (AllowNewFpConst &&
6173        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6174        N0.getOperand(0) == N0.getOperand(1) &&
6175        N1.getOperand(0) == N1.getOperand(1) &&
6176        N0.getOperand(0) == N1.getOperand(0))
6177      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6178                         N0.getOperand(0),
6179                         DAG.getConstantFP(4.0, VT));
6180  }
6181
6182  // FADD -> FMA combines:
6183  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6184       DAG.getTarget().Options.UnsafeFPMath) &&
6185      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6186      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6187
6188    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6189    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6190      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6191                         N0.getOperand(0), N0.getOperand(1), N1);
6192
6193    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6194    // Note: Commutes FADD operands.
6195    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6196      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6197                         N1.getOperand(0), N1.getOperand(1), N0);
6198  }
6199
6200  return SDValue();
6201}
6202
6203SDValue DAGCombiner::visitFSUB(SDNode *N) {
6204  SDValue N0 = N->getOperand(0);
6205  SDValue N1 = N->getOperand(1);
6206  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6207  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6208  EVT VT = N->getValueType(0);
6209  SDLoc dl(N);
6210
6211  // fold vector ops
6212  if (VT.isVector()) {
6213    SDValue FoldedVOp = SimplifyVBinOp(N);
6214    if (FoldedVOp.getNode()) return FoldedVOp;
6215  }
6216
6217  // fold (fsub c1, c2) -> c1-c2
6218  if (N0CFP && N1CFP)
6219    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6220  // fold (fsub A, 0) -> A
6221  if (DAG.getTarget().Options.UnsafeFPMath &&
6222      N1CFP && N1CFP->getValueAPF().isZero())
6223    return N0;
6224  // fold (fsub 0, B) -> -B
6225  if (DAG.getTarget().Options.UnsafeFPMath &&
6226      N0CFP && N0CFP->getValueAPF().isZero()) {
6227    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6228      return GetNegatedExpression(N1, DAG, LegalOperations);
6229    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6230      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6231  }
6232  // fold (fsub A, (fneg B)) -> (fadd A, B)
6233  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6234    return DAG.getNode(ISD::FADD, dl, VT, N0,
6235                       GetNegatedExpression(N1, DAG, LegalOperations));
6236
6237  // If 'unsafe math' is enabled, fold
6238  //    (fsub x, x) -> 0.0 &
6239  //    (fsub x, (fadd x, y)) -> (fneg y) &
6240  //    (fsub x, (fadd y, x)) -> (fneg y)
6241  if (DAG.getTarget().Options.UnsafeFPMath) {
6242    if (N0 == N1)
6243      return DAG.getConstantFP(0.0f, VT);
6244
6245    if (N1.getOpcode() == ISD::FADD) {
6246      SDValue N10 = N1->getOperand(0);
6247      SDValue N11 = N1->getOperand(1);
6248
6249      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6250                                          &DAG.getTarget().Options))
6251        return GetNegatedExpression(N11, DAG, LegalOperations);
6252
6253      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6254                                          &DAG.getTarget().Options))
6255        return GetNegatedExpression(N10, DAG, LegalOperations);
6256    }
6257  }
6258
6259  // FSUB -> FMA combines:
6260  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6261       DAG.getTarget().Options.UnsafeFPMath) &&
6262      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6263      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6264
6265    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6266    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6267      return DAG.getNode(ISD::FMA, dl, VT,
6268                         N0.getOperand(0), N0.getOperand(1),
6269                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6270
6271    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6272    // Note: Commutes FSUB operands.
6273    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6274      return DAG.getNode(ISD::FMA, dl, VT,
6275                         DAG.getNode(ISD::FNEG, dl, VT,
6276                         N1.getOperand(0)),
6277                         N1.getOperand(1), N0);
6278
6279    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6280    if (N0.getOpcode() == ISD::FNEG &&
6281        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6282        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6283      SDValue N00 = N0.getOperand(0).getOperand(0);
6284      SDValue N01 = N0.getOperand(0).getOperand(1);
6285      return DAG.getNode(ISD::FMA, dl, VT,
6286                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6287                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6288    }
6289  }
6290
6291  return SDValue();
6292}
6293
6294SDValue DAGCombiner::visitFMUL(SDNode *N) {
6295  SDValue N0 = N->getOperand(0);
6296  SDValue N1 = N->getOperand(1);
6297  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6298  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6299  EVT VT = N->getValueType(0);
6300  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6301
6302  // fold vector ops
6303  if (VT.isVector()) {
6304    SDValue FoldedVOp = SimplifyVBinOp(N);
6305    if (FoldedVOp.getNode()) return FoldedVOp;
6306  }
6307
6308  // fold (fmul c1, c2) -> c1*c2
6309  if (N0CFP && N1CFP)
6310    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6311  // canonicalize constant to RHS
6312  if (N0CFP && !N1CFP)
6313    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6314  // fold (fmul A, 0) -> 0
6315  if (DAG.getTarget().Options.UnsafeFPMath &&
6316      N1CFP && N1CFP->getValueAPF().isZero())
6317    return N1;
6318  // fold (fmul A, 0) -> 0, vector edition.
6319  if (DAG.getTarget().Options.UnsafeFPMath &&
6320      ISD::isBuildVectorAllZeros(N1.getNode()))
6321    return N1;
6322  // fold (fmul A, 1.0) -> A
6323  if (N1CFP && N1CFP->isExactlyValue(1.0))
6324    return N0;
6325  // fold (fmul X, 2.0) -> (fadd X, X)
6326  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6327    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6328  // fold (fmul X, -1.0) -> (fneg X)
6329  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6330    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6331      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6332
6333  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6334  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6335                                       &DAG.getTarget().Options)) {
6336    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6337                                         &DAG.getTarget().Options)) {
6338      // Both can be negated for free, check to see if at least one is cheaper
6339      // negated.
6340      if (LHSNeg == 2 || RHSNeg == 2)
6341        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6342                           GetNegatedExpression(N0, DAG, LegalOperations),
6343                           GetNegatedExpression(N1, DAG, LegalOperations));
6344    }
6345  }
6346
6347  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6348  if (DAG.getTarget().Options.UnsafeFPMath &&
6349      N1CFP && N0.getOpcode() == ISD::FMUL &&
6350      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6351    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6352                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6353                                   N0.getOperand(1), N1));
6354
6355  return SDValue();
6356}
6357
6358SDValue DAGCombiner::visitFMA(SDNode *N) {
6359  SDValue N0 = N->getOperand(0);
6360  SDValue N1 = N->getOperand(1);
6361  SDValue N2 = N->getOperand(2);
6362  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6363  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6364  EVT VT = N->getValueType(0);
6365  SDLoc dl(N);
6366
6367  if (DAG.getTarget().Options.UnsafeFPMath) {
6368    if (N0CFP && N0CFP->isZero())
6369      return N2;
6370    if (N1CFP && N1CFP->isZero())
6371      return N2;
6372  }
6373  if (N0CFP && N0CFP->isExactlyValue(1.0))
6374    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6375  if (N1CFP && N1CFP->isExactlyValue(1.0))
6376    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6377
6378  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6379  if (N0CFP && !N1CFP)
6380    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6381
6382  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6383  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6384      N2.getOpcode() == ISD::FMUL &&
6385      N0 == N2.getOperand(0) &&
6386      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6387    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6388                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6389  }
6390
6391
6392  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6393  if (DAG.getTarget().Options.UnsafeFPMath &&
6394      N0.getOpcode() == ISD::FMUL && N1CFP &&
6395      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6396    return DAG.getNode(ISD::FMA, dl, VT,
6397                       N0.getOperand(0),
6398                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6399                       N2);
6400  }
6401
6402  // (fma x, 1, y) -> (fadd x, y)
6403  // (fma x, -1, y) -> (fadd (fneg x), y)
6404  if (N1CFP) {
6405    if (N1CFP->isExactlyValue(1.0))
6406      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6407
6408    if (N1CFP->isExactlyValue(-1.0) &&
6409        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6410      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6411      AddToWorkList(RHSNeg.getNode());
6412      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6413    }
6414  }
6415
6416  // (fma x, c, x) -> (fmul x, (c+1))
6417  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6418    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6419                       DAG.getNode(ISD::FADD, dl, VT,
6420                                   N1, DAG.getConstantFP(1.0, VT)));
6421
6422  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6423  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6424      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6425    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6426                       DAG.getNode(ISD::FADD, dl, VT,
6427                                   N1, DAG.getConstantFP(-1.0, VT)));
6428
6429
6430  return SDValue();
6431}
6432
6433SDValue DAGCombiner::visitFDIV(SDNode *N) {
6434  SDValue N0 = N->getOperand(0);
6435  SDValue N1 = N->getOperand(1);
6436  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6437  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6438  EVT VT = N->getValueType(0);
6439  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6440
6441  // fold vector ops
6442  if (VT.isVector()) {
6443    SDValue FoldedVOp = SimplifyVBinOp(N);
6444    if (FoldedVOp.getNode()) return FoldedVOp;
6445  }
6446
6447  // fold (fdiv c1, c2) -> c1/c2
6448  if (N0CFP && N1CFP)
6449    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6450
6451  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6452  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6453    // Compute the reciprocal 1.0 / c2.
6454    APFloat N1APF = N1CFP->getValueAPF();
6455    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6456    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6457    // Only do the transform if the reciprocal is a legal fp immediate that
6458    // isn't too nasty (eg NaN, denormal, ...).
6459    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6460        (!LegalOperations ||
6461         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6462         // backend)... we should handle this gracefully after Legalize.
6463         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6464         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6465         TLI.isFPImmLegal(Recip, VT)))
6466      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6467                         DAG.getConstantFP(Recip, VT));
6468  }
6469
6470  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6471  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6472                                       &DAG.getTarget().Options)) {
6473    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6474                                         &DAG.getTarget().Options)) {
6475      // Both can be negated for free, check to see if at least one is cheaper
6476      // negated.
6477      if (LHSNeg == 2 || RHSNeg == 2)
6478        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6479                           GetNegatedExpression(N0, DAG, LegalOperations),
6480                           GetNegatedExpression(N1, DAG, LegalOperations));
6481    }
6482  }
6483
6484  return SDValue();
6485}
6486
6487SDValue DAGCombiner::visitFREM(SDNode *N) {
6488  SDValue N0 = N->getOperand(0);
6489  SDValue N1 = N->getOperand(1);
6490  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6491  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6492  EVT VT = N->getValueType(0);
6493
6494  // fold (frem c1, c2) -> fmod(c1,c2)
6495  if (N0CFP && N1CFP)
6496    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6497
6498  return SDValue();
6499}
6500
6501SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6502  SDValue N0 = N->getOperand(0);
6503  SDValue N1 = N->getOperand(1);
6504  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6505  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6506  EVT VT = N->getValueType(0);
6507
6508  if (N0CFP && N1CFP)  // Constant fold
6509    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6510
6511  if (N1CFP) {
6512    const APFloat& V = N1CFP->getValueAPF();
6513    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6514    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6515    if (!V.isNegative()) {
6516      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6517        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6518    } else {
6519      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6520        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6521                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6522    }
6523  }
6524
6525  // copysign(fabs(x), y) -> copysign(x, y)
6526  // copysign(fneg(x), y) -> copysign(x, y)
6527  // copysign(copysign(x,z), y) -> copysign(x, y)
6528  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6529      N0.getOpcode() == ISD::FCOPYSIGN)
6530    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6531                       N0.getOperand(0), N1);
6532
6533  // copysign(x, abs(y)) -> abs(x)
6534  if (N1.getOpcode() == ISD::FABS)
6535    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6536
6537  // copysign(x, copysign(y,z)) -> copysign(x, z)
6538  if (N1.getOpcode() == ISD::FCOPYSIGN)
6539    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6540                       N0, N1.getOperand(1));
6541
6542  // copysign(x, fp_extend(y)) -> copysign(x, y)
6543  // copysign(x, fp_round(y)) -> copysign(x, y)
6544  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6545    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6546                       N0, N1.getOperand(0));
6547
6548  return SDValue();
6549}
6550
6551SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6552  SDValue N0 = N->getOperand(0);
6553  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6554  EVT VT = N->getValueType(0);
6555  EVT OpVT = N0.getValueType();
6556
6557  // fold (sint_to_fp c1) -> c1fp
6558  if (N0C &&
6559      // ...but only if the target supports immediate floating-point values
6560      (!LegalOperations ||
6561       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6562    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6563
6564  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6565  // but UINT_TO_FP is legal on this target, try to convert.
6566  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6567      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6568    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6569    if (DAG.SignBitIsZero(N0))
6570      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6571  }
6572
6573  // The next optimizations are desireable only if SELECT_CC can be lowered.
6574  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6575  // having to say they don't support SELECT_CC on every type the DAG knows
6576  // about, since there is no way to mark an opcode illegal at all value types
6577  // (See also visitSELECT)
6578  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6579    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6580    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6581        !VT.isVector() &&
6582        (!LegalOperations ||
6583         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6584      SDValue Ops[] =
6585        { N0.getOperand(0), N0.getOperand(1),
6586          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6587          N0.getOperand(2) };
6588      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6589    }
6590
6591    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6592    //      (select_cc x, y, 1.0, 0.0,, cc)
6593    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6594        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6595        (!LegalOperations ||
6596         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6597      SDValue Ops[] =
6598        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6599          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6600          N0.getOperand(0).getOperand(2) };
6601      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6602    }
6603  }
6604
6605  return SDValue();
6606}
6607
6608SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6609  SDValue N0 = N->getOperand(0);
6610  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6611  EVT VT = N->getValueType(0);
6612  EVT OpVT = N0.getValueType();
6613
6614  // fold (uint_to_fp c1) -> c1fp
6615  if (N0C &&
6616      // ...but only if the target supports immediate floating-point values
6617      (!LegalOperations ||
6618       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6619    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6620
6621  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6622  // but SINT_TO_FP is legal on this target, try to convert.
6623  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6624      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6625    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6626    if (DAG.SignBitIsZero(N0))
6627      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6628  }
6629
6630  // The next optimizations are desireable only if SELECT_CC can be lowered.
6631  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6632  // having to say they don't support SELECT_CC on every type the DAG knows
6633  // about, since there is no way to mark an opcode illegal at all value types
6634  // (See also visitSELECT)
6635  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6636    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6637
6638    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6639        (!LegalOperations ||
6640         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6641      SDValue Ops[] =
6642        { N0.getOperand(0), N0.getOperand(1),
6643          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6644          N0.getOperand(2) };
6645      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6646    }
6647  }
6648
6649  return SDValue();
6650}
6651
6652SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6653  SDValue N0 = N->getOperand(0);
6654  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6655  EVT VT = N->getValueType(0);
6656
6657  // fold (fp_to_sint c1fp) -> c1
6658  if (N0CFP)
6659    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6660
6661  return SDValue();
6662}
6663
6664SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6665  SDValue N0 = N->getOperand(0);
6666  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6667  EVT VT = N->getValueType(0);
6668
6669  // fold (fp_to_uint c1fp) -> c1
6670  if (N0CFP)
6671    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6672
6673  return SDValue();
6674}
6675
6676SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6677  SDValue N0 = N->getOperand(0);
6678  SDValue N1 = N->getOperand(1);
6679  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6680  EVT VT = N->getValueType(0);
6681
6682  // fold (fp_round c1fp) -> c1fp
6683  if (N0CFP)
6684    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6685
6686  // fold (fp_round (fp_extend x)) -> x
6687  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6688    return N0.getOperand(0);
6689
6690  // fold (fp_round (fp_round x)) -> (fp_round x)
6691  if (N0.getOpcode() == ISD::FP_ROUND) {
6692    // This is a value preserving truncation if both round's are.
6693    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6694                   N0.getNode()->getConstantOperandVal(1) == 1;
6695    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6696                       DAG.getIntPtrConstant(IsTrunc));
6697  }
6698
6699  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6700  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6701    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6702                              N0.getOperand(0), N1);
6703    AddToWorkList(Tmp.getNode());
6704    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6705                       Tmp, N0.getOperand(1));
6706  }
6707
6708  return SDValue();
6709}
6710
6711SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6712  SDValue N0 = N->getOperand(0);
6713  EVT VT = N->getValueType(0);
6714  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6715  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6716
6717  // fold (fp_round_inreg c1fp) -> c1fp
6718  if (N0CFP && isTypeLegal(EVT)) {
6719    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6720    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6721  }
6722
6723  return SDValue();
6724}
6725
6726SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6727  SDValue N0 = N->getOperand(0);
6728  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6729  EVT VT = N->getValueType(0);
6730
6731  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6732  if (N->hasOneUse() &&
6733      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6734    return SDValue();
6735
6736  // fold (fp_extend c1fp) -> c1fp
6737  if (N0CFP)
6738    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6739
6740  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6741  // value of X.
6742  if (N0.getOpcode() == ISD::FP_ROUND
6743      && N0.getNode()->getConstantOperandVal(1) == 1) {
6744    SDValue In = N0.getOperand(0);
6745    if (In.getValueType() == VT) return In;
6746    if (VT.bitsLT(In.getValueType()))
6747      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6748                         In, N0.getOperand(1));
6749    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6750  }
6751
6752  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6753  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6754      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6755       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6756    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6757    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6758                                     LN0->getChain(),
6759                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6760                                     N0.getValueType(),
6761                                     LN0->isVolatile(), LN0->isNonTemporal(),
6762                                     LN0->getAlignment());
6763    CombineTo(N, ExtLoad);
6764    CombineTo(N0.getNode(),
6765              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6766                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6767              ExtLoad.getValue(1));
6768    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6769  }
6770
6771  return SDValue();
6772}
6773
6774SDValue DAGCombiner::visitFNEG(SDNode *N) {
6775  SDValue N0 = N->getOperand(0);
6776  EVT VT = N->getValueType(0);
6777
6778  if (VT.isVector()) {
6779    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6780    if (FoldedVOp.getNode()) return FoldedVOp;
6781  }
6782
6783  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6784                         &DAG.getTarget().Options))
6785    return GetNegatedExpression(N0, DAG, LegalOperations);
6786
6787  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6788  // constant pool values.
6789  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6790      !VT.isVector() &&
6791      N0.getNode()->hasOneUse() &&
6792      N0.getOperand(0).getValueType().isInteger()) {
6793    SDValue Int = N0.getOperand(0);
6794    EVT IntVT = Int.getValueType();
6795    if (IntVT.isInteger() && !IntVT.isVector()) {
6796      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6797              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6798      AddToWorkList(Int.getNode());
6799      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6800                         VT, Int);
6801    }
6802  }
6803
6804  // (fneg (fmul c, x)) -> (fmul -c, x)
6805  if (N0.getOpcode() == ISD::FMUL) {
6806    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6807    if (CFP1)
6808      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6809                         N0.getOperand(0),
6810                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6811                                     N0.getOperand(1)));
6812  }
6813
6814  return SDValue();
6815}
6816
6817SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6818  SDValue N0 = N->getOperand(0);
6819  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6820  EVT VT = N->getValueType(0);
6821
6822  // fold (fceil c1) -> fceil(c1)
6823  if (N0CFP)
6824    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6825
6826  return SDValue();
6827}
6828
6829SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6830  SDValue N0 = N->getOperand(0);
6831  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6832  EVT VT = N->getValueType(0);
6833
6834  // fold (ftrunc c1) -> ftrunc(c1)
6835  if (N0CFP)
6836    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6837
6838  return SDValue();
6839}
6840
6841SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6842  SDValue N0 = N->getOperand(0);
6843  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6844  EVT VT = N->getValueType(0);
6845
6846  // fold (ffloor c1) -> ffloor(c1)
6847  if (N0CFP)
6848    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6849
6850  return SDValue();
6851}
6852
6853SDValue DAGCombiner::visitFABS(SDNode *N) {
6854  SDValue N0 = N->getOperand(0);
6855  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6856  EVT VT = N->getValueType(0);
6857
6858  if (VT.isVector()) {
6859    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6860    if (FoldedVOp.getNode()) return FoldedVOp;
6861  }
6862
6863  // fold (fabs c1) -> fabs(c1)
6864  if (N0CFP)
6865    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6866  // fold (fabs (fabs x)) -> (fabs x)
6867  if (N0.getOpcode() == ISD::FABS)
6868    return N->getOperand(0);
6869  // fold (fabs (fneg x)) -> (fabs x)
6870  // fold (fabs (fcopysign x, y)) -> (fabs x)
6871  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6872    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6873
6874  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6875  // constant pool values.
6876  if (!TLI.isFAbsFree(VT) &&
6877      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6878      N0.getOperand(0).getValueType().isInteger() &&
6879      !N0.getOperand(0).getValueType().isVector()) {
6880    SDValue Int = N0.getOperand(0);
6881    EVT IntVT = Int.getValueType();
6882    if (IntVT.isInteger() && !IntVT.isVector()) {
6883      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6884             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6885      AddToWorkList(Int.getNode());
6886      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6887                         N->getValueType(0), Int);
6888    }
6889  }
6890
6891  return SDValue();
6892}
6893
6894SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6895  SDValue Chain = N->getOperand(0);
6896  SDValue N1 = N->getOperand(1);
6897  SDValue N2 = N->getOperand(2);
6898
6899  // If N is a constant we could fold this into a fallthrough or unconditional
6900  // branch. However that doesn't happen very often in normal code, because
6901  // Instcombine/SimplifyCFG should have handled the available opportunities.
6902  // If we did this folding here, it would be necessary to update the
6903  // MachineBasicBlock CFG, which is awkward.
6904
6905  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6906  // on the target.
6907  if (N1.getOpcode() == ISD::SETCC &&
6908      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6909                                   N1.getOperand(0).getValueType())) {
6910    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6911                       Chain, N1.getOperand(2),
6912                       N1.getOperand(0), N1.getOperand(1), N2);
6913  }
6914
6915  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6916      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6917       (N1.getOperand(0).hasOneUse() &&
6918        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6919    SDNode *Trunc = 0;
6920    if (N1.getOpcode() == ISD::TRUNCATE) {
6921      // Look pass the truncate.
6922      Trunc = N1.getNode();
6923      N1 = N1.getOperand(0);
6924    }
6925
6926    // Match this pattern so that we can generate simpler code:
6927    //
6928    //   %a = ...
6929    //   %b = and i32 %a, 2
6930    //   %c = srl i32 %b, 1
6931    //   brcond i32 %c ...
6932    //
6933    // into
6934    //
6935    //   %a = ...
6936    //   %b = and i32 %a, 2
6937    //   %c = setcc eq %b, 0
6938    //   brcond %c ...
6939    //
6940    // This applies only when the AND constant value has one bit set and the
6941    // SRL constant is equal to the log2 of the AND constant. The back-end is
6942    // smart enough to convert the result into a TEST/JMP sequence.
6943    SDValue Op0 = N1.getOperand(0);
6944    SDValue Op1 = N1.getOperand(1);
6945
6946    if (Op0.getOpcode() == ISD::AND &&
6947        Op1.getOpcode() == ISD::Constant) {
6948      SDValue AndOp1 = Op0.getOperand(1);
6949
6950      if (AndOp1.getOpcode() == ISD::Constant) {
6951        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6952
6953        if (AndConst.isPowerOf2() &&
6954            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6955          SDValue SetCC =
6956            DAG.getSetCC(SDLoc(N),
6957                         getSetCCResultType(Op0.getValueType()),
6958                         Op0, DAG.getConstant(0, Op0.getValueType()),
6959                         ISD::SETNE);
6960
6961          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6962                                          MVT::Other, Chain, SetCC, N2);
6963          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6964          // will convert it back to (X & C1) >> C2.
6965          CombineTo(N, NewBRCond, false);
6966          // Truncate is dead.
6967          if (Trunc) {
6968            removeFromWorkList(Trunc);
6969            DAG.DeleteNode(Trunc);
6970          }
6971          // Replace the uses of SRL with SETCC
6972          WorkListRemover DeadNodes(*this);
6973          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6974          removeFromWorkList(N1.getNode());
6975          DAG.DeleteNode(N1.getNode());
6976          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6977        }
6978      }
6979    }
6980
6981    if (Trunc)
6982      // Restore N1 if the above transformation doesn't match.
6983      N1 = N->getOperand(1);
6984  }
6985
6986  // Transform br(xor(x, y)) -> br(x != y)
6987  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6988  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6989    SDNode *TheXor = N1.getNode();
6990    SDValue Op0 = TheXor->getOperand(0);
6991    SDValue Op1 = TheXor->getOperand(1);
6992    if (Op0.getOpcode() == Op1.getOpcode()) {
6993      // Avoid missing important xor optimizations.
6994      SDValue Tmp = visitXOR(TheXor);
6995      if (Tmp.getNode()) {
6996        if (Tmp.getNode() != TheXor) {
6997          DEBUG(dbgs() << "\nReplacing.8 ";
6998                TheXor->dump(&DAG);
6999                dbgs() << "\nWith: ";
7000                Tmp.getNode()->dump(&DAG);
7001                dbgs() << '\n');
7002          WorkListRemover DeadNodes(*this);
7003          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
7004          removeFromWorkList(TheXor);
7005          DAG.DeleteNode(TheXor);
7006          return DAG.getNode(ISD::BRCOND, SDLoc(N),
7007                             MVT::Other, Chain, Tmp, N2);
7008        }
7009
7010        // visitXOR has changed XOR's operands or replaced the XOR completely,
7011        // bail out.
7012        return SDValue(N, 0);
7013      }
7014    }
7015
7016    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
7017      bool Equal = false;
7018      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
7019        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
7020            Op0.getOpcode() == ISD::XOR) {
7021          TheXor = Op0.getNode();
7022          Equal = true;
7023        }
7024
7025      EVT SetCCVT = N1.getValueType();
7026      if (LegalTypes)
7027        SetCCVT = getSetCCResultType(SetCCVT);
7028      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7029                                   SetCCVT,
7030                                   Op0, Op1,
7031                                   Equal ? ISD::SETEQ : ISD::SETNE);
7032      // Replace the uses of XOR with SETCC
7033      WorkListRemover DeadNodes(*this);
7034      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7035      removeFromWorkList(N1.getNode());
7036      DAG.DeleteNode(N1.getNode());
7037      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7038                         MVT::Other, Chain, SetCC, N2);
7039    }
7040  }
7041
7042  return SDValue();
7043}
7044
7045// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7046//
7047SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7048  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7049  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7050
7051  // If N is a constant we could fold this into a fallthrough or unconditional
7052  // branch. However that doesn't happen very often in normal code, because
7053  // Instcombine/SimplifyCFG should have handled the available opportunities.
7054  // If we did this folding here, it would be necessary to update the
7055  // MachineBasicBlock CFG, which is awkward.
7056
7057  // Use SimplifySetCC to simplify SETCC's.
7058  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7059                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7060                               false);
7061  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7062
7063  // fold to a simpler setcc
7064  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7065    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7066                       N->getOperand(0), Simp.getOperand(2),
7067                       Simp.getOperand(0), Simp.getOperand(1),
7068                       N->getOperand(4));
7069
7070  return SDValue();
7071}
7072
7073/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7074/// uses N as its base pointer and that N may be folded in the load / store
7075/// addressing mode.
7076static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7077                                    SelectionDAG &DAG,
7078                                    const TargetLowering &TLI) {
7079  EVT VT;
7080  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7081    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7082      return false;
7083    VT = Use->getValueType(0);
7084  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7085    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7086      return false;
7087    VT = ST->getValue().getValueType();
7088  } else
7089    return false;
7090
7091  TargetLowering::AddrMode AM;
7092  if (N->getOpcode() == ISD::ADD) {
7093    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7094    if (Offset)
7095      // [reg +/- imm]
7096      AM.BaseOffs = Offset->getSExtValue();
7097    else
7098      // [reg +/- reg]
7099      AM.Scale = 1;
7100  } else if (N->getOpcode() == ISD::SUB) {
7101    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7102    if (Offset)
7103      // [reg +/- imm]
7104      AM.BaseOffs = -Offset->getSExtValue();
7105    else
7106      // [reg +/- reg]
7107      AM.Scale = 1;
7108  } else
7109    return false;
7110
7111  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7112}
7113
7114/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7115/// pre-indexed load / store when the base pointer is an add or subtract
7116/// and it has other uses besides the load / store. After the
7117/// transformation, the new indexed load / store has effectively folded
7118/// the add / subtract in and all of its other uses are redirected to the
7119/// new load / store.
7120bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7121  if (Level < AfterLegalizeDAG)
7122    return false;
7123
7124  bool isLoad = true;
7125  SDValue Ptr;
7126  EVT VT;
7127  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7128    if (LD->isIndexed())
7129      return false;
7130    VT = LD->getMemoryVT();
7131    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7132        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7133      return false;
7134    Ptr = LD->getBasePtr();
7135  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7136    if (ST->isIndexed())
7137      return false;
7138    VT = ST->getMemoryVT();
7139    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7140        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7141      return false;
7142    Ptr = ST->getBasePtr();
7143    isLoad = false;
7144  } else {
7145    return false;
7146  }
7147
7148  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7149  // out.  There is no reason to make this a preinc/predec.
7150  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7151      Ptr.getNode()->hasOneUse())
7152    return false;
7153
7154  // Ask the target to do addressing mode selection.
7155  SDValue BasePtr;
7156  SDValue Offset;
7157  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7158  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7159    return false;
7160
7161  // Backends without true r+i pre-indexed forms may need to pass a
7162  // constant base with a variable offset so that constant coercion
7163  // will work with the patterns in canonical form.
7164  bool Swapped = false;
7165  if (isa<ConstantSDNode>(BasePtr)) {
7166    std::swap(BasePtr, Offset);
7167    Swapped = true;
7168  }
7169
7170  // Don't create a indexed load / store with zero offset.
7171  if (isa<ConstantSDNode>(Offset) &&
7172      cast<ConstantSDNode>(Offset)->isNullValue())
7173    return false;
7174
7175  // Try turning it into a pre-indexed load / store except when:
7176  // 1) The new base ptr is a frame index.
7177  // 2) If N is a store and the new base ptr is either the same as or is a
7178  //    predecessor of the value being stored.
7179  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7180  //    that would create a cycle.
7181  // 4) All uses are load / store ops that use it as old base ptr.
7182
7183  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7184  // (plus the implicit offset) to a register to preinc anyway.
7185  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7186    return false;
7187
7188  // Check #2.
7189  if (!isLoad) {
7190    SDValue Val = cast<StoreSDNode>(N)->getValue();
7191    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7192      return false;
7193  }
7194
7195  // If the offset is a constant, there may be other adds of constants that
7196  // can be folded with this one. We should do this to avoid having to keep
7197  // a copy of the original base pointer.
7198  SmallVector<SDNode *, 16> OtherUses;
7199  if (isa<ConstantSDNode>(Offset))
7200    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7201         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7202      SDNode *Use = *I;
7203      if (Use == Ptr.getNode())
7204        continue;
7205
7206      if (Use->isPredecessorOf(N))
7207        continue;
7208
7209      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7210        OtherUses.clear();
7211        break;
7212      }
7213
7214      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7215      if (Op1.getNode() == BasePtr.getNode())
7216        std::swap(Op0, Op1);
7217      assert(Op0.getNode() == BasePtr.getNode() &&
7218             "Use of ADD/SUB but not an operand");
7219
7220      if (!isa<ConstantSDNode>(Op1)) {
7221        OtherUses.clear();
7222        break;
7223      }
7224
7225      // FIXME: In some cases, we can be smarter about this.
7226      if (Op1.getValueType() != Offset.getValueType()) {
7227        OtherUses.clear();
7228        break;
7229      }
7230
7231      OtherUses.push_back(Use);
7232    }
7233
7234  if (Swapped)
7235    std::swap(BasePtr, Offset);
7236
7237  // Now check for #3 and #4.
7238  bool RealUse = false;
7239
7240  // Caches for hasPredecessorHelper
7241  SmallPtrSet<const SDNode *, 32> Visited;
7242  SmallVector<const SDNode *, 16> Worklist;
7243
7244  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7245         E = Ptr.getNode()->use_end(); I != E; ++I) {
7246    SDNode *Use = *I;
7247    if (Use == N)
7248      continue;
7249    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7250      return false;
7251
7252    // If Ptr may be folded in addressing mode of other use, then it's
7253    // not profitable to do this transformation.
7254    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7255      RealUse = true;
7256  }
7257
7258  if (!RealUse)
7259    return false;
7260
7261  SDValue Result;
7262  if (isLoad)
7263    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7264                                BasePtr, Offset, AM);
7265  else
7266    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7267                                 BasePtr, Offset, AM);
7268  ++PreIndexedNodes;
7269  ++NodesCombined;
7270  DEBUG(dbgs() << "\nReplacing.4 ";
7271        N->dump(&DAG);
7272        dbgs() << "\nWith: ";
7273        Result.getNode()->dump(&DAG);
7274        dbgs() << '\n');
7275  WorkListRemover DeadNodes(*this);
7276  if (isLoad) {
7277    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7278    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7279  } else {
7280    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7281  }
7282
7283  // Finally, since the node is now dead, remove it from the graph.
7284  DAG.DeleteNode(N);
7285
7286  if (Swapped)
7287    std::swap(BasePtr, Offset);
7288
7289  // Replace other uses of BasePtr that can be updated to use Ptr
7290  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7291    unsigned OffsetIdx = 1;
7292    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7293      OffsetIdx = 0;
7294    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7295           BasePtr.getNode() && "Expected BasePtr operand");
7296
7297    // We need to replace ptr0 in the following expression:
7298    //   x0 * offset0 + y0 * ptr0 = t0
7299    // knowing that
7300    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7301    //
7302    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7303    // indexed load/store and the expresion that needs to be re-written.
7304    //
7305    // Therefore, we have:
7306    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7307
7308    ConstantSDNode *CN =
7309      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7310    int X0, X1, Y0, Y1;
7311    APInt Offset0 = CN->getAPIntValue();
7312    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7313
7314    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7315    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7316    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7317    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7318
7319    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7320
7321    APInt CNV = Offset0;
7322    if (X0 < 0) CNV = -CNV;
7323    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7324    else CNV = CNV - Offset1;
7325
7326    // We can now generate the new expression.
7327    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7328    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7329
7330    SDValue NewUse = DAG.getNode(Opcode,
7331                                 SDLoc(OtherUses[i]),
7332                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7333    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7334    removeFromWorkList(OtherUses[i]);
7335    DAG.DeleteNode(OtherUses[i]);
7336  }
7337
7338  // Replace the uses of Ptr with uses of the updated base value.
7339  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7340  removeFromWorkList(Ptr.getNode());
7341  DAG.DeleteNode(Ptr.getNode());
7342
7343  return true;
7344}
7345
7346/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7347/// add / sub of the base pointer node into a post-indexed load / store.
7348/// The transformation folded the add / subtract into the new indexed
7349/// load / store effectively and all of its uses are redirected to the
7350/// new load / store.
7351bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7352  if (Level < AfterLegalizeDAG)
7353    return false;
7354
7355  bool isLoad = true;
7356  SDValue Ptr;
7357  EVT VT;
7358  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7359    if (LD->isIndexed())
7360      return false;
7361    VT = LD->getMemoryVT();
7362    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7363        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7364      return false;
7365    Ptr = LD->getBasePtr();
7366  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7367    if (ST->isIndexed())
7368      return false;
7369    VT = ST->getMemoryVT();
7370    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7371        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7372      return false;
7373    Ptr = ST->getBasePtr();
7374    isLoad = false;
7375  } else {
7376    return false;
7377  }
7378
7379  if (Ptr.getNode()->hasOneUse())
7380    return false;
7381
7382  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7383         E = Ptr.getNode()->use_end(); I != E; ++I) {
7384    SDNode *Op = *I;
7385    if (Op == N ||
7386        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7387      continue;
7388
7389    SDValue BasePtr;
7390    SDValue Offset;
7391    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7392    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7393      // Don't create a indexed load / store with zero offset.
7394      if (isa<ConstantSDNode>(Offset) &&
7395          cast<ConstantSDNode>(Offset)->isNullValue())
7396        continue;
7397
7398      // Try turning it into a post-indexed load / store except when
7399      // 1) All uses are load / store ops that use it as base ptr (and
7400      //    it may be folded as addressing mmode).
7401      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7402      //    nor a successor of N. Otherwise, if Op is folded that would
7403      //    create a cycle.
7404
7405      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7406        continue;
7407
7408      // Check for #1.
7409      bool TryNext = false;
7410      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7411             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7412        SDNode *Use = *II;
7413        if (Use == Ptr.getNode())
7414          continue;
7415
7416        // If all the uses are load / store addresses, then don't do the
7417        // transformation.
7418        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7419          bool RealUse = false;
7420          for (SDNode::use_iterator III = Use->use_begin(),
7421                 EEE = Use->use_end(); III != EEE; ++III) {
7422            SDNode *UseUse = *III;
7423            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7424              RealUse = true;
7425          }
7426
7427          if (!RealUse) {
7428            TryNext = true;
7429            break;
7430          }
7431        }
7432      }
7433
7434      if (TryNext)
7435        continue;
7436
7437      // Check for #2
7438      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7439        SDValue Result = isLoad
7440          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7441                               BasePtr, Offset, AM)
7442          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7443                                BasePtr, Offset, AM);
7444        ++PostIndexedNodes;
7445        ++NodesCombined;
7446        DEBUG(dbgs() << "\nReplacing.5 ";
7447              N->dump(&DAG);
7448              dbgs() << "\nWith: ";
7449              Result.getNode()->dump(&DAG);
7450              dbgs() << '\n');
7451        WorkListRemover DeadNodes(*this);
7452        if (isLoad) {
7453          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7454          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7455        } else {
7456          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7457        }
7458
7459        // Finally, since the node is now dead, remove it from the graph.
7460        DAG.DeleteNode(N);
7461
7462        // Replace the uses of Use with uses of the updated base value.
7463        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7464                                      Result.getValue(isLoad ? 1 : 0));
7465        removeFromWorkList(Op);
7466        DAG.DeleteNode(Op);
7467        return true;
7468      }
7469    }
7470  }
7471
7472  return false;
7473}
7474
7475SDValue DAGCombiner::visitLOAD(SDNode *N) {
7476  LoadSDNode *LD  = cast<LoadSDNode>(N);
7477  SDValue Chain = LD->getChain();
7478  SDValue Ptr   = LD->getBasePtr();
7479
7480  // If load is not volatile and there are no uses of the loaded value (and
7481  // the updated indexed value in case of indexed loads), change uses of the
7482  // chain value into uses of the chain input (i.e. delete the dead load).
7483  if (!LD->isVolatile()) {
7484    if (N->getValueType(1) == MVT::Other) {
7485      // Unindexed loads.
7486      if (!N->hasAnyUseOfValue(0)) {
7487        // It's not safe to use the two value CombineTo variant here. e.g.
7488        // v1, chain2 = load chain1, loc
7489        // v2, chain3 = load chain2, loc
7490        // v3         = add v2, c
7491        // Now we replace use of chain2 with chain1.  This makes the second load
7492        // isomorphic to the one we are deleting, and thus makes this load live.
7493        DEBUG(dbgs() << "\nReplacing.6 ";
7494              N->dump(&DAG);
7495              dbgs() << "\nWith chain: ";
7496              Chain.getNode()->dump(&DAG);
7497              dbgs() << "\n");
7498        WorkListRemover DeadNodes(*this);
7499        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7500
7501        if (N->use_empty()) {
7502          removeFromWorkList(N);
7503          DAG.DeleteNode(N);
7504        }
7505
7506        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7507      }
7508    } else {
7509      // Indexed loads.
7510      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7511      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7512        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7513        DEBUG(dbgs() << "\nReplacing.7 ";
7514              N->dump(&DAG);
7515              dbgs() << "\nWith: ";
7516              Undef.getNode()->dump(&DAG);
7517              dbgs() << " and 2 other values\n");
7518        WorkListRemover DeadNodes(*this);
7519        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7520        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7521                                      DAG.getUNDEF(N->getValueType(1)));
7522        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7523        removeFromWorkList(N);
7524        DAG.DeleteNode(N);
7525        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7526      }
7527    }
7528  }
7529
7530  // If this load is directly stored, replace the load value with the stored
7531  // value.
7532  // TODO: Handle store large -> read small portion.
7533  // TODO: Handle TRUNCSTORE/LOADEXT
7534  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7535    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7536      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7537      if (PrevST->getBasePtr() == Ptr &&
7538          PrevST->getValue().getValueType() == N->getValueType(0))
7539      return CombineTo(N, Chain.getOperand(1), Chain);
7540    }
7541  }
7542
7543  // Try to infer better alignment information than the load already has.
7544  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7545    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7546      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7547        SDValue NewLoad =
7548               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7549                              LD->getValueType(0),
7550                              Chain, Ptr, LD->getPointerInfo(),
7551                              LD->getMemoryVT(),
7552                              LD->isVolatile(), LD->isNonTemporal(), Align);
7553        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7554      }
7555    }
7556  }
7557
7558  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7559    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7560  if (UseAA) {
7561    // Walk up chain skipping non-aliasing memory nodes.
7562    SDValue BetterChain = FindBetterChain(N, Chain);
7563
7564    // If there is a better chain.
7565    if (Chain != BetterChain) {
7566      SDValue ReplLoad;
7567
7568      // Replace the chain to void dependency.
7569      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7570        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7571                               BetterChain, Ptr, LD->getPointerInfo(),
7572                               LD->isVolatile(), LD->isNonTemporal(),
7573                               LD->isInvariant(), LD->getAlignment());
7574      } else {
7575        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7576                                  LD->getValueType(0),
7577                                  BetterChain, Ptr, LD->getPointerInfo(),
7578                                  LD->getMemoryVT(),
7579                                  LD->isVolatile(),
7580                                  LD->isNonTemporal(),
7581                                  LD->getAlignment());
7582      }
7583
7584      // Create token factor to keep old chain connected.
7585      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7586                                  MVT::Other, Chain, ReplLoad.getValue(1));
7587
7588      // Make sure the new and old chains are cleaned up.
7589      AddToWorkList(Token.getNode());
7590
7591      // Replace uses with load result and token factor. Don't add users
7592      // to work list.
7593      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7594    }
7595  }
7596
7597  // Try transforming N to an indexed load.
7598  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7599    return SDValue(N, 0);
7600
7601  // Try to slice up N to more direct loads if the slices are mapped to
7602  // different register banks or pairing can take place.
7603  if (SliceUpLoad(N))
7604    return SDValue(N, 0);
7605
7606  return SDValue();
7607}
7608
7609namespace {
7610/// \brief Helper structure used to slice a load in smaller loads.
7611/// Basically a slice is obtained from the following sequence:
7612/// Origin = load Ty1, Base
7613/// Shift = srl Ty1 Origin, CstTy Amount
7614/// Inst = trunc Shift to Ty2
7615///
7616/// Then, it will be rewriten into:
7617/// Slice = load SliceTy, Base + SliceOffset
7618/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7619///
7620/// SliceTy is deduced from the number of bits that are actually used to
7621/// build Inst.
7622struct LoadedSlice {
7623  /// \brief Helper structure used to compute the cost of a slice.
7624  struct Cost {
7625    /// Are we optimizing for code size.
7626    bool ForCodeSize;
7627    /// Various cost.
7628    unsigned Loads;
7629    unsigned Truncates;
7630    unsigned CrossRegisterBanksCopies;
7631    unsigned ZExts;
7632    unsigned Shift;
7633
7634    Cost(bool ForCodeSize = false)
7635        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7636          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7637
7638    /// \brief Get the cost of one isolated slice.
7639    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7640        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7641          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7642      EVT TruncType = LS.Inst->getValueType(0);
7643      EVT LoadedType = LS.getLoadedType();
7644      if (TruncType != LoadedType &&
7645          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7646        ZExts = 1;
7647    }
7648
7649    /// \brief Account for slicing gain in the current cost.
7650    /// Slicing provide a few gains like removing a shift or a
7651    /// truncate. This method allows to grow the cost of the original
7652    /// load with the gain from this slice.
7653    void addSliceGain(const LoadedSlice &LS) {
7654      // Each slice saves a truncate.
7655      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7656      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7657                              LS.Inst->getOperand(0).getValueType()))
7658        ++Truncates;
7659      // If there is a shift amount, this slice gets rid of it.
7660      if (LS.Shift)
7661        ++Shift;
7662      // If this slice can merge a cross register bank copy, account for it.
7663      if (LS.canMergeExpensiveCrossRegisterBankCopy())
7664        ++CrossRegisterBanksCopies;
7665    }
7666
7667    Cost &operator+=(const Cost &RHS) {
7668      Loads += RHS.Loads;
7669      Truncates += RHS.Truncates;
7670      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7671      ZExts += RHS.ZExts;
7672      Shift += RHS.Shift;
7673      return *this;
7674    }
7675
7676    bool operator==(const Cost &RHS) const {
7677      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7678             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7679             ZExts == RHS.ZExts && Shift == RHS.Shift;
7680    }
7681
7682    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7683
7684    bool operator<(const Cost &RHS) const {
7685      // Assume cross register banks copies are as expensive as loads.
7686      // FIXME: Do we want some more target hooks?
7687      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7688      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7689      // Unless we are optimizing for code size, consider the
7690      // expensive operation first.
7691      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7692        return ExpensiveOpsLHS < ExpensiveOpsRHS;
7693      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7694             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7695    }
7696
7697    bool operator>(const Cost &RHS) const { return RHS < *this; }
7698
7699    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7700
7701    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7702  };
7703  // The last instruction that represent the slice. This should be a
7704  // truncate instruction.
7705  SDNode *Inst;
7706  // The original load instruction.
7707  LoadSDNode *Origin;
7708  // The right shift amount in bits from the original load.
7709  unsigned Shift;
7710  // The DAG from which Origin came from.
7711  // This is used to get some contextual information about legal types, etc.
7712  SelectionDAG *DAG;
7713
7714  LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7715              unsigned Shift = 0, SelectionDAG *DAG = NULL)
7716      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7717
7718  LoadedSlice(const LoadedSlice &LS)
7719      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7720
7721  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7722  /// \return Result is \p BitWidth and has used bits set to 1 and
7723  ///         not used bits set to 0.
7724  APInt getUsedBits() const {
7725    // Reproduce the trunc(lshr) sequence:
7726    // - Start from the truncated value.
7727    // - Zero extend to the desired bit width.
7728    // - Shift left.
7729    assert(Origin && "No original load to compare against.");
7730    unsigned BitWidth = Origin->getValueSizeInBits(0);
7731    assert(Inst && "This slice is not bound to an instruction");
7732    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7733           "Extracted slice is bigger than the whole type!");
7734    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7735    UsedBits.setAllBits();
7736    UsedBits = UsedBits.zext(BitWidth);
7737    UsedBits <<= Shift;
7738    return UsedBits;
7739  }
7740
7741  /// \brief Get the size of the slice to be loaded in bytes.
7742  unsigned getLoadedSize() const {
7743    unsigned SliceSize = getUsedBits().countPopulation();
7744    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7745    return SliceSize / 8;
7746  }
7747
7748  /// \brief Get the type that will be loaded for this slice.
7749  /// Note: This may not be the final type for the slice.
7750  EVT getLoadedType() const {
7751    assert(DAG && "Missing context");
7752    LLVMContext &Ctxt = *DAG->getContext();
7753    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7754  }
7755
7756  /// \brief Get the alignment of the load used for this slice.
7757  unsigned getAlignment() const {
7758    unsigned Alignment = Origin->getAlignment();
7759    unsigned Offset = getOffsetFromBase();
7760    if (Offset != 0)
7761      Alignment = MinAlign(Alignment, Alignment + Offset);
7762    return Alignment;
7763  }
7764
7765  /// \brief Check if this slice can be rewritten with legal operations.
7766  bool isLegal() const {
7767    // An invalid slice is not legal.
7768    if (!Origin || !Inst || !DAG)
7769      return false;
7770
7771    // Offsets are for indexed load only, we do not handle that.
7772    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7773      return false;
7774
7775    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7776
7777    // Check that the type is legal.
7778    EVT SliceType = getLoadedType();
7779    if (!TLI.isTypeLegal(SliceType))
7780      return false;
7781
7782    // Check that the load is legal for this type.
7783    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7784      return false;
7785
7786    // Check that the offset can be computed.
7787    // 1. Check its type.
7788    EVT PtrType = Origin->getBasePtr().getValueType();
7789    if (PtrType == MVT::Untyped || PtrType.isExtended())
7790      return false;
7791
7792    // 2. Check that it fits in the immediate.
7793    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7794      return false;
7795
7796    // 3. Check that the computation is legal.
7797    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7798      return false;
7799
7800    // Check that the zext is legal if it needs one.
7801    EVT TruncateType = Inst->getValueType(0);
7802    if (TruncateType != SliceType &&
7803        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7804      return false;
7805
7806    return true;
7807  }
7808
7809  /// \brief Get the offset in bytes of this slice in the original chunk of
7810  /// bits.
7811  /// \pre DAG != NULL.
7812  uint64_t getOffsetFromBase() const {
7813    assert(DAG && "Missing context.");
7814    bool IsBigEndian =
7815        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7816    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7817    uint64_t Offset = Shift / 8;
7818    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7819    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7820           "The size of the original loaded type is not a multiple of a"
7821           " byte.");
7822    // If Offset is bigger than TySizeInBytes, it means we are loading all
7823    // zeros. This should have been optimized before in the process.
7824    assert(TySizeInBytes > Offset &&
7825           "Invalid shift amount for given loaded size");
7826    if (IsBigEndian)
7827      Offset = TySizeInBytes - Offset - getLoadedSize();
7828    return Offset;
7829  }
7830
7831  /// \brief Generate the sequence of instructions to load the slice
7832  /// represented by this object and redirect the uses of this slice to
7833  /// this new sequence of instructions.
7834  /// \pre this->Inst && this->Origin are valid Instructions and this
7835  /// object passed the legal check: LoadedSlice::isLegal returned true.
7836  /// \return The last instruction of the sequence used to load the slice.
7837  SDValue loadSlice() const {
7838    assert(Inst && Origin && "Unable to replace a non-existing slice.");
7839    const SDValue &OldBaseAddr = Origin->getBasePtr();
7840    SDValue BaseAddr = OldBaseAddr;
7841    // Get the offset in that chunk of bytes w.r.t. the endianess.
7842    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7843    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7844    if (Offset) {
7845      // BaseAddr = BaseAddr + Offset.
7846      EVT ArithType = BaseAddr.getValueType();
7847      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7848                              DAG->getConstant(Offset, ArithType));
7849    }
7850
7851    // Create the type of the loaded slice according to its size.
7852    EVT SliceType = getLoadedType();
7853
7854    // Create the load for the slice.
7855    SDValue LastInst = DAG->getLoad(
7856        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7857        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7858        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7859    // If the final type is not the same as the loaded type, this means that
7860    // we have to pad with zero. Create a zero extend for that.
7861    EVT FinalType = Inst->getValueType(0);
7862    if (SliceType != FinalType)
7863      LastInst =
7864          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7865    return LastInst;
7866  }
7867
7868  /// \brief Check if this slice can be merged with an expensive cross register
7869  /// bank copy. E.g.,
7870  /// i = load i32
7871  /// f = bitcast i32 i to float
7872  bool canMergeExpensiveCrossRegisterBankCopy() const {
7873    if (!Inst || !Inst->hasOneUse())
7874      return false;
7875    SDNode *Use = *Inst->use_begin();
7876    if (Use->getOpcode() != ISD::BITCAST)
7877      return false;
7878    assert(DAG && "Missing context");
7879    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7880    EVT ResVT = Use->getValueType(0);
7881    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7882    const TargetRegisterClass *ArgRC =
7883        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7884    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7885      return false;
7886
7887    // At this point, we know that we perform a cross-register-bank copy.
7888    // Check if it is expensive.
7889    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7890    // Assume bitcasts are cheap, unless both register classes do not
7891    // explicitly share a common sub class.
7892    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7893      return false;
7894
7895    // Check if it will be merged with the load.
7896    // 1. Check the alignment constraint.
7897    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7898        ResVT.getTypeForEVT(*DAG->getContext()));
7899
7900    if (RequiredAlignment > getAlignment())
7901      return false;
7902
7903    // 2. Check that the load is a legal operation for that type.
7904    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7905      return false;
7906
7907    // 3. Check that we do not have a zext in the way.
7908    if (Inst->getValueType(0) != getLoadedType())
7909      return false;
7910
7911    return true;
7912  }
7913};
7914}
7915
7916/// \brief Sorts LoadedSlice according to their offset.
7917struct LoadedSliceSorter {
7918  bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7919    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7920    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7921  }
7922};
7923
7924/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7925/// \p UsedBits looks like 0..0 1..1 0..0.
7926static bool areUsedBitsDense(const APInt &UsedBits) {
7927  // If all the bits are one, this is dense!
7928  if (UsedBits.isAllOnesValue())
7929    return true;
7930
7931  // Get rid of the unused bits on the right.
7932  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7933  // Get rid of the unused bits on the left.
7934  if (NarrowedUsedBits.countLeadingZeros())
7935    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7936  // Check that the chunk of bits is completely used.
7937  return NarrowedUsedBits.isAllOnesValue();
7938}
7939
7940/// \brief Check whether or not \p First and \p Second are next to each other
7941/// in memory. This means that there is no hole between the bits loaded
7942/// by \p First and the bits loaded by \p Second.
7943static bool areSlicesNextToEachOther(const LoadedSlice &First,
7944                                     const LoadedSlice &Second) {
7945  assert(First.Origin == Second.Origin && First.Origin &&
7946         "Unable to match different memory origins.");
7947  APInt UsedBits = First.getUsedBits();
7948  assert((UsedBits & Second.getUsedBits()) == 0 &&
7949         "Slices are not supposed to overlap.");
7950  UsedBits |= Second.getUsedBits();
7951  return areUsedBitsDense(UsedBits);
7952}
7953
7954/// \brief Adjust the \p GlobalLSCost according to the target
7955/// paring capabilities and the layout of the slices.
7956/// \pre \p GlobalLSCost should account for at least as many loads as
7957/// there is in the slices in \p LoadedSlices.
7958static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7959                                 LoadedSlice::Cost &GlobalLSCost) {
7960  unsigned NumberOfSlices = LoadedSlices.size();
7961  // If there is less than 2 elements, no pairing is possible.
7962  if (NumberOfSlices < 2)
7963    return;
7964
7965  // Sort the slices so that elements that are likely to be next to each
7966  // other in memory are next to each other in the list.
7967  std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7968  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7969  // First (resp. Second) is the first (resp. Second) potentially candidate
7970  // to be placed in a paired load.
7971  const LoadedSlice *First = NULL;
7972  const LoadedSlice *Second = NULL;
7973  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7974                // Set the beginning of the pair.
7975                                                           First = Second) {
7976
7977    Second = &LoadedSlices[CurrSlice];
7978
7979    // If First is NULL, it means we start a new pair.
7980    // Get to the next slice.
7981    if (!First)
7982      continue;
7983
7984    EVT LoadedType = First->getLoadedType();
7985
7986    // If the types of the slices are different, we cannot pair them.
7987    if (LoadedType != Second->getLoadedType())
7988      continue;
7989
7990    // Check if the target supplies paired loads for this type.
7991    unsigned RequiredAlignment = 0;
7992    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
7993      // move to the next pair, this type is hopeless.
7994      Second = NULL;
7995      continue;
7996    }
7997    // Check if we meet the alignment requirement.
7998    if (RequiredAlignment > First->getAlignment())
7999      continue;
8000
8001    // Check that both loads are next to each other in memory.
8002    if (!areSlicesNextToEachOther(*First, *Second))
8003      continue;
8004
8005    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
8006    --GlobalLSCost.Loads;
8007    // Move to the next pair.
8008    Second = NULL;
8009  }
8010}
8011
8012/// \brief Check the profitability of all involved LoadedSlice.
8013/// Currently, it is considered profitable if there is exactly two
8014/// involved slices (1) which are (2) next to each other in memory, and
8015/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
8016///
8017/// Note: The order of the elements in \p LoadedSlices may be modified, but not
8018/// the elements themselves.
8019///
8020/// FIXME: When the cost model will be mature enough, we can relax
8021/// constraints (1) and (2).
8022static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8023                                const APInt &UsedBits, bool ForCodeSize) {
8024  unsigned NumberOfSlices = LoadedSlices.size();
8025  if (StressLoadSlicing)
8026    return NumberOfSlices > 1;
8027
8028  // Check (1).
8029  if (NumberOfSlices != 2)
8030    return false;
8031
8032  // Check (2).
8033  if (!areUsedBitsDense(UsedBits))
8034    return false;
8035
8036  // Check (3).
8037  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8038  // The original code has one big load.
8039  OrigCost.Loads = 1;
8040  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8041    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8042    // Accumulate the cost of all the slices.
8043    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8044    GlobalSlicingCost += SliceCost;
8045
8046    // Account as cost in the original configuration the gain obtained
8047    // with the current slices.
8048    OrigCost.addSliceGain(LS);
8049  }
8050
8051  // If the target supports paired load, adjust the cost accordingly.
8052  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8053  return OrigCost > GlobalSlicingCost;
8054}
8055
8056/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8057/// operations, split it in the various pieces being extracted.
8058///
8059/// This sort of thing is introduced by SROA.
8060/// This slicing takes care not to insert overlapping loads.
8061/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8062bool DAGCombiner::SliceUpLoad(SDNode *N) {
8063  if (Level < AfterLegalizeDAG)
8064    return false;
8065
8066  LoadSDNode *LD = cast<LoadSDNode>(N);
8067  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8068      !LD->getValueType(0).isInteger())
8069    return false;
8070
8071  // Keep track of already used bits to detect overlapping values.
8072  // In that case, we will just abort the transformation.
8073  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8074
8075  SmallVector<LoadedSlice, 4> LoadedSlices;
8076
8077  // Check if this load is used as several smaller chunks of bits.
8078  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8079  // of computation for each trunc.
8080  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8081       UI != UIEnd; ++UI) {
8082    // Skip the uses of the chain.
8083    if (UI.getUse().getResNo() != 0)
8084      continue;
8085
8086    SDNode *User = *UI;
8087    unsigned Shift = 0;
8088
8089    // Check if this is a trunc(lshr).
8090    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8091        isa<ConstantSDNode>(User->getOperand(1))) {
8092      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8093      User = *User->use_begin();
8094    }
8095
8096    // At this point, User is a Truncate, iff we encountered, trunc or
8097    // trunc(lshr).
8098    if (User->getOpcode() != ISD::TRUNCATE)
8099      return false;
8100
8101    // The width of the type must be a power of 2 and greater than 8-bits.
8102    // Otherwise the load cannot be represented in LLVM IR.
8103    // Moreover, if we shifted with a non 8-bits multiple, the slice
8104    // will be accross several bytes. We do not support that.
8105    unsigned Width = User->getValueSizeInBits(0);
8106    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8107      return 0;
8108
8109    // Build the slice for this chain of computations.
8110    LoadedSlice LS(User, LD, Shift, &DAG);
8111    APInt CurrentUsedBits = LS.getUsedBits();
8112
8113    // Check if this slice overlaps with another.
8114    if ((CurrentUsedBits & UsedBits) != 0)
8115      return false;
8116    // Update the bits used globally.
8117    UsedBits |= CurrentUsedBits;
8118
8119    // Check if the new slice would be legal.
8120    if (!LS.isLegal())
8121      return false;
8122
8123    // Record the slice.
8124    LoadedSlices.push_back(LS);
8125  }
8126
8127  // Abort slicing if it does not seem to be profitable.
8128  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8129    return false;
8130
8131  ++SlicedLoads;
8132
8133  // Rewrite each chain to use an independent load.
8134  // By construction, each chain can be represented by a unique load.
8135
8136  // Prepare the argument for the new token factor for all the slices.
8137  SmallVector<SDValue, 8> ArgChains;
8138  for (SmallVectorImpl<LoadedSlice>::const_iterator
8139           LSIt = LoadedSlices.begin(),
8140           LSItEnd = LoadedSlices.end();
8141       LSIt != LSItEnd; ++LSIt) {
8142    SDValue SliceInst = LSIt->loadSlice();
8143    CombineTo(LSIt->Inst, SliceInst, true);
8144    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8145      SliceInst = SliceInst.getOperand(0);
8146    assert(SliceInst->getOpcode() == ISD::LOAD &&
8147           "It takes more than a zext to get to the loaded slice!!");
8148    ArgChains.push_back(SliceInst.getValue(1));
8149  }
8150
8151  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8152                              &ArgChains[0], ArgChains.size());
8153  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8154  return true;
8155}
8156
8157/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8158/// load is having specific bytes cleared out.  If so, return the byte size
8159/// being masked out and the shift amount.
8160static std::pair<unsigned, unsigned>
8161CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8162  std::pair<unsigned, unsigned> Result(0, 0);
8163
8164  // Check for the structure we're looking for.
8165  if (V->getOpcode() != ISD::AND ||
8166      !isa<ConstantSDNode>(V->getOperand(1)) ||
8167      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8168    return Result;
8169
8170  // Check the chain and pointer.
8171  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8172  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8173
8174  // The store should be chained directly to the load or be an operand of a
8175  // tokenfactor.
8176  if (LD == Chain.getNode())
8177    ; // ok.
8178  else if (Chain->getOpcode() != ISD::TokenFactor)
8179    return Result; // Fail.
8180  else {
8181    bool isOk = false;
8182    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8183      if (Chain->getOperand(i).getNode() == LD) {
8184        isOk = true;
8185        break;
8186      }
8187    if (!isOk) return Result;
8188  }
8189
8190  // This only handles simple types.
8191  if (V.getValueType() != MVT::i16 &&
8192      V.getValueType() != MVT::i32 &&
8193      V.getValueType() != MVT::i64)
8194    return Result;
8195
8196  // Check the constant mask.  Invert it so that the bits being masked out are
8197  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8198  // follow the sign bit for uniformity.
8199  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8200  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8201  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8202  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8203  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8204  if (NotMaskLZ == 64) return Result;  // All zero mask.
8205
8206  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8207  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8208    return Result;
8209
8210  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8211  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8212    NotMaskLZ -= 64-V.getValueSizeInBits();
8213
8214  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8215  switch (MaskedBytes) {
8216  case 1:
8217  case 2:
8218  case 4: break;
8219  default: return Result; // All one mask, or 5-byte mask.
8220  }
8221
8222  // Verify that the first bit starts at a multiple of mask so that the access
8223  // is aligned the same as the access width.
8224  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8225
8226  Result.first = MaskedBytes;
8227  Result.second = NotMaskTZ/8;
8228  return Result;
8229}
8230
8231
8232/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8233/// provides a value as specified by MaskInfo.  If so, replace the specified
8234/// store with a narrower store of truncated IVal.
8235static SDNode *
8236ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8237                                SDValue IVal, StoreSDNode *St,
8238                                DAGCombiner *DC) {
8239  unsigned NumBytes = MaskInfo.first;
8240  unsigned ByteShift = MaskInfo.second;
8241  SelectionDAG &DAG = DC->getDAG();
8242
8243  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8244  // that uses this.  If not, this is not a replacement.
8245  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8246                                  ByteShift*8, (ByteShift+NumBytes)*8);
8247  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8248
8249  // Check that it is legal on the target to do this.  It is legal if the new
8250  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8251  // legalization.
8252  MVT VT = MVT::getIntegerVT(NumBytes*8);
8253  if (!DC->isTypeLegal(VT))
8254    return 0;
8255
8256  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8257  // shifted by ByteShift and truncated down to NumBytes.
8258  if (ByteShift)
8259    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8260                       DAG.getConstant(ByteShift*8,
8261                                    DC->getShiftAmountTy(IVal.getValueType())));
8262
8263  // Figure out the offset for the store and the alignment of the access.
8264  unsigned StOffset;
8265  unsigned NewAlign = St->getAlignment();
8266
8267  if (DAG.getTargetLoweringInfo().isLittleEndian())
8268    StOffset = ByteShift;
8269  else
8270    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8271
8272  SDValue Ptr = St->getBasePtr();
8273  if (StOffset) {
8274    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8275                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8276    NewAlign = MinAlign(NewAlign, StOffset);
8277  }
8278
8279  // Truncate down to the new size.
8280  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8281
8282  ++OpsNarrowed;
8283  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8284                      St->getPointerInfo().getWithOffset(StOffset),
8285                      false, false, NewAlign).getNode();
8286}
8287
8288
8289/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8290/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8291/// of the loaded bits, try narrowing the load and store if it would end up
8292/// being a win for performance or code size.
8293SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8294  StoreSDNode *ST  = cast<StoreSDNode>(N);
8295  if (ST->isVolatile())
8296    return SDValue();
8297
8298  SDValue Chain = ST->getChain();
8299  SDValue Value = ST->getValue();
8300  SDValue Ptr   = ST->getBasePtr();
8301  EVT VT = Value.getValueType();
8302
8303  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8304    return SDValue();
8305
8306  unsigned Opc = Value.getOpcode();
8307
8308  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8309  // is a byte mask indicating a consecutive number of bytes, check to see if
8310  // Y is known to provide just those bytes.  If so, we try to replace the
8311  // load + replace + store sequence with a single (narrower) store, which makes
8312  // the load dead.
8313  if (Opc == ISD::OR) {
8314    std::pair<unsigned, unsigned> MaskedLoad;
8315    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8316    if (MaskedLoad.first)
8317      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8318                                                  Value.getOperand(1), ST,this))
8319        return SDValue(NewST, 0);
8320
8321    // Or is commutative, so try swapping X and Y.
8322    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8323    if (MaskedLoad.first)
8324      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8325                                                  Value.getOperand(0), ST,this))
8326        return SDValue(NewST, 0);
8327  }
8328
8329  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8330      Value.getOperand(1).getOpcode() != ISD::Constant)
8331    return SDValue();
8332
8333  SDValue N0 = Value.getOperand(0);
8334  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8335      Chain == SDValue(N0.getNode(), 1)) {
8336    LoadSDNode *LD = cast<LoadSDNode>(N0);
8337    if (LD->getBasePtr() != Ptr ||
8338        LD->getPointerInfo().getAddrSpace() !=
8339        ST->getPointerInfo().getAddrSpace())
8340      return SDValue();
8341
8342    // Find the type to narrow it the load / op / store to.
8343    SDValue N1 = Value.getOperand(1);
8344    unsigned BitWidth = N1.getValueSizeInBits();
8345    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8346    if (Opc == ISD::AND)
8347      Imm ^= APInt::getAllOnesValue(BitWidth);
8348    if (Imm == 0 || Imm.isAllOnesValue())
8349      return SDValue();
8350    unsigned ShAmt = Imm.countTrailingZeros();
8351    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8352    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8353    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8354    while (NewBW < BitWidth &&
8355           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8356             TLI.isNarrowingProfitable(VT, NewVT))) {
8357      NewBW = NextPowerOf2(NewBW);
8358      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8359    }
8360    if (NewBW >= BitWidth)
8361      return SDValue();
8362
8363    // If the lsb changed does not start at the type bitwidth boundary,
8364    // start at the previous one.
8365    if (ShAmt % NewBW)
8366      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8367    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8368                                   std::min(BitWidth, ShAmt + NewBW));
8369    if ((Imm & Mask) == Imm) {
8370      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8371      if (Opc == ISD::AND)
8372        NewImm ^= APInt::getAllOnesValue(NewBW);
8373      uint64_t PtrOff = ShAmt / 8;
8374      // For big endian targets, we need to adjust the offset to the pointer to
8375      // load the correct bytes.
8376      if (TLI.isBigEndian())
8377        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8378
8379      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8380      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8381      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8382        return SDValue();
8383
8384      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8385                                   Ptr.getValueType(), Ptr,
8386                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8387      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8388                                  LD->getChain(), NewPtr,
8389                                  LD->getPointerInfo().getWithOffset(PtrOff),
8390                                  LD->isVolatile(), LD->isNonTemporal(),
8391                                  LD->isInvariant(), NewAlign);
8392      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8393                                   DAG.getConstant(NewImm, NewVT));
8394      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8395                                   NewVal, NewPtr,
8396                                   ST->getPointerInfo().getWithOffset(PtrOff),
8397                                   false, false, NewAlign);
8398
8399      AddToWorkList(NewPtr.getNode());
8400      AddToWorkList(NewLD.getNode());
8401      AddToWorkList(NewVal.getNode());
8402      WorkListRemover DeadNodes(*this);
8403      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8404      ++OpsNarrowed;
8405      return NewST;
8406    }
8407  }
8408
8409  return SDValue();
8410}
8411
8412/// TransformFPLoadStorePair - For a given floating point load / store pair,
8413/// if the load value isn't used by any other operations, then consider
8414/// transforming the pair to integer load / store operations if the target
8415/// deems the transformation profitable.
8416SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8417  StoreSDNode *ST  = cast<StoreSDNode>(N);
8418  SDValue Chain = ST->getChain();
8419  SDValue Value = ST->getValue();
8420  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8421      Value.hasOneUse() &&
8422      Chain == SDValue(Value.getNode(), 1)) {
8423    LoadSDNode *LD = cast<LoadSDNode>(Value);
8424    EVT VT = LD->getMemoryVT();
8425    if (!VT.isFloatingPoint() ||
8426        VT != ST->getMemoryVT() ||
8427        LD->isNonTemporal() ||
8428        ST->isNonTemporal() ||
8429        LD->getPointerInfo().getAddrSpace() != 0 ||
8430        ST->getPointerInfo().getAddrSpace() != 0)
8431      return SDValue();
8432
8433    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8434    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8435        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8436        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8437        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8438      return SDValue();
8439
8440    unsigned LDAlign = LD->getAlignment();
8441    unsigned STAlign = ST->getAlignment();
8442    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8443    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8444    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8445      return SDValue();
8446
8447    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8448                                LD->getChain(), LD->getBasePtr(),
8449                                LD->getPointerInfo(),
8450                                false, false, false, LDAlign);
8451
8452    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8453                                 NewLD, ST->getBasePtr(),
8454                                 ST->getPointerInfo(),
8455                                 false, false, STAlign);
8456
8457    AddToWorkList(NewLD.getNode());
8458    AddToWorkList(NewST.getNode());
8459    WorkListRemover DeadNodes(*this);
8460    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8461    ++LdStFP2Int;
8462    return NewST;
8463  }
8464
8465  return SDValue();
8466}
8467
8468/// Helper struct to parse and store a memory address as base + index + offset.
8469/// We ignore sign extensions when it is safe to do so.
8470/// The following two expressions are not equivalent. To differentiate we need
8471/// to store whether there was a sign extension involved in the index
8472/// computation.
8473///  (load (i64 add (i64 copyfromreg %c)
8474///                 (i64 signextend (add (i8 load %index)
8475///                                      (i8 1))))
8476/// vs
8477///
8478/// (load (i64 add (i64 copyfromreg %c)
8479///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8480///                                         (i32 1)))))
8481struct BaseIndexOffset {
8482  SDValue Base;
8483  SDValue Index;
8484  int64_t Offset;
8485  bool IsIndexSignExt;
8486
8487  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8488
8489  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8490                  bool IsIndexSignExt) :
8491    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8492
8493  bool equalBaseIndex(const BaseIndexOffset &Other) {
8494    return Other.Base == Base && Other.Index == Index &&
8495      Other.IsIndexSignExt == IsIndexSignExt;
8496  }
8497
8498  /// Parses tree in Ptr for base, index, offset addresses.
8499  static BaseIndexOffset match(SDValue Ptr) {
8500    bool IsIndexSignExt = false;
8501
8502    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8503    // instruction, then it could be just the BASE or everything else we don't
8504    // know how to handle. Just use Ptr as BASE and give up.
8505    if (Ptr->getOpcode() != ISD::ADD)
8506      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8507
8508    // We know that we have at least an ADD instruction. Try to pattern match
8509    // the simple case of BASE + OFFSET.
8510    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8511      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8512      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8513                              IsIndexSignExt);
8514    }
8515
8516    // Inside a loop the current BASE pointer is calculated using an ADD and a
8517    // MUL instruction. In this case Ptr is the actual BASE pointer.
8518    // (i64 add (i64 %array_ptr)
8519    //          (i64 mul (i64 %induction_var)
8520    //                   (i64 %element_size)))
8521    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8522      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8523
8524    // Look at Base + Index + Offset cases.
8525    SDValue Base = Ptr->getOperand(0);
8526    SDValue IndexOffset = Ptr->getOperand(1);
8527
8528    // Skip signextends.
8529    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8530      IndexOffset = IndexOffset->getOperand(0);
8531      IsIndexSignExt = true;
8532    }
8533
8534    // Either the case of Base + Index (no offset) or something else.
8535    if (IndexOffset->getOpcode() != ISD::ADD)
8536      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8537
8538    // Now we have the case of Base + Index + offset.
8539    SDValue Index = IndexOffset->getOperand(0);
8540    SDValue Offset = IndexOffset->getOperand(1);
8541
8542    if (!isa<ConstantSDNode>(Offset))
8543      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8544
8545    // Ignore signextends.
8546    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8547      Index = Index->getOperand(0);
8548      IsIndexSignExt = true;
8549    } else IsIndexSignExt = false;
8550
8551    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8552    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8553  }
8554};
8555
8556/// Holds a pointer to an LSBaseSDNode as well as information on where it
8557/// is located in a sequence of memory operations connected by a chain.
8558struct MemOpLink {
8559  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8560    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8561  // Ptr to the mem node.
8562  LSBaseSDNode *MemNode;
8563  // Offset from the base ptr.
8564  int64_t OffsetFromBase;
8565  // What is the sequence number of this mem node.
8566  // Lowest mem operand in the DAG starts at zero.
8567  unsigned SequenceNum;
8568};
8569
8570/// Sorts store nodes in a link according to their offset from a shared
8571// base ptr.
8572struct ConsecutiveMemoryChainSorter {
8573  bool operator()(MemOpLink LHS, MemOpLink RHS) {
8574    return LHS.OffsetFromBase < RHS.OffsetFromBase;
8575  }
8576};
8577
8578bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8579  EVT MemVT = St->getMemoryVT();
8580  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8581  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8582    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8583
8584  // Don't merge vectors into wider inputs.
8585  if (MemVT.isVector() || !MemVT.isSimple())
8586    return false;
8587
8588  // Perform an early exit check. Do not bother looking at stored values that
8589  // are not constants or loads.
8590  SDValue StoredVal = St->getValue();
8591  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8592  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8593      !IsLoadSrc)
8594    return false;
8595
8596  // Only look at ends of store sequences.
8597  SDValue Chain = SDValue(St, 1);
8598  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8599    return false;
8600
8601  // This holds the base pointer, index, and the offset in bytes from the base
8602  // pointer.
8603  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8604
8605  // We must have a base and an offset.
8606  if (!BasePtr.Base.getNode())
8607    return false;
8608
8609  // Do not handle stores to undef base pointers.
8610  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8611    return false;
8612
8613  // Save the LoadSDNodes that we find in the chain.
8614  // We need to make sure that these nodes do not interfere with
8615  // any of the store nodes.
8616  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8617
8618  // Save the StoreSDNodes that we find in the chain.
8619  SmallVector<MemOpLink, 8> StoreNodes;
8620
8621  // Walk up the chain and look for nodes with offsets from the same
8622  // base pointer. Stop when reaching an instruction with a different kind
8623  // or instruction which has a different base pointer.
8624  unsigned Seq = 0;
8625  StoreSDNode *Index = St;
8626  while (Index) {
8627    // If the chain has more than one use, then we can't reorder the mem ops.
8628    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8629      break;
8630
8631    // Find the base pointer and offset for this memory node.
8632    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8633
8634    // Check that the base pointer is the same as the original one.
8635    if (!Ptr.equalBaseIndex(BasePtr))
8636      break;
8637
8638    // Check that the alignment is the same.
8639    if (Index->getAlignment() != St->getAlignment())
8640      break;
8641
8642    // The memory operands must not be volatile.
8643    if (Index->isVolatile() || Index->isIndexed())
8644      break;
8645
8646    // No truncation.
8647    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8648      if (St->isTruncatingStore())
8649        break;
8650
8651    // The stored memory type must be the same.
8652    if (Index->getMemoryVT() != MemVT)
8653      break;
8654
8655    // We do not allow unaligned stores because we want to prevent overriding
8656    // stores.
8657    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8658      break;
8659
8660    // We found a potential memory operand to merge.
8661    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8662
8663    // Find the next memory operand in the chain. If the next operand in the
8664    // chain is a store then move up and continue the scan with the next
8665    // memory operand. If the next operand is a load save it and use alias
8666    // information to check if it interferes with anything.
8667    SDNode *NextInChain = Index->getChain().getNode();
8668    while (1) {
8669      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8670        // We found a store node. Use it for the next iteration.
8671        Index = STn;
8672        break;
8673      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8674        // Save the load node for later. Continue the scan.
8675        AliasLoadNodes.push_back(Ldn);
8676        NextInChain = Ldn->getChain().getNode();
8677        continue;
8678      } else {
8679        Index = NULL;
8680        break;
8681      }
8682    }
8683  }
8684
8685  // Check if there is anything to merge.
8686  if (StoreNodes.size() < 2)
8687    return false;
8688
8689  // Sort the memory operands according to their distance from the base pointer.
8690  std::sort(StoreNodes.begin(), StoreNodes.end(),
8691            ConsecutiveMemoryChainSorter());
8692
8693  // Scan the memory operations on the chain and find the first non-consecutive
8694  // store memory address.
8695  unsigned LastConsecutiveStore = 0;
8696  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8697  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8698
8699    // Check that the addresses are consecutive starting from the second
8700    // element in the list of stores.
8701    if (i > 0) {
8702      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8703      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8704        break;
8705    }
8706
8707    bool Alias = false;
8708    // Check if this store interferes with any of the loads that we found.
8709    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8710      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8711        Alias = true;
8712        break;
8713      }
8714    // We found a load that alias with this store. Stop the sequence.
8715    if (Alias)
8716      break;
8717
8718    // Mark this node as useful.
8719    LastConsecutiveStore = i;
8720  }
8721
8722  // The node with the lowest store address.
8723  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8724
8725  // Store the constants into memory as one consecutive store.
8726  if (!IsLoadSrc) {
8727    unsigned LastLegalType = 0;
8728    unsigned LastLegalVectorType = 0;
8729    bool NonZero = false;
8730    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8731      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8732      SDValue StoredVal = St->getValue();
8733
8734      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8735        NonZero |= !C->isNullValue();
8736      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8737        NonZero |= !C->getConstantFPValue()->isNullValue();
8738      } else {
8739        // Non constant.
8740        break;
8741      }
8742
8743      // Find a legal type for the constant store.
8744      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8745      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8746      if (TLI.isTypeLegal(StoreTy))
8747        LastLegalType = i+1;
8748      // Or check whether a truncstore is legal.
8749      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8750               TargetLowering::TypePromoteInteger) {
8751        EVT LegalizedStoredValueTy =
8752          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8753        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8754          LastLegalType = i+1;
8755      }
8756
8757      // Find a legal type for the vector store.
8758      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8759      if (TLI.isTypeLegal(Ty))
8760        LastLegalVectorType = i + 1;
8761    }
8762
8763    // We only use vectors if the constant is known to be zero and the
8764    // function is not marked with the noimplicitfloat attribute.
8765    if (NonZero || NoVectors)
8766      LastLegalVectorType = 0;
8767
8768    // Check if we found a legal integer type to store.
8769    if (LastLegalType == 0 && LastLegalVectorType == 0)
8770      return false;
8771
8772    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8773    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8774
8775    // Make sure we have something to merge.
8776    if (NumElem < 2)
8777      return false;
8778
8779    unsigned EarliestNodeUsed = 0;
8780    for (unsigned i=0; i < NumElem; ++i) {
8781      // Find a chain for the new wide-store operand. Notice that some
8782      // of the store nodes that we found may not be selected for inclusion
8783      // in the wide store. The chain we use needs to be the chain of the
8784      // earliest store node which is *used* and replaced by the wide store.
8785      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8786        EarliestNodeUsed = i;
8787    }
8788
8789    // The earliest Node in the DAG.
8790    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8791    SDLoc DL(StoreNodes[0].MemNode);
8792
8793    SDValue StoredVal;
8794    if (UseVector) {
8795      // Find a legal type for the vector store.
8796      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8797      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8798      StoredVal = DAG.getConstant(0, Ty);
8799    } else {
8800      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8801      APInt StoreInt(StoreBW, 0);
8802
8803      // Construct a single integer constant which is made of the smaller
8804      // constant inputs.
8805      bool IsLE = TLI.isLittleEndian();
8806      for (unsigned i = 0; i < NumElem ; ++i) {
8807        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8808        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8809        SDValue Val = St->getValue();
8810        StoreInt<<=ElementSizeBytes*8;
8811        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8812          StoreInt|=C->getAPIntValue().zext(StoreBW);
8813        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8814          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8815        } else {
8816          assert(false && "Invalid constant element type");
8817        }
8818      }
8819
8820      // Create the new Load and Store operations.
8821      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8822      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8823    }
8824
8825    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8826                                    FirstInChain->getBasePtr(),
8827                                    FirstInChain->getPointerInfo(),
8828                                    false, false,
8829                                    FirstInChain->getAlignment());
8830
8831    // Replace the first store with the new store
8832    CombineTo(EarliestOp, NewStore);
8833    // Erase all other stores.
8834    for (unsigned i = 0; i < NumElem ; ++i) {
8835      if (StoreNodes[i].MemNode == EarliestOp)
8836        continue;
8837      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8838      // ReplaceAllUsesWith will replace all uses that existed when it was
8839      // called, but graph optimizations may cause new ones to appear. For
8840      // example, the case in pr14333 looks like
8841      //
8842      //  St's chain -> St -> another store -> X
8843      //
8844      // And the only difference from St to the other store is the chain.
8845      // When we change it's chain to be St's chain they become identical,
8846      // get CSEed and the net result is that X is now a use of St.
8847      // Since we know that St is redundant, just iterate.
8848      while (!St->use_empty())
8849        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8850      removeFromWorkList(St);
8851      DAG.DeleteNode(St);
8852    }
8853
8854    return true;
8855  }
8856
8857  // Below we handle the case of multiple consecutive stores that
8858  // come from multiple consecutive loads. We merge them into a single
8859  // wide load and a single wide store.
8860
8861  // Look for load nodes which are used by the stored values.
8862  SmallVector<MemOpLink, 8> LoadNodes;
8863
8864  // Find acceptable loads. Loads need to have the same chain (token factor),
8865  // must not be zext, volatile, indexed, and they must be consecutive.
8866  BaseIndexOffset LdBasePtr;
8867  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8868    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8869    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8870    if (!Ld) break;
8871
8872    // Loads must only have one use.
8873    if (!Ld->hasNUsesOfValue(1, 0))
8874      break;
8875
8876    // Check that the alignment is the same as the stores.
8877    if (Ld->getAlignment() != St->getAlignment())
8878      break;
8879
8880    // The memory operands must not be volatile.
8881    if (Ld->isVolatile() || Ld->isIndexed())
8882      break;
8883
8884    // We do not accept ext loads.
8885    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8886      break;
8887
8888    // The stored memory type must be the same.
8889    if (Ld->getMemoryVT() != MemVT)
8890      break;
8891
8892    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8893    // If this is not the first ptr that we check.
8894    if (LdBasePtr.Base.getNode()) {
8895      // The base ptr must be the same.
8896      if (!LdPtr.equalBaseIndex(LdBasePtr))
8897        break;
8898    } else {
8899      // Check that all other base pointers are the same as this one.
8900      LdBasePtr = LdPtr;
8901    }
8902
8903    // We found a potential memory operand to merge.
8904    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8905  }
8906
8907  if (LoadNodes.size() < 2)
8908    return false;
8909
8910  // Scan the memory operations on the chain and find the first non-consecutive
8911  // load memory address. These variables hold the index in the store node
8912  // array.
8913  unsigned LastConsecutiveLoad = 0;
8914  // This variable refers to the size and not index in the array.
8915  unsigned LastLegalVectorType = 0;
8916  unsigned LastLegalIntegerType = 0;
8917  StartAddress = LoadNodes[0].OffsetFromBase;
8918  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8919  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8920    // All loads much share the same chain.
8921    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8922      break;
8923
8924    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8925    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8926      break;
8927    LastConsecutiveLoad = i;
8928
8929    // Find a legal type for the vector store.
8930    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8931    if (TLI.isTypeLegal(StoreTy))
8932      LastLegalVectorType = i + 1;
8933
8934    // Find a legal type for the integer store.
8935    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8936    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8937    if (TLI.isTypeLegal(StoreTy))
8938      LastLegalIntegerType = i + 1;
8939    // Or check whether a truncstore and extload is legal.
8940    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8941             TargetLowering::TypePromoteInteger) {
8942      EVT LegalizedStoredValueTy =
8943        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8944      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8945          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8946          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8947          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8948        LastLegalIntegerType = i+1;
8949    }
8950  }
8951
8952  // Only use vector types if the vector type is larger than the integer type.
8953  // If they are the same, use integers.
8954  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8955  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8956
8957  // We add +1 here because the LastXXX variables refer to location while
8958  // the NumElem refers to array/index size.
8959  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8960  NumElem = std::min(LastLegalType, NumElem);
8961
8962  if (NumElem < 2)
8963    return false;
8964
8965  // The earliest Node in the DAG.
8966  unsigned EarliestNodeUsed = 0;
8967  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8968  for (unsigned i=1; i<NumElem; ++i) {
8969    // Find a chain for the new wide-store operand. Notice that some
8970    // of the store nodes that we found may not be selected for inclusion
8971    // in the wide store. The chain we use needs to be the chain of the
8972    // earliest store node which is *used* and replaced by the wide store.
8973    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8974      EarliestNodeUsed = i;
8975  }
8976
8977  // Find if it is better to use vectors or integers to load and store
8978  // to memory.
8979  EVT JointMemOpVT;
8980  if (UseVectorTy) {
8981    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8982  } else {
8983    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8984    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8985  }
8986
8987  SDLoc LoadDL(LoadNodes[0].MemNode);
8988  SDLoc StoreDL(StoreNodes[0].MemNode);
8989
8990  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8991  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8992                                FirstLoad->getChain(),
8993                                FirstLoad->getBasePtr(),
8994                                FirstLoad->getPointerInfo(),
8995                                false, false, false,
8996                                FirstLoad->getAlignment());
8997
8998  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8999                                  FirstInChain->getBasePtr(),
9000                                  FirstInChain->getPointerInfo(), false, false,
9001                                  FirstInChain->getAlignment());
9002
9003  // Replace one of the loads with the new load.
9004  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
9005  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
9006                                SDValue(NewLoad.getNode(), 1));
9007
9008  // Remove the rest of the load chains.
9009  for (unsigned i = 1; i < NumElem ; ++i) {
9010    // Replace all chain users of the old load nodes with the chain of the new
9011    // load node.
9012    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
9013    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
9014  }
9015
9016  // Replace the first store with the new store.
9017  CombineTo(EarliestOp, NewStore);
9018  // Erase all other stores.
9019  for (unsigned i = 0; i < NumElem ; ++i) {
9020    // Remove all Store nodes.
9021    if (StoreNodes[i].MemNode == EarliestOp)
9022      continue;
9023    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9024    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9025    removeFromWorkList(St);
9026    DAG.DeleteNode(St);
9027  }
9028
9029  return true;
9030}
9031
9032SDValue DAGCombiner::visitSTORE(SDNode *N) {
9033  StoreSDNode *ST  = cast<StoreSDNode>(N);
9034  SDValue Chain = ST->getChain();
9035  SDValue Value = ST->getValue();
9036  SDValue Ptr   = ST->getBasePtr();
9037
9038  // If this is a store of a bit convert, store the input value if the
9039  // resultant store does not need a higher alignment than the original.
9040  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9041      ST->isUnindexed()) {
9042    unsigned OrigAlign = ST->getAlignment();
9043    EVT SVT = Value.getOperand(0).getValueType();
9044    unsigned Align = TLI.getDataLayout()->
9045      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9046    if (Align <= OrigAlign &&
9047        ((!LegalOperations && !ST->isVolatile()) ||
9048         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9049      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9050                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9051                          ST->isNonTemporal(), OrigAlign);
9052  }
9053
9054  // Turn 'store undef, Ptr' -> nothing.
9055  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9056    return Chain;
9057
9058  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9059  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9060    // NOTE: If the original store is volatile, this transform must not increase
9061    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9062    // processor operation but an i64 (which is not legal) requires two.  So the
9063    // transform should not be done in this case.
9064    if (Value.getOpcode() != ISD::TargetConstantFP) {
9065      SDValue Tmp;
9066      switch (CFP->getSimpleValueType(0).SimpleTy) {
9067      default: llvm_unreachable("Unknown FP type");
9068      case MVT::f16:    // We don't do this for these yet.
9069      case MVT::f80:
9070      case MVT::f128:
9071      case MVT::ppcf128:
9072        break;
9073      case MVT::f32:
9074        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9075            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9076          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9077                              bitcastToAPInt().getZExtValue(), MVT::i32);
9078          return DAG.getStore(Chain, SDLoc(N), Tmp,
9079                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
9080                              ST->isNonTemporal(), ST->getAlignment());
9081        }
9082        break;
9083      case MVT::f64:
9084        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9085             !ST->isVolatile()) ||
9086            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9087          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9088                                getZExtValue(), MVT::i64);
9089          return DAG.getStore(Chain, SDLoc(N), Tmp,
9090                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
9091                              ST->isNonTemporal(), ST->getAlignment());
9092        }
9093
9094        if (!ST->isVolatile() &&
9095            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9096          // Many FP stores are not made apparent until after legalize, e.g. for
9097          // argument passing.  Since this is so common, custom legalize the
9098          // 64-bit integer store into two 32-bit stores.
9099          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9100          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9101          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9102          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9103
9104          unsigned Alignment = ST->getAlignment();
9105          bool isVolatile = ST->isVolatile();
9106          bool isNonTemporal = ST->isNonTemporal();
9107
9108          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9109                                     Ptr, ST->getPointerInfo(),
9110                                     isVolatile, isNonTemporal,
9111                                     ST->getAlignment());
9112          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9113                            DAG.getConstant(4, Ptr.getValueType()));
9114          Alignment = MinAlign(Alignment, 4U);
9115          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9116                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9117                                     isVolatile, isNonTemporal,
9118                                     Alignment);
9119          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9120                             St0, St1);
9121        }
9122
9123        break;
9124      }
9125    }
9126  }
9127
9128  // Try to infer better alignment information than the store already has.
9129  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9130    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9131      if (Align > ST->getAlignment())
9132        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9133                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9134                                 ST->isVolatile(), ST->isNonTemporal(), Align);
9135    }
9136  }
9137
9138  // Try transforming a pair floating point load / store ops to integer
9139  // load / store ops.
9140  SDValue NewST = TransformFPLoadStorePair(N);
9141  if (NewST.getNode())
9142    return NewST;
9143
9144  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9145    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9146  if (UseAA) {
9147    // Walk up chain skipping non-aliasing memory nodes.
9148    SDValue BetterChain = FindBetterChain(N, Chain);
9149
9150    // If there is a better chain.
9151    if (Chain != BetterChain) {
9152      SDValue ReplStore;
9153
9154      // Replace the chain to avoid dependency.
9155      if (ST->isTruncatingStore()) {
9156        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9157                                      ST->getPointerInfo(),
9158                                      ST->getMemoryVT(), ST->isVolatile(),
9159                                      ST->isNonTemporal(), ST->getAlignment());
9160      } else {
9161        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9162                                 ST->getPointerInfo(),
9163                                 ST->isVolatile(), ST->isNonTemporal(),
9164                                 ST->getAlignment());
9165      }
9166
9167      // Create token to keep both nodes around.
9168      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9169                                  MVT::Other, Chain, ReplStore);
9170
9171      // Make sure the new and old chains are cleaned up.
9172      AddToWorkList(Token.getNode());
9173
9174      // Don't add users to work list.
9175      return CombineTo(N, Token, false);
9176    }
9177  }
9178
9179  // Try transforming N to an indexed store.
9180  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9181    return SDValue(N, 0);
9182
9183  // FIXME: is there such a thing as a truncating indexed store?
9184  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9185      Value.getValueType().isInteger()) {
9186    // See if we can simplify the input to this truncstore with knowledge that
9187    // only the low bits are being used.  For example:
9188    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9189    SDValue Shorter =
9190      GetDemandedBits(Value,
9191                      APInt::getLowBitsSet(
9192                        Value.getValueType().getScalarType().getSizeInBits(),
9193                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9194    AddToWorkList(Value.getNode());
9195    if (Shorter.getNode())
9196      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9197                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9198                               ST->isVolatile(), ST->isNonTemporal(),
9199                               ST->getAlignment());
9200
9201    // Otherwise, see if we can simplify the operation with
9202    // SimplifyDemandedBits, which only works if the value has a single use.
9203    if (SimplifyDemandedBits(Value,
9204                        APInt::getLowBitsSet(
9205                          Value.getValueType().getScalarType().getSizeInBits(),
9206                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9207      return SDValue(N, 0);
9208  }
9209
9210  // If this is a load followed by a store to the same location, then the store
9211  // is dead/noop.
9212  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9213    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9214        ST->isUnindexed() && !ST->isVolatile() &&
9215        // There can't be any side effects between the load and store, such as
9216        // a call or store.
9217        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9218      // The store is dead, remove it.
9219      return Chain;
9220    }
9221  }
9222
9223  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9224  // truncating store.  We can do this even if this is already a truncstore.
9225  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9226      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9227      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9228                            ST->getMemoryVT())) {
9229    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9230                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9231                             ST->isVolatile(), ST->isNonTemporal(),
9232                             ST->getAlignment());
9233  }
9234
9235  // Only perform this optimization before the types are legal, because we
9236  // don't want to perform this optimization on every DAGCombine invocation.
9237  if (!LegalTypes) {
9238    bool EverChanged = false;
9239
9240    do {
9241      // There can be multiple store sequences on the same chain.
9242      // Keep trying to merge store sequences until we are unable to do so
9243      // or until we merge the last store on the chain.
9244      bool Changed = MergeConsecutiveStores(ST);
9245      EverChanged |= Changed;
9246      if (!Changed) break;
9247    } while (ST->getOpcode() != ISD::DELETED_NODE);
9248
9249    if (EverChanged)
9250      return SDValue(N, 0);
9251  }
9252
9253  return ReduceLoadOpStoreWidth(N);
9254}
9255
9256SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9257  SDValue InVec = N->getOperand(0);
9258  SDValue InVal = N->getOperand(1);
9259  SDValue EltNo = N->getOperand(2);
9260  SDLoc dl(N);
9261
9262  // If the inserted element is an UNDEF, just use the input vector.
9263  if (InVal.getOpcode() == ISD::UNDEF)
9264    return InVec;
9265
9266  EVT VT = InVec.getValueType();
9267
9268  // If we can't generate a legal BUILD_VECTOR, exit
9269  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9270    return SDValue();
9271
9272  // Check that we know which element is being inserted
9273  if (!isa<ConstantSDNode>(EltNo))
9274    return SDValue();
9275  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9276
9277  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9278  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9279  // vector elements.
9280  SmallVector<SDValue, 8> Ops;
9281  // Do not combine these two vectors if the output vector will not replace
9282  // the input vector.
9283  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9284    Ops.append(InVec.getNode()->op_begin(),
9285               InVec.getNode()->op_end());
9286  } else if (InVec.getOpcode() == ISD::UNDEF) {
9287    unsigned NElts = VT.getVectorNumElements();
9288    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9289  } else {
9290    return SDValue();
9291  }
9292
9293  // Insert the element
9294  if (Elt < Ops.size()) {
9295    // All the operands of BUILD_VECTOR must have the same type;
9296    // we enforce that here.
9297    EVT OpVT = Ops[0].getValueType();
9298    if (InVal.getValueType() != OpVT)
9299      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9300                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9301                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9302    Ops[Elt] = InVal;
9303  }
9304
9305  // Return the new vector
9306  return DAG.getNode(ISD::BUILD_VECTOR, dl,
9307                     VT, &Ops[0], Ops.size());
9308}
9309
9310SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9311  // (vextract (scalar_to_vector val, 0) -> val
9312  SDValue InVec = N->getOperand(0);
9313  EVT VT = InVec.getValueType();
9314  EVT NVT = N->getValueType(0);
9315
9316  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9317    // Check if the result type doesn't match the inserted element type. A
9318    // SCALAR_TO_VECTOR may truncate the inserted element and the
9319    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9320    SDValue InOp = InVec.getOperand(0);
9321    if (InOp.getValueType() != NVT) {
9322      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9323      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9324    }
9325    return InOp;
9326  }
9327
9328  SDValue EltNo = N->getOperand(1);
9329  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9330
9331  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9332  // We only perform this optimization before the op legalization phase because
9333  // we may introduce new vector instructions which are not backed by TD
9334  // patterns. For example on AVX, extracting elements from a wide vector
9335  // without using extract_subvector.
9336  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9337      && ConstEltNo && !LegalOperations) {
9338    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9339    int NumElem = VT.getVectorNumElements();
9340    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9341    // Find the new index to extract from.
9342    int OrigElt = SVOp->getMaskElt(Elt);
9343
9344    // Extracting an undef index is undef.
9345    if (OrigElt == -1)
9346      return DAG.getUNDEF(NVT);
9347
9348    // Select the right vector half to extract from.
9349    if (OrigElt < NumElem) {
9350      InVec = InVec->getOperand(0);
9351    } else {
9352      InVec = InVec->getOperand(1);
9353      OrigElt -= NumElem;
9354    }
9355
9356    EVT IndexTy = TLI.getVectorIdxTy();
9357    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9358                       InVec, DAG.getConstant(OrigElt, IndexTy));
9359  }
9360
9361  // Perform only after legalization to ensure build_vector / vector_shuffle
9362  // optimizations have already been done.
9363  if (!LegalOperations) return SDValue();
9364
9365  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9366  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9367  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9368
9369  if (ConstEltNo) {
9370    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9371    bool NewLoad = false;
9372    bool BCNumEltsChanged = false;
9373    EVT ExtVT = VT.getVectorElementType();
9374    EVT LVT = ExtVT;
9375
9376    // If the result of load has to be truncated, then it's not necessarily
9377    // profitable.
9378    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9379      return SDValue();
9380
9381    if (InVec.getOpcode() == ISD::BITCAST) {
9382      // Don't duplicate a load with other uses.
9383      if (!InVec.hasOneUse())
9384        return SDValue();
9385
9386      EVT BCVT = InVec.getOperand(0).getValueType();
9387      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9388        return SDValue();
9389      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9390        BCNumEltsChanged = true;
9391      InVec = InVec.getOperand(0);
9392      ExtVT = BCVT.getVectorElementType();
9393      NewLoad = true;
9394    }
9395
9396    LoadSDNode *LN0 = NULL;
9397    const ShuffleVectorSDNode *SVN = NULL;
9398    if (ISD::isNormalLoad(InVec.getNode())) {
9399      LN0 = cast<LoadSDNode>(InVec);
9400    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9401               InVec.getOperand(0).getValueType() == ExtVT &&
9402               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9403      // Don't duplicate a load with other uses.
9404      if (!InVec.hasOneUse())
9405        return SDValue();
9406
9407      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9408    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9409      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9410      // =>
9411      // (load $addr+1*size)
9412
9413      // Don't duplicate a load with other uses.
9414      if (!InVec.hasOneUse())
9415        return SDValue();
9416
9417      // If the bit convert changed the number of elements, it is unsafe
9418      // to examine the mask.
9419      if (BCNumEltsChanged)
9420        return SDValue();
9421
9422      // Select the input vector, guarding against out of range extract vector.
9423      unsigned NumElems = VT.getVectorNumElements();
9424      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9425      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9426
9427      if (InVec.getOpcode() == ISD::BITCAST) {
9428        // Don't duplicate a load with other uses.
9429        if (!InVec.hasOneUse())
9430          return SDValue();
9431
9432        InVec = InVec.getOperand(0);
9433      }
9434      if (ISD::isNormalLoad(InVec.getNode())) {
9435        LN0 = cast<LoadSDNode>(InVec);
9436        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9437      }
9438    }
9439
9440    // Make sure we found a non-volatile load and the extractelement is
9441    // the only use.
9442    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9443      return SDValue();
9444
9445    // If Idx was -1 above, Elt is going to be -1, so just return undef.
9446    if (Elt == -1)
9447      return DAG.getUNDEF(LVT);
9448
9449    unsigned Align = LN0->getAlignment();
9450    if (NewLoad) {
9451      // Check the resultant load doesn't need a higher alignment than the
9452      // original load.
9453      unsigned NewAlign =
9454        TLI.getDataLayout()
9455            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9456
9457      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9458        return SDValue();
9459
9460      Align = NewAlign;
9461    }
9462
9463    SDValue NewPtr = LN0->getBasePtr();
9464    unsigned PtrOff = 0;
9465
9466    if (Elt) {
9467      PtrOff = LVT.getSizeInBits() * Elt / 8;
9468      EVT PtrType = NewPtr.getValueType();
9469      if (TLI.isBigEndian())
9470        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9471      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9472                           DAG.getConstant(PtrOff, PtrType));
9473    }
9474
9475    // The replacement we need to do here is a little tricky: we need to
9476    // replace an extractelement of a load with a load.
9477    // Use ReplaceAllUsesOfValuesWith to do the replacement.
9478    // Note that this replacement assumes that the extractvalue is the only
9479    // use of the load; that's okay because we don't want to perform this
9480    // transformation in other cases anyway.
9481    SDValue Load;
9482    SDValue Chain;
9483    if (NVT.bitsGT(LVT)) {
9484      // If the result type of vextract is wider than the load, then issue an
9485      // extending load instead.
9486      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9487        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9488      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9489                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9490                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
9491      Chain = Load.getValue(1);
9492    } else {
9493      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9494                         LN0->getPointerInfo().getWithOffset(PtrOff),
9495                         LN0->isVolatile(), LN0->isNonTemporal(),
9496                         LN0->isInvariant(), Align);
9497      Chain = Load.getValue(1);
9498      if (NVT.bitsLT(LVT))
9499        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9500      else
9501        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9502    }
9503    WorkListRemover DeadNodes(*this);
9504    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9505    SDValue To[] = { Load, Chain };
9506    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9507    // Since we're explcitly calling ReplaceAllUses, add the new node to the
9508    // worklist explicitly as well.
9509    AddToWorkList(Load.getNode());
9510    AddUsersToWorkList(Load.getNode()); // Add users too
9511    // Make sure to revisit this node to clean it up; it will usually be dead.
9512    AddToWorkList(N);
9513    return SDValue(N, 0);
9514  }
9515
9516  return SDValue();
9517}
9518
9519// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9520SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9521  // We perform this optimization post type-legalization because
9522  // the type-legalizer often scalarizes integer-promoted vectors.
9523  // Performing this optimization before may create bit-casts which
9524  // will be type-legalized to complex code sequences.
9525  // We perform this optimization only before the operation legalizer because we
9526  // may introduce illegal operations.
9527  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9528    return SDValue();
9529
9530  unsigned NumInScalars = N->getNumOperands();
9531  SDLoc dl(N);
9532  EVT VT = N->getValueType(0);
9533
9534  // Check to see if this is a BUILD_VECTOR of a bunch of values
9535  // which come from any_extend or zero_extend nodes. If so, we can create
9536  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9537  // optimizations. We do not handle sign-extend because we can't fill the sign
9538  // using shuffles.
9539  EVT SourceType = MVT::Other;
9540  bool AllAnyExt = true;
9541
9542  for (unsigned i = 0; i != NumInScalars; ++i) {
9543    SDValue In = N->getOperand(i);
9544    // Ignore undef inputs.
9545    if (In.getOpcode() == ISD::UNDEF) continue;
9546
9547    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
9548    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9549
9550    // Abort if the element is not an extension.
9551    if (!ZeroExt && !AnyExt) {
9552      SourceType = MVT::Other;
9553      break;
9554    }
9555
9556    // The input is a ZeroExt or AnyExt. Check the original type.
9557    EVT InTy = In.getOperand(0).getValueType();
9558
9559    // Check that all of the widened source types are the same.
9560    if (SourceType == MVT::Other)
9561      // First time.
9562      SourceType = InTy;
9563    else if (InTy != SourceType) {
9564      // Multiple income types. Abort.
9565      SourceType = MVT::Other;
9566      break;
9567    }
9568
9569    // Check if all of the extends are ANY_EXTENDs.
9570    AllAnyExt &= AnyExt;
9571  }
9572
9573  // In order to have valid types, all of the inputs must be extended from the
9574  // same source type and all of the inputs must be any or zero extend.
9575  // Scalar sizes must be a power of two.
9576  EVT OutScalarTy = VT.getScalarType();
9577  bool ValidTypes = SourceType != MVT::Other &&
9578                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9579                 isPowerOf2_32(SourceType.getSizeInBits());
9580
9581  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9582  // turn into a single shuffle instruction.
9583  if (!ValidTypes)
9584    return SDValue();
9585
9586  bool isLE = TLI.isLittleEndian();
9587  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9588  assert(ElemRatio > 1 && "Invalid element size ratio");
9589  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9590                               DAG.getConstant(0, SourceType);
9591
9592  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9593  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9594
9595  // Populate the new build_vector
9596  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9597    SDValue Cast = N->getOperand(i);
9598    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9599            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9600            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9601    SDValue In;
9602    if (Cast.getOpcode() == ISD::UNDEF)
9603      In = DAG.getUNDEF(SourceType);
9604    else
9605      In = Cast->getOperand(0);
9606    unsigned Index = isLE ? (i * ElemRatio) :
9607                            (i * ElemRatio + (ElemRatio - 1));
9608
9609    assert(Index < Ops.size() && "Invalid index");
9610    Ops[Index] = In;
9611  }
9612
9613  // The type of the new BUILD_VECTOR node.
9614  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9615  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9616         "Invalid vector size");
9617  // Check if the new vector type is legal.
9618  if (!isTypeLegal(VecVT)) return SDValue();
9619
9620  // Make the new BUILD_VECTOR.
9621  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9622
9623  // The new BUILD_VECTOR node has the potential to be further optimized.
9624  AddToWorkList(BV.getNode());
9625  // Bitcast to the desired type.
9626  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9627}
9628
9629SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9630  EVT VT = N->getValueType(0);
9631
9632  unsigned NumInScalars = N->getNumOperands();
9633  SDLoc dl(N);
9634
9635  EVT SrcVT = MVT::Other;
9636  unsigned Opcode = ISD::DELETED_NODE;
9637  unsigned NumDefs = 0;
9638
9639  for (unsigned i = 0; i != NumInScalars; ++i) {
9640    SDValue In = N->getOperand(i);
9641    unsigned Opc = In.getOpcode();
9642
9643    if (Opc == ISD::UNDEF)
9644      continue;
9645
9646    // If all scalar values are floats and converted from integers.
9647    if (Opcode == ISD::DELETED_NODE &&
9648        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9649      Opcode = Opc;
9650    }
9651
9652    if (Opc != Opcode)
9653      return SDValue();
9654
9655    EVT InVT = In.getOperand(0).getValueType();
9656
9657    // If all scalar values are typed differently, bail out. It's chosen to
9658    // simplify BUILD_VECTOR of integer types.
9659    if (SrcVT == MVT::Other)
9660      SrcVT = InVT;
9661    if (SrcVT != InVT)
9662      return SDValue();
9663    NumDefs++;
9664  }
9665
9666  // If the vector has just one element defined, it's not worth to fold it into
9667  // a vectorized one.
9668  if (NumDefs < 2)
9669    return SDValue();
9670
9671  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9672         && "Should only handle conversion from integer to float.");
9673  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9674
9675  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9676
9677  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9678    return SDValue();
9679
9680  SmallVector<SDValue, 8> Opnds;
9681  for (unsigned i = 0; i != NumInScalars; ++i) {
9682    SDValue In = N->getOperand(i);
9683
9684    if (In.getOpcode() == ISD::UNDEF)
9685      Opnds.push_back(DAG.getUNDEF(SrcVT));
9686    else
9687      Opnds.push_back(In.getOperand(0));
9688  }
9689  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9690                           &Opnds[0], Opnds.size());
9691  AddToWorkList(BV.getNode());
9692
9693  return DAG.getNode(Opcode, dl, VT, BV);
9694}
9695
9696SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9697  unsigned NumInScalars = N->getNumOperands();
9698  SDLoc dl(N);
9699  EVT VT = N->getValueType(0);
9700
9701  // A vector built entirely of undefs is undef.
9702  if (ISD::allOperandsUndef(N))
9703    return DAG.getUNDEF(VT);
9704
9705  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9706  if (V.getNode())
9707    return V;
9708
9709  V = reduceBuildVecConvertToConvertBuildVec(N);
9710  if (V.getNode())
9711    return V;
9712
9713  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9714  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9715  // at most two distinct vectors, turn this into a shuffle node.
9716
9717  // May only combine to shuffle after legalize if shuffle is legal.
9718  if (LegalOperations &&
9719      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9720    return SDValue();
9721
9722  SDValue VecIn1, VecIn2;
9723  for (unsigned i = 0; i != NumInScalars; ++i) {
9724    // Ignore undef inputs.
9725    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9726
9727    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9728    // constant index, bail out.
9729    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9730        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9731      VecIn1 = VecIn2 = SDValue(0, 0);
9732      break;
9733    }
9734
9735    // We allow up to two distinct input vectors.
9736    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9737    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9738      continue;
9739
9740    if (VecIn1.getNode() == 0) {
9741      VecIn1 = ExtractedFromVec;
9742    } else if (VecIn2.getNode() == 0) {
9743      VecIn2 = ExtractedFromVec;
9744    } else {
9745      // Too many inputs.
9746      VecIn1 = VecIn2 = SDValue(0, 0);
9747      break;
9748    }
9749  }
9750
9751    // If everything is good, we can make a shuffle operation.
9752  if (VecIn1.getNode()) {
9753    SmallVector<int, 8> Mask;
9754    for (unsigned i = 0; i != NumInScalars; ++i) {
9755      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9756        Mask.push_back(-1);
9757        continue;
9758      }
9759
9760      // If extracting from the first vector, just use the index directly.
9761      SDValue Extract = N->getOperand(i);
9762      SDValue ExtVal = Extract.getOperand(1);
9763      if (Extract.getOperand(0) == VecIn1) {
9764        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9765        if (ExtIndex > VT.getVectorNumElements())
9766          return SDValue();
9767
9768        Mask.push_back(ExtIndex);
9769        continue;
9770      }
9771
9772      // Otherwise, use InIdx + VecSize
9773      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9774      Mask.push_back(Idx+NumInScalars);
9775    }
9776
9777    // We can't generate a shuffle node with mismatched input and output types.
9778    // Attempt to transform a single input vector to the correct type.
9779    if ((VT != VecIn1.getValueType())) {
9780      // We don't support shuffeling between TWO values of different types.
9781      if (VecIn2.getNode() != 0)
9782        return SDValue();
9783
9784      // We only support widening of vectors which are half the size of the
9785      // output registers. For example XMM->YMM widening on X86 with AVX.
9786      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9787        return SDValue();
9788
9789      // If the input vector type has a different base type to the output
9790      // vector type, bail out.
9791      if (VecIn1.getValueType().getVectorElementType() !=
9792          VT.getVectorElementType())
9793        return SDValue();
9794
9795      // Widen the input vector by adding undef values.
9796      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9797                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9798    }
9799
9800    // If VecIn2 is unused then change it to undef.
9801    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9802
9803    // Check that we were able to transform all incoming values to the same
9804    // type.
9805    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9806        VecIn1.getValueType() != VT)
9807          return SDValue();
9808
9809    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9810    if (!isTypeLegal(VT))
9811      return SDValue();
9812
9813    // Return the new VECTOR_SHUFFLE node.
9814    SDValue Ops[2];
9815    Ops[0] = VecIn1;
9816    Ops[1] = VecIn2;
9817    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9818  }
9819
9820  return SDValue();
9821}
9822
9823SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9824  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9825  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9826  // inputs come from at most two distinct vectors, turn this into a shuffle
9827  // node.
9828
9829  // If we only have one input vector, we don't need to do any concatenation.
9830  if (N->getNumOperands() == 1)
9831    return N->getOperand(0);
9832
9833  // Check if all of the operands are undefs.
9834  if (ISD::allOperandsUndef(N))
9835    return DAG.getUNDEF(N->getValueType(0));
9836
9837  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9838  // nodes often generate nop CONCAT_VECTOR nodes.
9839  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9840  // place the incoming vectors at the exact same location.
9841  SDValue SingleSource = SDValue();
9842  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9843
9844  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9845    SDValue Op = N->getOperand(i);
9846
9847    if (Op.getOpcode() == ISD::UNDEF)
9848      continue;
9849
9850    // Check if this is the identity extract:
9851    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9852      return SDValue();
9853
9854    // Find the single incoming vector for the extract_subvector.
9855    if (SingleSource.getNode()) {
9856      if (Op.getOperand(0) != SingleSource)
9857        return SDValue();
9858    } else {
9859      SingleSource = Op.getOperand(0);
9860
9861      // Check the source type is the same as the type of the result.
9862      // If not, this concat may extend the vector, so we can not
9863      // optimize it away.
9864      if (SingleSource.getValueType() != N->getValueType(0))
9865        return SDValue();
9866    }
9867
9868    unsigned IdentityIndex = i * PartNumElem;
9869    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9870    // The extract index must be constant.
9871    if (!CS)
9872      return SDValue();
9873
9874    // Check that we are reading from the identity index.
9875    if (CS->getZExtValue() != IdentityIndex)
9876      return SDValue();
9877  }
9878
9879  if (SingleSource.getNode())
9880    return SingleSource;
9881
9882  return SDValue();
9883}
9884
9885SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9886  EVT NVT = N->getValueType(0);
9887  SDValue V = N->getOperand(0);
9888
9889  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9890    // Combine:
9891    //    (extract_subvec (concat V1, V2, ...), i)
9892    // Into:
9893    //    Vi if possible
9894    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9895    if (V->getOperand(0).getValueType() != NVT)
9896      return SDValue();
9897    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9898    unsigned NumElems = NVT.getVectorNumElements();
9899    assert((Idx % NumElems) == 0 &&
9900           "IDX in concat is not a multiple of the result vector length.");
9901    return V->getOperand(Idx / NumElems);
9902  }
9903
9904  // Skip bitcasting
9905  if (V->getOpcode() == ISD::BITCAST)
9906    V = V.getOperand(0);
9907
9908  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9909    SDLoc dl(N);
9910    // Handle only simple case where vector being inserted and vector
9911    // being extracted are of same type, and are half size of larger vectors.
9912    EVT BigVT = V->getOperand(0).getValueType();
9913    EVT SmallVT = V->getOperand(1).getValueType();
9914    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9915      return SDValue();
9916
9917    // Only handle cases where both indexes are constants with the same type.
9918    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9919    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9920
9921    if (InsIdx && ExtIdx &&
9922        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9923        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9924      // Combine:
9925      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9926      // Into:
9927      //    indices are equal or bit offsets are equal => V1
9928      //    otherwise => (extract_subvec V1, ExtIdx)
9929      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9930          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9931        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9932      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9933                         DAG.getNode(ISD::BITCAST, dl,
9934                                     N->getOperand(0).getValueType(),
9935                                     V->getOperand(0)), N->getOperand(1));
9936    }
9937  }
9938
9939  return SDValue();
9940}
9941
9942// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9943static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9944  EVT VT = N->getValueType(0);
9945  unsigned NumElts = VT.getVectorNumElements();
9946
9947  SDValue N0 = N->getOperand(0);
9948  SDValue N1 = N->getOperand(1);
9949  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9950
9951  SmallVector<SDValue, 4> Ops;
9952  EVT ConcatVT = N0.getOperand(0).getValueType();
9953  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9954  unsigned NumConcats = NumElts / NumElemsPerConcat;
9955
9956  // Look at every vector that's inserted. We're looking for exact
9957  // subvector-sized copies from a concatenated vector
9958  for (unsigned I = 0; I != NumConcats; ++I) {
9959    // Make sure we're dealing with a copy.
9960    unsigned Begin = I * NumElemsPerConcat;
9961    bool AllUndef = true, NoUndef = true;
9962    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9963      if (SVN->getMaskElt(J) >= 0)
9964        AllUndef = false;
9965      else
9966        NoUndef = false;
9967    }
9968
9969    if (NoUndef) {
9970      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9971        return SDValue();
9972
9973      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9974        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9975          return SDValue();
9976
9977      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9978      if (FirstElt < N0.getNumOperands())
9979        Ops.push_back(N0.getOperand(FirstElt));
9980      else
9981        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9982
9983    } else if (AllUndef) {
9984      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9985    } else { // Mixed with general masks and undefs, can't do optimization.
9986      return SDValue();
9987    }
9988  }
9989
9990  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9991                     Ops.size());
9992}
9993
9994SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9995  EVT VT = N->getValueType(0);
9996  unsigned NumElts = VT.getVectorNumElements();
9997
9998  SDValue N0 = N->getOperand(0);
9999  SDValue N1 = N->getOperand(1);
10000
10001  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10002
10003  // Canonicalize shuffle undef, undef -> undef
10004  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10005    return DAG.getUNDEF(VT);
10006
10007  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10008
10009  // Canonicalize shuffle v, v -> v, undef
10010  if (N0 == N1) {
10011    SmallVector<int, 8> NewMask;
10012    for (unsigned i = 0; i != NumElts; ++i) {
10013      int Idx = SVN->getMaskElt(i);
10014      if (Idx >= (int)NumElts) Idx -= NumElts;
10015      NewMask.push_back(Idx);
10016    }
10017    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10018                                &NewMask[0]);
10019  }
10020
10021  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10022  if (N0.getOpcode() == ISD::UNDEF) {
10023    SmallVector<int, 8> NewMask;
10024    for (unsigned i = 0; i != NumElts; ++i) {
10025      int Idx = SVN->getMaskElt(i);
10026      if (Idx >= 0) {
10027        if (Idx >= (int)NumElts)
10028          Idx -= NumElts;
10029        else
10030          Idx = -1; // remove reference to lhs
10031      }
10032      NewMask.push_back(Idx);
10033    }
10034    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10035                                &NewMask[0]);
10036  }
10037
10038  // Remove references to rhs if it is undef
10039  if (N1.getOpcode() == ISD::UNDEF) {
10040    bool Changed = false;
10041    SmallVector<int, 8> NewMask;
10042    for (unsigned i = 0; i != NumElts; ++i) {
10043      int Idx = SVN->getMaskElt(i);
10044      if (Idx >= (int)NumElts) {
10045        Idx = -1;
10046        Changed = true;
10047      }
10048      NewMask.push_back(Idx);
10049    }
10050    if (Changed)
10051      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10052  }
10053
10054  // If it is a splat, check if the argument vector is another splat or a
10055  // build_vector with all scalar elements the same.
10056  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10057    SDNode *V = N0.getNode();
10058
10059    // If this is a bit convert that changes the element type of the vector but
10060    // not the number of vector elements, look through it.  Be careful not to
10061    // look though conversions that change things like v4f32 to v2f64.
10062    if (V->getOpcode() == ISD::BITCAST) {
10063      SDValue ConvInput = V->getOperand(0);
10064      if (ConvInput.getValueType().isVector() &&
10065          ConvInput.getValueType().getVectorNumElements() == NumElts)
10066        V = ConvInput.getNode();
10067    }
10068
10069    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10070      assert(V->getNumOperands() == NumElts &&
10071             "BUILD_VECTOR has wrong number of operands");
10072      SDValue Base;
10073      bool AllSame = true;
10074      for (unsigned i = 0; i != NumElts; ++i) {
10075        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10076          Base = V->getOperand(i);
10077          break;
10078        }
10079      }
10080      // Splat of <u, u, u, u>, return <u, u, u, u>
10081      if (!Base.getNode())
10082        return N0;
10083      for (unsigned i = 0; i != NumElts; ++i) {
10084        if (V->getOperand(i) != Base) {
10085          AllSame = false;
10086          break;
10087        }
10088      }
10089      // Splat of <x, x, x, x>, return <x, x, x, x>
10090      if (AllSame)
10091        return N0;
10092    }
10093  }
10094
10095  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10096      Level < AfterLegalizeVectorOps &&
10097      (N1.getOpcode() == ISD::UNDEF ||
10098      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10099       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10100    SDValue V = partitionShuffleOfConcats(N, DAG);
10101
10102    if (V.getNode())
10103      return V;
10104  }
10105
10106  // If this shuffle node is simply a swizzle of another shuffle node,
10107  // and it reverses the swizzle of the previous shuffle then we can
10108  // optimize shuffle(shuffle(x, undef), undef) -> x.
10109  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10110      N1.getOpcode() == ISD::UNDEF) {
10111
10112    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10113
10114    // Shuffle nodes can only reverse shuffles with a single non-undef value.
10115    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10116      return SDValue();
10117
10118    // The incoming shuffle must be of the same type as the result of the
10119    // current shuffle.
10120    assert(OtherSV->getOperand(0).getValueType() == VT &&
10121           "Shuffle types don't match");
10122
10123    for (unsigned i = 0; i != NumElts; ++i) {
10124      int Idx = SVN->getMaskElt(i);
10125      assert(Idx < (int)NumElts && "Index references undef operand");
10126      // Next, this index comes from the first value, which is the incoming
10127      // shuffle. Adopt the incoming index.
10128      if (Idx >= 0)
10129        Idx = OtherSV->getMaskElt(Idx);
10130
10131      // The combined shuffle must map each index to itself.
10132      if (Idx >= 0 && (unsigned)Idx != i)
10133        return SDValue();
10134    }
10135
10136    return OtherSV->getOperand(0);
10137  }
10138
10139  return SDValue();
10140}
10141
10142/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10143/// an AND to a vector_shuffle with the destination vector and a zero vector.
10144/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10145///      vector_shuffle V, Zero, <0, 4, 2, 4>
10146SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10147  EVT VT = N->getValueType(0);
10148  SDLoc dl(N);
10149  SDValue LHS = N->getOperand(0);
10150  SDValue RHS = N->getOperand(1);
10151  if (N->getOpcode() == ISD::AND) {
10152    if (RHS.getOpcode() == ISD::BITCAST)
10153      RHS = RHS.getOperand(0);
10154    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10155      SmallVector<int, 8> Indices;
10156      unsigned NumElts = RHS.getNumOperands();
10157      for (unsigned i = 0; i != NumElts; ++i) {
10158        SDValue Elt = RHS.getOperand(i);
10159        if (!isa<ConstantSDNode>(Elt))
10160          return SDValue();
10161
10162        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10163          Indices.push_back(i);
10164        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10165          Indices.push_back(NumElts);
10166        else
10167          return SDValue();
10168      }
10169
10170      // Let's see if the target supports this vector_shuffle.
10171      EVT RVT = RHS.getValueType();
10172      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10173        return SDValue();
10174
10175      // Return the new VECTOR_SHUFFLE node.
10176      EVT EltVT = RVT.getVectorElementType();
10177      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10178                                     DAG.getConstant(0, EltVT));
10179      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10180                                 RVT, &ZeroOps[0], ZeroOps.size());
10181      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10182      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10183      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10184    }
10185  }
10186
10187  return SDValue();
10188}
10189
10190/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10191SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10192  assert(N->getValueType(0).isVector() &&
10193         "SimplifyVBinOp only works on vectors!");
10194
10195  SDValue LHS = N->getOperand(0);
10196  SDValue RHS = N->getOperand(1);
10197  SDValue Shuffle = XformToShuffleWithZero(N);
10198  if (Shuffle.getNode()) return Shuffle;
10199
10200  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10201  // this operation.
10202  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10203      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10204    SmallVector<SDValue, 8> Ops;
10205    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10206      SDValue LHSOp = LHS.getOperand(i);
10207      SDValue RHSOp = RHS.getOperand(i);
10208      // If these two elements can't be folded, bail out.
10209      if ((LHSOp.getOpcode() != ISD::UNDEF &&
10210           LHSOp.getOpcode() != ISD::Constant &&
10211           LHSOp.getOpcode() != ISD::ConstantFP) ||
10212          (RHSOp.getOpcode() != ISD::UNDEF &&
10213           RHSOp.getOpcode() != ISD::Constant &&
10214           RHSOp.getOpcode() != ISD::ConstantFP))
10215        break;
10216
10217      // Can't fold divide by zero.
10218      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10219          N->getOpcode() == ISD::FDIV) {
10220        if ((RHSOp.getOpcode() == ISD::Constant &&
10221             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10222            (RHSOp.getOpcode() == ISD::ConstantFP &&
10223             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10224          break;
10225      }
10226
10227      EVT VT = LHSOp.getValueType();
10228      EVT RVT = RHSOp.getValueType();
10229      if (RVT != VT) {
10230        // Integer BUILD_VECTOR operands may have types larger than the element
10231        // size (e.g., when the element type is not legal).  Prior to type
10232        // legalization, the types may not match between the two BUILD_VECTORS.
10233        // Truncate one of the operands to make them match.
10234        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10235          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10236        } else {
10237          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10238          VT = RVT;
10239        }
10240      }
10241      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10242                                   LHSOp, RHSOp);
10243      if (FoldOp.getOpcode() != ISD::UNDEF &&
10244          FoldOp.getOpcode() != ISD::Constant &&
10245          FoldOp.getOpcode() != ISD::ConstantFP)
10246        break;
10247      Ops.push_back(FoldOp);
10248      AddToWorkList(FoldOp.getNode());
10249    }
10250
10251    if (Ops.size() == LHS.getNumOperands())
10252      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10253                         LHS.getValueType(), &Ops[0], Ops.size());
10254  }
10255
10256  return SDValue();
10257}
10258
10259/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10260SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10261  assert(N->getValueType(0).isVector() &&
10262         "SimplifyVUnaryOp only works on vectors!");
10263
10264  SDValue N0 = N->getOperand(0);
10265
10266  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10267    return SDValue();
10268
10269  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10270  SmallVector<SDValue, 8> Ops;
10271  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10272    SDValue Op = N0.getOperand(i);
10273    if (Op.getOpcode() != ISD::UNDEF &&
10274        Op.getOpcode() != ISD::ConstantFP)
10275      break;
10276    EVT EltVT = Op.getValueType();
10277    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10278    if (FoldOp.getOpcode() != ISD::UNDEF &&
10279        FoldOp.getOpcode() != ISD::ConstantFP)
10280      break;
10281    Ops.push_back(FoldOp);
10282    AddToWorkList(FoldOp.getNode());
10283  }
10284
10285  if (Ops.size() != N0.getNumOperands())
10286    return SDValue();
10287
10288  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10289                     N0.getValueType(), &Ops[0], Ops.size());
10290}
10291
10292SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10293                                    SDValue N1, SDValue N2){
10294  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10295
10296  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10297                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10298
10299  // If we got a simplified select_cc node back from SimplifySelectCC, then
10300  // break it down into a new SETCC node, and a new SELECT node, and then return
10301  // the SELECT node, since we were called with a SELECT node.
10302  if (SCC.getNode()) {
10303    // Check to see if we got a select_cc back (to turn into setcc/select).
10304    // Otherwise, just return whatever node we got back, like fabs.
10305    if (SCC.getOpcode() == ISD::SELECT_CC) {
10306      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10307                                  N0.getValueType(),
10308                                  SCC.getOperand(0), SCC.getOperand(1),
10309                                  SCC.getOperand(4));
10310      AddToWorkList(SETCC.getNode());
10311      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10312                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10313    }
10314
10315    return SCC;
10316  }
10317  return SDValue();
10318}
10319
10320/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10321/// are the two values being selected between, see if we can simplify the
10322/// select.  Callers of this should assume that TheSelect is deleted if this
10323/// returns true.  As such, they should return the appropriate thing (e.g. the
10324/// node) back to the top-level of the DAG combiner loop to avoid it being
10325/// looked at.
10326bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10327                                    SDValue RHS) {
10328
10329  // Cannot simplify select with vector condition
10330  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10331
10332  // If this is a select from two identical things, try to pull the operation
10333  // through the select.
10334  if (LHS.getOpcode() != RHS.getOpcode() ||
10335      !LHS.hasOneUse() || !RHS.hasOneUse())
10336    return false;
10337
10338  // If this is a load and the token chain is identical, replace the select
10339  // of two loads with a load through a select of the address to load from.
10340  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10341  // constants have been dropped into the constant pool.
10342  if (LHS.getOpcode() == ISD::LOAD) {
10343    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10344    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10345
10346    // Token chains must be identical.
10347    if (LHS.getOperand(0) != RHS.getOperand(0) ||
10348        // Do not let this transformation reduce the number of volatile loads.
10349        LLD->isVolatile() || RLD->isVolatile() ||
10350        // If this is an EXTLOAD, the VT's must match.
10351        LLD->getMemoryVT() != RLD->getMemoryVT() ||
10352        // If this is an EXTLOAD, the kind of extension must match.
10353        (LLD->getExtensionType() != RLD->getExtensionType() &&
10354         // The only exception is if one of the extensions is anyext.
10355         LLD->getExtensionType() != ISD::EXTLOAD &&
10356         RLD->getExtensionType() != ISD::EXTLOAD) ||
10357        // FIXME: this discards src value information.  This is
10358        // over-conservative. It would be beneficial to be able to remember
10359        // both potential memory locations.  Since we are discarding
10360        // src value info, don't do the transformation if the memory
10361        // locations are not in the default address space.
10362        LLD->getPointerInfo().getAddrSpace() != 0 ||
10363        RLD->getPointerInfo().getAddrSpace() != 0 ||
10364        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10365                                      LLD->getBasePtr().getValueType()))
10366      return false;
10367
10368    // Check that the select condition doesn't reach either load.  If so,
10369    // folding this will induce a cycle into the DAG.  If not, this is safe to
10370    // xform, so create a select of the addresses.
10371    SDValue Addr;
10372    if (TheSelect->getOpcode() == ISD::SELECT) {
10373      SDNode *CondNode = TheSelect->getOperand(0).getNode();
10374      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10375          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10376        return false;
10377      // The loads must not depend on one another.
10378      if (LLD->isPredecessorOf(RLD) ||
10379          RLD->isPredecessorOf(LLD))
10380        return false;
10381      Addr = DAG.getSelect(SDLoc(TheSelect),
10382                           LLD->getBasePtr().getValueType(),
10383                           TheSelect->getOperand(0), LLD->getBasePtr(),
10384                           RLD->getBasePtr());
10385    } else {  // Otherwise SELECT_CC
10386      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10387      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10388
10389      if ((LLD->hasAnyUseOfValue(1) &&
10390           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10391          (RLD->hasAnyUseOfValue(1) &&
10392           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10393        return false;
10394
10395      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10396                         LLD->getBasePtr().getValueType(),
10397                         TheSelect->getOperand(0),
10398                         TheSelect->getOperand(1),
10399                         LLD->getBasePtr(), RLD->getBasePtr(),
10400                         TheSelect->getOperand(4));
10401    }
10402
10403    SDValue Load;
10404    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10405      Load = DAG.getLoad(TheSelect->getValueType(0),
10406                         SDLoc(TheSelect),
10407                         // FIXME: Discards pointer info.
10408                         LLD->getChain(), Addr, MachinePointerInfo(),
10409                         LLD->isVolatile(), LLD->isNonTemporal(),
10410                         LLD->isInvariant(), LLD->getAlignment());
10411    } else {
10412      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10413                            RLD->getExtensionType() : LLD->getExtensionType(),
10414                            SDLoc(TheSelect),
10415                            TheSelect->getValueType(0),
10416                            // FIXME: Discards pointer info.
10417                            LLD->getChain(), Addr, MachinePointerInfo(),
10418                            LLD->getMemoryVT(), LLD->isVolatile(),
10419                            LLD->isNonTemporal(), LLD->getAlignment());
10420    }
10421
10422    // Users of the select now use the result of the load.
10423    CombineTo(TheSelect, Load);
10424
10425    // Users of the old loads now use the new load's chain.  We know the
10426    // old-load value is dead now.
10427    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10428    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10429    return true;
10430  }
10431
10432  return false;
10433}
10434
10435/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10436/// where 'cond' is the comparison specified by CC.
10437SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10438                                      SDValue N2, SDValue N3,
10439                                      ISD::CondCode CC, bool NotExtCompare) {
10440  // (x ? y : y) -> y.
10441  if (N2 == N3) return N2;
10442
10443  EVT VT = N2.getValueType();
10444  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10445  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10446  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10447
10448  // Determine if the condition we're dealing with is constant
10449  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10450                              N0, N1, CC, DL, false);
10451  if (SCC.getNode()) AddToWorkList(SCC.getNode());
10452  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10453
10454  // fold select_cc true, x, y -> x
10455  if (SCCC && !SCCC->isNullValue())
10456    return N2;
10457  // fold select_cc false, x, y -> y
10458  if (SCCC && SCCC->isNullValue())
10459    return N3;
10460
10461  // Check to see if we can simplify the select into an fabs node
10462  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10463    // Allow either -0.0 or 0.0
10464    if (CFP->getValueAPF().isZero()) {
10465      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10466      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10467          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10468          N2 == N3.getOperand(0))
10469        return DAG.getNode(ISD::FABS, DL, VT, N0);
10470
10471      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10472      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10473          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10474          N2.getOperand(0) == N3)
10475        return DAG.getNode(ISD::FABS, DL, VT, N3);
10476    }
10477  }
10478
10479  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10480  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10481  // in it.  This is a win when the constant is not otherwise available because
10482  // it replaces two constant pool loads with one.  We only do this if the FP
10483  // type is known to be legal, because if it isn't, then we are before legalize
10484  // types an we want the other legalization to happen first (e.g. to avoid
10485  // messing with soft float) and if the ConstantFP is not legal, because if
10486  // it is legal, we may not need to store the FP constant in a constant pool.
10487  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10488    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10489      if (TLI.isTypeLegal(N2.getValueType()) &&
10490          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10491           TargetLowering::Legal) &&
10492          // If both constants have multiple uses, then we won't need to do an
10493          // extra load, they are likely around in registers for other users.
10494          (TV->hasOneUse() || FV->hasOneUse())) {
10495        Constant *Elts[] = {
10496          const_cast<ConstantFP*>(FV->getConstantFPValue()),
10497          const_cast<ConstantFP*>(TV->getConstantFPValue())
10498        };
10499        Type *FPTy = Elts[0]->getType();
10500        const DataLayout &TD = *TLI.getDataLayout();
10501
10502        // Create a ConstantArray of the two constants.
10503        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10504        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10505                                            TD.getPrefTypeAlignment(FPTy));
10506        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10507
10508        // Get the offsets to the 0 and 1 element of the array so that we can
10509        // select between them.
10510        SDValue Zero = DAG.getIntPtrConstant(0);
10511        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10512        SDValue One = DAG.getIntPtrConstant(EltSize);
10513
10514        SDValue Cond = DAG.getSetCC(DL,
10515                                    getSetCCResultType(N0.getValueType()),
10516                                    N0, N1, CC);
10517        AddToWorkList(Cond.getNode());
10518        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10519                                          Cond, One, Zero);
10520        AddToWorkList(CstOffset.getNode());
10521        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10522                            CstOffset);
10523        AddToWorkList(CPIdx.getNode());
10524        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10525                           MachinePointerInfo::getConstantPool(), false,
10526                           false, false, Alignment);
10527
10528      }
10529    }
10530
10531  // Check to see if we can perform the "gzip trick", transforming
10532  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10533  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10534      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
10535       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
10536    EVT XType = N0.getValueType();
10537    EVT AType = N2.getValueType();
10538    if (XType.bitsGE(AType)) {
10539      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10540      // single-bit constant.
10541      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10542        unsigned ShCtV = N2C->getAPIntValue().logBase2();
10543        ShCtV = XType.getSizeInBits()-ShCtV-1;
10544        SDValue ShCt = DAG.getConstant(ShCtV,
10545                                       getShiftAmountTy(N0.getValueType()));
10546        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10547                                    XType, N0, ShCt);
10548        AddToWorkList(Shift.getNode());
10549
10550        if (XType.bitsGT(AType)) {
10551          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10552          AddToWorkList(Shift.getNode());
10553        }
10554
10555        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10556      }
10557
10558      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10559                                  XType, N0,
10560                                  DAG.getConstant(XType.getSizeInBits()-1,
10561                                         getShiftAmountTy(N0.getValueType())));
10562      AddToWorkList(Shift.getNode());
10563
10564      if (XType.bitsGT(AType)) {
10565        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10566        AddToWorkList(Shift.getNode());
10567      }
10568
10569      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10570    }
10571  }
10572
10573  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10574  // where y is has a single bit set.
10575  // A plaintext description would be, we can turn the SELECT_CC into an AND
10576  // when the condition can be materialized as an all-ones register.  Any
10577  // single bit-test can be materialized as an all-ones register with
10578  // shift-left and shift-right-arith.
10579  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10580      N0->getValueType(0) == VT &&
10581      N1C && N1C->isNullValue() &&
10582      N2C && N2C->isNullValue()) {
10583    SDValue AndLHS = N0->getOperand(0);
10584    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10585    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10586      // Shift the tested bit over the sign bit.
10587      APInt AndMask = ConstAndRHS->getAPIntValue();
10588      SDValue ShlAmt =
10589        DAG.getConstant(AndMask.countLeadingZeros(),
10590                        getShiftAmountTy(AndLHS.getValueType()));
10591      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10592
10593      // Now arithmetic right shift it all the way over, so the result is either
10594      // all-ones, or zero.
10595      SDValue ShrAmt =
10596        DAG.getConstant(AndMask.getBitWidth()-1,
10597                        getShiftAmountTy(Shl.getValueType()));
10598      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10599
10600      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10601    }
10602  }
10603
10604  // fold select C, 16, 0 -> shl C, 4
10605  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10606    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10607      TargetLowering::ZeroOrOneBooleanContent) {
10608
10609    // If the caller doesn't want us to simplify this into a zext of a compare,
10610    // don't do it.
10611    if (NotExtCompare && N2C->getAPIntValue() == 1)
10612      return SDValue();
10613
10614    // Get a SetCC of the condition
10615    // NOTE: Don't create a SETCC if it's not legal on this target.
10616    if (!LegalOperations ||
10617        TLI.isOperationLegal(ISD::SETCC,
10618          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10619      SDValue Temp, SCC;
10620      // cast from setcc result type to select result type
10621      if (LegalTypes) {
10622        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10623                            N0, N1, CC);
10624        if (N2.getValueType().bitsLT(SCC.getValueType()))
10625          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10626                                        N2.getValueType());
10627        else
10628          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10629                             N2.getValueType(), SCC);
10630      } else {
10631        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10632        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10633                           N2.getValueType(), SCC);
10634      }
10635
10636      AddToWorkList(SCC.getNode());
10637      AddToWorkList(Temp.getNode());
10638
10639      if (N2C->getAPIntValue() == 1)
10640        return Temp;
10641
10642      // shl setcc result by log2 n2c
10643      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
10644                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
10645                                         getShiftAmountTy(Temp.getValueType())));
10646    }
10647  }
10648
10649  // Check to see if this is the equivalent of setcc
10650  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10651  // otherwise, go ahead with the folds.
10652  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10653    EVT XType = N0.getValueType();
10654    if (!LegalOperations ||
10655        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10656      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10657      if (Res.getValueType() != VT)
10658        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10659      return Res;
10660    }
10661
10662    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10663    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10664        (!LegalOperations ||
10665         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10666      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10667      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10668                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10669                                       getShiftAmountTy(Ctlz.getValueType())));
10670    }
10671    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10672    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10673      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10674                                  XType, DAG.getConstant(0, XType), N0);
10675      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10676      return DAG.getNode(ISD::SRL, DL, XType,
10677                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10678                         DAG.getConstant(XType.getSizeInBits()-1,
10679                                         getShiftAmountTy(XType)));
10680    }
10681    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10682    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10683      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10684                                 DAG.getConstant(XType.getSizeInBits()-1,
10685                                         getShiftAmountTy(N0.getValueType())));
10686      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10687    }
10688  }
10689
10690  // Check to see if this is an integer abs.
10691  // select_cc setg[te] X,  0,  X, -X ->
10692  // select_cc setgt    X, -1,  X, -X ->
10693  // select_cc setl[te] X,  0, -X,  X ->
10694  // select_cc setlt    X,  1, -X,  X ->
10695  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10696  if (N1C) {
10697    ConstantSDNode *SubC = NULL;
10698    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10699         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10700        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10701      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10702    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10703              (N1C->isOne() && CC == ISD::SETLT)) &&
10704             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10705      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10706
10707    EVT XType = N0.getValueType();
10708    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10709      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10710                                  N0,
10711                                  DAG.getConstant(XType.getSizeInBits()-1,
10712                                         getShiftAmountTy(N0.getValueType())));
10713      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10714                                XType, N0, Shift);
10715      AddToWorkList(Shift.getNode());
10716      AddToWorkList(Add.getNode());
10717      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10718    }
10719  }
10720
10721  return SDValue();
10722}
10723
10724/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10725SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10726                                   SDValue N1, ISD::CondCode Cond,
10727                                   SDLoc DL, bool foldBooleans) {
10728  TargetLowering::DAGCombinerInfo
10729    DagCombineInfo(DAG, Level, false, this);
10730  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10731}
10732
10733/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10734/// return a DAG expression to select that will generate the same value by
10735/// multiplying by a magic number.  See:
10736/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10737SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10738  std::vector<SDNode*> Built;
10739  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10740
10741  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10742       ii != ee; ++ii)
10743    AddToWorkList(*ii);
10744  return S;
10745}
10746
10747/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10748/// return a DAG expression to select that will generate the same value by
10749/// multiplying by a magic number.  See:
10750/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10751SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10752  std::vector<SDNode*> Built;
10753  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10754
10755  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10756       ii != ee; ++ii)
10757    AddToWorkList(*ii);
10758  return S;
10759}
10760
10761/// FindBaseOffset - Return true if base is a frame index, which is known not
10762// to alias with anything but itself.  Provides base object and offset as
10763// results.
10764static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10765                           const GlobalValue *&GV, const void *&CV) {
10766  // Assume it is a primitive operation.
10767  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10768
10769  // If it's an adding a simple constant then integrate the offset.
10770  if (Base.getOpcode() == ISD::ADD) {
10771    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10772      Base = Base.getOperand(0);
10773      Offset += C->getZExtValue();
10774    }
10775  }
10776
10777  // Return the underlying GlobalValue, and update the Offset.  Return false
10778  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10779  // by multiple nodes with different offsets.
10780  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10781    GV = G->getGlobal();
10782    Offset += G->getOffset();
10783    return false;
10784  }
10785
10786  // Return the underlying Constant value, and update the Offset.  Return false
10787  // for ConstantSDNodes since the same constant pool entry may be represented
10788  // by multiple nodes with different offsets.
10789  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10790    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10791                                         : (const void *)C->getConstVal();
10792    Offset += C->getOffset();
10793    return false;
10794  }
10795  // If it's any of the following then it can't alias with anything but itself.
10796  return isa<FrameIndexSDNode>(Base);
10797}
10798
10799/// isAlias - Return true if there is any possibility that the two addresses
10800/// overlap.
10801bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10802                          const Value *SrcValue1, int SrcValueOffset1,
10803                          unsigned SrcValueAlign1,
10804                          const MDNode *TBAAInfo1,
10805                          SDValue Ptr2, int64_t Size2,
10806                          const Value *SrcValue2, int SrcValueOffset2,
10807                          unsigned SrcValueAlign2,
10808                          const MDNode *TBAAInfo2) const {
10809  // If they are the same then they must be aliases.
10810  if (Ptr1 == Ptr2) return true;
10811
10812  // Gather base node and offset information.
10813  SDValue Base1, Base2;
10814  int64_t Offset1, Offset2;
10815  const GlobalValue *GV1, *GV2;
10816  const void *CV1, *CV2;
10817  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10818  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10819
10820  // If they have a same base address then check to see if they overlap.
10821  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10822    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10823
10824  // It is possible for different frame indices to alias each other, mostly
10825  // when tail call optimization reuses return address slots for arguments.
10826  // To catch this case, look up the actual index of frame indices to compute
10827  // the real alias relationship.
10828  if (isFrameIndex1 && isFrameIndex2) {
10829    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10830    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10831    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10832    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10833  }
10834
10835  // Otherwise, if we know what the bases are, and they aren't identical, then
10836  // we know they cannot alias.
10837  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10838    return false;
10839
10840  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10841  // compared to the size and offset of the access, we may be able to prove they
10842  // do not alias.  This check is conservative for now to catch cases created by
10843  // splitting vector types.
10844  if ((SrcValueAlign1 == SrcValueAlign2) &&
10845      (SrcValueOffset1 != SrcValueOffset2) &&
10846      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10847    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10848    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10849
10850    // There is no overlap between these relatively aligned accesses of similar
10851    // size, return no alias.
10852    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10853      return false;
10854  }
10855
10856  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10857    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10858  if (UseAA && SrcValue1 && SrcValue2) {
10859    // Use alias analysis information.
10860    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10861    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10862    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10863    AliasAnalysis::AliasResult AAResult =
10864      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10865               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10866    if (AAResult == AliasAnalysis::NoAlias)
10867      return false;
10868  }
10869
10870  // Otherwise we have to assume they alias.
10871  return true;
10872}
10873
10874bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10875  SDValue Ptr0, Ptr1;
10876  int64_t Size0, Size1;
10877  const Value *SrcValue0, *SrcValue1;
10878  int SrcValueOffset0, SrcValueOffset1;
10879  unsigned SrcValueAlign0, SrcValueAlign1;
10880  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10881  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10882                SrcValueAlign0, SrcTBAAInfo0);
10883  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10884                SrcValueAlign1, SrcTBAAInfo1);
10885  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10886                 SrcValueAlign0, SrcTBAAInfo0,
10887                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10888                 SrcValueAlign1, SrcTBAAInfo1);
10889}
10890
10891/// FindAliasInfo - Extracts the relevant alias information from the memory
10892/// node.  Returns true if the operand was a load.
10893bool DAGCombiner::FindAliasInfo(SDNode *N,
10894                                SDValue &Ptr, int64_t &Size,
10895                                const Value *&SrcValue,
10896                                int &SrcValueOffset,
10897                                unsigned &SrcValueAlign,
10898                                const MDNode *&TBAAInfo) const {
10899  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10900
10901  Ptr = LS->getBasePtr();
10902  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10903  SrcValue = LS->getSrcValue();
10904  SrcValueOffset = LS->getSrcValueOffset();
10905  SrcValueAlign = LS->getOriginalAlignment();
10906  TBAAInfo = LS->getTBAAInfo();
10907  return isa<LoadSDNode>(LS);
10908}
10909
10910/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10911/// looking for aliasing nodes and adding them to the Aliases vector.
10912void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10913                                   SmallVectorImpl<SDValue> &Aliases) {
10914  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10915  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10916
10917  // Get alias information for node.
10918  SDValue Ptr;
10919  int64_t Size;
10920  const Value *SrcValue;
10921  int SrcValueOffset;
10922  unsigned SrcValueAlign;
10923  const MDNode *SrcTBAAInfo;
10924  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10925                              SrcValueAlign, SrcTBAAInfo);
10926
10927  // Starting off.
10928  Chains.push_back(OriginalChain);
10929  unsigned Depth = 0;
10930
10931  // Look at each chain and determine if it is an alias.  If so, add it to the
10932  // aliases list.  If not, then continue up the chain looking for the next
10933  // candidate.
10934  while (!Chains.empty()) {
10935    SDValue Chain = Chains.back();
10936    Chains.pop_back();
10937
10938    // For TokenFactor nodes, look at each operand and only continue up the
10939    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10940    // find more and revert to original chain since the xform is unlikely to be
10941    // profitable.
10942    //
10943    // FIXME: The depth check could be made to return the last non-aliasing
10944    // chain we found before we hit a tokenfactor rather than the original
10945    // chain.
10946    if (Depth > 6 || Aliases.size() == 2) {
10947      Aliases.clear();
10948      Aliases.push_back(OriginalChain);
10949      break;
10950    }
10951
10952    // Don't bother if we've been before.
10953    if (!Visited.insert(Chain.getNode()))
10954      continue;
10955
10956    switch (Chain.getOpcode()) {
10957    case ISD::EntryToken:
10958      // Entry token is ideal chain operand, but handled in FindBetterChain.
10959      break;
10960
10961    case ISD::LOAD:
10962    case ISD::STORE: {
10963      // Get alias information for Chain.
10964      SDValue OpPtr;
10965      int64_t OpSize;
10966      const Value *OpSrcValue;
10967      int OpSrcValueOffset;
10968      unsigned OpSrcValueAlign;
10969      const MDNode *OpSrcTBAAInfo;
10970      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10971                                    OpSrcValue, OpSrcValueOffset,
10972                                    OpSrcValueAlign,
10973                                    OpSrcTBAAInfo);
10974
10975      // If chain is alias then stop here.
10976      if (!(IsLoad && IsOpLoad) &&
10977          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10978                  SrcTBAAInfo,
10979                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10980                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10981        Aliases.push_back(Chain);
10982      } else {
10983        // Look further up the chain.
10984        Chains.push_back(Chain.getOperand(0));
10985        ++Depth;
10986      }
10987      break;
10988    }
10989
10990    case ISD::TokenFactor:
10991      // We have to check each of the operands of the token factor for "small"
10992      // token factors, so we queue them up.  Adding the operands to the queue
10993      // (stack) in reverse order maintains the original order and increases the
10994      // likelihood that getNode will find a matching token factor (CSE.)
10995      if (Chain.getNumOperands() > 16) {
10996        Aliases.push_back(Chain);
10997        break;
10998      }
10999      for (unsigned n = Chain.getNumOperands(); n;)
11000        Chains.push_back(Chain.getOperand(--n));
11001      ++Depth;
11002      break;
11003
11004    default:
11005      // For all other instructions we will just have to take what we can get.
11006      Aliases.push_back(Chain);
11007      break;
11008    }
11009  }
11010}
11011
11012/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11013/// for a better chain (aliasing node.)
11014SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11015  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11016
11017  // Accumulate all the aliases to this node.
11018  GatherAllAliases(N, OldChain, Aliases);
11019
11020  // If no operands then chain to entry token.
11021  if (Aliases.size() == 0)
11022    return DAG.getEntryNode();
11023
11024  // If a single operand then chain to it.  We don't need to revisit it.
11025  if (Aliases.size() == 1)
11026    return Aliases[0];
11027
11028  // Construct a custom tailored token factor.
11029  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11030                     &Aliases[0], Aliases.size());
11031}
11032
11033// SelectionDAG::Combine - This is the entry point for the file.
11034//
11035void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11036                           CodeGenOpt::Level OptLevel) {
11037  /// run - This is the main entry point to this class.
11038  ///
11039  DAGCombiner(*this, AA, OptLevel).Run(Level);
11040}
11041