DAGCombiner.cpp revision 8e2b8ae3b11b9778da5cb54d330e984b33979bf9
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/DataLayout.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NodesCombined   , "Number of dag nodes combined");
41STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
42STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
43STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
44STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
45
46namespace {
47  static cl::opt<bool>
48    CombinerAA("combiner-alias-analysis", cl::Hidden,
49               cl::desc("Turn on alias analysis during testing"));
50
51  static cl::opt<bool>
52    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
53               cl::desc("Include global information in alias analysis"));
54
55//------------------------------ DAGCombiner ---------------------------------//
56
57  class DAGCombiner {
58    SelectionDAG &DAG;
59    const TargetLowering &TLI;
60    CombineLevel Level;
61    CodeGenOpt::Level OptLevel;
62    bool LegalOperations;
63    bool LegalTypes;
64
65    // Worklist of all of the nodes that need to be simplified.
66    //
67    // This has the semantics that when adding to the worklist,
68    // the item added must be next to be processed. It should
69    // also only appear once. The naive approach to this takes
70    // linear time.
71    //
72    // To reduce the insert/remove time to logarithmic, we use
73    // a set and a vector to maintain our worklist.
74    //
75    // The set contains the items on the worklist, but does not
76    // maintain the order they should be visited.
77    //
78    // The vector maintains the order nodes should be visited, but may
79    // contain duplicate or removed nodes. When choosing a node to
80    // visit, we pop off the order stack until we find an item that is
81    // also in the contents set. All operations are O(log N).
82    SmallPtrSet<SDNode*, 64> WorkListContents;
83    SmallVector<SDNode*, 64> WorkListOrder;
84
85    // AA - Used for DAG load/store alias analysis.
86    AliasAnalysis &AA;
87
88    /// AddUsersToWorkList - When an instruction is simplified, add all users of
89    /// the instruction to the work lists because they might get more simplified
90    /// now.
91    ///
92    void AddUsersToWorkList(SDNode *N) {
93      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
94           UI != UE; ++UI)
95        AddToWorkList(*UI);
96    }
97
98    /// visit - call the node-specific routine that knows how to fold each
99    /// particular type of node.
100    SDValue visit(SDNode *N);
101
102  public:
103    /// AddToWorkList - Add to the work list making sure its instance is at the
104    /// back (next to be processed.)
105    void AddToWorkList(SDNode *N) {
106      WorkListContents.insert(N);
107      WorkListOrder.push_back(N);
108    }
109
110    /// removeFromWorkList - remove all instances of N from the worklist.
111    ///
112    void removeFromWorkList(SDNode *N) {
113      WorkListContents.erase(N);
114    }
115
116    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
117                      bool AddTo = true);
118
119    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
120      return CombineTo(N, &Res, 1, AddTo);
121    }
122
123    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
124                      bool AddTo = true) {
125      SDValue To[] = { Res0, Res1 };
126      return CombineTo(N, To, 2, AddTo);
127    }
128
129    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
130
131  private:
132
133    /// SimplifyDemandedBits - Check the specified integer node value to see if
134    /// it can be simplified or if things it uses can be simplified by bit
135    /// propagation.  If so, return true.
136    bool SimplifyDemandedBits(SDValue Op) {
137      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
138      APInt Demanded = APInt::getAllOnesValue(BitWidth);
139      return SimplifyDemandedBits(Op, Demanded);
140    }
141
142    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
143
144    bool CombineToPreIndexedLoadStore(SDNode *N);
145    bool CombineToPostIndexedLoadStore(SDNode *N);
146
147    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
148    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
149    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
150    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue PromoteIntBinOp(SDValue Op);
152    SDValue PromoteIntShiftOp(SDValue Op);
153    SDValue PromoteExtend(SDValue Op);
154    bool PromoteLoad(SDValue Op);
155
156    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
157                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
158                         ISD::NodeType ExtType);
159
160    /// combine - call the node-specific routine that knows how to fold each
161    /// particular type of node. If that doesn't do anything, try the
162    /// target-specific DAG combines.
163    SDValue combine(SDNode *N);
164
165    // Visitation implementation - Implement dag node combining for different
166    // node types.  The semantics are as follows:
167    // Return Value:
168    //   SDValue.getNode() == 0 - No change was made
169    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
170    //   otherwise              - N should be replaced by the returned Operand.
171    //
172    SDValue visitTokenFactor(SDNode *N);
173    SDValue visitMERGE_VALUES(SDNode *N);
174    SDValue visitADD(SDNode *N);
175    SDValue visitSUB(SDNode *N);
176    SDValue visitADDC(SDNode *N);
177    SDValue visitSUBC(SDNode *N);
178    SDValue visitADDE(SDNode *N);
179    SDValue visitSUBE(SDNode *N);
180    SDValue visitMUL(SDNode *N);
181    SDValue visitSDIV(SDNode *N);
182    SDValue visitUDIV(SDNode *N);
183    SDValue visitSREM(SDNode *N);
184    SDValue visitUREM(SDNode *N);
185    SDValue visitMULHU(SDNode *N);
186    SDValue visitMULHS(SDNode *N);
187    SDValue visitSMUL_LOHI(SDNode *N);
188    SDValue visitUMUL_LOHI(SDNode *N);
189    SDValue visitSMULO(SDNode *N);
190    SDValue visitUMULO(SDNode *N);
191    SDValue visitSDIVREM(SDNode *N);
192    SDValue visitUDIVREM(SDNode *N);
193    SDValue visitAND(SDNode *N);
194    SDValue visitOR(SDNode *N);
195    SDValue visitXOR(SDNode *N);
196    SDValue SimplifyVBinOp(SDNode *N);
197    SDValue SimplifyVUnaryOp(SDNode *N);
198    SDValue visitSHL(SDNode *N);
199    SDValue visitSRA(SDNode *N);
200    SDValue visitSRL(SDNode *N);
201    SDValue visitCTLZ(SDNode *N);
202    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
203    SDValue visitCTTZ(SDNode *N);
204    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTPOP(SDNode *N);
206    SDValue visitSELECT(SDNode *N);
207    SDValue visitSELECT_CC(SDNode *N);
208    SDValue visitSETCC(SDNode *N);
209    SDValue visitSIGN_EXTEND(SDNode *N);
210    SDValue visitZERO_EXTEND(SDNode *N);
211    SDValue visitANY_EXTEND(SDNode *N);
212    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
213    SDValue visitTRUNCATE(SDNode *N);
214    SDValue visitBITCAST(SDNode *N);
215    SDValue visitBUILD_PAIR(SDNode *N);
216    SDValue visitFADD(SDNode *N);
217    SDValue visitFSUB(SDNode *N);
218    SDValue visitFMUL(SDNode *N);
219    SDValue visitFMA(SDNode *N);
220    SDValue visitFDIV(SDNode *N);
221    SDValue visitFREM(SDNode *N);
222    SDValue visitFCOPYSIGN(SDNode *N);
223    SDValue visitSINT_TO_FP(SDNode *N);
224    SDValue visitUINT_TO_FP(SDNode *N);
225    SDValue visitFP_TO_SINT(SDNode *N);
226    SDValue visitFP_TO_UINT(SDNode *N);
227    SDValue visitFP_ROUND(SDNode *N);
228    SDValue visitFP_ROUND_INREG(SDNode *N);
229    SDValue visitFP_EXTEND(SDNode *N);
230    SDValue visitFNEG(SDNode *N);
231    SDValue visitFABS(SDNode *N);
232    SDValue visitFCEIL(SDNode *N);
233    SDValue visitFTRUNC(SDNode *N);
234    SDValue visitFFLOOR(SDNode *N);
235    SDValue visitBRCOND(SDNode *N);
236    SDValue visitBR_CC(SDNode *N);
237    SDValue visitLOAD(SDNode *N);
238    SDValue visitSTORE(SDNode *N);
239    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
240    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
241    SDValue visitBUILD_VECTOR(SDNode *N);
242    SDValue visitCONCAT_VECTORS(SDNode *N);
243    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
244    SDValue visitVECTOR_SHUFFLE(SDNode *N);
245    SDValue visitMEMBARRIER(SDNode *N);
246
247    SDValue XformToShuffleWithZero(SDNode *N);
248    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
249
250    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
251
252    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
253    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
254    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
255    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
256                             SDValue N3, ISD::CondCode CC,
257                             bool NotExtCompare = false);
258    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
259                          DebugLoc DL, bool foldBooleans = true);
260    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
261                                         unsigned HiOp);
262    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
263    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
264    SDValue BuildSDIV(SDNode *N);
265    SDValue BuildUDIV(SDNode *N);
266    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
267                               bool DemandHighBits = true);
268    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
269    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
270    SDValue ReduceLoadWidth(SDNode *N);
271    SDValue ReduceLoadOpStoreWidth(SDNode *N);
272    SDValue TransformFPLoadStorePair(SDNode *N);
273    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
274    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
275
276    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
277
278    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
279    /// looking for aliasing nodes and adding them to the Aliases vector.
280    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
281                          SmallVector<SDValue, 8> &Aliases);
282
283    /// isAlias - Return true if there is any possibility that the two addresses
284    /// overlap.
285    bool isAlias(SDValue Ptr1, int64_t Size1,
286                 const Value *SrcValue1, int SrcValueOffset1,
287                 unsigned SrcValueAlign1,
288                 const MDNode *TBAAInfo1,
289                 SDValue Ptr2, int64_t Size2,
290                 const Value *SrcValue2, int SrcValueOffset2,
291                 unsigned SrcValueAlign2,
292                 const MDNode *TBAAInfo2) const;
293
294    /// FindAliasInfo - Extracts the relevant alias information from the memory
295    /// node.  Returns true if the operand was a load.
296    bool FindAliasInfo(SDNode *N,
297                       SDValue &Ptr, int64_t &Size,
298                       const Value *&SrcValue, int &SrcValueOffset,
299                       unsigned &SrcValueAlignment,
300                       const MDNode *&TBAAInfo) const;
301
302    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
303    /// looking for a better chain (aliasing node.)
304    SDValue FindBetterChain(SDNode *N, SDValue Chain);
305
306    /// Merge consecutive store operations into a wide store.
307    /// This optimization uses wide integers or vectors when possible.
308    /// \return True if some memory operations were changed.
309    bool MergeConsecutiveStores(StoreSDNode *N);
310
311  public:
312    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
313      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
314        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
315
316    /// Run - runs the dag combiner on all nodes in the work list
317    void Run(CombineLevel AtLevel);
318
319    SelectionDAG &getDAG() const { return DAG; }
320
321    /// getShiftAmountTy - Returns a type large enough to hold any valid
322    /// shift amount - before type legalization these can be huge.
323    EVT getShiftAmountTy(EVT LHSTy) {
324      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
325    }
326
327    /// isTypeLegal - This method returns true if we are running before type
328    /// legalization or if the specified VT is legal.
329    bool isTypeLegal(const EVT &VT) {
330      if (!LegalTypes) return true;
331      return TLI.isTypeLegal(VT);
332    }
333  };
334}
335
336
337namespace {
338/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
339/// nodes from the worklist.
340class WorkListRemover : public SelectionDAG::DAGUpdateListener {
341  DAGCombiner &DC;
342public:
343  explicit WorkListRemover(DAGCombiner &dc)
344    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
345
346  virtual void NodeDeleted(SDNode *N, SDNode *E) {
347    DC.removeFromWorkList(N);
348  }
349};
350}
351
352//===----------------------------------------------------------------------===//
353//  TargetLowering::DAGCombinerInfo implementation
354//===----------------------------------------------------------------------===//
355
356void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
357  ((DAGCombiner*)DC)->AddToWorkList(N);
358}
359
360void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
361  ((DAGCombiner*)DC)->removeFromWorkList(N);
362}
363
364SDValue TargetLowering::DAGCombinerInfo::
365CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
366  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
367}
368
369SDValue TargetLowering::DAGCombinerInfo::
370CombineTo(SDNode *N, SDValue Res, bool AddTo) {
371  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
372}
373
374
375SDValue TargetLowering::DAGCombinerInfo::
376CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
377  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
378}
379
380void TargetLowering::DAGCombinerInfo::
381CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
382  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
383}
384
385//===----------------------------------------------------------------------===//
386// Helper Functions
387//===----------------------------------------------------------------------===//
388
389/// isNegatibleForFree - Return 1 if we can compute the negated form of the
390/// specified expression for the same cost as the expression itself, or 2 if we
391/// can compute the negated form more cheaply than the expression itself.
392static char isNegatibleForFree(SDValue Op, bool LegalOperations,
393                               const TargetLowering &TLI,
394                               const TargetOptions *Options,
395                               unsigned Depth = 0) {
396  // fneg is removable even if it has multiple uses.
397  if (Op.getOpcode() == ISD::FNEG) return 2;
398
399  // Don't allow anything with multiple uses.
400  if (!Op.hasOneUse()) return 0;
401
402  // Don't recurse exponentially.
403  if (Depth > 6) return 0;
404
405  switch (Op.getOpcode()) {
406  default: return false;
407  case ISD::ConstantFP:
408    // Don't invert constant FP values after legalize.  The negated constant
409    // isn't necessarily legal.
410    return LegalOperations ? 0 : 1;
411  case ISD::FADD:
412    // FIXME: determine better conditions for this xform.
413    if (!Options->UnsafeFPMath) return 0;
414
415    // After operation legalization, it might not be legal to create new FSUBs.
416    if (LegalOperations &&
417        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
418      return 0;
419
420    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
421    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
422                                    Options, Depth + 1))
423      return V;
424    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
425    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
426                              Depth + 1);
427  case ISD::FSUB:
428    // We can't turn -(A-B) into B-A when we honor signed zeros.
429    if (!Options->UnsafeFPMath) return 0;
430
431    // fold (fneg (fsub A, B)) -> (fsub B, A)
432    return 1;
433
434  case ISD::FMUL:
435  case ISD::FDIV:
436    if (Options->HonorSignDependentRoundingFPMath()) return 0;
437
438    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
439    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
440                                    Options, Depth + 1))
441      return V;
442
443    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
444                              Depth + 1);
445
446  case ISD::FP_EXTEND:
447  case ISD::FP_ROUND:
448  case ISD::FSIN:
449    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
450                              Depth + 1);
451  }
452}
453
454/// GetNegatedExpression - If isNegatibleForFree returns true, this function
455/// returns the newly negated expression.
456static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
457                                    bool LegalOperations, unsigned Depth = 0) {
458  // fneg is removable even if it has multiple uses.
459  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
460
461  // Don't allow anything with multiple uses.
462  assert(Op.hasOneUse() && "Unknown reuse!");
463
464  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
465  switch (Op.getOpcode()) {
466  default: llvm_unreachable("Unknown code");
467  case ISD::ConstantFP: {
468    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
469    V.changeSign();
470    return DAG.getConstantFP(V, Op.getValueType());
471  }
472  case ISD::FADD:
473    // FIXME: determine better conditions for this xform.
474    assert(DAG.getTarget().Options.UnsafeFPMath);
475
476    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
477    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
478                           DAG.getTargetLoweringInfo(),
479                           &DAG.getTarget().Options, Depth+1))
480      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
481                         GetNegatedExpression(Op.getOperand(0), DAG,
482                                              LegalOperations, Depth+1),
483                         Op.getOperand(1));
484    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
485    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
486                       GetNegatedExpression(Op.getOperand(1), DAG,
487                                            LegalOperations, Depth+1),
488                       Op.getOperand(0));
489  case ISD::FSUB:
490    // We can't turn -(A-B) into B-A when we honor signed zeros.
491    assert(DAG.getTarget().Options.UnsafeFPMath);
492
493    // fold (fneg (fsub 0, B)) -> B
494    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
495      if (N0CFP->getValueAPF().isZero())
496        return Op.getOperand(1);
497
498    // fold (fneg (fsub A, B)) -> (fsub B, A)
499    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
500                       Op.getOperand(1), Op.getOperand(0));
501
502  case ISD::FMUL:
503  case ISD::FDIV:
504    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
505
506    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
507    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
508                           DAG.getTargetLoweringInfo(),
509                           &DAG.getTarget().Options, Depth+1))
510      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
511                         GetNegatedExpression(Op.getOperand(0), DAG,
512                                              LegalOperations, Depth+1),
513                         Op.getOperand(1));
514
515    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
516    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
517                       Op.getOperand(0),
518                       GetNegatedExpression(Op.getOperand(1), DAG,
519                                            LegalOperations, Depth+1));
520
521  case ISD::FP_EXTEND:
522  case ISD::FSIN:
523    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
524                       GetNegatedExpression(Op.getOperand(0), DAG,
525                                            LegalOperations, Depth+1));
526  case ISD::FP_ROUND:
527      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
528                         GetNegatedExpression(Op.getOperand(0), DAG,
529                                              LegalOperations, Depth+1),
530                         Op.getOperand(1));
531  }
532}
533
534
535// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
536// that selects between the values 1 and 0, making it equivalent to a setcc.
537// Also, set the incoming LHS, RHS, and CC references to the appropriate
538// nodes based on the type of node we are checking.  This simplifies life a
539// bit for the callers.
540static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
541                              SDValue &CC) {
542  if (N.getOpcode() == ISD::SETCC) {
543    LHS = N.getOperand(0);
544    RHS = N.getOperand(1);
545    CC  = N.getOperand(2);
546    return true;
547  }
548  if (N.getOpcode() == ISD::SELECT_CC &&
549      N.getOperand(2).getOpcode() == ISD::Constant &&
550      N.getOperand(3).getOpcode() == ISD::Constant &&
551      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
552      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
553    LHS = N.getOperand(0);
554    RHS = N.getOperand(1);
555    CC  = N.getOperand(4);
556    return true;
557  }
558  return false;
559}
560
561// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
562// one use.  If this is true, it allows the users to invert the operation for
563// free when it is profitable to do so.
564static bool isOneUseSetCC(SDValue N) {
565  SDValue N0, N1, N2;
566  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
567    return true;
568  return false;
569}
570
571SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
572                                    SDValue N0, SDValue N1) {
573  EVT VT = N0.getValueType();
574  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
575    if (isa<ConstantSDNode>(N1)) {
576      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
577      SDValue OpNode =
578        DAG.FoldConstantArithmetic(Opc, VT,
579                                   cast<ConstantSDNode>(N0.getOperand(1)),
580                                   cast<ConstantSDNode>(N1));
581      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
582    }
583    if (N0.hasOneUse()) {
584      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
585      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
586                                   N0.getOperand(0), N1);
587      AddToWorkList(OpNode.getNode());
588      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
589    }
590  }
591
592  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
593    if (isa<ConstantSDNode>(N0)) {
594      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
595      SDValue OpNode =
596        DAG.FoldConstantArithmetic(Opc, VT,
597                                   cast<ConstantSDNode>(N1.getOperand(1)),
598                                   cast<ConstantSDNode>(N0));
599      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
600    }
601    if (N1.hasOneUse()) {
602      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
603      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
604                                   N1.getOperand(0), N0);
605      AddToWorkList(OpNode.getNode());
606      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
607    }
608  }
609
610  return SDValue();
611}
612
613SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
614                               bool AddTo) {
615  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
616  ++NodesCombined;
617  DEBUG(dbgs() << "\nReplacing.1 ";
618        N->dump(&DAG);
619        dbgs() << "\nWith: ";
620        To[0].getNode()->dump(&DAG);
621        dbgs() << " and " << NumTo-1 << " other values\n";
622        for (unsigned i = 0, e = NumTo; i != e; ++i)
623          assert((!To[i].getNode() ||
624                  N->getValueType(i) == To[i].getValueType()) &&
625                 "Cannot combine value to value of different type!"));
626  WorkListRemover DeadNodes(*this);
627  DAG.ReplaceAllUsesWith(N, To);
628  if (AddTo) {
629    // Push the new nodes and any users onto the worklist
630    for (unsigned i = 0, e = NumTo; i != e; ++i) {
631      if (To[i].getNode()) {
632        AddToWorkList(To[i].getNode());
633        AddUsersToWorkList(To[i].getNode());
634      }
635    }
636  }
637
638  // Finally, if the node is now dead, remove it from the graph.  The node
639  // may not be dead if the replacement process recursively simplified to
640  // something else needing this node.
641  if (N->use_empty()) {
642    // Nodes can be reintroduced into the worklist.  Make sure we do not
643    // process a node that has been replaced.
644    removeFromWorkList(N);
645
646    // Finally, since the node is now dead, remove it from the graph.
647    DAG.DeleteNode(N);
648  }
649  return SDValue(N, 0);
650}
651
652void DAGCombiner::
653CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
654  // Replace all uses.  If any nodes become isomorphic to other nodes and
655  // are deleted, make sure to remove them from our worklist.
656  WorkListRemover DeadNodes(*this);
657  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
658
659  // Push the new node and any (possibly new) users onto the worklist.
660  AddToWorkList(TLO.New.getNode());
661  AddUsersToWorkList(TLO.New.getNode());
662
663  // Finally, if the node is now dead, remove it from the graph.  The node
664  // may not be dead if the replacement process recursively simplified to
665  // something else needing this node.
666  if (TLO.Old.getNode()->use_empty()) {
667    removeFromWorkList(TLO.Old.getNode());
668
669    // If the operands of this node are only used by the node, they will now
670    // be dead.  Make sure to visit them first to delete dead nodes early.
671    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
672      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
673        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
674
675    DAG.DeleteNode(TLO.Old.getNode());
676  }
677}
678
679/// SimplifyDemandedBits - Check the specified integer node value to see if
680/// it can be simplified or if things it uses can be simplified by bit
681/// propagation.  If so, return true.
682bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
683  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
684  APInt KnownZero, KnownOne;
685  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
686    return false;
687
688  // Revisit the node.
689  AddToWorkList(Op.getNode());
690
691  // Replace the old value with the new one.
692  ++NodesCombined;
693  DEBUG(dbgs() << "\nReplacing.2 ";
694        TLO.Old.getNode()->dump(&DAG);
695        dbgs() << "\nWith: ";
696        TLO.New.getNode()->dump(&DAG);
697        dbgs() << '\n');
698
699  CommitTargetLoweringOpt(TLO);
700  return true;
701}
702
703void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
704  DebugLoc dl = Load->getDebugLoc();
705  EVT VT = Load->getValueType(0);
706  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
707
708  DEBUG(dbgs() << "\nReplacing.9 ";
709        Load->dump(&DAG);
710        dbgs() << "\nWith: ";
711        Trunc.getNode()->dump(&DAG);
712        dbgs() << '\n');
713  WorkListRemover DeadNodes(*this);
714  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
715  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
716  removeFromWorkList(Load);
717  DAG.DeleteNode(Load);
718  AddToWorkList(Trunc.getNode());
719}
720
721SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
722  Replace = false;
723  DebugLoc dl = Op.getDebugLoc();
724  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
725    EVT MemVT = LD->getMemoryVT();
726    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
727      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
728                                                  : ISD::EXTLOAD)
729      : LD->getExtensionType();
730    Replace = true;
731    return DAG.getExtLoad(ExtType, dl, PVT,
732                          LD->getChain(), LD->getBasePtr(),
733                          LD->getPointerInfo(),
734                          MemVT, LD->isVolatile(),
735                          LD->isNonTemporal(), LD->getAlignment());
736  }
737
738  unsigned Opc = Op.getOpcode();
739  switch (Opc) {
740  default: break;
741  case ISD::AssertSext:
742    return DAG.getNode(ISD::AssertSext, dl, PVT,
743                       SExtPromoteOperand(Op.getOperand(0), PVT),
744                       Op.getOperand(1));
745  case ISD::AssertZext:
746    return DAG.getNode(ISD::AssertZext, dl, PVT,
747                       ZExtPromoteOperand(Op.getOperand(0), PVT),
748                       Op.getOperand(1));
749  case ISD::Constant: {
750    unsigned ExtOpc =
751      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
752    return DAG.getNode(ExtOpc, dl, PVT, Op);
753  }
754  }
755
756  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
757    return SDValue();
758  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
759}
760
761SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
762  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
763    return SDValue();
764  EVT OldVT = Op.getValueType();
765  DebugLoc dl = Op.getDebugLoc();
766  bool Replace = false;
767  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
768  if (NewOp.getNode() == 0)
769    return SDValue();
770  AddToWorkList(NewOp.getNode());
771
772  if (Replace)
773    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
774  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
775                     DAG.getValueType(OldVT));
776}
777
778SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
779  EVT OldVT = Op.getValueType();
780  DebugLoc dl = Op.getDebugLoc();
781  bool Replace = false;
782  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
783  if (NewOp.getNode() == 0)
784    return SDValue();
785  AddToWorkList(NewOp.getNode());
786
787  if (Replace)
788    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
789  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
790}
791
792/// PromoteIntBinOp - Promote the specified integer binary operation if the
793/// target indicates it is beneficial. e.g. On x86, it's usually better to
794/// promote i16 operations to i32 since i16 instructions are longer.
795SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
796  if (!LegalOperations)
797    return SDValue();
798
799  EVT VT = Op.getValueType();
800  if (VT.isVector() || !VT.isInteger())
801    return SDValue();
802
803  // If operation type is 'undesirable', e.g. i16 on x86, consider
804  // promoting it.
805  unsigned Opc = Op.getOpcode();
806  if (TLI.isTypeDesirableForOp(Opc, VT))
807    return SDValue();
808
809  EVT PVT = VT;
810  // Consult target whether it is a good idea to promote this operation and
811  // what's the right type to promote it to.
812  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
813    assert(PVT != VT && "Don't know what type to promote to!");
814
815    bool Replace0 = false;
816    SDValue N0 = Op.getOperand(0);
817    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
818    if (NN0.getNode() == 0)
819      return SDValue();
820
821    bool Replace1 = false;
822    SDValue N1 = Op.getOperand(1);
823    SDValue NN1;
824    if (N0 == N1)
825      NN1 = NN0;
826    else {
827      NN1 = PromoteOperand(N1, PVT, Replace1);
828      if (NN1.getNode() == 0)
829        return SDValue();
830    }
831
832    AddToWorkList(NN0.getNode());
833    if (NN1.getNode())
834      AddToWorkList(NN1.getNode());
835
836    if (Replace0)
837      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
838    if (Replace1)
839      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
840
841    DEBUG(dbgs() << "\nPromoting ";
842          Op.getNode()->dump(&DAG));
843    DebugLoc dl = Op.getDebugLoc();
844    return DAG.getNode(ISD::TRUNCATE, dl, VT,
845                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
846  }
847  return SDValue();
848}
849
850/// PromoteIntShiftOp - Promote the specified integer shift operation if the
851/// target indicates it is beneficial. e.g. On x86, it's usually better to
852/// promote i16 operations to i32 since i16 instructions are longer.
853SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
854  if (!LegalOperations)
855    return SDValue();
856
857  EVT VT = Op.getValueType();
858  if (VT.isVector() || !VT.isInteger())
859    return SDValue();
860
861  // If operation type is 'undesirable', e.g. i16 on x86, consider
862  // promoting it.
863  unsigned Opc = Op.getOpcode();
864  if (TLI.isTypeDesirableForOp(Opc, VT))
865    return SDValue();
866
867  EVT PVT = VT;
868  // Consult target whether it is a good idea to promote this operation and
869  // what's the right type to promote it to.
870  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
871    assert(PVT != VT && "Don't know what type to promote to!");
872
873    bool Replace = false;
874    SDValue N0 = Op.getOperand(0);
875    if (Opc == ISD::SRA)
876      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
877    else if (Opc == ISD::SRL)
878      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
879    else
880      N0 = PromoteOperand(N0, PVT, Replace);
881    if (N0.getNode() == 0)
882      return SDValue();
883
884    AddToWorkList(N0.getNode());
885    if (Replace)
886      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
887
888    DEBUG(dbgs() << "\nPromoting ";
889          Op.getNode()->dump(&DAG));
890    DebugLoc dl = Op.getDebugLoc();
891    return DAG.getNode(ISD::TRUNCATE, dl, VT,
892                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
893  }
894  return SDValue();
895}
896
897SDValue DAGCombiner::PromoteExtend(SDValue Op) {
898  if (!LegalOperations)
899    return SDValue();
900
901  EVT VT = Op.getValueType();
902  if (VT.isVector() || !VT.isInteger())
903    return SDValue();
904
905  // If operation type is 'undesirable', e.g. i16 on x86, consider
906  // promoting it.
907  unsigned Opc = Op.getOpcode();
908  if (TLI.isTypeDesirableForOp(Opc, VT))
909    return SDValue();
910
911  EVT PVT = VT;
912  // Consult target whether it is a good idea to promote this operation and
913  // what's the right type to promote it to.
914  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
915    assert(PVT != VT && "Don't know what type to promote to!");
916    // fold (aext (aext x)) -> (aext x)
917    // fold (aext (zext x)) -> (zext x)
918    // fold (aext (sext x)) -> (sext x)
919    DEBUG(dbgs() << "\nPromoting ";
920          Op.getNode()->dump(&DAG));
921    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
922  }
923  return SDValue();
924}
925
926bool DAGCombiner::PromoteLoad(SDValue Op) {
927  if (!LegalOperations)
928    return false;
929
930  EVT VT = Op.getValueType();
931  if (VT.isVector() || !VT.isInteger())
932    return false;
933
934  // If operation type is 'undesirable', e.g. i16 on x86, consider
935  // promoting it.
936  unsigned Opc = Op.getOpcode();
937  if (TLI.isTypeDesirableForOp(Opc, VT))
938    return false;
939
940  EVT PVT = VT;
941  // Consult target whether it is a good idea to promote this operation and
942  // what's the right type to promote it to.
943  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
944    assert(PVT != VT && "Don't know what type to promote to!");
945
946    DebugLoc dl = Op.getDebugLoc();
947    SDNode *N = Op.getNode();
948    LoadSDNode *LD = cast<LoadSDNode>(N);
949    EVT MemVT = LD->getMemoryVT();
950    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
951      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
952                                                  : ISD::EXTLOAD)
953      : LD->getExtensionType();
954    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
955                                   LD->getChain(), LD->getBasePtr(),
956                                   LD->getPointerInfo(),
957                                   MemVT, LD->isVolatile(),
958                                   LD->isNonTemporal(), LD->getAlignment());
959    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
960
961    DEBUG(dbgs() << "\nPromoting ";
962          N->dump(&DAG);
963          dbgs() << "\nTo: ";
964          Result.getNode()->dump(&DAG);
965          dbgs() << '\n');
966    WorkListRemover DeadNodes(*this);
967    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
968    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
969    removeFromWorkList(N);
970    DAG.DeleteNode(N);
971    AddToWorkList(Result.getNode());
972    return true;
973  }
974  return false;
975}
976
977
978//===----------------------------------------------------------------------===//
979//  Main DAG Combiner implementation
980//===----------------------------------------------------------------------===//
981
982void DAGCombiner::Run(CombineLevel AtLevel) {
983  // set the instance variables, so that the various visit routines may use it.
984  Level = AtLevel;
985  LegalOperations = Level >= AfterLegalizeVectorOps;
986  LegalTypes = Level >= AfterLegalizeTypes;
987
988  // Add all the dag nodes to the worklist.
989  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
990       E = DAG.allnodes_end(); I != E; ++I)
991    AddToWorkList(I);
992
993  // Create a dummy node (which is not added to allnodes), that adds a reference
994  // to the root node, preventing it from being deleted, and tracking any
995  // changes of the root.
996  HandleSDNode Dummy(DAG.getRoot());
997
998  // The root of the dag may dangle to deleted nodes until the dag combiner is
999  // done.  Set it to null to avoid confusion.
1000  DAG.setRoot(SDValue());
1001
1002  // while the worklist isn't empty, find a node and
1003  // try and combine it.
1004  while (!WorkListContents.empty()) {
1005    SDNode *N;
1006    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1007    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1008    // worklist *should* contain, and check the node we want to visit is should
1009    // actually be visited.
1010    do {
1011      N = WorkListOrder.pop_back_val();
1012    } while (!WorkListContents.erase(N));
1013
1014    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1015    // N is deleted from the DAG, since they too may now be dead or may have a
1016    // reduced number of uses, allowing other xforms.
1017    if (N->use_empty() && N != &Dummy) {
1018      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1019        AddToWorkList(N->getOperand(i).getNode());
1020
1021      DAG.DeleteNode(N);
1022      continue;
1023    }
1024
1025    SDValue RV = combine(N);
1026
1027    if (RV.getNode() == 0)
1028      continue;
1029
1030    ++NodesCombined;
1031
1032    // If we get back the same node we passed in, rather than a new node or
1033    // zero, we know that the node must have defined multiple values and
1034    // CombineTo was used.  Since CombineTo takes care of the worklist
1035    // mechanics for us, we have no work to do in this case.
1036    if (RV.getNode() == N)
1037      continue;
1038
1039    assert(N->getOpcode() != ISD::DELETED_NODE &&
1040           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1041           "Node was deleted but visit returned new node!");
1042
1043    DEBUG(dbgs() << "\nReplacing.3 ";
1044          N->dump(&DAG);
1045          dbgs() << "\nWith: ";
1046          RV.getNode()->dump(&DAG);
1047          dbgs() << '\n');
1048
1049    // Transfer debug value.
1050    DAG.TransferDbgValues(SDValue(N, 0), RV);
1051    WorkListRemover DeadNodes(*this);
1052    if (N->getNumValues() == RV.getNode()->getNumValues())
1053      DAG.ReplaceAllUsesWith(N, RV.getNode());
1054    else {
1055      assert(N->getValueType(0) == RV.getValueType() &&
1056             N->getNumValues() == 1 && "Type mismatch");
1057      SDValue OpV = RV;
1058      DAG.ReplaceAllUsesWith(N, &OpV);
1059    }
1060
1061    // Push the new node and any users onto the worklist
1062    AddToWorkList(RV.getNode());
1063    AddUsersToWorkList(RV.getNode());
1064
1065    // Add any uses of the old node to the worklist in case this node is the
1066    // last one that uses them.  They may become dead after this node is
1067    // deleted.
1068    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1069      AddToWorkList(N->getOperand(i).getNode());
1070
1071    // Finally, if the node is now dead, remove it from the graph.  The node
1072    // may not be dead if the replacement process recursively simplified to
1073    // something else needing this node.
1074    if (N->use_empty()) {
1075      // Nodes can be reintroduced into the worklist.  Make sure we do not
1076      // process a node that has been replaced.
1077      removeFromWorkList(N);
1078
1079      // Finally, since the node is now dead, remove it from the graph.
1080      DAG.DeleteNode(N);
1081    }
1082  }
1083
1084  // If the root changed (e.g. it was a dead load, update the root).
1085  DAG.setRoot(Dummy.getValue());
1086  DAG.RemoveDeadNodes();
1087}
1088
1089SDValue DAGCombiner::visit(SDNode *N) {
1090  switch (N->getOpcode()) {
1091  default: break;
1092  case ISD::TokenFactor:        return visitTokenFactor(N);
1093  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1094  case ISD::ADD:                return visitADD(N);
1095  case ISD::SUB:                return visitSUB(N);
1096  case ISD::ADDC:               return visitADDC(N);
1097  case ISD::SUBC:               return visitSUBC(N);
1098  case ISD::ADDE:               return visitADDE(N);
1099  case ISD::SUBE:               return visitSUBE(N);
1100  case ISD::MUL:                return visitMUL(N);
1101  case ISD::SDIV:               return visitSDIV(N);
1102  case ISD::UDIV:               return visitUDIV(N);
1103  case ISD::SREM:               return visitSREM(N);
1104  case ISD::UREM:               return visitUREM(N);
1105  case ISD::MULHU:              return visitMULHU(N);
1106  case ISD::MULHS:              return visitMULHS(N);
1107  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1108  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1109  case ISD::SMULO:              return visitSMULO(N);
1110  case ISD::UMULO:              return visitUMULO(N);
1111  case ISD::SDIVREM:            return visitSDIVREM(N);
1112  case ISD::UDIVREM:            return visitUDIVREM(N);
1113  case ISD::AND:                return visitAND(N);
1114  case ISD::OR:                 return visitOR(N);
1115  case ISD::XOR:                return visitXOR(N);
1116  case ISD::SHL:                return visitSHL(N);
1117  case ISD::SRA:                return visitSRA(N);
1118  case ISD::SRL:                return visitSRL(N);
1119  case ISD::CTLZ:               return visitCTLZ(N);
1120  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1121  case ISD::CTTZ:               return visitCTTZ(N);
1122  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1123  case ISD::CTPOP:              return visitCTPOP(N);
1124  case ISD::SELECT:             return visitSELECT(N);
1125  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1126  case ISD::SETCC:              return visitSETCC(N);
1127  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1128  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1129  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1130  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1131  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1132  case ISD::BITCAST:            return visitBITCAST(N);
1133  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1134  case ISD::FADD:               return visitFADD(N);
1135  case ISD::FSUB:               return visitFSUB(N);
1136  case ISD::FMUL:               return visitFMUL(N);
1137  case ISD::FMA:                return visitFMA(N);
1138  case ISD::FDIV:               return visitFDIV(N);
1139  case ISD::FREM:               return visitFREM(N);
1140  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1141  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1142  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1143  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1144  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1145  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1146  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1147  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1148  case ISD::FNEG:               return visitFNEG(N);
1149  case ISD::FABS:               return visitFABS(N);
1150  case ISD::FFLOOR:             return visitFFLOOR(N);
1151  case ISD::FCEIL:              return visitFCEIL(N);
1152  case ISD::FTRUNC:             return visitFTRUNC(N);
1153  case ISD::BRCOND:             return visitBRCOND(N);
1154  case ISD::BR_CC:              return visitBR_CC(N);
1155  case ISD::LOAD:               return visitLOAD(N);
1156  case ISD::STORE:              return visitSTORE(N);
1157  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1158  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1159  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1160  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1161  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1162  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1163  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1164  }
1165  return SDValue();
1166}
1167
1168SDValue DAGCombiner::combine(SDNode *N) {
1169  SDValue RV = visit(N);
1170
1171  // If nothing happened, try a target-specific DAG combine.
1172  if (RV.getNode() == 0) {
1173    assert(N->getOpcode() != ISD::DELETED_NODE &&
1174           "Node was deleted but visit returned NULL!");
1175
1176    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1177        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1178
1179      // Expose the DAG combiner to the target combiner impls.
1180      TargetLowering::DAGCombinerInfo
1181        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1182
1183      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1184    }
1185  }
1186
1187  // If nothing happened still, try promoting the operation.
1188  if (RV.getNode() == 0) {
1189    switch (N->getOpcode()) {
1190    default: break;
1191    case ISD::ADD:
1192    case ISD::SUB:
1193    case ISD::MUL:
1194    case ISD::AND:
1195    case ISD::OR:
1196    case ISD::XOR:
1197      RV = PromoteIntBinOp(SDValue(N, 0));
1198      break;
1199    case ISD::SHL:
1200    case ISD::SRA:
1201    case ISD::SRL:
1202      RV = PromoteIntShiftOp(SDValue(N, 0));
1203      break;
1204    case ISD::SIGN_EXTEND:
1205    case ISD::ZERO_EXTEND:
1206    case ISD::ANY_EXTEND:
1207      RV = PromoteExtend(SDValue(N, 0));
1208      break;
1209    case ISD::LOAD:
1210      if (PromoteLoad(SDValue(N, 0)))
1211        RV = SDValue(N, 0);
1212      break;
1213    }
1214  }
1215
1216  // If N is a commutative binary node, try commuting it to enable more
1217  // sdisel CSE.
1218  if (RV.getNode() == 0 &&
1219      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1220      N->getNumValues() == 1) {
1221    SDValue N0 = N->getOperand(0);
1222    SDValue N1 = N->getOperand(1);
1223
1224    // Constant operands are canonicalized to RHS.
1225    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1226      SDValue Ops[] = { N1, N0 };
1227      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1228                                            Ops, 2);
1229      if (CSENode)
1230        return SDValue(CSENode, 0);
1231    }
1232  }
1233
1234  return RV;
1235}
1236
1237/// getInputChainForNode - Given a node, return its input chain if it has one,
1238/// otherwise return a null sd operand.
1239static SDValue getInputChainForNode(SDNode *N) {
1240  if (unsigned NumOps = N->getNumOperands()) {
1241    if (N->getOperand(0).getValueType() == MVT::Other)
1242      return N->getOperand(0);
1243    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1244      return N->getOperand(NumOps-1);
1245    for (unsigned i = 1; i < NumOps-1; ++i)
1246      if (N->getOperand(i).getValueType() == MVT::Other)
1247        return N->getOperand(i);
1248  }
1249  return SDValue();
1250}
1251
1252SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1253  // If N has two operands, where one has an input chain equal to the other,
1254  // the 'other' chain is redundant.
1255  if (N->getNumOperands() == 2) {
1256    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1257      return N->getOperand(0);
1258    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1259      return N->getOperand(1);
1260  }
1261
1262  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1263  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1264  SmallPtrSet<SDNode*, 16> SeenOps;
1265  bool Changed = false;             // If we should replace this token factor.
1266
1267  // Start out with this token factor.
1268  TFs.push_back(N);
1269
1270  // Iterate through token factors.  The TFs grows when new token factors are
1271  // encountered.
1272  for (unsigned i = 0; i < TFs.size(); ++i) {
1273    SDNode *TF = TFs[i];
1274
1275    // Check each of the operands.
1276    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1277      SDValue Op = TF->getOperand(i);
1278
1279      switch (Op.getOpcode()) {
1280      case ISD::EntryToken:
1281        // Entry tokens don't need to be added to the list. They are
1282        // rededundant.
1283        Changed = true;
1284        break;
1285
1286      case ISD::TokenFactor:
1287        if (Op.hasOneUse() &&
1288            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1289          // Queue up for processing.
1290          TFs.push_back(Op.getNode());
1291          // Clean up in case the token factor is removed.
1292          AddToWorkList(Op.getNode());
1293          Changed = true;
1294          break;
1295        }
1296        // Fall thru
1297
1298      default:
1299        // Only add if it isn't already in the list.
1300        if (SeenOps.insert(Op.getNode()))
1301          Ops.push_back(Op);
1302        else
1303          Changed = true;
1304        break;
1305      }
1306    }
1307  }
1308
1309  SDValue Result;
1310
1311  // If we've change things around then replace token factor.
1312  if (Changed) {
1313    if (Ops.empty()) {
1314      // The entry token is the only possible outcome.
1315      Result = DAG.getEntryNode();
1316    } else {
1317      // New and improved token factor.
1318      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1319                           MVT::Other, &Ops[0], Ops.size());
1320    }
1321
1322    // Don't add users to work list.
1323    return CombineTo(N, Result, false);
1324  }
1325
1326  return Result;
1327}
1328
1329/// MERGE_VALUES can always be eliminated.
1330SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1331  WorkListRemover DeadNodes(*this);
1332  // Replacing results may cause a different MERGE_VALUES to suddenly
1333  // be CSE'd with N, and carry its uses with it. Iterate until no
1334  // uses remain, to ensure that the node can be safely deleted.
1335  // First add the users of this node to the work list so that they
1336  // can be tried again once they have new operands.
1337  AddUsersToWorkList(N);
1338  do {
1339    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1340      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1341  } while (!N->use_empty());
1342  removeFromWorkList(N);
1343  DAG.DeleteNode(N);
1344  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1345}
1346
1347static
1348SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1349                              SelectionDAG &DAG) {
1350  EVT VT = N0.getValueType();
1351  SDValue N00 = N0.getOperand(0);
1352  SDValue N01 = N0.getOperand(1);
1353  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1354
1355  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1356      isa<ConstantSDNode>(N00.getOperand(1))) {
1357    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1358    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1359                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1360                                 N00.getOperand(0), N01),
1361                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1362                                 N00.getOperand(1), N01));
1363    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1364  }
1365
1366  return SDValue();
1367}
1368
1369SDValue DAGCombiner::visitADD(SDNode *N) {
1370  SDValue N0 = N->getOperand(0);
1371  SDValue N1 = N->getOperand(1);
1372  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1373  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1374  EVT VT = N0.getValueType();
1375
1376  // fold vector ops
1377  if (VT.isVector()) {
1378    SDValue FoldedVOp = SimplifyVBinOp(N);
1379    if (FoldedVOp.getNode()) return FoldedVOp;
1380  }
1381
1382  // fold (add x, undef) -> undef
1383  if (N0.getOpcode() == ISD::UNDEF)
1384    return N0;
1385  if (N1.getOpcode() == ISD::UNDEF)
1386    return N1;
1387  // fold (add c1, c2) -> c1+c2
1388  if (N0C && N1C)
1389    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1390  // canonicalize constant to RHS
1391  if (N0C && !N1C)
1392    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1393  // fold (add x, 0) -> x
1394  if (N1C && N1C->isNullValue())
1395    return N0;
1396  // fold (add Sym, c) -> Sym+c
1397  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1398    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1399        GA->getOpcode() == ISD::GlobalAddress)
1400      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1401                                  GA->getOffset() +
1402                                    (uint64_t)N1C->getSExtValue());
1403  // fold ((c1-A)+c2) -> (c1+c2)-A
1404  if (N1C && N0.getOpcode() == ISD::SUB)
1405    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1406      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1407                         DAG.getConstant(N1C->getAPIntValue()+
1408                                         N0C->getAPIntValue(), VT),
1409                         N0.getOperand(1));
1410  // reassociate add
1411  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1412  if (RADD.getNode() != 0)
1413    return RADD;
1414  // fold ((0-A) + B) -> B-A
1415  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1416      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1417    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1418  // fold (A + (0-B)) -> A-B
1419  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1420      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1421    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1422  // fold (A+(B-A)) -> B
1423  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1424    return N1.getOperand(0);
1425  // fold ((B-A)+A) -> B
1426  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1427    return N0.getOperand(0);
1428  // fold (A+(B-(A+C))) to (B-C)
1429  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1430      N0 == N1.getOperand(1).getOperand(0))
1431    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1432                       N1.getOperand(1).getOperand(1));
1433  // fold (A+(B-(C+A))) to (B-C)
1434  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1435      N0 == N1.getOperand(1).getOperand(1))
1436    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1437                       N1.getOperand(1).getOperand(0));
1438  // fold (A+((B-A)+or-C)) to (B+or-C)
1439  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1440      N1.getOperand(0).getOpcode() == ISD::SUB &&
1441      N0 == N1.getOperand(0).getOperand(1))
1442    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1443                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1444
1445  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1446  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1447    SDValue N00 = N0.getOperand(0);
1448    SDValue N01 = N0.getOperand(1);
1449    SDValue N10 = N1.getOperand(0);
1450    SDValue N11 = N1.getOperand(1);
1451
1452    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1453      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1454                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1455                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1456  }
1457
1458  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1459    return SDValue(N, 0);
1460
1461  // fold (a+b) -> (a|b) iff a and b share no bits.
1462  if (VT.isInteger() && !VT.isVector()) {
1463    APInt LHSZero, LHSOne;
1464    APInt RHSZero, RHSOne;
1465    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1466
1467    if (LHSZero.getBoolValue()) {
1468      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1469
1470      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1471      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1472      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1473        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1474    }
1475  }
1476
1477  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1478  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1479    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1480    if (Result.getNode()) return Result;
1481  }
1482  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1483    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1484    if (Result.getNode()) return Result;
1485  }
1486
1487  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1488  if (N1.getOpcode() == ISD::SHL &&
1489      N1.getOperand(0).getOpcode() == ISD::SUB)
1490    if (ConstantSDNode *C =
1491          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1492      if (C->getAPIntValue() == 0)
1493        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1494                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1495                                       N1.getOperand(0).getOperand(1),
1496                                       N1.getOperand(1)));
1497  if (N0.getOpcode() == ISD::SHL &&
1498      N0.getOperand(0).getOpcode() == ISD::SUB)
1499    if (ConstantSDNode *C =
1500          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1501      if (C->getAPIntValue() == 0)
1502        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1503                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1504                                       N0.getOperand(0).getOperand(1),
1505                                       N0.getOperand(1)));
1506
1507  if (N1.getOpcode() == ISD::AND) {
1508    SDValue AndOp0 = N1.getOperand(0);
1509    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1510    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1511    unsigned DestBits = VT.getScalarType().getSizeInBits();
1512
1513    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1514    // and similar xforms where the inner op is either ~0 or 0.
1515    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1516      DebugLoc DL = N->getDebugLoc();
1517      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1518    }
1519  }
1520
1521  // add (sext i1), X -> sub X, (zext i1)
1522  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1523      N0.getOperand(0).getValueType() == MVT::i1 &&
1524      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1525    DebugLoc DL = N->getDebugLoc();
1526    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1527    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1528  }
1529
1530  return SDValue();
1531}
1532
1533SDValue DAGCombiner::visitADDC(SDNode *N) {
1534  SDValue N0 = N->getOperand(0);
1535  SDValue N1 = N->getOperand(1);
1536  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1537  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1538  EVT VT = N0.getValueType();
1539
1540  // If the flag result is dead, turn this into an ADD.
1541  if (!N->hasAnyUseOfValue(1))
1542    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1543                     DAG.getNode(ISD::CARRY_FALSE,
1544                                 N->getDebugLoc(), MVT::Glue));
1545
1546  // canonicalize constant to RHS.
1547  if (N0C && !N1C)
1548    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1549
1550  // fold (addc x, 0) -> x + no carry out
1551  if (N1C && N1C->isNullValue())
1552    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1553                                        N->getDebugLoc(), MVT::Glue));
1554
1555  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1556  APInt LHSZero, LHSOne;
1557  APInt RHSZero, RHSOne;
1558  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1559
1560  if (LHSZero.getBoolValue()) {
1561    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1562
1563    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1564    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1565    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1566      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1567                       DAG.getNode(ISD::CARRY_FALSE,
1568                                   N->getDebugLoc(), MVT::Glue));
1569  }
1570
1571  return SDValue();
1572}
1573
1574SDValue DAGCombiner::visitADDE(SDNode *N) {
1575  SDValue N0 = N->getOperand(0);
1576  SDValue N1 = N->getOperand(1);
1577  SDValue CarryIn = N->getOperand(2);
1578  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1579  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1580
1581  // canonicalize constant to RHS
1582  if (N0C && !N1C)
1583    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1584                       N1, N0, CarryIn);
1585
1586  // fold (adde x, y, false) -> (addc x, y)
1587  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1588    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1589
1590  return SDValue();
1591}
1592
1593// Since it may not be valid to emit a fold to zero for vector initializers
1594// check if we can before folding.
1595static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1596                             SelectionDAG &DAG, bool LegalOperations) {
1597  if (!VT.isVector()) {
1598    return DAG.getConstant(0, VT);
1599  }
1600  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1601    // Produce a vector of zeros.
1602    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1603    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1604    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1605      &Ops[0], Ops.size());
1606  }
1607  return SDValue();
1608}
1609
1610SDValue DAGCombiner::visitSUB(SDNode *N) {
1611  SDValue N0 = N->getOperand(0);
1612  SDValue N1 = N->getOperand(1);
1613  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1614  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1615  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1616    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1617  EVT VT = N0.getValueType();
1618
1619  // fold vector ops
1620  if (VT.isVector()) {
1621    SDValue FoldedVOp = SimplifyVBinOp(N);
1622    if (FoldedVOp.getNode()) return FoldedVOp;
1623  }
1624
1625  // fold (sub x, x) -> 0
1626  // FIXME: Refactor this and xor and other similar operations together.
1627  if (N0 == N1)
1628    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1629  // fold (sub c1, c2) -> c1-c2
1630  if (N0C && N1C)
1631    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1632  // fold (sub x, c) -> (add x, -c)
1633  if (N1C)
1634    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1635                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1636  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1637  if (N0C && N0C->isAllOnesValue())
1638    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1639  // fold A-(A-B) -> B
1640  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1641    return N1.getOperand(1);
1642  // fold (A+B)-A -> B
1643  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1644    return N0.getOperand(1);
1645  // fold (A+B)-B -> A
1646  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1647    return N0.getOperand(0);
1648  // fold C2-(A+C1) -> (C2-C1)-A
1649  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1650    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1651                                   VT);
1652    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1653                       N1.getOperand(0));
1654  }
1655  // fold ((A+(B+or-C))-B) -> A+or-C
1656  if (N0.getOpcode() == ISD::ADD &&
1657      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1658       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1659      N0.getOperand(1).getOperand(0) == N1)
1660    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1661                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1662  // fold ((A+(C+B))-B) -> A+C
1663  if (N0.getOpcode() == ISD::ADD &&
1664      N0.getOperand(1).getOpcode() == ISD::ADD &&
1665      N0.getOperand(1).getOperand(1) == N1)
1666    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1667                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1668  // fold ((A-(B-C))-C) -> A-B
1669  if (N0.getOpcode() == ISD::SUB &&
1670      N0.getOperand(1).getOpcode() == ISD::SUB &&
1671      N0.getOperand(1).getOperand(1) == N1)
1672    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1673                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1674
1675  // If either operand of a sub is undef, the result is undef
1676  if (N0.getOpcode() == ISD::UNDEF)
1677    return N0;
1678  if (N1.getOpcode() == ISD::UNDEF)
1679    return N1;
1680
1681  // If the relocation model supports it, consider symbol offsets.
1682  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1683    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1684      // fold (sub Sym, c) -> Sym-c
1685      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1686        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1687                                    GA->getOffset() -
1688                                      (uint64_t)N1C->getSExtValue());
1689      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1690      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1691        if (GA->getGlobal() == GB->getGlobal())
1692          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1693                                 VT);
1694    }
1695
1696  return SDValue();
1697}
1698
1699SDValue DAGCombiner::visitSUBC(SDNode *N) {
1700  SDValue N0 = N->getOperand(0);
1701  SDValue N1 = N->getOperand(1);
1702  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1703  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1704  EVT VT = N0.getValueType();
1705
1706  // If the flag result is dead, turn this into an SUB.
1707  if (!N->hasAnyUseOfValue(1))
1708    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1709                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1710                                 MVT::Glue));
1711
1712  // fold (subc x, x) -> 0 + no borrow
1713  if (N0 == N1)
1714    return CombineTo(N, DAG.getConstant(0, VT),
1715                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1716                                 MVT::Glue));
1717
1718  // fold (subc x, 0) -> x + no borrow
1719  if (N1C && N1C->isNullValue())
1720    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1721                                        MVT::Glue));
1722
1723  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1724  if (N0C && N0C->isAllOnesValue())
1725    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1726                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1727                                 MVT::Glue));
1728
1729  return SDValue();
1730}
1731
1732SDValue DAGCombiner::visitSUBE(SDNode *N) {
1733  SDValue N0 = N->getOperand(0);
1734  SDValue N1 = N->getOperand(1);
1735  SDValue CarryIn = N->getOperand(2);
1736
1737  // fold (sube x, y, false) -> (subc x, y)
1738  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1739    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1740
1741  return SDValue();
1742}
1743
1744SDValue DAGCombiner::visitMUL(SDNode *N) {
1745  SDValue N0 = N->getOperand(0);
1746  SDValue N1 = N->getOperand(1);
1747  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1748  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1749  EVT VT = N0.getValueType();
1750
1751  // fold vector ops
1752  if (VT.isVector()) {
1753    SDValue FoldedVOp = SimplifyVBinOp(N);
1754    if (FoldedVOp.getNode()) return FoldedVOp;
1755  }
1756
1757  // fold (mul x, undef) -> 0
1758  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1759    return DAG.getConstant(0, VT);
1760  // fold (mul c1, c2) -> c1*c2
1761  if (N0C && N1C)
1762    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1763  // canonicalize constant to RHS
1764  if (N0C && !N1C)
1765    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1766  // fold (mul x, 0) -> 0
1767  if (N1C && N1C->isNullValue())
1768    return N1;
1769  // fold (mul x, -1) -> 0-x
1770  if (N1C && N1C->isAllOnesValue())
1771    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1772                       DAG.getConstant(0, VT), N0);
1773  // fold (mul x, (1 << c)) -> x << c
1774  if (N1C && N1C->getAPIntValue().isPowerOf2())
1775    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1776                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1777                                       getShiftAmountTy(N0.getValueType())));
1778  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1779  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1780    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1781    // FIXME: If the input is something that is easily negated (e.g. a
1782    // single-use add), we should put the negate there.
1783    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1784                       DAG.getConstant(0, VT),
1785                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1786                            DAG.getConstant(Log2Val,
1787                                      getShiftAmountTy(N0.getValueType()))));
1788  }
1789  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1790  if (N1C && N0.getOpcode() == ISD::SHL &&
1791      isa<ConstantSDNode>(N0.getOperand(1))) {
1792    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1793                             N1, N0.getOperand(1));
1794    AddToWorkList(C3.getNode());
1795    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1796                       N0.getOperand(0), C3);
1797  }
1798
1799  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1800  // use.
1801  {
1802    SDValue Sh(0,0), Y(0,0);
1803    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1804    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1805        N0.getNode()->hasOneUse()) {
1806      Sh = N0; Y = N1;
1807    } else if (N1.getOpcode() == ISD::SHL &&
1808               isa<ConstantSDNode>(N1.getOperand(1)) &&
1809               N1.getNode()->hasOneUse()) {
1810      Sh = N1; Y = N0;
1811    }
1812
1813    if (Sh.getNode()) {
1814      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1815                                Sh.getOperand(0), Y);
1816      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1817                         Mul, Sh.getOperand(1));
1818    }
1819  }
1820
1821  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1822  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1823      isa<ConstantSDNode>(N0.getOperand(1)))
1824    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1825                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1826                                   N0.getOperand(0), N1),
1827                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1828                                   N0.getOperand(1), N1));
1829
1830  // reassociate mul
1831  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1832  if (RMUL.getNode() != 0)
1833    return RMUL;
1834
1835  return SDValue();
1836}
1837
1838SDValue DAGCombiner::visitSDIV(SDNode *N) {
1839  SDValue N0 = N->getOperand(0);
1840  SDValue N1 = N->getOperand(1);
1841  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1842  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1843  EVT VT = N->getValueType(0);
1844
1845  // fold vector ops
1846  if (VT.isVector()) {
1847    SDValue FoldedVOp = SimplifyVBinOp(N);
1848    if (FoldedVOp.getNode()) return FoldedVOp;
1849  }
1850
1851  // fold (sdiv c1, c2) -> c1/c2
1852  if (N0C && N1C && !N1C->isNullValue())
1853    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1854  // fold (sdiv X, 1) -> X
1855  if (N1C && N1C->getAPIntValue() == 1LL)
1856    return N0;
1857  // fold (sdiv X, -1) -> 0-X
1858  if (N1C && N1C->isAllOnesValue())
1859    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1860                       DAG.getConstant(0, VT), N0);
1861  // If we know the sign bits of both operands are zero, strength reduce to a
1862  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1863  if (!VT.isVector()) {
1864    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1865      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1866                         N0, N1);
1867  }
1868  // fold (sdiv X, pow2) -> simple ops after legalize
1869  if (N1C && !N1C->isNullValue() &&
1870      (N1C->getAPIntValue().isPowerOf2() ||
1871       (-N1C->getAPIntValue()).isPowerOf2())) {
1872    // If dividing by powers of two is cheap, then don't perform the following
1873    // fold.
1874    if (TLI.isPow2DivCheap())
1875      return SDValue();
1876
1877    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1878
1879    // Splat the sign bit into the register
1880    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1881                              DAG.getConstant(VT.getSizeInBits()-1,
1882                                       getShiftAmountTy(N0.getValueType())));
1883    AddToWorkList(SGN.getNode());
1884
1885    // Add (N0 < 0) ? abs2 - 1 : 0;
1886    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1887                              DAG.getConstant(VT.getSizeInBits() - lg2,
1888                                       getShiftAmountTy(SGN.getValueType())));
1889    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1890    AddToWorkList(SRL.getNode());
1891    AddToWorkList(ADD.getNode());    // Divide by pow2
1892    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1893                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1894
1895    // If we're dividing by a positive value, we're done.  Otherwise, we must
1896    // negate the result.
1897    if (N1C->getAPIntValue().isNonNegative())
1898      return SRA;
1899
1900    AddToWorkList(SRA.getNode());
1901    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1902                       DAG.getConstant(0, VT), SRA);
1903  }
1904
1905  // if integer divide is expensive and we satisfy the requirements, emit an
1906  // alternate sequence.
1907  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1908    SDValue Op = BuildSDIV(N);
1909    if (Op.getNode()) return Op;
1910  }
1911
1912  // undef / X -> 0
1913  if (N0.getOpcode() == ISD::UNDEF)
1914    return DAG.getConstant(0, VT);
1915  // X / undef -> undef
1916  if (N1.getOpcode() == ISD::UNDEF)
1917    return N1;
1918
1919  return SDValue();
1920}
1921
1922SDValue DAGCombiner::visitUDIV(SDNode *N) {
1923  SDValue N0 = N->getOperand(0);
1924  SDValue N1 = N->getOperand(1);
1925  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1926  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1927  EVT VT = N->getValueType(0);
1928
1929  // fold vector ops
1930  if (VT.isVector()) {
1931    SDValue FoldedVOp = SimplifyVBinOp(N);
1932    if (FoldedVOp.getNode()) return FoldedVOp;
1933  }
1934
1935  // fold (udiv c1, c2) -> c1/c2
1936  if (N0C && N1C && !N1C->isNullValue())
1937    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1938  // fold (udiv x, (1 << c)) -> x >>u c
1939  if (N1C && N1C->getAPIntValue().isPowerOf2())
1940    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1941                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1942                                       getShiftAmountTy(N0.getValueType())));
1943  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1944  if (N1.getOpcode() == ISD::SHL) {
1945    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1946      if (SHC->getAPIntValue().isPowerOf2()) {
1947        EVT ADDVT = N1.getOperand(1).getValueType();
1948        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1949                                  N1.getOperand(1),
1950                                  DAG.getConstant(SHC->getAPIntValue()
1951                                                                  .logBase2(),
1952                                                  ADDVT));
1953        AddToWorkList(Add.getNode());
1954        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1955      }
1956    }
1957  }
1958  // fold (udiv x, c) -> alternate
1959  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1960    SDValue Op = BuildUDIV(N);
1961    if (Op.getNode()) return Op;
1962  }
1963
1964  // undef / X -> 0
1965  if (N0.getOpcode() == ISD::UNDEF)
1966    return DAG.getConstant(0, VT);
1967  // X / undef -> undef
1968  if (N1.getOpcode() == ISD::UNDEF)
1969    return N1;
1970
1971  return SDValue();
1972}
1973
1974SDValue DAGCombiner::visitSREM(SDNode *N) {
1975  SDValue N0 = N->getOperand(0);
1976  SDValue N1 = N->getOperand(1);
1977  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1978  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1979  EVT VT = N->getValueType(0);
1980
1981  // fold (srem c1, c2) -> c1%c2
1982  if (N0C && N1C && !N1C->isNullValue())
1983    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1984  // If we know the sign bits of both operands are zero, strength reduce to a
1985  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1986  if (!VT.isVector()) {
1987    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1988      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1989  }
1990
1991  // If X/C can be simplified by the division-by-constant logic, lower
1992  // X%C to the equivalent of X-X/C*C.
1993  if (N1C && !N1C->isNullValue()) {
1994    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1995    AddToWorkList(Div.getNode());
1996    SDValue OptimizedDiv = combine(Div.getNode());
1997    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
1998      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1999                                OptimizedDiv, N1);
2000      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2001      AddToWorkList(Mul.getNode());
2002      return Sub;
2003    }
2004  }
2005
2006  // undef % X -> 0
2007  if (N0.getOpcode() == ISD::UNDEF)
2008    return DAG.getConstant(0, VT);
2009  // X % undef -> undef
2010  if (N1.getOpcode() == ISD::UNDEF)
2011    return N1;
2012
2013  return SDValue();
2014}
2015
2016SDValue DAGCombiner::visitUREM(SDNode *N) {
2017  SDValue N0 = N->getOperand(0);
2018  SDValue N1 = N->getOperand(1);
2019  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2020  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2021  EVT VT = N->getValueType(0);
2022
2023  // fold (urem c1, c2) -> c1%c2
2024  if (N0C && N1C && !N1C->isNullValue())
2025    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2026  // fold (urem x, pow2) -> (and x, pow2-1)
2027  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2028    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2029                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2030  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2031  if (N1.getOpcode() == ISD::SHL) {
2032    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2033      if (SHC->getAPIntValue().isPowerOf2()) {
2034        SDValue Add =
2035          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2036                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2037                                 VT));
2038        AddToWorkList(Add.getNode());
2039        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2040      }
2041    }
2042  }
2043
2044  // If X/C can be simplified by the division-by-constant logic, lower
2045  // X%C to the equivalent of X-X/C*C.
2046  if (N1C && !N1C->isNullValue()) {
2047    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2048    AddToWorkList(Div.getNode());
2049    SDValue OptimizedDiv = combine(Div.getNode());
2050    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2051      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2052                                OptimizedDiv, N1);
2053      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2054      AddToWorkList(Mul.getNode());
2055      return Sub;
2056    }
2057  }
2058
2059  // undef % X -> 0
2060  if (N0.getOpcode() == ISD::UNDEF)
2061    return DAG.getConstant(0, VT);
2062  // X % undef -> undef
2063  if (N1.getOpcode() == ISD::UNDEF)
2064    return N1;
2065
2066  return SDValue();
2067}
2068
2069SDValue DAGCombiner::visitMULHS(SDNode *N) {
2070  SDValue N0 = N->getOperand(0);
2071  SDValue N1 = N->getOperand(1);
2072  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2073  EVT VT = N->getValueType(0);
2074  DebugLoc DL = N->getDebugLoc();
2075
2076  // fold (mulhs x, 0) -> 0
2077  if (N1C && N1C->isNullValue())
2078    return N1;
2079  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2080  if (N1C && N1C->getAPIntValue() == 1)
2081    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2082                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2083                                       getShiftAmountTy(N0.getValueType())));
2084  // fold (mulhs x, undef) -> 0
2085  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2086    return DAG.getConstant(0, VT);
2087
2088  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2089  // plus a shift.
2090  if (VT.isSimple() && !VT.isVector()) {
2091    MVT Simple = VT.getSimpleVT();
2092    unsigned SimpleSize = Simple.getSizeInBits();
2093    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2094    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2095      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2096      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2097      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2098      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2099            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2100      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2101    }
2102  }
2103
2104  return SDValue();
2105}
2106
2107SDValue DAGCombiner::visitMULHU(SDNode *N) {
2108  SDValue N0 = N->getOperand(0);
2109  SDValue N1 = N->getOperand(1);
2110  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2111  EVT VT = N->getValueType(0);
2112  DebugLoc DL = N->getDebugLoc();
2113
2114  // fold (mulhu x, 0) -> 0
2115  if (N1C && N1C->isNullValue())
2116    return N1;
2117  // fold (mulhu x, 1) -> 0
2118  if (N1C && N1C->getAPIntValue() == 1)
2119    return DAG.getConstant(0, N0.getValueType());
2120  // fold (mulhu x, undef) -> 0
2121  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2122    return DAG.getConstant(0, VT);
2123
2124  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2125  // plus a shift.
2126  if (VT.isSimple() && !VT.isVector()) {
2127    MVT Simple = VT.getSimpleVT();
2128    unsigned SimpleSize = Simple.getSizeInBits();
2129    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2130    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2131      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2132      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2133      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2134      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2135            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2136      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2137    }
2138  }
2139
2140  return SDValue();
2141}
2142
2143/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2144/// compute two values. LoOp and HiOp give the opcodes for the two computations
2145/// that are being performed. Return true if a simplification was made.
2146///
2147SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2148                                                unsigned HiOp) {
2149  // If the high half is not needed, just compute the low half.
2150  bool HiExists = N->hasAnyUseOfValue(1);
2151  if (!HiExists &&
2152      (!LegalOperations ||
2153       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2154    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2155                              N->op_begin(), N->getNumOperands());
2156    return CombineTo(N, Res, Res);
2157  }
2158
2159  // If the low half is not needed, just compute the high half.
2160  bool LoExists = N->hasAnyUseOfValue(0);
2161  if (!LoExists &&
2162      (!LegalOperations ||
2163       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2164    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2165                              N->op_begin(), N->getNumOperands());
2166    return CombineTo(N, Res, Res);
2167  }
2168
2169  // If both halves are used, return as it is.
2170  if (LoExists && HiExists)
2171    return SDValue();
2172
2173  // If the two computed results can be simplified separately, separate them.
2174  if (LoExists) {
2175    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2176                             N->op_begin(), N->getNumOperands());
2177    AddToWorkList(Lo.getNode());
2178    SDValue LoOpt = combine(Lo.getNode());
2179    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2180        (!LegalOperations ||
2181         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2182      return CombineTo(N, LoOpt, LoOpt);
2183  }
2184
2185  if (HiExists) {
2186    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2187                             N->op_begin(), N->getNumOperands());
2188    AddToWorkList(Hi.getNode());
2189    SDValue HiOpt = combine(Hi.getNode());
2190    if (HiOpt.getNode() && HiOpt != Hi &&
2191        (!LegalOperations ||
2192         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2193      return CombineTo(N, HiOpt, HiOpt);
2194  }
2195
2196  return SDValue();
2197}
2198
2199SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2200  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2201  if (Res.getNode()) return Res;
2202
2203  EVT VT = N->getValueType(0);
2204  DebugLoc DL = N->getDebugLoc();
2205
2206  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2207  // plus a shift.
2208  if (VT.isSimple() && !VT.isVector()) {
2209    MVT Simple = VT.getSimpleVT();
2210    unsigned SimpleSize = Simple.getSizeInBits();
2211    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2212    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2213      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2214      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2215      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2216      // Compute the high part as N1.
2217      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2218            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2219      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2220      // Compute the low part as N0.
2221      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2222      return CombineTo(N, Lo, Hi);
2223    }
2224  }
2225
2226  return SDValue();
2227}
2228
2229SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2230  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2231  if (Res.getNode()) return Res;
2232
2233  EVT VT = N->getValueType(0);
2234  DebugLoc DL = N->getDebugLoc();
2235
2236  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2237  // plus a shift.
2238  if (VT.isSimple() && !VT.isVector()) {
2239    MVT Simple = VT.getSimpleVT();
2240    unsigned SimpleSize = Simple.getSizeInBits();
2241    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2242    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2243      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2244      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2245      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2246      // Compute the high part as N1.
2247      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2248            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2249      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2250      // Compute the low part as N0.
2251      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2252      return CombineTo(N, Lo, Hi);
2253    }
2254  }
2255
2256  return SDValue();
2257}
2258
2259SDValue DAGCombiner::visitSMULO(SDNode *N) {
2260  // (smulo x, 2) -> (saddo x, x)
2261  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2262    if (C2->getAPIntValue() == 2)
2263      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2264                         N->getOperand(0), N->getOperand(0));
2265
2266  return SDValue();
2267}
2268
2269SDValue DAGCombiner::visitUMULO(SDNode *N) {
2270  // (umulo x, 2) -> (uaddo x, x)
2271  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2272    if (C2->getAPIntValue() == 2)
2273      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2274                         N->getOperand(0), N->getOperand(0));
2275
2276  return SDValue();
2277}
2278
2279SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2280  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2281  if (Res.getNode()) return Res;
2282
2283  return SDValue();
2284}
2285
2286SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2287  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2288  if (Res.getNode()) return Res;
2289
2290  return SDValue();
2291}
2292
2293/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2294/// two operands of the same opcode, try to simplify it.
2295SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2296  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2297  EVT VT = N0.getValueType();
2298  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2299
2300  // Bail early if none of these transforms apply.
2301  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2302
2303  // For each of OP in AND/OR/XOR:
2304  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2305  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2306  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2307  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2308  //
2309  // do not sink logical op inside of a vector extend, since it may combine
2310  // into a vsetcc.
2311  EVT Op0VT = N0.getOperand(0).getValueType();
2312  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2313       N0.getOpcode() == ISD::SIGN_EXTEND ||
2314       // Avoid infinite looping with PromoteIntBinOp.
2315       (N0.getOpcode() == ISD::ANY_EXTEND &&
2316        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2317       (N0.getOpcode() == ISD::TRUNCATE &&
2318        (!TLI.isZExtFree(VT, Op0VT) ||
2319         !TLI.isTruncateFree(Op0VT, VT)) &&
2320        TLI.isTypeLegal(Op0VT))) &&
2321      !VT.isVector() &&
2322      Op0VT == N1.getOperand(0).getValueType() &&
2323      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2324    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2325                                 N0.getOperand(0).getValueType(),
2326                                 N0.getOperand(0), N1.getOperand(0));
2327    AddToWorkList(ORNode.getNode());
2328    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2329  }
2330
2331  // For each of OP in SHL/SRL/SRA/AND...
2332  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2333  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2334  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2335  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2336       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2337      N0.getOperand(1) == N1.getOperand(1)) {
2338    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2339                                 N0.getOperand(0).getValueType(),
2340                                 N0.getOperand(0), N1.getOperand(0));
2341    AddToWorkList(ORNode.getNode());
2342    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2343                       ORNode, N0.getOperand(1));
2344  }
2345
2346  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2347  // Only perform this optimization after type legalization and before
2348  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2349  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2350  // we don't want to undo this promotion.
2351  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2352  // on scalars.
2353  if ((N0.getOpcode() == ISD::BITCAST ||
2354       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2355      Level == AfterLegalizeTypes) {
2356    SDValue In0 = N0.getOperand(0);
2357    SDValue In1 = N1.getOperand(0);
2358    EVT In0Ty = In0.getValueType();
2359    EVT In1Ty = In1.getValueType();
2360    DebugLoc DL = N->getDebugLoc();
2361    // If both incoming values are integers, and the original types are the
2362    // same.
2363    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2364      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2365      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2366      AddToWorkList(Op.getNode());
2367      return BC;
2368    }
2369  }
2370
2371  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2372  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2373  // If both shuffles use the same mask, and both shuffle within a single
2374  // vector, then it is worthwhile to move the swizzle after the operation.
2375  // The type-legalizer generates this pattern when loading illegal
2376  // vector types from memory. In many cases this allows additional shuffle
2377  // optimizations.
2378  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2379      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2380      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2381    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2382    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2383
2384    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2385           "Inputs to shuffles are not the same type");
2386
2387    unsigned NumElts = VT.getVectorNumElements();
2388
2389    // Check that both shuffles use the same mask. The masks are known to be of
2390    // the same length because the result vector type is the same.
2391    bool SameMask = true;
2392    for (unsigned i = 0; i != NumElts; ++i) {
2393      int Idx0 = SVN0->getMaskElt(i);
2394      int Idx1 = SVN1->getMaskElt(i);
2395      if (Idx0 != Idx1) {
2396        SameMask = false;
2397        break;
2398      }
2399    }
2400
2401    if (SameMask) {
2402      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2403                               N0.getOperand(0), N1.getOperand(0));
2404      AddToWorkList(Op.getNode());
2405      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2406                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2407    }
2408  }
2409
2410  return SDValue();
2411}
2412
2413SDValue DAGCombiner::visitAND(SDNode *N) {
2414  SDValue N0 = N->getOperand(0);
2415  SDValue N1 = N->getOperand(1);
2416  SDValue LL, LR, RL, RR, CC0, CC1;
2417  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2418  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2419  EVT VT = N1.getValueType();
2420  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2421
2422  // fold vector ops
2423  if (VT.isVector()) {
2424    SDValue FoldedVOp = SimplifyVBinOp(N);
2425    if (FoldedVOp.getNode()) return FoldedVOp;
2426  }
2427
2428  // fold (and x, undef) -> 0
2429  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2430    return DAG.getConstant(0, VT);
2431  // fold (and c1, c2) -> c1&c2
2432  if (N0C && N1C)
2433    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2434  // canonicalize constant to RHS
2435  if (N0C && !N1C)
2436    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2437  // fold (and x, -1) -> x
2438  if (N1C && N1C->isAllOnesValue())
2439    return N0;
2440  // if (and x, c) is known to be zero, return 0
2441  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2442                                   APInt::getAllOnesValue(BitWidth)))
2443    return DAG.getConstant(0, VT);
2444  // reassociate and
2445  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2446  if (RAND.getNode() != 0)
2447    return RAND;
2448  // fold (and (or x, C), D) -> D if (C & D) == D
2449  if (N1C && N0.getOpcode() == ISD::OR)
2450    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2451      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2452        return N1;
2453  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2454  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2455    SDValue N0Op0 = N0.getOperand(0);
2456    APInt Mask = ~N1C->getAPIntValue();
2457    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2458    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2459      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2460                                 N0.getValueType(), N0Op0);
2461
2462      // Replace uses of the AND with uses of the Zero extend node.
2463      CombineTo(N, Zext);
2464
2465      // We actually want to replace all uses of the any_extend with the
2466      // zero_extend, to avoid duplicating things.  This will later cause this
2467      // AND to be folded.
2468      CombineTo(N0.getNode(), Zext);
2469      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2470    }
2471  }
2472  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2473  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2474  // already be zero by virtue of the width of the base type of the load.
2475  //
2476  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2477  // more cases.
2478  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2479       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2480      N0.getOpcode() == ISD::LOAD) {
2481    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2482                                         N0 : N0.getOperand(0) );
2483
2484    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2485    // This can be a pure constant or a vector splat, in which case we treat the
2486    // vector as a scalar and use the splat value.
2487    APInt Constant = APInt::getNullValue(1);
2488    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2489      Constant = C->getAPIntValue();
2490    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2491      APInt SplatValue, SplatUndef;
2492      unsigned SplatBitSize;
2493      bool HasAnyUndefs;
2494      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2495                                             SplatBitSize, HasAnyUndefs);
2496      if (IsSplat) {
2497        // Undef bits can contribute to a possible optimisation if set, so
2498        // set them.
2499        SplatValue |= SplatUndef;
2500
2501        // The splat value may be something like "0x00FFFFFF", which means 0 for
2502        // the first vector value and FF for the rest, repeating. We need a mask
2503        // that will apply equally to all members of the vector, so AND all the
2504        // lanes of the constant together.
2505        EVT VT = Vector->getValueType(0);
2506        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2507
2508        // If the splat value has been compressed to a bitlength lower
2509        // than the size of the vector lane, we need to re-expand it to
2510        // the lane size.
2511        if (BitWidth > SplatBitSize)
2512          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2513               SplatBitSize < BitWidth;
2514               SplatBitSize = SplatBitSize * 2)
2515            SplatValue |= SplatValue.shl(SplatBitSize);
2516
2517        Constant = APInt::getAllOnesValue(BitWidth);
2518        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2519          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2520      }
2521    }
2522
2523    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2524    // actually legal and isn't going to get expanded, else this is a false
2525    // optimisation.
2526    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2527                                                    Load->getMemoryVT());
2528
2529    // Resize the constant to the same size as the original memory access before
2530    // extension. If it is still the AllOnesValue then this AND is completely
2531    // unneeded.
2532    Constant =
2533      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2534
2535    bool B;
2536    switch (Load->getExtensionType()) {
2537    default: B = false; break;
2538    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2539    case ISD::ZEXTLOAD:
2540    case ISD::NON_EXTLOAD: B = true; break;
2541    }
2542
2543    if (B && Constant.isAllOnesValue()) {
2544      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2545      // preserve semantics once we get rid of the AND.
2546      SDValue NewLoad(Load, 0);
2547      if (Load->getExtensionType() == ISD::EXTLOAD) {
2548        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2549                              Load->getValueType(0), Load->getDebugLoc(),
2550                              Load->getChain(), Load->getBasePtr(),
2551                              Load->getOffset(), Load->getMemoryVT(),
2552                              Load->getMemOperand());
2553        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2554        if (Load->getNumValues() == 3) {
2555          // PRE/POST_INC loads have 3 values.
2556          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2557                           NewLoad.getValue(2) };
2558          CombineTo(Load, To, 3, true);
2559        } else {
2560          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2561        }
2562      }
2563
2564      // Fold the AND away, taking care not to fold to the old load node if we
2565      // replaced it.
2566      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2567
2568      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2569    }
2570  }
2571  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2572  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2573    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2574    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2575
2576    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2577        LL.getValueType().isInteger()) {
2578      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2579      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2580        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2581                                     LR.getValueType(), LL, RL);
2582        AddToWorkList(ORNode.getNode());
2583        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2584      }
2585      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2586      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2587        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2588                                      LR.getValueType(), LL, RL);
2589        AddToWorkList(ANDNode.getNode());
2590        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2591      }
2592      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2593      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2594        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2595                                     LR.getValueType(), LL, RL);
2596        AddToWorkList(ORNode.getNode());
2597        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2598      }
2599    }
2600    // canonicalize equivalent to ll == rl
2601    if (LL == RR && LR == RL) {
2602      Op1 = ISD::getSetCCSwappedOperands(Op1);
2603      std::swap(RL, RR);
2604    }
2605    if (LL == RL && LR == RR) {
2606      bool isInteger = LL.getValueType().isInteger();
2607      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2608      if (Result != ISD::SETCC_INVALID &&
2609          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2610        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2611                            LL, LR, Result);
2612    }
2613  }
2614
2615  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2616  if (N0.getOpcode() == N1.getOpcode()) {
2617    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2618    if (Tmp.getNode()) return Tmp;
2619  }
2620
2621  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2622  // fold (and (sra)) -> (and (srl)) when possible.
2623  if (!VT.isVector() &&
2624      SimplifyDemandedBits(SDValue(N, 0)))
2625    return SDValue(N, 0);
2626
2627  // fold (zext_inreg (extload x)) -> (zextload x)
2628  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2629    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2630    EVT MemVT = LN0->getMemoryVT();
2631    // If we zero all the possible extended bits, then we can turn this into
2632    // a zextload if we are running before legalize or the operation is legal.
2633    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2634    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2635                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2636        ((!LegalOperations && !LN0->isVolatile()) ||
2637         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2638      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2639                                       LN0->getChain(), LN0->getBasePtr(),
2640                                       LN0->getPointerInfo(), MemVT,
2641                                       LN0->isVolatile(), LN0->isNonTemporal(),
2642                                       LN0->getAlignment());
2643      AddToWorkList(N);
2644      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2645      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2646    }
2647  }
2648  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2649  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2650      N0.hasOneUse()) {
2651    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2652    EVT MemVT = LN0->getMemoryVT();
2653    // If we zero all the possible extended bits, then we can turn this into
2654    // a zextload if we are running before legalize or the operation is legal.
2655    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2656    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2657                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2658        ((!LegalOperations && !LN0->isVolatile()) ||
2659         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2660      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2661                                       LN0->getChain(),
2662                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2663                                       MemVT,
2664                                       LN0->isVolatile(), LN0->isNonTemporal(),
2665                                       LN0->getAlignment());
2666      AddToWorkList(N);
2667      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2668      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2669    }
2670  }
2671
2672  // fold (and (load x), 255) -> (zextload x, i8)
2673  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2674  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2675  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2676              (N0.getOpcode() == ISD::ANY_EXTEND &&
2677               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2678    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2679    LoadSDNode *LN0 = HasAnyExt
2680      ? cast<LoadSDNode>(N0.getOperand(0))
2681      : cast<LoadSDNode>(N0);
2682    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2683        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2684      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2685      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2686        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2687        EVT LoadedVT = LN0->getMemoryVT();
2688
2689        if (ExtVT == LoadedVT &&
2690            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2691          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2692
2693          SDValue NewLoad =
2694            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2695                           LN0->getChain(), LN0->getBasePtr(),
2696                           LN0->getPointerInfo(),
2697                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2698                           LN0->getAlignment());
2699          AddToWorkList(N);
2700          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2701          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2702        }
2703
2704        // Do not change the width of a volatile load.
2705        // Do not generate loads of non-round integer types since these can
2706        // be expensive (and would be wrong if the type is not byte sized).
2707        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2708            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2709          EVT PtrType = LN0->getOperand(1).getValueType();
2710
2711          unsigned Alignment = LN0->getAlignment();
2712          SDValue NewPtr = LN0->getBasePtr();
2713
2714          // For big endian targets, we need to add an offset to the pointer
2715          // to load the correct bytes.  For little endian systems, we merely
2716          // need to read fewer bytes from the same pointer.
2717          if (TLI.isBigEndian()) {
2718            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2719            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2720            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2721            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2722                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2723            Alignment = MinAlign(Alignment, PtrOff);
2724          }
2725
2726          AddToWorkList(NewPtr.getNode());
2727
2728          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2729          SDValue Load =
2730            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2731                           LN0->getChain(), NewPtr,
2732                           LN0->getPointerInfo(),
2733                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2734                           Alignment);
2735          AddToWorkList(N);
2736          CombineTo(LN0, Load, Load.getValue(1));
2737          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2738        }
2739      }
2740    }
2741  }
2742
2743  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2744      VT.getSizeInBits() <= 64) {
2745    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2746      APInt ADDC = ADDI->getAPIntValue();
2747      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2748        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2749        // immediate for an add, but it is legal if its top c2 bits are set,
2750        // transform the ADD so the immediate doesn't need to be materialized
2751        // in a register.
2752        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2753          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2754                                             SRLI->getZExtValue());
2755          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2756            ADDC |= Mask;
2757            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2758              SDValue NewAdd =
2759                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2760                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2761              CombineTo(N0.getNode(), NewAdd);
2762              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2763            }
2764          }
2765        }
2766      }
2767    }
2768  }
2769
2770
2771  return SDValue();
2772}
2773
2774/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2775///
2776SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2777                                        bool DemandHighBits) {
2778  if (!LegalOperations)
2779    return SDValue();
2780
2781  EVT VT = N->getValueType(0);
2782  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2783    return SDValue();
2784  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2785    return SDValue();
2786
2787  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2788  bool LookPassAnd0 = false;
2789  bool LookPassAnd1 = false;
2790  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2791      std::swap(N0, N1);
2792  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2793      std::swap(N0, N1);
2794  if (N0.getOpcode() == ISD::AND) {
2795    if (!N0.getNode()->hasOneUse())
2796      return SDValue();
2797    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2798    if (!N01C || N01C->getZExtValue() != 0xFF00)
2799      return SDValue();
2800    N0 = N0.getOperand(0);
2801    LookPassAnd0 = true;
2802  }
2803
2804  if (N1.getOpcode() == ISD::AND) {
2805    if (!N1.getNode()->hasOneUse())
2806      return SDValue();
2807    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2808    if (!N11C || N11C->getZExtValue() != 0xFF)
2809      return SDValue();
2810    N1 = N1.getOperand(0);
2811    LookPassAnd1 = true;
2812  }
2813
2814  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2815    std::swap(N0, N1);
2816  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2817    return SDValue();
2818  if (!N0.getNode()->hasOneUse() ||
2819      !N1.getNode()->hasOneUse())
2820    return SDValue();
2821
2822  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2823  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2824  if (!N01C || !N11C)
2825    return SDValue();
2826  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2827    return SDValue();
2828
2829  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2830  SDValue N00 = N0->getOperand(0);
2831  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2832    if (!N00.getNode()->hasOneUse())
2833      return SDValue();
2834    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2835    if (!N001C || N001C->getZExtValue() != 0xFF)
2836      return SDValue();
2837    N00 = N00.getOperand(0);
2838    LookPassAnd0 = true;
2839  }
2840
2841  SDValue N10 = N1->getOperand(0);
2842  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2843    if (!N10.getNode()->hasOneUse())
2844      return SDValue();
2845    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2846    if (!N101C || N101C->getZExtValue() != 0xFF00)
2847      return SDValue();
2848    N10 = N10.getOperand(0);
2849    LookPassAnd1 = true;
2850  }
2851
2852  if (N00 != N10)
2853    return SDValue();
2854
2855  // Make sure everything beyond the low halfword is zero since the SRL 16
2856  // will clear the top bits.
2857  unsigned OpSizeInBits = VT.getSizeInBits();
2858  if (DemandHighBits && OpSizeInBits > 16 &&
2859      (!LookPassAnd0 || !LookPassAnd1) &&
2860      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2861    return SDValue();
2862
2863  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2864  if (OpSizeInBits > 16)
2865    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2866                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2867  return Res;
2868}
2869
2870/// isBSwapHWordElement - Return true if the specified node is an element
2871/// that makes up a 32-bit packed halfword byteswap. i.e.
2872/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2873static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2874  if (!N.getNode()->hasOneUse())
2875    return false;
2876
2877  unsigned Opc = N.getOpcode();
2878  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2879    return false;
2880
2881  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2882  if (!N1C)
2883    return false;
2884
2885  unsigned Num;
2886  switch (N1C->getZExtValue()) {
2887  default:
2888    return false;
2889  case 0xFF:       Num = 0; break;
2890  case 0xFF00:     Num = 1; break;
2891  case 0xFF0000:   Num = 2; break;
2892  case 0xFF000000: Num = 3; break;
2893  }
2894
2895  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2896  SDValue N0 = N.getOperand(0);
2897  if (Opc == ISD::AND) {
2898    if (Num == 0 || Num == 2) {
2899      // (x >> 8) & 0xff
2900      // (x >> 8) & 0xff0000
2901      if (N0.getOpcode() != ISD::SRL)
2902        return false;
2903      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2904      if (!C || C->getZExtValue() != 8)
2905        return false;
2906    } else {
2907      // (x << 8) & 0xff00
2908      // (x << 8) & 0xff000000
2909      if (N0.getOpcode() != ISD::SHL)
2910        return false;
2911      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2912      if (!C || C->getZExtValue() != 8)
2913        return false;
2914    }
2915  } else if (Opc == ISD::SHL) {
2916    // (x & 0xff) << 8
2917    // (x & 0xff0000) << 8
2918    if (Num != 0 && Num != 2)
2919      return false;
2920    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2921    if (!C || C->getZExtValue() != 8)
2922      return false;
2923  } else { // Opc == ISD::SRL
2924    // (x & 0xff00) >> 8
2925    // (x & 0xff000000) >> 8
2926    if (Num != 1 && Num != 3)
2927      return false;
2928    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2929    if (!C || C->getZExtValue() != 8)
2930      return false;
2931  }
2932
2933  if (Parts[Num])
2934    return false;
2935
2936  Parts[Num] = N0.getOperand(0).getNode();
2937  return true;
2938}
2939
2940/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2941/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2942/// => (rotl (bswap x), 16)
2943SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2944  if (!LegalOperations)
2945    return SDValue();
2946
2947  EVT VT = N->getValueType(0);
2948  if (VT != MVT::i32)
2949    return SDValue();
2950  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2951    return SDValue();
2952
2953  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2954  // Look for either
2955  // (or (or (and), (and)), (or (and), (and)))
2956  // (or (or (or (and), (and)), (and)), (and))
2957  if (N0.getOpcode() != ISD::OR)
2958    return SDValue();
2959  SDValue N00 = N0.getOperand(0);
2960  SDValue N01 = N0.getOperand(1);
2961
2962  if (N1.getOpcode() == ISD::OR) {
2963    // (or (or (and), (and)), (or (and), (and)))
2964    SDValue N000 = N00.getOperand(0);
2965    if (!isBSwapHWordElement(N000, Parts))
2966      return SDValue();
2967
2968    SDValue N001 = N00.getOperand(1);
2969    if (!isBSwapHWordElement(N001, Parts))
2970      return SDValue();
2971    SDValue N010 = N01.getOperand(0);
2972    if (!isBSwapHWordElement(N010, Parts))
2973      return SDValue();
2974    SDValue N011 = N01.getOperand(1);
2975    if (!isBSwapHWordElement(N011, Parts))
2976      return SDValue();
2977  } else {
2978    // (or (or (or (and), (and)), (and)), (and))
2979    if (!isBSwapHWordElement(N1, Parts))
2980      return SDValue();
2981    if (!isBSwapHWordElement(N01, Parts))
2982      return SDValue();
2983    if (N00.getOpcode() != ISD::OR)
2984      return SDValue();
2985    SDValue N000 = N00.getOperand(0);
2986    if (!isBSwapHWordElement(N000, Parts))
2987      return SDValue();
2988    SDValue N001 = N00.getOperand(1);
2989    if (!isBSwapHWordElement(N001, Parts))
2990      return SDValue();
2991  }
2992
2993  // Make sure the parts are all coming from the same node.
2994  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
2995    return SDValue();
2996
2997  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
2998                              SDValue(Parts[0],0));
2999
3000  // Result of the bswap should be rotated by 16. If it's not legal, than
3001  // do  (x << 16) | (x >> 16).
3002  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3003  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3004    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3005  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3006    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3007  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3008                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3009                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3010}
3011
3012SDValue DAGCombiner::visitOR(SDNode *N) {
3013  SDValue N0 = N->getOperand(0);
3014  SDValue N1 = N->getOperand(1);
3015  SDValue LL, LR, RL, RR, CC0, CC1;
3016  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3017  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3018  EVT VT = N1.getValueType();
3019
3020  // fold vector ops
3021  if (VT.isVector()) {
3022    SDValue FoldedVOp = SimplifyVBinOp(N);
3023    if (FoldedVOp.getNode()) return FoldedVOp;
3024  }
3025
3026  // fold (or x, undef) -> -1
3027  if (!LegalOperations &&
3028      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3029    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3030    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3031  }
3032  // fold (or c1, c2) -> c1|c2
3033  if (N0C && N1C)
3034    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3035  // canonicalize constant to RHS
3036  if (N0C && !N1C)
3037    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3038  // fold (or x, 0) -> x
3039  if (N1C && N1C->isNullValue())
3040    return N0;
3041  // fold (or x, -1) -> -1
3042  if (N1C && N1C->isAllOnesValue())
3043    return N1;
3044  // fold (or x, c) -> c iff (x & ~c) == 0
3045  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3046    return N1;
3047
3048  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3049  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3050  if (BSwap.getNode() != 0)
3051    return BSwap;
3052  BSwap = MatchBSwapHWordLow(N, N0, N1);
3053  if (BSwap.getNode() != 0)
3054    return BSwap;
3055
3056  // reassociate or
3057  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3058  if (ROR.getNode() != 0)
3059    return ROR;
3060  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3061  // iff (c1 & c2) == 0.
3062  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3063             isa<ConstantSDNode>(N0.getOperand(1))) {
3064    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3065    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3066      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3067                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3068                                     N0.getOperand(0), N1),
3069                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3070  }
3071  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3072  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3073    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3074    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3075
3076    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3077        LL.getValueType().isInteger()) {
3078      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3079      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3080      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3081          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3082        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3083                                     LR.getValueType(), LL, RL);
3084        AddToWorkList(ORNode.getNode());
3085        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3086      }
3087      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3088      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3089      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3090          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3091        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3092                                      LR.getValueType(), LL, RL);
3093        AddToWorkList(ANDNode.getNode());
3094        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3095      }
3096    }
3097    // canonicalize equivalent to ll == rl
3098    if (LL == RR && LR == RL) {
3099      Op1 = ISD::getSetCCSwappedOperands(Op1);
3100      std::swap(RL, RR);
3101    }
3102    if (LL == RL && LR == RR) {
3103      bool isInteger = LL.getValueType().isInteger();
3104      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3105      if (Result != ISD::SETCC_INVALID &&
3106          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
3107        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3108                            LL, LR, Result);
3109    }
3110  }
3111
3112  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3113  if (N0.getOpcode() == N1.getOpcode()) {
3114    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3115    if (Tmp.getNode()) return Tmp;
3116  }
3117
3118  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3119  if (N0.getOpcode() == ISD::AND &&
3120      N1.getOpcode() == ISD::AND &&
3121      N0.getOperand(1).getOpcode() == ISD::Constant &&
3122      N1.getOperand(1).getOpcode() == ISD::Constant &&
3123      // Don't increase # computations.
3124      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3125    // We can only do this xform if we know that bits from X that are set in C2
3126    // but not in C1 are already zero.  Likewise for Y.
3127    const APInt &LHSMask =
3128      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3129    const APInt &RHSMask =
3130      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3131
3132    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3133        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3134      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3135                              N0.getOperand(0), N1.getOperand(0));
3136      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3137                         DAG.getConstant(LHSMask | RHSMask, VT));
3138    }
3139  }
3140
3141  // See if this is some rotate idiom.
3142  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3143    return SDValue(Rot, 0);
3144
3145  // Simplify the operands using demanded-bits information.
3146  if (!VT.isVector() &&
3147      SimplifyDemandedBits(SDValue(N, 0)))
3148    return SDValue(N, 0);
3149
3150  return SDValue();
3151}
3152
3153/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3154static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3155  if (Op.getOpcode() == ISD::AND) {
3156    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3157      Mask = Op.getOperand(1);
3158      Op = Op.getOperand(0);
3159    } else {
3160      return false;
3161    }
3162  }
3163
3164  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3165    Shift = Op;
3166    return true;
3167  }
3168
3169  return false;
3170}
3171
3172// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3173// idioms for rotate, and if the target supports rotation instructions, generate
3174// a rot[lr].
3175SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3176  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3177  EVT VT = LHS.getValueType();
3178  if (!TLI.isTypeLegal(VT)) return 0;
3179
3180  // The target must have at least one rotate flavor.
3181  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3182  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3183  if (!HasROTL && !HasROTR) return 0;
3184
3185  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3186  SDValue LHSShift;   // The shift.
3187  SDValue LHSMask;    // AND value if any.
3188  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3189    return 0; // Not part of a rotate.
3190
3191  SDValue RHSShift;   // The shift.
3192  SDValue RHSMask;    // AND value if any.
3193  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3194    return 0; // Not part of a rotate.
3195
3196  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3197    return 0;   // Not shifting the same value.
3198
3199  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3200    return 0;   // Shifts must disagree.
3201
3202  // Canonicalize shl to left side in a shl/srl pair.
3203  if (RHSShift.getOpcode() == ISD::SHL) {
3204    std::swap(LHS, RHS);
3205    std::swap(LHSShift, RHSShift);
3206    std::swap(LHSMask , RHSMask );
3207  }
3208
3209  unsigned OpSizeInBits = VT.getSizeInBits();
3210  SDValue LHSShiftArg = LHSShift.getOperand(0);
3211  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3212  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3213
3214  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3215  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3216  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3217      RHSShiftAmt.getOpcode() == ISD::Constant) {
3218    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3219    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3220    if ((LShVal + RShVal) != OpSizeInBits)
3221      return 0;
3222
3223    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3224                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3225
3226    // If there is an AND of either shifted operand, apply it to the result.
3227    if (LHSMask.getNode() || RHSMask.getNode()) {
3228      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3229
3230      if (LHSMask.getNode()) {
3231        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3232        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3233      }
3234      if (RHSMask.getNode()) {
3235        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3236        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3237      }
3238
3239      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3240    }
3241
3242    return Rot.getNode();
3243  }
3244
3245  // If there is a mask here, and we have a variable shift, we can't be sure
3246  // that we're masking out the right stuff.
3247  if (LHSMask.getNode() || RHSMask.getNode())
3248    return 0;
3249
3250  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3251  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3252  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3253      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3254    if (ConstantSDNode *SUBC =
3255          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3256      if (SUBC->getAPIntValue() == OpSizeInBits) {
3257        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3258                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3259      }
3260    }
3261  }
3262
3263  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3264  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3265  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3266      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3267    if (ConstantSDNode *SUBC =
3268          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3269      if (SUBC->getAPIntValue() == OpSizeInBits) {
3270        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3271                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3272      }
3273    }
3274  }
3275
3276  // Look for sign/zext/any-extended or truncate cases:
3277  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3278       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3279       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3280       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3281      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3282       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3283       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3284       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3285    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3286    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3287    if (RExtOp0.getOpcode() == ISD::SUB &&
3288        RExtOp0.getOperand(1) == LExtOp0) {
3289      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3290      //   (rotl x, y)
3291      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3292      //   (rotr x, (sub 32, y))
3293      if (ConstantSDNode *SUBC =
3294            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3295        if (SUBC->getAPIntValue() == OpSizeInBits) {
3296          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3297                             LHSShiftArg,
3298                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3299        }
3300      }
3301    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3302               RExtOp0 == LExtOp0.getOperand(1)) {
3303      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3304      //   (rotr x, y)
3305      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3306      //   (rotl x, (sub 32, y))
3307      if (ConstantSDNode *SUBC =
3308            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3309        if (SUBC->getAPIntValue() == OpSizeInBits) {
3310          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3311                             LHSShiftArg,
3312                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3313        }
3314      }
3315    }
3316  }
3317
3318  return 0;
3319}
3320
3321SDValue DAGCombiner::visitXOR(SDNode *N) {
3322  SDValue N0 = N->getOperand(0);
3323  SDValue N1 = N->getOperand(1);
3324  SDValue LHS, RHS, CC;
3325  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3326  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3327  EVT VT = N0.getValueType();
3328
3329  // fold vector ops
3330  if (VT.isVector()) {
3331    SDValue FoldedVOp = SimplifyVBinOp(N);
3332    if (FoldedVOp.getNode()) return FoldedVOp;
3333  }
3334
3335  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3336  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3337    return DAG.getConstant(0, VT);
3338  // fold (xor x, undef) -> undef
3339  if (N0.getOpcode() == ISD::UNDEF)
3340    return N0;
3341  if (N1.getOpcode() == ISD::UNDEF)
3342    return N1;
3343  // fold (xor c1, c2) -> c1^c2
3344  if (N0C && N1C)
3345    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3346  // canonicalize constant to RHS
3347  if (N0C && !N1C)
3348    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3349  // fold (xor x, 0) -> x
3350  if (N1C && N1C->isNullValue())
3351    return N0;
3352  // reassociate xor
3353  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3354  if (RXOR.getNode() != 0)
3355    return RXOR;
3356
3357  // fold !(x cc y) -> (x !cc y)
3358  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3359    bool isInt = LHS.getValueType().isInteger();
3360    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3361                                               isInt);
3362
3363    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3364      switch (N0.getOpcode()) {
3365      default:
3366        llvm_unreachable("Unhandled SetCC Equivalent!");
3367      case ISD::SETCC:
3368        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3369      case ISD::SELECT_CC:
3370        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3371                               N0.getOperand(3), NotCC);
3372      }
3373    }
3374  }
3375
3376  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3377  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3378      N0.getNode()->hasOneUse() &&
3379      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3380    SDValue V = N0.getOperand(0);
3381    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3382                    DAG.getConstant(1, V.getValueType()));
3383    AddToWorkList(V.getNode());
3384    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3385  }
3386
3387  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3388  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3389      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3390    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3391    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3392      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3393      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3394      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3395      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3396      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3397    }
3398  }
3399  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3400  if (N1C && N1C->isAllOnesValue() &&
3401      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3402    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3403    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3404      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3405      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3406      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3407      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3408      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3409    }
3410  }
3411  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3412  if (N1C && N0.getOpcode() == ISD::XOR) {
3413    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3414    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3415    if (N00C)
3416      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3417                         DAG.getConstant(N1C->getAPIntValue() ^
3418                                         N00C->getAPIntValue(), VT));
3419    if (N01C)
3420      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3421                         DAG.getConstant(N1C->getAPIntValue() ^
3422                                         N01C->getAPIntValue(), VT));
3423  }
3424  // fold (xor x, x) -> 0
3425  if (N0 == N1)
3426    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3427
3428  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3429  if (N0.getOpcode() == N1.getOpcode()) {
3430    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3431    if (Tmp.getNode()) return Tmp;
3432  }
3433
3434  // Simplify the expression using non-local knowledge.
3435  if (!VT.isVector() &&
3436      SimplifyDemandedBits(SDValue(N, 0)))
3437    return SDValue(N, 0);
3438
3439  return SDValue();
3440}
3441
3442/// visitShiftByConstant - Handle transforms common to the three shifts, when
3443/// the shift amount is a constant.
3444SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3445  SDNode *LHS = N->getOperand(0).getNode();
3446  if (!LHS->hasOneUse()) return SDValue();
3447
3448  // We want to pull some binops through shifts, so that we have (and (shift))
3449  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3450  // thing happens with address calculations, so it's important to canonicalize
3451  // it.
3452  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3453
3454  switch (LHS->getOpcode()) {
3455  default: return SDValue();
3456  case ISD::OR:
3457  case ISD::XOR:
3458    HighBitSet = false; // We can only transform sra if the high bit is clear.
3459    break;
3460  case ISD::AND:
3461    HighBitSet = true;  // We can only transform sra if the high bit is set.
3462    break;
3463  case ISD::ADD:
3464    if (N->getOpcode() != ISD::SHL)
3465      return SDValue(); // only shl(add) not sr[al](add).
3466    HighBitSet = false; // We can only transform sra if the high bit is clear.
3467    break;
3468  }
3469
3470  // We require the RHS of the binop to be a constant as well.
3471  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3472  if (!BinOpCst) return SDValue();
3473
3474  // FIXME: disable this unless the input to the binop is a shift by a constant.
3475  // If it is not a shift, it pessimizes some common cases like:
3476  //
3477  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3478  //    int bar(int *X, int i) { return X[i & 255]; }
3479  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3480  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3481       BinOpLHSVal->getOpcode() != ISD::SRA &&
3482       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3483      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3484    return SDValue();
3485
3486  EVT VT = N->getValueType(0);
3487
3488  // If this is a signed shift right, and the high bit is modified by the
3489  // logical operation, do not perform the transformation. The highBitSet
3490  // boolean indicates the value of the high bit of the constant which would
3491  // cause it to be modified for this operation.
3492  if (N->getOpcode() == ISD::SRA) {
3493    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3494    if (BinOpRHSSignSet != HighBitSet)
3495      return SDValue();
3496  }
3497
3498  // Fold the constants, shifting the binop RHS by the shift amount.
3499  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3500                               N->getValueType(0),
3501                               LHS->getOperand(1), N->getOperand(1));
3502
3503  // Create the new shift.
3504  SDValue NewShift = DAG.getNode(N->getOpcode(),
3505                                 LHS->getOperand(0).getDebugLoc(),
3506                                 VT, LHS->getOperand(0), N->getOperand(1));
3507
3508  // Create the new binop.
3509  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3510}
3511
3512SDValue DAGCombiner::visitSHL(SDNode *N) {
3513  SDValue N0 = N->getOperand(0);
3514  SDValue N1 = N->getOperand(1);
3515  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3516  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3517  EVT VT = N0.getValueType();
3518  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3519
3520  // fold (shl c1, c2) -> c1<<c2
3521  if (N0C && N1C)
3522    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3523  // fold (shl 0, x) -> 0
3524  if (N0C && N0C->isNullValue())
3525    return N0;
3526  // fold (shl x, c >= size(x)) -> undef
3527  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3528    return DAG.getUNDEF(VT);
3529  // fold (shl x, 0) -> x
3530  if (N1C && N1C->isNullValue())
3531    return N0;
3532  // fold (shl undef, x) -> 0
3533  if (N0.getOpcode() == ISD::UNDEF)
3534    return DAG.getConstant(0, VT);
3535  // if (shl x, c) is known to be zero, return 0
3536  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3537                            APInt::getAllOnesValue(OpSizeInBits)))
3538    return DAG.getConstant(0, VT);
3539  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3540  if (N1.getOpcode() == ISD::TRUNCATE &&
3541      N1.getOperand(0).getOpcode() == ISD::AND &&
3542      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3543    SDValue N101 = N1.getOperand(0).getOperand(1);
3544    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3545      EVT TruncVT = N1.getValueType();
3546      SDValue N100 = N1.getOperand(0).getOperand(0);
3547      APInt TruncC = N101C->getAPIntValue();
3548      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3549      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3550                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3551                                     DAG.getNode(ISD::TRUNCATE,
3552                                                 N->getDebugLoc(),
3553                                                 TruncVT, N100),
3554                                     DAG.getConstant(TruncC, TruncVT)));
3555    }
3556  }
3557
3558  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3559    return SDValue(N, 0);
3560
3561  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3562  if (N1C && N0.getOpcode() == ISD::SHL &&
3563      N0.getOperand(1).getOpcode() == ISD::Constant) {
3564    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3565    uint64_t c2 = N1C->getZExtValue();
3566    if (c1 + c2 >= OpSizeInBits)
3567      return DAG.getConstant(0, VT);
3568    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3569                       DAG.getConstant(c1 + c2, N1.getValueType()));
3570  }
3571
3572  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3573  // For this to be valid, the second form must not preserve any of the bits
3574  // that are shifted out by the inner shift in the first form.  This means
3575  // the outer shift size must be >= the number of bits added by the ext.
3576  // As a corollary, we don't care what kind of ext it is.
3577  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3578              N0.getOpcode() == ISD::ANY_EXTEND ||
3579              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3580      N0.getOperand(0).getOpcode() == ISD::SHL &&
3581      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3582    uint64_t c1 =
3583      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3584    uint64_t c2 = N1C->getZExtValue();
3585    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3586    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3587    if (c2 >= OpSizeInBits - InnerShiftSize) {
3588      if (c1 + c2 >= OpSizeInBits)
3589        return DAG.getConstant(0, VT);
3590      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3591                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3592                                     N0.getOperand(0)->getOperand(0)),
3593                         DAG.getConstant(c1 + c2, N1.getValueType()));
3594    }
3595  }
3596
3597  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3598  //                               (and (srl x, (sub c1, c2), MASK)
3599  // Only fold this if the inner shift has no other uses -- if it does, folding
3600  // this will increase the total number of instructions.
3601  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3602      N0.getOperand(1).getOpcode() == ISD::Constant) {
3603    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3604    if (c1 < VT.getSizeInBits()) {
3605      uint64_t c2 = N1C->getZExtValue();
3606      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3607                                         VT.getSizeInBits() - c1);
3608      SDValue Shift;
3609      if (c2 > c1) {
3610        Mask = Mask.shl(c2-c1);
3611        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3612                            DAG.getConstant(c2-c1, N1.getValueType()));
3613      } else {
3614        Mask = Mask.lshr(c1-c2);
3615        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3616                            DAG.getConstant(c1-c2, N1.getValueType()));
3617      }
3618      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3619                         DAG.getConstant(Mask, VT));
3620    }
3621  }
3622  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3623  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3624    SDValue HiBitsMask =
3625      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3626                                            VT.getSizeInBits() -
3627                                              N1C->getZExtValue()),
3628                      VT);
3629    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3630                       HiBitsMask);
3631  }
3632
3633  if (N1C) {
3634    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3635    if (NewSHL.getNode())
3636      return NewSHL;
3637  }
3638
3639  return SDValue();
3640}
3641
3642SDValue DAGCombiner::visitSRA(SDNode *N) {
3643  SDValue N0 = N->getOperand(0);
3644  SDValue N1 = N->getOperand(1);
3645  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3646  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3647  EVT VT = N0.getValueType();
3648  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3649
3650  // fold (sra c1, c2) -> (sra c1, c2)
3651  if (N0C && N1C)
3652    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3653  // fold (sra 0, x) -> 0
3654  if (N0C && N0C->isNullValue())
3655    return N0;
3656  // fold (sra -1, x) -> -1
3657  if (N0C && N0C->isAllOnesValue())
3658    return N0;
3659  // fold (sra x, (setge c, size(x))) -> undef
3660  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3661    return DAG.getUNDEF(VT);
3662  // fold (sra x, 0) -> x
3663  if (N1C && N1C->isNullValue())
3664    return N0;
3665  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3666  // sext_inreg.
3667  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3668    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3669    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3670    if (VT.isVector())
3671      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3672                               ExtVT, VT.getVectorNumElements());
3673    if ((!LegalOperations ||
3674         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3675      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3676                         N0.getOperand(0), DAG.getValueType(ExtVT));
3677  }
3678
3679  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3680  if (N1C && N0.getOpcode() == ISD::SRA) {
3681    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3682      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3683      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3684      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3685                         DAG.getConstant(Sum, N1C->getValueType(0)));
3686    }
3687  }
3688
3689  // fold (sra (shl X, m), (sub result_size, n))
3690  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3691  // result_size - n != m.
3692  // If truncate is free for the target sext(shl) is likely to result in better
3693  // code.
3694  if (N0.getOpcode() == ISD::SHL) {
3695    // Get the two constanst of the shifts, CN0 = m, CN = n.
3696    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3697    if (N01C && N1C) {
3698      // Determine what the truncate's result bitsize and type would be.
3699      EVT TruncVT =
3700        EVT::getIntegerVT(*DAG.getContext(),
3701                          OpSizeInBits - N1C->getZExtValue());
3702      // Determine the residual right-shift amount.
3703      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3704
3705      // If the shift is not a no-op (in which case this should be just a sign
3706      // extend already), the truncated to type is legal, sign_extend is legal
3707      // on that type, and the truncate to that type is both legal and free,
3708      // perform the transform.
3709      if ((ShiftAmt > 0) &&
3710          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3711          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3712          TLI.isTruncateFree(VT, TruncVT)) {
3713
3714          SDValue Amt = DAG.getConstant(ShiftAmt,
3715              getShiftAmountTy(N0.getOperand(0).getValueType()));
3716          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3717                                      N0.getOperand(0), Amt);
3718          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3719                                      Shift);
3720          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3721                             N->getValueType(0), Trunc);
3722      }
3723    }
3724  }
3725
3726  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3727  if (N1.getOpcode() == ISD::TRUNCATE &&
3728      N1.getOperand(0).getOpcode() == ISD::AND &&
3729      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3730    SDValue N101 = N1.getOperand(0).getOperand(1);
3731    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3732      EVT TruncVT = N1.getValueType();
3733      SDValue N100 = N1.getOperand(0).getOperand(0);
3734      APInt TruncC = N101C->getAPIntValue();
3735      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3736      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3737                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3738                                     TruncVT,
3739                                     DAG.getNode(ISD::TRUNCATE,
3740                                                 N->getDebugLoc(),
3741                                                 TruncVT, N100),
3742                                     DAG.getConstant(TruncC, TruncVT)));
3743    }
3744  }
3745
3746  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3747  //      if c1 is equal to the number of bits the trunc removes
3748  if (N0.getOpcode() == ISD::TRUNCATE &&
3749      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3750       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3751      N0.getOperand(0).hasOneUse() &&
3752      N0.getOperand(0).getOperand(1).hasOneUse() &&
3753      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3754    EVT LargeVT = N0.getOperand(0).getValueType();
3755    ConstantSDNode *LargeShiftAmt =
3756      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3757
3758    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3759        LargeShiftAmt->getZExtValue()) {
3760      SDValue Amt =
3761        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3762              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3763      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3764                                N0.getOperand(0).getOperand(0), Amt);
3765      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3766    }
3767  }
3768
3769  // Simplify, based on bits shifted out of the LHS.
3770  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3771    return SDValue(N, 0);
3772
3773
3774  // If the sign bit is known to be zero, switch this to a SRL.
3775  if (DAG.SignBitIsZero(N0))
3776    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3777
3778  if (N1C) {
3779    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3780    if (NewSRA.getNode())
3781      return NewSRA;
3782  }
3783
3784  return SDValue();
3785}
3786
3787SDValue DAGCombiner::visitSRL(SDNode *N) {
3788  SDValue N0 = N->getOperand(0);
3789  SDValue N1 = N->getOperand(1);
3790  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3791  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3792  EVT VT = N0.getValueType();
3793  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3794
3795  // fold (srl c1, c2) -> c1 >>u c2
3796  if (N0C && N1C)
3797    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3798  // fold (srl 0, x) -> 0
3799  if (N0C && N0C->isNullValue())
3800    return N0;
3801  // fold (srl x, c >= size(x)) -> undef
3802  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3803    return DAG.getUNDEF(VT);
3804  // fold (srl x, 0) -> x
3805  if (N1C && N1C->isNullValue())
3806    return N0;
3807  // if (srl x, c) is known to be zero, return 0
3808  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3809                                   APInt::getAllOnesValue(OpSizeInBits)))
3810    return DAG.getConstant(0, VT);
3811
3812  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3813  if (N1C && N0.getOpcode() == ISD::SRL &&
3814      N0.getOperand(1).getOpcode() == ISD::Constant) {
3815    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3816    uint64_t c2 = N1C->getZExtValue();
3817    if (c1 + c2 >= OpSizeInBits)
3818      return DAG.getConstant(0, VT);
3819    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3820                       DAG.getConstant(c1 + c2, N1.getValueType()));
3821  }
3822
3823  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3824  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3825      N0.getOperand(0).getOpcode() == ISD::SRL &&
3826      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3827    uint64_t c1 =
3828      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3829    uint64_t c2 = N1C->getZExtValue();
3830    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3831    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3832    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3833    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3834    if (c1 + OpSizeInBits == InnerShiftSize) {
3835      if (c1 + c2 >= InnerShiftSize)
3836        return DAG.getConstant(0, VT);
3837      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3838                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3839                                     N0.getOperand(0)->getOperand(0),
3840                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3841    }
3842  }
3843
3844  // fold (srl (shl x, c), c) -> (and x, cst2)
3845  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3846      N0.getValueSizeInBits() <= 64) {
3847    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3848    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3849                       DAG.getConstant(~0ULL >> ShAmt, VT));
3850  }
3851
3852
3853  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3854  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3855    // Shifting in all undef bits?
3856    EVT SmallVT = N0.getOperand(0).getValueType();
3857    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3858      return DAG.getUNDEF(VT);
3859
3860    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3861      uint64_t ShiftAmt = N1C->getZExtValue();
3862      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3863                                       N0.getOperand(0),
3864                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3865      AddToWorkList(SmallShift.getNode());
3866      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3867    }
3868  }
3869
3870  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3871  // bit, which is unmodified by sra.
3872  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3873    if (N0.getOpcode() == ISD::SRA)
3874      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3875  }
3876
3877  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3878  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3879      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3880    APInt KnownZero, KnownOne;
3881    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3882
3883    // If any of the input bits are KnownOne, then the input couldn't be all
3884    // zeros, thus the result of the srl will always be zero.
3885    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3886
3887    // If all of the bits input the to ctlz node are known to be zero, then
3888    // the result of the ctlz is "32" and the result of the shift is one.
3889    APInt UnknownBits = ~KnownZero;
3890    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3891
3892    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3893    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3894      // Okay, we know that only that the single bit specified by UnknownBits
3895      // could be set on input to the CTLZ node. If this bit is set, the SRL
3896      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3897      // to an SRL/XOR pair, which is likely to simplify more.
3898      unsigned ShAmt = UnknownBits.countTrailingZeros();
3899      SDValue Op = N0.getOperand(0);
3900
3901      if (ShAmt) {
3902        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3903                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3904        AddToWorkList(Op.getNode());
3905      }
3906
3907      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3908                         Op, DAG.getConstant(1, VT));
3909    }
3910  }
3911
3912  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3913  if (N1.getOpcode() == ISD::TRUNCATE &&
3914      N1.getOperand(0).getOpcode() == ISD::AND &&
3915      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3916    SDValue N101 = N1.getOperand(0).getOperand(1);
3917    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3918      EVT TruncVT = N1.getValueType();
3919      SDValue N100 = N1.getOperand(0).getOperand(0);
3920      APInt TruncC = N101C->getAPIntValue();
3921      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3922      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3923                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3924                                     TruncVT,
3925                                     DAG.getNode(ISD::TRUNCATE,
3926                                                 N->getDebugLoc(),
3927                                                 TruncVT, N100),
3928                                     DAG.getConstant(TruncC, TruncVT)));
3929    }
3930  }
3931
3932  // fold operands of srl based on knowledge that the low bits are not
3933  // demanded.
3934  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3935    return SDValue(N, 0);
3936
3937  if (N1C) {
3938    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3939    if (NewSRL.getNode())
3940      return NewSRL;
3941  }
3942
3943  // Attempt to convert a srl of a load into a narrower zero-extending load.
3944  SDValue NarrowLoad = ReduceLoadWidth(N);
3945  if (NarrowLoad.getNode())
3946    return NarrowLoad;
3947
3948  // Here is a common situation. We want to optimize:
3949  //
3950  //   %a = ...
3951  //   %b = and i32 %a, 2
3952  //   %c = srl i32 %b, 1
3953  //   brcond i32 %c ...
3954  //
3955  // into
3956  //
3957  //   %a = ...
3958  //   %b = and %a, 2
3959  //   %c = setcc eq %b, 0
3960  //   brcond %c ...
3961  //
3962  // However when after the source operand of SRL is optimized into AND, the SRL
3963  // itself may not be optimized further. Look for it and add the BRCOND into
3964  // the worklist.
3965  if (N->hasOneUse()) {
3966    SDNode *Use = *N->use_begin();
3967    if (Use->getOpcode() == ISD::BRCOND)
3968      AddToWorkList(Use);
3969    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
3970      // Also look pass the truncate.
3971      Use = *Use->use_begin();
3972      if (Use->getOpcode() == ISD::BRCOND)
3973        AddToWorkList(Use);
3974    }
3975  }
3976
3977  return SDValue();
3978}
3979
3980SDValue DAGCombiner::visitCTLZ(SDNode *N) {
3981  SDValue N0 = N->getOperand(0);
3982  EVT VT = N->getValueType(0);
3983
3984  // fold (ctlz c1) -> c2
3985  if (isa<ConstantSDNode>(N0))
3986    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
3987  return SDValue();
3988}
3989
3990SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
3991  SDValue N0 = N->getOperand(0);
3992  EVT VT = N->getValueType(0);
3993
3994  // fold (ctlz_zero_undef c1) -> c2
3995  if (isa<ConstantSDNode>(N0))
3996    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
3997  return SDValue();
3998}
3999
4000SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4001  SDValue N0 = N->getOperand(0);
4002  EVT VT = N->getValueType(0);
4003
4004  // fold (cttz c1) -> c2
4005  if (isa<ConstantSDNode>(N0))
4006    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4007  return SDValue();
4008}
4009
4010SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4011  SDValue N0 = N->getOperand(0);
4012  EVT VT = N->getValueType(0);
4013
4014  // fold (cttz_zero_undef c1) -> c2
4015  if (isa<ConstantSDNode>(N0))
4016    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4017  return SDValue();
4018}
4019
4020SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4021  SDValue N0 = N->getOperand(0);
4022  EVT VT = N->getValueType(0);
4023
4024  // fold (ctpop c1) -> c2
4025  if (isa<ConstantSDNode>(N0))
4026    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4027  return SDValue();
4028}
4029
4030SDValue DAGCombiner::visitSELECT(SDNode *N) {
4031  SDValue N0 = N->getOperand(0);
4032  SDValue N1 = N->getOperand(1);
4033  SDValue N2 = N->getOperand(2);
4034  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4035  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4036  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4037  EVT VT = N->getValueType(0);
4038  EVT VT0 = N0.getValueType();
4039
4040  // fold (select C, X, X) -> X
4041  if (N1 == N2)
4042    return N1;
4043  // fold (select true, X, Y) -> X
4044  if (N0C && !N0C->isNullValue())
4045    return N1;
4046  // fold (select false, X, Y) -> Y
4047  if (N0C && N0C->isNullValue())
4048    return N2;
4049  // fold (select C, 1, X) -> (or C, X)
4050  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4051    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4052  // fold (select C, 0, 1) -> (xor C, 1)
4053  if (VT.isInteger() &&
4054      (VT0 == MVT::i1 ||
4055       (VT0.isInteger() &&
4056        TLI.getBooleanContents(false) ==
4057        TargetLowering::ZeroOrOneBooleanContent)) &&
4058      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4059    SDValue XORNode;
4060    if (VT == VT0)
4061      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4062                         N0, DAG.getConstant(1, VT0));
4063    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4064                          N0, DAG.getConstant(1, VT0));
4065    AddToWorkList(XORNode.getNode());
4066    if (VT.bitsGT(VT0))
4067      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4068    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4069  }
4070  // fold (select C, 0, X) -> (and (not C), X)
4071  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4072    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4073    AddToWorkList(NOTNode.getNode());
4074    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4075  }
4076  // fold (select C, X, 1) -> (or (not C), X)
4077  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4078    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4079    AddToWorkList(NOTNode.getNode());
4080    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4081  }
4082  // fold (select C, X, 0) -> (and C, X)
4083  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4084    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4085  // fold (select X, X, Y) -> (or X, Y)
4086  // fold (select X, 1, Y) -> (or X, Y)
4087  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4088    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4089  // fold (select X, Y, X) -> (and X, Y)
4090  // fold (select X, Y, 0) -> (and X, Y)
4091  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4092    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4093
4094  // If we can fold this based on the true/false value, do so.
4095  if (SimplifySelectOps(N, N1, N2))
4096    return SDValue(N, 0);  // Don't revisit N.
4097
4098  // fold selects based on a setcc into other things, such as min/max/abs
4099  if (N0.getOpcode() == ISD::SETCC) {
4100    // FIXME:
4101    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4102    // having to say they don't support SELECT_CC on every type the DAG knows
4103    // about, since there is no way to mark an opcode illegal at all value types
4104    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4105        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4106      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4107                         N0.getOperand(0), N0.getOperand(1),
4108                         N1, N2, N0.getOperand(2));
4109    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4110  }
4111
4112  return SDValue();
4113}
4114
4115SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4116  SDValue N0 = N->getOperand(0);
4117  SDValue N1 = N->getOperand(1);
4118  SDValue N2 = N->getOperand(2);
4119  SDValue N3 = N->getOperand(3);
4120  SDValue N4 = N->getOperand(4);
4121  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4122
4123  // fold select_cc lhs, rhs, x, x, cc -> x
4124  if (N2 == N3)
4125    return N2;
4126
4127  // Determine if the condition we're dealing with is constant
4128  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4129                              N0, N1, CC, N->getDebugLoc(), false);
4130  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4131
4132  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4133    if (!SCCC->isNullValue())
4134      return N2;    // cond always true -> true val
4135    else
4136      return N3;    // cond always false -> false val
4137  }
4138
4139  // Fold to a simpler select_cc
4140  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4141    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4142                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4143                       SCC.getOperand(2));
4144
4145  // If we can fold this based on the true/false value, do so.
4146  if (SimplifySelectOps(N, N2, N3))
4147    return SDValue(N, 0);  // Don't revisit N.
4148
4149  // fold select_cc into other things, such as min/max/abs
4150  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4151}
4152
4153SDValue DAGCombiner::visitSETCC(SDNode *N) {
4154  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4155                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4156                       N->getDebugLoc());
4157}
4158
4159// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4160// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4161// transformation. Returns true if extension are possible and the above
4162// mentioned transformation is profitable.
4163static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4164                                    unsigned ExtOpc,
4165                                    SmallVector<SDNode*, 4> &ExtendNodes,
4166                                    const TargetLowering &TLI) {
4167  bool HasCopyToRegUses = false;
4168  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4169  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4170                            UE = N0.getNode()->use_end();
4171       UI != UE; ++UI) {
4172    SDNode *User = *UI;
4173    if (User == N)
4174      continue;
4175    if (UI.getUse().getResNo() != N0.getResNo())
4176      continue;
4177    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4178    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4179      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4180      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4181        // Sign bits will be lost after a zext.
4182        return false;
4183      bool Add = false;
4184      for (unsigned i = 0; i != 2; ++i) {
4185        SDValue UseOp = User->getOperand(i);
4186        if (UseOp == N0)
4187          continue;
4188        if (!isa<ConstantSDNode>(UseOp))
4189          return false;
4190        Add = true;
4191      }
4192      if (Add)
4193        ExtendNodes.push_back(User);
4194      continue;
4195    }
4196    // If truncates aren't free and there are users we can't
4197    // extend, it isn't worthwhile.
4198    if (!isTruncFree)
4199      return false;
4200    // Remember if this value is live-out.
4201    if (User->getOpcode() == ISD::CopyToReg)
4202      HasCopyToRegUses = true;
4203  }
4204
4205  if (HasCopyToRegUses) {
4206    bool BothLiveOut = false;
4207    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4208         UI != UE; ++UI) {
4209      SDUse &Use = UI.getUse();
4210      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4211        BothLiveOut = true;
4212        break;
4213      }
4214    }
4215    if (BothLiveOut)
4216      // Both unextended and extended values are live out. There had better be
4217      // a good reason for the transformation.
4218      return ExtendNodes.size();
4219  }
4220  return true;
4221}
4222
4223void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4224                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4225                                  ISD::NodeType ExtType) {
4226  // Extend SetCC uses if necessary.
4227  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4228    SDNode *SetCC = SetCCs[i];
4229    SmallVector<SDValue, 4> Ops;
4230
4231    for (unsigned j = 0; j != 2; ++j) {
4232      SDValue SOp = SetCC->getOperand(j);
4233      if (SOp == Trunc)
4234        Ops.push_back(ExtLoad);
4235      else
4236        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4237    }
4238
4239    Ops.push_back(SetCC->getOperand(2));
4240    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4241                                 &Ops[0], Ops.size()));
4242  }
4243}
4244
4245SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4246  SDValue N0 = N->getOperand(0);
4247  EVT VT = N->getValueType(0);
4248
4249  // fold (sext c1) -> c1
4250  if (isa<ConstantSDNode>(N0))
4251    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4252
4253  // fold (sext (sext x)) -> (sext x)
4254  // fold (sext (aext x)) -> (sext x)
4255  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4256    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4257                       N0.getOperand(0));
4258
4259  if (N0.getOpcode() == ISD::TRUNCATE) {
4260    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4261    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4262    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4263    if (NarrowLoad.getNode()) {
4264      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4265      if (NarrowLoad.getNode() != N0.getNode()) {
4266        CombineTo(N0.getNode(), NarrowLoad);
4267        // CombineTo deleted the truncate, if needed, but not what's under it.
4268        AddToWorkList(oye);
4269      }
4270      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4271    }
4272
4273    // See if the value being truncated is already sign extended.  If so, just
4274    // eliminate the trunc/sext pair.
4275    SDValue Op = N0.getOperand(0);
4276    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4277    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4278    unsigned DestBits = VT.getScalarType().getSizeInBits();
4279    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4280
4281    if (OpBits == DestBits) {
4282      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4283      // bits, it is already ready.
4284      if (NumSignBits > DestBits-MidBits)
4285        return Op;
4286    } else if (OpBits < DestBits) {
4287      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4288      // bits, just sext from i32.
4289      if (NumSignBits > OpBits-MidBits)
4290        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4291    } else {
4292      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4293      // bits, just truncate to i32.
4294      if (NumSignBits > OpBits-MidBits)
4295        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4296    }
4297
4298    // fold (sext (truncate x)) -> (sextinreg x).
4299    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4300                                                 N0.getValueType())) {
4301      if (OpBits < DestBits)
4302        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4303      else if (OpBits > DestBits)
4304        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4305      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4306                         DAG.getValueType(N0.getValueType()));
4307    }
4308  }
4309
4310  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4311  // None of the supported targets knows how to perform load and sign extend
4312  // on vectors in one instruction.  We only perform this transformation on
4313  // scalars.
4314  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4315      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4316       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4317    bool DoXform = true;
4318    SmallVector<SDNode*, 4> SetCCs;
4319    if (!N0.hasOneUse())
4320      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4321    if (DoXform) {
4322      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4323      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4324                                       LN0->getChain(),
4325                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4326                                       N0.getValueType(),
4327                                       LN0->isVolatile(), LN0->isNonTemporal(),
4328                                       LN0->getAlignment());
4329      CombineTo(N, ExtLoad);
4330      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4331                                  N0.getValueType(), ExtLoad);
4332      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4333      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4334                      ISD::SIGN_EXTEND);
4335      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4336    }
4337  }
4338
4339  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4340  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4341  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4342      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4343    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4344    EVT MemVT = LN0->getMemoryVT();
4345    if ((!LegalOperations && !LN0->isVolatile()) ||
4346        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4347      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4348                                       LN0->getChain(),
4349                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4350                                       MemVT,
4351                                       LN0->isVolatile(), LN0->isNonTemporal(),
4352                                       LN0->getAlignment());
4353      CombineTo(N, ExtLoad);
4354      CombineTo(N0.getNode(),
4355                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4356                            N0.getValueType(), ExtLoad),
4357                ExtLoad.getValue(1));
4358      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4359    }
4360  }
4361
4362  // fold (sext (and/or/xor (load x), cst)) ->
4363  //      (and/or/xor (sextload x), (sext cst))
4364  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4365       N0.getOpcode() == ISD::XOR) &&
4366      isa<LoadSDNode>(N0.getOperand(0)) &&
4367      N0.getOperand(1).getOpcode() == ISD::Constant &&
4368      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4369      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4370    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4371    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4372      bool DoXform = true;
4373      SmallVector<SDNode*, 4> SetCCs;
4374      if (!N0.hasOneUse())
4375        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4376                                          SetCCs, TLI);
4377      if (DoXform) {
4378        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4379                                         LN0->getChain(), LN0->getBasePtr(),
4380                                         LN0->getPointerInfo(),
4381                                         LN0->getMemoryVT(),
4382                                         LN0->isVolatile(),
4383                                         LN0->isNonTemporal(),
4384                                         LN0->getAlignment());
4385        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4386        Mask = Mask.sext(VT.getSizeInBits());
4387        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4388                                  ExtLoad, DAG.getConstant(Mask, VT));
4389        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4390                                    N0.getOperand(0).getDebugLoc(),
4391                                    N0.getOperand(0).getValueType(), ExtLoad);
4392        CombineTo(N, And);
4393        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4394        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4395                        ISD::SIGN_EXTEND);
4396        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4397      }
4398    }
4399  }
4400
4401  if (N0.getOpcode() == ISD::SETCC) {
4402    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4403    // Only do this before legalize for now.
4404    if (VT.isVector() && !LegalOperations) {
4405      EVT N0VT = N0.getOperand(0).getValueType();
4406      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4407      // of the same size as the compared operands. Only optimize sext(setcc())
4408      // if this is the case.
4409      EVT SVT = TLI.getSetCCResultType(N0VT);
4410
4411      // We know that the # elements of the results is the same as the
4412      // # elements of the compare (and the # elements of the compare result
4413      // for that matter).  Check to see that they are the same size.  If so,
4414      // we know that the element size of the sext'd result matches the
4415      // element size of the compare operands.
4416      if (VT.getSizeInBits() == SVT.getSizeInBits())
4417        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4418                             N0.getOperand(1),
4419                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4420      // If the desired elements are smaller or larger than the source
4421      // elements we can use a matching integer vector type and then
4422      // truncate/sign extend
4423      EVT MatchingElementType =
4424        EVT::getIntegerVT(*DAG.getContext(),
4425                          N0VT.getScalarType().getSizeInBits());
4426      EVT MatchingVectorType =
4427        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4428                         N0VT.getVectorNumElements());
4429
4430      if (SVT == MatchingVectorType) {
4431        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4432                               N0.getOperand(0), N0.getOperand(1),
4433                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4434        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4435      }
4436    }
4437
4438    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4439    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4440    SDValue NegOne =
4441      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4442    SDValue SCC =
4443      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4444                       NegOne, DAG.getConstant(0, VT),
4445                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4446    if (SCC.getNode()) return SCC;
4447    if (!LegalOperations ||
4448        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4449      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4450                         DAG.getSetCC(N->getDebugLoc(),
4451                                      TLI.getSetCCResultType(VT),
4452                                      N0.getOperand(0), N0.getOperand(1),
4453                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4454                         NegOne, DAG.getConstant(0, VT));
4455  }
4456
4457  // fold (sext x) -> (zext x) if the sign bit is known zero.
4458  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4459      DAG.SignBitIsZero(N0))
4460    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4461
4462  return SDValue();
4463}
4464
4465// isTruncateOf - If N is a truncate of some other value, return true, record
4466// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4467// This function computes KnownZero to avoid a duplicated call to
4468// ComputeMaskedBits in the caller.
4469static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4470                         APInt &KnownZero) {
4471  APInt KnownOne;
4472  if (N->getOpcode() == ISD::TRUNCATE) {
4473    Op = N->getOperand(0);
4474    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4475    return true;
4476  }
4477
4478  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4479      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4480    return false;
4481
4482  SDValue Op0 = N->getOperand(0);
4483  SDValue Op1 = N->getOperand(1);
4484  assert(Op0.getValueType() == Op1.getValueType());
4485
4486  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4487  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4488  if (COp0 && COp0->isNullValue())
4489    Op = Op1;
4490  else if (COp1 && COp1->isNullValue())
4491    Op = Op0;
4492  else
4493    return false;
4494
4495  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4496
4497  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4498    return false;
4499
4500  return true;
4501}
4502
4503SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4504  SDValue N0 = N->getOperand(0);
4505  EVT VT = N->getValueType(0);
4506
4507  // fold (zext c1) -> c1
4508  if (isa<ConstantSDNode>(N0))
4509    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4510  // fold (zext (zext x)) -> (zext x)
4511  // fold (zext (aext x)) -> (zext x)
4512  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4513    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4514                       N0.getOperand(0));
4515
4516  // fold (zext (truncate x)) -> (zext x) or
4517  //      (zext (truncate x)) -> (truncate x)
4518  // This is valid when the truncated bits of x are already zero.
4519  // FIXME: We should extend this to work for vectors too.
4520  SDValue Op;
4521  APInt KnownZero;
4522  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4523    APInt TruncatedBits =
4524      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4525      APInt(Op.getValueSizeInBits(), 0) :
4526      APInt::getBitsSet(Op.getValueSizeInBits(),
4527                        N0.getValueSizeInBits(),
4528                        std::min(Op.getValueSizeInBits(),
4529                                 VT.getSizeInBits()));
4530    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4531      if (VT.bitsGT(Op.getValueType()))
4532        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4533      if (VT.bitsLT(Op.getValueType()))
4534        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4535
4536      return Op;
4537    }
4538  }
4539
4540  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4541  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4542  if (N0.getOpcode() == ISD::TRUNCATE) {
4543    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4544    if (NarrowLoad.getNode()) {
4545      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4546      if (NarrowLoad.getNode() != N0.getNode()) {
4547        CombineTo(N0.getNode(), NarrowLoad);
4548        // CombineTo deleted the truncate, if needed, but not what's under it.
4549        AddToWorkList(oye);
4550      }
4551      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4552    }
4553  }
4554
4555  // fold (zext (truncate x)) -> (and x, mask)
4556  if (N0.getOpcode() == ISD::TRUNCATE &&
4557      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4558
4559    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4560    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4561    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4562    if (NarrowLoad.getNode()) {
4563      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4564      if (NarrowLoad.getNode() != N0.getNode()) {
4565        CombineTo(N0.getNode(), NarrowLoad);
4566        // CombineTo deleted the truncate, if needed, but not what's under it.
4567        AddToWorkList(oye);
4568      }
4569      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4570    }
4571
4572    SDValue Op = N0.getOperand(0);
4573    if (Op.getValueType().bitsLT(VT)) {
4574      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4575      AddToWorkList(Op.getNode());
4576    } else if (Op.getValueType().bitsGT(VT)) {
4577      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4578      AddToWorkList(Op.getNode());
4579    }
4580    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4581                                  N0.getValueType().getScalarType());
4582  }
4583
4584  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4585  // if either of the casts is not free.
4586  if (N0.getOpcode() == ISD::AND &&
4587      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4588      N0.getOperand(1).getOpcode() == ISD::Constant &&
4589      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4590                           N0.getValueType()) ||
4591       !TLI.isZExtFree(N0.getValueType(), VT))) {
4592    SDValue X = N0.getOperand(0).getOperand(0);
4593    if (X.getValueType().bitsLT(VT)) {
4594      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4595    } else if (X.getValueType().bitsGT(VT)) {
4596      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4597    }
4598    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4599    Mask = Mask.zext(VT.getSizeInBits());
4600    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4601                       X, DAG.getConstant(Mask, VT));
4602  }
4603
4604  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4605  // None of the supported targets knows how to perform load and vector_zext
4606  // on vectors in one instruction.  We only perform this transformation on
4607  // scalars.
4608  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4609      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4610       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4611    bool DoXform = true;
4612    SmallVector<SDNode*, 4> SetCCs;
4613    if (!N0.hasOneUse())
4614      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4615    if (DoXform) {
4616      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4617      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4618                                       LN0->getChain(),
4619                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4620                                       N0.getValueType(),
4621                                       LN0->isVolatile(), LN0->isNonTemporal(),
4622                                       LN0->getAlignment());
4623      CombineTo(N, ExtLoad);
4624      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4625                                  N0.getValueType(), ExtLoad);
4626      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4627
4628      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4629                      ISD::ZERO_EXTEND);
4630      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4631    }
4632  }
4633
4634  // fold (zext (and/or/xor (load x), cst)) ->
4635  //      (and/or/xor (zextload x), (zext cst))
4636  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4637       N0.getOpcode() == ISD::XOR) &&
4638      isa<LoadSDNode>(N0.getOperand(0)) &&
4639      N0.getOperand(1).getOpcode() == ISD::Constant &&
4640      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4641      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4642    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4643    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4644      bool DoXform = true;
4645      SmallVector<SDNode*, 4> SetCCs;
4646      if (!N0.hasOneUse())
4647        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4648                                          SetCCs, TLI);
4649      if (DoXform) {
4650        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4651                                         LN0->getChain(), LN0->getBasePtr(),
4652                                         LN0->getPointerInfo(),
4653                                         LN0->getMemoryVT(),
4654                                         LN0->isVolatile(),
4655                                         LN0->isNonTemporal(),
4656                                         LN0->getAlignment());
4657        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4658        Mask = Mask.zext(VT.getSizeInBits());
4659        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4660                                  ExtLoad, DAG.getConstant(Mask, VT));
4661        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4662                                    N0.getOperand(0).getDebugLoc(),
4663                                    N0.getOperand(0).getValueType(), ExtLoad);
4664        CombineTo(N, And);
4665        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4666        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4667                        ISD::ZERO_EXTEND);
4668        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4669      }
4670    }
4671  }
4672
4673  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4674  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4675  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4676      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4677    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4678    EVT MemVT = LN0->getMemoryVT();
4679    if ((!LegalOperations && !LN0->isVolatile()) ||
4680        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4681      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4682                                       LN0->getChain(),
4683                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4684                                       MemVT,
4685                                       LN0->isVolatile(), LN0->isNonTemporal(),
4686                                       LN0->getAlignment());
4687      CombineTo(N, ExtLoad);
4688      CombineTo(N0.getNode(),
4689                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4690                            ExtLoad),
4691                ExtLoad.getValue(1));
4692      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4693    }
4694  }
4695
4696  if (N0.getOpcode() == ISD::SETCC) {
4697    if (!LegalOperations && VT.isVector()) {
4698      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4699      // Only do this before legalize for now.
4700      EVT N0VT = N0.getOperand(0).getValueType();
4701      EVT EltVT = VT.getVectorElementType();
4702      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4703                                    DAG.getConstant(1, EltVT));
4704      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4705        // We know that the # elements of the results is the same as the
4706        // # elements of the compare (and the # elements of the compare result
4707        // for that matter).  Check to see that they are the same size.  If so,
4708        // we know that the element size of the sext'd result matches the
4709        // element size of the compare operands.
4710        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4711                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4712                                         N0.getOperand(1),
4713                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4714                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4715                                       &OneOps[0], OneOps.size()));
4716
4717      // If the desired elements are smaller or larger than the source
4718      // elements we can use a matching integer vector type and then
4719      // truncate/sign extend
4720      EVT MatchingElementType =
4721        EVT::getIntegerVT(*DAG.getContext(),
4722                          N0VT.getScalarType().getSizeInBits());
4723      EVT MatchingVectorType =
4724        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4725                         N0VT.getVectorNumElements());
4726      SDValue VsetCC =
4727        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4728                      N0.getOperand(1),
4729                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4730      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4731                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4732                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4733                                     &OneOps[0], OneOps.size()));
4734    }
4735
4736    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4737    SDValue SCC =
4738      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4739                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4740                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4741    if (SCC.getNode()) return SCC;
4742  }
4743
4744  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4745  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4746      isa<ConstantSDNode>(N0.getOperand(1)) &&
4747      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4748      N0.hasOneUse()) {
4749    SDValue ShAmt = N0.getOperand(1);
4750    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4751    if (N0.getOpcode() == ISD::SHL) {
4752      SDValue InnerZExt = N0.getOperand(0);
4753      // If the original shl may be shifting out bits, do not perform this
4754      // transformation.
4755      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4756        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4757      if (ShAmtVal > KnownZeroBits)
4758        return SDValue();
4759    }
4760
4761    DebugLoc DL = N->getDebugLoc();
4762
4763    // Ensure that the shift amount is wide enough for the shifted value.
4764    if (VT.getSizeInBits() >= 256)
4765      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4766
4767    return DAG.getNode(N0.getOpcode(), DL, VT,
4768                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4769                       ShAmt);
4770  }
4771
4772  return SDValue();
4773}
4774
4775SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4776  SDValue N0 = N->getOperand(0);
4777  EVT VT = N->getValueType(0);
4778
4779  // fold (aext c1) -> c1
4780  if (isa<ConstantSDNode>(N0))
4781    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4782  // fold (aext (aext x)) -> (aext x)
4783  // fold (aext (zext x)) -> (zext x)
4784  // fold (aext (sext x)) -> (sext x)
4785  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4786      N0.getOpcode() == ISD::ZERO_EXTEND ||
4787      N0.getOpcode() == ISD::SIGN_EXTEND)
4788    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4789
4790  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4791  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4792  if (N0.getOpcode() == ISD::TRUNCATE) {
4793    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4794    if (NarrowLoad.getNode()) {
4795      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4796      if (NarrowLoad.getNode() != N0.getNode()) {
4797        CombineTo(N0.getNode(), NarrowLoad);
4798        // CombineTo deleted the truncate, if needed, but not what's under it.
4799        AddToWorkList(oye);
4800      }
4801      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4802    }
4803  }
4804
4805  // fold (aext (truncate x))
4806  if (N0.getOpcode() == ISD::TRUNCATE) {
4807    SDValue TruncOp = N0.getOperand(0);
4808    if (TruncOp.getValueType() == VT)
4809      return TruncOp; // x iff x size == zext size.
4810    if (TruncOp.getValueType().bitsGT(VT))
4811      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4812    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4813  }
4814
4815  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4816  // if the trunc is not free.
4817  if (N0.getOpcode() == ISD::AND &&
4818      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4819      N0.getOperand(1).getOpcode() == ISD::Constant &&
4820      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4821                          N0.getValueType())) {
4822    SDValue X = N0.getOperand(0).getOperand(0);
4823    if (X.getValueType().bitsLT(VT)) {
4824      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4825    } else if (X.getValueType().bitsGT(VT)) {
4826      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4827    }
4828    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4829    Mask = Mask.zext(VT.getSizeInBits());
4830    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4831                       X, DAG.getConstant(Mask, VT));
4832  }
4833
4834  // fold (aext (load x)) -> (aext (truncate (extload x)))
4835  // None of the supported targets knows how to perform load and any_ext
4836  // on vectors in one instruction.  We only perform this transformation on
4837  // scalars.
4838  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4839      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4840       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4841    bool DoXform = true;
4842    SmallVector<SDNode*, 4> SetCCs;
4843    if (!N0.hasOneUse())
4844      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4845    if (DoXform) {
4846      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4847      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4848                                       LN0->getChain(),
4849                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4850                                       N0.getValueType(),
4851                                       LN0->isVolatile(), LN0->isNonTemporal(),
4852                                       LN0->getAlignment());
4853      CombineTo(N, ExtLoad);
4854      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4855                                  N0.getValueType(), ExtLoad);
4856      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4857      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4858                      ISD::ANY_EXTEND);
4859      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4860    }
4861  }
4862
4863  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4864  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4865  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4866  if (N0.getOpcode() == ISD::LOAD &&
4867      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4868      N0.hasOneUse()) {
4869    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4870    EVT MemVT = LN0->getMemoryVT();
4871    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4872                                     VT, LN0->getChain(), LN0->getBasePtr(),
4873                                     LN0->getPointerInfo(), MemVT,
4874                                     LN0->isVolatile(), LN0->isNonTemporal(),
4875                                     LN0->getAlignment());
4876    CombineTo(N, ExtLoad);
4877    CombineTo(N0.getNode(),
4878              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4879                          N0.getValueType(), ExtLoad),
4880              ExtLoad.getValue(1));
4881    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4882  }
4883
4884  if (N0.getOpcode() == ISD::SETCC) {
4885    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4886    // Only do this before legalize for now.
4887    if (VT.isVector() && !LegalOperations) {
4888      EVT N0VT = N0.getOperand(0).getValueType();
4889        // We know that the # elements of the results is the same as the
4890        // # elements of the compare (and the # elements of the compare result
4891        // for that matter).  Check to see that they are the same size.  If so,
4892        // we know that the element size of the sext'd result matches the
4893        // element size of the compare operands.
4894      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4895        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4896                             N0.getOperand(1),
4897                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4898      // If the desired elements are smaller or larger than the source
4899      // elements we can use a matching integer vector type and then
4900      // truncate/sign extend
4901      else {
4902        EVT MatchingElementType =
4903          EVT::getIntegerVT(*DAG.getContext(),
4904                            N0VT.getScalarType().getSizeInBits());
4905        EVT MatchingVectorType =
4906          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4907                           N0VT.getVectorNumElements());
4908        SDValue VsetCC =
4909          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4910                        N0.getOperand(1),
4911                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4912        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4913      }
4914    }
4915
4916    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4917    SDValue SCC =
4918      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4919                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4920                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4921    if (SCC.getNode())
4922      return SCC;
4923  }
4924
4925  return SDValue();
4926}
4927
4928/// GetDemandedBits - See if the specified operand can be simplified with the
4929/// knowledge that only the bits specified by Mask are used.  If so, return the
4930/// simpler operand, otherwise return a null SDValue.
4931SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4932  switch (V.getOpcode()) {
4933  default: break;
4934  case ISD::Constant: {
4935    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4936    assert(CV != 0 && "Const value should be ConstSDNode.");
4937    const APInt &CVal = CV->getAPIntValue();
4938    APInt NewVal = CVal & Mask;
4939    if (NewVal != CVal) {
4940      return DAG.getConstant(NewVal, V.getValueType());
4941    }
4942    break;
4943  }
4944  case ISD::OR:
4945  case ISD::XOR:
4946    // If the LHS or RHS don't contribute bits to the or, drop them.
4947    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4948      return V.getOperand(1);
4949    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4950      return V.getOperand(0);
4951    break;
4952  case ISD::SRL:
4953    // Only look at single-use SRLs.
4954    if (!V.getNode()->hasOneUse())
4955      break;
4956    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
4957      // See if we can recursively simplify the LHS.
4958      unsigned Amt = RHSC->getZExtValue();
4959
4960      // Watch out for shift count overflow though.
4961      if (Amt >= Mask.getBitWidth()) break;
4962      APInt NewMask = Mask << Amt;
4963      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
4964      if (SimplifyLHS.getNode())
4965        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
4966                           SimplifyLHS, V.getOperand(1));
4967    }
4968  }
4969  return SDValue();
4970}
4971
4972/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4973/// bits and then truncated to a narrower type and where N is a multiple
4974/// of number of bits of the narrower type, transform it to a narrower load
4975/// from address + N / num of bits of new type. If the result is to be
4976/// extended, also fold the extension to form a extending load.
4977SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
4978  unsigned Opc = N->getOpcode();
4979
4980  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4981  SDValue N0 = N->getOperand(0);
4982  EVT VT = N->getValueType(0);
4983  EVT ExtVT = VT;
4984
4985  // This transformation isn't valid for vector loads.
4986  if (VT.isVector())
4987    return SDValue();
4988
4989  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4990  // extended to VT.
4991  if (Opc == ISD::SIGN_EXTEND_INREG) {
4992    ExtType = ISD::SEXTLOAD;
4993    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4994  } else if (Opc == ISD::SRL) {
4995    // Another special-case: SRL is basically zero-extending a narrower value.
4996    ExtType = ISD::ZEXTLOAD;
4997    N0 = SDValue(N, 0);
4998    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4999    if (!N01) return SDValue();
5000    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5001                              VT.getSizeInBits() - N01->getZExtValue());
5002  }
5003  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5004    return SDValue();
5005
5006  unsigned EVTBits = ExtVT.getSizeInBits();
5007
5008  // Do not generate loads of non-round integer types since these can
5009  // be expensive (and would be wrong if the type is not byte sized).
5010  if (!ExtVT.isRound())
5011    return SDValue();
5012
5013  unsigned ShAmt = 0;
5014  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5015    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5016      ShAmt = N01->getZExtValue();
5017      // Is the shift amount a multiple of size of VT?
5018      if ((ShAmt & (EVTBits-1)) == 0) {
5019        N0 = N0.getOperand(0);
5020        // Is the load width a multiple of size of VT?
5021        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5022          return SDValue();
5023      }
5024
5025      // At this point, we must have a load or else we can't do the transform.
5026      if (!isa<LoadSDNode>(N0)) return SDValue();
5027
5028      // If the shift amount is larger than the input type then we're not
5029      // accessing any of the loaded bytes.  If the load was a zextload/extload
5030      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5031      // If the load was a sextload then the result is a splat of the sign bit
5032      // of the extended byte.  This is not worth optimizing for.
5033      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5034        return SDValue();
5035    }
5036  }
5037
5038  // If the load is shifted left (and the result isn't shifted back right),
5039  // we can fold the truncate through the shift.
5040  unsigned ShLeftAmt = 0;
5041  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5042      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5043    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5044      ShLeftAmt = N01->getZExtValue();
5045      N0 = N0.getOperand(0);
5046    }
5047  }
5048
5049  // If we haven't found a load, we can't narrow it.  Don't transform one with
5050  // multiple uses, this would require adding a new load.
5051  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5052      // Don't change the width of a volatile load.
5053      cast<LoadSDNode>(N0)->isVolatile())
5054    return SDValue();
5055
5056  // Verify that we are actually reducing a load width here.
5057  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5058    return SDValue();
5059
5060  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5061  EVT PtrType = N0.getOperand(1).getValueType();
5062
5063  if (PtrType == MVT::Untyped || PtrType.isExtended())
5064    // It's not possible to generate a constant of extended or untyped type.
5065    return SDValue();
5066
5067  // For big endian targets, we need to adjust the offset to the pointer to
5068  // load the correct bytes.
5069  if (TLI.isBigEndian()) {
5070    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5071    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5072    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5073  }
5074
5075  uint64_t PtrOff = ShAmt / 8;
5076  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5077  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5078                               PtrType, LN0->getBasePtr(),
5079                               DAG.getConstant(PtrOff, PtrType));
5080  AddToWorkList(NewPtr.getNode());
5081
5082  SDValue Load;
5083  if (ExtType == ISD::NON_EXTLOAD)
5084    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5085                        LN0->getPointerInfo().getWithOffset(PtrOff),
5086                        LN0->isVolatile(), LN0->isNonTemporal(),
5087                        LN0->isInvariant(), NewAlign);
5088  else
5089    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5090                          LN0->getPointerInfo().getWithOffset(PtrOff),
5091                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5092                          NewAlign);
5093
5094  // Replace the old load's chain with the new load's chain.
5095  WorkListRemover DeadNodes(*this);
5096  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5097
5098  // Shift the result left, if we've swallowed a left shift.
5099  SDValue Result = Load;
5100  if (ShLeftAmt != 0) {
5101    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5102    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5103      ShImmTy = VT;
5104    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5105                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5106  }
5107
5108  // Return the new loaded value.
5109  return Result;
5110}
5111
5112SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5113  SDValue N0 = N->getOperand(0);
5114  SDValue N1 = N->getOperand(1);
5115  EVT VT = N->getValueType(0);
5116  EVT EVT = cast<VTSDNode>(N1)->getVT();
5117  unsigned VTBits = VT.getScalarType().getSizeInBits();
5118  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5119
5120  // fold (sext_in_reg c1) -> c1
5121  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5122    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5123
5124  // If the input is already sign extended, just drop the extension.
5125  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5126    return N0;
5127
5128  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5129  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5130      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5131    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5132                       N0.getOperand(0), N1);
5133  }
5134
5135  // fold (sext_in_reg (sext x)) -> (sext x)
5136  // fold (sext_in_reg (aext x)) -> (sext x)
5137  // if x is small enough.
5138  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5139    SDValue N00 = N0.getOperand(0);
5140    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5141        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5142      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5143  }
5144
5145  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5146  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5147    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5148
5149  // fold operands of sext_in_reg based on knowledge that the top bits are not
5150  // demanded.
5151  if (SimplifyDemandedBits(SDValue(N, 0)))
5152    return SDValue(N, 0);
5153
5154  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5155  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5156  SDValue NarrowLoad = ReduceLoadWidth(N);
5157  if (NarrowLoad.getNode())
5158    return NarrowLoad;
5159
5160  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5161  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5162  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5163  if (N0.getOpcode() == ISD::SRL) {
5164    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5165      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5166        // We can turn this into an SRA iff the input to the SRL is already sign
5167        // extended enough.
5168        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5169        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5170          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5171                             N0.getOperand(0), N0.getOperand(1));
5172      }
5173  }
5174
5175  // fold (sext_inreg (extload x)) -> (sextload x)
5176  if (ISD::isEXTLoad(N0.getNode()) &&
5177      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5178      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5179      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5180       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5181    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5182    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5183                                     LN0->getChain(),
5184                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5185                                     EVT,
5186                                     LN0->isVolatile(), LN0->isNonTemporal(),
5187                                     LN0->getAlignment());
5188    CombineTo(N, ExtLoad);
5189    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5190    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5191  }
5192  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5193  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5194      N0.hasOneUse() &&
5195      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5196      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5197       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5198    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5199    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5200                                     LN0->getChain(),
5201                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5202                                     EVT,
5203                                     LN0->isVolatile(), LN0->isNonTemporal(),
5204                                     LN0->getAlignment());
5205    CombineTo(N, ExtLoad);
5206    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5207    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5208  }
5209
5210  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5211  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5212    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5213                                       N0.getOperand(1), false);
5214    if (BSwap.getNode() != 0)
5215      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5216                         BSwap, N1);
5217  }
5218
5219  return SDValue();
5220}
5221
5222SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5223  SDValue N0 = N->getOperand(0);
5224  EVT VT = N->getValueType(0);
5225  bool isLE = TLI.isLittleEndian();
5226
5227  // noop truncate
5228  if (N0.getValueType() == N->getValueType(0))
5229    return N0;
5230  // fold (truncate c1) -> c1
5231  if (isa<ConstantSDNode>(N0))
5232    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5233  // fold (truncate (truncate x)) -> (truncate x)
5234  if (N0.getOpcode() == ISD::TRUNCATE)
5235    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5236  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5237  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5238      N0.getOpcode() == ISD::SIGN_EXTEND ||
5239      N0.getOpcode() == ISD::ANY_EXTEND) {
5240    if (N0.getOperand(0).getValueType().bitsLT(VT))
5241      // if the source is smaller than the dest, we still need an extend
5242      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5243                         N0.getOperand(0));
5244    if (N0.getOperand(0).getValueType().bitsGT(VT))
5245      // if the source is larger than the dest, than we just need the truncate
5246      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5247    // if the source and dest are the same type, we can drop both the extend
5248    // and the truncate.
5249    return N0.getOperand(0);
5250  }
5251
5252  // Fold extract-and-trunc into a narrow extract. For example:
5253  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5254  //   i32 y = TRUNCATE(i64 x)
5255  //        -- becomes --
5256  //   v16i8 b = BITCAST (v2i64 val)
5257  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5258  //
5259  // Note: We only run this optimization after type legalization (which often
5260  // creates this pattern) and before operation legalization after which
5261  // we need to be more careful about the vector instructions that we generate.
5262  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5263      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5264
5265    EVT VecTy = N0.getOperand(0).getValueType();
5266    EVT ExTy = N0.getValueType();
5267    EVT TrTy = N->getValueType(0);
5268
5269    unsigned NumElem = VecTy.getVectorNumElements();
5270    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5271
5272    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5273    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5274
5275    SDValue EltNo = N0->getOperand(1);
5276    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5277      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5278      EVT IndexTy = N0->getOperand(1).getValueType();
5279      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5280
5281      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5282                              NVT, N0.getOperand(0));
5283
5284      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5285                         N->getDebugLoc(), TrTy, V,
5286                         DAG.getConstant(Index, IndexTy));
5287    }
5288  }
5289
5290  // See if we can simplify the input to this truncate through knowledge that
5291  // only the low bits are being used.
5292  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5293  // Currently we only perform this optimization on scalars because vectors
5294  // may have different active low bits.
5295  if (!VT.isVector()) {
5296    SDValue Shorter =
5297      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5298                                               VT.getSizeInBits()));
5299    if (Shorter.getNode())
5300      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5301  }
5302  // fold (truncate (load x)) -> (smaller load x)
5303  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5304  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5305    SDValue Reduced = ReduceLoadWidth(N);
5306    if (Reduced.getNode())
5307      return Reduced;
5308  }
5309  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5310  // where ... are all 'undef'.
5311  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5312    SmallVector<EVT, 8> VTs;
5313    SDValue V;
5314    unsigned Idx = 0;
5315    unsigned NumDefs = 0;
5316
5317    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5318      SDValue X = N0.getOperand(i);
5319      if (X.getOpcode() != ISD::UNDEF) {
5320        V = X;
5321        Idx = i;
5322        NumDefs++;
5323      }
5324      // Stop if more than one members are non-undef.
5325      if (NumDefs > 1)
5326        break;
5327      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5328                                     VT.getVectorElementType(),
5329                                     X.getValueType().getVectorNumElements()));
5330    }
5331
5332    if (NumDefs == 0)
5333      return DAG.getUNDEF(VT);
5334
5335    if (NumDefs == 1) {
5336      assert(V.getNode() && "The single defined operand is empty!");
5337      SmallVector<SDValue, 8> Opnds;
5338      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5339        if (i != Idx) {
5340          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5341          continue;
5342        }
5343        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5344        AddToWorkList(NV.getNode());
5345        Opnds.push_back(NV);
5346      }
5347      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5348                         &Opnds[0], Opnds.size());
5349    }
5350  }
5351
5352  // Simplify the operands using demanded-bits information.
5353  if (!VT.isVector() &&
5354      SimplifyDemandedBits(SDValue(N, 0)))
5355    return SDValue(N, 0);
5356
5357  return SDValue();
5358}
5359
5360static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5361  SDValue Elt = N->getOperand(i);
5362  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5363    return Elt.getNode();
5364  return Elt.getOperand(Elt.getResNo()).getNode();
5365}
5366
5367/// CombineConsecutiveLoads - build_pair (load, load) -> load
5368/// if load locations are consecutive.
5369SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5370  assert(N->getOpcode() == ISD::BUILD_PAIR);
5371
5372  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5373  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5374  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5375      LD1->getPointerInfo().getAddrSpace() !=
5376         LD2->getPointerInfo().getAddrSpace())
5377    return SDValue();
5378  EVT LD1VT = LD1->getValueType(0);
5379
5380  if (ISD::isNON_EXTLoad(LD2) &&
5381      LD2->hasOneUse() &&
5382      // If both are volatile this would reduce the number of volatile loads.
5383      // If one is volatile it might be ok, but play conservative and bail out.
5384      !LD1->isVolatile() &&
5385      !LD2->isVolatile() &&
5386      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5387    unsigned Align = LD1->getAlignment();
5388    unsigned NewAlign = TLI.getDataLayout()->
5389      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5390
5391    if (NewAlign <= Align &&
5392        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5393      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5394                         LD1->getBasePtr(), LD1->getPointerInfo(),
5395                         false, false, false, Align);
5396  }
5397
5398  return SDValue();
5399}
5400
5401SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5402  SDValue N0 = N->getOperand(0);
5403  EVT VT = N->getValueType(0);
5404
5405  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5406  // Only do this before legalize, since afterward the target may be depending
5407  // on the bitconvert.
5408  // First check to see if this is all constant.
5409  if (!LegalTypes &&
5410      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5411      VT.isVector()) {
5412    bool isSimple = true;
5413    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5414      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5415          N0.getOperand(i).getOpcode() != ISD::Constant &&
5416          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5417        isSimple = false;
5418        break;
5419      }
5420
5421    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5422    assert(!DestEltVT.isVector() &&
5423           "Element type of vector ValueType must not be vector!");
5424    if (isSimple)
5425      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5426  }
5427
5428  // If the input is a constant, let getNode fold it.
5429  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5430    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5431    if (Res.getNode() != N) {
5432      if (!LegalOperations ||
5433          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5434        return Res;
5435
5436      // Folding it resulted in an illegal node, and it's too late to
5437      // do that. Clean up the old node and forego the transformation.
5438      // Ideally this won't happen very often, because instcombine
5439      // and the earlier dagcombine runs (where illegal nodes are
5440      // permitted) should have folded most of them already.
5441      DAG.DeleteNode(Res.getNode());
5442    }
5443  }
5444
5445  // (conv (conv x, t1), t2) -> (conv x, t2)
5446  if (N0.getOpcode() == ISD::BITCAST)
5447    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5448                       N0.getOperand(0));
5449
5450  // fold (conv (load x)) -> (load (conv*)x)
5451  // If the resultant load doesn't need a higher alignment than the original!
5452  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5453      // Do not change the width of a volatile load.
5454      !cast<LoadSDNode>(N0)->isVolatile() &&
5455      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5456    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5457    unsigned Align = TLI.getDataLayout()->
5458      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5459    unsigned OrigAlign = LN0->getAlignment();
5460
5461    if (Align <= OrigAlign) {
5462      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5463                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5464                                 LN0->isVolatile(), LN0->isNonTemporal(),
5465                                 LN0->isInvariant(), OrigAlign);
5466      AddToWorkList(N);
5467      CombineTo(N0.getNode(),
5468                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5469                            N0.getValueType(), Load),
5470                Load.getValue(1));
5471      return Load;
5472    }
5473  }
5474
5475  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5476  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5477  // This often reduces constant pool loads.
5478  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5479       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5480      N0.getNode()->hasOneUse() && VT.isInteger() &&
5481      !VT.isVector() && !N0.getValueType().isVector()) {
5482    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5483                                  N0.getOperand(0));
5484    AddToWorkList(NewConv.getNode());
5485
5486    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5487    if (N0.getOpcode() == ISD::FNEG)
5488      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5489                         NewConv, DAG.getConstant(SignBit, VT));
5490    assert(N0.getOpcode() == ISD::FABS);
5491    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5492                       NewConv, DAG.getConstant(~SignBit, VT));
5493  }
5494
5495  // fold (bitconvert (fcopysign cst, x)) ->
5496  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5497  // Note that we don't handle (copysign x, cst) because this can always be
5498  // folded to an fneg or fabs.
5499  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5500      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5501      VT.isInteger() && !VT.isVector()) {
5502    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5503    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5504    if (isTypeLegal(IntXVT)) {
5505      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5506                              IntXVT, N0.getOperand(1));
5507      AddToWorkList(X.getNode());
5508
5509      // If X has a different width than the result/lhs, sext it or truncate it.
5510      unsigned VTWidth = VT.getSizeInBits();
5511      if (OrigXWidth < VTWidth) {
5512        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5513        AddToWorkList(X.getNode());
5514      } else if (OrigXWidth > VTWidth) {
5515        // To get the sign bit in the right place, we have to shift it right
5516        // before truncating.
5517        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5518                        X.getValueType(), X,
5519                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5520        AddToWorkList(X.getNode());
5521        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5522        AddToWorkList(X.getNode());
5523      }
5524
5525      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5526      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5527                      X, DAG.getConstant(SignBit, VT));
5528      AddToWorkList(X.getNode());
5529
5530      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5531                                VT, N0.getOperand(0));
5532      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5533                        Cst, DAG.getConstant(~SignBit, VT));
5534      AddToWorkList(Cst.getNode());
5535
5536      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5537    }
5538  }
5539
5540  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5541  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5542    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5543    if (CombineLD.getNode())
5544      return CombineLD;
5545  }
5546
5547  return SDValue();
5548}
5549
5550SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5551  EVT VT = N->getValueType(0);
5552  return CombineConsecutiveLoads(N, VT);
5553}
5554
5555/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5556/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5557/// destination element value type.
5558SDValue DAGCombiner::
5559ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5560  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5561
5562  // If this is already the right type, we're done.
5563  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5564
5565  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5566  unsigned DstBitSize = DstEltVT.getSizeInBits();
5567
5568  // If this is a conversion of N elements of one type to N elements of another
5569  // type, convert each element.  This handles FP<->INT cases.
5570  if (SrcBitSize == DstBitSize) {
5571    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5572                              BV->getValueType(0).getVectorNumElements());
5573
5574    // Due to the FP element handling below calling this routine recursively,
5575    // we can end up with a scalar-to-vector node here.
5576    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5577      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5578                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5579                                     DstEltVT, BV->getOperand(0)));
5580
5581    SmallVector<SDValue, 8> Ops;
5582    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5583      SDValue Op = BV->getOperand(i);
5584      // If the vector element type is not legal, the BUILD_VECTOR operands
5585      // are promoted and implicitly truncated.  Make that explicit here.
5586      if (Op.getValueType() != SrcEltVT)
5587        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5588      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5589                                DstEltVT, Op));
5590      AddToWorkList(Ops.back().getNode());
5591    }
5592    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5593                       &Ops[0], Ops.size());
5594  }
5595
5596  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5597  // handle annoying details of growing/shrinking FP values, we convert them to
5598  // int first.
5599  if (SrcEltVT.isFloatingPoint()) {
5600    // Convert the input float vector to a int vector where the elements are the
5601    // same sizes.
5602    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5603    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5604    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5605    SrcEltVT = IntVT;
5606  }
5607
5608  // Now we know the input is an integer vector.  If the output is a FP type,
5609  // convert to integer first, then to FP of the right size.
5610  if (DstEltVT.isFloatingPoint()) {
5611    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5612    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5613    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5614
5615    // Next, convert to FP elements of the same size.
5616    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5617  }
5618
5619  // Okay, we know the src/dst types are both integers of differing types.
5620  // Handling growing first.
5621  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5622  if (SrcBitSize < DstBitSize) {
5623    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5624
5625    SmallVector<SDValue, 8> Ops;
5626    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5627         i += NumInputsPerOutput) {
5628      bool isLE = TLI.isLittleEndian();
5629      APInt NewBits = APInt(DstBitSize, 0);
5630      bool EltIsUndef = true;
5631      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5632        // Shift the previously computed bits over.
5633        NewBits <<= SrcBitSize;
5634        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5635        if (Op.getOpcode() == ISD::UNDEF) continue;
5636        EltIsUndef = false;
5637
5638        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5639                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5640      }
5641
5642      if (EltIsUndef)
5643        Ops.push_back(DAG.getUNDEF(DstEltVT));
5644      else
5645        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5646    }
5647
5648    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5649    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5650                       &Ops[0], Ops.size());
5651  }
5652
5653  // Finally, this must be the case where we are shrinking elements: each input
5654  // turns into multiple outputs.
5655  bool isS2V = ISD::isScalarToVector(BV);
5656  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5657  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5658                            NumOutputsPerInput*BV->getNumOperands());
5659  SmallVector<SDValue, 8> Ops;
5660
5661  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5662    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5663      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5664        Ops.push_back(DAG.getUNDEF(DstEltVT));
5665      continue;
5666    }
5667
5668    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5669                  getAPIntValue().zextOrTrunc(SrcBitSize);
5670
5671    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5672      APInt ThisVal = OpVal.trunc(DstBitSize);
5673      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5674      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5675        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5676        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5677                           Ops[0]);
5678      OpVal = OpVal.lshr(DstBitSize);
5679    }
5680
5681    // For big endian targets, swap the order of the pieces of each element.
5682    if (TLI.isBigEndian())
5683      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5684  }
5685
5686  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5687                     &Ops[0], Ops.size());
5688}
5689
5690SDValue DAGCombiner::visitFADD(SDNode *N) {
5691  SDValue N0 = N->getOperand(0);
5692  SDValue N1 = N->getOperand(1);
5693  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5694  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5695  EVT VT = N->getValueType(0);
5696
5697  // fold vector ops
5698  if (VT.isVector()) {
5699    SDValue FoldedVOp = SimplifyVBinOp(N);
5700    if (FoldedVOp.getNode()) return FoldedVOp;
5701  }
5702
5703  // fold (fadd c1, c2) -> c1 + c2
5704  if (N0CFP && N1CFP)
5705    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5706  // canonicalize constant to RHS
5707  if (N0CFP && !N1CFP)
5708    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5709  // fold (fadd A, 0) -> A
5710  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5711      N1CFP->getValueAPF().isZero())
5712    return N0;
5713  // fold (fadd A, (fneg B)) -> (fsub A, B)
5714  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5715    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5716    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5717                       GetNegatedExpression(N1, DAG, LegalOperations));
5718  // fold (fadd (fneg A), B) -> (fsub B, A)
5719  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5720    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5721    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5722                       GetNegatedExpression(N0, DAG, LegalOperations));
5723
5724  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5725  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5726      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5727      isa<ConstantFPSDNode>(N0.getOperand(1)))
5728    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5729                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5730                                   N0.getOperand(1), N1));
5731
5732  // If allow, fold (fadd (fneg x), x) -> 0.0
5733  if (DAG.getTarget().Options.UnsafeFPMath &&
5734      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5735    return DAG.getConstantFP(0.0, VT);
5736  }
5737
5738    // If allow, fold (fadd x, (fneg x)) -> 0.0
5739  if (DAG.getTarget().Options.UnsafeFPMath &&
5740      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5741    return DAG.getConstantFP(0.0, VT);
5742  }
5743
5744  // In unsafe math mode, we can fold chains of FADD's of the same value
5745  // into multiplications.  This transform is not safe in general because
5746  // we are reducing the number of rounding steps.
5747  if (DAG.getTarget().Options.UnsafeFPMath &&
5748      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5749      !N0CFP && !N1CFP) {
5750    if (N0.getOpcode() == ISD::FMUL) {
5751      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5752      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5753
5754      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5755      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5756        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5757                                     SDValue(CFP00, 0),
5758                                     DAG.getConstantFP(1.0, VT));
5759        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5760                           N1, NewCFP);
5761      }
5762
5763      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5764      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5765        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5766                                     SDValue(CFP01, 0),
5767                                     DAG.getConstantFP(1.0, VT));
5768        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5769                           N1, NewCFP);
5770      }
5771
5772      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5773      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5774          N0.getOperand(0) == N1) {
5775        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5776                           N1, DAG.getConstantFP(3.0, VT));
5777      }
5778
5779      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5780      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5781          N1.getOperand(0) == N1.getOperand(1) &&
5782          N0.getOperand(1) == N1.getOperand(0)) {
5783        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5784                                     SDValue(CFP00, 0),
5785                                     DAG.getConstantFP(2.0, VT));
5786        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5787                           N0.getOperand(1), NewCFP);
5788      }
5789
5790      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5791      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5792          N1.getOperand(0) == N1.getOperand(1) &&
5793          N0.getOperand(0) == N1.getOperand(0)) {
5794        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5795                                     SDValue(CFP01, 0),
5796                                     DAG.getConstantFP(2.0, VT));
5797        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5798                           N0.getOperand(0), NewCFP);
5799      }
5800    }
5801
5802    if (N1.getOpcode() == ISD::FMUL) {
5803      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5804      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5805
5806      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5807      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5808        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5809                                     SDValue(CFP10, 0),
5810                                     DAG.getConstantFP(1.0, VT));
5811        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5812                           N0, NewCFP);
5813      }
5814
5815      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5816      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5817        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5818                                     SDValue(CFP11, 0),
5819                                     DAG.getConstantFP(1.0, VT));
5820        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5821                           N0, NewCFP);
5822      }
5823
5824      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5825      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5826          N1.getOperand(0) == N0) {
5827        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5828                           N0, DAG.getConstantFP(3.0, VT));
5829      }
5830
5831      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5832      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5833          N1.getOperand(0) == N1.getOperand(1) &&
5834          N0.getOperand(1) == N1.getOperand(0)) {
5835        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5836                                     SDValue(CFP10, 0),
5837                                     DAG.getConstantFP(2.0, VT));
5838        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5839                           N0.getOperand(1), NewCFP);
5840      }
5841
5842      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5843      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5844          N1.getOperand(0) == N1.getOperand(1) &&
5845          N0.getOperand(0) == N1.getOperand(0)) {
5846        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5847                                     SDValue(CFP11, 0),
5848                                     DAG.getConstantFP(2.0, VT));
5849        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5850                           N0.getOperand(0), NewCFP);
5851      }
5852    }
5853
5854    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5855    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5856        N0.getOperand(0) == N0.getOperand(1) &&
5857        N1.getOperand(0) == N1.getOperand(1) &&
5858        N0.getOperand(0) == N1.getOperand(0)) {
5859      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5860                         N0.getOperand(0),
5861                         DAG.getConstantFP(4.0, VT));
5862    }
5863  }
5864
5865  // FADD -> FMA combines:
5866  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5867       DAG.getTarget().Options.UnsafeFPMath) &&
5868      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5869      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5870
5871    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5872    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5873      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5874                         N0.getOperand(0), N0.getOperand(1), N1);
5875    }
5876
5877    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5878    // Note: Commutes FADD operands.
5879    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5880      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5881                         N1.getOperand(0), N1.getOperand(1), N0);
5882    }
5883  }
5884
5885  return SDValue();
5886}
5887
5888SDValue DAGCombiner::visitFSUB(SDNode *N) {
5889  SDValue N0 = N->getOperand(0);
5890  SDValue N1 = N->getOperand(1);
5891  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5892  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5893  EVT VT = N->getValueType(0);
5894  DebugLoc dl = N->getDebugLoc();
5895
5896  // fold vector ops
5897  if (VT.isVector()) {
5898    SDValue FoldedVOp = SimplifyVBinOp(N);
5899    if (FoldedVOp.getNode()) return FoldedVOp;
5900  }
5901
5902  // fold (fsub c1, c2) -> c1-c2
5903  if (N0CFP && N1CFP)
5904    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5905  // fold (fsub A, 0) -> A
5906  if (DAG.getTarget().Options.UnsafeFPMath &&
5907      N1CFP && N1CFP->getValueAPF().isZero())
5908    return N0;
5909  // fold (fsub 0, B) -> -B
5910  if (DAG.getTarget().Options.UnsafeFPMath &&
5911      N0CFP && N0CFP->getValueAPF().isZero()) {
5912    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5913      return GetNegatedExpression(N1, DAG, LegalOperations);
5914    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5915      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5916  }
5917  // fold (fsub A, (fneg B)) -> (fadd A, B)
5918  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5919    return DAG.getNode(ISD::FADD, dl, VT, N0,
5920                       GetNegatedExpression(N1, DAG, LegalOperations));
5921
5922  // If 'unsafe math' is enabled, fold
5923  //    (fsub x, x) -> 0.0 &
5924  //    (fsub x, (fadd x, y)) -> (fneg y) &
5925  //    (fsub x, (fadd y, x)) -> (fneg y)
5926  if (DAG.getTarget().Options.UnsafeFPMath) {
5927    if (N0 == N1)
5928      return DAG.getConstantFP(0.0f, VT);
5929
5930    if (N1.getOpcode() == ISD::FADD) {
5931      SDValue N10 = N1->getOperand(0);
5932      SDValue N11 = N1->getOperand(1);
5933
5934      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5935                                          &DAG.getTarget().Options))
5936        return GetNegatedExpression(N11, DAG, LegalOperations);
5937      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5938                                               &DAG.getTarget().Options))
5939        return GetNegatedExpression(N10, DAG, LegalOperations);
5940    }
5941  }
5942
5943  // FSUB -> FMA combines:
5944  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5945       DAG.getTarget().Options.UnsafeFPMath) &&
5946      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5947      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5948
5949    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
5950    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5951      return DAG.getNode(ISD::FMA, dl, VT,
5952                         N0.getOperand(0), N0.getOperand(1),
5953                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5954    }
5955
5956    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
5957    // Note: Commutes FSUB operands.
5958    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5959      return DAG.getNode(ISD::FMA, dl, VT,
5960                         DAG.getNode(ISD::FNEG, dl, VT,
5961                         N1.getOperand(0)),
5962                         N1.getOperand(1), N0);
5963    }
5964
5965    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
5966    if (N0.getOpcode() == ISD::FNEG &&
5967        N0.getOperand(0).getOpcode() == ISD::FMUL &&
5968        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
5969      SDValue N00 = N0.getOperand(0).getOperand(0);
5970      SDValue N01 = N0.getOperand(0).getOperand(1);
5971      return DAG.getNode(ISD::FMA, dl, VT,
5972                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
5973                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5974    }
5975  }
5976
5977  return SDValue();
5978}
5979
5980SDValue DAGCombiner::visitFMUL(SDNode *N) {
5981  SDValue N0 = N->getOperand(0);
5982  SDValue N1 = N->getOperand(1);
5983  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5984  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5985  EVT VT = N->getValueType(0);
5986  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5987
5988  // fold vector ops
5989  if (VT.isVector()) {
5990    SDValue FoldedVOp = SimplifyVBinOp(N);
5991    if (FoldedVOp.getNode()) return FoldedVOp;
5992  }
5993
5994  // fold (fmul c1, c2) -> c1*c2
5995  if (N0CFP && N1CFP)
5996    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
5997  // canonicalize constant to RHS
5998  if (N0CFP && !N1CFP)
5999    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6000  // fold (fmul A, 0) -> 0
6001  if (DAG.getTarget().Options.UnsafeFPMath &&
6002      N1CFP && N1CFP->getValueAPF().isZero())
6003    return N1;
6004  // fold (fmul A, 0) -> 0, vector edition.
6005  if (DAG.getTarget().Options.UnsafeFPMath &&
6006      ISD::isBuildVectorAllZeros(N1.getNode()))
6007    return N1;
6008  // fold (fmul A, 1.0) -> A
6009  if (N1CFP && N1CFP->isExactlyValue(1.0))
6010    return N0;
6011  // fold (fmul X, 2.0) -> (fadd X, X)
6012  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6013    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6014  // fold (fmul X, -1.0) -> (fneg X)
6015  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6016    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6017      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6018
6019  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6020  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6021                                       &DAG.getTarget().Options)) {
6022    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6023                                         &DAG.getTarget().Options)) {
6024      // Both can be negated for free, check to see if at least one is cheaper
6025      // negated.
6026      if (LHSNeg == 2 || RHSNeg == 2)
6027        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6028                           GetNegatedExpression(N0, DAG, LegalOperations),
6029                           GetNegatedExpression(N1, DAG, LegalOperations));
6030    }
6031  }
6032
6033  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6034  if (DAG.getTarget().Options.UnsafeFPMath &&
6035      N1CFP && N0.getOpcode() == ISD::FMUL &&
6036      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6037    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6038                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6039                                   N0.getOperand(1), N1));
6040
6041  return SDValue();
6042}
6043
6044SDValue DAGCombiner::visitFMA(SDNode *N) {
6045  SDValue N0 = N->getOperand(0);
6046  SDValue N1 = N->getOperand(1);
6047  SDValue N2 = N->getOperand(2);
6048  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6049  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6050  EVT VT = N->getValueType(0);
6051  DebugLoc dl = N->getDebugLoc();
6052
6053  if (DAG.getTarget().Options.UnsafeFPMath) {
6054    if (N0CFP && N0CFP->isZero())
6055      return N2;
6056    if (N1CFP && N1CFP->isZero())
6057      return N2;
6058  }
6059  if (N0CFP && N0CFP->isExactlyValue(1.0))
6060    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6061  if (N1CFP && N1CFP->isExactlyValue(1.0))
6062    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6063
6064  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6065  if (N0CFP && !N1CFP)
6066    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6067
6068  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6069  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6070      N2.getOpcode() == ISD::FMUL &&
6071      N0 == N2.getOperand(0) &&
6072      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6073    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6074                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6075  }
6076
6077
6078  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6079  if (DAG.getTarget().Options.UnsafeFPMath &&
6080      N0.getOpcode() == ISD::FMUL && N1CFP &&
6081      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6082    return DAG.getNode(ISD::FMA, dl, VT,
6083                       N0.getOperand(0),
6084                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6085                       N2);
6086  }
6087
6088  // (fma x, 1, y) -> (fadd x, y)
6089  // (fma x, -1, y) -> (fadd (fneg x), y)
6090  if (N1CFP) {
6091    if (N1CFP->isExactlyValue(1.0))
6092      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6093
6094    if (N1CFP->isExactlyValue(-1.0) &&
6095        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6096      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6097      AddToWorkList(RHSNeg.getNode());
6098      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6099    }
6100  }
6101
6102  // (fma x, c, x) -> (fmul x, (c+1))
6103  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6104    return DAG.getNode(ISD::FMUL, dl, VT,
6105                       N0,
6106                       DAG.getNode(ISD::FADD, dl, VT,
6107                                   N1, DAG.getConstantFP(1.0, VT)));
6108  }
6109
6110  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6111  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6112      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6113    return DAG.getNode(ISD::FMUL, dl, VT,
6114                       N0,
6115                       DAG.getNode(ISD::FADD, dl, VT,
6116                                   N1, DAG.getConstantFP(-1.0, VT)));
6117  }
6118
6119
6120  return SDValue();
6121}
6122
6123SDValue DAGCombiner::visitFDIV(SDNode *N) {
6124  SDValue N0 = N->getOperand(0);
6125  SDValue N1 = N->getOperand(1);
6126  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6127  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6128  EVT VT = N->getValueType(0);
6129  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6130
6131  // fold vector ops
6132  if (VT.isVector()) {
6133    SDValue FoldedVOp = SimplifyVBinOp(N);
6134    if (FoldedVOp.getNode()) return FoldedVOp;
6135  }
6136
6137  // fold (fdiv c1, c2) -> c1/c2
6138  if (N0CFP && N1CFP)
6139    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6140
6141  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6142  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6143    // Compute the reciprocal 1.0 / c2.
6144    APFloat N1APF = N1CFP->getValueAPF();
6145    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6146    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6147    // Only do the transform if the reciprocal is a legal fp immediate that
6148    // isn't too nasty (eg NaN, denormal, ...).
6149    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6150        (!LegalOperations ||
6151         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6152         // backend)... we should handle this gracefully after Legalize.
6153         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6154         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6155         TLI.isFPImmLegal(Recip, VT)))
6156      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6157                         DAG.getConstantFP(Recip, VT));
6158  }
6159
6160  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6161  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6162                                       &DAG.getTarget().Options)) {
6163    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6164                                         &DAG.getTarget().Options)) {
6165      // Both can be negated for free, check to see if at least one is cheaper
6166      // negated.
6167      if (LHSNeg == 2 || RHSNeg == 2)
6168        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6169                           GetNegatedExpression(N0, DAG, LegalOperations),
6170                           GetNegatedExpression(N1, DAG, LegalOperations));
6171    }
6172  }
6173
6174  return SDValue();
6175}
6176
6177SDValue DAGCombiner::visitFREM(SDNode *N) {
6178  SDValue N0 = N->getOperand(0);
6179  SDValue N1 = N->getOperand(1);
6180  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6181  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6182  EVT VT = N->getValueType(0);
6183
6184  // fold (frem c1, c2) -> fmod(c1,c2)
6185  if (N0CFP && N1CFP)
6186    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6187
6188  return SDValue();
6189}
6190
6191SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6192  SDValue N0 = N->getOperand(0);
6193  SDValue N1 = N->getOperand(1);
6194  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6195  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6196  EVT VT = N->getValueType(0);
6197
6198  if (N0CFP && N1CFP)  // Constant fold
6199    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6200
6201  if (N1CFP) {
6202    const APFloat& V = N1CFP->getValueAPF();
6203    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6204    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6205    if (!V.isNegative()) {
6206      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6207        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6208    } else {
6209      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6210        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6211                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6212    }
6213  }
6214
6215  // copysign(fabs(x), y) -> copysign(x, y)
6216  // copysign(fneg(x), y) -> copysign(x, y)
6217  // copysign(copysign(x,z), y) -> copysign(x, y)
6218  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6219      N0.getOpcode() == ISD::FCOPYSIGN)
6220    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6221                       N0.getOperand(0), N1);
6222
6223  // copysign(x, abs(y)) -> abs(x)
6224  if (N1.getOpcode() == ISD::FABS)
6225    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6226
6227  // copysign(x, copysign(y,z)) -> copysign(x, z)
6228  if (N1.getOpcode() == ISD::FCOPYSIGN)
6229    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6230                       N0, N1.getOperand(1));
6231
6232  // copysign(x, fp_extend(y)) -> copysign(x, y)
6233  // copysign(x, fp_round(y)) -> copysign(x, y)
6234  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6235    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6236                       N0, N1.getOperand(0));
6237
6238  return SDValue();
6239}
6240
6241SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6242  SDValue N0 = N->getOperand(0);
6243  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6244  EVT VT = N->getValueType(0);
6245  EVT OpVT = N0.getValueType();
6246
6247  // fold (sint_to_fp c1) -> c1fp
6248  if (N0C &&
6249      // ...but only if the target supports immediate floating-point values
6250      (!LegalOperations ||
6251       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6252    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6253
6254  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6255  // but UINT_TO_FP is legal on this target, try to convert.
6256  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6257      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6258    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6259    if (DAG.SignBitIsZero(N0))
6260      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6261  }
6262
6263  // The next optimizations are desireable only if SELECT_CC can be lowered.
6264  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6265  // having to say they don't support SELECT_CC on every type the DAG knows
6266  // about, since there is no way to mark an opcode illegal at all value types
6267  // (See also visitSELECT)
6268  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6269    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6270    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6271        !VT.isVector() &&
6272        (!LegalOperations ||
6273         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6274      SDValue Ops[] =
6275        { N0.getOperand(0), N0.getOperand(1),
6276          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6277          N0.getOperand(2) };
6278      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6279    }
6280
6281    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6282    //      (select_cc x, y, 1.0, 0.0,, cc)
6283    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6284        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6285        (!LegalOperations ||
6286         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6287      SDValue Ops[] =
6288        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6289          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6290          N0.getOperand(0).getOperand(2) };
6291      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6292    }
6293  }
6294
6295  return SDValue();
6296}
6297
6298SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6299  SDValue N0 = N->getOperand(0);
6300  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6301  EVT VT = N->getValueType(0);
6302  EVT OpVT = N0.getValueType();
6303
6304  // fold (uint_to_fp c1) -> c1fp
6305  if (N0C &&
6306      // ...but only if the target supports immediate floating-point values
6307      (!LegalOperations ||
6308       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6309    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6310
6311  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6312  // but SINT_TO_FP is legal on this target, try to convert.
6313  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6314      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6315    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6316    if (DAG.SignBitIsZero(N0))
6317      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6318  }
6319
6320  // The next optimizations are desireable only if SELECT_CC can be lowered.
6321  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6322  // having to say they don't support SELECT_CC on every type the DAG knows
6323  // about, since there is no way to mark an opcode illegal at all value types
6324  // (See also visitSELECT)
6325  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6326    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6327
6328    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6329        (!LegalOperations ||
6330         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6331      SDValue Ops[] =
6332        { N0.getOperand(0), N0.getOperand(1),
6333          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6334          N0.getOperand(2) };
6335      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6336    }
6337  }
6338
6339  return SDValue();
6340}
6341
6342SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6343  SDValue N0 = N->getOperand(0);
6344  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6345  EVT VT = N->getValueType(0);
6346
6347  // fold (fp_to_sint c1fp) -> c1
6348  if (N0CFP)
6349    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6350
6351  return SDValue();
6352}
6353
6354SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6355  SDValue N0 = N->getOperand(0);
6356  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6357  EVT VT = N->getValueType(0);
6358
6359  // fold (fp_to_uint c1fp) -> c1
6360  if (N0CFP)
6361    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6362
6363  return SDValue();
6364}
6365
6366SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6367  SDValue N0 = N->getOperand(0);
6368  SDValue N1 = N->getOperand(1);
6369  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6370  EVT VT = N->getValueType(0);
6371
6372  // fold (fp_round c1fp) -> c1fp
6373  if (N0CFP)
6374    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6375
6376  // fold (fp_round (fp_extend x)) -> x
6377  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6378    return N0.getOperand(0);
6379
6380  // fold (fp_round (fp_round x)) -> (fp_round x)
6381  if (N0.getOpcode() == ISD::FP_ROUND) {
6382    // This is a value preserving truncation if both round's are.
6383    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6384                   N0.getNode()->getConstantOperandVal(1) == 1;
6385    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6386                       DAG.getIntPtrConstant(IsTrunc));
6387  }
6388
6389  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6390  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6391    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6392                              N0.getOperand(0), N1);
6393    AddToWorkList(Tmp.getNode());
6394    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6395                       Tmp, N0.getOperand(1));
6396  }
6397
6398  return SDValue();
6399}
6400
6401SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6402  SDValue N0 = N->getOperand(0);
6403  EVT VT = N->getValueType(0);
6404  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6405  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6406
6407  // fold (fp_round_inreg c1fp) -> c1fp
6408  if (N0CFP && isTypeLegal(EVT)) {
6409    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6410    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6411  }
6412
6413  return SDValue();
6414}
6415
6416SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6417  SDValue N0 = N->getOperand(0);
6418  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6419  EVT VT = N->getValueType(0);
6420
6421  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6422  if (N->hasOneUse() &&
6423      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6424    return SDValue();
6425
6426  // fold (fp_extend c1fp) -> c1fp
6427  if (N0CFP)
6428    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6429
6430  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6431  // value of X.
6432  if (N0.getOpcode() == ISD::FP_ROUND
6433      && N0.getNode()->getConstantOperandVal(1) == 1) {
6434    SDValue In = N0.getOperand(0);
6435    if (In.getValueType() == VT) return In;
6436    if (VT.bitsLT(In.getValueType()))
6437      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6438                         In, N0.getOperand(1));
6439    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6440  }
6441
6442  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6443  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6444      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6445       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6446    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6447    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6448                                     LN0->getChain(),
6449                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6450                                     N0.getValueType(),
6451                                     LN0->isVolatile(), LN0->isNonTemporal(),
6452                                     LN0->getAlignment());
6453    CombineTo(N, ExtLoad);
6454    CombineTo(N0.getNode(),
6455              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6456                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6457              ExtLoad.getValue(1));
6458    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6459  }
6460
6461  return SDValue();
6462}
6463
6464SDValue DAGCombiner::visitFNEG(SDNode *N) {
6465  SDValue N0 = N->getOperand(0);
6466  EVT VT = N->getValueType(0);
6467
6468  if (VT.isVector()) {
6469    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6470    if (FoldedVOp.getNode()) return FoldedVOp;
6471  }
6472
6473  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6474                         &DAG.getTarget().Options))
6475    return GetNegatedExpression(N0, DAG, LegalOperations);
6476
6477  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6478  // constant pool values.
6479  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6480      !VT.isVector() &&
6481      N0.getNode()->hasOneUse() &&
6482      N0.getOperand(0).getValueType().isInteger()) {
6483    SDValue Int = N0.getOperand(0);
6484    EVT IntVT = Int.getValueType();
6485    if (IntVT.isInteger() && !IntVT.isVector()) {
6486      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6487              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6488      AddToWorkList(Int.getNode());
6489      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6490                         VT, Int);
6491    }
6492  }
6493
6494  // (fneg (fmul c, x)) -> (fmul -c, x)
6495  if (N0.getOpcode() == ISD::FMUL) {
6496    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6497    if (CFP1) {
6498      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6499                         N0.getOperand(0),
6500                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6501                                     N0.getOperand(1)));
6502    }
6503  }
6504
6505  return SDValue();
6506}
6507
6508SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6509  SDValue N0 = N->getOperand(0);
6510  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6511  EVT VT = N->getValueType(0);
6512
6513  // fold (fceil c1) -> fceil(c1)
6514  if (N0CFP)
6515    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6516
6517  return SDValue();
6518}
6519
6520SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6521  SDValue N0 = N->getOperand(0);
6522  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6523  EVT VT = N->getValueType(0);
6524
6525  // fold (ftrunc c1) -> ftrunc(c1)
6526  if (N0CFP)
6527    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6528
6529  return SDValue();
6530}
6531
6532SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6533  SDValue N0 = N->getOperand(0);
6534  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6535  EVT VT = N->getValueType(0);
6536
6537  // fold (ffloor c1) -> ffloor(c1)
6538  if (N0CFP)
6539    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6540
6541  return SDValue();
6542}
6543
6544SDValue DAGCombiner::visitFABS(SDNode *N) {
6545  SDValue N0 = N->getOperand(0);
6546  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6547  EVT VT = N->getValueType(0);
6548
6549  if (VT.isVector()) {
6550    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6551    if (FoldedVOp.getNode()) return FoldedVOp;
6552  }
6553
6554  // fold (fabs c1) -> fabs(c1)
6555  if (N0CFP)
6556    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6557  // fold (fabs (fabs x)) -> (fabs x)
6558  if (N0.getOpcode() == ISD::FABS)
6559    return N->getOperand(0);
6560  // fold (fabs (fneg x)) -> (fabs x)
6561  // fold (fabs (fcopysign x, y)) -> (fabs x)
6562  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6563    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6564
6565  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6566  // constant pool values.
6567  if (!TLI.isFAbsFree(VT) &&
6568      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6569      N0.getOperand(0).getValueType().isInteger() &&
6570      !N0.getOperand(0).getValueType().isVector()) {
6571    SDValue Int = N0.getOperand(0);
6572    EVT IntVT = Int.getValueType();
6573    if (IntVT.isInteger() && !IntVT.isVector()) {
6574      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6575             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6576      AddToWorkList(Int.getNode());
6577      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6578                         N->getValueType(0), Int);
6579    }
6580  }
6581
6582  return SDValue();
6583}
6584
6585SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6586  SDValue Chain = N->getOperand(0);
6587  SDValue N1 = N->getOperand(1);
6588  SDValue N2 = N->getOperand(2);
6589
6590  // If N is a constant we could fold this into a fallthrough or unconditional
6591  // branch. However that doesn't happen very often in normal code, because
6592  // Instcombine/SimplifyCFG should have handled the available opportunities.
6593  // If we did this folding here, it would be necessary to update the
6594  // MachineBasicBlock CFG, which is awkward.
6595
6596  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6597  // on the target.
6598  if (N1.getOpcode() == ISD::SETCC &&
6599      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6600    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6601                       Chain, N1.getOperand(2),
6602                       N1.getOperand(0), N1.getOperand(1), N2);
6603  }
6604
6605  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6606      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6607       (N1.getOperand(0).hasOneUse() &&
6608        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6609    SDNode *Trunc = 0;
6610    if (N1.getOpcode() == ISD::TRUNCATE) {
6611      // Look pass the truncate.
6612      Trunc = N1.getNode();
6613      N1 = N1.getOperand(0);
6614    }
6615
6616    // Match this pattern so that we can generate simpler code:
6617    //
6618    //   %a = ...
6619    //   %b = and i32 %a, 2
6620    //   %c = srl i32 %b, 1
6621    //   brcond i32 %c ...
6622    //
6623    // into
6624    //
6625    //   %a = ...
6626    //   %b = and i32 %a, 2
6627    //   %c = setcc eq %b, 0
6628    //   brcond %c ...
6629    //
6630    // This applies only when the AND constant value has one bit set and the
6631    // SRL constant is equal to the log2 of the AND constant. The back-end is
6632    // smart enough to convert the result into a TEST/JMP sequence.
6633    SDValue Op0 = N1.getOperand(0);
6634    SDValue Op1 = N1.getOperand(1);
6635
6636    if (Op0.getOpcode() == ISD::AND &&
6637        Op1.getOpcode() == ISD::Constant) {
6638      SDValue AndOp1 = Op0.getOperand(1);
6639
6640      if (AndOp1.getOpcode() == ISD::Constant) {
6641        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6642
6643        if (AndConst.isPowerOf2() &&
6644            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6645          SDValue SetCC =
6646            DAG.getSetCC(N->getDebugLoc(),
6647                         TLI.getSetCCResultType(Op0.getValueType()),
6648                         Op0, DAG.getConstant(0, Op0.getValueType()),
6649                         ISD::SETNE);
6650
6651          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6652                                          MVT::Other, Chain, SetCC, N2);
6653          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6654          // will convert it back to (X & C1) >> C2.
6655          CombineTo(N, NewBRCond, false);
6656          // Truncate is dead.
6657          if (Trunc) {
6658            removeFromWorkList(Trunc);
6659            DAG.DeleteNode(Trunc);
6660          }
6661          // Replace the uses of SRL with SETCC
6662          WorkListRemover DeadNodes(*this);
6663          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6664          removeFromWorkList(N1.getNode());
6665          DAG.DeleteNode(N1.getNode());
6666          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6667        }
6668      }
6669    }
6670
6671    if (Trunc)
6672      // Restore N1 if the above transformation doesn't match.
6673      N1 = N->getOperand(1);
6674  }
6675
6676  // Transform br(xor(x, y)) -> br(x != y)
6677  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6678  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6679    SDNode *TheXor = N1.getNode();
6680    SDValue Op0 = TheXor->getOperand(0);
6681    SDValue Op1 = TheXor->getOperand(1);
6682    if (Op0.getOpcode() == Op1.getOpcode()) {
6683      // Avoid missing important xor optimizations.
6684      SDValue Tmp = visitXOR(TheXor);
6685      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6686        DEBUG(dbgs() << "\nReplacing.8 ";
6687              TheXor->dump(&DAG);
6688              dbgs() << "\nWith: ";
6689              Tmp.getNode()->dump(&DAG);
6690              dbgs() << '\n');
6691        WorkListRemover DeadNodes(*this);
6692        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6693        removeFromWorkList(TheXor);
6694        DAG.DeleteNode(TheXor);
6695        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6696                           MVT::Other, Chain, Tmp, N2);
6697      }
6698    }
6699
6700    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6701      bool Equal = false;
6702      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6703        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6704            Op0.getOpcode() == ISD::XOR) {
6705          TheXor = Op0.getNode();
6706          Equal = true;
6707        }
6708
6709      EVT SetCCVT = N1.getValueType();
6710      if (LegalTypes)
6711        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6712      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6713                                   SetCCVT,
6714                                   Op0, Op1,
6715                                   Equal ? ISD::SETEQ : ISD::SETNE);
6716      // Replace the uses of XOR with SETCC
6717      WorkListRemover DeadNodes(*this);
6718      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6719      removeFromWorkList(N1.getNode());
6720      DAG.DeleteNode(N1.getNode());
6721      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6722                         MVT::Other, Chain, SetCC, N2);
6723    }
6724  }
6725
6726  return SDValue();
6727}
6728
6729// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6730//
6731SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6732  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6733  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6734
6735  // If N is a constant we could fold this into a fallthrough or unconditional
6736  // branch. However that doesn't happen very often in normal code, because
6737  // Instcombine/SimplifyCFG should have handled the available opportunities.
6738  // If we did this folding here, it would be necessary to update the
6739  // MachineBasicBlock CFG, which is awkward.
6740
6741  // Use SimplifySetCC to simplify SETCC's.
6742  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6743                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6744                               false);
6745  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6746
6747  // fold to a simpler setcc
6748  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6749    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6750                       N->getOperand(0), Simp.getOperand(2),
6751                       Simp.getOperand(0), Simp.getOperand(1),
6752                       N->getOperand(4));
6753
6754  return SDValue();
6755}
6756
6757/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6758/// uses N as its base pointer and that N may be folded in the load / store
6759/// addressing mode.
6760static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6761                                    SelectionDAG &DAG,
6762                                    const TargetLowering &TLI) {
6763  EVT VT;
6764  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6765    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6766      return false;
6767    VT = Use->getValueType(0);
6768  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6769    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6770      return false;
6771    VT = ST->getValue().getValueType();
6772  } else
6773    return false;
6774
6775  AddrMode AM;
6776  if (N->getOpcode() == ISD::ADD) {
6777    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6778    if (Offset)
6779      // [reg +/- imm]
6780      AM.BaseOffs = Offset->getSExtValue();
6781    else
6782      // [reg +/- reg]
6783      AM.Scale = 1;
6784  } else if (N->getOpcode() == ISD::SUB) {
6785    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6786    if (Offset)
6787      // [reg +/- imm]
6788      AM.BaseOffs = -Offset->getSExtValue();
6789    else
6790      // [reg +/- reg]
6791      AM.Scale = 1;
6792  } else
6793    return false;
6794
6795  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6796}
6797
6798/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6799/// pre-indexed load / store when the base pointer is an add or subtract
6800/// and it has other uses besides the load / store. After the
6801/// transformation, the new indexed load / store has effectively folded
6802/// the add / subtract in and all of its other uses are redirected to the
6803/// new load / store.
6804bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6805  if (Level < AfterLegalizeDAG)
6806    return false;
6807
6808  bool isLoad = true;
6809  SDValue Ptr;
6810  EVT VT;
6811  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6812    if (LD->isIndexed())
6813      return false;
6814    VT = LD->getMemoryVT();
6815    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6816        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6817      return false;
6818    Ptr = LD->getBasePtr();
6819  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6820    if (ST->isIndexed())
6821      return false;
6822    VT = ST->getMemoryVT();
6823    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6824        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6825      return false;
6826    Ptr = ST->getBasePtr();
6827    isLoad = false;
6828  } else {
6829    return false;
6830  }
6831
6832  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6833  // out.  There is no reason to make this a preinc/predec.
6834  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6835      Ptr.getNode()->hasOneUse())
6836    return false;
6837
6838  // Ask the target to do addressing mode selection.
6839  SDValue BasePtr;
6840  SDValue Offset;
6841  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6842  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6843    return false;
6844  // Don't create a indexed load / store with zero offset.
6845  if (isa<ConstantSDNode>(Offset) &&
6846      cast<ConstantSDNode>(Offset)->isNullValue())
6847    return false;
6848
6849  // Try turning it into a pre-indexed load / store except when:
6850  // 1) The new base ptr is a frame index.
6851  // 2) If N is a store and the new base ptr is either the same as or is a
6852  //    predecessor of the value being stored.
6853  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6854  //    that would create a cycle.
6855  // 4) All uses are load / store ops that use it as old base ptr.
6856
6857  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6858  // (plus the implicit offset) to a register to preinc anyway.
6859  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6860    return false;
6861
6862  // Check #2.
6863  if (!isLoad) {
6864    SDValue Val = cast<StoreSDNode>(N)->getValue();
6865    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6866      return false;
6867  }
6868
6869  // Now check for #3 and #4.
6870  bool RealUse = false;
6871
6872  // Caches for hasPredecessorHelper
6873  SmallPtrSet<const SDNode *, 32> Visited;
6874  SmallVector<const SDNode *, 16> Worklist;
6875
6876  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6877         E = Ptr.getNode()->use_end(); I != E; ++I) {
6878    SDNode *Use = *I;
6879    if (Use == N)
6880      continue;
6881    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6882      return false;
6883
6884    // If Ptr may be folded in addressing mode of other use, then it's
6885    // not profitable to do this transformation.
6886    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6887      RealUse = true;
6888  }
6889
6890  if (!RealUse)
6891    return false;
6892
6893  SDValue Result;
6894  if (isLoad)
6895    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6896                                BasePtr, Offset, AM);
6897  else
6898    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6899                                 BasePtr, Offset, AM);
6900  ++PreIndexedNodes;
6901  ++NodesCombined;
6902  DEBUG(dbgs() << "\nReplacing.4 ";
6903        N->dump(&DAG);
6904        dbgs() << "\nWith: ";
6905        Result.getNode()->dump(&DAG);
6906        dbgs() << '\n');
6907  WorkListRemover DeadNodes(*this);
6908  if (isLoad) {
6909    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6910    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6911  } else {
6912    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6913  }
6914
6915  // Finally, since the node is now dead, remove it from the graph.
6916  DAG.DeleteNode(N);
6917
6918  // Replace the uses of Ptr with uses of the updated base value.
6919  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6920  removeFromWorkList(Ptr.getNode());
6921  DAG.DeleteNode(Ptr.getNode());
6922
6923  return true;
6924}
6925
6926/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6927/// add / sub of the base pointer node into a post-indexed load / store.
6928/// The transformation folded the add / subtract into the new indexed
6929/// load / store effectively and all of its uses are redirected to the
6930/// new load / store.
6931bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6932  if (Level < AfterLegalizeDAG)
6933    return false;
6934
6935  bool isLoad = true;
6936  SDValue Ptr;
6937  EVT VT;
6938  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6939    if (LD->isIndexed())
6940      return false;
6941    VT = LD->getMemoryVT();
6942    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6943        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6944      return false;
6945    Ptr = LD->getBasePtr();
6946  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6947    if (ST->isIndexed())
6948      return false;
6949    VT = ST->getMemoryVT();
6950    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6951        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6952      return false;
6953    Ptr = ST->getBasePtr();
6954    isLoad = false;
6955  } else {
6956    return false;
6957  }
6958
6959  if (Ptr.getNode()->hasOneUse())
6960    return false;
6961
6962  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6963         E = Ptr.getNode()->use_end(); I != E; ++I) {
6964    SDNode *Op = *I;
6965    if (Op == N ||
6966        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
6967      continue;
6968
6969    SDValue BasePtr;
6970    SDValue Offset;
6971    ISD::MemIndexedMode AM = ISD::UNINDEXED;
6972    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
6973      // Don't create a indexed load / store with zero offset.
6974      if (isa<ConstantSDNode>(Offset) &&
6975          cast<ConstantSDNode>(Offset)->isNullValue())
6976        continue;
6977
6978      // Try turning it into a post-indexed load / store except when
6979      // 1) All uses are load / store ops that use it as base ptr (and
6980      //    it may be folded as addressing mmode).
6981      // 2) Op must be independent of N, i.e. Op is neither a predecessor
6982      //    nor a successor of N. Otherwise, if Op is folded that would
6983      //    create a cycle.
6984
6985      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6986        continue;
6987
6988      // Check for #1.
6989      bool TryNext = false;
6990      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
6991             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
6992        SDNode *Use = *II;
6993        if (Use == Ptr.getNode())
6994          continue;
6995
6996        // If all the uses are load / store addresses, then don't do the
6997        // transformation.
6998        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
6999          bool RealUse = false;
7000          for (SDNode::use_iterator III = Use->use_begin(),
7001                 EEE = Use->use_end(); III != EEE; ++III) {
7002            SDNode *UseUse = *III;
7003            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7004              RealUse = true;
7005          }
7006
7007          if (!RealUse) {
7008            TryNext = true;
7009            break;
7010          }
7011        }
7012      }
7013
7014      if (TryNext)
7015        continue;
7016
7017      // Check for #2
7018      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7019        SDValue Result = isLoad
7020          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7021                               BasePtr, Offset, AM)
7022          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7023                                BasePtr, Offset, AM);
7024        ++PostIndexedNodes;
7025        ++NodesCombined;
7026        DEBUG(dbgs() << "\nReplacing.5 ";
7027              N->dump(&DAG);
7028              dbgs() << "\nWith: ";
7029              Result.getNode()->dump(&DAG);
7030              dbgs() << '\n');
7031        WorkListRemover DeadNodes(*this);
7032        if (isLoad) {
7033          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7034          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7035        } else {
7036          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7037        }
7038
7039        // Finally, since the node is now dead, remove it from the graph.
7040        DAG.DeleteNode(N);
7041
7042        // Replace the uses of Use with uses of the updated base value.
7043        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7044                                      Result.getValue(isLoad ? 1 : 0));
7045        removeFromWorkList(Op);
7046        DAG.DeleteNode(Op);
7047        return true;
7048      }
7049    }
7050  }
7051
7052  return false;
7053}
7054
7055SDValue DAGCombiner::visitLOAD(SDNode *N) {
7056  LoadSDNode *LD  = cast<LoadSDNode>(N);
7057  SDValue Chain = LD->getChain();
7058  SDValue Ptr   = LD->getBasePtr();
7059
7060  // If load is not volatile and there are no uses of the loaded value (and
7061  // the updated indexed value in case of indexed loads), change uses of the
7062  // chain value into uses of the chain input (i.e. delete the dead load).
7063  if (!LD->isVolatile()) {
7064    if (N->getValueType(1) == MVT::Other) {
7065      // Unindexed loads.
7066      if (!N->hasAnyUseOfValue(0)) {
7067        // It's not safe to use the two value CombineTo variant here. e.g.
7068        // v1, chain2 = load chain1, loc
7069        // v2, chain3 = load chain2, loc
7070        // v3         = add v2, c
7071        // Now we replace use of chain2 with chain1.  This makes the second load
7072        // isomorphic to the one we are deleting, and thus makes this load live.
7073        DEBUG(dbgs() << "\nReplacing.6 ";
7074              N->dump(&DAG);
7075              dbgs() << "\nWith chain: ";
7076              Chain.getNode()->dump(&DAG);
7077              dbgs() << "\n");
7078        WorkListRemover DeadNodes(*this);
7079        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7080
7081        if (N->use_empty()) {
7082          removeFromWorkList(N);
7083          DAG.DeleteNode(N);
7084        }
7085
7086        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7087      }
7088    } else {
7089      // Indexed loads.
7090      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7091      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7092        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7093        DEBUG(dbgs() << "\nReplacing.7 ";
7094              N->dump(&DAG);
7095              dbgs() << "\nWith: ";
7096              Undef.getNode()->dump(&DAG);
7097              dbgs() << " and 2 other values\n");
7098        WorkListRemover DeadNodes(*this);
7099        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7100        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7101                                      DAG.getUNDEF(N->getValueType(1)));
7102        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7103        removeFromWorkList(N);
7104        DAG.DeleteNode(N);
7105        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7106      }
7107    }
7108  }
7109
7110  // If this load is directly stored, replace the load value with the stored
7111  // value.
7112  // TODO: Handle store large -> read small portion.
7113  // TODO: Handle TRUNCSTORE/LOADEXT
7114  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7115    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7116      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7117      if (PrevST->getBasePtr() == Ptr &&
7118          PrevST->getValue().getValueType() == N->getValueType(0))
7119      return CombineTo(N, Chain.getOperand(1), Chain);
7120    }
7121  }
7122
7123  // Try to infer better alignment information than the load already has.
7124  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7125    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7126      if (Align > LD->getAlignment())
7127        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7128                              LD->getValueType(0),
7129                              Chain, Ptr, LD->getPointerInfo(),
7130                              LD->getMemoryVT(),
7131                              LD->isVolatile(), LD->isNonTemporal(), Align);
7132    }
7133  }
7134
7135  if (CombinerAA) {
7136    // Walk up chain skipping non-aliasing memory nodes.
7137    SDValue BetterChain = FindBetterChain(N, Chain);
7138
7139    // If there is a better chain.
7140    if (Chain != BetterChain) {
7141      SDValue ReplLoad;
7142
7143      // Replace the chain to void dependency.
7144      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7145        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7146                               BetterChain, Ptr, LD->getPointerInfo(),
7147                               LD->isVolatile(), LD->isNonTemporal(),
7148                               LD->isInvariant(), LD->getAlignment());
7149      } else {
7150        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7151                                  LD->getValueType(0),
7152                                  BetterChain, Ptr, LD->getPointerInfo(),
7153                                  LD->getMemoryVT(),
7154                                  LD->isVolatile(),
7155                                  LD->isNonTemporal(),
7156                                  LD->getAlignment());
7157      }
7158
7159      // Create token factor to keep old chain connected.
7160      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7161                                  MVT::Other, Chain, ReplLoad.getValue(1));
7162
7163      // Make sure the new and old chains are cleaned up.
7164      AddToWorkList(Token.getNode());
7165
7166      // Replace uses with load result and token factor. Don't add users
7167      // to work list.
7168      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7169    }
7170  }
7171
7172  // Try transforming N to an indexed load.
7173  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7174    return SDValue(N, 0);
7175
7176  return SDValue();
7177}
7178
7179/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7180/// load is having specific bytes cleared out.  If so, return the byte size
7181/// being masked out and the shift amount.
7182static std::pair<unsigned, unsigned>
7183CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7184  std::pair<unsigned, unsigned> Result(0, 0);
7185
7186  // Check for the structure we're looking for.
7187  if (V->getOpcode() != ISD::AND ||
7188      !isa<ConstantSDNode>(V->getOperand(1)) ||
7189      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7190    return Result;
7191
7192  // Check the chain and pointer.
7193  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7194  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7195
7196  // The store should be chained directly to the load or be an operand of a
7197  // tokenfactor.
7198  if (LD == Chain.getNode())
7199    ; // ok.
7200  else if (Chain->getOpcode() != ISD::TokenFactor)
7201    return Result; // Fail.
7202  else {
7203    bool isOk = false;
7204    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7205      if (Chain->getOperand(i).getNode() == LD) {
7206        isOk = true;
7207        break;
7208      }
7209    if (!isOk) return Result;
7210  }
7211
7212  // This only handles simple types.
7213  if (V.getValueType() != MVT::i16 &&
7214      V.getValueType() != MVT::i32 &&
7215      V.getValueType() != MVT::i64)
7216    return Result;
7217
7218  // Check the constant mask.  Invert it so that the bits being masked out are
7219  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7220  // follow the sign bit for uniformity.
7221  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7222  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7223  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7224  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7225  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7226  if (NotMaskLZ == 64) return Result;  // All zero mask.
7227
7228  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7229  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7230    return Result;
7231
7232  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7233  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7234    NotMaskLZ -= 64-V.getValueSizeInBits();
7235
7236  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7237  switch (MaskedBytes) {
7238  case 1:
7239  case 2:
7240  case 4: break;
7241  default: return Result; // All one mask, or 5-byte mask.
7242  }
7243
7244  // Verify that the first bit starts at a multiple of mask so that the access
7245  // is aligned the same as the access width.
7246  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7247
7248  Result.first = MaskedBytes;
7249  Result.second = NotMaskTZ/8;
7250  return Result;
7251}
7252
7253
7254/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7255/// provides a value as specified by MaskInfo.  If so, replace the specified
7256/// store with a narrower store of truncated IVal.
7257static SDNode *
7258ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7259                                SDValue IVal, StoreSDNode *St,
7260                                DAGCombiner *DC) {
7261  unsigned NumBytes = MaskInfo.first;
7262  unsigned ByteShift = MaskInfo.second;
7263  SelectionDAG &DAG = DC->getDAG();
7264
7265  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7266  // that uses this.  If not, this is not a replacement.
7267  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7268                                  ByteShift*8, (ByteShift+NumBytes)*8);
7269  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7270
7271  // Check that it is legal on the target to do this.  It is legal if the new
7272  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7273  // legalization.
7274  MVT VT = MVT::getIntegerVT(NumBytes*8);
7275  if (!DC->isTypeLegal(VT))
7276    return 0;
7277
7278  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7279  // shifted by ByteShift and truncated down to NumBytes.
7280  if (ByteShift)
7281    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7282                       DAG.getConstant(ByteShift*8,
7283                                    DC->getShiftAmountTy(IVal.getValueType())));
7284
7285  // Figure out the offset for the store and the alignment of the access.
7286  unsigned StOffset;
7287  unsigned NewAlign = St->getAlignment();
7288
7289  if (DAG.getTargetLoweringInfo().isLittleEndian())
7290    StOffset = ByteShift;
7291  else
7292    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7293
7294  SDValue Ptr = St->getBasePtr();
7295  if (StOffset) {
7296    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7297                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7298    NewAlign = MinAlign(NewAlign, StOffset);
7299  }
7300
7301  // Truncate down to the new size.
7302  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7303
7304  ++OpsNarrowed;
7305  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7306                      St->getPointerInfo().getWithOffset(StOffset),
7307                      false, false, NewAlign).getNode();
7308}
7309
7310
7311/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7312/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7313/// of the loaded bits, try narrowing the load and store if it would end up
7314/// being a win for performance or code size.
7315SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7316  StoreSDNode *ST  = cast<StoreSDNode>(N);
7317  if (ST->isVolatile())
7318    return SDValue();
7319
7320  SDValue Chain = ST->getChain();
7321  SDValue Value = ST->getValue();
7322  SDValue Ptr   = ST->getBasePtr();
7323  EVT VT = Value.getValueType();
7324
7325  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7326    return SDValue();
7327
7328  unsigned Opc = Value.getOpcode();
7329
7330  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7331  // is a byte mask indicating a consecutive number of bytes, check to see if
7332  // Y is known to provide just those bytes.  If so, we try to replace the
7333  // load + replace + store sequence with a single (narrower) store, which makes
7334  // the load dead.
7335  if (Opc == ISD::OR) {
7336    std::pair<unsigned, unsigned> MaskedLoad;
7337    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7338    if (MaskedLoad.first)
7339      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7340                                                  Value.getOperand(1), ST,this))
7341        return SDValue(NewST, 0);
7342
7343    // Or is commutative, so try swapping X and Y.
7344    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7345    if (MaskedLoad.first)
7346      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7347                                                  Value.getOperand(0), ST,this))
7348        return SDValue(NewST, 0);
7349  }
7350
7351  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7352      Value.getOperand(1).getOpcode() != ISD::Constant)
7353    return SDValue();
7354
7355  SDValue N0 = Value.getOperand(0);
7356  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7357      Chain == SDValue(N0.getNode(), 1)) {
7358    LoadSDNode *LD = cast<LoadSDNode>(N0);
7359    if (LD->getBasePtr() != Ptr ||
7360        LD->getPointerInfo().getAddrSpace() !=
7361        ST->getPointerInfo().getAddrSpace())
7362      return SDValue();
7363
7364    // Find the type to narrow it the load / op / store to.
7365    SDValue N1 = Value.getOperand(1);
7366    unsigned BitWidth = N1.getValueSizeInBits();
7367    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7368    if (Opc == ISD::AND)
7369      Imm ^= APInt::getAllOnesValue(BitWidth);
7370    if (Imm == 0 || Imm.isAllOnesValue())
7371      return SDValue();
7372    unsigned ShAmt = Imm.countTrailingZeros();
7373    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7374    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7375    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7376    while (NewBW < BitWidth &&
7377           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7378             TLI.isNarrowingProfitable(VT, NewVT))) {
7379      NewBW = NextPowerOf2(NewBW);
7380      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7381    }
7382    if (NewBW >= BitWidth)
7383      return SDValue();
7384
7385    // If the lsb changed does not start at the type bitwidth boundary,
7386    // start at the previous one.
7387    if (ShAmt % NewBW)
7388      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7389    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
7390    if ((Imm & Mask) == Imm) {
7391      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7392      if (Opc == ISD::AND)
7393        NewImm ^= APInt::getAllOnesValue(NewBW);
7394      uint64_t PtrOff = ShAmt / 8;
7395      // For big endian targets, we need to adjust the offset to the pointer to
7396      // load the correct bytes.
7397      if (TLI.isBigEndian())
7398        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7399
7400      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7401      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7402      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7403        return SDValue();
7404
7405      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7406                                   Ptr.getValueType(), Ptr,
7407                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7408      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7409                                  LD->getChain(), NewPtr,
7410                                  LD->getPointerInfo().getWithOffset(PtrOff),
7411                                  LD->isVolatile(), LD->isNonTemporal(),
7412                                  LD->isInvariant(), NewAlign);
7413      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7414                                   DAG.getConstant(NewImm, NewVT));
7415      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7416                                   NewVal, NewPtr,
7417                                   ST->getPointerInfo().getWithOffset(PtrOff),
7418                                   false, false, NewAlign);
7419
7420      AddToWorkList(NewPtr.getNode());
7421      AddToWorkList(NewLD.getNode());
7422      AddToWorkList(NewVal.getNode());
7423      WorkListRemover DeadNodes(*this);
7424      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7425      ++OpsNarrowed;
7426      return NewST;
7427    }
7428  }
7429
7430  return SDValue();
7431}
7432
7433/// TransformFPLoadStorePair - For a given floating point load / store pair,
7434/// if the load value isn't used by any other operations, then consider
7435/// transforming the pair to integer load / store operations if the target
7436/// deems the transformation profitable.
7437SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7438  StoreSDNode *ST  = cast<StoreSDNode>(N);
7439  SDValue Chain = ST->getChain();
7440  SDValue Value = ST->getValue();
7441  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7442      Value.hasOneUse() &&
7443      Chain == SDValue(Value.getNode(), 1)) {
7444    LoadSDNode *LD = cast<LoadSDNode>(Value);
7445    EVT VT = LD->getMemoryVT();
7446    if (!VT.isFloatingPoint() ||
7447        VT != ST->getMemoryVT() ||
7448        LD->isNonTemporal() ||
7449        ST->isNonTemporal() ||
7450        LD->getPointerInfo().getAddrSpace() != 0 ||
7451        ST->getPointerInfo().getAddrSpace() != 0)
7452      return SDValue();
7453
7454    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7455    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7456        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7457        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7458        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7459      return SDValue();
7460
7461    unsigned LDAlign = LD->getAlignment();
7462    unsigned STAlign = ST->getAlignment();
7463    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7464    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7465    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7466      return SDValue();
7467
7468    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7469                                LD->getChain(), LD->getBasePtr(),
7470                                LD->getPointerInfo(),
7471                                false, false, false, LDAlign);
7472
7473    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7474                                 NewLD, ST->getBasePtr(),
7475                                 ST->getPointerInfo(),
7476                                 false, false, STAlign);
7477
7478    AddToWorkList(NewLD.getNode());
7479    AddToWorkList(NewST.getNode());
7480    WorkListRemover DeadNodes(*this);
7481    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7482    ++LdStFP2Int;
7483    return NewST;
7484  }
7485
7486  return SDValue();
7487}
7488
7489/// Returns the base pointer and an integer offset from that object.
7490static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7491  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7492    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7493    SDValue Base = Ptr->getOperand(0);
7494    return std::make_pair(Base, Offset);
7495  }
7496
7497  return std::make_pair(Ptr, 0);
7498}
7499
7500/// Holds a pointer to an LSBaseSDNode as well as information on where it
7501/// is located in a sequence of memory operations connected by a chain.
7502struct MemOpLink {
7503  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7504    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7505  // Ptr to the mem node.
7506  LSBaseSDNode *MemNode;
7507  // Offset from the base ptr.
7508  int64_t OffsetFromBase;
7509  // What is the sequence number of this mem node.
7510  // Lowest mem operand in the DAG starts at zero.
7511  unsigned SequenceNum;
7512};
7513
7514/// Sorts store nodes in a link according to their offset from a shared
7515// base ptr.
7516struct ConsecutiveMemoryChainSorter {
7517  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7518    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7519  }
7520};
7521
7522bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7523  EVT MemVT = St->getMemoryVT();
7524  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7525
7526  // Don't merge vectors into wider inputs.
7527  if (MemVT.isVector() || !MemVT.isSimple())
7528    return false;
7529
7530  // Perform an early exit check. Do not bother looking at stored values that
7531  // are not constants or loads.
7532  SDValue StoredVal = St->getValue();
7533  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7534  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7535      !IsLoadSrc)
7536    return false;
7537
7538  // Only look at ends of store sequences.
7539  SDValue Chain = SDValue(St, 1);
7540  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7541    return false;
7542
7543  // This holds the base pointer and the offset in bytes from the base pointer.
7544  std::pair<SDValue, int64_t> BasePtr =
7545      GetPointerBaseAndOffset(St->getBasePtr());
7546
7547  // We must have a base and an offset.
7548  if (!BasePtr.first.getNode())
7549    return false;
7550
7551  // Do not handle stores to undef base pointers.
7552  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7553    return false;
7554
7555  SmallVector<MemOpLink, 8> StoreNodes;
7556  // Walk up the chain and look for nodes with offsets from the same
7557  // base pointer. Stop when reaching an instruction with a different kind
7558  // or instruction which has a different base pointer.
7559  unsigned Seq = 0;
7560  StoreSDNode *Index = St;
7561  while (Index) {
7562    // If the chain has more than one use, then we can't reorder the mem ops.
7563    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7564      break;
7565
7566    // Find the base pointer and offset for this memory node.
7567    std::pair<SDValue, int64_t> Ptr =
7568      GetPointerBaseAndOffset(Index->getBasePtr());
7569
7570    // Check that the base pointer is the same as the original one.
7571    if (Ptr.first.getNode() != BasePtr.first.getNode())
7572      break;
7573
7574    // Check that the alignment is the same.
7575    if (Index->getAlignment() != St->getAlignment())
7576      break;
7577
7578    // The memory operands must not be volatile.
7579    if (Index->isVolatile() || Index->isIndexed())
7580      break;
7581
7582    // No truncation.
7583    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7584      if (St->isTruncatingStore())
7585        break;
7586
7587    // The stored memory type must be the same.
7588    if (Index->getMemoryVT() != MemVT)
7589      break;
7590
7591    // We do not allow unaligned stores because we want to prevent overriding
7592    // stores.
7593    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7594      break;
7595
7596    // We found a potential memory operand to merge.
7597    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7598
7599    // Move up the chain to the next memory operation.
7600    Index = dyn_cast<StoreSDNode>(Index->getChain().getNode());
7601  }
7602
7603  // Check if there is anything to merge.
7604  if (StoreNodes.size() < 2)
7605    return false;
7606
7607  // Sort the memory operands according to their distance from the base pointer.
7608  std::sort(StoreNodes.begin(), StoreNodes.end(),
7609            ConsecutiveMemoryChainSorter());
7610
7611  // Scan the memory operations on the chain and find the first non-consecutive
7612  // store memory address.
7613  unsigned LastConsecutiveStore = 0;
7614  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7615  for (unsigned i=1; i<StoreNodes.size(); ++i) {
7616    int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7617    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7618      break;
7619
7620    // Mark this node as useful.
7621    LastConsecutiveStore = i;
7622  }
7623
7624  // The node with the lowest store address.
7625  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7626
7627  // Store the constants into memory as one consecutive store.
7628  if (!IsLoadSrc) {
7629    unsigned LastLegalType = 0;
7630    unsigned LastLegalVectorType = 0;
7631    bool NonZero = false;
7632    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7633      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7634      SDValue StoredVal = St->getValue();
7635
7636      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7637        NonZero |= !C->isNullValue();
7638      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7639        NonZero |= !C->getConstantFPValue()->isNullValue();
7640      } else {
7641        // Non constant.
7642        break;
7643      }
7644
7645      // Find a legal type for the constant store.
7646      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7647      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7648      if (TLI.isTypeLegal(StoreTy))
7649        LastLegalType = i+1;
7650
7651      // Find a legal type for the vector store.
7652      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7653      if (TLI.isTypeLegal(Ty))
7654        LastLegalVectorType = i + 1;
7655    }
7656
7657    // We only use vectors if the constant is known to be zero.
7658    if (NonZero)
7659      LastLegalVectorType = 0;
7660
7661    // Check if we found a legal integer type to store.
7662    if (LastLegalType == 0 && LastLegalVectorType == 0)
7663      return false;
7664
7665    bool UseVector = LastLegalVectorType > LastLegalType;
7666    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7667
7668    // Make sure we have something to merge.
7669    if (NumElem < 2)
7670      return false;
7671
7672    unsigned EarliestNodeUsed = 0;
7673    for (unsigned i=0; i < NumElem; ++i) {
7674      // Find a chain for the new wide-store operand. Notice that some
7675      // of the store nodes that we found may not be selected for inclusion
7676      // in the wide store. The chain we use needs to be the chain of the
7677      // earliest store node which is *used* and replaced by the wide store.
7678      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7679        EarliestNodeUsed = i;
7680    }
7681
7682    // The earliest Node in the DAG.
7683    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7684    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7685
7686    SDValue StoredVal;
7687    if (UseVector) {
7688      // Find a legal type for the vector store.
7689      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7690      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7691      StoredVal = DAG.getConstant(0, Ty);
7692    } else {
7693      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7694      APInt StoreInt(StoreBW, 0);
7695
7696      // Construct a single integer constant which is made of the smaller
7697      // constant inputs.
7698      bool IsLE = TLI.isLittleEndian();
7699      for (unsigned i = 0; i < NumElem ; ++i) {
7700        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7701        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7702        SDValue Val = St->getValue();
7703        StoreInt<<=ElementSizeBytes*8;
7704        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7705          StoreInt|=C->getAPIntValue().zext(StoreBW);
7706        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7707          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7708        } else {
7709          assert(false && "Invalid constant element type");
7710        }
7711      }
7712
7713      // Create the new Load and Store operations.
7714      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7715      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7716    }
7717
7718    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7719                                    FirstInChain->getBasePtr(),
7720                                    FirstInChain->getPointerInfo(),
7721                                    false, false,
7722                                    FirstInChain->getAlignment());
7723
7724    // Replace the first store with the new store
7725    CombineTo(EarliestOp, NewStore);
7726    // Erase all other stores.
7727    for (unsigned i = 0; i < NumElem ; ++i) {
7728      if (StoreNodes[i].MemNode == EarliestOp)
7729        continue;
7730      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7731      // ReplaceAllUsesWith will replace all uses that existed when it was
7732      // called, but graph optimizations may cause new ones to appear. For
7733      // example, the case in pr14333 looks like
7734      //
7735      //  St's chain -> St -> another store -> X
7736      //
7737      // And the only difference from St to the other store is the chain.
7738      // When we change it's chain to be St's chain they become identical,
7739      // get CSEed and the net result is that X is now a use of St.
7740      // Since we know that St is redundant, just iterate.
7741      while (!St->use_empty())
7742        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
7743      removeFromWorkList(St);
7744      DAG.DeleteNode(St);
7745    }
7746
7747    return true;
7748  }
7749
7750  // Below we handle the case of multiple consecutive stores that
7751  // come from multiple consecutive loads. We merge them into a single
7752  // wide load and a single wide store.
7753
7754  // Look for load nodes which are used by the stored values.
7755  SmallVector<MemOpLink, 8> LoadNodes;
7756
7757  // Find acceptable loads. Loads need to have the same chain (token factor),
7758  // must not be zext, volatile, indexed, and they must be consecutive.
7759  SDValue LdBasePtr;
7760  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7761    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7762    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7763    if (!Ld) break;
7764
7765    // Loads must only have one use.
7766    if (!Ld->hasNUsesOfValue(1, 0))
7767      break;
7768
7769    // Check that the alignment is the same as the stores.
7770    if (Ld->getAlignment() != St->getAlignment())
7771      break;
7772
7773    // The memory operands must not be volatile.
7774    if (Ld->isVolatile() || Ld->isIndexed())
7775      break;
7776
7777    // We do not accept ext loads.
7778    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7779      break;
7780
7781    // The stored memory type must be the same.
7782    if (Ld->getMemoryVT() != MemVT)
7783      break;
7784
7785    std::pair<SDValue, int64_t> LdPtr =
7786    GetPointerBaseAndOffset(Ld->getBasePtr());
7787
7788    // If this is not the first ptr that we check.
7789    if (LdBasePtr.getNode()) {
7790      // The base ptr must be the same.
7791      if (LdPtr.first != LdBasePtr)
7792        break;
7793    } else {
7794      // Check that all other base pointers are the same as this one.
7795      LdBasePtr = LdPtr.first;
7796    }
7797
7798    // We found a potential memory operand to merge.
7799    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7800  }
7801
7802  if (LoadNodes.size() < 2)
7803    return false;
7804
7805  // Scan the memory operations on the chain and find the first non-consecutive
7806  // load memory address. These variables hold the index in the store node
7807  // array.
7808  unsigned LastConsecutiveLoad = 0;
7809  // This variable refers to the size and not index in the array.
7810  unsigned LastLegalVectorType = 0;
7811  unsigned LastLegalIntegerType = 0;
7812  StartAddress = LoadNodes[0].OffsetFromBase;
7813  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7814  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7815    // All loads much share the same chain.
7816    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7817      break;
7818
7819    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7820    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7821      break;
7822    LastConsecutiveLoad = i;
7823
7824    // Find a legal type for the vector store.
7825    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7826    if (TLI.isTypeLegal(StoreTy))
7827      LastLegalVectorType = i + 1;
7828
7829    // Find a legal type for the integer store.
7830    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7831    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7832    if (TLI.isTypeLegal(StoreTy))
7833      LastLegalIntegerType = i + 1;
7834  }
7835
7836  // Only use vector types if the vector type is larger than the integer type.
7837  // If they are the same, use integers.
7838  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7839  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7840
7841  // We add +1 here because the LastXXX variables refer to location while
7842  // the NumElem refers to array/index size.
7843  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7844  NumElem = std::min(LastLegalType, NumElem);
7845
7846  if (NumElem < 2)
7847    return false;
7848
7849  // The earliest Node in the DAG.
7850  unsigned EarliestNodeUsed = 0;
7851  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7852  for (unsigned i=1; i<NumElem; ++i) {
7853    // Find a chain for the new wide-store operand. Notice that some
7854    // of the store nodes that we found may not be selected for inclusion
7855    // in the wide store. The chain we use needs to be the chain of the
7856    // earliest store node which is *used* and replaced by the wide store.
7857    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7858      EarliestNodeUsed = i;
7859  }
7860
7861  // Find if it is better to use vectors or integers to load and store
7862  // to memory.
7863  EVT JointMemOpVT;
7864  if (UseVectorTy) {
7865    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7866  } else {
7867    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7868    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7869  }
7870
7871  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7872  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7873
7874  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7875  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7876                                FirstLoad->getChain(),
7877                                FirstLoad->getBasePtr(),
7878                                FirstLoad->getPointerInfo(),
7879                                false, false, false,
7880                                FirstLoad->getAlignment());
7881
7882  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7883                                  FirstInChain->getBasePtr(),
7884                                  FirstInChain->getPointerInfo(), false, false,
7885                                  FirstInChain->getAlignment());
7886
7887  // Replace one of the loads with the new load.
7888  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7889  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7890                                SDValue(NewLoad.getNode(), 1));
7891
7892  // Remove the rest of the load chains.
7893  for (unsigned i = 1; i < NumElem ; ++i) {
7894    // Replace all chain users of the old load nodes with the chain of the new
7895    // load node.
7896    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7897    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7898  }
7899
7900  // Replace the first store with the new store.
7901  CombineTo(EarliestOp, NewStore);
7902  // Erase all other stores.
7903  for (unsigned i = 0; i < NumElem ; ++i) {
7904    // Remove all Store nodes.
7905    if (StoreNodes[i].MemNode == EarliestOp)
7906      continue;
7907    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7908    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7909    removeFromWorkList(St);
7910    DAG.DeleteNode(St);
7911  }
7912
7913  return true;
7914}
7915
7916SDValue DAGCombiner::visitSTORE(SDNode *N) {
7917  StoreSDNode *ST  = cast<StoreSDNode>(N);
7918  SDValue Chain = ST->getChain();
7919  SDValue Value = ST->getValue();
7920  SDValue Ptr   = ST->getBasePtr();
7921
7922  // If this is a store of a bit convert, store the input value if the
7923  // resultant store does not need a higher alignment than the original.
7924  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
7925      ST->isUnindexed()) {
7926    unsigned OrigAlign = ST->getAlignment();
7927    EVT SVT = Value.getOperand(0).getValueType();
7928    unsigned Align = TLI.getDataLayout()->
7929      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
7930    if (Align <= OrigAlign &&
7931        ((!LegalOperations && !ST->isVolatile()) ||
7932         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
7933      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
7934                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
7935                          ST->isNonTemporal(), OrigAlign);
7936  }
7937
7938  // Turn 'store undef, Ptr' -> nothing.
7939  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
7940    return Chain;
7941
7942  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
7943  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
7944    // NOTE: If the original store is volatile, this transform must not increase
7945    // the number of stores.  For example, on x86-32 an f64 can be stored in one
7946    // processor operation but an i64 (which is not legal) requires two.  So the
7947    // transform should not be done in this case.
7948    if (Value.getOpcode() != ISD::TargetConstantFP) {
7949      SDValue Tmp;
7950      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
7951      default: llvm_unreachable("Unknown FP type");
7952      case MVT::f16:    // We don't do this for these yet.
7953      case MVT::f80:
7954      case MVT::f128:
7955      case MVT::ppcf128:
7956        break;
7957      case MVT::f32:
7958        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
7959            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7960          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
7961                              bitcastToAPInt().getZExtValue(), MVT::i32);
7962          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7963                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7964                              ST->isNonTemporal(), ST->getAlignment());
7965        }
7966        break;
7967      case MVT::f64:
7968        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
7969             !ST->isVolatile()) ||
7970            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
7971          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
7972                                getZExtValue(), MVT::i64);
7973          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7974                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7975                              ST->isNonTemporal(), ST->getAlignment());
7976        }
7977
7978        if (!ST->isVolatile() &&
7979            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7980          // Many FP stores are not made apparent until after legalize, e.g. for
7981          // argument passing.  Since this is so common, custom legalize the
7982          // 64-bit integer store into two 32-bit stores.
7983          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
7984          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
7985          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
7986          if (TLI.isBigEndian()) std::swap(Lo, Hi);
7987
7988          unsigned Alignment = ST->getAlignment();
7989          bool isVolatile = ST->isVolatile();
7990          bool isNonTemporal = ST->isNonTemporal();
7991
7992          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
7993                                     Ptr, ST->getPointerInfo(),
7994                                     isVolatile, isNonTemporal,
7995                                     ST->getAlignment());
7996          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
7997                            DAG.getConstant(4, Ptr.getValueType()));
7998          Alignment = MinAlign(Alignment, 4U);
7999          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8000                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8001                                     isVolatile, isNonTemporal,
8002                                     Alignment);
8003          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8004                             St0, St1);
8005        }
8006
8007        break;
8008      }
8009    }
8010  }
8011
8012  // Try to infer better alignment information than the store already has.
8013  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8014    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8015      if (Align > ST->getAlignment())
8016        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8017                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8018                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8019    }
8020  }
8021
8022  // Try transforming a pair floating point load / store ops to integer
8023  // load / store ops.
8024  SDValue NewST = TransformFPLoadStorePair(N);
8025  if (NewST.getNode())
8026    return NewST;
8027
8028  if (CombinerAA) {
8029    // Walk up chain skipping non-aliasing memory nodes.
8030    SDValue BetterChain = FindBetterChain(N, Chain);
8031
8032    // If there is a better chain.
8033    if (Chain != BetterChain) {
8034      SDValue ReplStore;
8035
8036      // Replace the chain to avoid dependency.
8037      if (ST->isTruncatingStore()) {
8038        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8039                                      ST->getPointerInfo(),
8040                                      ST->getMemoryVT(), ST->isVolatile(),
8041                                      ST->isNonTemporal(), ST->getAlignment());
8042      } else {
8043        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8044                                 ST->getPointerInfo(),
8045                                 ST->isVolatile(), ST->isNonTemporal(),
8046                                 ST->getAlignment());
8047      }
8048
8049      // Create token to keep both nodes around.
8050      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8051                                  MVT::Other, Chain, ReplStore);
8052
8053      // Make sure the new and old chains are cleaned up.
8054      AddToWorkList(Token.getNode());
8055
8056      // Don't add users to work list.
8057      return CombineTo(N, Token, false);
8058    }
8059  }
8060
8061  // Try transforming N to an indexed store.
8062  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8063    return SDValue(N, 0);
8064
8065  // FIXME: is there such a thing as a truncating indexed store?
8066  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8067      Value.getValueType().isInteger()) {
8068    // See if we can simplify the input to this truncstore with knowledge that
8069    // only the low bits are being used.  For example:
8070    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8071    SDValue Shorter =
8072      GetDemandedBits(Value,
8073                      APInt::getLowBitsSet(
8074                        Value.getValueType().getScalarType().getSizeInBits(),
8075                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8076    AddToWorkList(Value.getNode());
8077    if (Shorter.getNode())
8078      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8079                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8080                               ST->isVolatile(), ST->isNonTemporal(),
8081                               ST->getAlignment());
8082
8083    // Otherwise, see if we can simplify the operation with
8084    // SimplifyDemandedBits, which only works if the value has a single use.
8085    if (SimplifyDemandedBits(Value,
8086                        APInt::getLowBitsSet(
8087                          Value.getValueType().getScalarType().getSizeInBits(),
8088                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8089      return SDValue(N, 0);
8090  }
8091
8092  // If this is a load followed by a store to the same location, then the store
8093  // is dead/noop.
8094  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8095    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8096        ST->isUnindexed() && !ST->isVolatile() &&
8097        // There can't be any side effects between the load and store, such as
8098        // a call or store.
8099        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8100      // The store is dead, remove it.
8101      return Chain;
8102    }
8103  }
8104
8105  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8106  // truncating store.  We can do this even if this is already a truncstore.
8107  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8108      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8109      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8110                            ST->getMemoryVT())) {
8111    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8112                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8113                             ST->isVolatile(), ST->isNonTemporal(),
8114                             ST->getAlignment());
8115  }
8116
8117  // Only perform this optimization before the types are legal, because we
8118  // don't want to perform this optimization on every DAGCombine invocation.
8119  if (!LegalTypes && MergeConsecutiveStores(ST))
8120    return SDValue(N, 0);
8121
8122  return ReduceLoadOpStoreWidth(N);
8123}
8124
8125SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8126  SDValue InVec = N->getOperand(0);
8127  SDValue InVal = N->getOperand(1);
8128  SDValue EltNo = N->getOperand(2);
8129  DebugLoc dl = N->getDebugLoc();
8130
8131  // If the inserted element is an UNDEF, just use the input vector.
8132  if (InVal.getOpcode() == ISD::UNDEF)
8133    return InVec;
8134
8135  EVT VT = InVec.getValueType();
8136
8137  // If we can't generate a legal BUILD_VECTOR, exit
8138  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8139    return SDValue();
8140
8141  // Check that we know which element is being inserted
8142  if (!isa<ConstantSDNode>(EltNo))
8143    return SDValue();
8144  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8145
8146  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8147  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8148  // vector elements.
8149  SmallVector<SDValue, 8> Ops;
8150  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8151    Ops.append(InVec.getNode()->op_begin(),
8152               InVec.getNode()->op_end());
8153  } else if (InVec.getOpcode() == ISD::UNDEF) {
8154    unsigned NElts = VT.getVectorNumElements();
8155    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8156  } else {
8157    return SDValue();
8158  }
8159
8160  // Insert the element
8161  if (Elt < Ops.size()) {
8162    // All the operands of BUILD_VECTOR must have the same type;
8163    // we enforce that here.
8164    EVT OpVT = Ops[0].getValueType();
8165    if (InVal.getValueType() != OpVT)
8166      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8167                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8168                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8169    Ops[Elt] = InVal;
8170  }
8171
8172  // Return the new vector
8173  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8174                     VT, &Ops[0], Ops.size());
8175}
8176
8177SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8178  // (vextract (scalar_to_vector val, 0) -> val
8179  SDValue InVec = N->getOperand(0);
8180  EVT VT = InVec.getValueType();
8181  EVT NVT = N->getValueType(0);
8182
8183  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8184    // Check if the result type doesn't match the inserted element type. A
8185    // SCALAR_TO_VECTOR may truncate the inserted element and the
8186    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8187    SDValue InOp = InVec.getOperand(0);
8188    if (InOp.getValueType() != NVT) {
8189      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8190      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8191    }
8192    return InOp;
8193  }
8194
8195  SDValue EltNo = N->getOperand(1);
8196  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8197
8198  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8199  // We only perform this optimization before the op legalization phase because
8200  // we may introduce new vector instructions which are not backed by TD
8201  // patterns. For example on AVX, extracting elements from a wide vector
8202  // without using extract_subvector.
8203  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8204      && ConstEltNo && !LegalOperations) {
8205    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8206    int NumElem = VT.getVectorNumElements();
8207    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8208    // Find the new index to extract from.
8209    int OrigElt = SVOp->getMaskElt(Elt);
8210
8211    // Extracting an undef index is undef.
8212    if (OrigElt == -1)
8213      return DAG.getUNDEF(NVT);
8214
8215    // Select the right vector half to extract from.
8216    if (OrigElt < NumElem) {
8217      InVec = InVec->getOperand(0);
8218    } else {
8219      InVec = InVec->getOperand(1);
8220      OrigElt -= NumElem;
8221    }
8222
8223    EVT IndexTy = N->getOperand(1).getValueType();
8224    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8225                       InVec, DAG.getConstant(OrigElt, IndexTy));
8226  }
8227
8228  // Perform only after legalization to ensure build_vector / vector_shuffle
8229  // optimizations have already been done.
8230  if (!LegalOperations) return SDValue();
8231
8232  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8233  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8234  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8235
8236  if (ConstEltNo) {
8237    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8238    bool NewLoad = false;
8239    bool BCNumEltsChanged = false;
8240    EVT ExtVT = VT.getVectorElementType();
8241    EVT LVT = ExtVT;
8242
8243    // If the result of load has to be truncated, then it's not necessarily
8244    // profitable.
8245    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8246      return SDValue();
8247
8248    if (InVec.getOpcode() == ISD::BITCAST) {
8249      // Don't duplicate a load with other uses.
8250      if (!InVec.hasOneUse())
8251        return SDValue();
8252
8253      EVT BCVT = InVec.getOperand(0).getValueType();
8254      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8255        return SDValue();
8256      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8257        BCNumEltsChanged = true;
8258      InVec = InVec.getOperand(0);
8259      ExtVT = BCVT.getVectorElementType();
8260      NewLoad = true;
8261    }
8262
8263    LoadSDNode *LN0 = NULL;
8264    const ShuffleVectorSDNode *SVN = NULL;
8265    if (ISD::isNormalLoad(InVec.getNode())) {
8266      LN0 = cast<LoadSDNode>(InVec);
8267    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8268               InVec.getOperand(0).getValueType() == ExtVT &&
8269               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8270      // Don't duplicate a load with other uses.
8271      if (!InVec.hasOneUse())
8272        return SDValue();
8273
8274      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8275    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8276      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8277      // =>
8278      // (load $addr+1*size)
8279
8280      // Don't duplicate a load with other uses.
8281      if (!InVec.hasOneUse())
8282        return SDValue();
8283
8284      // If the bit convert changed the number of elements, it is unsafe
8285      // to examine the mask.
8286      if (BCNumEltsChanged)
8287        return SDValue();
8288
8289      // Select the input vector, guarding against out of range extract vector.
8290      unsigned NumElems = VT.getVectorNumElements();
8291      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8292      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8293
8294      if (InVec.getOpcode() == ISD::BITCAST) {
8295        // Don't duplicate a load with other uses.
8296        if (!InVec.hasOneUse())
8297          return SDValue();
8298
8299        InVec = InVec.getOperand(0);
8300      }
8301      if (ISD::isNormalLoad(InVec.getNode())) {
8302        LN0 = cast<LoadSDNode>(InVec);
8303        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8304      }
8305    }
8306
8307    // Make sure we found a non-volatile load and the extractelement is
8308    // the only use.
8309    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8310      return SDValue();
8311
8312    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8313    if (Elt == -1)
8314      return DAG.getUNDEF(LVT);
8315
8316    unsigned Align = LN0->getAlignment();
8317    if (NewLoad) {
8318      // Check the resultant load doesn't need a higher alignment than the
8319      // original load.
8320      unsigned NewAlign =
8321        TLI.getDataLayout()
8322            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8323
8324      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8325        return SDValue();
8326
8327      Align = NewAlign;
8328    }
8329
8330    SDValue NewPtr = LN0->getBasePtr();
8331    unsigned PtrOff = 0;
8332
8333    if (Elt) {
8334      PtrOff = LVT.getSizeInBits() * Elt / 8;
8335      EVT PtrType = NewPtr.getValueType();
8336      if (TLI.isBigEndian())
8337        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8338      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8339                           DAG.getConstant(PtrOff, PtrType));
8340    }
8341
8342    // The replacement we need to do here is a little tricky: we need to
8343    // replace an extractelement of a load with a load.
8344    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8345    // Note that this replacement assumes that the extractvalue is the only
8346    // use of the load; that's okay because we don't want to perform this
8347    // transformation in other cases anyway.
8348    SDValue Load;
8349    SDValue Chain;
8350    if (NVT.bitsGT(LVT)) {
8351      // If the result type of vextract is wider than the load, then issue an
8352      // extending load instead.
8353      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8354        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8355      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8356                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8357                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8358      Chain = Load.getValue(1);
8359    } else {
8360      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8361                         LN0->getPointerInfo().getWithOffset(PtrOff),
8362                         LN0->isVolatile(), LN0->isNonTemporal(),
8363                         LN0->isInvariant(), Align);
8364      Chain = Load.getValue(1);
8365      if (NVT.bitsLT(LVT))
8366        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8367      else
8368        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8369    }
8370    WorkListRemover DeadNodes(*this);
8371    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8372    SDValue To[] = { Load, Chain };
8373    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8374    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8375    // worklist explicitly as well.
8376    AddToWorkList(Load.getNode());
8377    AddUsersToWorkList(Load.getNode()); // Add users too
8378    // Make sure to revisit this node to clean it up; it will usually be dead.
8379    AddToWorkList(N);
8380    return SDValue(N, 0);
8381  }
8382
8383  return SDValue();
8384}
8385
8386// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8387SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8388  // We perform this optimization post type-legalization because
8389  // the type-legalizer often scalarizes integer-promoted vectors.
8390  // Performing this optimization before may create bit-casts which
8391  // will be type-legalized to complex code sequences.
8392  // We perform this optimization only before the operation legalizer because we
8393  // may introduce illegal operations.
8394  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8395    return SDValue();
8396
8397  unsigned NumInScalars = N->getNumOperands();
8398  DebugLoc dl = N->getDebugLoc();
8399  EVT VT = N->getValueType(0);
8400
8401  // Check to see if this is a BUILD_VECTOR of a bunch of values
8402  // which come from any_extend or zero_extend nodes. If so, we can create
8403  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8404  // optimizations. We do not handle sign-extend because we can't fill the sign
8405  // using shuffles.
8406  EVT SourceType = MVT::Other;
8407  bool AllAnyExt = true;
8408
8409  for (unsigned i = 0; i != NumInScalars; ++i) {
8410    SDValue In = N->getOperand(i);
8411    // Ignore undef inputs.
8412    if (In.getOpcode() == ISD::UNDEF) continue;
8413
8414    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8415    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8416
8417    // Abort if the element is not an extension.
8418    if (!ZeroExt && !AnyExt) {
8419      SourceType = MVT::Other;
8420      break;
8421    }
8422
8423    // The input is a ZeroExt or AnyExt. Check the original type.
8424    EVT InTy = In.getOperand(0).getValueType();
8425
8426    // Check that all of the widened source types are the same.
8427    if (SourceType == MVT::Other)
8428      // First time.
8429      SourceType = InTy;
8430    else if (InTy != SourceType) {
8431      // Multiple income types. Abort.
8432      SourceType = MVT::Other;
8433      break;
8434    }
8435
8436    // Check if all of the extends are ANY_EXTENDs.
8437    AllAnyExt &= AnyExt;
8438  }
8439
8440  // In order to have valid types, all of the inputs must be extended from the
8441  // same source type and all of the inputs must be any or zero extend.
8442  // Scalar sizes must be a power of two.
8443  EVT OutScalarTy = VT.getScalarType();
8444  bool ValidTypes = SourceType != MVT::Other &&
8445                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8446                 isPowerOf2_32(SourceType.getSizeInBits());
8447
8448  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8449  // turn into a single shuffle instruction.
8450  if (!ValidTypes)
8451    return SDValue();
8452
8453  bool isLE = TLI.isLittleEndian();
8454  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8455  assert(ElemRatio > 1 && "Invalid element size ratio");
8456  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8457                               DAG.getConstant(0, SourceType);
8458
8459  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8460  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8461
8462  // Populate the new build_vector
8463  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8464    SDValue Cast = N->getOperand(i);
8465    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8466            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8467            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8468    SDValue In;
8469    if (Cast.getOpcode() == ISD::UNDEF)
8470      In = DAG.getUNDEF(SourceType);
8471    else
8472      In = Cast->getOperand(0);
8473    unsigned Index = isLE ? (i * ElemRatio) :
8474                            (i * ElemRatio + (ElemRatio - 1));
8475
8476    assert(Index < Ops.size() && "Invalid index");
8477    Ops[Index] = In;
8478  }
8479
8480  // The type of the new BUILD_VECTOR node.
8481  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8482  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8483         "Invalid vector size");
8484  // Check if the new vector type is legal.
8485  if (!isTypeLegal(VecVT)) return SDValue();
8486
8487  // Make the new BUILD_VECTOR.
8488  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8489
8490  // The new BUILD_VECTOR node has the potential to be further optimized.
8491  AddToWorkList(BV.getNode());
8492  // Bitcast to the desired type.
8493  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8494}
8495
8496SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8497  EVT VT = N->getValueType(0);
8498
8499  unsigned NumInScalars = N->getNumOperands();
8500  DebugLoc dl = N->getDebugLoc();
8501
8502  EVT SrcVT = MVT::Other;
8503  unsigned Opcode = ISD::DELETED_NODE;
8504  unsigned NumDefs = 0;
8505
8506  for (unsigned i = 0; i != NumInScalars; ++i) {
8507    SDValue In = N->getOperand(i);
8508    unsigned Opc = In.getOpcode();
8509
8510    if (Opc == ISD::UNDEF)
8511      continue;
8512
8513    // If all scalar values are floats and converted from integers.
8514    if (Opcode == ISD::DELETED_NODE &&
8515        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8516      Opcode = Opc;
8517      // If not supported by target, bail out.
8518      if (TLI.getOperationAction(Opcode, VT) != TargetLowering::Legal &&
8519          TLI.getOperationAction(Opcode, VT) != TargetLowering::Custom)
8520        return SDValue();
8521    }
8522    if (Opc != Opcode)
8523      return SDValue();
8524
8525    EVT InVT = In.getOperand(0).getValueType();
8526
8527    // If all scalar values are typed differently, bail out. It's chosen to
8528    // simplify BUILD_VECTOR of integer types.
8529    if (SrcVT == MVT::Other)
8530      SrcVT = InVT;
8531    if (SrcVT != InVT)
8532      return SDValue();
8533    NumDefs++;
8534  }
8535
8536  // If the vector has just one element defined, it's not worth to fold it into
8537  // a vectorized one.
8538  if (NumDefs < 2)
8539    return SDValue();
8540
8541  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8542         && "Should only handle conversion from integer to float.");
8543  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8544
8545  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8546  SmallVector<SDValue, 8> Opnds;
8547  for (unsigned i = 0; i != NumInScalars; ++i) {
8548    SDValue In = N->getOperand(i);
8549
8550    if (In.getOpcode() == ISD::UNDEF)
8551      Opnds.push_back(DAG.getUNDEF(SrcVT));
8552    else
8553      Opnds.push_back(In.getOperand(0));
8554  }
8555  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8556                           &Opnds[0], Opnds.size());
8557  AddToWorkList(BV.getNode());
8558
8559  return DAG.getNode(Opcode, dl, VT, BV);
8560}
8561
8562SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8563  unsigned NumInScalars = N->getNumOperands();
8564  DebugLoc dl = N->getDebugLoc();
8565  EVT VT = N->getValueType(0);
8566
8567  // A vector built entirely of undefs is undef.
8568  if (ISD::allOperandsUndef(N))
8569    return DAG.getUNDEF(VT);
8570
8571  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8572  if (V.getNode())
8573    return V;
8574
8575  V = reduceBuildVecConvertToConvertBuildVec(N);
8576  if (V.getNode())
8577    return V;
8578
8579  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8580  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8581  // at most two distinct vectors, turn this into a shuffle node.
8582
8583  // May only combine to shuffle after legalize if shuffle is legal.
8584  if (LegalOperations &&
8585      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8586    return SDValue();
8587
8588  SDValue VecIn1, VecIn2;
8589  for (unsigned i = 0; i != NumInScalars; ++i) {
8590    // Ignore undef inputs.
8591    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8592
8593    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8594    // constant index, bail out.
8595    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8596        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8597      VecIn1 = VecIn2 = SDValue(0, 0);
8598      break;
8599    }
8600
8601    // We allow up to two distinct input vectors.
8602    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8603    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8604      continue;
8605
8606    if (VecIn1.getNode() == 0) {
8607      VecIn1 = ExtractedFromVec;
8608    } else if (VecIn2.getNode() == 0) {
8609      VecIn2 = ExtractedFromVec;
8610    } else {
8611      // Too many inputs.
8612      VecIn1 = VecIn2 = SDValue(0, 0);
8613      break;
8614    }
8615  }
8616
8617    // If everything is good, we can make a shuffle operation.
8618  if (VecIn1.getNode()) {
8619    SmallVector<int, 8> Mask;
8620    for (unsigned i = 0; i != NumInScalars; ++i) {
8621      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8622        Mask.push_back(-1);
8623        continue;
8624      }
8625
8626      // If extracting from the first vector, just use the index directly.
8627      SDValue Extract = N->getOperand(i);
8628      SDValue ExtVal = Extract.getOperand(1);
8629      if (Extract.getOperand(0) == VecIn1) {
8630        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8631        if (ExtIndex > VT.getVectorNumElements())
8632          return SDValue();
8633
8634        Mask.push_back(ExtIndex);
8635        continue;
8636      }
8637
8638      // Otherwise, use InIdx + VecSize
8639      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8640      Mask.push_back(Idx+NumInScalars);
8641    }
8642
8643    // We can't generate a shuffle node with mismatched input and output types.
8644    // Attempt to transform a single input vector to the correct type.
8645    if ((VT != VecIn1.getValueType())) {
8646      // We don't support shuffeling between TWO values of different types.
8647      if (VecIn2.getNode() != 0)
8648        return SDValue();
8649
8650      // We only support widening of vectors which are half the size of the
8651      // output registers. For example XMM->YMM widening on X86 with AVX.
8652      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8653        return SDValue();
8654
8655      // If the input vector type has a different base type to the output
8656      // vector type, bail out.
8657      if (VecIn1.getValueType().getVectorElementType() !=
8658          VT.getVectorElementType())
8659        return SDValue();
8660
8661      // Widen the input vector by adding undef values.
8662      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8663                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8664    }
8665
8666    // If VecIn2 is unused then change it to undef.
8667    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8668
8669    // Check that we were able to transform all incoming values to the same
8670    // type.
8671    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8672        VecIn1.getValueType() != VT)
8673          return SDValue();
8674
8675    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8676    if (!isTypeLegal(VT))
8677      return SDValue();
8678
8679    // Return the new VECTOR_SHUFFLE node.
8680    SDValue Ops[2];
8681    Ops[0] = VecIn1;
8682    Ops[1] = VecIn2;
8683    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8684  }
8685
8686  return SDValue();
8687}
8688
8689SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8690  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8691  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8692  // inputs come from at most two distinct vectors, turn this into a shuffle
8693  // node.
8694
8695  // If we only have one input vector, we don't need to do any concatenation.
8696  if (N->getNumOperands() == 1)
8697    return N->getOperand(0);
8698
8699  // Check if all of the operands are undefs.
8700  if (ISD::allOperandsUndef(N))
8701    return DAG.getUNDEF(N->getValueType(0));
8702
8703  return SDValue();
8704}
8705
8706SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8707  EVT NVT = N->getValueType(0);
8708  SDValue V = N->getOperand(0);
8709
8710  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8711    // Handle only simple case where vector being inserted and vector
8712    // being extracted are of same type, and are half size of larger vectors.
8713    EVT BigVT = V->getOperand(0).getValueType();
8714    EVT SmallVT = V->getOperand(1).getValueType();
8715    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8716      return SDValue();
8717
8718    // Only handle cases where both indexes are constants with the same type.
8719    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8720    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8721
8722    if (InsIdx && ExtIdx &&
8723        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8724        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8725      // Combine:
8726      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8727      // Into:
8728      //    indices are equal => V1
8729      //    otherwise => (extract_subvec V1, ExtIdx)
8730      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8731        return V->getOperand(1);
8732      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8733                         V->getOperand(0), N->getOperand(1));
8734    }
8735  }
8736
8737  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
8738    // Combine:
8739    //    (extract_subvec (concat V1, V2, ...), i)
8740    // Into:
8741    //    Vi if possible
8742    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
8743    if (V->getOperand(0).getValueType() != NVT)
8744      return SDValue();
8745    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8746    unsigned NumElems = NVT.getVectorNumElements();
8747    assert((Idx % NumElems) == 0 &&
8748           "IDX in concat is not a multiple of the result vector length.");
8749    return V->getOperand(Idx / NumElems);
8750  }
8751
8752  return SDValue();
8753}
8754
8755SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8756  EVT VT = N->getValueType(0);
8757  unsigned NumElts = VT.getVectorNumElements();
8758
8759  SDValue N0 = N->getOperand(0);
8760  SDValue N1 = N->getOperand(1);
8761
8762  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8763
8764  // Canonicalize shuffle undef, undef -> undef
8765  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8766    return DAG.getUNDEF(VT);
8767
8768  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8769
8770  // Canonicalize shuffle v, v -> v, undef
8771  if (N0 == N1) {
8772    SmallVector<int, 8> NewMask;
8773    for (unsigned i = 0; i != NumElts; ++i) {
8774      int Idx = SVN->getMaskElt(i);
8775      if (Idx >= (int)NumElts) Idx -= NumElts;
8776      NewMask.push_back(Idx);
8777    }
8778    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8779                                &NewMask[0]);
8780  }
8781
8782  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8783  if (N0.getOpcode() == ISD::UNDEF) {
8784    SmallVector<int, 8> NewMask;
8785    for (unsigned i = 0; i != NumElts; ++i) {
8786      int Idx = SVN->getMaskElt(i);
8787      if (Idx >= 0) {
8788        if (Idx < (int)NumElts)
8789          Idx += NumElts;
8790        else
8791          Idx -= NumElts;
8792      }
8793      NewMask.push_back(Idx);
8794    }
8795    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8796                                &NewMask[0]);
8797  }
8798
8799  // Remove references to rhs if it is undef
8800  if (N1.getOpcode() == ISD::UNDEF) {
8801    bool Changed = false;
8802    SmallVector<int, 8> NewMask;
8803    for (unsigned i = 0; i != NumElts; ++i) {
8804      int Idx = SVN->getMaskElt(i);
8805      if (Idx >= (int)NumElts) {
8806        Idx = -1;
8807        Changed = true;
8808      }
8809      NewMask.push_back(Idx);
8810    }
8811    if (Changed)
8812      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8813  }
8814
8815  // If it is a splat, check if the argument vector is another splat or a
8816  // build_vector with all scalar elements the same.
8817  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8818    SDNode *V = N0.getNode();
8819
8820    // If this is a bit convert that changes the element type of the vector but
8821    // not the number of vector elements, look through it.  Be careful not to
8822    // look though conversions that change things like v4f32 to v2f64.
8823    if (V->getOpcode() == ISD::BITCAST) {
8824      SDValue ConvInput = V->getOperand(0);
8825      if (ConvInput.getValueType().isVector() &&
8826          ConvInput.getValueType().getVectorNumElements() == NumElts)
8827        V = ConvInput.getNode();
8828    }
8829
8830    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8831      assert(V->getNumOperands() == NumElts &&
8832             "BUILD_VECTOR has wrong number of operands");
8833      SDValue Base;
8834      bool AllSame = true;
8835      for (unsigned i = 0; i != NumElts; ++i) {
8836        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8837          Base = V->getOperand(i);
8838          break;
8839        }
8840      }
8841      // Splat of <u, u, u, u>, return <u, u, u, u>
8842      if (!Base.getNode())
8843        return N0;
8844      for (unsigned i = 0; i != NumElts; ++i) {
8845        if (V->getOperand(i) != Base) {
8846          AllSame = false;
8847          break;
8848        }
8849      }
8850      // Splat of <x, x, x, x>, return <x, x, x, x>
8851      if (AllSame)
8852        return N0;
8853    }
8854  }
8855
8856  // If this shuffle node is simply a swizzle of another shuffle node,
8857  // and it reverses the swizzle of the previous shuffle then we can
8858  // optimize shuffle(shuffle(x, undef), undef) -> x.
8859  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8860      N1.getOpcode() == ISD::UNDEF) {
8861
8862    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8863
8864    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8865    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8866      return SDValue();
8867
8868    // The incoming shuffle must be of the same type as the result of the
8869    // current shuffle.
8870    assert(OtherSV->getOperand(0).getValueType() == VT &&
8871           "Shuffle types don't match");
8872
8873    for (unsigned i = 0; i != NumElts; ++i) {
8874      int Idx = SVN->getMaskElt(i);
8875      assert(Idx < (int)NumElts && "Index references undef operand");
8876      // Next, this index comes from the first value, which is the incoming
8877      // shuffle. Adopt the incoming index.
8878      if (Idx >= 0)
8879        Idx = OtherSV->getMaskElt(Idx);
8880
8881      // The combined shuffle must map each index to itself.
8882      if (Idx >= 0 && (unsigned)Idx != i)
8883        return SDValue();
8884    }
8885
8886    return OtherSV->getOperand(0);
8887  }
8888
8889  return SDValue();
8890}
8891
8892SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
8893  if (!TLI.getShouldFoldAtomicFences())
8894    return SDValue();
8895
8896  SDValue atomic = N->getOperand(0);
8897  switch (atomic.getOpcode()) {
8898    case ISD::ATOMIC_CMP_SWAP:
8899    case ISD::ATOMIC_SWAP:
8900    case ISD::ATOMIC_LOAD_ADD:
8901    case ISD::ATOMIC_LOAD_SUB:
8902    case ISD::ATOMIC_LOAD_AND:
8903    case ISD::ATOMIC_LOAD_OR:
8904    case ISD::ATOMIC_LOAD_XOR:
8905    case ISD::ATOMIC_LOAD_NAND:
8906    case ISD::ATOMIC_LOAD_MIN:
8907    case ISD::ATOMIC_LOAD_MAX:
8908    case ISD::ATOMIC_LOAD_UMIN:
8909    case ISD::ATOMIC_LOAD_UMAX:
8910      break;
8911    default:
8912      return SDValue();
8913  }
8914
8915  SDValue fence = atomic.getOperand(0);
8916  if (fence.getOpcode() != ISD::MEMBARRIER)
8917    return SDValue();
8918
8919  switch (atomic.getOpcode()) {
8920    case ISD::ATOMIC_CMP_SWAP:
8921      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8922                                    fence.getOperand(0),
8923                                    atomic.getOperand(1), atomic.getOperand(2),
8924                                    atomic.getOperand(3)), atomic.getResNo());
8925    case ISD::ATOMIC_SWAP:
8926    case ISD::ATOMIC_LOAD_ADD:
8927    case ISD::ATOMIC_LOAD_SUB:
8928    case ISD::ATOMIC_LOAD_AND:
8929    case ISD::ATOMIC_LOAD_OR:
8930    case ISD::ATOMIC_LOAD_XOR:
8931    case ISD::ATOMIC_LOAD_NAND:
8932    case ISD::ATOMIC_LOAD_MIN:
8933    case ISD::ATOMIC_LOAD_MAX:
8934    case ISD::ATOMIC_LOAD_UMIN:
8935    case ISD::ATOMIC_LOAD_UMAX:
8936      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8937                                    fence.getOperand(0),
8938                                    atomic.getOperand(1), atomic.getOperand(2)),
8939                     atomic.getResNo());
8940    default:
8941      return SDValue();
8942  }
8943}
8944
8945/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
8946/// an AND to a vector_shuffle with the destination vector and a zero vector.
8947/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
8948///      vector_shuffle V, Zero, <0, 4, 2, 4>
8949SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
8950  EVT VT = N->getValueType(0);
8951  DebugLoc dl = N->getDebugLoc();
8952  SDValue LHS = N->getOperand(0);
8953  SDValue RHS = N->getOperand(1);
8954  if (N->getOpcode() == ISD::AND) {
8955    if (RHS.getOpcode() == ISD::BITCAST)
8956      RHS = RHS.getOperand(0);
8957    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
8958      SmallVector<int, 8> Indices;
8959      unsigned NumElts = RHS.getNumOperands();
8960      for (unsigned i = 0; i != NumElts; ++i) {
8961        SDValue Elt = RHS.getOperand(i);
8962        if (!isa<ConstantSDNode>(Elt))
8963          return SDValue();
8964
8965        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
8966          Indices.push_back(i);
8967        else if (cast<ConstantSDNode>(Elt)->isNullValue())
8968          Indices.push_back(NumElts);
8969        else
8970          return SDValue();
8971      }
8972
8973      // Let's see if the target supports this vector_shuffle.
8974      EVT RVT = RHS.getValueType();
8975      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
8976        return SDValue();
8977
8978      // Return the new VECTOR_SHUFFLE node.
8979      EVT EltVT = RVT.getVectorElementType();
8980      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
8981                                     DAG.getConstant(0, EltVT));
8982      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8983                                 RVT, &ZeroOps[0], ZeroOps.size());
8984      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
8985      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
8986      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
8987    }
8988  }
8989
8990  return SDValue();
8991}
8992
8993/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
8994SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
8995  // After legalize, the target may be depending on adds and other
8996  // binary ops to provide legal ways to construct constants or other
8997  // things. Simplifying them may result in a loss of legality.
8998  if (LegalOperations) return SDValue();
8999
9000  assert(N->getValueType(0).isVector() &&
9001         "SimplifyVBinOp only works on vectors!");
9002
9003  SDValue LHS = N->getOperand(0);
9004  SDValue RHS = N->getOperand(1);
9005  SDValue Shuffle = XformToShuffleWithZero(N);
9006  if (Shuffle.getNode()) return Shuffle;
9007
9008  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9009  // this operation.
9010  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9011      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9012    SmallVector<SDValue, 8> Ops;
9013    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9014      SDValue LHSOp = LHS.getOperand(i);
9015      SDValue RHSOp = RHS.getOperand(i);
9016      // If these two elements can't be folded, bail out.
9017      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9018           LHSOp.getOpcode() != ISD::Constant &&
9019           LHSOp.getOpcode() != ISD::ConstantFP) ||
9020          (RHSOp.getOpcode() != ISD::UNDEF &&
9021           RHSOp.getOpcode() != ISD::Constant &&
9022           RHSOp.getOpcode() != ISD::ConstantFP))
9023        break;
9024
9025      // Can't fold divide by zero.
9026      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9027          N->getOpcode() == ISD::FDIV) {
9028        if ((RHSOp.getOpcode() == ISD::Constant &&
9029             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9030            (RHSOp.getOpcode() == ISD::ConstantFP &&
9031             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9032          break;
9033      }
9034
9035      EVT VT = LHSOp.getValueType();
9036      EVT RVT = RHSOp.getValueType();
9037      if (RVT != VT) {
9038        // Integer BUILD_VECTOR operands may have types larger than the element
9039        // size (e.g., when the element type is not legal).  Prior to type
9040        // legalization, the types may not match between the two BUILD_VECTORS.
9041        // Truncate one of the operands to make them match.
9042        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9043          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9044        } else {
9045          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9046          VT = RVT;
9047        }
9048      }
9049      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9050                                   LHSOp, RHSOp);
9051      if (FoldOp.getOpcode() != ISD::UNDEF &&
9052          FoldOp.getOpcode() != ISD::Constant &&
9053          FoldOp.getOpcode() != ISD::ConstantFP)
9054        break;
9055      Ops.push_back(FoldOp);
9056      AddToWorkList(FoldOp.getNode());
9057    }
9058
9059    if (Ops.size() == LHS.getNumOperands())
9060      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9061                         LHS.getValueType(), &Ops[0], Ops.size());
9062  }
9063
9064  return SDValue();
9065}
9066
9067/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9068SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9069  // After legalize, the target may be depending on adds and other
9070  // binary ops to provide legal ways to construct constants or other
9071  // things. Simplifying them may result in a loss of legality.
9072  if (LegalOperations) return SDValue();
9073
9074  assert(N->getValueType(0).isVector() &&
9075         "SimplifyVUnaryOp only works on vectors!");
9076
9077  SDValue N0 = N->getOperand(0);
9078
9079  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9080    return SDValue();
9081
9082  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9083  SmallVector<SDValue, 8> Ops;
9084  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9085    SDValue Op = N0.getOperand(i);
9086    if (Op.getOpcode() != ISD::UNDEF &&
9087        Op.getOpcode() != ISD::ConstantFP)
9088      break;
9089    EVT EltVT = Op.getValueType();
9090    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9091    if (FoldOp.getOpcode() != ISD::UNDEF &&
9092        FoldOp.getOpcode() != ISD::ConstantFP)
9093      break;
9094    Ops.push_back(FoldOp);
9095    AddToWorkList(FoldOp.getNode());
9096  }
9097
9098  if (Ops.size() != N0.getNumOperands())
9099    return SDValue();
9100
9101  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9102                     N0.getValueType(), &Ops[0], Ops.size());
9103}
9104
9105SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9106                                    SDValue N1, SDValue N2){
9107  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9108
9109  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9110                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9111
9112  // If we got a simplified select_cc node back from SimplifySelectCC, then
9113  // break it down into a new SETCC node, and a new SELECT node, and then return
9114  // the SELECT node, since we were called with a SELECT node.
9115  if (SCC.getNode()) {
9116    // Check to see if we got a select_cc back (to turn into setcc/select).
9117    // Otherwise, just return whatever node we got back, like fabs.
9118    if (SCC.getOpcode() == ISD::SELECT_CC) {
9119      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9120                                  N0.getValueType(),
9121                                  SCC.getOperand(0), SCC.getOperand(1),
9122                                  SCC.getOperand(4));
9123      AddToWorkList(SETCC.getNode());
9124      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9125                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9126    }
9127
9128    return SCC;
9129  }
9130  return SDValue();
9131}
9132
9133/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9134/// are the two values being selected between, see if we can simplify the
9135/// select.  Callers of this should assume that TheSelect is deleted if this
9136/// returns true.  As such, they should return the appropriate thing (e.g. the
9137/// node) back to the top-level of the DAG combiner loop to avoid it being
9138/// looked at.
9139bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9140                                    SDValue RHS) {
9141
9142  // Cannot simplify select with vector condition
9143  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9144
9145  // If this is a select from two identical things, try to pull the operation
9146  // through the select.
9147  if (LHS.getOpcode() != RHS.getOpcode() ||
9148      !LHS.hasOneUse() || !RHS.hasOneUse())
9149    return false;
9150
9151  // If this is a load and the token chain is identical, replace the select
9152  // of two loads with a load through a select of the address to load from.
9153  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9154  // constants have been dropped into the constant pool.
9155  if (LHS.getOpcode() == ISD::LOAD) {
9156    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9157    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9158
9159    // Token chains must be identical.
9160    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9161        // Do not let this transformation reduce the number of volatile loads.
9162        LLD->isVolatile() || RLD->isVolatile() ||
9163        // If this is an EXTLOAD, the VT's must match.
9164        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9165        // If this is an EXTLOAD, the kind of extension must match.
9166        (LLD->getExtensionType() != RLD->getExtensionType() &&
9167         // The only exception is if one of the extensions is anyext.
9168         LLD->getExtensionType() != ISD::EXTLOAD &&
9169         RLD->getExtensionType() != ISD::EXTLOAD) ||
9170        // FIXME: this discards src value information.  This is
9171        // over-conservative. It would be beneficial to be able to remember
9172        // both potential memory locations.  Since we are discarding
9173        // src value info, don't do the transformation if the memory
9174        // locations are not in the default address space.
9175        LLD->getPointerInfo().getAddrSpace() != 0 ||
9176        RLD->getPointerInfo().getAddrSpace() != 0)
9177      return false;
9178
9179    // Check that the select condition doesn't reach either load.  If so,
9180    // folding this will induce a cycle into the DAG.  If not, this is safe to
9181    // xform, so create a select of the addresses.
9182    SDValue Addr;
9183    if (TheSelect->getOpcode() == ISD::SELECT) {
9184      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9185      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9186          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9187        return false;
9188      // The loads must not depend on one another.
9189      if (LLD->isPredecessorOf(RLD) ||
9190          RLD->isPredecessorOf(LLD))
9191        return false;
9192      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9193                         LLD->getBasePtr().getValueType(),
9194                         TheSelect->getOperand(0), LLD->getBasePtr(),
9195                         RLD->getBasePtr());
9196    } else {  // Otherwise SELECT_CC
9197      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9198      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9199
9200      if ((LLD->hasAnyUseOfValue(1) &&
9201           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9202          (RLD->hasAnyUseOfValue(1) &&
9203           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9204        return false;
9205
9206      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9207                         LLD->getBasePtr().getValueType(),
9208                         TheSelect->getOperand(0),
9209                         TheSelect->getOperand(1),
9210                         LLD->getBasePtr(), RLD->getBasePtr(),
9211                         TheSelect->getOperand(4));
9212    }
9213
9214    SDValue Load;
9215    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9216      Load = DAG.getLoad(TheSelect->getValueType(0),
9217                         TheSelect->getDebugLoc(),
9218                         // FIXME: Discards pointer info.
9219                         LLD->getChain(), Addr, MachinePointerInfo(),
9220                         LLD->isVolatile(), LLD->isNonTemporal(),
9221                         LLD->isInvariant(), LLD->getAlignment());
9222    } else {
9223      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9224                            RLD->getExtensionType() : LLD->getExtensionType(),
9225                            TheSelect->getDebugLoc(),
9226                            TheSelect->getValueType(0),
9227                            // FIXME: Discards pointer info.
9228                            LLD->getChain(), Addr, MachinePointerInfo(),
9229                            LLD->getMemoryVT(), LLD->isVolatile(),
9230                            LLD->isNonTemporal(), LLD->getAlignment());
9231    }
9232
9233    // Users of the select now use the result of the load.
9234    CombineTo(TheSelect, Load);
9235
9236    // Users of the old loads now use the new load's chain.  We know the
9237    // old-load value is dead now.
9238    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9239    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9240    return true;
9241  }
9242
9243  return false;
9244}
9245
9246/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9247/// where 'cond' is the comparison specified by CC.
9248SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9249                                      SDValue N2, SDValue N3,
9250                                      ISD::CondCode CC, bool NotExtCompare) {
9251  // (x ? y : y) -> y.
9252  if (N2 == N3) return N2;
9253
9254  EVT VT = N2.getValueType();
9255  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9256  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9257  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9258
9259  // Determine if the condition we're dealing with is constant
9260  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9261                              N0, N1, CC, DL, false);
9262  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9263  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9264
9265  // fold select_cc true, x, y -> x
9266  if (SCCC && !SCCC->isNullValue())
9267    return N2;
9268  // fold select_cc false, x, y -> y
9269  if (SCCC && SCCC->isNullValue())
9270    return N3;
9271
9272  // Check to see if we can simplify the select into an fabs node
9273  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9274    // Allow either -0.0 or 0.0
9275    if (CFP->getValueAPF().isZero()) {
9276      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9277      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9278          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9279          N2 == N3.getOperand(0))
9280        return DAG.getNode(ISD::FABS, DL, VT, N0);
9281
9282      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9283      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9284          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9285          N2.getOperand(0) == N3)
9286        return DAG.getNode(ISD::FABS, DL, VT, N3);
9287    }
9288  }
9289
9290  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9291  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9292  // in it.  This is a win when the constant is not otherwise available because
9293  // it replaces two constant pool loads with one.  We only do this if the FP
9294  // type is known to be legal, because if it isn't, then we are before legalize
9295  // types an we want the other legalization to happen first (e.g. to avoid
9296  // messing with soft float) and if the ConstantFP is not legal, because if
9297  // it is legal, we may not need to store the FP constant in a constant pool.
9298  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9299    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9300      if (TLI.isTypeLegal(N2.getValueType()) &&
9301          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9302           TargetLowering::Legal) &&
9303          // If both constants have multiple uses, then we won't need to do an
9304          // extra load, they are likely around in registers for other users.
9305          (TV->hasOneUse() || FV->hasOneUse())) {
9306        Constant *Elts[] = {
9307          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9308          const_cast<ConstantFP*>(TV->getConstantFPValue())
9309        };
9310        Type *FPTy = Elts[0]->getType();
9311        const DataLayout &TD = *TLI.getDataLayout();
9312
9313        // Create a ConstantArray of the two constants.
9314        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9315        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9316                                            TD.getPrefTypeAlignment(FPTy));
9317        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9318
9319        // Get the offsets to the 0 and 1 element of the array so that we can
9320        // select between them.
9321        SDValue Zero = DAG.getIntPtrConstant(0);
9322        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9323        SDValue One = DAG.getIntPtrConstant(EltSize);
9324
9325        SDValue Cond = DAG.getSetCC(DL,
9326                                    TLI.getSetCCResultType(N0.getValueType()),
9327                                    N0, N1, CC);
9328        AddToWorkList(Cond.getNode());
9329        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9330                                        Cond, One, Zero);
9331        AddToWorkList(CstOffset.getNode());
9332        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9333                            CstOffset);
9334        AddToWorkList(CPIdx.getNode());
9335        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9336                           MachinePointerInfo::getConstantPool(), false,
9337                           false, false, Alignment);
9338
9339      }
9340    }
9341
9342  // Check to see if we can perform the "gzip trick", transforming
9343  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9344  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9345      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9346       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9347    EVT XType = N0.getValueType();
9348    EVT AType = N2.getValueType();
9349    if (XType.bitsGE(AType)) {
9350      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9351      // single-bit constant.
9352      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9353        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9354        ShCtV = XType.getSizeInBits()-ShCtV-1;
9355        SDValue ShCt = DAG.getConstant(ShCtV,
9356                                       getShiftAmountTy(N0.getValueType()));
9357        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9358                                    XType, N0, ShCt);
9359        AddToWorkList(Shift.getNode());
9360
9361        if (XType.bitsGT(AType)) {
9362          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9363          AddToWorkList(Shift.getNode());
9364        }
9365
9366        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9367      }
9368
9369      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9370                                  XType, N0,
9371                                  DAG.getConstant(XType.getSizeInBits()-1,
9372                                         getShiftAmountTy(N0.getValueType())));
9373      AddToWorkList(Shift.getNode());
9374
9375      if (XType.bitsGT(AType)) {
9376        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9377        AddToWorkList(Shift.getNode());
9378      }
9379
9380      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9381    }
9382  }
9383
9384  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9385  // where y is has a single bit set.
9386  // A plaintext description would be, we can turn the SELECT_CC into an AND
9387  // when the condition can be materialized as an all-ones register.  Any
9388  // single bit-test can be materialized as an all-ones register with
9389  // shift-left and shift-right-arith.
9390  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9391      N0->getValueType(0) == VT &&
9392      N1C && N1C->isNullValue() &&
9393      N2C && N2C->isNullValue()) {
9394    SDValue AndLHS = N0->getOperand(0);
9395    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9396    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9397      // Shift the tested bit over the sign bit.
9398      APInt AndMask = ConstAndRHS->getAPIntValue();
9399      SDValue ShlAmt =
9400        DAG.getConstant(AndMask.countLeadingZeros(),
9401                        getShiftAmountTy(AndLHS.getValueType()));
9402      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9403
9404      // Now arithmetic right shift it all the way over, so the result is either
9405      // all-ones, or zero.
9406      SDValue ShrAmt =
9407        DAG.getConstant(AndMask.getBitWidth()-1,
9408                        getShiftAmountTy(Shl.getValueType()));
9409      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9410
9411      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9412    }
9413  }
9414
9415  // fold select C, 16, 0 -> shl C, 4
9416  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9417    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9418      TargetLowering::ZeroOrOneBooleanContent) {
9419
9420    // If the caller doesn't want us to simplify this into a zext of a compare,
9421    // don't do it.
9422    if (NotExtCompare && N2C->getAPIntValue() == 1)
9423      return SDValue();
9424
9425    // Get a SetCC of the condition
9426    // NOTE: Don't create a SETCC if it's not legal on this target.
9427    if (!LegalOperations ||
9428        TLI.isOperationLegal(ISD::SETCC,
9429          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9430      SDValue Temp, SCC;
9431      // cast from setcc result type to select result type
9432      if (LegalTypes) {
9433        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9434                            N0, N1, CC);
9435        if (N2.getValueType().bitsLT(SCC.getValueType()))
9436          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9437                                        N2.getValueType());
9438        else
9439          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9440                             N2.getValueType(), SCC);
9441      } else {
9442        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9443        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9444                           N2.getValueType(), SCC);
9445      }
9446
9447      AddToWorkList(SCC.getNode());
9448      AddToWorkList(Temp.getNode());
9449
9450      if (N2C->getAPIntValue() == 1)
9451        return Temp;
9452
9453      // shl setcc result by log2 n2c
9454      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9455                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9456                                         getShiftAmountTy(Temp.getValueType())));
9457    }
9458  }
9459
9460  // Check to see if this is the equivalent of setcc
9461  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9462  // otherwise, go ahead with the folds.
9463  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9464    EVT XType = N0.getValueType();
9465    if (!LegalOperations ||
9466        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9467      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9468      if (Res.getValueType() != VT)
9469        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9470      return Res;
9471    }
9472
9473    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9474    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9475        (!LegalOperations ||
9476         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9477      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9478      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9479                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9480                                       getShiftAmountTy(Ctlz.getValueType())));
9481    }
9482    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9483    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9484      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9485                                  XType, DAG.getConstant(0, XType), N0);
9486      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9487      return DAG.getNode(ISD::SRL, DL, XType,
9488                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9489                         DAG.getConstant(XType.getSizeInBits()-1,
9490                                         getShiftAmountTy(XType)));
9491    }
9492    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9493    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9494      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9495                                 DAG.getConstant(XType.getSizeInBits()-1,
9496                                         getShiftAmountTy(N0.getValueType())));
9497      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9498    }
9499  }
9500
9501  // Check to see if this is an integer abs.
9502  // select_cc setg[te] X,  0,  X, -X ->
9503  // select_cc setgt    X, -1,  X, -X ->
9504  // select_cc setl[te] X,  0, -X,  X ->
9505  // select_cc setlt    X,  1, -X,  X ->
9506  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9507  if (N1C) {
9508    ConstantSDNode *SubC = NULL;
9509    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9510         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9511        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9512      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9513    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9514              (N1C->isOne() && CC == ISD::SETLT)) &&
9515             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9516      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9517
9518    EVT XType = N0.getValueType();
9519    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9520      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9521                                  N0,
9522                                  DAG.getConstant(XType.getSizeInBits()-1,
9523                                         getShiftAmountTy(N0.getValueType())));
9524      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9525                                XType, N0, Shift);
9526      AddToWorkList(Shift.getNode());
9527      AddToWorkList(Add.getNode());
9528      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9529    }
9530  }
9531
9532  return SDValue();
9533}
9534
9535/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9536SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9537                                   SDValue N1, ISD::CondCode Cond,
9538                                   DebugLoc DL, bool foldBooleans) {
9539  TargetLowering::DAGCombinerInfo
9540    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
9541  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9542}
9543
9544/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9545/// return a DAG expression to select that will generate the same value by
9546/// multiplying by a magic number.  See:
9547/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9548SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9549  std::vector<SDNode*> Built;
9550  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9551
9552  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9553       ii != ee; ++ii)
9554    AddToWorkList(*ii);
9555  return S;
9556}
9557
9558/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9559/// return a DAG expression to select that will generate the same value by
9560/// multiplying by a magic number.  See:
9561/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9562SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9563  std::vector<SDNode*> Built;
9564  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9565
9566  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9567       ii != ee; ++ii)
9568    AddToWorkList(*ii);
9569  return S;
9570}
9571
9572/// FindBaseOffset - Return true if base is a frame index, which is known not
9573// to alias with anything but itself.  Provides base object and offset as
9574// results.
9575static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9576                           const GlobalValue *&GV, const void *&CV) {
9577  // Assume it is a primitive operation.
9578  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9579
9580  // If it's an adding a simple constant then integrate the offset.
9581  if (Base.getOpcode() == ISD::ADD) {
9582    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9583      Base = Base.getOperand(0);
9584      Offset += C->getZExtValue();
9585    }
9586  }
9587
9588  // Return the underlying GlobalValue, and update the Offset.  Return false
9589  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9590  // by multiple nodes with different offsets.
9591  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9592    GV = G->getGlobal();
9593    Offset += G->getOffset();
9594    return false;
9595  }
9596
9597  // Return the underlying Constant value, and update the Offset.  Return false
9598  // for ConstantSDNodes since the same constant pool entry may be represented
9599  // by multiple nodes with different offsets.
9600  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9601    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9602                                         : (const void *)C->getConstVal();
9603    Offset += C->getOffset();
9604    return false;
9605  }
9606  // If it's any of the following then it can't alias with anything but itself.
9607  return isa<FrameIndexSDNode>(Base);
9608}
9609
9610/// isAlias - Return true if there is any possibility that the two addresses
9611/// overlap.
9612bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9613                          const Value *SrcValue1, int SrcValueOffset1,
9614                          unsigned SrcValueAlign1,
9615                          const MDNode *TBAAInfo1,
9616                          SDValue Ptr2, int64_t Size2,
9617                          const Value *SrcValue2, int SrcValueOffset2,
9618                          unsigned SrcValueAlign2,
9619                          const MDNode *TBAAInfo2) const {
9620  // If they are the same then they must be aliases.
9621  if (Ptr1 == Ptr2) return true;
9622
9623  // Gather base node and offset information.
9624  SDValue Base1, Base2;
9625  int64_t Offset1, Offset2;
9626  const GlobalValue *GV1, *GV2;
9627  const void *CV1, *CV2;
9628  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9629  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9630
9631  // If they have a same base address then check to see if they overlap.
9632  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9633    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9634
9635  // It is possible for different frame indices to alias each other, mostly
9636  // when tail call optimization reuses return address slots for arguments.
9637  // To catch this case, look up the actual index of frame indices to compute
9638  // the real alias relationship.
9639  if (isFrameIndex1 && isFrameIndex2) {
9640    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9641    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9642    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9643    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9644  }
9645
9646  // Otherwise, if we know what the bases are, and they aren't identical, then
9647  // we know they cannot alias.
9648  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9649    return false;
9650
9651  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9652  // compared to the size and offset of the access, we may be able to prove they
9653  // do not alias.  This check is conservative for now to catch cases created by
9654  // splitting vector types.
9655  if ((SrcValueAlign1 == SrcValueAlign2) &&
9656      (SrcValueOffset1 != SrcValueOffset2) &&
9657      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9658    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9659    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9660
9661    // There is no overlap between these relatively aligned accesses of similar
9662    // size, return no alias.
9663    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9664      return false;
9665  }
9666
9667  if (CombinerGlobalAA) {
9668    // Use alias analysis information.
9669    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9670    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9671    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9672    AliasAnalysis::AliasResult AAResult =
9673      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9674               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9675    if (AAResult == AliasAnalysis::NoAlias)
9676      return false;
9677  }
9678
9679  // Otherwise we have to assume they alias.
9680  return true;
9681}
9682
9683/// FindAliasInfo - Extracts the relevant alias information from the memory
9684/// node.  Returns true if the operand was a load.
9685bool DAGCombiner::FindAliasInfo(SDNode *N,
9686                                SDValue &Ptr, int64_t &Size,
9687                                const Value *&SrcValue,
9688                                int &SrcValueOffset,
9689                                unsigned &SrcValueAlign,
9690                                const MDNode *&TBAAInfo) const {
9691  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9692
9693  Ptr = LS->getBasePtr();
9694  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9695  SrcValue = LS->getSrcValue();
9696  SrcValueOffset = LS->getSrcValueOffset();
9697  SrcValueAlign = LS->getOriginalAlignment();
9698  TBAAInfo = LS->getTBAAInfo();
9699  return isa<LoadSDNode>(LS);
9700}
9701
9702/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9703/// looking for aliasing nodes and adding them to the Aliases vector.
9704void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9705                                   SmallVector<SDValue, 8> &Aliases) {
9706  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9707  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9708
9709  // Get alias information for node.
9710  SDValue Ptr;
9711  int64_t Size;
9712  const Value *SrcValue;
9713  int SrcValueOffset;
9714  unsigned SrcValueAlign;
9715  const MDNode *SrcTBAAInfo;
9716  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9717                              SrcValueAlign, SrcTBAAInfo);
9718
9719  // Starting off.
9720  Chains.push_back(OriginalChain);
9721  unsigned Depth = 0;
9722
9723  // Look at each chain and determine if it is an alias.  If so, add it to the
9724  // aliases list.  If not, then continue up the chain looking for the next
9725  // candidate.
9726  while (!Chains.empty()) {
9727    SDValue Chain = Chains.back();
9728    Chains.pop_back();
9729
9730    // For TokenFactor nodes, look at each operand and only continue up the
9731    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9732    // find more and revert to original chain since the xform is unlikely to be
9733    // profitable.
9734    //
9735    // FIXME: The depth check could be made to return the last non-aliasing
9736    // chain we found before we hit a tokenfactor rather than the original
9737    // chain.
9738    if (Depth > 6 || Aliases.size() == 2) {
9739      Aliases.clear();
9740      Aliases.push_back(OriginalChain);
9741      break;
9742    }
9743
9744    // Don't bother if we've been before.
9745    if (!Visited.insert(Chain.getNode()))
9746      continue;
9747
9748    switch (Chain.getOpcode()) {
9749    case ISD::EntryToken:
9750      // Entry token is ideal chain operand, but handled in FindBetterChain.
9751      break;
9752
9753    case ISD::LOAD:
9754    case ISD::STORE: {
9755      // Get alias information for Chain.
9756      SDValue OpPtr;
9757      int64_t OpSize;
9758      const Value *OpSrcValue;
9759      int OpSrcValueOffset;
9760      unsigned OpSrcValueAlign;
9761      const MDNode *OpSrcTBAAInfo;
9762      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9763                                    OpSrcValue, OpSrcValueOffset,
9764                                    OpSrcValueAlign,
9765                                    OpSrcTBAAInfo);
9766
9767      // If chain is alias then stop here.
9768      if (!(IsLoad && IsOpLoad) &&
9769          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9770                  SrcTBAAInfo,
9771                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9772                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9773        Aliases.push_back(Chain);
9774      } else {
9775        // Look further up the chain.
9776        Chains.push_back(Chain.getOperand(0));
9777        ++Depth;
9778      }
9779      break;
9780    }
9781
9782    case ISD::TokenFactor:
9783      // We have to check each of the operands of the token factor for "small"
9784      // token factors, so we queue them up.  Adding the operands to the queue
9785      // (stack) in reverse order maintains the original order and increases the
9786      // likelihood that getNode will find a matching token factor (CSE.)
9787      if (Chain.getNumOperands() > 16) {
9788        Aliases.push_back(Chain);
9789        break;
9790      }
9791      for (unsigned n = Chain.getNumOperands(); n;)
9792        Chains.push_back(Chain.getOperand(--n));
9793      ++Depth;
9794      break;
9795
9796    default:
9797      // For all other instructions we will just have to take what we can get.
9798      Aliases.push_back(Chain);
9799      break;
9800    }
9801  }
9802}
9803
9804/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9805/// for a better chain (aliasing node.)
9806SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9807  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9808
9809  // Accumulate all the aliases to this node.
9810  GatherAllAliases(N, OldChain, Aliases);
9811
9812  // If no operands then chain to entry token.
9813  if (Aliases.size() == 0)
9814    return DAG.getEntryNode();
9815
9816  // If a single operand then chain to it.  We don't need to revisit it.
9817  if (Aliases.size() == 1)
9818    return Aliases[0];
9819
9820  // Construct a custom tailored token factor.
9821  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9822                     &Aliases[0], Aliases.size());
9823}
9824
9825// SelectionDAG::Combine - This is the entry point for the file.
9826//
9827void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9828                           CodeGenOpt::Level OptLevel) {
9829  /// run - This is the main entry point to this class.
9830  ///
9831  DAGCombiner(*this, AA, OptLevel).Run(Level);
9832}
9833