DAGCombiner.cpp revision 95a5e0507e07fa3ef7c61aade9eb0efd1d716a25
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: divide by zero is currently left unfolded.  do we want to turn this
26//        into an undef?
27// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "dagcombine"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/CommandLine.h"
41#include <algorithm>
42using namespace llvm;
43
44STATISTIC(NodesCombined   , "Number of dag nodes combined");
45STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
46STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
47
48namespace {
49#ifndef NDEBUG
50  static cl::opt<bool>
51    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
52                    cl::desc("Pop up a window to show dags before the first "
53                             "dag combine pass"));
54  static cl::opt<bool>
55    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
56                    cl::desc("Pop up a window to show dags before the second "
57                             "dag combine pass"));
58#else
59  static const bool ViewDAGCombine1 = false;
60  static const bool ViewDAGCombine2 = false;
61#endif
62
63  static cl::opt<bool>
64    CombinerAA("combiner-alias-analysis", cl::Hidden,
65               cl::desc("Turn on alias analysis during testing"));
66
67  static cl::opt<bool>
68    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
69               cl::desc("Include global information in alias analysis"));
70
71//------------------------------ DAGCombiner ---------------------------------//
72
73  class VISIBILITY_HIDDEN DAGCombiner {
74    SelectionDAG &DAG;
75    TargetLowering &TLI;
76    bool AfterLegalize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    std::vector<SDNode*> WorkList;
80
81    // AA - Used for DAG load/store alias analysis.
82    AliasAnalysis &AA;
83
84    /// AddUsersToWorkList - When an instruction is simplified, add all users of
85    /// the instruction to the work lists because they might get more simplified
86    /// now.
87    ///
88    void AddUsersToWorkList(SDNode *N) {
89      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
90           UI != UE; ++UI)
91        AddToWorkList(*UI);
92    }
93
94    /// removeFromWorkList - remove all instances of N from the worklist.
95    ///
96    void removeFromWorkList(SDNode *N) {
97      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
98                     WorkList.end());
99    }
100
101  public:
102    /// AddToWorkList - Add to the work list making sure it's instance is at the
103    /// the back (next to be processed.)
104    void AddToWorkList(SDNode *N) {
105      removeFromWorkList(N);
106      WorkList.push_back(N);
107    }
108
109    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
110                        bool AddTo = true) {
111      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
112      ++NodesCombined;
113      DOUT << "\nReplacing.1 "; DEBUG(N->dump());
114      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
115      DOUT << " and " << NumTo-1 << " other values\n";
116      std::vector<SDNode*> NowDead;
117      DAG.ReplaceAllUsesWith(N, To, &NowDead);
118
119      if (AddTo) {
120        // Push the new nodes and any users onto the worklist
121        for (unsigned i = 0, e = NumTo; i != e; ++i) {
122          AddToWorkList(To[i].Val);
123          AddUsersToWorkList(To[i].Val);
124        }
125      }
126
127      // Nodes can be reintroduced into the worklist.  Make sure we do not
128      // process a node that has been replaced.
129      removeFromWorkList(N);
130      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
131        removeFromWorkList(NowDead[i]);
132
133      // Finally, since the node is now dead, remove it from the graph.
134      DAG.DeleteNode(N);
135      return SDOperand(N, 0);
136    }
137
138    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
139      return CombineTo(N, &Res, 1, AddTo);
140    }
141
142    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
143                        bool AddTo = true) {
144      SDOperand To[] = { Res0, Res1 };
145      return CombineTo(N, To, 2, AddTo);
146    }
147  private:
148
149    /// SimplifyDemandedBits - Check the specified integer node value to see if
150    /// it can be simplified or if things it uses can be simplified by bit
151    /// propagation.  If so, return true.
152    bool SimplifyDemandedBits(SDOperand Op) {
153      TargetLowering::TargetLoweringOpt TLO(DAG);
154      uint64_t KnownZero, KnownOne;
155      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
156      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
157        return false;
158
159      // Revisit the node.
160      AddToWorkList(Op.Val);
161
162      // Replace the old value with the new one.
163      ++NodesCombined;
164      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump());
165      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
166      DOUT << '\n';
167
168      std::vector<SDNode*> NowDead;
169      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
170
171      // Push the new node and any (possibly new) users onto the worklist.
172      AddToWorkList(TLO.New.Val);
173      AddUsersToWorkList(TLO.New.Val);
174
175      // Nodes can end up on the worklist more than once.  Make sure we do
176      // not process a node that has been replaced.
177      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
178        removeFromWorkList(NowDead[i]);
179
180      // Finally, if the node is now dead, remove it from the graph.  The node
181      // may not be dead if the replacement process recursively simplified to
182      // something else needing this node.
183      if (TLO.Old.Val->use_empty()) {
184        removeFromWorkList(TLO.Old.Val);
185        DAG.DeleteNode(TLO.Old.Val);
186      }
187      return true;
188    }
189
190    bool CombineToPreIndexedLoadStore(SDNode *N);
191    bool CombineToPostIndexedLoadStore(SDNode *N);
192
193
194    /// visit - call the node-specific routine that knows how to fold each
195    /// particular type of node.
196    SDOperand visit(SDNode *N);
197
198    // Visitation implementation - Implement dag node combining for different
199    // node types.  The semantics are as follows:
200    // Return Value:
201    //   SDOperand.Val == 0   - No change was made
202    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
203    //   otherwise            - N should be replaced by the returned Operand.
204    //
205    SDOperand visitTokenFactor(SDNode *N);
206    SDOperand visitADD(SDNode *N);
207    SDOperand visitSUB(SDNode *N);
208    SDOperand visitADDC(SDNode *N);
209    SDOperand visitADDE(SDNode *N);
210    SDOperand visitMUL(SDNode *N);
211    SDOperand visitSDIV(SDNode *N);
212    SDOperand visitUDIV(SDNode *N);
213    SDOperand visitSREM(SDNode *N);
214    SDOperand visitUREM(SDNode *N);
215    SDOperand visitMULHU(SDNode *N);
216    SDOperand visitMULHS(SDNode *N);
217    SDOperand visitAND(SDNode *N);
218    SDOperand visitOR(SDNode *N);
219    SDOperand visitXOR(SDNode *N);
220    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
221    SDOperand visitSHL(SDNode *N);
222    SDOperand visitSRA(SDNode *N);
223    SDOperand visitSRL(SDNode *N);
224    SDOperand visitCTLZ(SDNode *N);
225    SDOperand visitCTTZ(SDNode *N);
226    SDOperand visitCTPOP(SDNode *N);
227    SDOperand visitSELECT(SDNode *N);
228    SDOperand visitSELECT_CC(SDNode *N);
229    SDOperand visitSETCC(SDNode *N);
230    SDOperand visitSIGN_EXTEND(SDNode *N);
231    SDOperand visitZERO_EXTEND(SDNode *N);
232    SDOperand visitANY_EXTEND(SDNode *N);
233    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
234    SDOperand visitTRUNCATE(SDNode *N);
235    SDOperand visitBIT_CONVERT(SDNode *N);
236    SDOperand visitVBIT_CONVERT(SDNode *N);
237    SDOperand visitFADD(SDNode *N);
238    SDOperand visitFSUB(SDNode *N);
239    SDOperand visitFMUL(SDNode *N);
240    SDOperand visitFDIV(SDNode *N);
241    SDOperand visitFREM(SDNode *N);
242    SDOperand visitFCOPYSIGN(SDNode *N);
243    SDOperand visitSINT_TO_FP(SDNode *N);
244    SDOperand visitUINT_TO_FP(SDNode *N);
245    SDOperand visitFP_TO_SINT(SDNode *N);
246    SDOperand visitFP_TO_UINT(SDNode *N);
247    SDOperand visitFP_ROUND(SDNode *N);
248    SDOperand visitFP_ROUND_INREG(SDNode *N);
249    SDOperand visitFP_EXTEND(SDNode *N);
250    SDOperand visitFNEG(SDNode *N);
251    SDOperand visitFABS(SDNode *N);
252    SDOperand visitBRCOND(SDNode *N);
253    SDOperand visitBR_CC(SDNode *N);
254    SDOperand visitLOAD(SDNode *N);
255    SDOperand visitSTORE(SDNode *N);
256    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
257    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
258    SDOperand visitVBUILD_VECTOR(SDNode *N);
259    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
260    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
261
262    SDOperand XformToShuffleWithZero(SDNode *N);
263    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
264
265    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
266    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
267    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
268    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
269                               SDOperand N3, ISD::CondCode CC,
270                               bool NotExtCompare = false);
271    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
272                            ISD::CondCode Cond, bool foldBooleans = true);
273    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
274    SDOperand BuildSDIV(SDNode *N);
275    SDOperand BuildUDIV(SDNode *N);
276    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
277    SDOperand ReduceLoadWidth(SDNode *N);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
282                          SmallVector<SDOperand, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDOperand Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 SDOperand Ptr2, int64_t Size2,
289                 const Value *SrcValue2, int SrcValueOffset2);
290
291    /// FindAliasInfo - Extracts the relevant alias information from the memory
292    /// node.  Returns true if the operand was a load.
293    bool FindAliasInfo(SDNode *N,
294                       SDOperand &Ptr, int64_t &Size,
295                       const Value *&SrcValue, int &SrcValueOffset);
296
297    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
298    /// looking for a better chain (aliasing node.)
299    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
300
301public:
302    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
303      : DAG(D),
304        TLI(D.getTargetLoweringInfo()),
305        AfterLegalize(false),
306        AA(A) {}
307
308    /// Run - runs the dag combiner on all nodes in the work list
309    void Run(bool RunningAfterLegalize);
310  };
311}
312
313//===----------------------------------------------------------------------===//
314//  TargetLowering::DAGCombinerInfo implementation
315//===----------------------------------------------------------------------===//
316
317void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
318  ((DAGCombiner*)DC)->AddToWorkList(N);
319}
320
321SDOperand TargetLowering::DAGCombinerInfo::
322CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
323  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
324}
325
326SDOperand TargetLowering::DAGCombinerInfo::
327CombineTo(SDNode *N, SDOperand Res) {
328  return ((DAGCombiner*)DC)->CombineTo(N, Res);
329}
330
331
332SDOperand TargetLowering::DAGCombinerInfo::
333CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
334  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
335}
336
337
338
339
340//===----------------------------------------------------------------------===//
341
342
343// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
344// that selects between the values 1 and 0, making it equivalent to a setcc.
345// Also, set the incoming LHS, RHS, and CC references to the appropriate
346// nodes based on the type of node we are checking.  This simplifies life a
347// bit for the callers.
348static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
349                              SDOperand &CC) {
350  if (N.getOpcode() == ISD::SETCC) {
351    LHS = N.getOperand(0);
352    RHS = N.getOperand(1);
353    CC  = N.getOperand(2);
354    return true;
355  }
356  if (N.getOpcode() == ISD::SELECT_CC &&
357      N.getOperand(2).getOpcode() == ISD::Constant &&
358      N.getOperand(3).getOpcode() == ISD::Constant &&
359      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
360      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
361    LHS = N.getOperand(0);
362    RHS = N.getOperand(1);
363    CC  = N.getOperand(4);
364    return true;
365  }
366  return false;
367}
368
369// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
370// one use.  If this is true, it allows the users to invert the operation for
371// free when it is profitable to do so.
372static bool isOneUseSetCC(SDOperand N) {
373  SDOperand N0, N1, N2;
374  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
375    return true;
376  return false;
377}
378
379SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
380  MVT::ValueType VT = N0.getValueType();
381  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
382  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
383  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
384    if (isa<ConstantSDNode>(N1)) {
385      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
386      AddToWorkList(OpNode.Val);
387      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
388    } else if (N0.hasOneUse()) {
389      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
390      AddToWorkList(OpNode.Val);
391      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
392    }
393  }
394  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
395  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
396  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
397    if (isa<ConstantSDNode>(N0)) {
398      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
399      AddToWorkList(OpNode.Val);
400      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
401    } else if (N1.hasOneUse()) {
402      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
403      AddToWorkList(OpNode.Val);
404      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
405    }
406  }
407  return SDOperand();
408}
409
410void DAGCombiner::Run(bool RunningAfterLegalize) {
411  // set the instance variable, so that the various visit routines may use it.
412  AfterLegalize = RunningAfterLegalize;
413
414  // Add all the dag nodes to the worklist.
415  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
416       E = DAG.allnodes_end(); I != E; ++I)
417    WorkList.push_back(I);
418
419  // Create a dummy node (which is not added to allnodes), that adds a reference
420  // to the root node, preventing it from being deleted, and tracking any
421  // changes of the root.
422  HandleSDNode Dummy(DAG.getRoot());
423
424  // The root of the dag may dangle to deleted nodes until the dag combiner is
425  // done.  Set it to null to avoid confusion.
426  DAG.setRoot(SDOperand());
427
428  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
429  TargetLowering::DAGCombinerInfo
430    DagCombineInfo(DAG, !RunningAfterLegalize, false, this);
431
432  // while the worklist isn't empty, inspect the node on the end of it and
433  // try and combine it.
434  while (!WorkList.empty()) {
435    SDNode *N = WorkList.back();
436    WorkList.pop_back();
437
438    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
439    // N is deleted from the DAG, since they too may now be dead or may have a
440    // reduced number of uses, allowing other xforms.
441    if (N->use_empty() && N != &Dummy) {
442      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
443        AddToWorkList(N->getOperand(i).Val);
444
445      DAG.DeleteNode(N);
446      continue;
447    }
448
449    SDOperand RV = visit(N);
450
451    // If nothing happened, try a target-specific DAG combine.
452    if (RV.Val == 0) {
453      assert(N->getOpcode() != ISD::DELETED_NODE &&
454             "Node was deleted but visit returned NULL!");
455      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
456          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
457        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
458    }
459
460    if (RV.Val) {
461      ++NodesCombined;
462      // If we get back the same node we passed in, rather than a new node or
463      // zero, we know that the node must have defined multiple values and
464      // CombineTo was used.  Since CombineTo takes care of the worklist
465      // mechanics for us, we have no work to do in this case.
466      if (RV.Val != N) {
467        assert(N->getOpcode() != ISD::DELETED_NODE &&
468               RV.Val->getOpcode() != ISD::DELETED_NODE &&
469               "Node was deleted but visit returned new node!");
470
471        DOUT << "\nReplacing.3 "; DEBUG(N->dump());
472        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
473        DOUT << '\n';
474        std::vector<SDNode*> NowDead;
475        if (N->getNumValues() == RV.Val->getNumValues())
476          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
477        else {
478          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
479          SDOperand OpV = RV;
480          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
481        }
482
483        // Push the new node and any users onto the worklist
484        AddToWorkList(RV.Val);
485        AddUsersToWorkList(RV.Val);
486
487        // Nodes can be reintroduced into the worklist.  Make sure we do not
488        // process a node that has been replaced.
489        removeFromWorkList(N);
490        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
491          removeFromWorkList(NowDead[i]);
492
493        // Finally, since the node is now dead, remove it from the graph.
494        DAG.DeleteNode(N);
495      }
496    }
497  }
498
499  // If the root changed (e.g. it was a dead load, update the root).
500  DAG.setRoot(Dummy.getValue());
501}
502
503SDOperand DAGCombiner::visit(SDNode *N) {
504  switch(N->getOpcode()) {
505  default: break;
506  case ISD::TokenFactor:        return visitTokenFactor(N);
507  case ISD::ADD:                return visitADD(N);
508  case ISD::SUB:                return visitSUB(N);
509  case ISD::ADDC:               return visitADDC(N);
510  case ISD::ADDE:               return visitADDE(N);
511  case ISD::MUL:                return visitMUL(N);
512  case ISD::SDIV:               return visitSDIV(N);
513  case ISD::UDIV:               return visitUDIV(N);
514  case ISD::SREM:               return visitSREM(N);
515  case ISD::UREM:               return visitUREM(N);
516  case ISD::MULHU:              return visitMULHU(N);
517  case ISD::MULHS:              return visitMULHS(N);
518  case ISD::AND:                return visitAND(N);
519  case ISD::OR:                 return visitOR(N);
520  case ISD::XOR:                return visitXOR(N);
521  case ISD::SHL:                return visitSHL(N);
522  case ISD::SRA:                return visitSRA(N);
523  case ISD::SRL:                return visitSRL(N);
524  case ISD::CTLZ:               return visitCTLZ(N);
525  case ISD::CTTZ:               return visitCTTZ(N);
526  case ISD::CTPOP:              return visitCTPOP(N);
527  case ISD::SELECT:             return visitSELECT(N);
528  case ISD::SELECT_CC:          return visitSELECT_CC(N);
529  case ISD::SETCC:              return visitSETCC(N);
530  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
531  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
532  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
533  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
534  case ISD::TRUNCATE:           return visitTRUNCATE(N);
535  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
536  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
537  case ISD::FADD:               return visitFADD(N);
538  case ISD::FSUB:               return visitFSUB(N);
539  case ISD::FMUL:               return visitFMUL(N);
540  case ISD::FDIV:               return visitFDIV(N);
541  case ISD::FREM:               return visitFREM(N);
542  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
543  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
544  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
545  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
546  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
547  case ISD::FP_ROUND:           return visitFP_ROUND(N);
548  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
549  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
550  case ISD::FNEG:               return visitFNEG(N);
551  case ISD::FABS:               return visitFABS(N);
552  case ISD::BRCOND:             return visitBRCOND(N);
553  case ISD::BR_CC:              return visitBR_CC(N);
554  case ISD::LOAD:               return visitLOAD(N);
555  case ISD::STORE:              return visitSTORE(N);
556  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
557  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
558  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
559  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
560  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
561  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
562  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
563  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
564  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
565  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
566  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
567  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
568  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
569  }
570  return SDOperand();
571}
572
573/// getInputChainForNode - Given a node, return its input chain if it has one,
574/// otherwise return a null sd operand.
575static SDOperand getInputChainForNode(SDNode *N) {
576  if (unsigned NumOps = N->getNumOperands()) {
577    if (N->getOperand(0).getValueType() == MVT::Other)
578      return N->getOperand(0);
579    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
580      return N->getOperand(NumOps-1);
581    for (unsigned i = 1; i < NumOps-1; ++i)
582      if (N->getOperand(i).getValueType() == MVT::Other)
583        return N->getOperand(i);
584  }
585  return SDOperand(0, 0);
586}
587
588SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
589  // If N has two operands, where one has an input chain equal to the other,
590  // the 'other' chain is redundant.
591  if (N->getNumOperands() == 2) {
592    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
593      return N->getOperand(0);
594    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
595      return N->getOperand(1);
596  }
597
598
599  SmallVector<SDNode *, 8> TFs;   // List of token factors to visit.
600  SmallVector<SDOperand, 8> Ops;  // Ops for replacing token factor.
601  bool Changed = false;           // If we should replace this token factor.
602
603  // Start out with this token factor.
604  TFs.push_back(N);
605
606  // Iterate through token factors.  The TFs grows when new token factors are
607  // encountered.
608  for (unsigned i = 0; i < TFs.size(); ++i) {
609    SDNode *TF = TFs[i];
610
611    // Check each of the operands.
612    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
613      SDOperand Op = TF->getOperand(i);
614
615      switch (Op.getOpcode()) {
616      case ISD::EntryToken:
617        // Entry tokens don't need to be added to the list. They are
618        // rededundant.
619        Changed = true;
620        break;
621
622      case ISD::TokenFactor:
623        if ((CombinerAA || Op.hasOneUse()) &&
624            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
625          // Queue up for processing.
626          TFs.push_back(Op.Val);
627          // Clean up in case the token factor is removed.
628          AddToWorkList(Op.Val);
629          Changed = true;
630          break;
631        }
632        // Fall thru
633
634      default:
635        // Only add if not there prior.
636        if (std::find(Ops.begin(), Ops.end(), Op) == Ops.end())
637          Ops.push_back(Op);
638        break;
639      }
640    }
641  }
642
643  SDOperand Result;
644
645  // If we've change things around then replace token factor.
646  if (Changed) {
647    if (Ops.size() == 0) {
648      // The entry token is the only possible outcome.
649      Result = DAG.getEntryNode();
650    } else {
651      // New and improved token factor.
652      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
653    }
654
655    // Don't add users to work list.
656    return CombineTo(N, Result, false);
657  }
658
659  return Result;
660}
661
662static
663SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
664  MVT::ValueType VT = N0.getValueType();
665  SDOperand N00 = N0.getOperand(0);
666  SDOperand N01 = N0.getOperand(1);
667  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
668  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
669      isa<ConstantSDNode>(N00.getOperand(1))) {
670    N0 = DAG.getNode(ISD::ADD, VT,
671                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
672                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
673    return DAG.getNode(ISD::ADD, VT, N0, N1);
674  }
675  return SDOperand();
676}
677
678SDOperand DAGCombiner::visitADD(SDNode *N) {
679  SDOperand N0 = N->getOperand(0);
680  SDOperand N1 = N->getOperand(1);
681  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
682  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
683  MVT::ValueType VT = N0.getValueType();
684
685  // fold (add c1, c2) -> c1+c2
686  if (N0C && N1C)
687    return DAG.getNode(ISD::ADD, VT, N0, N1);
688  // canonicalize constant to RHS
689  if (N0C && !N1C)
690    return DAG.getNode(ISD::ADD, VT, N1, N0);
691  // fold (add x, 0) -> x
692  if (N1C && N1C->isNullValue())
693    return N0;
694  // fold ((c1-A)+c2) -> (c1+c2)-A
695  if (N1C && N0.getOpcode() == ISD::SUB)
696    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
697      return DAG.getNode(ISD::SUB, VT,
698                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
699                         N0.getOperand(1));
700  // reassociate add
701  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
702  if (RADD.Val != 0)
703    return RADD;
704  // fold ((0-A) + B) -> B-A
705  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
706      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
707    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
708  // fold (A + (0-B)) -> A-B
709  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
710      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
711    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
712  // fold (A+(B-A)) -> B
713  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
714    return N1.getOperand(0);
715
716  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
717    return SDOperand(N, 0);
718
719  // fold (a+b) -> (a|b) iff a and b share no bits.
720  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
721    uint64_t LHSZero, LHSOne;
722    uint64_t RHSZero, RHSOne;
723    uint64_t Mask = MVT::getIntVTBitMask(VT);
724    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
725    if (LHSZero) {
726      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
727
728      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
729      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
730      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
731          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
732        return DAG.getNode(ISD::OR, VT, N0, N1);
733    }
734  }
735
736  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
737  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
738    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
739    if (Result.Val) return Result;
740  }
741  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
742    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
743    if (Result.Val) return Result;
744  }
745
746  return SDOperand();
747}
748
749SDOperand DAGCombiner::visitADDC(SDNode *N) {
750  SDOperand N0 = N->getOperand(0);
751  SDOperand N1 = N->getOperand(1);
752  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
753  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
754  MVT::ValueType VT = N0.getValueType();
755
756  // If the flag result is dead, turn this into an ADD.
757  if (N->hasNUsesOfValue(0, 1))
758    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
759                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
760
761  // canonicalize constant to RHS.
762  if (N0C && !N1C) {
763    SDOperand Ops[] = { N1, N0 };
764    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
765  }
766
767  // fold (addc x, 0) -> x + no carry out
768  if (N1C && N1C->isNullValue())
769    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
770
771  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
772  uint64_t LHSZero, LHSOne;
773  uint64_t RHSZero, RHSOne;
774  uint64_t Mask = MVT::getIntVTBitMask(VT);
775  TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
776  if (LHSZero) {
777    TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
778
779    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
780    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
781    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
782        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
783      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
784                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
785  }
786
787  return SDOperand();
788}
789
790SDOperand DAGCombiner::visitADDE(SDNode *N) {
791  SDOperand N0 = N->getOperand(0);
792  SDOperand N1 = N->getOperand(1);
793  SDOperand CarryIn = N->getOperand(2);
794  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
795  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
796  //MVT::ValueType VT = N0.getValueType();
797
798  // canonicalize constant to RHS
799  if (N0C && !N1C) {
800    SDOperand Ops[] = { N1, N0, CarryIn };
801    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
802  }
803
804  // fold (adde x, y, false) -> (addc x, y)
805  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
806    SDOperand Ops[] = { N1, N0 };
807    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
808  }
809
810  return SDOperand();
811}
812
813
814
815SDOperand DAGCombiner::visitSUB(SDNode *N) {
816  SDOperand N0 = N->getOperand(0);
817  SDOperand N1 = N->getOperand(1);
818  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
819  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
820  MVT::ValueType VT = N0.getValueType();
821
822  // fold (sub x, x) -> 0
823  if (N0 == N1)
824    return DAG.getConstant(0, N->getValueType(0));
825  // fold (sub c1, c2) -> c1-c2
826  if (N0C && N1C)
827    return DAG.getNode(ISD::SUB, VT, N0, N1);
828  // fold (sub x, c) -> (add x, -c)
829  if (N1C)
830    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
831  // fold (A+B)-A -> B
832  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
833    return N0.getOperand(1);
834  // fold (A+B)-B -> A
835  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
836    return N0.getOperand(0);
837  return SDOperand();
838}
839
840SDOperand DAGCombiner::visitMUL(SDNode *N) {
841  SDOperand N0 = N->getOperand(0);
842  SDOperand N1 = N->getOperand(1);
843  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
844  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
845  MVT::ValueType VT = N0.getValueType();
846
847  // fold (mul c1, c2) -> c1*c2
848  if (N0C && N1C)
849    return DAG.getNode(ISD::MUL, VT, N0, N1);
850  // canonicalize constant to RHS
851  if (N0C && !N1C)
852    return DAG.getNode(ISD::MUL, VT, N1, N0);
853  // fold (mul x, 0) -> 0
854  if (N1C && N1C->isNullValue())
855    return N1;
856  // fold (mul x, -1) -> 0-x
857  if (N1C && N1C->isAllOnesValue())
858    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
859  // fold (mul x, (1 << c)) -> x << c
860  if (N1C && isPowerOf2_64(N1C->getValue()))
861    return DAG.getNode(ISD::SHL, VT, N0,
862                       DAG.getConstant(Log2_64(N1C->getValue()),
863                                       TLI.getShiftAmountTy()));
864  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
865  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
866    // FIXME: If the input is something that is easily negated (e.g. a
867    // single-use add), we should put the negate there.
868    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
869                       DAG.getNode(ISD::SHL, VT, N0,
870                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
871                                            TLI.getShiftAmountTy())));
872  }
873
874  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
875  if (N1C && N0.getOpcode() == ISD::SHL &&
876      isa<ConstantSDNode>(N0.getOperand(1))) {
877    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
878    AddToWorkList(C3.Val);
879    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
880  }
881
882  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
883  // use.
884  {
885    SDOperand Sh(0,0), Y(0,0);
886    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
887    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
888        N0.Val->hasOneUse()) {
889      Sh = N0; Y = N1;
890    } else if (N1.getOpcode() == ISD::SHL &&
891               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
892      Sh = N1; Y = N0;
893    }
894    if (Sh.Val) {
895      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
896      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
897    }
898  }
899  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
900  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
901      isa<ConstantSDNode>(N0.getOperand(1))) {
902    return DAG.getNode(ISD::ADD, VT,
903                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
904                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
905  }
906
907  // reassociate mul
908  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
909  if (RMUL.Val != 0)
910    return RMUL;
911  return SDOperand();
912}
913
914SDOperand DAGCombiner::visitSDIV(SDNode *N) {
915  SDOperand N0 = N->getOperand(0);
916  SDOperand N1 = N->getOperand(1);
917  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
918  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
919  MVT::ValueType VT = N->getValueType(0);
920
921  // fold (sdiv c1, c2) -> c1/c2
922  if (N0C && N1C && !N1C->isNullValue())
923    return DAG.getNode(ISD::SDIV, VT, N0, N1);
924  // fold (sdiv X, 1) -> X
925  if (N1C && N1C->getSignExtended() == 1LL)
926    return N0;
927  // fold (sdiv X, -1) -> 0-X
928  if (N1C && N1C->isAllOnesValue())
929    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
930  // If we know the sign bits of both operands are zero, strength reduce to a
931  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
932  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
933  if (TLI.MaskedValueIsZero(N1, SignBit) &&
934      TLI.MaskedValueIsZero(N0, SignBit))
935    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
936  // fold (sdiv X, pow2) -> simple ops after legalize
937  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
938      (isPowerOf2_64(N1C->getSignExtended()) ||
939       isPowerOf2_64(-N1C->getSignExtended()))) {
940    // If dividing by powers of two is cheap, then don't perform the following
941    // fold.
942    if (TLI.isPow2DivCheap())
943      return SDOperand();
944    int64_t pow2 = N1C->getSignExtended();
945    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
946    unsigned lg2 = Log2_64(abs2);
947    // Splat the sign bit into the register
948    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
949                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
950                                                TLI.getShiftAmountTy()));
951    AddToWorkList(SGN.Val);
952    // Add (N0 < 0) ? abs2 - 1 : 0;
953    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
954                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
955                                                TLI.getShiftAmountTy()));
956    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
957    AddToWorkList(SRL.Val);
958    AddToWorkList(ADD.Val);    // Divide by pow2
959    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
960                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
961    // If we're dividing by a positive value, we're done.  Otherwise, we must
962    // negate the result.
963    if (pow2 > 0)
964      return SRA;
965    AddToWorkList(SRA.Val);
966    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
967  }
968  // if integer divide is expensive and we satisfy the requirements, emit an
969  // alternate sequence.
970  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
971      !TLI.isIntDivCheap()) {
972    SDOperand Op = BuildSDIV(N);
973    if (Op.Val) return Op;
974  }
975  return SDOperand();
976}
977
978SDOperand DAGCombiner::visitUDIV(SDNode *N) {
979  SDOperand N0 = N->getOperand(0);
980  SDOperand N1 = N->getOperand(1);
981  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
982  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
983  MVT::ValueType VT = N->getValueType(0);
984
985  // fold (udiv c1, c2) -> c1/c2
986  if (N0C && N1C && !N1C->isNullValue())
987    return DAG.getNode(ISD::UDIV, VT, N0, N1);
988  // fold (udiv x, (1 << c)) -> x >>u c
989  if (N1C && isPowerOf2_64(N1C->getValue()))
990    return DAG.getNode(ISD::SRL, VT, N0,
991                       DAG.getConstant(Log2_64(N1C->getValue()),
992                                       TLI.getShiftAmountTy()));
993  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
994  if (N1.getOpcode() == ISD::SHL) {
995    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
996      if (isPowerOf2_64(SHC->getValue())) {
997        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
998        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
999                                    DAG.getConstant(Log2_64(SHC->getValue()),
1000                                                    ADDVT));
1001        AddToWorkList(Add.Val);
1002        return DAG.getNode(ISD::SRL, VT, N0, Add);
1003      }
1004    }
1005  }
1006  // fold (udiv x, c) -> alternate
1007  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1008    SDOperand Op = BuildUDIV(N);
1009    if (Op.Val) return Op;
1010  }
1011  return SDOperand();
1012}
1013
1014SDOperand DAGCombiner::visitSREM(SDNode *N) {
1015  SDOperand N0 = N->getOperand(0);
1016  SDOperand N1 = N->getOperand(1);
1017  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1018  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1019  MVT::ValueType VT = N->getValueType(0);
1020
1021  // fold (srem c1, c2) -> c1%c2
1022  if (N0C && N1C && !N1C->isNullValue())
1023    return DAG.getNode(ISD::SREM, VT, N0, N1);
1024  // If we know the sign bits of both operands are zero, strength reduce to a
1025  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1026  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1027  if (TLI.MaskedValueIsZero(N1, SignBit) &&
1028      TLI.MaskedValueIsZero(N0, SignBit))
1029    return DAG.getNode(ISD::UREM, VT, N0, N1);
1030
1031  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1032  // the remainder operation.
1033  if (N1C && !N1C->isNullValue()) {
1034    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1035    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1036    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1037    AddToWorkList(Div.Val);
1038    AddToWorkList(Mul.Val);
1039    return Sub;
1040  }
1041
1042  return SDOperand();
1043}
1044
1045SDOperand DAGCombiner::visitUREM(SDNode *N) {
1046  SDOperand N0 = N->getOperand(0);
1047  SDOperand N1 = N->getOperand(1);
1048  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1049  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1050  MVT::ValueType VT = N->getValueType(0);
1051
1052  // fold (urem c1, c2) -> c1%c2
1053  if (N0C && N1C && !N1C->isNullValue())
1054    return DAG.getNode(ISD::UREM, VT, N0, N1);
1055  // fold (urem x, pow2) -> (and x, pow2-1)
1056  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1057    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1058  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1059  if (N1.getOpcode() == ISD::SHL) {
1060    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1061      if (isPowerOf2_64(SHC->getValue())) {
1062        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1063        AddToWorkList(Add.Val);
1064        return DAG.getNode(ISD::AND, VT, N0, Add);
1065      }
1066    }
1067  }
1068
1069  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1070  // the remainder operation.
1071  if (N1C && !N1C->isNullValue()) {
1072    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1073    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1074    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1075    AddToWorkList(Div.Val);
1076    AddToWorkList(Mul.Val);
1077    return Sub;
1078  }
1079
1080  return SDOperand();
1081}
1082
1083SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1084  SDOperand N0 = N->getOperand(0);
1085  SDOperand N1 = N->getOperand(1);
1086  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1087
1088  // fold (mulhs x, 0) -> 0
1089  if (N1C && N1C->isNullValue())
1090    return N1;
1091  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1092  if (N1C && N1C->getValue() == 1)
1093    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1094                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1095                                       TLI.getShiftAmountTy()));
1096  return SDOperand();
1097}
1098
1099SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1100  SDOperand N0 = N->getOperand(0);
1101  SDOperand N1 = N->getOperand(1);
1102  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1103
1104  // fold (mulhu x, 0) -> 0
1105  if (N1C && N1C->isNullValue())
1106    return N1;
1107  // fold (mulhu x, 1) -> 0
1108  if (N1C && N1C->getValue() == 1)
1109    return DAG.getConstant(0, N0.getValueType());
1110  return SDOperand();
1111}
1112
1113/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1114/// two operands of the same opcode, try to simplify it.
1115SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1116  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1117  MVT::ValueType VT = N0.getValueType();
1118  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1119
1120  // For each of OP in AND/OR/XOR:
1121  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1122  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1123  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1124  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1125  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1126       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1127      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1128    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1129                                   N0.getOperand(0).getValueType(),
1130                                   N0.getOperand(0), N1.getOperand(0));
1131    AddToWorkList(ORNode.Val);
1132    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1133  }
1134
1135  // For each of OP in SHL/SRL/SRA/AND...
1136  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1137  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1138  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1139  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1140       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1141      N0.getOperand(1) == N1.getOperand(1)) {
1142    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1143                                   N0.getOperand(0).getValueType(),
1144                                   N0.getOperand(0), N1.getOperand(0));
1145    AddToWorkList(ORNode.Val);
1146    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1147  }
1148
1149  return SDOperand();
1150}
1151
1152SDOperand DAGCombiner::visitAND(SDNode *N) {
1153  SDOperand N0 = N->getOperand(0);
1154  SDOperand N1 = N->getOperand(1);
1155  SDOperand LL, LR, RL, RR, CC0, CC1;
1156  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1157  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1158  MVT::ValueType VT = N1.getValueType();
1159
1160  // fold (and c1, c2) -> c1&c2
1161  if (N0C && N1C)
1162    return DAG.getNode(ISD::AND, VT, N0, N1);
1163  // canonicalize constant to RHS
1164  if (N0C && !N1C)
1165    return DAG.getNode(ISD::AND, VT, N1, N0);
1166  // fold (and x, -1) -> x
1167  if (N1C && N1C->isAllOnesValue())
1168    return N0;
1169  // if (and x, c) is known to be zero, return 0
1170  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1171    return DAG.getConstant(0, VT);
1172  // reassociate and
1173  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1174  if (RAND.Val != 0)
1175    return RAND;
1176  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1177  if (N1C && N0.getOpcode() == ISD::OR)
1178    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1179      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1180        return N1;
1181  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1182  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1183    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1184    if (TLI.MaskedValueIsZero(N0.getOperand(0),
1185                              ~N1C->getValue() & InMask)) {
1186      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1187                                   N0.getOperand(0));
1188
1189      // Replace uses of the AND with uses of the Zero extend node.
1190      CombineTo(N, Zext);
1191
1192      // We actually want to replace all uses of the any_extend with the
1193      // zero_extend, to avoid duplicating things.  This will later cause this
1194      // AND to be folded.
1195      CombineTo(N0.Val, Zext);
1196      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1197    }
1198  }
1199  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1200  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1201    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1202    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1203
1204    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1205        MVT::isInteger(LL.getValueType())) {
1206      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1207      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1208        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1209        AddToWorkList(ORNode.Val);
1210        return DAG.getSetCC(VT, ORNode, LR, Op1);
1211      }
1212      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1213      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1214        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1215        AddToWorkList(ANDNode.Val);
1216        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1217      }
1218      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1219      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1220        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1221        AddToWorkList(ORNode.Val);
1222        return DAG.getSetCC(VT, ORNode, LR, Op1);
1223      }
1224    }
1225    // canonicalize equivalent to ll == rl
1226    if (LL == RR && LR == RL) {
1227      Op1 = ISD::getSetCCSwappedOperands(Op1);
1228      std::swap(RL, RR);
1229    }
1230    if (LL == RL && LR == RR) {
1231      bool isInteger = MVT::isInteger(LL.getValueType());
1232      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1233      if (Result != ISD::SETCC_INVALID)
1234        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1235    }
1236  }
1237
1238  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1239  if (N0.getOpcode() == N1.getOpcode()) {
1240    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1241    if (Tmp.Val) return Tmp;
1242  }
1243
1244  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1245  // fold (and (sra)) -> (and (srl)) when possible.
1246  if (!MVT::isVector(VT) &&
1247      SimplifyDemandedBits(SDOperand(N, 0)))
1248    return SDOperand(N, 0);
1249  // fold (zext_inreg (extload x)) -> (zextload x)
1250  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1251    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1252    MVT::ValueType EVT = LN0->getLoadedVT();
1253    // If we zero all the possible extended bits, then we can turn this into
1254    // a zextload if we are running before legalize or the operation is legal.
1255    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1256        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1257      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1258                                         LN0->getBasePtr(), LN0->getSrcValue(),
1259                                         LN0->getSrcValueOffset(), EVT);
1260      AddToWorkList(N);
1261      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1262      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1263    }
1264  }
1265  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1266  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1267      N0.hasOneUse()) {
1268    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1269    MVT::ValueType EVT = LN0->getLoadedVT();
1270    // If we zero all the possible extended bits, then we can turn this into
1271    // a zextload if we are running before legalize or the operation is legal.
1272    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1273        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1274      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1275                                         LN0->getBasePtr(), LN0->getSrcValue(),
1276                                         LN0->getSrcValueOffset(), EVT);
1277      AddToWorkList(N);
1278      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1279      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1280    }
1281  }
1282
1283  // fold (and (load x), 255) -> (zextload x, i8)
1284  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1285  if (N1C && N0.getOpcode() == ISD::LOAD) {
1286    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1287    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1288        LN0->getAddressingMode() == ISD::UNINDEXED &&
1289        N0.hasOneUse()) {
1290      MVT::ValueType EVT, LoadedVT;
1291      if (N1C->getValue() == 255)
1292        EVT = MVT::i8;
1293      else if (N1C->getValue() == 65535)
1294        EVT = MVT::i16;
1295      else if (N1C->getValue() == ~0U)
1296        EVT = MVT::i32;
1297      else
1298        EVT = MVT::Other;
1299
1300      LoadedVT = LN0->getLoadedVT();
1301      if (EVT != MVT::Other && LoadedVT > EVT &&
1302          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1303        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1304        // For big endian targets, we need to add an offset to the pointer to
1305        // load the correct bytes.  For little endian systems, we merely need to
1306        // read fewer bytes from the same pointer.
1307        unsigned PtrOff =
1308          (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1309        SDOperand NewPtr = LN0->getBasePtr();
1310        if (!TLI.isLittleEndian())
1311          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1312                               DAG.getConstant(PtrOff, PtrType));
1313        AddToWorkList(NewPtr.Val);
1314        SDOperand Load =
1315          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1316                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT);
1317        AddToWorkList(N);
1318        CombineTo(N0.Val, Load, Load.getValue(1));
1319        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1320      }
1321    }
1322  }
1323
1324  return SDOperand();
1325}
1326
1327SDOperand DAGCombiner::visitOR(SDNode *N) {
1328  SDOperand N0 = N->getOperand(0);
1329  SDOperand N1 = N->getOperand(1);
1330  SDOperand LL, LR, RL, RR, CC0, CC1;
1331  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1332  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1333  MVT::ValueType VT = N1.getValueType();
1334  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1335
1336  // fold (or c1, c2) -> c1|c2
1337  if (N0C && N1C)
1338    return DAG.getNode(ISD::OR, VT, N0, N1);
1339  // canonicalize constant to RHS
1340  if (N0C && !N1C)
1341    return DAG.getNode(ISD::OR, VT, N1, N0);
1342  // fold (or x, 0) -> x
1343  if (N1C && N1C->isNullValue())
1344    return N0;
1345  // fold (or x, -1) -> -1
1346  if (N1C && N1C->isAllOnesValue())
1347    return N1;
1348  // fold (or x, c) -> c iff (x & ~c) == 0
1349  if (N1C &&
1350      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1351    return N1;
1352  // reassociate or
1353  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1354  if (ROR.Val != 0)
1355    return ROR;
1356  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1357  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1358             isa<ConstantSDNode>(N0.getOperand(1))) {
1359    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1360    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1361                                                 N1),
1362                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1363  }
1364  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1365  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1366    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1367    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1368
1369    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1370        MVT::isInteger(LL.getValueType())) {
1371      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1372      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1373      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1374          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1375        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1376        AddToWorkList(ORNode.Val);
1377        return DAG.getSetCC(VT, ORNode, LR, Op1);
1378      }
1379      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1380      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1381      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1382          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1383        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1384        AddToWorkList(ANDNode.Val);
1385        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1386      }
1387    }
1388    // canonicalize equivalent to ll == rl
1389    if (LL == RR && LR == RL) {
1390      Op1 = ISD::getSetCCSwappedOperands(Op1);
1391      std::swap(RL, RR);
1392    }
1393    if (LL == RL && LR == RR) {
1394      bool isInteger = MVT::isInteger(LL.getValueType());
1395      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1396      if (Result != ISD::SETCC_INVALID)
1397        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1398    }
1399  }
1400
1401  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1402  if (N0.getOpcode() == N1.getOpcode()) {
1403    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1404    if (Tmp.Val) return Tmp;
1405  }
1406
1407  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1408  if (N0.getOpcode() == ISD::AND &&
1409      N1.getOpcode() == ISD::AND &&
1410      N0.getOperand(1).getOpcode() == ISD::Constant &&
1411      N1.getOperand(1).getOpcode() == ISD::Constant &&
1412      // Don't increase # computations.
1413      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1414    // We can only do this xform if we know that bits from X that are set in C2
1415    // but not in C1 are already zero.  Likewise for Y.
1416    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1417    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1418
1419    if (TLI.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1420        TLI.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1421      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1422      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1423    }
1424  }
1425
1426
1427  // See if this is some rotate idiom.
1428  if (SDNode *Rot = MatchRotate(N0, N1))
1429    return SDOperand(Rot, 0);
1430
1431  return SDOperand();
1432}
1433
1434
1435/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1436static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1437  if (Op.getOpcode() == ISD::AND) {
1438    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1439      Mask = Op.getOperand(1);
1440      Op = Op.getOperand(0);
1441    } else {
1442      return false;
1443    }
1444  }
1445
1446  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1447    Shift = Op;
1448    return true;
1449  }
1450  return false;
1451}
1452
1453
1454// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1455// idioms for rotate, and if the target supports rotation instructions, generate
1456// a rot[lr].
1457SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1458  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1459  MVT::ValueType VT = LHS.getValueType();
1460  if (!TLI.isTypeLegal(VT)) return 0;
1461
1462  // The target must have at least one rotate flavor.
1463  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1464  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1465  if (!HasROTL && !HasROTR) return 0;
1466
1467  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1468  SDOperand LHSShift;   // The shift.
1469  SDOperand LHSMask;    // AND value if any.
1470  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1471    return 0; // Not part of a rotate.
1472
1473  SDOperand RHSShift;   // The shift.
1474  SDOperand RHSMask;    // AND value if any.
1475  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1476    return 0; // Not part of a rotate.
1477
1478  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1479    return 0;   // Not shifting the same value.
1480
1481  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1482    return 0;   // Shifts must disagree.
1483
1484  // Canonicalize shl to left side in a shl/srl pair.
1485  if (RHSShift.getOpcode() == ISD::SHL) {
1486    std::swap(LHS, RHS);
1487    std::swap(LHSShift, RHSShift);
1488    std::swap(LHSMask , RHSMask );
1489  }
1490
1491  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1492  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1493  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1494  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1495
1496  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1497  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1498  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1499      RHSShiftAmt.getOpcode() == ISD::Constant) {
1500    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1501    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1502    if ((LShVal + RShVal) != OpSizeInBits)
1503      return 0;
1504
1505    SDOperand Rot;
1506    if (HasROTL)
1507      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1508    else
1509      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1510
1511    // If there is an AND of either shifted operand, apply it to the result.
1512    if (LHSMask.Val || RHSMask.Val) {
1513      uint64_t Mask = MVT::getIntVTBitMask(VT);
1514
1515      if (LHSMask.Val) {
1516        uint64_t RHSBits = (1ULL << LShVal)-1;
1517        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1518      }
1519      if (RHSMask.Val) {
1520        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1521        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1522      }
1523
1524      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1525    }
1526
1527    return Rot.Val;
1528  }
1529
1530  // If there is a mask here, and we have a variable shift, we can't be sure
1531  // that we're masking out the right stuff.
1532  if (LHSMask.Val || RHSMask.Val)
1533    return 0;
1534
1535  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1536  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1537  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1538      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1539    if (ConstantSDNode *SUBC =
1540          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1541      if (SUBC->getValue() == OpSizeInBits)
1542        if (HasROTL)
1543          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1544        else
1545          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1546    }
1547  }
1548
1549  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1550  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1551  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1552      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1553    if (ConstantSDNode *SUBC =
1554          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1555      if (SUBC->getValue() == OpSizeInBits)
1556        if (HasROTL)
1557          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1558        else
1559          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1560    }
1561  }
1562
1563  // Look for sign/zext/any-extended cases:
1564  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1565       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1566       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1567      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1568       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1569       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1570    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1571    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1572    if (RExtOp0.getOpcode() == ISD::SUB &&
1573        RExtOp0.getOperand(1) == LExtOp0) {
1574      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1575      //   (rotr x, y)
1576      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1577      //   (rotl x, (sub 32, y))
1578      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
1579        if (SUBC->getValue() == OpSizeInBits) {
1580          if (HasROTL)
1581            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1582          else
1583            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1584        }
1585      }
1586    } else if (LExtOp0.getOpcode() == ISD::SUB &&
1587               RExtOp0 == LExtOp0.getOperand(1)) {
1588      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1589      //   (rotl x, y)
1590      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
1591      //   (rotr x, (sub 32, y))
1592      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
1593        if (SUBC->getValue() == OpSizeInBits) {
1594          if (HasROTL)
1595            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
1596          else
1597            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1598        }
1599      }
1600    }
1601  }
1602
1603  return 0;
1604}
1605
1606
1607SDOperand DAGCombiner::visitXOR(SDNode *N) {
1608  SDOperand N0 = N->getOperand(0);
1609  SDOperand N1 = N->getOperand(1);
1610  SDOperand LHS, RHS, CC;
1611  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1612  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1613  MVT::ValueType VT = N0.getValueType();
1614
1615  // fold (xor c1, c2) -> c1^c2
1616  if (N0C && N1C)
1617    return DAG.getNode(ISD::XOR, VT, N0, N1);
1618  // canonicalize constant to RHS
1619  if (N0C && !N1C)
1620    return DAG.getNode(ISD::XOR, VT, N1, N0);
1621  // fold (xor x, 0) -> x
1622  if (N1C && N1C->isNullValue())
1623    return N0;
1624  // reassociate xor
1625  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1626  if (RXOR.Val != 0)
1627    return RXOR;
1628  // fold !(x cc y) -> (x !cc y)
1629  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1630    bool isInt = MVT::isInteger(LHS.getValueType());
1631    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1632                                               isInt);
1633    if (N0.getOpcode() == ISD::SETCC)
1634      return DAG.getSetCC(VT, LHS, RHS, NotCC);
1635    if (N0.getOpcode() == ISD::SELECT_CC)
1636      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1637    assert(0 && "Unhandled SetCC Equivalent!");
1638    abort();
1639  }
1640  // fold !(x or y) -> (!x and !y) iff x or y are setcc
1641  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
1642      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1643    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1644    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1645      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1646      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1647      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1648      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1649      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1650    }
1651  }
1652  // fold !(x or y) -> (!x and !y) iff x or y are constants
1653  if (N1C && N1C->isAllOnesValue() &&
1654      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1655    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1656    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1657      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1658      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1659      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1660      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1661      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1662    }
1663  }
1664  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1665  if (N1C && N0.getOpcode() == ISD::XOR) {
1666    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1667    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1668    if (N00C)
1669      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1670                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1671    if (N01C)
1672      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1673                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1674  }
1675  // fold (xor x, x) -> 0
1676  if (N0 == N1) {
1677    if (!MVT::isVector(VT)) {
1678      return DAG.getConstant(0, VT);
1679    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1680      // Produce a vector of zeros.
1681      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
1682      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1683      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1684    }
1685  }
1686
1687  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
1688  if (N0.getOpcode() == N1.getOpcode()) {
1689    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1690    if (Tmp.Val) return Tmp;
1691  }
1692
1693  // Simplify the expression using non-local knowledge.
1694  if (!MVT::isVector(VT) &&
1695      SimplifyDemandedBits(SDOperand(N, 0)))
1696    return SDOperand(N, 0);
1697
1698  return SDOperand();
1699}
1700
1701SDOperand DAGCombiner::visitSHL(SDNode *N) {
1702  SDOperand N0 = N->getOperand(0);
1703  SDOperand N1 = N->getOperand(1);
1704  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1705  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1706  MVT::ValueType VT = N0.getValueType();
1707  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1708
1709  // fold (shl c1, c2) -> c1<<c2
1710  if (N0C && N1C)
1711    return DAG.getNode(ISD::SHL, VT, N0, N1);
1712  // fold (shl 0, x) -> 0
1713  if (N0C && N0C->isNullValue())
1714    return N0;
1715  // fold (shl x, c >= size(x)) -> undef
1716  if (N1C && N1C->getValue() >= OpSizeInBits)
1717    return DAG.getNode(ISD::UNDEF, VT);
1718  // fold (shl x, 0) -> x
1719  if (N1C && N1C->isNullValue())
1720    return N0;
1721  // if (shl x, c) is known to be zero, return 0
1722  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1723    return DAG.getConstant(0, VT);
1724  if (SimplifyDemandedBits(SDOperand(N, 0)))
1725    return SDOperand(N, 0);
1726  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1727  if (N1C && N0.getOpcode() == ISD::SHL &&
1728      N0.getOperand(1).getOpcode() == ISD::Constant) {
1729    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1730    uint64_t c2 = N1C->getValue();
1731    if (c1 + c2 > OpSizeInBits)
1732      return DAG.getConstant(0, VT);
1733    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1734                       DAG.getConstant(c1 + c2, N1.getValueType()));
1735  }
1736  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1737  //                               (srl (and x, -1 << c1), c1-c2)
1738  if (N1C && N0.getOpcode() == ISD::SRL &&
1739      N0.getOperand(1).getOpcode() == ISD::Constant) {
1740    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1741    uint64_t c2 = N1C->getValue();
1742    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1743                                 DAG.getConstant(~0ULL << c1, VT));
1744    if (c2 > c1)
1745      return DAG.getNode(ISD::SHL, VT, Mask,
1746                         DAG.getConstant(c2-c1, N1.getValueType()));
1747    else
1748      return DAG.getNode(ISD::SRL, VT, Mask,
1749                         DAG.getConstant(c1-c2, N1.getValueType()));
1750  }
1751  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1752  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1753    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1754                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
1755  return SDOperand();
1756}
1757
1758SDOperand DAGCombiner::visitSRA(SDNode *N) {
1759  SDOperand N0 = N->getOperand(0);
1760  SDOperand N1 = N->getOperand(1);
1761  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1762  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1763  MVT::ValueType VT = N0.getValueType();
1764
1765  // fold (sra c1, c2) -> c1>>c2
1766  if (N0C && N1C)
1767    return DAG.getNode(ISD::SRA, VT, N0, N1);
1768  // fold (sra 0, x) -> 0
1769  if (N0C && N0C->isNullValue())
1770    return N0;
1771  // fold (sra -1, x) -> -1
1772  if (N0C && N0C->isAllOnesValue())
1773    return N0;
1774  // fold (sra x, c >= size(x)) -> undef
1775  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1776    return DAG.getNode(ISD::UNDEF, VT);
1777  // fold (sra x, 0) -> x
1778  if (N1C && N1C->isNullValue())
1779    return N0;
1780  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1781  // sext_inreg.
1782  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1783    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1784    MVT::ValueType EVT;
1785    switch (LowBits) {
1786    default: EVT = MVT::Other; break;
1787    case  1: EVT = MVT::i1;    break;
1788    case  8: EVT = MVT::i8;    break;
1789    case 16: EVT = MVT::i16;   break;
1790    case 32: EVT = MVT::i32;   break;
1791    }
1792    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1793      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1794                         DAG.getValueType(EVT));
1795  }
1796
1797  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1798  if (N1C && N0.getOpcode() == ISD::SRA) {
1799    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1800      unsigned Sum = N1C->getValue() + C1->getValue();
1801      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1802      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1803                         DAG.getConstant(Sum, N1C->getValueType(0)));
1804    }
1805  }
1806
1807  // Simplify, based on bits shifted out of the LHS.
1808  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
1809    return SDOperand(N, 0);
1810
1811
1812  // If the sign bit is known to be zero, switch this to a SRL.
1813  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1814    return DAG.getNode(ISD::SRL, VT, N0, N1);
1815  return SDOperand();
1816}
1817
1818SDOperand DAGCombiner::visitSRL(SDNode *N) {
1819  SDOperand N0 = N->getOperand(0);
1820  SDOperand N1 = N->getOperand(1);
1821  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1822  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1823  MVT::ValueType VT = N0.getValueType();
1824  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1825
1826  // fold (srl c1, c2) -> c1 >>u c2
1827  if (N0C && N1C)
1828    return DAG.getNode(ISD::SRL, VT, N0, N1);
1829  // fold (srl 0, x) -> 0
1830  if (N0C && N0C->isNullValue())
1831    return N0;
1832  // fold (srl x, c >= size(x)) -> undef
1833  if (N1C && N1C->getValue() >= OpSizeInBits)
1834    return DAG.getNode(ISD::UNDEF, VT);
1835  // fold (srl x, 0) -> x
1836  if (N1C && N1C->isNullValue())
1837    return N0;
1838  // if (srl x, c) is known to be zero, return 0
1839  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1840    return DAG.getConstant(0, VT);
1841  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1842  if (N1C && N0.getOpcode() == ISD::SRL &&
1843      N0.getOperand(1).getOpcode() == ISD::Constant) {
1844    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1845    uint64_t c2 = N1C->getValue();
1846    if (c1 + c2 > OpSizeInBits)
1847      return DAG.getConstant(0, VT);
1848    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1849                       DAG.getConstant(c1 + c2, N1.getValueType()));
1850  }
1851
1852  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
1853  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1854    // Shifting in all undef bits?
1855    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
1856    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
1857      return DAG.getNode(ISD::UNDEF, VT);
1858
1859    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
1860    AddToWorkList(SmallShift.Val);
1861    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
1862  }
1863
1864  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
1865  // bit, which is unmodified by sra.
1866  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
1867    if (N0.getOpcode() == ISD::SRA)
1868      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
1869  }
1870
1871  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
1872  if (N1C && N0.getOpcode() == ISD::CTLZ &&
1873      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
1874    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
1875    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
1876
1877    // If any of the input bits are KnownOne, then the input couldn't be all
1878    // zeros, thus the result of the srl will always be zero.
1879    if (KnownOne) return DAG.getConstant(0, VT);
1880
1881    // If all of the bits input the to ctlz node are known to be zero, then
1882    // the result of the ctlz is "32" and the result of the shift is one.
1883    uint64_t UnknownBits = ~KnownZero & Mask;
1884    if (UnknownBits == 0) return DAG.getConstant(1, VT);
1885
1886    // Otherwise, check to see if there is exactly one bit input to the ctlz.
1887    if ((UnknownBits & (UnknownBits-1)) == 0) {
1888      // Okay, we know that only that the single bit specified by UnknownBits
1889      // could be set on input to the CTLZ node.  If this bit is set, the SRL
1890      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
1891      // to an SRL,XOR pair, which is likely to simplify more.
1892      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
1893      SDOperand Op = N0.getOperand(0);
1894      if (ShAmt) {
1895        Op = DAG.getNode(ISD::SRL, VT, Op,
1896                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
1897        AddToWorkList(Op.Val);
1898      }
1899      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
1900    }
1901  }
1902
1903  return SDOperand();
1904}
1905
1906SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
1907  SDOperand N0 = N->getOperand(0);
1908  MVT::ValueType VT = N->getValueType(0);
1909
1910  // fold (ctlz c1) -> c2
1911  if (isa<ConstantSDNode>(N0))
1912    return DAG.getNode(ISD::CTLZ, VT, N0);
1913  return SDOperand();
1914}
1915
1916SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
1917  SDOperand N0 = N->getOperand(0);
1918  MVT::ValueType VT = N->getValueType(0);
1919
1920  // fold (cttz c1) -> c2
1921  if (isa<ConstantSDNode>(N0))
1922    return DAG.getNode(ISD::CTTZ, VT, N0);
1923  return SDOperand();
1924}
1925
1926SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
1927  SDOperand N0 = N->getOperand(0);
1928  MVT::ValueType VT = N->getValueType(0);
1929
1930  // fold (ctpop c1) -> c2
1931  if (isa<ConstantSDNode>(N0))
1932    return DAG.getNode(ISD::CTPOP, VT, N0);
1933  return SDOperand();
1934}
1935
1936SDOperand DAGCombiner::visitSELECT(SDNode *N) {
1937  SDOperand N0 = N->getOperand(0);
1938  SDOperand N1 = N->getOperand(1);
1939  SDOperand N2 = N->getOperand(2);
1940  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1942  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1943  MVT::ValueType VT = N->getValueType(0);
1944
1945  // fold select C, X, X -> X
1946  if (N1 == N2)
1947    return N1;
1948  // fold select true, X, Y -> X
1949  if (N0C && !N0C->isNullValue())
1950    return N1;
1951  // fold select false, X, Y -> Y
1952  if (N0C && N0C->isNullValue())
1953    return N2;
1954  // fold select C, 1, X -> C | X
1955  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
1956    return DAG.getNode(ISD::OR, VT, N0, N2);
1957  // fold select C, 0, X -> ~C & X
1958  // FIXME: this should check for C type == X type, not i1?
1959  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
1960    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1961    AddToWorkList(XORNode.Val);
1962    return DAG.getNode(ISD::AND, VT, XORNode, N2);
1963  }
1964  // fold select C, X, 1 -> ~C | X
1965  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
1966    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1967    AddToWorkList(XORNode.Val);
1968    return DAG.getNode(ISD::OR, VT, XORNode, N1);
1969  }
1970  // fold select C, X, 0 -> C & X
1971  // FIXME: this should check for C type == X type, not i1?
1972  if (MVT::i1 == VT && N2C && N2C->isNullValue())
1973    return DAG.getNode(ISD::AND, VT, N0, N1);
1974  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
1975  if (MVT::i1 == VT && N0 == N1)
1976    return DAG.getNode(ISD::OR, VT, N0, N2);
1977  // fold X ? Y : X --> X ? Y : 0 --> X & Y
1978  if (MVT::i1 == VT && N0 == N2)
1979    return DAG.getNode(ISD::AND, VT, N0, N1);
1980
1981  // If we can fold this based on the true/false value, do so.
1982  if (SimplifySelectOps(N, N1, N2))
1983    return SDOperand(N, 0);  // Don't revisit N.
1984
1985  // fold selects based on a setcc into other things, such as min/max/abs
1986  if (N0.getOpcode() == ISD::SETCC)
1987    // FIXME:
1988    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
1989    // having to say they don't support SELECT_CC on every type the DAG knows
1990    // about, since there is no way to mark an opcode illegal at all value types
1991    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
1992      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
1993                         N1, N2, N0.getOperand(2));
1994    else
1995      return SimplifySelect(N0, N1, N2);
1996  return SDOperand();
1997}
1998
1999SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2000  SDOperand N0 = N->getOperand(0);
2001  SDOperand N1 = N->getOperand(1);
2002  SDOperand N2 = N->getOperand(2);
2003  SDOperand N3 = N->getOperand(3);
2004  SDOperand N4 = N->getOperand(4);
2005  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2006
2007  // fold select_cc lhs, rhs, x, x, cc -> x
2008  if (N2 == N3)
2009    return N2;
2010
2011  // Determine if the condition we're dealing with is constant
2012  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2013  if (SCC.Val) AddToWorkList(SCC.Val);
2014
2015  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2016    if (SCCC->getValue())
2017      return N2;    // cond always true -> true val
2018    else
2019      return N3;    // cond always false -> false val
2020  }
2021
2022  // Fold to a simpler select_cc
2023  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2024    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2025                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2026                       SCC.getOperand(2));
2027
2028  // If we can fold this based on the true/false value, do so.
2029  if (SimplifySelectOps(N, N2, N3))
2030    return SDOperand(N, 0);  // Don't revisit N.
2031
2032  // fold select_cc into other things, such as min/max/abs
2033  return SimplifySelectCC(N0, N1, N2, N3, CC);
2034}
2035
2036SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2037  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2038                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2039}
2040
2041SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2042  SDOperand N0 = N->getOperand(0);
2043  MVT::ValueType VT = N->getValueType(0);
2044
2045  // fold (sext c1) -> c1
2046  if (isa<ConstantSDNode>(N0))
2047    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2048
2049  // fold (sext (sext x)) -> (sext x)
2050  // fold (sext (aext x)) -> (sext x)
2051  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2052    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2053
2054  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2055  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2056  if (N0.getOpcode() == ISD::TRUNCATE) {
2057    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2058    if (NarrowLoad.Val) {
2059      if (NarrowLoad.Val != N0.Val)
2060        CombineTo(N0.Val, NarrowLoad);
2061      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2062    }
2063  }
2064
2065  // See if the value being truncated is already sign extended.  If so, just
2066  // eliminate the trunc/sext pair.
2067  if (N0.getOpcode() == ISD::TRUNCATE) {
2068    SDOperand Op = N0.getOperand(0);
2069    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2070    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2071    unsigned DestBits = MVT::getSizeInBits(VT);
2072    unsigned NumSignBits = TLI.ComputeNumSignBits(Op);
2073
2074    if (OpBits == DestBits) {
2075      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2076      // bits, it is already ready.
2077      if (NumSignBits > DestBits-MidBits)
2078        return Op;
2079    } else if (OpBits < DestBits) {
2080      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2081      // bits, just sext from i32.
2082      if (NumSignBits > OpBits-MidBits)
2083        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2084    } else {
2085      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2086      // bits, just truncate to i32.
2087      if (NumSignBits > OpBits-MidBits)
2088        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2089    }
2090
2091    // fold (sext (truncate x)) -> (sextinreg x).
2092    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2093                                               N0.getValueType())) {
2094      if (Op.getValueType() < VT)
2095        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2096      else if (Op.getValueType() > VT)
2097        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2098      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2099                         DAG.getValueType(N0.getValueType()));
2100    }
2101  }
2102
2103  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2104  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2105      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2106    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2107    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2108                                       LN0->getBasePtr(), LN0->getSrcValue(),
2109                                       LN0->getSrcValueOffset(),
2110                                       N0.getValueType());
2111    CombineTo(N, ExtLoad);
2112    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2113              ExtLoad.getValue(1));
2114    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2115  }
2116
2117  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2118  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2119  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2120      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2121    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2122    MVT::ValueType EVT = LN0->getLoadedVT();
2123    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2124      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2125                                         LN0->getBasePtr(), LN0->getSrcValue(),
2126                                         LN0->getSrcValueOffset(), EVT);
2127      CombineTo(N, ExtLoad);
2128      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2129                ExtLoad.getValue(1));
2130      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2131    }
2132  }
2133
2134  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2135  if (N0.getOpcode() == ISD::SETCC) {
2136    SDOperand SCC =
2137      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2138                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2139                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2140    if (SCC.Val) return SCC;
2141  }
2142
2143  return SDOperand();
2144}
2145
2146SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2147  SDOperand N0 = N->getOperand(0);
2148  MVT::ValueType VT = N->getValueType(0);
2149
2150  // fold (zext c1) -> c1
2151  if (isa<ConstantSDNode>(N0))
2152    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2153  // fold (zext (zext x)) -> (zext x)
2154  // fold (zext (aext x)) -> (zext x)
2155  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2156    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2157
2158  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2159  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2160  if (N0.getOpcode() == ISD::TRUNCATE) {
2161    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2162    if (NarrowLoad.Val) {
2163      if (NarrowLoad.Val != N0.Val)
2164        CombineTo(N0.Val, NarrowLoad);
2165      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2166    }
2167  }
2168
2169  // fold (zext (truncate x)) -> (and x, mask)
2170  if (N0.getOpcode() == ISD::TRUNCATE &&
2171      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2172    SDOperand Op = N0.getOperand(0);
2173    if (Op.getValueType() < VT) {
2174      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2175    } else if (Op.getValueType() > VT) {
2176      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2177    }
2178    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2179  }
2180
2181  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2182  if (N0.getOpcode() == ISD::AND &&
2183      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2184      N0.getOperand(1).getOpcode() == ISD::Constant) {
2185    SDOperand X = N0.getOperand(0).getOperand(0);
2186    if (X.getValueType() < VT) {
2187      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2188    } else if (X.getValueType() > VT) {
2189      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2190    }
2191    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2192    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2193  }
2194
2195  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2196  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2197      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2198    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2199    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2200                                       LN0->getBasePtr(), LN0->getSrcValue(),
2201                                       LN0->getSrcValueOffset(),
2202                                       N0.getValueType());
2203    CombineTo(N, ExtLoad);
2204    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2205              ExtLoad.getValue(1));
2206    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2207  }
2208
2209  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2210  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2211  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2212      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2213    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2214    MVT::ValueType EVT = LN0->getLoadedVT();
2215    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2216                                       LN0->getBasePtr(), LN0->getSrcValue(),
2217                                       LN0->getSrcValueOffset(), EVT);
2218    CombineTo(N, ExtLoad);
2219    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2220              ExtLoad.getValue(1));
2221    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2222  }
2223
2224  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2225  if (N0.getOpcode() == ISD::SETCC) {
2226    SDOperand SCC =
2227      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2228                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2229                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2230    if (SCC.Val) return SCC;
2231  }
2232
2233  return SDOperand();
2234}
2235
2236SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2237  SDOperand N0 = N->getOperand(0);
2238  MVT::ValueType VT = N->getValueType(0);
2239
2240  // fold (aext c1) -> c1
2241  if (isa<ConstantSDNode>(N0))
2242    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2243  // fold (aext (aext x)) -> (aext x)
2244  // fold (aext (zext x)) -> (zext x)
2245  // fold (aext (sext x)) -> (sext x)
2246  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2247      N0.getOpcode() == ISD::ZERO_EXTEND ||
2248      N0.getOpcode() == ISD::SIGN_EXTEND)
2249    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2250
2251  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2252  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2253  if (N0.getOpcode() == ISD::TRUNCATE) {
2254    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2255    if (NarrowLoad.Val) {
2256      if (NarrowLoad.Val != N0.Val)
2257        CombineTo(N0.Val, NarrowLoad);
2258      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2259    }
2260  }
2261
2262  // fold (aext (truncate x))
2263  if (N0.getOpcode() == ISD::TRUNCATE) {
2264    SDOperand TruncOp = N0.getOperand(0);
2265    if (TruncOp.getValueType() == VT)
2266      return TruncOp; // x iff x size == zext size.
2267    if (TruncOp.getValueType() > VT)
2268      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2269    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2270  }
2271
2272  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2273  if (N0.getOpcode() == ISD::AND &&
2274      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2275      N0.getOperand(1).getOpcode() == ISD::Constant) {
2276    SDOperand X = N0.getOperand(0).getOperand(0);
2277    if (X.getValueType() < VT) {
2278      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2279    } else if (X.getValueType() > VT) {
2280      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2281    }
2282    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2283    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2284  }
2285
2286  // fold (aext (load x)) -> (aext (truncate (extload x)))
2287  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2288      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2289    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2290    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2291                                       LN0->getBasePtr(), LN0->getSrcValue(),
2292                                       LN0->getSrcValueOffset(),
2293                                       N0.getValueType());
2294    CombineTo(N, ExtLoad);
2295    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2296              ExtLoad.getValue(1));
2297    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2298  }
2299
2300  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2301  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2302  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2303  if (N0.getOpcode() == ISD::LOAD &&
2304      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2305      N0.hasOneUse()) {
2306    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2307    MVT::ValueType EVT = LN0->getLoadedVT();
2308    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2309                                       LN0->getChain(), LN0->getBasePtr(),
2310                                       LN0->getSrcValue(),
2311                                       LN0->getSrcValueOffset(), EVT);
2312    CombineTo(N, ExtLoad);
2313    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2314              ExtLoad.getValue(1));
2315    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2316  }
2317
2318  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2319  if (N0.getOpcode() == ISD::SETCC) {
2320    SDOperand SCC =
2321      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2322                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2323                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2324    if (SCC.Val)
2325      return SCC;
2326  }
2327
2328  return SDOperand();
2329}
2330
2331/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
2332/// bits and then truncated to a narrower type and where N is a multiple
2333/// of number of bits of the narrower type, transform it to a narrower load
2334/// from address + N / num of bits of new type. If the result is to be
2335/// extended, also fold the extension to form a extending load.
2336SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
2337  unsigned Opc = N->getOpcode();
2338  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2339  SDOperand N0 = N->getOperand(0);
2340  MVT::ValueType VT = N->getValueType(0);
2341  MVT::ValueType EVT = N->getValueType(0);
2342
2343  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
2344  // extended to VT.
2345  if (Opc == ISD::SIGN_EXTEND_INREG) {
2346    ExtType = ISD::SEXTLOAD;
2347    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2348    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
2349      return SDOperand();
2350  }
2351
2352  unsigned EVTBits = MVT::getSizeInBits(EVT);
2353  unsigned ShAmt = 0;
2354  bool CombineSRL =  false;
2355  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
2356    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2357      ShAmt = N01->getValue();
2358      // Is the shift amount a multiple of size of VT?
2359      if ((ShAmt & (EVTBits-1)) == 0) {
2360        N0 = N0.getOperand(0);
2361        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
2362          return SDOperand();
2363        CombineSRL = true;
2364      }
2365    }
2366  }
2367
2368  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2369      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
2370      // zero extended form: by shrinking the load, we lose track of the fact
2371      // that it is already zero extended.
2372      // FIXME: This should be reevaluated.
2373      VT != MVT::i1) {
2374    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
2375           "Cannot truncate to larger type!");
2376    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2377    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2378    // For big endian targets, we need to adjust the offset to the pointer to
2379    // load the correct bytes.
2380    if (!TLI.isLittleEndian())
2381      ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
2382    uint64_t PtrOff =  ShAmt / 8;
2383    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
2384                                   DAG.getConstant(PtrOff, PtrType));
2385    AddToWorkList(NewPtr.Val);
2386    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
2387      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
2388                    LN0->getSrcValue(), LN0->getSrcValueOffset())
2389      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
2390                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT);
2391    AddToWorkList(N);
2392    if (CombineSRL) {
2393      std::vector<SDNode*> NowDead;
2394      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), NowDead);
2395      CombineTo(N->getOperand(0).Val, Load);
2396    } else
2397      CombineTo(N0.Val, Load, Load.getValue(1));
2398    if (ShAmt) {
2399      if (Opc == ISD::SIGN_EXTEND_INREG)
2400        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
2401      else
2402        return DAG.getNode(Opc, VT, Load);
2403    }
2404    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2405  }
2406
2407  return SDOperand();
2408}
2409
2410
2411SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
2412  SDOperand N0 = N->getOperand(0);
2413  SDOperand N1 = N->getOperand(1);
2414  MVT::ValueType VT = N->getValueType(0);
2415  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
2416  unsigned EVTBits = MVT::getSizeInBits(EVT);
2417
2418  // fold (sext_in_reg c1) -> c1
2419  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
2420    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
2421
2422  // If the input is already sign extended, just drop the extension.
2423  if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
2424    return N0;
2425
2426  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2427  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2428      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
2429    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
2430  }
2431
2432  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
2433  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
2434    return DAG.getZeroExtendInReg(N0, EVT);
2435
2436  // fold operands of sext_in_reg based on knowledge that the top bits are not
2437  // demanded.
2438  if (SimplifyDemandedBits(SDOperand(N, 0)))
2439    return SDOperand(N, 0);
2440
2441  // fold (sext_in_reg (load x)) -> (smaller sextload x)
2442  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
2443  SDOperand NarrowLoad = ReduceLoadWidth(N);
2444  if (NarrowLoad.Val)
2445    return NarrowLoad;
2446
2447  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2448  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2449  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2450  if (N0.getOpcode() == ISD::SRL) {
2451    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2452      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
2453        // We can turn this into an SRA iff the input to the SRL is already sign
2454        // extended enough.
2455        unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0));
2456        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
2457          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
2458      }
2459  }
2460
2461  // fold (sext_inreg (extload x)) -> (sextload x)
2462  if (ISD::isEXTLoad(N0.Val) &&
2463      ISD::isUNINDEXEDLoad(N0.Val) &&
2464      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2465      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2466    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2467    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2468                                       LN0->getBasePtr(), LN0->getSrcValue(),
2469                                       LN0->getSrcValueOffset(), EVT);
2470    CombineTo(N, ExtLoad);
2471    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2472    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2473  }
2474  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2475  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2476      N0.hasOneUse() &&
2477      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2478      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2479    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2480    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2481                                       LN0->getBasePtr(), LN0->getSrcValue(),
2482                                       LN0->getSrcValueOffset(), EVT);
2483    CombineTo(N, ExtLoad);
2484    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2485    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2486  }
2487  return SDOperand();
2488}
2489
2490SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2491  SDOperand N0 = N->getOperand(0);
2492  MVT::ValueType VT = N->getValueType(0);
2493
2494  // noop truncate
2495  if (N0.getValueType() == N->getValueType(0))
2496    return N0;
2497  // fold (truncate c1) -> c1
2498  if (isa<ConstantSDNode>(N0))
2499    return DAG.getNode(ISD::TRUNCATE, VT, N0);
2500  // fold (truncate (truncate x)) -> (truncate x)
2501  if (N0.getOpcode() == ISD::TRUNCATE)
2502    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2503  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
2504  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
2505      N0.getOpcode() == ISD::ANY_EXTEND) {
2506    if (N0.getOperand(0).getValueType() < VT)
2507      // if the source is smaller than the dest, we still need an extend
2508      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2509    else if (N0.getOperand(0).getValueType() > VT)
2510      // if the source is larger than the dest, than we just need the truncate
2511      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2512    else
2513      // if the source and dest are the same type, we can drop both the extend
2514      // and the truncate
2515      return N0.getOperand(0);
2516  }
2517
2518  // fold (truncate (load x)) -> (smaller load x)
2519  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
2520  return ReduceLoadWidth(N);
2521}
2522
2523SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
2524  SDOperand N0 = N->getOperand(0);
2525  MVT::ValueType VT = N->getValueType(0);
2526
2527  // If the input is a constant, let getNode() fold it.
2528  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
2529    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2530    if (Res.Val != N) return Res;
2531  }
2532
2533  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
2534    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
2535
2536  // fold (conv (load x)) -> (load (conv*)x)
2537  // FIXME: These xforms need to know that the resultant load doesn't need a
2538  // higher alignment than the original!
2539  if (0 && ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse()) {
2540    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2541    SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
2542                                 LN0->getSrcValue(), LN0->getSrcValueOffset());
2543    AddToWorkList(N);
2544    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
2545              Load.getValue(1));
2546    return Load;
2547  }
2548
2549  return SDOperand();
2550}
2551
2552SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2553  SDOperand N0 = N->getOperand(0);
2554  MVT::ValueType VT = N->getValueType(0);
2555
2556  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2557  // First check to see if this is all constant.
2558  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2559      VT == MVT::Vector) {
2560    bool isSimple = true;
2561    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2562      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2563          N0.getOperand(i).getOpcode() != ISD::Constant &&
2564          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2565        isSimple = false;
2566        break;
2567      }
2568
2569    MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2570    if (isSimple && !MVT::isVector(DestEltVT)) {
2571      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2572    }
2573  }
2574
2575  return SDOperand();
2576}
2577
2578/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2579/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
2580/// destination element value type.
2581SDOperand DAGCombiner::
2582ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2583  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2584
2585  // If this is already the right type, we're done.
2586  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2587
2588  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2589  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2590
2591  // If this is a conversion of N elements of one type to N elements of another
2592  // type, convert each element.  This handles FP<->INT cases.
2593  if (SrcBitSize == DstBitSize) {
2594    SmallVector<SDOperand, 8> Ops;
2595    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2596      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2597      AddToWorkList(Ops.back().Val);
2598    }
2599    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2600    Ops.push_back(DAG.getValueType(DstEltVT));
2601    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2602  }
2603
2604  // Otherwise, we're growing or shrinking the elements.  To avoid having to
2605  // handle annoying details of growing/shrinking FP values, we convert them to
2606  // int first.
2607  if (MVT::isFloatingPoint(SrcEltVT)) {
2608    // Convert the input float vector to a int vector where the elements are the
2609    // same sizes.
2610    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2611    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2612    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2613    SrcEltVT = IntVT;
2614  }
2615
2616  // Now we know the input is an integer vector.  If the output is a FP type,
2617  // convert to integer first, then to FP of the right size.
2618  if (MVT::isFloatingPoint(DstEltVT)) {
2619    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2620    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2621    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2622
2623    // Next, convert to FP elements of the same size.
2624    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2625  }
2626
2627  // Okay, we know the src/dst types are both integers of differing types.
2628  // Handling growing first.
2629  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2630  if (SrcBitSize < DstBitSize) {
2631    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2632
2633    SmallVector<SDOperand, 8> Ops;
2634    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2635         i += NumInputsPerOutput) {
2636      bool isLE = TLI.isLittleEndian();
2637      uint64_t NewBits = 0;
2638      bool EltIsUndef = true;
2639      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2640        // Shift the previously computed bits over.
2641        NewBits <<= SrcBitSize;
2642        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2643        if (Op.getOpcode() == ISD::UNDEF) continue;
2644        EltIsUndef = false;
2645
2646        NewBits |= cast<ConstantSDNode>(Op)->getValue();
2647      }
2648
2649      if (EltIsUndef)
2650        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2651      else
2652        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2653    }
2654
2655    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2656    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2657    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2658  }
2659
2660  // Finally, this must be the case where we are shrinking elements: each input
2661  // turns into multiple outputs.
2662  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2663  SmallVector<SDOperand, 8> Ops;
2664  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2665    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2666      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2667        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2668      continue;
2669    }
2670    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2671
2672    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2673      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2674      OpVal >>= DstBitSize;
2675      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2676    }
2677
2678    // For big endian targets, swap the order of the pieces of each element.
2679    if (!TLI.isLittleEndian())
2680      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2681  }
2682  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2683  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2684  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
2685}
2686
2687
2688
2689SDOperand DAGCombiner::visitFADD(SDNode *N) {
2690  SDOperand N0 = N->getOperand(0);
2691  SDOperand N1 = N->getOperand(1);
2692  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2693  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2694  MVT::ValueType VT = N->getValueType(0);
2695
2696  // fold (fadd c1, c2) -> c1+c2
2697  if (N0CFP && N1CFP)
2698    return DAG.getNode(ISD::FADD, VT, N0, N1);
2699  // canonicalize constant to RHS
2700  if (N0CFP && !N1CFP)
2701    return DAG.getNode(ISD::FADD, VT, N1, N0);
2702  // fold (A + (-B)) -> A-B
2703  if (N1.getOpcode() == ISD::FNEG)
2704    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
2705  // fold ((-A) + B) -> B-A
2706  if (N0.getOpcode() == ISD::FNEG)
2707    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
2708
2709  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
2710  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
2711      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2712    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
2713                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
2714
2715  return SDOperand();
2716}
2717
2718SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2719  SDOperand N0 = N->getOperand(0);
2720  SDOperand N1 = N->getOperand(1);
2721  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2722  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2723  MVT::ValueType VT = N->getValueType(0);
2724
2725  // fold (fsub c1, c2) -> c1-c2
2726  if (N0CFP && N1CFP)
2727    return DAG.getNode(ISD::FSUB, VT, N0, N1);
2728  // fold (A-(-B)) -> A+B
2729  if (N1.getOpcode() == ISD::FNEG)
2730    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
2731  return SDOperand();
2732}
2733
2734SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2735  SDOperand N0 = N->getOperand(0);
2736  SDOperand N1 = N->getOperand(1);
2737  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2738  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2739  MVT::ValueType VT = N->getValueType(0);
2740
2741  // fold (fmul c1, c2) -> c1*c2
2742  if (N0CFP && N1CFP)
2743    return DAG.getNode(ISD::FMUL, VT, N0, N1);
2744  // canonicalize constant to RHS
2745  if (N0CFP && !N1CFP)
2746    return DAG.getNode(ISD::FMUL, VT, N1, N0);
2747  // fold (fmul X, 2.0) -> (fadd X, X)
2748  if (N1CFP && N1CFP->isExactlyValue(+2.0))
2749    return DAG.getNode(ISD::FADD, VT, N0, N0);
2750
2751  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
2752  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
2753      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
2754    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
2755                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
2756
2757  return SDOperand();
2758}
2759
2760SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2761  SDOperand N0 = N->getOperand(0);
2762  SDOperand N1 = N->getOperand(1);
2763  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2764  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2765  MVT::ValueType VT = N->getValueType(0);
2766
2767  // fold (fdiv c1, c2) -> c1/c2
2768  if (N0CFP && N1CFP)
2769    return DAG.getNode(ISD::FDIV, VT, N0, N1);
2770  return SDOperand();
2771}
2772
2773SDOperand DAGCombiner::visitFREM(SDNode *N) {
2774  SDOperand N0 = N->getOperand(0);
2775  SDOperand N1 = N->getOperand(1);
2776  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2777  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2778  MVT::ValueType VT = N->getValueType(0);
2779
2780  // fold (frem c1, c2) -> fmod(c1,c2)
2781  if (N0CFP && N1CFP)
2782    return DAG.getNode(ISD::FREM, VT, N0, N1);
2783  return SDOperand();
2784}
2785
2786SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2787  SDOperand N0 = N->getOperand(0);
2788  SDOperand N1 = N->getOperand(1);
2789  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2790  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2791  MVT::ValueType VT = N->getValueType(0);
2792
2793  if (N0CFP && N1CFP)  // Constant fold
2794    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2795
2796  if (N1CFP) {
2797    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
2798    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2799    union {
2800      double d;
2801      int64_t i;
2802    } u;
2803    u.d = N1CFP->getValue();
2804    if (u.i >= 0)
2805      return DAG.getNode(ISD::FABS, VT, N0);
2806    else
2807      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2808  }
2809
2810  // copysign(fabs(x), y) -> copysign(x, y)
2811  // copysign(fneg(x), y) -> copysign(x, y)
2812  // copysign(copysign(x,z), y) -> copysign(x, y)
2813  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
2814      N0.getOpcode() == ISD::FCOPYSIGN)
2815    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
2816
2817  // copysign(x, abs(y)) -> abs(x)
2818  if (N1.getOpcode() == ISD::FABS)
2819    return DAG.getNode(ISD::FABS, VT, N0);
2820
2821  // copysign(x, copysign(y,z)) -> copysign(x, z)
2822  if (N1.getOpcode() == ISD::FCOPYSIGN)
2823    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
2824
2825  // copysign(x, fp_extend(y)) -> copysign(x, y)
2826  // copysign(x, fp_round(y)) -> copysign(x, y)
2827  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
2828    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
2829
2830  return SDOperand();
2831}
2832
2833
2834
2835SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
2836  SDOperand N0 = N->getOperand(0);
2837  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2838  MVT::ValueType VT = N->getValueType(0);
2839
2840  // fold (sint_to_fp c1) -> c1fp
2841  if (N0C)
2842    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
2843  return SDOperand();
2844}
2845
2846SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
2847  SDOperand N0 = N->getOperand(0);
2848  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2849  MVT::ValueType VT = N->getValueType(0);
2850
2851  // fold (uint_to_fp c1) -> c1fp
2852  if (N0C)
2853    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
2854  return SDOperand();
2855}
2856
2857SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
2858  SDOperand N0 = N->getOperand(0);
2859  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2860  MVT::ValueType VT = N->getValueType(0);
2861
2862  // fold (fp_to_sint c1fp) -> c1
2863  if (N0CFP)
2864    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
2865  return SDOperand();
2866}
2867
2868SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
2869  SDOperand N0 = N->getOperand(0);
2870  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2871  MVT::ValueType VT = N->getValueType(0);
2872
2873  // fold (fp_to_uint c1fp) -> c1
2874  if (N0CFP)
2875    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
2876  return SDOperand();
2877}
2878
2879SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
2880  SDOperand N0 = N->getOperand(0);
2881  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2882  MVT::ValueType VT = N->getValueType(0);
2883
2884  // fold (fp_round c1fp) -> c1fp
2885  if (N0CFP)
2886    return DAG.getNode(ISD::FP_ROUND, VT, N0);
2887
2888  // fold (fp_round (fp_extend x)) -> x
2889  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
2890    return N0.getOperand(0);
2891
2892  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
2893  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
2894    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
2895    AddToWorkList(Tmp.Val);
2896    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
2897  }
2898
2899  return SDOperand();
2900}
2901
2902SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
2903  SDOperand N0 = N->getOperand(0);
2904  MVT::ValueType VT = N->getValueType(0);
2905  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2906  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2907
2908  // fold (fp_round_inreg c1fp) -> c1fp
2909  if (N0CFP) {
2910    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
2911    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
2912  }
2913  return SDOperand();
2914}
2915
2916SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
2917  SDOperand N0 = N->getOperand(0);
2918  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2919  MVT::ValueType VT = N->getValueType(0);
2920
2921  // fold (fp_extend c1fp) -> c1fp
2922  if (N0CFP)
2923    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
2924
2925  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
2926  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2927      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2928    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2929    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2930                                       LN0->getBasePtr(), LN0->getSrcValue(),
2931                                       LN0->getSrcValueOffset(),
2932                                       N0.getValueType());
2933    CombineTo(N, ExtLoad);
2934    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
2935              ExtLoad.getValue(1));
2936    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2937  }
2938
2939
2940  return SDOperand();
2941}
2942
2943SDOperand DAGCombiner::visitFNEG(SDNode *N) {
2944  SDOperand N0 = N->getOperand(0);
2945  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2946  MVT::ValueType VT = N->getValueType(0);
2947
2948  // fold (fneg c1) -> -c1
2949  if (N0CFP)
2950    return DAG.getNode(ISD::FNEG, VT, N0);
2951  // fold (fneg (sub x, y)) -> (sub y, x)
2952  if (N0.getOpcode() == ISD::SUB)
2953    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
2954  // fold (fneg (fneg x)) -> x
2955  if (N0.getOpcode() == ISD::FNEG)
2956    return N0.getOperand(0);
2957  return SDOperand();
2958}
2959
2960SDOperand DAGCombiner::visitFABS(SDNode *N) {
2961  SDOperand N0 = N->getOperand(0);
2962  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2963  MVT::ValueType VT = N->getValueType(0);
2964
2965  // fold (fabs c1) -> fabs(c1)
2966  if (N0CFP)
2967    return DAG.getNode(ISD::FABS, VT, N0);
2968  // fold (fabs (fabs x)) -> (fabs x)
2969  if (N0.getOpcode() == ISD::FABS)
2970    return N->getOperand(0);
2971  // fold (fabs (fneg x)) -> (fabs x)
2972  // fold (fabs (fcopysign x, y)) -> (fabs x)
2973  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
2974    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
2975
2976  return SDOperand();
2977}
2978
2979SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
2980  SDOperand Chain = N->getOperand(0);
2981  SDOperand N1 = N->getOperand(1);
2982  SDOperand N2 = N->getOperand(2);
2983  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2984
2985  // never taken branch, fold to chain
2986  if (N1C && N1C->isNullValue())
2987    return Chain;
2988  // unconditional branch
2989  if (N1C && N1C->getValue() == 1)
2990    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
2991  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
2992  // on the target.
2993  if (N1.getOpcode() == ISD::SETCC &&
2994      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
2995    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
2996                       N1.getOperand(0), N1.getOperand(1), N2);
2997  }
2998  return SDOperand();
2999}
3000
3001// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3002//
3003SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3004  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3005  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3006
3007  // Use SimplifySetCC  to simplify SETCC's.
3008  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3009  if (Simp.Val) AddToWorkList(Simp.Val);
3010
3011  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3012
3013  // fold br_cc true, dest -> br dest (unconditional branch)
3014  if (SCCC && SCCC->getValue())
3015    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3016                       N->getOperand(4));
3017  // fold br_cc false, dest -> unconditional fall through
3018  if (SCCC && SCCC->isNullValue())
3019    return N->getOperand(0);
3020
3021  // fold to a simpler setcc
3022  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3023    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3024                       Simp.getOperand(2), Simp.getOperand(0),
3025                       Simp.getOperand(1), N->getOperand(4));
3026  return SDOperand();
3027}
3028
3029
3030/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3031/// pre-indexed load / store when the base pointer is a add or subtract
3032/// and it has other uses besides the load / store. After the
3033/// transformation, the new indexed load / store has effectively folded
3034/// the add / subtract in and all of its other uses are redirected to the
3035/// new load / store.
3036bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3037  if (!AfterLegalize)
3038    return false;
3039
3040  bool isLoad = true;
3041  SDOperand Ptr;
3042  MVT::ValueType VT;
3043  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3044    if (LD->getAddressingMode() != ISD::UNINDEXED)
3045      return false;
3046    VT = LD->getLoadedVT();
3047    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3048        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3049      return false;
3050    Ptr = LD->getBasePtr();
3051  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3052    if (ST->getAddressingMode() != ISD::UNINDEXED)
3053      return false;
3054    VT = ST->getStoredVT();
3055    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3056        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3057      return false;
3058    Ptr = ST->getBasePtr();
3059    isLoad = false;
3060  } else
3061    return false;
3062
3063  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3064  // out.  There is no reason to make this a preinc/predec.
3065  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3066      Ptr.Val->hasOneUse())
3067    return false;
3068
3069  // Ask the target to do addressing mode selection.
3070  SDOperand BasePtr;
3071  SDOperand Offset;
3072  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3073  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3074    return false;
3075
3076  // Try turning it into a pre-indexed load / store except when:
3077  // 1) The base is a frame index.
3078  // 2) If N is a store and the ptr is either the same as or is a
3079  //    predecessor of the value being stored.
3080  // 3) Another use of base ptr is a predecessor of N. If ptr is folded
3081  //    that would create a cycle.
3082  // 4) All uses are load / store ops that use it as base ptr.
3083
3084  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3085  // (plus the implicit offset) to a register to preinc anyway.
3086  if (isa<FrameIndexSDNode>(BasePtr))
3087    return false;
3088
3089  // Check #2.
3090  if (!isLoad) {
3091    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3092    if (Val == Ptr || Ptr.Val->isPredecessor(Val.Val))
3093      return false;
3094  }
3095
3096  // Now check for #2 and #3.
3097  bool RealUse = false;
3098  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3099         E = Ptr.Val->use_end(); I != E; ++I) {
3100    SDNode *Use = *I;
3101    if (Use == N)
3102      continue;
3103    if (Use->isPredecessor(N))
3104      return false;
3105
3106    if (!((Use->getOpcode() == ISD::LOAD &&
3107           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3108          (Use->getOpcode() == ISD::STORE) &&
3109          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3110      RealUse = true;
3111  }
3112  if (!RealUse)
3113    return false;
3114
3115  SDOperand Result;
3116  if (isLoad)
3117    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3118  else
3119    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3120  ++PreIndexedNodes;
3121  ++NodesCombined;
3122  DOUT << "\nReplacing.4 "; DEBUG(N->dump());
3123  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3124  DOUT << '\n';
3125  std::vector<SDNode*> NowDead;
3126  if (isLoad) {
3127    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3128                                  NowDead);
3129    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3130                                  NowDead);
3131  } else {
3132    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3133                                  NowDead);
3134  }
3135
3136  // Nodes can end up on the worklist more than once.  Make sure we do
3137  // not process a node that has been replaced.
3138  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3139    removeFromWorkList(NowDead[i]);
3140  // Finally, since the node is now dead, remove it from the graph.
3141  DAG.DeleteNode(N);
3142
3143  // Replace the uses of Ptr with uses of the updated base value.
3144  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3145                                NowDead);
3146  removeFromWorkList(Ptr.Val);
3147  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3148    removeFromWorkList(NowDead[i]);
3149  DAG.DeleteNode(Ptr.Val);
3150
3151  return true;
3152}
3153
3154/// CombineToPostIndexedLoadStore - Try combine a load / store with a
3155/// add / sub of the base pointer node into a post-indexed load / store.
3156/// The transformation folded the add / subtract into the new indexed
3157/// load / store effectively and all of its uses are redirected to the
3158/// new load / store.
3159bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3160  if (!AfterLegalize)
3161    return false;
3162
3163  bool isLoad = true;
3164  SDOperand Ptr;
3165  MVT::ValueType VT;
3166  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3167    if (LD->getAddressingMode() != ISD::UNINDEXED)
3168      return false;
3169    VT = LD->getLoadedVT();
3170    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3171        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3172      return false;
3173    Ptr = LD->getBasePtr();
3174  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3175    if (ST->getAddressingMode() != ISD::UNINDEXED)
3176      return false;
3177    VT = ST->getStoredVT();
3178    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3179        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3180      return false;
3181    Ptr = ST->getBasePtr();
3182    isLoad = false;
3183  } else
3184    return false;
3185
3186  if (Ptr.Val->hasOneUse())
3187    return false;
3188
3189  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3190         E = Ptr.Val->use_end(); I != E; ++I) {
3191    SDNode *Op = *I;
3192    if (Op == N ||
3193        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3194      continue;
3195
3196    SDOperand BasePtr;
3197    SDOperand Offset;
3198    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3199    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3200      if (Ptr == Offset)
3201        std::swap(BasePtr, Offset);
3202      if (Ptr != BasePtr)
3203        continue;
3204
3205      // Try turning it into a post-indexed load / store except when
3206      // 1) All uses are load / store ops that use it as base ptr.
3207      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3208      //    nor a successor of N. Otherwise, if Op is folded that would
3209      //    create a cycle.
3210
3211      // Check for #1.
3212      bool TryNext = false;
3213      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3214             EE = BasePtr.Val->use_end(); II != EE; ++II) {
3215        SDNode *Use = *II;
3216        if (Use == Ptr.Val)
3217          continue;
3218
3219        // If all the uses are load / store addresses, then don't do the
3220        // transformation.
3221        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3222          bool RealUse = false;
3223          for (SDNode::use_iterator III = Use->use_begin(),
3224                 EEE = Use->use_end(); III != EEE; ++III) {
3225            SDNode *UseUse = *III;
3226            if (!((UseUse->getOpcode() == ISD::LOAD &&
3227                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3228                  (UseUse->getOpcode() == ISD::STORE) &&
3229                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3230              RealUse = true;
3231          }
3232
3233          if (!RealUse) {
3234            TryNext = true;
3235            break;
3236          }
3237        }
3238      }
3239      if (TryNext)
3240        continue;
3241
3242      // Check for #2
3243      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
3244        SDOperand Result = isLoad
3245          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
3246          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3247        ++PostIndexedNodes;
3248        ++NodesCombined;
3249        DOUT << "\nReplacing.5 "; DEBUG(N->dump());
3250        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3251        DOUT << '\n';
3252        std::vector<SDNode*> NowDead;
3253        if (isLoad) {
3254          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3255                                        NowDead);
3256          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3257                                        NowDead);
3258        } else {
3259          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3260                                        NowDead);
3261        }
3262
3263        // Nodes can end up on the worklist more than once.  Make sure we do
3264        // not process a node that has been replaced.
3265        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3266          removeFromWorkList(NowDead[i]);
3267        // Finally, since the node is now dead, remove it from the graph.
3268        DAG.DeleteNode(N);
3269
3270        // Replace the uses of Use with uses of the updated base value.
3271        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
3272                                      Result.getValue(isLoad ? 1 : 0),
3273                                      NowDead);
3274        removeFromWorkList(Op);
3275        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3276          removeFromWorkList(NowDead[i]);
3277        DAG.DeleteNode(Op);
3278
3279        return true;
3280      }
3281    }
3282  }
3283  return false;
3284}
3285
3286
3287SDOperand DAGCombiner::visitLOAD(SDNode *N) {
3288  LoadSDNode *LD  = cast<LoadSDNode>(N);
3289  SDOperand Chain = LD->getChain();
3290  SDOperand Ptr   = LD->getBasePtr();
3291
3292  // If there are no uses of the loaded value, change uses of the chain value
3293  // into uses of the chain input (i.e. delete the dead load).
3294  if (N->hasNUsesOfValue(0, 0))
3295    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
3296
3297  // If this load is directly stored, replace the load value with the stored
3298  // value.
3299  // TODO: Handle store large -> read small portion.
3300  // TODO: Handle TRUNCSTORE/LOADEXT
3301  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3302    if (ISD::isNON_TRUNCStore(Chain.Val)) {
3303      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
3304      if (PrevST->getBasePtr() == Ptr &&
3305          PrevST->getValue().getValueType() == N->getValueType(0))
3306      return CombineTo(N, Chain.getOperand(1), Chain);
3307    }
3308  }
3309
3310  if (CombinerAA) {
3311    // Walk up chain skipping non-aliasing memory nodes.
3312    SDOperand BetterChain = FindBetterChain(N, Chain);
3313
3314    // If there is a better chain.
3315    if (Chain != BetterChain) {
3316      SDOperand ReplLoad;
3317
3318      // Replace the chain to void dependency.
3319      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3320        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
3321                              LD->getSrcValue(), LD->getSrcValueOffset());
3322      } else {
3323        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
3324                                  LD->getValueType(0),
3325                                  BetterChain, Ptr, LD->getSrcValue(),
3326                                  LD->getSrcValueOffset(),
3327                                  LD->getLoadedVT());
3328      }
3329
3330      // Create token factor to keep old chain connected.
3331      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
3332                                    Chain, ReplLoad.getValue(1));
3333
3334      // Replace uses with load result and token factor. Don't add users
3335      // to work list.
3336      return CombineTo(N, ReplLoad.getValue(0), Token, false);
3337    }
3338  }
3339
3340  // Try transforming N to an indexed load.
3341  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3342    return SDOperand(N, 0);
3343
3344  return SDOperand();
3345}
3346
3347SDOperand DAGCombiner::visitSTORE(SDNode *N) {
3348  StoreSDNode *ST  = cast<StoreSDNode>(N);
3349  SDOperand Chain = ST->getChain();
3350  SDOperand Value = ST->getValue();
3351  SDOperand Ptr   = ST->getBasePtr();
3352
3353  // If this is a store of a bit convert, store the input value.
3354  // FIXME: This needs to know that the resultant store does not need a
3355  // higher alignment than the original.
3356  if (0 && Value.getOpcode() == ISD::BIT_CONVERT) {
3357    return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
3358                        ST->getSrcValueOffset());
3359  }
3360
3361  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3362  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
3363    if (Value.getOpcode() != ISD::TargetConstantFP) {
3364      SDOperand Tmp;
3365      switch (CFP->getValueType(0)) {
3366      default: assert(0 && "Unknown FP type");
3367      case MVT::f32:
3368        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
3369          Tmp = DAG.getConstant(FloatToBits(CFP->getValue()), MVT::i32);
3370          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3371                              ST->getSrcValueOffset());
3372        }
3373        break;
3374      case MVT::f64:
3375        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
3376          Tmp = DAG.getConstant(DoubleToBits(CFP->getValue()), MVT::i64);
3377          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3378                              ST->getSrcValueOffset());
3379        } else if (TLI.isTypeLegal(MVT::i32)) {
3380          // Many FP stores are not make apparent until after legalize, e.g. for
3381          // argument passing.  Since this is so common, custom legalize the
3382          // 64-bit integer store into two 32-bit stores.
3383          uint64_t Val = DoubleToBits(CFP->getValue());
3384          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
3385          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
3386          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
3387
3388          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
3389                                       ST->getSrcValueOffset());
3390          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
3391                            DAG.getConstant(4, Ptr.getValueType()));
3392          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
3393                                       ST->getSrcValueOffset()+4);
3394          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
3395        }
3396        break;
3397      }
3398    }
3399  }
3400
3401  if (CombinerAA) {
3402    // Walk up chain skipping non-aliasing memory nodes.
3403    SDOperand BetterChain = FindBetterChain(N, Chain);
3404
3405    // If there is a better chain.
3406    if (Chain != BetterChain) {
3407      // Replace the chain to avoid dependency.
3408      SDOperand ReplStore;
3409      if (ST->isTruncatingStore()) {
3410        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
3411          ST->getSrcValue(),ST->getSrcValueOffset(), ST->getStoredVT());
3412      } else {
3413        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
3414          ST->getSrcValue(), ST->getSrcValueOffset());
3415      }
3416
3417      // Create token to keep both nodes around.
3418      SDOperand Token =
3419        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
3420
3421      // Don't add users to work list.
3422      return CombineTo(N, Token, false);
3423    }
3424  }
3425
3426  // Try transforming N to an indexed store.
3427  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3428    return SDOperand(N, 0);
3429
3430  return SDOperand();
3431}
3432
3433SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
3434  SDOperand InVec = N->getOperand(0);
3435  SDOperand InVal = N->getOperand(1);
3436  SDOperand EltNo = N->getOperand(2);
3437
3438  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
3439  // vector with the inserted element.
3440  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3441    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3442    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3443    if (Elt < Ops.size())
3444      Ops[Elt] = InVal;
3445    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
3446                       &Ops[0], Ops.size());
3447  }
3448
3449  return SDOperand();
3450}
3451
3452SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
3453  SDOperand InVec = N->getOperand(0);
3454  SDOperand InVal = N->getOperand(1);
3455  SDOperand EltNo = N->getOperand(2);
3456  SDOperand NumElts = N->getOperand(3);
3457  SDOperand EltType = N->getOperand(4);
3458
3459  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
3460  // vector with the inserted element.
3461  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
3462    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
3463    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
3464    if (Elt < Ops.size()-2)
3465      Ops[Elt] = InVal;
3466    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(),
3467                       &Ops[0], Ops.size());
3468  }
3469
3470  return SDOperand();
3471}
3472
3473SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
3474  unsigned NumInScalars = N->getNumOperands()-2;
3475  SDOperand NumElts = N->getOperand(NumInScalars);
3476  SDOperand EltType = N->getOperand(NumInScalars+1);
3477
3478  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
3479  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
3480  // two distinct vectors, turn this into a shuffle node.
3481  SDOperand VecIn1, VecIn2;
3482  for (unsigned i = 0; i != NumInScalars; ++i) {
3483    // Ignore undef inputs.
3484    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
3485
3486    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
3487    // constant index, bail out.
3488    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
3489        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
3490      VecIn1 = VecIn2 = SDOperand(0, 0);
3491      break;
3492    }
3493
3494    // If the input vector type disagrees with the result of the vbuild_vector,
3495    // we can't make a shuffle.
3496    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
3497    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
3498        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
3499      VecIn1 = VecIn2 = SDOperand(0, 0);
3500      break;
3501    }
3502
3503    // Otherwise, remember this.  We allow up to two distinct input vectors.
3504    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
3505      continue;
3506
3507    if (VecIn1.Val == 0) {
3508      VecIn1 = ExtractedFromVec;
3509    } else if (VecIn2.Val == 0) {
3510      VecIn2 = ExtractedFromVec;
3511    } else {
3512      // Too many inputs.
3513      VecIn1 = VecIn2 = SDOperand(0, 0);
3514      break;
3515    }
3516  }
3517
3518  // If everything is good, we can make a shuffle operation.
3519  if (VecIn1.Val) {
3520    SmallVector<SDOperand, 8> BuildVecIndices;
3521    for (unsigned i = 0; i != NumInScalars; ++i) {
3522      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
3523        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
3524        continue;
3525      }
3526
3527      SDOperand Extract = N->getOperand(i);
3528
3529      // If extracting from the first vector, just use the index directly.
3530      if (Extract.getOperand(0) == VecIn1) {
3531        BuildVecIndices.push_back(Extract.getOperand(1));
3532        continue;
3533      }
3534
3535      // Otherwise, use InIdx + VecSize
3536      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
3537      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
3538                                                TLI.getPointerTy()));
3539    }
3540
3541    // Add count and size info.
3542    BuildVecIndices.push_back(NumElts);
3543    BuildVecIndices.push_back(DAG.getValueType(TLI.getPointerTy()));
3544
3545    // Return the new VVECTOR_SHUFFLE node.
3546    SDOperand Ops[5];
3547    Ops[0] = VecIn1;
3548    if (VecIn2.Val) {
3549      Ops[1] = VecIn2;
3550    } else {
3551       // Use an undef vbuild_vector as input for the second operand.
3552      std::vector<SDOperand> UnOps(NumInScalars,
3553                                   DAG.getNode(ISD::UNDEF,
3554                                           cast<VTSDNode>(EltType)->getVT()));
3555      UnOps.push_back(NumElts);
3556      UnOps.push_back(EltType);
3557      Ops[1] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3558                           &UnOps[0], UnOps.size());
3559      AddToWorkList(Ops[1].Val);
3560    }
3561    Ops[2] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3562                         &BuildVecIndices[0], BuildVecIndices.size());
3563    Ops[3] = NumElts;
3564    Ops[4] = EltType;
3565    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops, 5);
3566  }
3567
3568  return SDOperand();
3569}
3570
3571SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
3572  SDOperand ShufMask = N->getOperand(2);
3573  unsigned NumElts = ShufMask.getNumOperands();
3574
3575  // If the shuffle mask is an identity operation on the LHS, return the LHS.
3576  bool isIdentity = true;
3577  for (unsigned i = 0; i != NumElts; ++i) {
3578    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3579        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3580      isIdentity = false;
3581      break;
3582    }
3583  }
3584  if (isIdentity) return N->getOperand(0);
3585
3586  // If the shuffle mask is an identity operation on the RHS, return the RHS.
3587  isIdentity = true;
3588  for (unsigned i = 0; i != NumElts; ++i) {
3589    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3590        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3591      isIdentity = false;
3592      break;
3593    }
3594  }
3595  if (isIdentity) return N->getOperand(1);
3596
3597  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3598  // needed at all.
3599  bool isUnary = true;
3600  bool isSplat = true;
3601  int VecNum = -1;
3602  unsigned BaseIdx = 0;
3603  for (unsigned i = 0; i != NumElts; ++i)
3604    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3605      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3606      int V = (Idx < NumElts) ? 0 : 1;
3607      if (VecNum == -1) {
3608        VecNum = V;
3609        BaseIdx = Idx;
3610      } else {
3611        if (BaseIdx != Idx)
3612          isSplat = false;
3613        if (VecNum != V) {
3614          isUnary = false;
3615          break;
3616        }
3617      }
3618    }
3619
3620  SDOperand N0 = N->getOperand(0);
3621  SDOperand N1 = N->getOperand(1);
3622  // Normalize unary shuffle so the RHS is undef.
3623  if (isUnary && VecNum == 1)
3624    std::swap(N0, N1);
3625
3626  // If it is a splat, check if the argument vector is a build_vector with
3627  // all scalar elements the same.
3628  if (isSplat) {
3629    SDNode *V = N0.Val;
3630    if (V->getOpcode() == ISD::BIT_CONVERT)
3631      V = V->getOperand(0).Val;
3632    if (V->getOpcode() == ISD::BUILD_VECTOR) {
3633      unsigned NumElems = V->getNumOperands()-2;
3634      if (NumElems > BaseIdx) {
3635        SDOperand Base;
3636        bool AllSame = true;
3637        for (unsigned i = 0; i != NumElems; ++i) {
3638          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3639            Base = V->getOperand(i);
3640            break;
3641          }
3642        }
3643        // Splat of <u, u, u, u>, return <u, u, u, u>
3644        if (!Base.Val)
3645          return N0;
3646        for (unsigned i = 0; i != NumElems; ++i) {
3647          if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3648              V->getOperand(i) != Base) {
3649            AllSame = false;
3650            break;
3651          }
3652        }
3653        // Splat of <x, x, x, x>, return <x, x, x, x>
3654        if (AllSame)
3655          return N0;
3656      }
3657    }
3658  }
3659
3660  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3661  // into an undef.
3662  if (isUnary || N0 == N1) {
3663    if (N0.getOpcode() == ISD::UNDEF)
3664      return DAG.getNode(ISD::UNDEF, N->getValueType(0));
3665    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3666    // first operand.
3667    SmallVector<SDOperand, 8> MappedOps;
3668    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
3669      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
3670          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
3671        MappedOps.push_back(ShufMask.getOperand(i));
3672      } else {
3673        unsigned NewIdx =
3674           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
3675        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
3676      }
3677    }
3678    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
3679                           &MappedOps[0], MappedOps.size());
3680    AddToWorkList(ShufMask.Val);
3681    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
3682                       N0,
3683                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
3684                       ShufMask);
3685  }
3686
3687  return SDOperand();
3688}
3689
3690SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
3691  SDOperand ShufMask = N->getOperand(2);
3692  unsigned NumElts = ShufMask.getNumOperands()-2;
3693
3694  // If the shuffle mask is an identity operation on the LHS, return the LHS.
3695  bool isIdentity = true;
3696  for (unsigned i = 0; i != NumElts; ++i) {
3697    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3698        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
3699      isIdentity = false;
3700      break;
3701    }
3702  }
3703  if (isIdentity) return N->getOperand(0);
3704
3705  // If the shuffle mask is an identity operation on the RHS, return the RHS.
3706  isIdentity = true;
3707  for (unsigned i = 0; i != NumElts; ++i) {
3708    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
3709        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
3710      isIdentity = false;
3711      break;
3712    }
3713  }
3714  if (isIdentity) return N->getOperand(1);
3715
3716  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
3717  // needed at all.
3718  bool isUnary = true;
3719  bool isSplat = true;
3720  int VecNum = -1;
3721  unsigned BaseIdx = 0;
3722  for (unsigned i = 0; i != NumElts; ++i)
3723    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
3724      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
3725      int V = (Idx < NumElts) ? 0 : 1;
3726      if (VecNum == -1) {
3727        VecNum = V;
3728        BaseIdx = Idx;
3729      } else {
3730        if (BaseIdx != Idx)
3731          isSplat = false;
3732        if (VecNum != V) {
3733          isUnary = false;
3734          break;
3735        }
3736      }
3737    }
3738
3739  SDOperand N0 = N->getOperand(0);
3740  SDOperand N1 = N->getOperand(1);
3741  // Normalize unary shuffle so the RHS is undef.
3742  if (isUnary && VecNum == 1)
3743    std::swap(N0, N1);
3744
3745  // If it is a splat, check if the argument vector is a build_vector with
3746  // all scalar elements the same.
3747  if (isSplat) {
3748    SDNode *V = N0.Val;
3749
3750    // If this is a vbit convert that changes the element type of the vector but
3751    // not the number of vector elements, look through it.  Be careful not to
3752    // look though conversions that change things like v4f32 to v2f64.
3753    if (V->getOpcode() == ISD::VBIT_CONVERT) {
3754      SDOperand ConvInput = V->getOperand(0);
3755      if (ConvInput.getValueType() == MVT::Vector &&
3756          NumElts ==
3757          ConvInput.getConstantOperandVal(ConvInput.getNumOperands()-2))
3758        V = ConvInput.Val;
3759    }
3760
3761    if (V->getOpcode() == ISD::VBUILD_VECTOR) {
3762      unsigned NumElems = V->getNumOperands()-2;
3763      if (NumElems > BaseIdx) {
3764        SDOperand Base;
3765        bool AllSame = true;
3766        for (unsigned i = 0; i != NumElems; ++i) {
3767          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
3768            Base = V->getOperand(i);
3769            break;
3770          }
3771        }
3772        // Splat of <u, u, u, u>, return <u, u, u, u>
3773        if (!Base.Val)
3774          return N0;
3775        for (unsigned i = 0; i != NumElems; ++i) {
3776          if (V->getOperand(i).getOpcode() != ISD::UNDEF &&
3777              V->getOperand(i) != Base) {
3778            AllSame = false;
3779            break;
3780          }
3781        }
3782        // Splat of <x, x, x, x>, return <x, x, x, x>
3783        if (AllSame)
3784          return N0;
3785      }
3786    }
3787  }
3788
3789  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
3790  // into an undef.
3791  if (isUnary || N0 == N1) {
3792    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
3793    // first operand.
3794    SmallVector<SDOperand, 8> MappedOps;
3795    for (unsigned i = 0; i != NumElts; ++i) {
3796      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
3797          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
3798        MappedOps.push_back(ShufMask.getOperand(i));
3799      } else {
3800        unsigned NewIdx =
3801          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
3802        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
3803      }
3804    }
3805    // Add the type/#elts values.
3806    MappedOps.push_back(ShufMask.getOperand(NumElts));
3807    MappedOps.push_back(ShufMask.getOperand(NumElts+1));
3808
3809    ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
3810                           &MappedOps[0], MappedOps.size());
3811    AddToWorkList(ShufMask.Val);
3812
3813    // Build the undef vector.
3814    SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
3815    for (unsigned i = 0; i != NumElts; ++i)
3816      MappedOps[i] = UDVal;
3817    MappedOps[NumElts  ] = *(N0.Val->op_end()-2);
3818    MappedOps[NumElts+1] = *(N0.Val->op_end()-1);
3819    UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3820                        &MappedOps[0], MappedOps.size());
3821
3822    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
3823                       N0, UDVal, ShufMask,
3824                       MappedOps[NumElts], MappedOps[NumElts+1]);
3825  }
3826
3827  return SDOperand();
3828}
3829
3830/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
3831/// a VAND to a vector_shuffle with the destination vector and a zero vector.
3832/// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
3833///      vector_shuffle V, Zero, <0, 4, 2, 4>
3834SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
3835  SDOperand LHS = N->getOperand(0);
3836  SDOperand RHS = N->getOperand(1);
3837  if (N->getOpcode() == ISD::VAND) {
3838    SDOperand DstVecSize = *(LHS.Val->op_end()-2);
3839    SDOperand DstVecEVT  = *(LHS.Val->op_end()-1);
3840    if (RHS.getOpcode() == ISD::VBIT_CONVERT)
3841      RHS = RHS.getOperand(0);
3842    if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
3843      std::vector<SDOperand> IdxOps;
3844      unsigned NumOps = RHS.getNumOperands();
3845      unsigned NumElts = NumOps-2;
3846      MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
3847      for (unsigned i = 0; i != NumElts; ++i) {
3848        SDOperand Elt = RHS.getOperand(i);
3849        if (!isa<ConstantSDNode>(Elt))
3850          return SDOperand();
3851        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
3852          IdxOps.push_back(DAG.getConstant(i, EVT));
3853        else if (cast<ConstantSDNode>(Elt)->isNullValue())
3854          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
3855        else
3856          return SDOperand();
3857      }
3858
3859      // Let's see if the target supports this vector_shuffle.
3860      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
3861        return SDOperand();
3862
3863      // Return the new VVECTOR_SHUFFLE node.
3864      SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
3865      SDOperand EVTNode = DAG.getValueType(EVT);
3866      std::vector<SDOperand> Ops;
3867      LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode,
3868                        EVTNode);
3869      Ops.push_back(LHS);
3870      AddToWorkList(LHS.Val);
3871      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
3872      ZeroOps.push_back(NumEltsNode);
3873      ZeroOps.push_back(EVTNode);
3874      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3875                                &ZeroOps[0], ZeroOps.size()));
3876      IdxOps.push_back(NumEltsNode);
3877      IdxOps.push_back(EVTNode);
3878      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
3879                                &IdxOps[0], IdxOps.size()));
3880      Ops.push_back(NumEltsNode);
3881      Ops.push_back(EVTNode);
3882      SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
3883                                     &Ops[0], Ops.size());
3884      if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
3885        Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
3886                             DstVecSize, DstVecEVT);
3887      }
3888      return Result;
3889    }
3890  }
3891  return SDOperand();
3892}
3893
3894/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
3895/// the scalar operation of the vop if it is operating on an integer vector
3896/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
3897SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
3898                                   ISD::NodeType FPOp) {
3899  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
3900  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
3901  SDOperand LHS = N->getOperand(0);
3902  SDOperand RHS = N->getOperand(1);
3903  SDOperand Shuffle = XformToShuffleWithZero(N);
3904  if (Shuffle.Val) return Shuffle;
3905
3906  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
3907  // this operation.
3908  if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
3909      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
3910    SmallVector<SDOperand, 8> Ops;
3911    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
3912      SDOperand LHSOp = LHS.getOperand(i);
3913      SDOperand RHSOp = RHS.getOperand(i);
3914      // If these two elements can't be folded, bail out.
3915      if ((LHSOp.getOpcode() != ISD::UNDEF &&
3916           LHSOp.getOpcode() != ISD::Constant &&
3917           LHSOp.getOpcode() != ISD::ConstantFP) ||
3918          (RHSOp.getOpcode() != ISD::UNDEF &&
3919           RHSOp.getOpcode() != ISD::Constant &&
3920           RHSOp.getOpcode() != ISD::ConstantFP))
3921        break;
3922      // Can't fold divide by zero.
3923      if (N->getOpcode() == ISD::VSDIV || N->getOpcode() == ISD::VUDIV) {
3924        if ((RHSOp.getOpcode() == ISD::Constant &&
3925             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
3926            (RHSOp.getOpcode() == ISD::ConstantFP &&
3927             !cast<ConstantFPSDNode>(RHSOp.Val)->getValue()))
3928          break;
3929      }
3930      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
3931      AddToWorkList(Ops.back().Val);
3932      assert((Ops.back().getOpcode() == ISD::UNDEF ||
3933              Ops.back().getOpcode() == ISD::Constant ||
3934              Ops.back().getOpcode() == ISD::ConstantFP) &&
3935             "Scalar binop didn't fold!");
3936    }
3937
3938    if (Ops.size() == LHS.getNumOperands()-2) {
3939      Ops.push_back(*(LHS.Val->op_end()-2));
3940      Ops.push_back(*(LHS.Val->op_end()-1));
3941      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
3942    }
3943  }
3944
3945  return SDOperand();
3946}
3947
3948SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
3949  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
3950
3951  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
3952                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
3953  // If we got a simplified select_cc node back from SimplifySelectCC, then
3954  // break it down into a new SETCC node, and a new SELECT node, and then return
3955  // the SELECT node, since we were called with a SELECT node.
3956  if (SCC.Val) {
3957    // Check to see if we got a select_cc back (to turn into setcc/select).
3958    // Otherwise, just return whatever node we got back, like fabs.
3959    if (SCC.getOpcode() == ISD::SELECT_CC) {
3960      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
3961                                    SCC.getOperand(0), SCC.getOperand(1),
3962                                    SCC.getOperand(4));
3963      AddToWorkList(SETCC.Val);
3964      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
3965                         SCC.getOperand(3), SETCC);
3966    }
3967    return SCC;
3968  }
3969  return SDOperand();
3970}
3971
3972/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
3973/// are the two values being selected between, see if we can simplify the
3974/// select.  Callers of this should assume that TheSelect is deleted if this
3975/// returns true.  As such, they should return the appropriate thing (e.g. the
3976/// node) back to the top-level of the DAG combiner loop to avoid it being
3977/// looked at.
3978///
3979bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
3980                                    SDOperand RHS) {
3981
3982  // If this is a select from two identical things, try to pull the operation
3983  // through the select.
3984  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
3985    // If this is a load and the token chain is identical, replace the select
3986    // of two loads with a load through a select of the address to load from.
3987    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
3988    // constants have been dropped into the constant pool.
3989    if (LHS.getOpcode() == ISD::LOAD &&
3990        // Token chains must be identical.
3991        LHS.getOperand(0) == RHS.getOperand(0)) {
3992      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
3993      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
3994
3995      // If this is an EXTLOAD, the VT's must match.
3996      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
3997        // FIXME: this conflates two src values, discarding one.  This is not
3998        // the right thing to do, but nothing uses srcvalues now.  When they do,
3999        // turn SrcValue into a list of locations.
4000        SDOperand Addr;
4001        if (TheSelect->getOpcode() == ISD::SELECT) {
4002          // Check that the condition doesn't reach either load.  If so, folding
4003          // this will induce a cycle into the DAG.
4004          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4005              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4006            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4007                               TheSelect->getOperand(0), LLD->getBasePtr(),
4008                               RLD->getBasePtr());
4009          }
4010        } else {
4011          // Check that the condition doesn't reach either load.  If so, folding
4012          // this will induce a cycle into the DAG.
4013          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4014              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4015              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4016              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4017            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4018                             TheSelect->getOperand(0),
4019                             TheSelect->getOperand(1),
4020                             LLD->getBasePtr(), RLD->getBasePtr(),
4021                             TheSelect->getOperand(4));
4022          }
4023        }
4024
4025        if (Addr.Val) {
4026          SDOperand Load;
4027          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4028            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4029                               Addr,LLD->getSrcValue(),
4030                               LLD->getSrcValueOffset());
4031          else {
4032            Load = DAG.getExtLoad(LLD->getExtensionType(),
4033                                  TheSelect->getValueType(0),
4034                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4035                                  LLD->getSrcValueOffset(),
4036                                  LLD->getLoadedVT());
4037          }
4038          // Users of the select now use the result of the load.
4039          CombineTo(TheSelect, Load);
4040
4041          // Users of the old loads now use the new load's chain.  We know the
4042          // old-load value is dead now.
4043          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4044          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4045          return true;
4046        }
4047      }
4048    }
4049  }
4050
4051  return false;
4052}
4053
4054SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4055                                        SDOperand N2, SDOperand N3,
4056                                        ISD::CondCode CC, bool NotExtCompare) {
4057
4058  MVT::ValueType VT = N2.getValueType();
4059  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4060  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4061  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4062
4063  // Determine if the condition we're dealing with is constant
4064  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4065  if (SCC.Val) AddToWorkList(SCC.Val);
4066  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4067
4068  // fold select_cc true, x, y -> x
4069  if (SCCC && SCCC->getValue())
4070    return N2;
4071  // fold select_cc false, x, y -> y
4072  if (SCCC && SCCC->getValue() == 0)
4073    return N3;
4074
4075  // Check to see if we can simplify the select into an fabs node
4076  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4077    // Allow either -0.0 or 0.0
4078    if (CFP->getValue() == 0.0) {
4079      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4080      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4081          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4082          N2 == N3.getOperand(0))
4083        return DAG.getNode(ISD::FABS, VT, N0);
4084
4085      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4086      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4087          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4088          N2.getOperand(0) == N3)
4089        return DAG.getNode(ISD::FABS, VT, N3);
4090    }
4091  }
4092
4093  // Check to see if we can perform the "gzip trick", transforming
4094  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4095  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4096      MVT::isInteger(N0.getValueType()) &&
4097      MVT::isInteger(N2.getValueType()) &&
4098      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
4099       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
4100    MVT::ValueType XType = N0.getValueType();
4101    MVT::ValueType AType = N2.getValueType();
4102    if (XType >= AType) {
4103      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4104      // single-bit constant.
4105      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4106        unsigned ShCtV = Log2_64(N2C->getValue());
4107        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4108        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4109        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4110        AddToWorkList(Shift.Val);
4111        if (XType > AType) {
4112          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4113          AddToWorkList(Shift.Val);
4114        }
4115        return DAG.getNode(ISD::AND, AType, Shift, N2);
4116      }
4117      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4118                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4119                                                    TLI.getShiftAmountTy()));
4120      AddToWorkList(Shift.Val);
4121      if (XType > AType) {
4122        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4123        AddToWorkList(Shift.Val);
4124      }
4125      return DAG.getNode(ISD::AND, AType, Shift, N2);
4126    }
4127  }
4128
4129  // fold select C, 16, 0 -> shl C, 4
4130  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4131      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4132
4133    // If the caller doesn't want us to simplify this into a zext of a compare,
4134    // don't do it.
4135    if (NotExtCompare && N2C->getValue() == 1)
4136      return SDOperand();
4137
4138    // Get a SetCC of the condition
4139    // FIXME: Should probably make sure that setcc is legal if we ever have a
4140    // target where it isn't.
4141    SDOperand Temp, SCC;
4142    // cast from setcc result type to select result type
4143    if (AfterLegalize) {
4144      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4145      if (N2.getValueType() < SCC.getValueType())
4146        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4147      else
4148        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4149    } else {
4150      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
4151      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4152    }
4153    AddToWorkList(SCC.Val);
4154    AddToWorkList(Temp.Val);
4155
4156    if (N2C->getValue() == 1)
4157      return Temp;
4158    // shl setcc result by log2 n2c
4159    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4160                       DAG.getConstant(Log2_64(N2C->getValue()),
4161                                       TLI.getShiftAmountTy()));
4162  }
4163
4164  // Check to see if this is the equivalent of setcc
4165  // FIXME: Turn all of these into setcc if setcc if setcc is legal
4166  // otherwise, go ahead with the folds.
4167  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4168    MVT::ValueType XType = N0.getValueType();
4169    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4170      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4171      if (Res.getValueType() != VT)
4172        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4173      return Res;
4174    }
4175
4176    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4177    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4178        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4179      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4180      return DAG.getNode(ISD::SRL, XType, Ctlz,
4181                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4182                                         TLI.getShiftAmountTy()));
4183    }
4184    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4185    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4186      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4187                                    N0);
4188      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4189                                    DAG.getConstant(~0ULL, XType));
4190      return DAG.getNode(ISD::SRL, XType,
4191                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4192                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4193                                         TLI.getShiftAmountTy()));
4194    }
4195    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4196    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4197      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4198                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
4199                                                   TLI.getShiftAmountTy()));
4200      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4201    }
4202  }
4203
4204  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4205  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4206  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4207      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
4208      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
4209    MVT::ValueType XType = N0.getValueType();
4210    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4211                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
4212                                                  TLI.getShiftAmountTy()));
4213    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4214    AddToWorkList(Shift.Val);
4215    AddToWorkList(Add.Val);
4216    return DAG.getNode(ISD::XOR, XType, Add, Shift);
4217  }
4218  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4219  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4220  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
4221      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
4222    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
4223      MVT::ValueType XType = N0.getValueType();
4224      if (SubC->isNullValue() && MVT::isInteger(XType)) {
4225        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4226                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4227                                                      TLI.getShiftAmountTy()));
4228        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4229        AddToWorkList(Shift.Val);
4230        AddToWorkList(Add.Val);
4231        return DAG.getNode(ISD::XOR, XType, Add, Shift);
4232      }
4233    }
4234  }
4235
4236  return SDOperand();
4237}
4238
4239/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4240SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
4241                                     SDOperand N1, ISD::CondCode Cond,
4242                                     bool foldBooleans) {
4243  TargetLowering::DAGCombinerInfo
4244    DagCombineInfo(DAG, !AfterLegalize, false, this);
4245  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
4246}
4247
4248/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4249/// return a DAG expression to select that will generate the same value by
4250/// multiplying by a magic number.  See:
4251/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4252SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
4253  std::vector<SDNode*> Built;
4254  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
4255
4256  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4257       ii != ee; ++ii)
4258    AddToWorkList(*ii);
4259  return S;
4260}
4261
4262/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4263/// return a DAG expression to select that will generate the same value by
4264/// multiplying by a magic number.  See:
4265/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4266SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
4267  std::vector<SDNode*> Built;
4268  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
4269
4270  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4271       ii != ee; ++ii)
4272    AddToWorkList(*ii);
4273  return S;
4274}
4275
4276/// FindBaseOffset - Return true if base is known not to alias with anything
4277/// but itself.  Provides base object and offset as results.
4278static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
4279  // Assume it is a primitive operation.
4280  Base = Ptr; Offset = 0;
4281
4282  // If it's an adding a simple constant then integrate the offset.
4283  if (Base.getOpcode() == ISD::ADD) {
4284    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
4285      Base = Base.getOperand(0);
4286      Offset += C->getValue();
4287    }
4288  }
4289
4290  // If it's any of the following then it can't alias with anything but itself.
4291  return isa<FrameIndexSDNode>(Base) ||
4292         isa<ConstantPoolSDNode>(Base) ||
4293         isa<GlobalAddressSDNode>(Base);
4294}
4295
4296/// isAlias - Return true if there is any possibility that the two addresses
4297/// overlap.
4298bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
4299                          const Value *SrcValue1, int SrcValueOffset1,
4300                          SDOperand Ptr2, int64_t Size2,
4301                          const Value *SrcValue2, int SrcValueOffset2)
4302{
4303  // If they are the same then they must be aliases.
4304  if (Ptr1 == Ptr2) return true;
4305
4306  // Gather base node and offset information.
4307  SDOperand Base1, Base2;
4308  int64_t Offset1, Offset2;
4309  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
4310  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
4311
4312  // If they have a same base address then...
4313  if (Base1 == Base2) {
4314    // Check to see if the addresses overlap.
4315    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
4316  }
4317
4318  // If we know both bases then they can't alias.
4319  if (KnownBase1 && KnownBase2) return false;
4320
4321  if (CombinerGlobalAA) {
4322    // Use alias analysis information.
4323    int Overlap1 = Size1 + SrcValueOffset1 + Offset1;
4324    int Overlap2 = Size2 + SrcValueOffset2 + Offset2;
4325    AliasAnalysis::AliasResult AAResult =
4326                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
4327    if (AAResult == AliasAnalysis::NoAlias)
4328      return false;
4329  }
4330
4331  // Otherwise we have to assume they alias.
4332  return true;
4333}
4334
4335/// FindAliasInfo - Extracts the relevant alias information from the memory
4336/// node.  Returns true if the operand was a load.
4337bool DAGCombiner::FindAliasInfo(SDNode *N,
4338                        SDOperand &Ptr, int64_t &Size,
4339                        const Value *&SrcValue, int &SrcValueOffset) {
4340  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4341    Ptr = LD->getBasePtr();
4342    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
4343    SrcValue = LD->getSrcValue();
4344    SrcValueOffset = LD->getSrcValueOffset();
4345    return true;
4346  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4347    Ptr = ST->getBasePtr();
4348    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
4349    SrcValue = ST->getSrcValue();
4350    SrcValueOffset = ST->getSrcValueOffset();
4351  } else {
4352    assert(0 && "FindAliasInfo expected a memory operand");
4353  }
4354
4355  return false;
4356}
4357
4358/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4359/// looking for aliasing nodes and adding them to the Aliases vector.
4360void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
4361                                   SmallVector<SDOperand, 8> &Aliases) {
4362  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
4363  std::set<SDNode *> Visited;           // Visited node set.
4364
4365  // Get alias information for node.
4366  SDOperand Ptr;
4367  int64_t Size;
4368  const Value *SrcValue;
4369  int SrcValueOffset;
4370  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
4371
4372  // Starting off.
4373  Chains.push_back(OriginalChain);
4374
4375  // Look at each chain and determine if it is an alias.  If so, add it to the
4376  // aliases list.  If not, then continue up the chain looking for the next
4377  // candidate.
4378  while (!Chains.empty()) {
4379    SDOperand Chain = Chains.back();
4380    Chains.pop_back();
4381
4382     // Don't bother if we've been before.
4383    if (Visited.find(Chain.Val) != Visited.end()) continue;
4384    Visited.insert(Chain.Val);
4385
4386    switch (Chain.getOpcode()) {
4387    case ISD::EntryToken:
4388      // Entry token is ideal chain operand, but handled in FindBetterChain.
4389      break;
4390
4391    case ISD::LOAD:
4392    case ISD::STORE: {
4393      // Get alias information for Chain.
4394      SDOperand OpPtr;
4395      int64_t OpSize;
4396      const Value *OpSrcValue;
4397      int OpSrcValueOffset;
4398      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
4399                                    OpSrcValue, OpSrcValueOffset);
4400
4401      // If chain is alias then stop here.
4402      if (!(IsLoad && IsOpLoad) &&
4403          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
4404                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
4405        Aliases.push_back(Chain);
4406      } else {
4407        // Look further up the chain.
4408        Chains.push_back(Chain.getOperand(0));
4409        // Clean up old chain.
4410        AddToWorkList(Chain.Val);
4411      }
4412      break;
4413    }
4414
4415    case ISD::TokenFactor:
4416      // We have to check each of the operands of the token factor, so we queue
4417      // then up.  Adding the  operands to the queue (stack) in reverse order
4418      // maintains the original order and increases the likelihood that getNode
4419      // will find a matching token factor (CSE.)
4420      for (unsigned n = Chain.getNumOperands(); n;)
4421        Chains.push_back(Chain.getOperand(--n));
4422      // Eliminate the token factor if we can.
4423      AddToWorkList(Chain.Val);
4424      break;
4425
4426    default:
4427      // For all other instructions we will just have to take what we can get.
4428      Aliases.push_back(Chain);
4429      break;
4430    }
4431  }
4432}
4433
4434/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4435/// for a better chain (aliasing node.)
4436SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
4437  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
4438
4439  // Accumulate all the aliases to this node.
4440  GatherAllAliases(N, OldChain, Aliases);
4441
4442  if (Aliases.size() == 0) {
4443    // If no operands then chain to entry token.
4444    return DAG.getEntryNode();
4445  } else if (Aliases.size() == 1) {
4446    // If a single operand then chain to it.  We don't need to revisit it.
4447    return Aliases[0];
4448  }
4449
4450  // Construct a custom tailored token factor.
4451  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4452                                   &Aliases[0], Aliases.size());
4453
4454  // Make sure the old chain gets cleaned up.
4455  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
4456
4457  return NewChain;
4458}
4459
4460// SelectionDAG::Combine - This is the entry point for the file.
4461//
4462void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
4463  if (!RunningAfterLegalize && ViewDAGCombine1)
4464    viewGraph();
4465  if (RunningAfterLegalize && ViewDAGCombine2)
4466    viewGraph();
4467  /// run - This is the main entry point to this class.
4468  ///
4469  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
4470}
4471