DAGCombiner.cpp revision 9c980aa7364674c55978c4ee8f92cfeff71a57a7
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL);
122
123    bool CombineToPreIndexedLoadStore(SDNode *N);
124    bool CombineToPostIndexedLoadStore(SDNode *N);
125
126
127    /// combine - call the node-specific routine that knows how to fold each
128    /// particular type of node. If that doesn't do anything, try the
129    /// target-specific DAG combines.
130    SDOperand combine(SDNode *N);
131
132    // Visitation implementation - Implement dag node combining for different
133    // node types.  The semantics are as follows:
134    // Return Value:
135    //   SDOperand.Val == 0   - No change was made
136    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
137    //   otherwise            - N should be replaced by the returned Operand.
138    //
139    SDOperand visitTokenFactor(SDNode *N);
140    SDOperand visitADD(SDNode *N);
141    SDOperand visitSUB(SDNode *N);
142    SDOperand visitADDC(SDNode *N);
143    SDOperand visitADDE(SDNode *N);
144    SDOperand visitMUL(SDNode *N);
145    SDOperand visitSDIV(SDNode *N);
146    SDOperand visitUDIV(SDNode *N);
147    SDOperand visitSREM(SDNode *N);
148    SDOperand visitUREM(SDNode *N);
149    SDOperand visitMULHU(SDNode *N);
150    SDOperand visitMULHS(SDNode *N);
151    SDOperand visitSMUL_LOHI(SDNode *N);
152    SDOperand visitUMUL_LOHI(SDNode *N);
153    SDOperand visitSDIVREM(SDNode *N);
154    SDOperand visitUDIVREM(SDNode *N);
155    SDOperand visitAND(SDNode *N);
156    SDOperand visitOR(SDNode *N);
157    SDOperand visitXOR(SDNode *N);
158    SDOperand SimplifyVBinOp(SDNode *N);
159    SDOperand visitSHL(SDNode *N);
160    SDOperand visitSRA(SDNode *N);
161    SDOperand visitSRL(SDNode *N);
162    SDOperand visitCTLZ(SDNode *N);
163    SDOperand visitCTTZ(SDNode *N);
164    SDOperand visitCTPOP(SDNode *N);
165    SDOperand visitSELECT(SDNode *N);
166    SDOperand visitSELECT_CC(SDNode *N);
167    SDOperand visitSETCC(SDNode *N);
168    SDOperand visitSIGN_EXTEND(SDNode *N);
169    SDOperand visitZERO_EXTEND(SDNode *N);
170    SDOperand visitANY_EXTEND(SDNode *N);
171    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
172    SDOperand visitTRUNCATE(SDNode *N);
173    SDOperand visitBIT_CONVERT(SDNode *N);
174    SDOperand visitFADD(SDNode *N);
175    SDOperand visitFSUB(SDNode *N);
176    SDOperand visitFMUL(SDNode *N);
177    SDOperand visitFDIV(SDNode *N);
178    SDOperand visitFREM(SDNode *N);
179    SDOperand visitFCOPYSIGN(SDNode *N);
180    SDOperand visitSINT_TO_FP(SDNode *N);
181    SDOperand visitUINT_TO_FP(SDNode *N);
182    SDOperand visitFP_TO_SINT(SDNode *N);
183    SDOperand visitFP_TO_UINT(SDNode *N);
184    SDOperand visitFP_ROUND(SDNode *N);
185    SDOperand visitFP_ROUND_INREG(SDNode *N);
186    SDOperand visitFP_EXTEND(SDNode *N);
187    SDOperand visitFNEG(SDNode *N);
188    SDOperand visitFABS(SDNode *N);
189    SDOperand visitBRCOND(SDNode *N);
190    SDOperand visitBR_CC(SDNode *N);
191    SDOperand visitLOAD(SDNode *N);
192    SDOperand visitSTORE(SDNode *N);
193    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
194    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
195    SDOperand visitBUILD_VECTOR(SDNode *N);
196    SDOperand visitCONCAT_VECTORS(SDNode *N);
197    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
198
199    SDOperand XformToShuffleWithZero(SDNode *N);
200    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
201
202    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
203
204    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
205    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
206    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
207    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
208                               SDOperand N3, ISD::CondCode CC,
209                               bool NotExtCompare = false);
210    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
211                            ISD::CondCode Cond, bool foldBooleans = true);
212    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
213                                         unsigned HiOp);
214    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
215    SDOperand BuildSDIV(SDNode *N);
216    SDOperand BuildUDIV(SDNode *N);
217    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
218    SDOperand ReduceLoadWidth(SDNode *N);
219
220    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
221
222    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
223    /// looking for aliasing nodes and adding them to the Aliases vector.
224    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
225                          SmallVector<SDOperand, 8> &Aliases);
226
227    /// isAlias - Return true if there is any possibility that the two addresses
228    /// overlap.
229    bool isAlias(SDOperand Ptr1, int64_t Size1,
230                 const Value *SrcValue1, int SrcValueOffset1,
231                 SDOperand Ptr2, int64_t Size2,
232                 const Value *SrcValue2, int SrcValueOffset2);
233
234    /// FindAliasInfo - Extracts the relevant alias information from the memory
235    /// node.  Returns true if the operand was a load.
236    bool FindAliasInfo(SDNode *N,
237                       SDOperand &Ptr, int64_t &Size,
238                       const Value *&SrcValue, int &SrcValueOffset);
239
240    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
241    /// looking for a better chain (aliasing node.)
242    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
243
244public:
245    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
246      : DAG(D),
247        TLI(D.getTargetLoweringInfo()),
248        AfterLegalize(false),
249        AA(A) {}
250
251    /// Run - runs the dag combiner on all nodes in the work list
252    void Run(bool RunningAfterLegalize);
253  };
254}
255
256
257namespace {
258/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
259/// nodes from the worklist.
260class VISIBILITY_HIDDEN WorkListRemover :
261  public SelectionDAG::DAGUpdateListener {
262  DAGCombiner &DC;
263public:
264  WorkListRemover(DAGCombiner &dc) : DC(dc) {}
265
266  virtual void NodeDeleted(SDNode *N) {
267    DC.removeFromWorkList(N);
268  }
269
270  virtual void NodeUpdated(SDNode *N) {
271    // Ignore updates.
272  }
273};
274}
275
276//===----------------------------------------------------------------------===//
277//  TargetLowering::DAGCombinerInfo implementation
278//===----------------------------------------------------------------------===//
279
280void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
281  ((DAGCombiner*)DC)->AddToWorkList(N);
282}
283
284SDOperand TargetLowering::DAGCombinerInfo::
285CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
286  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
287}
288
289SDOperand TargetLowering::DAGCombinerInfo::
290CombineTo(SDNode *N, SDOperand Res) {
291  return ((DAGCombiner*)DC)->CombineTo(N, Res);
292}
293
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
298}
299
300
301//===----------------------------------------------------------------------===//
302// Helper Functions
303//===----------------------------------------------------------------------===//
304
305/// isNegatibleForFree - Return 1 if we can compute the negated form of the
306/// specified expression for the same cost as the expression itself, or 2 if we
307/// can compute the negated form more cheaply than the expression itself.
308static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
309  // No compile time optimizations on this type.
310  if (Op.getValueType() == MVT::ppcf128)
311    return 0;
312
313  // fneg is removable even if it has multiple uses.
314  if (Op.getOpcode() == ISD::FNEG) return 2;
315
316  // Don't allow anything with multiple uses.
317  if (!Op.hasOneUse()) return 0;
318
319  // Don't recurse exponentially.
320  if (Depth > 6) return 0;
321
322  switch (Op.getOpcode()) {
323  default: return false;
324  case ISD::ConstantFP:
325    return 1;
326  case ISD::FADD:
327    // FIXME: determine better conditions for this xform.
328    if (!UnsafeFPMath) return 0;
329
330    // -(A+B) -> -A - B
331    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
332      return V;
333    // -(A+B) -> -B - A
334    return isNegatibleForFree(Op.getOperand(1), Depth+1);
335  case ISD::FSUB:
336    // We can't turn -(A-B) into B-A when we honor signed zeros.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A-B) -> B-A
340    return 1;
341
342  case ISD::FMUL:
343  case ISD::FDIV:
344    if (HonorSignDependentRoundingFPMath()) return 0;
345
346    // -(X*Y) -> (-X * Y) or (X*-Y)
347    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
348      return V;
349
350    return isNegatibleForFree(Op.getOperand(1), Depth+1);
351
352  case ISD::FP_EXTEND:
353  case ISD::FP_ROUND:
354  case ISD::FSIN:
355    return isNegatibleForFree(Op.getOperand(0), Depth+1);
356  }
357}
358
359/// GetNegatedExpression - If isNegatibleForFree returns true, this function
360/// returns the newly negated expression.
361static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
362                                      unsigned Depth = 0) {
363  // fneg is removable even if it has multiple uses.
364  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
365
366  // Don't allow anything with multiple uses.
367  assert(Op.hasOneUse() && "Unknown reuse!");
368
369  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
370  switch (Op.getOpcode()) {
371  default: assert(0 && "Unknown code");
372  case ISD::ConstantFP: {
373    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
374    V.changeSign();
375    return DAG.getConstantFP(V, Op.getValueType());
376  }
377  case ISD::FADD:
378    // FIXME: determine better conditions for this xform.
379    assert(UnsafeFPMath);
380
381    // -(A+B) -> -A - B
382    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
383      return DAG.getNode(ISD::FSUB, Op.getValueType(),
384                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
385                         Op.getOperand(1));
386    // -(A+B) -> -B - A
387    return DAG.getNode(ISD::FSUB, Op.getValueType(),
388                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
389                       Op.getOperand(0));
390  case ISD::FSUB:
391    // We can't turn -(A-B) into B-A when we honor signed zeros.
392    assert(UnsafeFPMath);
393
394    // -(0-B) -> B
395    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
396      if (N0CFP->getValueAPF().isZero())
397        return Op.getOperand(1);
398
399    // -(A-B) -> B-A
400    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
401                       Op.getOperand(0));
402
403  case ISD::FMUL:
404  case ISD::FDIV:
405    assert(!HonorSignDependentRoundingFPMath());
406
407    // -(X*Y) -> -X * Y
408    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
409      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
410                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
411                         Op.getOperand(1));
412
413    // -(X*Y) -> X * -Y
414    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
415                       Op.getOperand(0),
416                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
417
418  case ISD::FP_EXTEND:
419  case ISD::FSIN:
420    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
422  case ISD::FP_ROUND:
423      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
424                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
425                         Op.getOperand(1));
426  }
427}
428
429
430// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
431// that selects between the values 1 and 0, making it equivalent to a setcc.
432// Also, set the incoming LHS, RHS, and CC references to the appropriate
433// nodes based on the type of node we are checking.  This simplifies life a
434// bit for the callers.
435static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
436                              SDOperand &CC) {
437  if (N.getOpcode() == ISD::SETCC) {
438    LHS = N.getOperand(0);
439    RHS = N.getOperand(1);
440    CC  = N.getOperand(2);
441    return true;
442  }
443  if (N.getOpcode() == ISD::SELECT_CC &&
444      N.getOperand(2).getOpcode() == ISD::Constant &&
445      N.getOperand(3).getOpcode() == ISD::Constant &&
446      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
447      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
448    LHS = N.getOperand(0);
449    RHS = N.getOperand(1);
450    CC  = N.getOperand(4);
451    return true;
452  }
453  return false;
454}
455
456// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
457// one use.  If this is true, it allows the users to invert the operation for
458// free when it is profitable to do so.
459static bool isOneUseSetCC(SDOperand N) {
460  SDOperand N0, N1, N2;
461  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
462    return true;
463  return false;
464}
465
466SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
467  MVT::ValueType VT = N0.getValueType();
468  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
469  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
470  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
471    if (isa<ConstantSDNode>(N1)) {
472      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
473      AddToWorkList(OpNode.Val);
474      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
475    } else if (N0.hasOneUse()) {
476      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
477      AddToWorkList(OpNode.Val);
478      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
479    }
480  }
481  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
482  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
483  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
484    if (isa<ConstantSDNode>(N0)) {
485      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
486      AddToWorkList(OpNode.Val);
487      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
488    } else if (N1.hasOneUse()) {
489      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
490      AddToWorkList(OpNode.Val);
491      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
492    }
493  }
494  return SDOperand();
495}
496
497SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
498                                 bool AddTo) {
499  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
500  ++NodesCombined;
501  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
502  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
503  DOUT << " and " << NumTo-1 << " other values\n";
504  WorkListRemover DeadNodes(*this);
505  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
506
507  if (AddTo) {
508    // Push the new nodes and any users onto the worklist
509    for (unsigned i = 0, e = NumTo; i != e; ++i) {
510      AddToWorkList(To[i].Val);
511      AddUsersToWorkList(To[i].Val);
512    }
513  }
514
515  // Nodes can be reintroduced into the worklist.  Make sure we do not
516  // process a node that has been replaced.
517  removeFromWorkList(N);
518
519  // Finally, since the node is now dead, remove it from the graph.
520  DAG.DeleteNode(N);
521  return SDOperand(N, 0);
522}
523
524/// SimplifyDemandedBits - Check the specified integer node value to see if
525/// it can be simplified or if things it uses can be simplified by bit
526/// propagation.  If so, return true.
527bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, uint64_t Demanded) {
528  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
529  uint64_t KnownZero, KnownOne;
530  Demanded &= MVT::getIntVTBitMask(Op.getValueType());
531  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
532    return false;
533
534  // Revisit the node.
535  AddToWorkList(Op.Val);
536
537  // Replace the old value with the new one.
538  ++NodesCombined;
539  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
540  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
541  DOUT << '\n';
542
543  // Replace all uses.  If any nodes become isomorphic to other nodes and
544  // are deleted, make sure to remove them from our worklist.
545  WorkListRemover DeadNodes(*this);
546  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
547
548  // Push the new node and any (possibly new) users onto the worklist.
549  AddToWorkList(TLO.New.Val);
550  AddUsersToWorkList(TLO.New.Val);
551
552  // Finally, if the node is now dead, remove it from the graph.  The node
553  // may not be dead if the replacement process recursively simplified to
554  // something else needing this node.
555  if (TLO.Old.Val->use_empty()) {
556    removeFromWorkList(TLO.Old.Val);
557
558    // If the operands of this node are only used by the node, they will now
559    // be dead.  Make sure to visit them first to delete dead nodes early.
560    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
561      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
562        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
563
564    DAG.DeleteNode(TLO.Old.Val);
565  }
566  return true;
567}
568
569//===----------------------------------------------------------------------===//
570//  Main DAG Combiner implementation
571//===----------------------------------------------------------------------===//
572
573void DAGCombiner::Run(bool RunningAfterLegalize) {
574  // set the instance variable, so that the various visit routines may use it.
575  AfterLegalize = RunningAfterLegalize;
576
577  // Add all the dag nodes to the worklist.
578  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
579       E = DAG.allnodes_end(); I != E; ++I)
580    WorkList.push_back(I);
581
582  // Create a dummy node (which is not added to allnodes), that adds a reference
583  // to the root node, preventing it from being deleted, and tracking any
584  // changes of the root.
585  HandleSDNode Dummy(DAG.getRoot());
586
587  // The root of the dag may dangle to deleted nodes until the dag combiner is
588  // done.  Set it to null to avoid confusion.
589  DAG.setRoot(SDOperand());
590
591  // while the worklist isn't empty, inspect the node on the end of it and
592  // try and combine it.
593  while (!WorkList.empty()) {
594    SDNode *N = WorkList.back();
595    WorkList.pop_back();
596
597    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
598    // N is deleted from the DAG, since they too may now be dead or may have a
599    // reduced number of uses, allowing other xforms.
600    if (N->use_empty() && N != &Dummy) {
601      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
602        AddToWorkList(N->getOperand(i).Val);
603
604      DAG.DeleteNode(N);
605      continue;
606    }
607
608    SDOperand RV = combine(N);
609
610    if (RV.Val == 0)
611      continue;
612
613    ++NodesCombined;
614
615    // If we get back the same node we passed in, rather than a new node or
616    // zero, we know that the node must have defined multiple values and
617    // CombineTo was used.  Since CombineTo takes care of the worklist
618    // mechanics for us, we have no work to do in this case.
619    if (RV.Val == N)
620      continue;
621
622    assert(N->getOpcode() != ISD::DELETED_NODE &&
623           RV.Val->getOpcode() != ISD::DELETED_NODE &&
624           "Node was deleted but visit returned new node!");
625
626    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
627    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
628    DOUT << '\n';
629    WorkListRemover DeadNodes(*this);
630    if (N->getNumValues() == RV.Val->getNumValues())
631      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
632    else {
633      assert(N->getValueType(0) == RV.getValueType() &&
634             N->getNumValues() == 1 && "Type mismatch");
635      SDOperand OpV = RV;
636      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
637    }
638
639    // Push the new node and any users onto the worklist
640    AddToWorkList(RV.Val);
641    AddUsersToWorkList(RV.Val);
642
643    // Add any uses of the old node to the worklist in case this node is the
644    // last one that uses them.  They may become dead after this node is
645    // deleted.
646    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
647      AddToWorkList(N->getOperand(i).Val);
648
649    // Nodes can be reintroduced into the worklist.  Make sure we do not
650    // process a node that has been replaced.
651    removeFromWorkList(N);
652
653    // Finally, since the node is now dead, remove it from the graph.
654    DAG.DeleteNode(N);
655  }
656
657  // If the root changed (e.g. it was a dead load, update the root).
658  DAG.setRoot(Dummy.getValue());
659}
660
661SDOperand DAGCombiner::visit(SDNode *N) {
662  switch(N->getOpcode()) {
663  default: break;
664  case ISD::TokenFactor:        return visitTokenFactor(N);
665  case ISD::ADD:                return visitADD(N);
666  case ISD::SUB:                return visitSUB(N);
667  case ISD::ADDC:               return visitADDC(N);
668  case ISD::ADDE:               return visitADDE(N);
669  case ISD::MUL:                return visitMUL(N);
670  case ISD::SDIV:               return visitSDIV(N);
671  case ISD::UDIV:               return visitUDIV(N);
672  case ISD::SREM:               return visitSREM(N);
673  case ISD::UREM:               return visitUREM(N);
674  case ISD::MULHU:              return visitMULHU(N);
675  case ISD::MULHS:              return visitMULHS(N);
676  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
677  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
678  case ISD::SDIVREM:            return visitSDIVREM(N);
679  case ISD::UDIVREM:            return visitUDIVREM(N);
680  case ISD::AND:                return visitAND(N);
681  case ISD::OR:                 return visitOR(N);
682  case ISD::XOR:                return visitXOR(N);
683  case ISD::SHL:                return visitSHL(N);
684  case ISD::SRA:                return visitSRA(N);
685  case ISD::SRL:                return visitSRL(N);
686  case ISD::CTLZ:               return visitCTLZ(N);
687  case ISD::CTTZ:               return visitCTTZ(N);
688  case ISD::CTPOP:              return visitCTPOP(N);
689  case ISD::SELECT:             return visitSELECT(N);
690  case ISD::SELECT_CC:          return visitSELECT_CC(N);
691  case ISD::SETCC:              return visitSETCC(N);
692  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
693  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
694  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
695  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
696  case ISD::TRUNCATE:           return visitTRUNCATE(N);
697  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
698  case ISD::FADD:               return visitFADD(N);
699  case ISD::FSUB:               return visitFSUB(N);
700  case ISD::FMUL:               return visitFMUL(N);
701  case ISD::FDIV:               return visitFDIV(N);
702  case ISD::FREM:               return visitFREM(N);
703  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
704  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
705  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
706  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
707  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
708  case ISD::FP_ROUND:           return visitFP_ROUND(N);
709  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
710  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
711  case ISD::FNEG:               return visitFNEG(N);
712  case ISD::FABS:               return visitFABS(N);
713  case ISD::BRCOND:             return visitBRCOND(N);
714  case ISD::BR_CC:              return visitBR_CC(N);
715  case ISD::LOAD:               return visitLOAD(N);
716  case ISD::STORE:              return visitSTORE(N);
717  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
718  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
719  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
720  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
721  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
722  }
723  return SDOperand();
724}
725
726SDOperand DAGCombiner::combine(SDNode *N) {
727
728  SDOperand RV = visit(N);
729
730  // If nothing happened, try a target-specific DAG combine.
731  if (RV.Val == 0) {
732    assert(N->getOpcode() != ISD::DELETED_NODE &&
733           "Node was deleted but visit returned NULL!");
734
735    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
736        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
737
738      // Expose the DAG combiner to the target combiner impls.
739      TargetLowering::DAGCombinerInfo
740        DagCombineInfo(DAG, !AfterLegalize, false, this);
741
742      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
743    }
744  }
745
746  return RV;
747}
748
749/// getInputChainForNode - Given a node, return its input chain if it has one,
750/// otherwise return a null sd operand.
751static SDOperand getInputChainForNode(SDNode *N) {
752  if (unsigned NumOps = N->getNumOperands()) {
753    if (N->getOperand(0).getValueType() == MVT::Other)
754      return N->getOperand(0);
755    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
756      return N->getOperand(NumOps-1);
757    for (unsigned i = 1; i < NumOps-1; ++i)
758      if (N->getOperand(i).getValueType() == MVT::Other)
759        return N->getOperand(i);
760  }
761  return SDOperand(0, 0);
762}
763
764SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
765  // If N has two operands, where one has an input chain equal to the other,
766  // the 'other' chain is redundant.
767  if (N->getNumOperands() == 2) {
768    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
769      return N->getOperand(0);
770    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
771      return N->getOperand(1);
772  }
773
774  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
775  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
776  SmallPtrSet<SDNode*, 16> SeenOps;
777  bool Changed = false;             // If we should replace this token factor.
778
779  // Start out with this token factor.
780  TFs.push_back(N);
781
782  // Iterate through token factors.  The TFs grows when new token factors are
783  // encountered.
784  for (unsigned i = 0; i < TFs.size(); ++i) {
785    SDNode *TF = TFs[i];
786
787    // Check each of the operands.
788    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
789      SDOperand Op = TF->getOperand(i);
790
791      switch (Op.getOpcode()) {
792      case ISD::EntryToken:
793        // Entry tokens don't need to be added to the list. They are
794        // rededundant.
795        Changed = true;
796        break;
797
798      case ISD::TokenFactor:
799        if ((CombinerAA || Op.hasOneUse()) &&
800            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
801          // Queue up for processing.
802          TFs.push_back(Op.Val);
803          // Clean up in case the token factor is removed.
804          AddToWorkList(Op.Val);
805          Changed = true;
806          break;
807        }
808        // Fall thru
809
810      default:
811        // Only add if it isn't already in the list.
812        if (SeenOps.insert(Op.Val))
813          Ops.push_back(Op);
814        else
815          Changed = true;
816        break;
817      }
818    }
819  }
820
821  SDOperand Result;
822
823  // If we've change things around then replace token factor.
824  if (Changed) {
825    if (Ops.empty()) {
826      // The entry token is the only possible outcome.
827      Result = DAG.getEntryNode();
828    } else {
829      // New and improved token factor.
830      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
831    }
832
833    // Don't add users to work list.
834    return CombineTo(N, Result, false);
835  }
836
837  return Result;
838}
839
840static
841SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
842  MVT::ValueType VT = N0.getValueType();
843  SDOperand N00 = N0.getOperand(0);
844  SDOperand N01 = N0.getOperand(1);
845  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
846  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
847      isa<ConstantSDNode>(N00.getOperand(1))) {
848    N0 = DAG.getNode(ISD::ADD, VT,
849                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
850                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
851    return DAG.getNode(ISD::ADD, VT, N0, N1);
852  }
853  return SDOperand();
854}
855
856static
857SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
858                              SelectionDAG &DAG) {
859  MVT::ValueType VT = N->getValueType(0);
860  unsigned Opc = N->getOpcode();
861  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
862  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
863  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
864  ISD::CondCode CC = ISD::SETCC_INVALID;
865  if (isSlctCC)
866    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
867  else {
868    SDOperand CCOp = Slct.getOperand(0);
869    if (CCOp.getOpcode() == ISD::SETCC)
870      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
871  }
872
873  bool DoXform = false;
874  bool InvCC = false;
875  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
876          "Bad input!");
877  if (LHS.getOpcode() == ISD::Constant &&
878      cast<ConstantSDNode>(LHS)->isNullValue())
879    DoXform = true;
880  else if (CC != ISD::SETCC_INVALID &&
881           RHS.getOpcode() == ISD::Constant &&
882           cast<ConstantSDNode>(RHS)->isNullValue()) {
883    std::swap(LHS, RHS);
884    SDOperand Op0 = Slct.getOperand(0);
885    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
886                                : Op0.getOperand(0).getValueType());
887    CC = ISD::getSetCCInverse(CC, isInt);
888    DoXform = true;
889    InvCC = true;
890  }
891
892  if (DoXform) {
893    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
894    if (isSlctCC)
895      return DAG.getSelectCC(OtherOp, Result,
896                             Slct.getOperand(0), Slct.getOperand(1), CC);
897    SDOperand CCOp = Slct.getOperand(0);
898    if (InvCC)
899      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
900                          CCOp.getOperand(1), CC);
901    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
902  }
903  return SDOperand();
904}
905
906SDOperand DAGCombiner::visitADD(SDNode *N) {
907  SDOperand N0 = N->getOperand(0);
908  SDOperand N1 = N->getOperand(1);
909  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
911  MVT::ValueType VT = N0.getValueType();
912
913  // fold vector ops
914  if (MVT::isVector(VT)) {
915    SDOperand FoldedVOp = SimplifyVBinOp(N);
916    if (FoldedVOp.Val) return FoldedVOp;
917  }
918
919  // fold (add x, undef) -> undef
920  if (N0.getOpcode() == ISD::UNDEF)
921    return N0;
922  if (N1.getOpcode() == ISD::UNDEF)
923    return N1;
924  // fold (add c1, c2) -> c1+c2
925  if (N0C && N1C)
926    return DAG.getNode(ISD::ADD, VT, N0, N1);
927  // canonicalize constant to RHS
928  if (N0C && !N1C)
929    return DAG.getNode(ISD::ADD, VT, N1, N0);
930  // fold (add x, 0) -> x
931  if (N1C && N1C->isNullValue())
932    return N0;
933  // fold ((c1-A)+c2) -> (c1+c2)-A
934  if (N1C && N0.getOpcode() == ISD::SUB)
935    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
936      return DAG.getNode(ISD::SUB, VT,
937                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
938                         N0.getOperand(1));
939  // reassociate add
940  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
941  if (RADD.Val != 0)
942    return RADD;
943  // fold ((0-A) + B) -> B-A
944  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
945      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
946    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
947  // fold (A + (0-B)) -> A-B
948  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
949      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
950    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
951  // fold (A+(B-A)) -> B
952  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
953    return N1.getOperand(0);
954
955  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
956    return SDOperand(N, 0);
957
958  // fold (a+b) -> (a|b) iff a and b share no bits.
959  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
960    uint64_t LHSZero, LHSOne;
961    uint64_t RHSZero, RHSOne;
962    uint64_t Mask = MVT::getIntVTBitMask(VT);
963    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
964    if (LHSZero) {
965      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
966
967      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
968      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
969      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
970          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
971        return DAG.getNode(ISD::OR, VT, N0, N1);
972    }
973  }
974
975  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
976  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
977    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
978    if (Result.Val) return Result;
979  }
980  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
981    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
982    if (Result.Val) return Result;
983  }
984
985  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
986  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
987    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
988    if (Result.Val) return Result;
989  }
990  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
991    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
992    if (Result.Val) return Result;
993  }
994
995  return SDOperand();
996}
997
998SDOperand DAGCombiner::visitADDC(SDNode *N) {
999  SDOperand N0 = N->getOperand(0);
1000  SDOperand N1 = N->getOperand(1);
1001  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1002  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1003  MVT::ValueType VT = N0.getValueType();
1004
1005  // If the flag result is dead, turn this into an ADD.
1006  if (N->hasNUsesOfValue(0, 1))
1007    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1008                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1009
1010  // canonicalize constant to RHS.
1011  if (N0C && !N1C) {
1012    SDOperand Ops[] = { N1, N0 };
1013    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1014  }
1015
1016  // fold (addc x, 0) -> x + no carry out
1017  if (N1C && N1C->isNullValue())
1018    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1019
1020  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1021  uint64_t LHSZero, LHSOne;
1022  uint64_t RHSZero, RHSOne;
1023  uint64_t Mask = MVT::getIntVTBitMask(VT);
1024  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1025  if (LHSZero) {
1026    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1027
1028    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1029    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1030    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1031        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1032      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1033                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1034  }
1035
1036  return SDOperand();
1037}
1038
1039SDOperand DAGCombiner::visitADDE(SDNode *N) {
1040  SDOperand N0 = N->getOperand(0);
1041  SDOperand N1 = N->getOperand(1);
1042  SDOperand CarryIn = N->getOperand(2);
1043  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1044  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1045  //MVT::ValueType VT = N0.getValueType();
1046
1047  // canonicalize constant to RHS
1048  if (N0C && !N1C) {
1049    SDOperand Ops[] = { N1, N0, CarryIn };
1050    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1051  }
1052
1053  // fold (adde x, y, false) -> (addc x, y)
1054  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1055    SDOperand Ops[] = { N1, N0 };
1056    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1057  }
1058
1059  return SDOperand();
1060}
1061
1062
1063
1064SDOperand DAGCombiner::visitSUB(SDNode *N) {
1065  SDOperand N0 = N->getOperand(0);
1066  SDOperand N1 = N->getOperand(1);
1067  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1068  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1069  MVT::ValueType VT = N0.getValueType();
1070
1071  // fold vector ops
1072  if (MVT::isVector(VT)) {
1073    SDOperand FoldedVOp = SimplifyVBinOp(N);
1074    if (FoldedVOp.Val) return FoldedVOp;
1075  }
1076
1077  // fold (sub x, x) -> 0
1078  if (N0 == N1)
1079    return DAG.getConstant(0, N->getValueType(0));
1080  // fold (sub c1, c2) -> c1-c2
1081  if (N0C && N1C)
1082    return DAG.getNode(ISD::SUB, VT, N0, N1);
1083  // fold (sub x, c) -> (add x, -c)
1084  if (N1C)
1085    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1086  // fold (A+B)-A -> B
1087  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1088    return N0.getOperand(1);
1089  // fold (A+B)-B -> A
1090  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1091    return N0.getOperand(0);
1092  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1093  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1094    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1095    if (Result.Val) return Result;
1096  }
1097  // If either operand of a sub is undef, the result is undef
1098  if (N0.getOpcode() == ISD::UNDEF)
1099    return N0;
1100  if (N1.getOpcode() == ISD::UNDEF)
1101    return N1;
1102
1103  return SDOperand();
1104}
1105
1106SDOperand DAGCombiner::visitMUL(SDNode *N) {
1107  SDOperand N0 = N->getOperand(0);
1108  SDOperand N1 = N->getOperand(1);
1109  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1110  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1111  MVT::ValueType VT = N0.getValueType();
1112
1113  // fold vector ops
1114  if (MVT::isVector(VT)) {
1115    SDOperand FoldedVOp = SimplifyVBinOp(N);
1116    if (FoldedVOp.Val) return FoldedVOp;
1117  }
1118
1119  // fold (mul x, undef) -> 0
1120  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1121    return DAG.getConstant(0, VT);
1122  // fold (mul c1, c2) -> c1*c2
1123  if (N0C && N1C)
1124    return DAG.getNode(ISD::MUL, VT, N0, N1);
1125  // canonicalize constant to RHS
1126  if (N0C && !N1C)
1127    return DAG.getNode(ISD::MUL, VT, N1, N0);
1128  // fold (mul x, 0) -> 0
1129  if (N1C && N1C->isNullValue())
1130    return N1;
1131  // fold (mul x, -1) -> 0-x
1132  if (N1C && N1C->isAllOnesValue())
1133    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1134  // fold (mul x, (1 << c)) -> x << c
1135  if (N1C && isPowerOf2_64(N1C->getValue()))
1136    return DAG.getNode(ISD::SHL, VT, N0,
1137                       DAG.getConstant(Log2_64(N1C->getValue()),
1138                                       TLI.getShiftAmountTy()));
1139  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1140  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1141    // FIXME: If the input is something that is easily negated (e.g. a
1142    // single-use add), we should put the negate there.
1143    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1144                       DAG.getNode(ISD::SHL, VT, N0,
1145                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1146                                            TLI.getShiftAmountTy())));
1147  }
1148
1149  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1150  if (N1C && N0.getOpcode() == ISD::SHL &&
1151      isa<ConstantSDNode>(N0.getOperand(1))) {
1152    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1153    AddToWorkList(C3.Val);
1154    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1155  }
1156
1157  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1158  // use.
1159  {
1160    SDOperand Sh(0,0), Y(0,0);
1161    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1162    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1163        N0.Val->hasOneUse()) {
1164      Sh = N0; Y = N1;
1165    } else if (N1.getOpcode() == ISD::SHL &&
1166               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1167      Sh = N1; Y = N0;
1168    }
1169    if (Sh.Val) {
1170      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1171      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1172    }
1173  }
1174  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1175  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1176      isa<ConstantSDNode>(N0.getOperand(1))) {
1177    return DAG.getNode(ISD::ADD, VT,
1178                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1179                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1180  }
1181
1182  // reassociate mul
1183  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1184  if (RMUL.Val != 0)
1185    return RMUL;
1186
1187  return SDOperand();
1188}
1189
1190SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1191  SDOperand N0 = N->getOperand(0);
1192  SDOperand N1 = N->getOperand(1);
1193  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1194  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1195  MVT::ValueType VT = N->getValueType(0);
1196
1197  // fold vector ops
1198  if (MVT::isVector(VT)) {
1199    SDOperand FoldedVOp = SimplifyVBinOp(N);
1200    if (FoldedVOp.Val) return FoldedVOp;
1201  }
1202
1203  // fold (sdiv c1, c2) -> c1/c2
1204  if (N0C && N1C && !N1C->isNullValue())
1205    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1206  // fold (sdiv X, 1) -> X
1207  if (N1C && N1C->getSignExtended() == 1LL)
1208    return N0;
1209  // fold (sdiv X, -1) -> 0-X
1210  if (N1C && N1C->isAllOnesValue())
1211    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1212  // If we know the sign bits of both operands are zero, strength reduce to a
1213  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1214  if (!MVT::isVector(VT)) {
1215    uint64_t SignBit = MVT::getIntVTSignBit(VT);
1216    if (DAG.MaskedValueIsZero(N1, SignBit) &&
1217        DAG.MaskedValueIsZero(N0, SignBit))
1218      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1219  }
1220  // fold (sdiv X, pow2) -> simple ops after legalize
1221  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1222      (isPowerOf2_64(N1C->getSignExtended()) ||
1223       isPowerOf2_64(-N1C->getSignExtended()))) {
1224    // If dividing by powers of two is cheap, then don't perform the following
1225    // fold.
1226    if (TLI.isPow2DivCheap())
1227      return SDOperand();
1228    int64_t pow2 = N1C->getSignExtended();
1229    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1230    unsigned lg2 = Log2_64(abs2);
1231    // Splat the sign bit into the register
1232    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1233                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1234                                                TLI.getShiftAmountTy()));
1235    AddToWorkList(SGN.Val);
1236    // Add (N0 < 0) ? abs2 - 1 : 0;
1237    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1238                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1239                                                TLI.getShiftAmountTy()));
1240    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1241    AddToWorkList(SRL.Val);
1242    AddToWorkList(ADD.Val);    // Divide by pow2
1243    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1244                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1245    // If we're dividing by a positive value, we're done.  Otherwise, we must
1246    // negate the result.
1247    if (pow2 > 0)
1248      return SRA;
1249    AddToWorkList(SRA.Val);
1250    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1251  }
1252  // if integer divide is expensive and we satisfy the requirements, emit an
1253  // alternate sequence.
1254  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1255      !TLI.isIntDivCheap()) {
1256    SDOperand Op = BuildSDIV(N);
1257    if (Op.Val) return Op;
1258  }
1259
1260  // undef / X -> 0
1261  if (N0.getOpcode() == ISD::UNDEF)
1262    return DAG.getConstant(0, VT);
1263  // X / undef -> undef
1264  if (N1.getOpcode() == ISD::UNDEF)
1265    return N1;
1266
1267  return SDOperand();
1268}
1269
1270SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1271  SDOperand N0 = N->getOperand(0);
1272  SDOperand N1 = N->getOperand(1);
1273  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1274  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1275  MVT::ValueType VT = N->getValueType(0);
1276
1277  // fold vector ops
1278  if (MVT::isVector(VT)) {
1279    SDOperand FoldedVOp = SimplifyVBinOp(N);
1280    if (FoldedVOp.Val) return FoldedVOp;
1281  }
1282
1283  // fold (udiv c1, c2) -> c1/c2
1284  if (N0C && N1C && !N1C->isNullValue())
1285    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1286  // fold (udiv x, (1 << c)) -> x >>u c
1287  if (N1C && isPowerOf2_64(N1C->getValue()))
1288    return DAG.getNode(ISD::SRL, VT, N0,
1289                       DAG.getConstant(Log2_64(N1C->getValue()),
1290                                       TLI.getShiftAmountTy()));
1291  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1292  if (N1.getOpcode() == ISD::SHL) {
1293    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1294      if (isPowerOf2_64(SHC->getValue())) {
1295        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1296        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1297                                    DAG.getConstant(Log2_64(SHC->getValue()),
1298                                                    ADDVT));
1299        AddToWorkList(Add.Val);
1300        return DAG.getNode(ISD::SRL, VT, N0, Add);
1301      }
1302    }
1303  }
1304  // fold (udiv x, c) -> alternate
1305  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1306    SDOperand Op = BuildUDIV(N);
1307    if (Op.Val) return Op;
1308  }
1309
1310  // undef / X -> 0
1311  if (N0.getOpcode() == ISD::UNDEF)
1312    return DAG.getConstant(0, VT);
1313  // X / undef -> undef
1314  if (N1.getOpcode() == ISD::UNDEF)
1315    return N1;
1316
1317  return SDOperand();
1318}
1319
1320SDOperand DAGCombiner::visitSREM(SDNode *N) {
1321  SDOperand N0 = N->getOperand(0);
1322  SDOperand N1 = N->getOperand(1);
1323  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1324  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1325  MVT::ValueType VT = N->getValueType(0);
1326
1327  // fold (srem c1, c2) -> c1%c2
1328  if (N0C && N1C && !N1C->isNullValue())
1329    return DAG.getNode(ISD::SREM, VT, N0, N1);
1330  // If we know the sign bits of both operands are zero, strength reduce to a
1331  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1332  if (!MVT::isVector(VT)) {
1333    uint64_t SignBit = MVT::getIntVTSignBit(VT);
1334    if (DAG.MaskedValueIsZero(N1, SignBit) &&
1335        DAG.MaskedValueIsZero(N0, SignBit))
1336      return DAG.getNode(ISD::UREM, VT, N0, N1);
1337  }
1338
1339  // If X/C can be simplified by the division-by-constant logic, lower
1340  // X%C to the equivalent of X-X/C*C.
1341  if (N1C && !N1C->isNullValue()) {
1342    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1343    AddToWorkList(Div.Val);
1344    SDOperand OptimizedDiv = combine(Div.Val);
1345    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1346      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1347      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1348      AddToWorkList(Mul.Val);
1349      return Sub;
1350    }
1351  }
1352
1353  // undef % X -> 0
1354  if (N0.getOpcode() == ISD::UNDEF)
1355    return DAG.getConstant(0, VT);
1356  // X % undef -> undef
1357  if (N1.getOpcode() == ISD::UNDEF)
1358    return N1;
1359
1360  return SDOperand();
1361}
1362
1363SDOperand DAGCombiner::visitUREM(SDNode *N) {
1364  SDOperand N0 = N->getOperand(0);
1365  SDOperand N1 = N->getOperand(1);
1366  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1367  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1368  MVT::ValueType VT = N->getValueType(0);
1369
1370  // fold (urem c1, c2) -> c1%c2
1371  if (N0C && N1C && !N1C->isNullValue())
1372    return DAG.getNode(ISD::UREM, VT, N0, N1);
1373  // fold (urem x, pow2) -> (and x, pow2-1)
1374  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1375    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1376  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1377  if (N1.getOpcode() == ISD::SHL) {
1378    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1379      if (isPowerOf2_64(SHC->getValue())) {
1380        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1381        AddToWorkList(Add.Val);
1382        return DAG.getNode(ISD::AND, VT, N0, Add);
1383      }
1384    }
1385  }
1386
1387  // If X/C can be simplified by the division-by-constant logic, lower
1388  // X%C to the equivalent of X-X/C*C.
1389  if (N1C && !N1C->isNullValue()) {
1390    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1391    SDOperand OptimizedDiv = combine(Div.Val);
1392    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1393      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1394      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1395      AddToWorkList(Mul.Val);
1396      return Sub;
1397    }
1398  }
1399
1400  // undef % X -> 0
1401  if (N0.getOpcode() == ISD::UNDEF)
1402    return DAG.getConstant(0, VT);
1403  // X % undef -> undef
1404  if (N1.getOpcode() == ISD::UNDEF)
1405    return N1;
1406
1407  return SDOperand();
1408}
1409
1410SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1411  SDOperand N0 = N->getOperand(0);
1412  SDOperand N1 = N->getOperand(1);
1413  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1414  MVT::ValueType VT = N->getValueType(0);
1415
1416  // fold (mulhs x, 0) -> 0
1417  if (N1C && N1C->isNullValue())
1418    return N1;
1419  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1420  if (N1C && N1C->getValue() == 1)
1421    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1422                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1423                                       TLI.getShiftAmountTy()));
1424  // fold (mulhs x, undef) -> 0
1425  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1426    return DAG.getConstant(0, VT);
1427
1428  return SDOperand();
1429}
1430
1431SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1432  SDOperand N0 = N->getOperand(0);
1433  SDOperand N1 = N->getOperand(1);
1434  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1435  MVT::ValueType VT = N->getValueType(0);
1436
1437  // fold (mulhu x, 0) -> 0
1438  if (N1C && N1C->isNullValue())
1439    return N1;
1440  // fold (mulhu x, 1) -> 0
1441  if (N1C && N1C->getValue() == 1)
1442    return DAG.getConstant(0, N0.getValueType());
1443  // fold (mulhu x, undef) -> 0
1444  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1445    return DAG.getConstant(0, VT);
1446
1447  return SDOperand();
1448}
1449
1450/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1451/// compute two values. LoOp and HiOp give the opcodes for the two computations
1452/// that are being performed. Return true if a simplification was made.
1453///
1454SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1455                                                  unsigned HiOp) {
1456  // If the high half is not needed, just compute the low half.
1457  bool HiExists = N->hasAnyUseOfValue(1);
1458  if (!HiExists &&
1459      (!AfterLegalize ||
1460       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1461    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1462                                N->getNumOperands());
1463    return CombineTo(N, Res, Res);
1464  }
1465
1466  // If the low half is not needed, just compute the high half.
1467  bool LoExists = N->hasAnyUseOfValue(0);
1468  if (!LoExists &&
1469      (!AfterLegalize ||
1470       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1471    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1472                                N->getNumOperands());
1473    return CombineTo(N, Res, Res);
1474  }
1475
1476  // If both halves are used, return as it is.
1477  if (LoExists && HiExists)
1478    return SDOperand();
1479
1480  // If the two computed results can be simplified separately, separate them.
1481  if (LoExists) {
1482    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1483                               N->op_begin(), N->getNumOperands());
1484    AddToWorkList(Lo.Val);
1485    SDOperand LoOpt = combine(Lo.Val);
1486    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1487        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1488      return CombineTo(N, LoOpt, LoOpt);
1489  }
1490
1491  if (HiExists) {
1492    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1493                               N->op_begin(), N->getNumOperands());
1494    AddToWorkList(Hi.Val);
1495    SDOperand HiOpt = combine(Hi.Val);
1496    if (HiOpt.Val && HiOpt != Hi &&
1497        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1498      return CombineTo(N, HiOpt, HiOpt);
1499  }
1500  return SDOperand();
1501}
1502
1503SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1504  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1505  if (Res.Val) return Res;
1506
1507  return SDOperand();
1508}
1509
1510SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1511  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1512  if (Res.Val) return Res;
1513
1514  return SDOperand();
1515}
1516
1517SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1518  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1519  if (Res.Val) return Res;
1520
1521  return SDOperand();
1522}
1523
1524SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1525  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1526  if (Res.Val) return Res;
1527
1528  return SDOperand();
1529}
1530
1531/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1532/// two operands of the same opcode, try to simplify it.
1533SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1534  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1535  MVT::ValueType VT = N0.getValueType();
1536  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1537
1538  // For each of OP in AND/OR/XOR:
1539  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1540  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1541  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1542  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1543  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1544       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1545      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1546    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1547                                   N0.getOperand(0).getValueType(),
1548                                   N0.getOperand(0), N1.getOperand(0));
1549    AddToWorkList(ORNode.Val);
1550    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1551  }
1552
1553  // For each of OP in SHL/SRL/SRA/AND...
1554  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1555  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1556  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1557  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1558       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1559      N0.getOperand(1) == N1.getOperand(1)) {
1560    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1561                                   N0.getOperand(0).getValueType(),
1562                                   N0.getOperand(0), N1.getOperand(0));
1563    AddToWorkList(ORNode.Val);
1564    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1565  }
1566
1567  return SDOperand();
1568}
1569
1570SDOperand DAGCombiner::visitAND(SDNode *N) {
1571  SDOperand N0 = N->getOperand(0);
1572  SDOperand N1 = N->getOperand(1);
1573  SDOperand LL, LR, RL, RR, CC0, CC1;
1574  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576  MVT::ValueType VT = N1.getValueType();
1577
1578  // fold vector ops
1579  if (MVT::isVector(VT)) {
1580    SDOperand FoldedVOp = SimplifyVBinOp(N);
1581    if (FoldedVOp.Val) return FoldedVOp;
1582  }
1583
1584  // fold (and x, undef) -> 0
1585  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1586    return DAG.getConstant(0, VT);
1587  // fold (and c1, c2) -> c1&c2
1588  if (N0C && N1C)
1589    return DAG.getNode(ISD::AND, VT, N0, N1);
1590  // canonicalize constant to RHS
1591  if (N0C && !N1C)
1592    return DAG.getNode(ISD::AND, VT, N1, N0);
1593  // fold (and x, -1) -> x
1594  if (N1C && N1C->isAllOnesValue())
1595    return N0;
1596  // if (and x, c) is known to be zero, return 0
1597  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1598    return DAG.getConstant(0, VT);
1599  // reassociate and
1600  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1601  if (RAND.Val != 0)
1602    return RAND;
1603  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1604  if (N1C && N0.getOpcode() == ISD::OR)
1605    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1606      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1607        return N1;
1608  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1609  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1610    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1611    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1612                              ~N1C->getValue() & InMask)) {
1613      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1614                                   N0.getOperand(0));
1615
1616      // Replace uses of the AND with uses of the Zero extend node.
1617      CombineTo(N, Zext);
1618
1619      // We actually want to replace all uses of the any_extend with the
1620      // zero_extend, to avoid duplicating things.  This will later cause this
1621      // AND to be folded.
1622      CombineTo(N0.Val, Zext);
1623      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1624    }
1625  }
1626  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1627  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1628    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1629    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1630
1631    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1632        MVT::isInteger(LL.getValueType())) {
1633      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1634      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1635        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1636        AddToWorkList(ORNode.Val);
1637        return DAG.getSetCC(VT, ORNode, LR, Op1);
1638      }
1639      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1640      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1641        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1642        AddToWorkList(ANDNode.Val);
1643        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1644      }
1645      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1646      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1647        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1648        AddToWorkList(ORNode.Val);
1649        return DAG.getSetCC(VT, ORNode, LR, Op1);
1650      }
1651    }
1652    // canonicalize equivalent to ll == rl
1653    if (LL == RR && LR == RL) {
1654      Op1 = ISD::getSetCCSwappedOperands(Op1);
1655      std::swap(RL, RR);
1656    }
1657    if (LL == RL && LR == RR) {
1658      bool isInteger = MVT::isInteger(LL.getValueType());
1659      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1660      if (Result != ISD::SETCC_INVALID)
1661        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1662    }
1663  }
1664
1665  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1666  if (N0.getOpcode() == N1.getOpcode()) {
1667    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1668    if (Tmp.Val) return Tmp;
1669  }
1670
1671  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1672  // fold (and (sra)) -> (and (srl)) when possible.
1673  if (!MVT::isVector(VT) &&
1674      SimplifyDemandedBits(SDOperand(N, 0)))
1675    return SDOperand(N, 0);
1676  // fold (zext_inreg (extload x)) -> (zextload x)
1677  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1678    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1679    MVT::ValueType EVT = LN0->getMemoryVT();
1680    // If we zero all the possible extended bits, then we can turn this into
1681    // a zextload if we are running before legalize or the operation is legal.
1682    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1683        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1684      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1685                                         LN0->getBasePtr(), LN0->getSrcValue(),
1686                                         LN0->getSrcValueOffset(), EVT,
1687                                         LN0->isVolatile(),
1688                                         LN0->getAlignment());
1689      AddToWorkList(N);
1690      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1691      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1692    }
1693  }
1694  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1695  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1696      N0.hasOneUse()) {
1697    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1698    MVT::ValueType EVT = LN0->getMemoryVT();
1699    // If we zero all the possible extended bits, then we can turn this into
1700    // a zextload if we are running before legalize or the operation is legal.
1701    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1702        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1703      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1704                                         LN0->getBasePtr(), LN0->getSrcValue(),
1705                                         LN0->getSrcValueOffset(), EVT,
1706                                         LN0->isVolatile(),
1707                                         LN0->getAlignment());
1708      AddToWorkList(N);
1709      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1710      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1711    }
1712  }
1713
1714  // fold (and (load x), 255) -> (zextload x, i8)
1715  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1716  if (N1C && N0.getOpcode() == ISD::LOAD) {
1717    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1718    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1719        LN0->isUnindexed() && N0.hasOneUse()) {
1720      MVT::ValueType EVT, LoadedVT;
1721      if (N1C->getValue() == 255)
1722        EVT = MVT::i8;
1723      else if (N1C->getValue() == 65535)
1724        EVT = MVT::i16;
1725      else if (N1C->getValue() == ~0U)
1726        EVT = MVT::i32;
1727      else
1728        EVT = MVT::Other;
1729
1730      LoadedVT = LN0->getMemoryVT();
1731      if (EVT != MVT::Other && LoadedVT > EVT &&
1732          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1733        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1734        // For big endian targets, we need to add an offset to the pointer to
1735        // load the correct bytes.  For little endian systems, we merely need to
1736        // read fewer bytes from the same pointer.
1737        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1738        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1739        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1740        unsigned Alignment = LN0->getAlignment();
1741        SDOperand NewPtr = LN0->getBasePtr();
1742        if (!TLI.isLittleEndian()) {
1743          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1744                               DAG.getConstant(PtrOff, PtrType));
1745          Alignment = MinAlign(Alignment, PtrOff);
1746        }
1747        AddToWorkList(NewPtr.Val);
1748        SDOperand Load =
1749          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1750                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1751                         LN0->isVolatile(), Alignment);
1752        AddToWorkList(N);
1753        CombineTo(N0.Val, Load, Load.getValue(1));
1754        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1755      }
1756    }
1757  }
1758
1759  return SDOperand();
1760}
1761
1762SDOperand DAGCombiner::visitOR(SDNode *N) {
1763  SDOperand N0 = N->getOperand(0);
1764  SDOperand N1 = N->getOperand(1);
1765  SDOperand LL, LR, RL, RR, CC0, CC1;
1766  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1767  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1768  MVT::ValueType VT = N1.getValueType();
1769  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1770
1771  // fold vector ops
1772  if (MVT::isVector(VT)) {
1773    SDOperand FoldedVOp = SimplifyVBinOp(N);
1774    if (FoldedVOp.Val) return FoldedVOp;
1775  }
1776
1777  // fold (or x, undef) -> -1
1778  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1779    return DAG.getConstant(~0ULL, VT);
1780  // fold (or c1, c2) -> c1|c2
1781  if (N0C && N1C)
1782    return DAG.getNode(ISD::OR, VT, N0, N1);
1783  // canonicalize constant to RHS
1784  if (N0C && !N1C)
1785    return DAG.getNode(ISD::OR, VT, N1, N0);
1786  // fold (or x, 0) -> x
1787  if (N1C && N1C->isNullValue())
1788    return N0;
1789  // fold (or x, -1) -> -1
1790  if (N1C && N1C->isAllOnesValue())
1791    return N1;
1792  // fold (or x, c) -> c iff (x & ~c) == 0
1793  if (N1C &&
1794      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1795    return N1;
1796  // reassociate or
1797  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1798  if (ROR.Val != 0)
1799    return ROR;
1800  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1801  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1802             isa<ConstantSDNode>(N0.getOperand(1))) {
1803    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1804    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1805                                                 N1),
1806                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1807  }
1808  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1809  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1810    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1811    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1812
1813    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1814        MVT::isInteger(LL.getValueType())) {
1815      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1816      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1817      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1818          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1819        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1820        AddToWorkList(ORNode.Val);
1821        return DAG.getSetCC(VT, ORNode, LR, Op1);
1822      }
1823      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1824      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1825      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1826          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1827        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1828        AddToWorkList(ANDNode.Val);
1829        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1830      }
1831    }
1832    // canonicalize equivalent to ll == rl
1833    if (LL == RR && LR == RL) {
1834      Op1 = ISD::getSetCCSwappedOperands(Op1);
1835      std::swap(RL, RR);
1836    }
1837    if (LL == RL && LR == RR) {
1838      bool isInteger = MVT::isInteger(LL.getValueType());
1839      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1840      if (Result != ISD::SETCC_INVALID)
1841        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1842    }
1843  }
1844
1845  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1846  if (N0.getOpcode() == N1.getOpcode()) {
1847    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1848    if (Tmp.Val) return Tmp;
1849  }
1850
1851  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1852  if (N0.getOpcode() == ISD::AND &&
1853      N1.getOpcode() == ISD::AND &&
1854      N0.getOperand(1).getOpcode() == ISD::Constant &&
1855      N1.getOperand(1).getOpcode() == ISD::Constant &&
1856      // Don't increase # computations.
1857      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1858    // We can only do this xform if we know that bits from X that are set in C2
1859    // but not in C1 are already zero.  Likewise for Y.
1860    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1861    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1862
1863    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1864        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1865      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1866      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1867    }
1868  }
1869
1870
1871  // See if this is some rotate idiom.
1872  if (SDNode *Rot = MatchRotate(N0, N1))
1873    return SDOperand(Rot, 0);
1874
1875  return SDOperand();
1876}
1877
1878
1879/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1880static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1881  if (Op.getOpcode() == ISD::AND) {
1882    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1883      Mask = Op.getOperand(1);
1884      Op = Op.getOperand(0);
1885    } else {
1886      return false;
1887    }
1888  }
1889
1890  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1891    Shift = Op;
1892    return true;
1893  }
1894  return false;
1895}
1896
1897
1898// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1899// idioms for rotate, and if the target supports rotation instructions, generate
1900// a rot[lr].
1901SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1902  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1903  MVT::ValueType VT = LHS.getValueType();
1904  if (!TLI.isTypeLegal(VT)) return 0;
1905
1906  // The target must have at least one rotate flavor.
1907  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1908  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1909  if (!HasROTL && !HasROTR) return 0;
1910
1911  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1912  SDOperand LHSShift;   // The shift.
1913  SDOperand LHSMask;    // AND value if any.
1914  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1915    return 0; // Not part of a rotate.
1916
1917  SDOperand RHSShift;   // The shift.
1918  SDOperand RHSMask;    // AND value if any.
1919  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1920    return 0; // Not part of a rotate.
1921
1922  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1923    return 0;   // Not shifting the same value.
1924
1925  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1926    return 0;   // Shifts must disagree.
1927
1928  // Canonicalize shl to left side in a shl/srl pair.
1929  if (RHSShift.getOpcode() == ISD::SHL) {
1930    std::swap(LHS, RHS);
1931    std::swap(LHSShift, RHSShift);
1932    std::swap(LHSMask , RHSMask );
1933  }
1934
1935  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1936  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1937  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1938  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1939
1940  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1941  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1942  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1943      RHSShiftAmt.getOpcode() == ISD::Constant) {
1944    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1945    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1946    if ((LShVal + RShVal) != OpSizeInBits)
1947      return 0;
1948
1949    SDOperand Rot;
1950    if (HasROTL)
1951      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1952    else
1953      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1954
1955    // If there is an AND of either shifted operand, apply it to the result.
1956    if (LHSMask.Val || RHSMask.Val) {
1957      uint64_t Mask = MVT::getIntVTBitMask(VT);
1958
1959      if (LHSMask.Val) {
1960        uint64_t RHSBits = (1ULL << LShVal)-1;
1961        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1962      }
1963      if (RHSMask.Val) {
1964        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1965        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1966      }
1967
1968      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1969    }
1970
1971    return Rot.Val;
1972  }
1973
1974  // If there is a mask here, and we have a variable shift, we can't be sure
1975  // that we're masking out the right stuff.
1976  if (LHSMask.Val || RHSMask.Val)
1977    return 0;
1978
1979  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1980  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1981  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1982      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1983    if (ConstantSDNode *SUBC =
1984          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1985      if (SUBC->getValue() == OpSizeInBits)
1986        if (HasROTL)
1987          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1988        else
1989          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1990    }
1991  }
1992
1993  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1994  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1995  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1996      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1997    if (ConstantSDNode *SUBC =
1998          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1999      if (SUBC->getValue() == OpSizeInBits)
2000        if (HasROTL)
2001          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2002        else
2003          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2004    }
2005  }
2006
2007  // Look for sign/zext/any-extended cases:
2008  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2009       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2010       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2011      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2012       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2013       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2014    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2015    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2016    if (RExtOp0.getOpcode() == ISD::SUB &&
2017        RExtOp0.getOperand(1) == LExtOp0) {
2018      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2019      //   (rotr x, y)
2020      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2021      //   (rotl x, (sub 32, y))
2022      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2023        if (SUBC->getValue() == OpSizeInBits) {
2024          if (HasROTL)
2025            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2026          else
2027            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2028        }
2029      }
2030    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2031               RExtOp0 == LExtOp0.getOperand(1)) {
2032      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2033      //   (rotl x, y)
2034      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2035      //   (rotr x, (sub 32, y))
2036      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2037        if (SUBC->getValue() == OpSizeInBits) {
2038          if (HasROTL)
2039            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2040          else
2041            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2042        }
2043      }
2044    }
2045  }
2046
2047  return 0;
2048}
2049
2050
2051SDOperand DAGCombiner::visitXOR(SDNode *N) {
2052  SDOperand N0 = N->getOperand(0);
2053  SDOperand N1 = N->getOperand(1);
2054  SDOperand LHS, RHS, CC;
2055  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2056  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2057  MVT::ValueType VT = N0.getValueType();
2058
2059  // fold vector ops
2060  if (MVT::isVector(VT)) {
2061    SDOperand FoldedVOp = SimplifyVBinOp(N);
2062    if (FoldedVOp.Val) return FoldedVOp;
2063  }
2064
2065  // fold (xor x, undef) -> undef
2066  if (N0.getOpcode() == ISD::UNDEF)
2067    return N0;
2068  if (N1.getOpcode() == ISD::UNDEF)
2069    return N1;
2070  // fold (xor c1, c2) -> c1^c2
2071  if (N0C && N1C)
2072    return DAG.getNode(ISD::XOR, VT, N0, N1);
2073  // canonicalize constant to RHS
2074  if (N0C && !N1C)
2075    return DAG.getNode(ISD::XOR, VT, N1, N0);
2076  // fold (xor x, 0) -> x
2077  if (N1C && N1C->isNullValue())
2078    return N0;
2079  // reassociate xor
2080  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2081  if (RXOR.Val != 0)
2082    return RXOR;
2083  // fold !(x cc y) -> (x !cc y)
2084  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2085    bool isInt = MVT::isInteger(LHS.getValueType());
2086    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2087                                               isInt);
2088    if (N0.getOpcode() == ISD::SETCC)
2089      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2090    if (N0.getOpcode() == ISD::SELECT_CC)
2091      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2092    assert(0 && "Unhandled SetCC Equivalent!");
2093    abort();
2094  }
2095  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2096  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2097      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2098    SDOperand V = N0.getOperand(0);
2099    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2100                    DAG.getConstant(1, V.getValueType()));
2101    AddToWorkList(V.Val);
2102    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2103  }
2104
2105  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2106  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2107      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2108    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2109    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2110      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2111      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2112      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2113      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2114      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2115    }
2116  }
2117  // fold !(x or y) -> (!x and !y) iff x or y are constants
2118  if (N1C && N1C->isAllOnesValue() &&
2119      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2120    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2121    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2122      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2123      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2124      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2125      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2126      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2127    }
2128  }
2129  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2130  if (N1C && N0.getOpcode() == ISD::XOR) {
2131    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2132    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2133    if (N00C)
2134      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2135                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2136    if (N01C)
2137      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2138                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2139  }
2140  // fold (xor x, x) -> 0
2141  if (N0 == N1) {
2142    if (!MVT::isVector(VT)) {
2143      return DAG.getConstant(0, VT);
2144    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2145      // Produce a vector of zeros.
2146      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2147      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2148      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2149    }
2150  }
2151
2152  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2153  if (N0.getOpcode() == N1.getOpcode()) {
2154    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2155    if (Tmp.Val) return Tmp;
2156  }
2157
2158  // Simplify the expression using non-local knowledge.
2159  if (!MVT::isVector(VT) &&
2160      SimplifyDemandedBits(SDOperand(N, 0)))
2161    return SDOperand(N, 0);
2162
2163  return SDOperand();
2164}
2165
2166/// visitShiftByConstant - Handle transforms common to the three shifts, when
2167/// the shift amount is a constant.
2168SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2169  SDNode *LHS = N->getOperand(0).Val;
2170  if (!LHS->hasOneUse()) return SDOperand();
2171
2172  // We want to pull some binops through shifts, so that we have (and (shift))
2173  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2174  // thing happens with address calculations, so it's important to canonicalize
2175  // it.
2176  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2177
2178  switch (LHS->getOpcode()) {
2179  default: return SDOperand();
2180  case ISD::OR:
2181  case ISD::XOR:
2182    HighBitSet = false; // We can only transform sra if the high bit is clear.
2183    break;
2184  case ISD::AND:
2185    HighBitSet = true;  // We can only transform sra if the high bit is set.
2186    break;
2187  case ISD::ADD:
2188    if (N->getOpcode() != ISD::SHL)
2189      return SDOperand(); // only shl(add) not sr[al](add).
2190    HighBitSet = false; // We can only transform sra if the high bit is clear.
2191    break;
2192  }
2193
2194  // We require the RHS of the binop to be a constant as well.
2195  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2196  if (!BinOpCst) return SDOperand();
2197
2198
2199  // FIXME: disable this for unless the input to the binop is a shift by a
2200  // constant.  If it is not a shift, it pessimizes some common cases like:
2201  //
2202  //void foo(int *X, int i) { X[i & 1235] = 1; }
2203  //int bar(int *X, int i) { return X[i & 255]; }
2204  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2205  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2206       BinOpLHSVal->getOpcode() != ISD::SRA &&
2207       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2208      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2209    return SDOperand();
2210
2211  MVT::ValueType VT = N->getValueType(0);
2212
2213  // If this is a signed shift right, and the high bit is modified
2214  // by the logical operation, do not perform the transformation.
2215  // The highBitSet boolean indicates the value of the high bit of
2216  // the constant which would cause it to be modified for this
2217  // operation.
2218  if (N->getOpcode() == ISD::SRA) {
2219    uint64_t BinOpRHSSign = BinOpCst->getValue() >> MVT::getSizeInBits(VT)-1;
2220    if ((bool)BinOpRHSSign != HighBitSet)
2221      return SDOperand();
2222  }
2223
2224  // Fold the constants, shifting the binop RHS by the shift amount.
2225  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2226                                 LHS->getOperand(1), N->getOperand(1));
2227
2228  // Create the new shift.
2229  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2230                                   N->getOperand(1));
2231
2232  // Create the new binop.
2233  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2234}
2235
2236
2237SDOperand DAGCombiner::visitSHL(SDNode *N) {
2238  SDOperand N0 = N->getOperand(0);
2239  SDOperand N1 = N->getOperand(1);
2240  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2241  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2242  MVT::ValueType VT = N0.getValueType();
2243  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2244
2245  // fold (shl c1, c2) -> c1<<c2
2246  if (N0C && N1C)
2247    return DAG.getNode(ISD::SHL, VT, N0, N1);
2248  // fold (shl 0, x) -> 0
2249  if (N0C && N0C->isNullValue())
2250    return N0;
2251  // fold (shl x, c >= size(x)) -> undef
2252  if (N1C && N1C->getValue() >= OpSizeInBits)
2253    return DAG.getNode(ISD::UNDEF, VT);
2254  // fold (shl x, 0) -> x
2255  if (N1C && N1C->isNullValue())
2256    return N0;
2257  // if (shl x, c) is known to be zero, return 0
2258  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2259    return DAG.getConstant(0, VT);
2260  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2261    return SDOperand(N, 0);
2262  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2263  if (N1C && N0.getOpcode() == ISD::SHL &&
2264      N0.getOperand(1).getOpcode() == ISD::Constant) {
2265    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2266    uint64_t c2 = N1C->getValue();
2267    if (c1 + c2 > OpSizeInBits)
2268      return DAG.getConstant(0, VT);
2269    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2270                       DAG.getConstant(c1 + c2, N1.getValueType()));
2271  }
2272  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2273  //                               (srl (and x, -1 << c1), c1-c2)
2274  if (N1C && N0.getOpcode() == ISD::SRL &&
2275      N0.getOperand(1).getOpcode() == ISD::Constant) {
2276    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2277    uint64_t c2 = N1C->getValue();
2278    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2279                                 DAG.getConstant(~0ULL << c1, VT));
2280    if (c2 > c1)
2281      return DAG.getNode(ISD::SHL, VT, Mask,
2282                         DAG.getConstant(c2-c1, N1.getValueType()));
2283    else
2284      return DAG.getNode(ISD::SRL, VT, Mask,
2285                         DAG.getConstant(c1-c2, N1.getValueType()));
2286  }
2287  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2288  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2289    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2290                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2291
2292  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2293}
2294
2295SDOperand DAGCombiner::visitSRA(SDNode *N) {
2296  SDOperand N0 = N->getOperand(0);
2297  SDOperand N1 = N->getOperand(1);
2298  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2299  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2300  MVT::ValueType VT = N0.getValueType();
2301
2302  // fold (sra c1, c2) -> c1>>c2
2303  if (N0C && N1C)
2304    return DAG.getNode(ISD::SRA, VT, N0, N1);
2305  // fold (sra 0, x) -> 0
2306  if (N0C && N0C->isNullValue())
2307    return N0;
2308  // fold (sra -1, x) -> -1
2309  if (N0C && N0C->isAllOnesValue())
2310    return N0;
2311  // fold (sra x, c >= size(x)) -> undef
2312  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2313    return DAG.getNode(ISD::UNDEF, VT);
2314  // fold (sra x, 0) -> x
2315  if (N1C && N1C->isNullValue())
2316    return N0;
2317  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2318  // sext_inreg.
2319  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2320    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2321    MVT::ValueType EVT;
2322    switch (LowBits) {
2323    default: EVT = MVT::Other; break;
2324    case  1: EVT = MVT::i1;    break;
2325    case  8: EVT = MVT::i8;    break;
2326    case 16: EVT = MVT::i16;   break;
2327    case 32: EVT = MVT::i32;   break;
2328    }
2329    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2330      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2331                         DAG.getValueType(EVT));
2332  }
2333
2334  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2335  if (N1C && N0.getOpcode() == ISD::SRA) {
2336    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2337      unsigned Sum = N1C->getValue() + C1->getValue();
2338      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2339      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2340                         DAG.getConstant(Sum, N1C->getValueType(0)));
2341    }
2342  }
2343
2344  // Simplify, based on bits shifted out of the LHS.
2345  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2346    return SDOperand(N, 0);
2347
2348
2349  // If the sign bit is known to be zero, switch this to a SRL.
2350  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2351    return DAG.getNode(ISD::SRL, VT, N0, N1);
2352
2353  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2354}
2355
2356SDOperand DAGCombiner::visitSRL(SDNode *N) {
2357  SDOperand N0 = N->getOperand(0);
2358  SDOperand N1 = N->getOperand(1);
2359  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2360  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2361  MVT::ValueType VT = N0.getValueType();
2362  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2363
2364  // fold (srl c1, c2) -> c1 >>u c2
2365  if (N0C && N1C)
2366    return DAG.getNode(ISD::SRL, VT, N0, N1);
2367  // fold (srl 0, x) -> 0
2368  if (N0C && N0C->isNullValue())
2369    return N0;
2370  // fold (srl x, c >= size(x)) -> undef
2371  if (N1C && N1C->getValue() >= OpSizeInBits)
2372    return DAG.getNode(ISD::UNDEF, VT);
2373  // fold (srl x, 0) -> x
2374  if (N1C && N1C->isNullValue())
2375    return N0;
2376  // if (srl x, c) is known to be zero, return 0
2377  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2378    return DAG.getConstant(0, VT);
2379
2380  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2381  if (N1C && N0.getOpcode() == ISD::SRL &&
2382      N0.getOperand(1).getOpcode() == ISD::Constant) {
2383    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2384    uint64_t c2 = N1C->getValue();
2385    if (c1 + c2 > OpSizeInBits)
2386      return DAG.getConstant(0, VT);
2387    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2388                       DAG.getConstant(c1 + c2, N1.getValueType()));
2389  }
2390
2391  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2392  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2393    // Shifting in all undef bits?
2394    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2395    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2396      return DAG.getNode(ISD::UNDEF, VT);
2397
2398    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2399    AddToWorkList(SmallShift.Val);
2400    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2401  }
2402
2403  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2404  // bit, which is unmodified by sra.
2405  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2406    if (N0.getOpcode() == ISD::SRA)
2407      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2408  }
2409
2410  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2411  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2412      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2413    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2414    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2415
2416    // If any of the input bits are KnownOne, then the input couldn't be all
2417    // zeros, thus the result of the srl will always be zero.
2418    if (KnownOne) return DAG.getConstant(0, VT);
2419
2420    // If all of the bits input the to ctlz node are known to be zero, then
2421    // the result of the ctlz is "32" and the result of the shift is one.
2422    uint64_t UnknownBits = ~KnownZero & Mask;
2423    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2424
2425    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2426    if ((UnknownBits & (UnknownBits-1)) == 0) {
2427      // Okay, we know that only that the single bit specified by UnknownBits
2428      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2429      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2430      // to an SRL,XOR pair, which is likely to simplify more.
2431      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2432      SDOperand Op = N0.getOperand(0);
2433      if (ShAmt) {
2434        Op = DAG.getNode(ISD::SRL, VT, Op,
2435                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2436        AddToWorkList(Op.Val);
2437      }
2438      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2439    }
2440  }
2441
2442  // fold operands of srl based on knowledge that the low bits are not
2443  // demanded.
2444  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2445    return SDOperand(N, 0);
2446
2447  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2448}
2449
2450SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2451  SDOperand N0 = N->getOperand(0);
2452  MVT::ValueType VT = N->getValueType(0);
2453
2454  // fold (ctlz c1) -> c2
2455  if (isa<ConstantSDNode>(N0))
2456    return DAG.getNode(ISD::CTLZ, VT, N0);
2457  return SDOperand();
2458}
2459
2460SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2461  SDOperand N0 = N->getOperand(0);
2462  MVT::ValueType VT = N->getValueType(0);
2463
2464  // fold (cttz c1) -> c2
2465  if (isa<ConstantSDNode>(N0))
2466    return DAG.getNode(ISD::CTTZ, VT, N0);
2467  return SDOperand();
2468}
2469
2470SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2471  SDOperand N0 = N->getOperand(0);
2472  MVT::ValueType VT = N->getValueType(0);
2473
2474  // fold (ctpop c1) -> c2
2475  if (isa<ConstantSDNode>(N0))
2476    return DAG.getNode(ISD::CTPOP, VT, N0);
2477  return SDOperand();
2478}
2479
2480SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2481  SDOperand N0 = N->getOperand(0);
2482  SDOperand N1 = N->getOperand(1);
2483  SDOperand N2 = N->getOperand(2);
2484  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2485  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2486  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2487  MVT::ValueType VT = N->getValueType(0);
2488  MVT::ValueType VT0 = N0.getValueType();
2489
2490  // fold select C, X, X -> X
2491  if (N1 == N2)
2492    return N1;
2493  // fold select true, X, Y -> X
2494  if (N0C && !N0C->isNullValue())
2495    return N1;
2496  // fold select false, X, Y -> Y
2497  if (N0C && N0C->isNullValue())
2498    return N2;
2499  // fold select C, 1, X -> C | X
2500  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2501    return DAG.getNode(ISD::OR, VT, N0, N2);
2502  // fold select C, 0, 1 -> ~C
2503  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2504      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2505    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2506    if (VT == VT0)
2507      return XORNode;
2508    AddToWorkList(XORNode.Val);
2509    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2510      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2511    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2512  }
2513  // fold select C, 0, X -> ~C & X
2514  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2515    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2516    AddToWorkList(XORNode.Val);
2517    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2518  }
2519  // fold select C, X, 1 -> ~C | X
2520  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2521    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2522    AddToWorkList(XORNode.Val);
2523    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2524  }
2525  // fold select C, X, 0 -> C & X
2526  // FIXME: this should check for C type == X type, not i1?
2527  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2528    return DAG.getNode(ISD::AND, VT, N0, N1);
2529  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2530  if (MVT::i1 == VT && N0 == N1)
2531    return DAG.getNode(ISD::OR, VT, N0, N2);
2532  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2533  if (MVT::i1 == VT && N0 == N2)
2534    return DAG.getNode(ISD::AND, VT, N0, N1);
2535
2536  // If we can fold this based on the true/false value, do so.
2537  if (SimplifySelectOps(N, N1, N2))
2538    return SDOperand(N, 0);  // Don't revisit N.
2539
2540  // fold selects based on a setcc into other things, such as min/max/abs
2541  if (N0.getOpcode() == ISD::SETCC)
2542    // FIXME:
2543    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2544    // having to say they don't support SELECT_CC on every type the DAG knows
2545    // about, since there is no way to mark an opcode illegal at all value types
2546    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2547      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2548                         N1, N2, N0.getOperand(2));
2549    else
2550      return SimplifySelect(N0, N1, N2);
2551  return SDOperand();
2552}
2553
2554SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2555  SDOperand N0 = N->getOperand(0);
2556  SDOperand N1 = N->getOperand(1);
2557  SDOperand N2 = N->getOperand(2);
2558  SDOperand N3 = N->getOperand(3);
2559  SDOperand N4 = N->getOperand(4);
2560  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2561
2562  // fold select_cc lhs, rhs, x, x, cc -> x
2563  if (N2 == N3)
2564    return N2;
2565
2566  // Determine if the condition we're dealing with is constant
2567  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2568  if (SCC.Val) AddToWorkList(SCC.Val);
2569
2570  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2571    if (SCCC->getValue())
2572      return N2;    // cond always true -> true val
2573    else
2574      return N3;    // cond always false -> false val
2575  }
2576
2577  // Fold to a simpler select_cc
2578  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2579    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2580                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2581                       SCC.getOperand(2));
2582
2583  // If we can fold this based on the true/false value, do so.
2584  if (SimplifySelectOps(N, N2, N3))
2585    return SDOperand(N, 0);  // Don't revisit N.
2586
2587  // fold select_cc into other things, such as min/max/abs
2588  return SimplifySelectCC(N0, N1, N2, N3, CC);
2589}
2590
2591SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2592  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2593                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2594}
2595
2596// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2597// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2598// transformation. Returns true if extension are possible and the above
2599// mentioned transformation is profitable.
2600static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2601                                    unsigned ExtOpc,
2602                                    SmallVector<SDNode*, 4> &ExtendNodes,
2603                                    TargetLowering &TLI) {
2604  bool HasCopyToRegUses = false;
2605  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2606  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2607       UI != UE; ++UI) {
2608    SDNode *User = *UI;
2609    if (User == N)
2610      continue;
2611    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2612    if (User->getOpcode() == ISD::SETCC) {
2613      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2614      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2615        // Sign bits will be lost after a zext.
2616        return false;
2617      bool Add = false;
2618      for (unsigned i = 0; i != 2; ++i) {
2619        SDOperand UseOp = User->getOperand(i);
2620        if (UseOp == N0)
2621          continue;
2622        if (!isa<ConstantSDNode>(UseOp))
2623          return false;
2624        Add = true;
2625      }
2626      if (Add)
2627        ExtendNodes.push_back(User);
2628    } else {
2629      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2630        SDOperand UseOp = User->getOperand(i);
2631        if (UseOp == N0) {
2632          // If truncate from extended type to original load type is free
2633          // on this target, then it's ok to extend a CopyToReg.
2634          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2635            HasCopyToRegUses = true;
2636          else
2637            return false;
2638        }
2639      }
2640    }
2641  }
2642
2643  if (HasCopyToRegUses) {
2644    bool BothLiveOut = false;
2645    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2646         UI != UE; ++UI) {
2647      SDNode *User = *UI;
2648      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2649        SDOperand UseOp = User->getOperand(i);
2650        if (UseOp.Val == N && UseOp.ResNo == 0) {
2651          BothLiveOut = true;
2652          break;
2653        }
2654      }
2655    }
2656    if (BothLiveOut)
2657      // Both unextended and extended values are live out. There had better be
2658      // good a reason for the transformation.
2659      return ExtendNodes.size();
2660  }
2661  return true;
2662}
2663
2664SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2665  SDOperand N0 = N->getOperand(0);
2666  MVT::ValueType VT = N->getValueType(0);
2667
2668  // fold (sext c1) -> c1
2669  if (isa<ConstantSDNode>(N0))
2670    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2671
2672  // fold (sext (sext x)) -> (sext x)
2673  // fold (sext (aext x)) -> (sext x)
2674  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2675    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2676
2677  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2678  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2679  if (N0.getOpcode() == ISD::TRUNCATE) {
2680    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2681    if (NarrowLoad.Val) {
2682      if (NarrowLoad.Val != N0.Val)
2683        CombineTo(N0.Val, NarrowLoad);
2684      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2685    }
2686  }
2687
2688  // See if the value being truncated is already sign extended.  If so, just
2689  // eliminate the trunc/sext pair.
2690  if (N0.getOpcode() == ISD::TRUNCATE) {
2691    SDOperand Op = N0.getOperand(0);
2692    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2693    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2694    unsigned DestBits = MVT::getSizeInBits(VT);
2695    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2696
2697    if (OpBits == DestBits) {
2698      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2699      // bits, it is already ready.
2700      if (NumSignBits > DestBits-MidBits)
2701        return Op;
2702    } else if (OpBits < DestBits) {
2703      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2704      // bits, just sext from i32.
2705      if (NumSignBits > OpBits-MidBits)
2706        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2707    } else {
2708      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2709      // bits, just truncate to i32.
2710      if (NumSignBits > OpBits-MidBits)
2711        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2712    }
2713
2714    // fold (sext (truncate x)) -> (sextinreg x).
2715    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2716                                               N0.getValueType())) {
2717      if (Op.getValueType() < VT)
2718        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2719      else if (Op.getValueType() > VT)
2720        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2721      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2722                         DAG.getValueType(N0.getValueType()));
2723    }
2724  }
2725
2726  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2727  if (ISD::isNON_EXTLoad(N0.Val) &&
2728      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2729    bool DoXform = true;
2730    SmallVector<SDNode*, 4> SetCCs;
2731    if (!N0.hasOneUse())
2732      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2733    if (DoXform) {
2734      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2735      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2736                                         LN0->getBasePtr(), LN0->getSrcValue(),
2737                                         LN0->getSrcValueOffset(),
2738                                         N0.getValueType(),
2739                                         LN0->isVolatile(),
2740                                         LN0->getAlignment());
2741      CombineTo(N, ExtLoad);
2742      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2743      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2744      // Extend SetCC uses if necessary.
2745      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2746        SDNode *SetCC = SetCCs[i];
2747        SmallVector<SDOperand, 4> Ops;
2748        for (unsigned j = 0; j != 2; ++j) {
2749          SDOperand SOp = SetCC->getOperand(j);
2750          if (SOp == Trunc)
2751            Ops.push_back(ExtLoad);
2752          else
2753            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2754          }
2755        Ops.push_back(SetCC->getOperand(2));
2756        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2757                                     &Ops[0], Ops.size()));
2758      }
2759      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2760    }
2761  }
2762
2763  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2764  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2765  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2766      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2767    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2768    MVT::ValueType EVT = LN0->getMemoryVT();
2769    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2770      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2771                                         LN0->getBasePtr(), LN0->getSrcValue(),
2772                                         LN0->getSrcValueOffset(), EVT,
2773                                         LN0->isVolatile(),
2774                                         LN0->getAlignment());
2775      CombineTo(N, ExtLoad);
2776      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2777                ExtLoad.getValue(1));
2778      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2779    }
2780  }
2781
2782  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2783  if (N0.getOpcode() == ISD::SETCC) {
2784    SDOperand SCC =
2785      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2786                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2787                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2788    if (SCC.Val) return SCC;
2789  }
2790
2791  return SDOperand();
2792}
2793
2794SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2795  SDOperand N0 = N->getOperand(0);
2796  MVT::ValueType VT = N->getValueType(0);
2797
2798  // fold (zext c1) -> c1
2799  if (isa<ConstantSDNode>(N0))
2800    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2801  // fold (zext (zext x)) -> (zext x)
2802  // fold (zext (aext x)) -> (zext x)
2803  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2804    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2805
2806  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2807  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2808  if (N0.getOpcode() == ISD::TRUNCATE) {
2809    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2810    if (NarrowLoad.Val) {
2811      if (NarrowLoad.Val != N0.Val)
2812        CombineTo(N0.Val, NarrowLoad);
2813      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2814    }
2815  }
2816
2817  // fold (zext (truncate x)) -> (and x, mask)
2818  if (N0.getOpcode() == ISD::TRUNCATE &&
2819      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2820    SDOperand Op = N0.getOperand(0);
2821    if (Op.getValueType() < VT) {
2822      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2823    } else if (Op.getValueType() > VT) {
2824      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2825    }
2826    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2827  }
2828
2829  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2830  if (N0.getOpcode() == ISD::AND &&
2831      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2832      N0.getOperand(1).getOpcode() == ISD::Constant) {
2833    SDOperand X = N0.getOperand(0).getOperand(0);
2834    if (X.getValueType() < VT) {
2835      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2836    } else if (X.getValueType() > VT) {
2837      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2838    }
2839    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2840    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2841  }
2842
2843  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2844  if (ISD::isNON_EXTLoad(N0.Val) &&
2845      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2846    bool DoXform = true;
2847    SmallVector<SDNode*, 4> SetCCs;
2848    if (!N0.hasOneUse())
2849      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2850    if (DoXform) {
2851      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2852      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2853                                         LN0->getBasePtr(), LN0->getSrcValue(),
2854                                         LN0->getSrcValueOffset(),
2855                                         N0.getValueType(),
2856                                         LN0->isVolatile(),
2857                                         LN0->getAlignment());
2858      CombineTo(N, ExtLoad);
2859      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2860      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2861      // Extend SetCC uses if necessary.
2862      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2863        SDNode *SetCC = SetCCs[i];
2864        SmallVector<SDOperand, 4> Ops;
2865        for (unsigned j = 0; j != 2; ++j) {
2866          SDOperand SOp = SetCC->getOperand(j);
2867          if (SOp == Trunc)
2868            Ops.push_back(ExtLoad);
2869          else
2870            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2871          }
2872        Ops.push_back(SetCC->getOperand(2));
2873        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2874                                     &Ops[0], Ops.size()));
2875      }
2876      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2877    }
2878  }
2879
2880  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2881  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2882  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2883      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2884    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2885    MVT::ValueType EVT = LN0->getMemoryVT();
2886    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2887                                       LN0->getBasePtr(), LN0->getSrcValue(),
2888                                       LN0->getSrcValueOffset(), EVT,
2889                                       LN0->isVolatile(),
2890                                       LN0->getAlignment());
2891    CombineTo(N, ExtLoad);
2892    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2893              ExtLoad.getValue(1));
2894    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2895  }
2896
2897  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2898  if (N0.getOpcode() == ISD::SETCC) {
2899    SDOperand SCC =
2900      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2901                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2902                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2903    if (SCC.Val) return SCC;
2904  }
2905
2906  return SDOperand();
2907}
2908
2909SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2910  SDOperand N0 = N->getOperand(0);
2911  MVT::ValueType VT = N->getValueType(0);
2912
2913  // fold (aext c1) -> c1
2914  if (isa<ConstantSDNode>(N0))
2915    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2916  // fold (aext (aext x)) -> (aext x)
2917  // fold (aext (zext x)) -> (zext x)
2918  // fold (aext (sext x)) -> (sext x)
2919  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2920      N0.getOpcode() == ISD::ZERO_EXTEND ||
2921      N0.getOpcode() == ISD::SIGN_EXTEND)
2922    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2923
2924  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2925  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2926  if (N0.getOpcode() == ISD::TRUNCATE) {
2927    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2928    if (NarrowLoad.Val) {
2929      if (NarrowLoad.Val != N0.Val)
2930        CombineTo(N0.Val, NarrowLoad);
2931      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2932    }
2933  }
2934
2935  // fold (aext (truncate x))
2936  if (N0.getOpcode() == ISD::TRUNCATE) {
2937    SDOperand TruncOp = N0.getOperand(0);
2938    if (TruncOp.getValueType() == VT)
2939      return TruncOp; // x iff x size == zext size.
2940    if (TruncOp.getValueType() > VT)
2941      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2942    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2943  }
2944
2945  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2946  if (N0.getOpcode() == ISD::AND &&
2947      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2948      N0.getOperand(1).getOpcode() == ISD::Constant) {
2949    SDOperand X = N0.getOperand(0).getOperand(0);
2950    if (X.getValueType() < VT) {
2951      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2952    } else if (X.getValueType() > VT) {
2953      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2954    }
2955    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2956    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2957  }
2958
2959  // fold (aext (load x)) -> (aext (truncate (extload x)))
2960  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2961      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2962    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2963    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2964                                       LN0->getBasePtr(), LN0->getSrcValue(),
2965                                       LN0->getSrcValueOffset(),
2966                                       N0.getValueType(),
2967                                       LN0->isVolatile(),
2968                                       LN0->getAlignment());
2969    CombineTo(N, ExtLoad);
2970    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2971              ExtLoad.getValue(1));
2972    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2973  }
2974
2975  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2976  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2977  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2978  if (N0.getOpcode() == ISD::LOAD &&
2979      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2980      N0.hasOneUse()) {
2981    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2982    MVT::ValueType EVT = LN0->getMemoryVT();
2983    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2984                                       LN0->getChain(), LN0->getBasePtr(),
2985                                       LN0->getSrcValue(),
2986                                       LN0->getSrcValueOffset(), EVT,
2987                                       LN0->isVolatile(),
2988                                       LN0->getAlignment());
2989    CombineTo(N, ExtLoad);
2990    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2991              ExtLoad.getValue(1));
2992    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2993  }
2994
2995  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2996  if (N0.getOpcode() == ISD::SETCC) {
2997    SDOperand SCC =
2998      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2999                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3000                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3001    if (SCC.Val)
3002      return SCC;
3003  }
3004
3005  return SDOperand();
3006}
3007
3008/// GetDemandedBits - See if the specified operand can be simplified with the
3009/// knowledge that only the bits specified by Mask are used.  If so, return the
3010/// simpler operand, otherwise return a null SDOperand.
3011SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
3012  switch (V.getOpcode()) {
3013  default: break;
3014  case ISD::OR:
3015  case ISD::XOR:
3016    // If the LHS or RHS don't contribute bits to the or, drop them.
3017    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3018      return V.getOperand(1);
3019    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3020      return V.getOperand(0);
3021    break;
3022  case ISD::SRL:
3023    // Only look at single-use SRLs.
3024    if (!V.Val->hasOneUse())
3025      break;
3026    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3027      // See if we can recursively simplify the LHS.
3028      unsigned Amt = RHSC->getValue();
3029      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
3030      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
3031      if (SimplifyLHS.Val) {
3032        return DAG.getNode(ISD::SRL, V.getValueType(),
3033                           SimplifyLHS, V.getOperand(1));
3034      }
3035    }
3036  }
3037  return SDOperand();
3038}
3039
3040/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3041/// bits and then truncated to a narrower type and where N is a multiple
3042/// of number of bits of the narrower type, transform it to a narrower load
3043/// from address + N / num of bits of new type. If the result is to be
3044/// extended, also fold the extension to form a extending load.
3045SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3046  unsigned Opc = N->getOpcode();
3047  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3048  SDOperand N0 = N->getOperand(0);
3049  MVT::ValueType VT = N->getValueType(0);
3050  MVT::ValueType EVT = N->getValueType(0);
3051
3052  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3053  // extended to VT.
3054  if (Opc == ISD::SIGN_EXTEND_INREG) {
3055    ExtType = ISD::SEXTLOAD;
3056    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3057    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3058      return SDOperand();
3059  }
3060
3061  unsigned EVTBits = MVT::getSizeInBits(EVT);
3062  unsigned ShAmt = 0;
3063  bool CombineSRL =  false;
3064  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3065    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3066      ShAmt = N01->getValue();
3067      // Is the shift amount a multiple of size of VT?
3068      if ((ShAmt & (EVTBits-1)) == 0) {
3069        N0 = N0.getOperand(0);
3070        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3071          return SDOperand();
3072        CombineSRL = true;
3073      }
3074    }
3075  }
3076
3077  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3078      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3079      // zero extended form: by shrinking the load, we lose track of the fact
3080      // that it is already zero extended.
3081      // FIXME: This should be reevaluated.
3082      VT != MVT::i1) {
3083    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3084           "Cannot truncate to larger type!");
3085    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3086    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3087    // For big endian targets, we need to adjust the offset to the pointer to
3088    // load the correct bytes.
3089    if (!TLI.isLittleEndian()) {
3090      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3091      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3092      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3093    }
3094    uint64_t PtrOff =  ShAmt / 8;
3095    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3096    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3097                                   DAG.getConstant(PtrOff, PtrType));
3098    AddToWorkList(NewPtr.Val);
3099    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3100      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3101                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3102                    LN0->isVolatile(), NewAlign)
3103      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3104                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3105                       LN0->isVolatile(), NewAlign);
3106    AddToWorkList(N);
3107    if (CombineSRL) {
3108      WorkListRemover DeadNodes(*this);
3109      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3110                                    &DeadNodes);
3111      CombineTo(N->getOperand(0).Val, Load);
3112    } else
3113      CombineTo(N0.Val, Load, Load.getValue(1));
3114    if (ShAmt) {
3115      if (Opc == ISD::SIGN_EXTEND_INREG)
3116        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3117      else
3118        return DAG.getNode(Opc, VT, Load);
3119    }
3120    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3121  }
3122
3123  return SDOperand();
3124}
3125
3126
3127SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3128  SDOperand N0 = N->getOperand(0);
3129  SDOperand N1 = N->getOperand(1);
3130  MVT::ValueType VT = N->getValueType(0);
3131  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3132  unsigned EVTBits = MVT::getSizeInBits(EVT);
3133
3134  // fold (sext_in_reg c1) -> c1
3135  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3136    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3137
3138  // If the input is already sign extended, just drop the extension.
3139  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3140    return N0;
3141
3142  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3143  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3144      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3145    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3146  }
3147
3148  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3149  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
3150    return DAG.getZeroExtendInReg(N0, EVT);
3151
3152  // fold operands of sext_in_reg based on knowledge that the top bits are not
3153  // demanded.
3154  if (SimplifyDemandedBits(SDOperand(N, 0)))
3155    return SDOperand(N, 0);
3156
3157  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3158  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3159  SDOperand NarrowLoad = ReduceLoadWidth(N);
3160  if (NarrowLoad.Val)
3161    return NarrowLoad;
3162
3163  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3164  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3165  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3166  if (N0.getOpcode() == ISD::SRL) {
3167    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3168      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3169        // We can turn this into an SRA iff the input to the SRL is already sign
3170        // extended enough.
3171        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3172        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3173          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3174      }
3175  }
3176
3177  // fold (sext_inreg (extload x)) -> (sextload x)
3178  if (ISD::isEXTLoad(N0.Val) &&
3179      ISD::isUNINDEXEDLoad(N0.Val) &&
3180      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3181      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3182    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3183    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3184                                       LN0->getBasePtr(), LN0->getSrcValue(),
3185                                       LN0->getSrcValueOffset(), EVT,
3186                                       LN0->isVolatile(),
3187                                       LN0->getAlignment());
3188    CombineTo(N, ExtLoad);
3189    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3190    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3191  }
3192  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3193  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3194      N0.hasOneUse() &&
3195      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3196      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3197    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3198    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3199                                       LN0->getBasePtr(), LN0->getSrcValue(),
3200                                       LN0->getSrcValueOffset(), EVT,
3201                                       LN0->isVolatile(),
3202                                       LN0->getAlignment());
3203    CombineTo(N, ExtLoad);
3204    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3205    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3206  }
3207  return SDOperand();
3208}
3209
3210SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3211  SDOperand N0 = N->getOperand(0);
3212  MVT::ValueType VT = N->getValueType(0);
3213
3214  // noop truncate
3215  if (N0.getValueType() == N->getValueType(0))
3216    return N0;
3217  // fold (truncate c1) -> c1
3218  if (isa<ConstantSDNode>(N0))
3219    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3220  // fold (truncate (truncate x)) -> (truncate x)
3221  if (N0.getOpcode() == ISD::TRUNCATE)
3222    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3223  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3224  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3225      N0.getOpcode() == ISD::ANY_EXTEND) {
3226    if (N0.getOperand(0).getValueType() < VT)
3227      // if the source is smaller than the dest, we still need an extend
3228      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3229    else if (N0.getOperand(0).getValueType() > VT)
3230      // if the source is larger than the dest, than we just need the truncate
3231      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3232    else
3233      // if the source and dest are the same type, we can drop both the extend
3234      // and the truncate
3235      return N0.getOperand(0);
3236  }
3237
3238  // See if we can simplify the input to this truncate through knowledge that
3239  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3240  // -> trunc y
3241  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3242  if (Shorter.Val)
3243    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3244
3245  // fold (truncate (load x)) -> (smaller load x)
3246  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3247  return ReduceLoadWidth(N);
3248}
3249
3250SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3251  SDOperand N0 = N->getOperand(0);
3252  MVT::ValueType VT = N->getValueType(0);
3253
3254  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3255  // Only do this before legalize, since afterward the target may be depending
3256  // on the bitconvert.
3257  // First check to see if this is all constant.
3258  if (!AfterLegalize &&
3259      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3260      MVT::isVector(VT)) {
3261    bool isSimple = true;
3262    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3263      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3264          N0.getOperand(i).getOpcode() != ISD::Constant &&
3265          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3266        isSimple = false;
3267        break;
3268      }
3269
3270    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3271    assert(!MVT::isVector(DestEltVT) &&
3272           "Element type of vector ValueType must not be vector!");
3273    if (isSimple) {
3274      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3275    }
3276  }
3277
3278  // If the input is a constant, let getNode() fold it.
3279  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3280    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3281    if (Res.Val != N) return Res;
3282  }
3283
3284  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3285    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3286
3287  // fold (conv (load x)) -> (load (conv*)x)
3288  // If the resultant load doesn't need a higher alignment than the original!
3289  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3290      TLI.isOperationLegal(ISD::LOAD, VT)) {
3291    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3292    unsigned Align = TLI.getTargetMachine().getTargetData()->
3293      getABITypeAlignment(MVT::getTypeForValueType(VT));
3294    unsigned OrigAlign = LN0->getAlignment();
3295    if (Align <= OrigAlign) {
3296      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3297                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3298                                   LN0->isVolatile(), Align);
3299      AddToWorkList(N);
3300      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3301                Load.getValue(1));
3302      return Load;
3303    }
3304  }
3305
3306  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3307  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3308  // This often reduces constant pool loads.
3309  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3310      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3311    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3312    AddToWorkList(NewConv.Val);
3313
3314    uint64_t SignBit = MVT::getIntVTSignBit(VT);
3315    if (N0.getOpcode() == ISD::FNEG)
3316      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3317    assert(N0.getOpcode() == ISD::FABS);
3318    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3319  }
3320
3321  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3322  // Note that we don't handle copysign(x,cst) because this can always be folded
3323  // to an fneg or fabs.
3324  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3325      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3326      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3327    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3328    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3329                              N0.getOperand(1));
3330    AddToWorkList(X.Val);
3331
3332    // If X has a different width than the result/lhs, sext it or truncate it.
3333    unsigned VTWidth = MVT::getSizeInBits(VT);
3334    if (OrigXWidth < VTWidth) {
3335      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3336      AddToWorkList(X.Val);
3337    } else if (OrigXWidth > VTWidth) {
3338      // To get the sign bit in the right place, we have to shift it right
3339      // before truncating.
3340      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3341                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3342      AddToWorkList(X.Val);
3343      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3344      AddToWorkList(X.Val);
3345    }
3346
3347    uint64_t SignBit = MVT::getIntVTSignBit(VT);
3348    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3349    AddToWorkList(X.Val);
3350
3351    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3352    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3353    AddToWorkList(Cst.Val);
3354
3355    return DAG.getNode(ISD::OR, VT, X, Cst);
3356  }
3357
3358  return SDOperand();
3359}
3360
3361/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3362/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3363/// destination element value type.
3364SDOperand DAGCombiner::
3365ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3366  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3367
3368  // If this is already the right type, we're done.
3369  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3370
3371  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3372  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3373
3374  // If this is a conversion of N elements of one type to N elements of another
3375  // type, convert each element.  This handles FP<->INT cases.
3376  if (SrcBitSize == DstBitSize) {
3377    SmallVector<SDOperand, 8> Ops;
3378    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3379      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3380      AddToWorkList(Ops.back().Val);
3381    }
3382    MVT::ValueType VT =
3383      MVT::getVectorType(DstEltVT,
3384                         MVT::getVectorNumElements(BV->getValueType(0)));
3385    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3386  }
3387
3388  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3389  // handle annoying details of growing/shrinking FP values, we convert them to
3390  // int first.
3391  if (MVT::isFloatingPoint(SrcEltVT)) {
3392    // Convert the input float vector to a int vector where the elements are the
3393    // same sizes.
3394    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3395    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3396    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3397    SrcEltVT = IntVT;
3398  }
3399
3400  // Now we know the input is an integer vector.  If the output is a FP type,
3401  // convert to integer first, then to FP of the right size.
3402  if (MVT::isFloatingPoint(DstEltVT)) {
3403    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3404    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3405    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3406
3407    // Next, convert to FP elements of the same size.
3408    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3409  }
3410
3411  // Okay, we know the src/dst types are both integers of differing types.
3412  // Handling growing first.
3413  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3414  if (SrcBitSize < DstBitSize) {
3415    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3416
3417    SmallVector<SDOperand, 8> Ops;
3418    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3419         i += NumInputsPerOutput) {
3420      bool isLE = TLI.isLittleEndian();
3421      uint64_t NewBits = 0;
3422      bool EltIsUndef = true;
3423      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3424        // Shift the previously computed bits over.
3425        NewBits <<= SrcBitSize;
3426        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3427        if (Op.getOpcode() == ISD::UNDEF) continue;
3428        EltIsUndef = false;
3429
3430        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3431      }
3432
3433      if (EltIsUndef)
3434        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3435      else
3436        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3437    }
3438
3439    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3440                                           Ops.size());
3441    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3442  }
3443
3444  // Finally, this must be the case where we are shrinking elements: each input
3445  // turns into multiple outputs.
3446  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3447  SmallVector<SDOperand, 8> Ops;
3448  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3449    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3450      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3451        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3452      continue;
3453    }
3454    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3455
3456    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3457      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3458      OpVal >>= DstBitSize;
3459      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3460    }
3461
3462    // For big endian targets, swap the order of the pieces of each element.
3463    if (!TLI.isLittleEndian())
3464      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3465  }
3466  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3467  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3468}
3469
3470
3471
3472SDOperand DAGCombiner::visitFADD(SDNode *N) {
3473  SDOperand N0 = N->getOperand(0);
3474  SDOperand N1 = N->getOperand(1);
3475  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3476  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3477  MVT::ValueType VT = N->getValueType(0);
3478
3479  // fold vector ops
3480  if (MVT::isVector(VT)) {
3481    SDOperand FoldedVOp = SimplifyVBinOp(N);
3482    if (FoldedVOp.Val) return FoldedVOp;
3483  }
3484
3485  // fold (fadd c1, c2) -> c1+c2
3486  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3487    return DAG.getNode(ISD::FADD, VT, N0, N1);
3488  // canonicalize constant to RHS
3489  if (N0CFP && !N1CFP)
3490    return DAG.getNode(ISD::FADD, VT, N1, N0);
3491  // fold (A + (-B)) -> A-B
3492  if (isNegatibleForFree(N1) == 2)
3493    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3494  // fold ((-A) + B) -> B-A
3495  if (isNegatibleForFree(N0) == 2)
3496    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3497
3498  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3499  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3500      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3501    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3502                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3503
3504  return SDOperand();
3505}
3506
3507SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3508  SDOperand N0 = N->getOperand(0);
3509  SDOperand N1 = N->getOperand(1);
3510  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3511  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3512  MVT::ValueType VT = N->getValueType(0);
3513
3514  // fold vector ops
3515  if (MVT::isVector(VT)) {
3516    SDOperand FoldedVOp = SimplifyVBinOp(N);
3517    if (FoldedVOp.Val) return FoldedVOp;
3518  }
3519
3520  // fold (fsub c1, c2) -> c1-c2
3521  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3522    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3523  // fold (0-B) -> -B
3524  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3525    if (isNegatibleForFree(N1))
3526      return GetNegatedExpression(N1, DAG);
3527    return DAG.getNode(ISD::FNEG, VT, N1);
3528  }
3529  // fold (A-(-B)) -> A+B
3530  if (isNegatibleForFree(N1))
3531    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3532
3533  return SDOperand();
3534}
3535
3536SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3537  SDOperand N0 = N->getOperand(0);
3538  SDOperand N1 = N->getOperand(1);
3539  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3540  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3541  MVT::ValueType VT = N->getValueType(0);
3542
3543  // fold vector ops
3544  if (MVT::isVector(VT)) {
3545    SDOperand FoldedVOp = SimplifyVBinOp(N);
3546    if (FoldedVOp.Val) return FoldedVOp;
3547  }
3548
3549  // fold (fmul c1, c2) -> c1*c2
3550  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3551    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3552  // canonicalize constant to RHS
3553  if (N0CFP && !N1CFP)
3554    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3555  // fold (fmul X, 2.0) -> (fadd X, X)
3556  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3557    return DAG.getNode(ISD::FADD, VT, N0, N0);
3558  // fold (fmul X, -1.0) -> (fneg X)
3559  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3560    return DAG.getNode(ISD::FNEG, VT, N0);
3561
3562  // -X * -Y -> X*Y
3563  if (char LHSNeg = isNegatibleForFree(N0)) {
3564    if (char RHSNeg = isNegatibleForFree(N1)) {
3565      // Both can be negated for free, check to see if at least one is cheaper
3566      // negated.
3567      if (LHSNeg == 2 || RHSNeg == 2)
3568        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3569                           GetNegatedExpression(N1, DAG));
3570    }
3571  }
3572
3573  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3574  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3575      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3576    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3577                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3578
3579  return SDOperand();
3580}
3581
3582SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3583  SDOperand N0 = N->getOperand(0);
3584  SDOperand N1 = N->getOperand(1);
3585  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3586  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3587  MVT::ValueType VT = N->getValueType(0);
3588
3589  // fold vector ops
3590  if (MVT::isVector(VT)) {
3591    SDOperand FoldedVOp = SimplifyVBinOp(N);
3592    if (FoldedVOp.Val) return FoldedVOp;
3593  }
3594
3595  // fold (fdiv c1, c2) -> c1/c2
3596  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3597    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3598
3599
3600  // -X / -Y -> X*Y
3601  if (char LHSNeg = isNegatibleForFree(N0)) {
3602    if (char RHSNeg = isNegatibleForFree(N1)) {
3603      // Both can be negated for free, check to see if at least one is cheaper
3604      // negated.
3605      if (LHSNeg == 2 || RHSNeg == 2)
3606        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3607                           GetNegatedExpression(N1, DAG));
3608    }
3609  }
3610
3611  return SDOperand();
3612}
3613
3614SDOperand DAGCombiner::visitFREM(SDNode *N) {
3615  SDOperand N0 = N->getOperand(0);
3616  SDOperand N1 = N->getOperand(1);
3617  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3618  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3619  MVT::ValueType VT = N->getValueType(0);
3620
3621  // fold (frem c1, c2) -> fmod(c1,c2)
3622  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3623    return DAG.getNode(ISD::FREM, VT, N0, N1);
3624
3625  return SDOperand();
3626}
3627
3628SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3629  SDOperand N0 = N->getOperand(0);
3630  SDOperand N1 = N->getOperand(1);
3631  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3632  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3633  MVT::ValueType VT = N->getValueType(0);
3634
3635  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3636    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3637
3638  if (N1CFP) {
3639    const APFloat& V = N1CFP->getValueAPF();
3640    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3641    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3642    if (!V.isNegative())
3643      return DAG.getNode(ISD::FABS, VT, N0);
3644    else
3645      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3646  }
3647
3648  // copysign(fabs(x), y) -> copysign(x, y)
3649  // copysign(fneg(x), y) -> copysign(x, y)
3650  // copysign(copysign(x,z), y) -> copysign(x, y)
3651  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3652      N0.getOpcode() == ISD::FCOPYSIGN)
3653    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3654
3655  // copysign(x, abs(y)) -> abs(x)
3656  if (N1.getOpcode() == ISD::FABS)
3657    return DAG.getNode(ISD::FABS, VT, N0);
3658
3659  // copysign(x, copysign(y,z)) -> copysign(x, z)
3660  if (N1.getOpcode() == ISD::FCOPYSIGN)
3661    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3662
3663  // copysign(x, fp_extend(y)) -> copysign(x, y)
3664  // copysign(x, fp_round(y)) -> copysign(x, y)
3665  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3666    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3667
3668  return SDOperand();
3669}
3670
3671
3672
3673SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3674  SDOperand N0 = N->getOperand(0);
3675  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3676  MVT::ValueType VT = N->getValueType(0);
3677
3678  // fold (sint_to_fp c1) -> c1fp
3679  if (N0C && N0.getValueType() != MVT::ppcf128)
3680    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3681  return SDOperand();
3682}
3683
3684SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3685  SDOperand N0 = N->getOperand(0);
3686  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3687  MVT::ValueType VT = N->getValueType(0);
3688
3689  // fold (uint_to_fp c1) -> c1fp
3690  if (N0C && N0.getValueType() != MVT::ppcf128)
3691    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3692  return SDOperand();
3693}
3694
3695SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3696  SDOperand N0 = N->getOperand(0);
3697  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3698  MVT::ValueType VT = N->getValueType(0);
3699
3700  // fold (fp_to_sint c1fp) -> c1
3701  if (N0CFP)
3702    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3703  return SDOperand();
3704}
3705
3706SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3707  SDOperand N0 = N->getOperand(0);
3708  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3709  MVT::ValueType VT = N->getValueType(0);
3710
3711  // fold (fp_to_uint c1fp) -> c1
3712  if (N0CFP && VT != MVT::ppcf128)
3713    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3714  return SDOperand();
3715}
3716
3717SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3718  SDOperand N0 = N->getOperand(0);
3719  SDOperand N1 = N->getOperand(1);
3720  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3721  MVT::ValueType VT = N->getValueType(0);
3722
3723  // fold (fp_round c1fp) -> c1fp
3724  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3725    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3726
3727  // fold (fp_round (fp_extend x)) -> x
3728  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3729    return N0.getOperand(0);
3730
3731  // fold (fp_round (fp_round x)) -> (fp_round x)
3732  if (N0.getOpcode() == ISD::FP_ROUND) {
3733    // This is a value preserving truncation if both round's are.
3734    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3735                   N0.Val->getConstantOperandVal(1) == 1;
3736    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3737                       DAG.getIntPtrConstant(IsTrunc));
3738  }
3739
3740  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3741  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3742    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3743    AddToWorkList(Tmp.Val);
3744    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3745  }
3746
3747  return SDOperand();
3748}
3749
3750SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3751  SDOperand N0 = N->getOperand(0);
3752  MVT::ValueType VT = N->getValueType(0);
3753  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3754  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3755
3756  // fold (fp_round_inreg c1fp) -> c1fp
3757  if (N0CFP) {
3758    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3759    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3760  }
3761  return SDOperand();
3762}
3763
3764SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3765  SDOperand N0 = N->getOperand(0);
3766  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3767  MVT::ValueType VT = N->getValueType(0);
3768
3769  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3770  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3771    return SDOperand();
3772
3773  // fold (fp_extend c1fp) -> c1fp
3774  if (N0CFP && VT != MVT::ppcf128)
3775    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3776
3777  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3778  // value of X.
3779  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3780    SDOperand In = N0.getOperand(0);
3781    if (In.getValueType() == VT) return In;
3782    if (VT < In.getValueType())
3783      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3784    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3785  }
3786
3787  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3788  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3789      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3790    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3791    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3792                                       LN0->getBasePtr(), LN0->getSrcValue(),
3793                                       LN0->getSrcValueOffset(),
3794                                       N0.getValueType(),
3795                                       LN0->isVolatile(),
3796                                       LN0->getAlignment());
3797    CombineTo(N, ExtLoad);
3798    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3799                                  DAG.getIntPtrConstant(1)),
3800              ExtLoad.getValue(1));
3801    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3802  }
3803
3804
3805  return SDOperand();
3806}
3807
3808SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3809  SDOperand N0 = N->getOperand(0);
3810
3811  if (isNegatibleForFree(N0))
3812    return GetNegatedExpression(N0, DAG);
3813
3814  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3815  // constant pool values.
3816  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3817      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3818      !MVT::isVector(N0.getOperand(0).getValueType())) {
3819    SDOperand Int = N0.getOperand(0);
3820    MVT::ValueType IntVT = Int.getValueType();
3821    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3822      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3823                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3824      AddToWorkList(Int.Val);
3825      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3826    }
3827  }
3828
3829  return SDOperand();
3830}
3831
3832SDOperand DAGCombiner::visitFABS(SDNode *N) {
3833  SDOperand N0 = N->getOperand(0);
3834  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3835  MVT::ValueType VT = N->getValueType(0);
3836
3837  // fold (fabs c1) -> fabs(c1)
3838  if (N0CFP && VT != MVT::ppcf128)
3839    return DAG.getNode(ISD::FABS, VT, N0);
3840  // fold (fabs (fabs x)) -> (fabs x)
3841  if (N0.getOpcode() == ISD::FABS)
3842    return N->getOperand(0);
3843  // fold (fabs (fneg x)) -> (fabs x)
3844  // fold (fabs (fcopysign x, y)) -> (fabs x)
3845  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3846    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3847
3848  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3849  // constant pool values.
3850  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3851      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3852      !MVT::isVector(N0.getOperand(0).getValueType())) {
3853    SDOperand Int = N0.getOperand(0);
3854    MVT::ValueType IntVT = Int.getValueType();
3855    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3856      Int = DAG.getNode(ISD::AND, IntVT, Int,
3857                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3858      AddToWorkList(Int.Val);
3859      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3860    }
3861  }
3862
3863  return SDOperand();
3864}
3865
3866SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3867  SDOperand Chain = N->getOperand(0);
3868  SDOperand N1 = N->getOperand(1);
3869  SDOperand N2 = N->getOperand(2);
3870  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3871
3872  // never taken branch, fold to chain
3873  if (N1C && N1C->isNullValue())
3874    return Chain;
3875  // unconditional branch
3876  if (N1C && N1C->getValue() == 1)
3877    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3878  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3879  // on the target.
3880  if (N1.getOpcode() == ISD::SETCC &&
3881      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3882    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3883                       N1.getOperand(0), N1.getOperand(1), N2);
3884  }
3885  return SDOperand();
3886}
3887
3888// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3889//
3890SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3891  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3892  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3893
3894  // Use SimplifySetCC  to simplify SETCC's.
3895  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3896  if (Simp.Val) AddToWorkList(Simp.Val);
3897
3898  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3899
3900  // fold br_cc true, dest -> br dest (unconditional branch)
3901  if (SCCC && SCCC->getValue())
3902    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3903                       N->getOperand(4));
3904  // fold br_cc false, dest -> unconditional fall through
3905  if (SCCC && SCCC->isNullValue())
3906    return N->getOperand(0);
3907
3908  // fold to a simpler setcc
3909  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3910    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3911                       Simp.getOperand(2), Simp.getOperand(0),
3912                       Simp.getOperand(1), N->getOperand(4));
3913  return SDOperand();
3914}
3915
3916
3917/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3918/// pre-indexed load / store when the base pointer is a add or subtract
3919/// and it has other uses besides the load / store. After the
3920/// transformation, the new indexed load / store has effectively folded
3921/// the add / subtract in and all of its other uses are redirected to the
3922/// new load / store.
3923bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3924  if (!AfterLegalize)
3925    return false;
3926
3927  bool isLoad = true;
3928  SDOperand Ptr;
3929  MVT::ValueType VT;
3930  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3931    if (LD->isIndexed())
3932      return false;
3933    VT = LD->getMemoryVT();
3934    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3935        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3936      return false;
3937    Ptr = LD->getBasePtr();
3938  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3939    if (ST->isIndexed())
3940      return false;
3941    VT = ST->getMemoryVT();
3942    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3943        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3944      return false;
3945    Ptr = ST->getBasePtr();
3946    isLoad = false;
3947  } else
3948    return false;
3949
3950  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3951  // out.  There is no reason to make this a preinc/predec.
3952  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3953      Ptr.Val->hasOneUse())
3954    return false;
3955
3956  // Ask the target to do addressing mode selection.
3957  SDOperand BasePtr;
3958  SDOperand Offset;
3959  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3960  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3961    return false;
3962  // Don't create a indexed load / store with zero offset.
3963  if (isa<ConstantSDNode>(Offset) &&
3964      cast<ConstantSDNode>(Offset)->getValue() == 0)
3965    return false;
3966
3967  // Try turning it into a pre-indexed load / store except when:
3968  // 1) The new base ptr is a frame index.
3969  // 2) If N is a store and the new base ptr is either the same as or is a
3970  //    predecessor of the value being stored.
3971  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3972  //    that would create a cycle.
3973  // 4) All uses are load / store ops that use it as old base ptr.
3974
3975  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3976  // (plus the implicit offset) to a register to preinc anyway.
3977  if (isa<FrameIndexSDNode>(BasePtr))
3978    return false;
3979
3980  // Check #2.
3981  if (!isLoad) {
3982    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3983    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3984      return false;
3985  }
3986
3987  // Now check for #3 and #4.
3988  bool RealUse = false;
3989  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3990         E = Ptr.Val->use_end(); I != E; ++I) {
3991    SDNode *Use = *I;
3992    if (Use == N)
3993      continue;
3994    if (Use->isPredecessor(N))
3995      return false;
3996
3997    if (!((Use->getOpcode() == ISD::LOAD &&
3998           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3999          (Use->getOpcode() == ISD::STORE) &&
4000          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
4001      RealUse = true;
4002  }
4003  if (!RealUse)
4004    return false;
4005
4006  SDOperand Result;
4007  if (isLoad)
4008    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4009  else
4010    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4011  ++PreIndexedNodes;
4012  ++NodesCombined;
4013  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4014  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4015  DOUT << '\n';
4016  WorkListRemover DeadNodes(*this);
4017  if (isLoad) {
4018    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4019                                  &DeadNodes);
4020    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4021                                  &DeadNodes);
4022  } else {
4023    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4024                                  &DeadNodes);
4025  }
4026
4027  // Finally, since the node is now dead, remove it from the graph.
4028  DAG.DeleteNode(N);
4029
4030  // Replace the uses of Ptr with uses of the updated base value.
4031  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4032                                &DeadNodes);
4033  removeFromWorkList(Ptr.Val);
4034  DAG.DeleteNode(Ptr.Val);
4035
4036  return true;
4037}
4038
4039/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4040/// add / sub of the base pointer node into a post-indexed load / store.
4041/// The transformation folded the add / subtract into the new indexed
4042/// load / store effectively and all of its uses are redirected to the
4043/// new load / store.
4044bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4045  if (!AfterLegalize)
4046    return false;
4047
4048  bool isLoad = true;
4049  SDOperand Ptr;
4050  MVT::ValueType VT;
4051  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4052    if (LD->isIndexed())
4053      return false;
4054    VT = LD->getMemoryVT();
4055    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4056        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4057      return false;
4058    Ptr = LD->getBasePtr();
4059  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4060    if (ST->isIndexed())
4061      return false;
4062    VT = ST->getMemoryVT();
4063    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4064        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4065      return false;
4066    Ptr = ST->getBasePtr();
4067    isLoad = false;
4068  } else
4069    return false;
4070
4071  if (Ptr.Val->hasOneUse())
4072    return false;
4073
4074  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4075         E = Ptr.Val->use_end(); I != E; ++I) {
4076    SDNode *Op = *I;
4077    if (Op == N ||
4078        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4079      continue;
4080
4081    SDOperand BasePtr;
4082    SDOperand Offset;
4083    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4084    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4085      if (Ptr == Offset)
4086        std::swap(BasePtr, Offset);
4087      if (Ptr != BasePtr)
4088        continue;
4089      // Don't create a indexed load / store with zero offset.
4090      if (isa<ConstantSDNode>(Offset) &&
4091          cast<ConstantSDNode>(Offset)->getValue() == 0)
4092        continue;
4093
4094      // Try turning it into a post-indexed load / store except when
4095      // 1) All uses are load / store ops that use it as base ptr.
4096      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4097      //    nor a successor of N. Otherwise, if Op is folded that would
4098      //    create a cycle.
4099
4100      // Check for #1.
4101      bool TryNext = false;
4102      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4103             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4104        SDNode *Use = *II;
4105        if (Use == Ptr.Val)
4106          continue;
4107
4108        // If all the uses are load / store addresses, then don't do the
4109        // transformation.
4110        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4111          bool RealUse = false;
4112          for (SDNode::use_iterator III = Use->use_begin(),
4113                 EEE = Use->use_end(); III != EEE; ++III) {
4114            SDNode *UseUse = *III;
4115            if (!((UseUse->getOpcode() == ISD::LOAD &&
4116                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4117                  (UseUse->getOpcode() == ISD::STORE) &&
4118                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
4119              RealUse = true;
4120          }
4121
4122          if (!RealUse) {
4123            TryNext = true;
4124            break;
4125          }
4126        }
4127      }
4128      if (TryNext)
4129        continue;
4130
4131      // Check for #2
4132      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
4133        SDOperand Result = isLoad
4134          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4135          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4136        ++PostIndexedNodes;
4137        ++NodesCombined;
4138        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4139        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4140        DOUT << '\n';
4141        WorkListRemover DeadNodes(*this);
4142        if (isLoad) {
4143          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4144                                        &DeadNodes);
4145          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4146                                        &DeadNodes);
4147        } else {
4148          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4149                                        &DeadNodes);
4150        }
4151
4152        // Finally, since the node is now dead, remove it from the graph.
4153        DAG.DeleteNode(N);
4154
4155        // Replace the uses of Use with uses of the updated base value.
4156        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4157                                      Result.getValue(isLoad ? 1 : 0),
4158                                      &DeadNodes);
4159        removeFromWorkList(Op);
4160        DAG.DeleteNode(Op);
4161        return true;
4162      }
4163    }
4164  }
4165  return false;
4166}
4167
4168/// InferAlignment - If we can infer some alignment information from this
4169/// pointer, return it.
4170static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4171  // If this is a direct reference to a stack slot, use information about the
4172  // stack slot's alignment.
4173  int FrameIdx = 1 << 31;
4174  int64_t FrameOffset = 0;
4175  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4176    FrameIdx = FI->getIndex();
4177  } else if (Ptr.getOpcode() == ISD::ADD &&
4178             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4179             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4180    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4181    FrameOffset = Ptr.getConstantOperandVal(1);
4182  }
4183
4184  if (FrameIdx != (1 << 31)) {
4185    // FIXME: Handle FI+CST.
4186    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4187    if (MFI.isFixedObjectIndex(FrameIdx)) {
4188      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4189
4190      // The alignment of the frame index can be determined from its offset from
4191      // the incoming frame position.  If the frame object is at offset 32 and
4192      // the stack is guaranteed to be 16-byte aligned, then we know that the
4193      // object is 16-byte aligned.
4194      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4195      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4196
4197      // Finally, the frame object itself may have a known alignment.  Factor
4198      // the alignment + offset into a new alignment.  For example, if we know
4199      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4200      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4201      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4202      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4203                                      FrameOffset);
4204      return std::max(Align, FIInfoAlign);
4205    }
4206  }
4207
4208  return 0;
4209}
4210
4211SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4212  LoadSDNode *LD  = cast<LoadSDNode>(N);
4213  SDOperand Chain = LD->getChain();
4214  SDOperand Ptr   = LD->getBasePtr();
4215
4216  // Try to infer better alignment information than the load already has.
4217  if (LD->isUnindexed()) {
4218    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4219      if (Align > LD->getAlignment())
4220        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4221                              Chain, Ptr, LD->getSrcValue(),
4222                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4223                              LD->isVolatile(), Align);
4224    }
4225  }
4226
4227
4228  // If load is not volatile and there are no uses of the loaded value (and
4229  // the updated indexed value in case of indexed loads), change uses of the
4230  // chain value into uses of the chain input (i.e. delete the dead load).
4231  if (!LD->isVolatile()) {
4232    if (N->getValueType(1) == MVT::Other) {
4233      // Unindexed loads.
4234      if (N->hasNUsesOfValue(0, 0)) {
4235        // It's not safe to use the two value CombineTo variant here. e.g.
4236        // v1, chain2 = load chain1, loc
4237        // v2, chain3 = load chain2, loc
4238        // v3         = add v2, c
4239        // Now we replace use of chain2 with chain1.  This makes the second load
4240        // isomorphic to the one we are deleting, and thus makes this load live.
4241        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4242        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4243        DOUT << "\n";
4244        WorkListRemover DeadNodes(*this);
4245        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4246        if (N->use_empty()) {
4247          removeFromWorkList(N);
4248          DAG.DeleteNode(N);
4249        }
4250        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4251      }
4252    } else {
4253      // Indexed loads.
4254      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4255      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4256        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4257        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4258        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4259        DOUT << " and 2 other values\n";
4260        WorkListRemover DeadNodes(*this);
4261        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4262        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4263                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4264                                      &DeadNodes);
4265        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4266        removeFromWorkList(N);
4267        DAG.DeleteNode(N);
4268        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4269      }
4270    }
4271  }
4272
4273  // If this load is directly stored, replace the load value with the stored
4274  // value.
4275  // TODO: Handle store large -> read small portion.
4276  // TODO: Handle TRUNCSTORE/LOADEXT
4277  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4278    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4279      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4280      if (PrevST->getBasePtr() == Ptr &&
4281          PrevST->getValue().getValueType() == N->getValueType(0))
4282      return CombineTo(N, Chain.getOperand(1), Chain);
4283    }
4284  }
4285
4286  if (CombinerAA) {
4287    // Walk up chain skipping non-aliasing memory nodes.
4288    SDOperand BetterChain = FindBetterChain(N, Chain);
4289
4290    // If there is a better chain.
4291    if (Chain != BetterChain) {
4292      SDOperand ReplLoad;
4293
4294      // Replace the chain to void dependency.
4295      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4296        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4297                               LD->getSrcValue(), LD->getSrcValueOffset(),
4298                               LD->isVolatile(), LD->getAlignment());
4299      } else {
4300        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4301                                  LD->getValueType(0),
4302                                  BetterChain, Ptr, LD->getSrcValue(),
4303                                  LD->getSrcValueOffset(),
4304                                  LD->getMemoryVT(),
4305                                  LD->isVolatile(),
4306                                  LD->getAlignment());
4307      }
4308
4309      // Create token factor to keep old chain connected.
4310      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4311                                    Chain, ReplLoad.getValue(1));
4312
4313      // Replace uses with load result and token factor. Don't add users
4314      // to work list.
4315      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4316    }
4317  }
4318
4319  // Try transforming N to an indexed load.
4320  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4321    return SDOperand(N, 0);
4322
4323  return SDOperand();
4324}
4325
4326
4327SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4328  StoreSDNode *ST  = cast<StoreSDNode>(N);
4329  SDOperand Chain = ST->getChain();
4330  SDOperand Value = ST->getValue();
4331  SDOperand Ptr   = ST->getBasePtr();
4332
4333  // Try to infer better alignment information than the store already has.
4334  if (ST->isUnindexed()) {
4335    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4336      if (Align > ST->getAlignment())
4337        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4338                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4339                                 ST->isVolatile(), Align);
4340    }
4341  }
4342
4343  // If this is a store of a bit convert, store the input value if the
4344  // resultant store does not need a higher alignment than the original.
4345  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4346      ST->isUnindexed()) {
4347    unsigned Align = ST->getAlignment();
4348    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4349    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4350      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4351    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4352      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4353                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4354  }
4355
4356  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4357  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4358    if (Value.getOpcode() != ISD::TargetConstantFP) {
4359      SDOperand Tmp;
4360      switch (CFP->getValueType(0)) {
4361      default: assert(0 && "Unknown FP type");
4362      case MVT::f80:    // We don't do this for these yet.
4363      case MVT::f128:
4364      case MVT::ppcf128:
4365        break;
4366      case MVT::f32:
4367        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4368          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4369                              convertToAPInt().getZExtValue(), MVT::i32);
4370          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4371                              ST->getSrcValueOffset(), ST->isVolatile(),
4372                              ST->getAlignment());
4373        }
4374        break;
4375      case MVT::f64:
4376        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4377          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4378                                  getZExtValue(), MVT::i64);
4379          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4380                              ST->getSrcValueOffset(), ST->isVolatile(),
4381                              ST->getAlignment());
4382        } else if (TLI.isTypeLegal(MVT::i32)) {
4383          // Many FP stores are not made apparent until after legalize, e.g. for
4384          // argument passing.  Since this is so common, custom legalize the
4385          // 64-bit integer store into two 32-bit stores.
4386          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4387          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4388          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4389          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
4390
4391          int SVOffset = ST->getSrcValueOffset();
4392          unsigned Alignment = ST->getAlignment();
4393          bool isVolatile = ST->isVolatile();
4394
4395          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4396                                       ST->getSrcValueOffset(),
4397                                       isVolatile, ST->getAlignment());
4398          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4399                            DAG.getConstant(4, Ptr.getValueType()));
4400          SVOffset += 4;
4401          Alignment = MinAlign(Alignment, 4U);
4402          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4403                                       SVOffset, isVolatile, Alignment);
4404          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4405        }
4406        break;
4407      }
4408    }
4409  }
4410
4411  if (CombinerAA) {
4412    // Walk up chain skipping non-aliasing memory nodes.
4413    SDOperand BetterChain = FindBetterChain(N, Chain);
4414
4415    // If there is a better chain.
4416    if (Chain != BetterChain) {
4417      // Replace the chain to avoid dependency.
4418      SDOperand ReplStore;
4419      if (ST->isTruncatingStore()) {
4420        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4421                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4422                                      ST->getMemoryVT(),
4423                                      ST->isVolatile(), ST->getAlignment());
4424      } else {
4425        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4426                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4427                                 ST->isVolatile(), ST->getAlignment());
4428      }
4429
4430      // Create token to keep both nodes around.
4431      SDOperand Token =
4432        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4433
4434      // Don't add users to work list.
4435      return CombineTo(N, Token, false);
4436    }
4437  }
4438
4439  // Try transforming N to an indexed store.
4440  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4441    return SDOperand(N, 0);
4442
4443  // FIXME: is there such a thing as a truncating indexed store?
4444  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4445      MVT::isInteger(Value.getValueType())) {
4446    // See if we can simplify the input to this truncstore with knowledge that
4447    // only the low bits are being used.  For example:
4448    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4449    SDOperand Shorter =
4450      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT()));
4451    AddToWorkList(Value.Val);
4452    if (Shorter.Val)
4453      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4454                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4455                               ST->isVolatile(), ST->getAlignment());
4456
4457    // Otherwise, see if we can simplify the operation with
4458    // SimplifyDemandedBits, which only works if the value has a single use.
4459    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT())))
4460      return SDOperand(N, 0);
4461  }
4462
4463  // If this is a load followed by a store to the same location, then the store
4464  // is dead/noop.
4465  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4466    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4467        ST->isUnindexed() && !ST->isVolatile() &&
4468        // There can't be any side effects between the load and store, such as
4469        // a call or store.
4470        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4471      // The store is dead, remove it.
4472      return Chain;
4473    }
4474  }
4475
4476  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4477  // truncating store.  We can do this even if this is already a truncstore.
4478  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4479      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4480      Value.Val->hasOneUse() && ST->isUnindexed() &&
4481      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4482                            ST->getMemoryVT())) {
4483    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4484                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4485                             ST->isVolatile(), ST->getAlignment());
4486  }
4487
4488  return SDOperand();
4489}
4490
4491SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4492  SDOperand InVec = N->getOperand(0);
4493  SDOperand InVal = N->getOperand(1);
4494  SDOperand EltNo = N->getOperand(2);
4495
4496  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4497  // vector with the inserted element.
4498  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4499    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4500    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4501    if (Elt < Ops.size())
4502      Ops[Elt] = InVal;
4503    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4504                       &Ops[0], Ops.size());
4505  }
4506
4507  return SDOperand();
4508}
4509
4510SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4511  SDOperand InVec = N->getOperand(0);
4512  SDOperand EltNo = N->getOperand(1);
4513
4514  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4515  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4516  if (isa<ConstantSDNode>(EltNo)) {
4517    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4518    bool NewLoad = false;
4519    if (Elt == 0) {
4520      MVT::ValueType VT = InVec.getValueType();
4521      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4522      MVT::ValueType LVT = EVT;
4523      unsigned NumElts = MVT::getVectorNumElements(VT);
4524      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4525        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4526        if (!MVT::isVector(BCVT) ||
4527            NumElts != MVT::getVectorNumElements(BCVT))
4528          return SDOperand();
4529        InVec = InVec.getOperand(0);
4530        EVT = MVT::getVectorElementType(BCVT);
4531        NewLoad = true;
4532      }
4533      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4534          InVec.getOperand(0).getValueType() == EVT &&
4535          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4536          InVec.getOperand(0).hasOneUse()) {
4537        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4538        unsigned Align = LN0->getAlignment();
4539        if (NewLoad) {
4540          // Check the resultant load doesn't need a higher alignment than the
4541          // original load.
4542          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4543            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4544          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4545            return SDOperand();
4546          Align = NewAlign;
4547        }
4548
4549        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4550                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4551                           LN0->isVolatile(), Align);
4552      }
4553    }
4554  }
4555  return SDOperand();
4556}
4557
4558
4559SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4560  unsigned NumInScalars = N->getNumOperands();
4561  MVT::ValueType VT = N->getValueType(0);
4562  unsigned NumElts = MVT::getVectorNumElements(VT);
4563  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4564
4565  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4566  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4567  // at most two distinct vectors, turn this into a shuffle node.
4568  SDOperand VecIn1, VecIn2;
4569  for (unsigned i = 0; i != NumInScalars; ++i) {
4570    // Ignore undef inputs.
4571    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4572
4573    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4574    // constant index, bail out.
4575    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4576        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4577      VecIn1 = VecIn2 = SDOperand(0, 0);
4578      break;
4579    }
4580
4581    // If the input vector type disagrees with the result of the build_vector,
4582    // we can't make a shuffle.
4583    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4584    if (ExtractedFromVec.getValueType() != VT) {
4585      VecIn1 = VecIn2 = SDOperand(0, 0);
4586      break;
4587    }
4588
4589    // Otherwise, remember this.  We allow up to two distinct input vectors.
4590    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4591      continue;
4592
4593    if (VecIn1.Val == 0) {
4594      VecIn1 = ExtractedFromVec;
4595    } else if (VecIn2.Val == 0) {
4596      VecIn2 = ExtractedFromVec;
4597    } else {
4598      // Too many inputs.
4599      VecIn1 = VecIn2 = SDOperand(0, 0);
4600      break;
4601    }
4602  }
4603
4604  // If everything is good, we can make a shuffle operation.
4605  if (VecIn1.Val) {
4606    SmallVector<SDOperand, 8> BuildVecIndices;
4607    for (unsigned i = 0; i != NumInScalars; ++i) {
4608      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4609        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4610        continue;
4611      }
4612
4613      SDOperand Extract = N->getOperand(i);
4614
4615      // If extracting from the first vector, just use the index directly.
4616      if (Extract.getOperand(0) == VecIn1) {
4617        BuildVecIndices.push_back(Extract.getOperand(1));
4618        continue;
4619      }
4620
4621      // Otherwise, use InIdx + VecSize
4622      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4623      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4624    }
4625
4626    // Add count and size info.
4627    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4628
4629    // Return the new VECTOR_SHUFFLE node.
4630    SDOperand Ops[5];
4631    Ops[0] = VecIn1;
4632    if (VecIn2.Val) {
4633      Ops[1] = VecIn2;
4634    } else {
4635      // Use an undef build_vector as input for the second operand.
4636      std::vector<SDOperand> UnOps(NumInScalars,
4637                                   DAG.getNode(ISD::UNDEF,
4638                                               EltType));
4639      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4640                           &UnOps[0], UnOps.size());
4641      AddToWorkList(Ops[1].Val);
4642    }
4643    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4644                         &BuildVecIndices[0], BuildVecIndices.size());
4645    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4646  }
4647
4648  return SDOperand();
4649}
4650
4651SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4652  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4653  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4654  // inputs come from at most two distinct vectors, turn this into a shuffle
4655  // node.
4656
4657  // If we only have one input vector, we don't need to do any concatenation.
4658  if (N->getNumOperands() == 1) {
4659    return N->getOperand(0);
4660  }
4661
4662  return SDOperand();
4663}
4664
4665SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4666  SDOperand ShufMask = N->getOperand(2);
4667  unsigned NumElts = ShufMask.getNumOperands();
4668
4669  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4670  bool isIdentity = true;
4671  for (unsigned i = 0; i != NumElts; ++i) {
4672    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4673        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4674      isIdentity = false;
4675      break;
4676    }
4677  }
4678  if (isIdentity) return N->getOperand(0);
4679
4680  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4681  isIdentity = true;
4682  for (unsigned i = 0; i != NumElts; ++i) {
4683    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4684        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4685      isIdentity = false;
4686      break;
4687    }
4688  }
4689  if (isIdentity) return N->getOperand(1);
4690
4691  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4692  // needed at all.
4693  bool isUnary = true;
4694  bool isSplat = true;
4695  int VecNum = -1;
4696  unsigned BaseIdx = 0;
4697  for (unsigned i = 0; i != NumElts; ++i)
4698    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4699      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4700      int V = (Idx < NumElts) ? 0 : 1;
4701      if (VecNum == -1) {
4702        VecNum = V;
4703        BaseIdx = Idx;
4704      } else {
4705        if (BaseIdx != Idx)
4706          isSplat = false;
4707        if (VecNum != V) {
4708          isUnary = false;
4709          break;
4710        }
4711      }
4712    }
4713
4714  SDOperand N0 = N->getOperand(0);
4715  SDOperand N1 = N->getOperand(1);
4716  // Normalize unary shuffle so the RHS is undef.
4717  if (isUnary && VecNum == 1)
4718    std::swap(N0, N1);
4719
4720  // If it is a splat, check if the argument vector is a build_vector with
4721  // all scalar elements the same.
4722  if (isSplat) {
4723    SDNode *V = N0.Val;
4724
4725    // If this is a bit convert that changes the element type of the vector but
4726    // not the number of vector elements, look through it.  Be careful not to
4727    // look though conversions that change things like v4f32 to v2f64.
4728    if (V->getOpcode() == ISD::BIT_CONVERT) {
4729      SDOperand ConvInput = V->getOperand(0);
4730      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4731        V = ConvInput.Val;
4732    }
4733
4734    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4735      unsigned NumElems = V->getNumOperands();
4736      if (NumElems > BaseIdx) {
4737        SDOperand Base;
4738        bool AllSame = true;
4739        for (unsigned i = 0; i != NumElems; ++i) {
4740          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4741            Base = V->getOperand(i);
4742            break;
4743          }
4744        }
4745        // Splat of <u, u, u, u>, return <u, u, u, u>
4746        if (!Base.Val)
4747          return N0;
4748        for (unsigned i = 0; i != NumElems; ++i) {
4749          if (V->getOperand(i) != Base) {
4750            AllSame = false;
4751            break;
4752          }
4753        }
4754        // Splat of <x, x, x, x>, return <x, x, x, x>
4755        if (AllSame)
4756          return N0;
4757      }
4758    }
4759  }
4760
4761  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4762  // into an undef.
4763  if (isUnary || N0 == N1) {
4764    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4765    // first operand.
4766    SmallVector<SDOperand, 8> MappedOps;
4767    for (unsigned i = 0; i != NumElts; ++i) {
4768      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4769          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4770        MappedOps.push_back(ShufMask.getOperand(i));
4771      } else {
4772        unsigned NewIdx =
4773          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4774        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4775      }
4776    }
4777    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4778                           &MappedOps[0], MappedOps.size());
4779    AddToWorkList(ShufMask.Val);
4780    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4781                       N0,
4782                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4783                       ShufMask);
4784  }
4785
4786  return SDOperand();
4787}
4788
4789/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4790/// an AND to a vector_shuffle with the destination vector and a zero vector.
4791/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4792///      vector_shuffle V, Zero, <0, 4, 2, 4>
4793SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4794  SDOperand LHS = N->getOperand(0);
4795  SDOperand RHS = N->getOperand(1);
4796  if (N->getOpcode() == ISD::AND) {
4797    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4798      RHS = RHS.getOperand(0);
4799    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4800      std::vector<SDOperand> IdxOps;
4801      unsigned NumOps = RHS.getNumOperands();
4802      unsigned NumElts = NumOps;
4803      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4804      for (unsigned i = 0; i != NumElts; ++i) {
4805        SDOperand Elt = RHS.getOperand(i);
4806        if (!isa<ConstantSDNode>(Elt))
4807          return SDOperand();
4808        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4809          IdxOps.push_back(DAG.getConstant(i, EVT));
4810        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4811          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4812        else
4813          return SDOperand();
4814      }
4815
4816      // Let's see if the target supports this vector_shuffle.
4817      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4818        return SDOperand();
4819
4820      // Return the new VECTOR_SHUFFLE node.
4821      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4822      std::vector<SDOperand> Ops;
4823      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4824      Ops.push_back(LHS);
4825      AddToWorkList(LHS.Val);
4826      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4827      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4828                                &ZeroOps[0], ZeroOps.size()));
4829      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4830                                &IdxOps[0], IdxOps.size()));
4831      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4832                                     &Ops[0], Ops.size());
4833      if (VT != LHS.getValueType()) {
4834        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4835      }
4836      return Result;
4837    }
4838  }
4839  return SDOperand();
4840}
4841
4842/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4843SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4844  // After legalize, the target may be depending on adds and other
4845  // binary ops to provide legal ways to construct constants or other
4846  // things. Simplifying them may result in a loss of legality.
4847  if (AfterLegalize) return SDOperand();
4848
4849  MVT::ValueType VT = N->getValueType(0);
4850  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4851
4852  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4853  SDOperand LHS = N->getOperand(0);
4854  SDOperand RHS = N->getOperand(1);
4855  SDOperand Shuffle = XformToShuffleWithZero(N);
4856  if (Shuffle.Val) return Shuffle;
4857
4858  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4859  // this operation.
4860  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4861      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4862    SmallVector<SDOperand, 8> Ops;
4863    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4864      SDOperand LHSOp = LHS.getOperand(i);
4865      SDOperand RHSOp = RHS.getOperand(i);
4866      // If these two elements can't be folded, bail out.
4867      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4868           LHSOp.getOpcode() != ISD::Constant &&
4869           LHSOp.getOpcode() != ISD::ConstantFP) ||
4870          (RHSOp.getOpcode() != ISD::UNDEF &&
4871           RHSOp.getOpcode() != ISD::Constant &&
4872           RHSOp.getOpcode() != ISD::ConstantFP))
4873        break;
4874      // Can't fold divide by zero.
4875      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4876          N->getOpcode() == ISD::FDIV) {
4877        if ((RHSOp.getOpcode() == ISD::Constant &&
4878             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4879            (RHSOp.getOpcode() == ISD::ConstantFP &&
4880             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4881          break;
4882      }
4883      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4884      AddToWorkList(Ops.back().Val);
4885      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4886              Ops.back().getOpcode() == ISD::Constant ||
4887              Ops.back().getOpcode() == ISD::ConstantFP) &&
4888             "Scalar binop didn't fold!");
4889    }
4890
4891    if (Ops.size() == LHS.getNumOperands()) {
4892      MVT::ValueType VT = LHS.getValueType();
4893      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4894    }
4895  }
4896
4897  return SDOperand();
4898}
4899
4900SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4901  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4902
4903  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4904                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4905  // If we got a simplified select_cc node back from SimplifySelectCC, then
4906  // break it down into a new SETCC node, and a new SELECT node, and then return
4907  // the SELECT node, since we were called with a SELECT node.
4908  if (SCC.Val) {
4909    // Check to see if we got a select_cc back (to turn into setcc/select).
4910    // Otherwise, just return whatever node we got back, like fabs.
4911    if (SCC.getOpcode() == ISD::SELECT_CC) {
4912      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4913                                    SCC.getOperand(0), SCC.getOperand(1),
4914                                    SCC.getOperand(4));
4915      AddToWorkList(SETCC.Val);
4916      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4917                         SCC.getOperand(3), SETCC);
4918    }
4919    return SCC;
4920  }
4921  return SDOperand();
4922}
4923
4924/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4925/// are the two values being selected between, see if we can simplify the
4926/// select.  Callers of this should assume that TheSelect is deleted if this
4927/// returns true.  As such, they should return the appropriate thing (e.g. the
4928/// node) back to the top-level of the DAG combiner loop to avoid it being
4929/// looked at.
4930///
4931bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4932                                    SDOperand RHS) {
4933
4934  // If this is a select from two identical things, try to pull the operation
4935  // through the select.
4936  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4937    // If this is a load and the token chain is identical, replace the select
4938    // of two loads with a load through a select of the address to load from.
4939    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4940    // constants have been dropped into the constant pool.
4941    if (LHS.getOpcode() == ISD::LOAD &&
4942        // Token chains must be identical.
4943        LHS.getOperand(0) == RHS.getOperand(0)) {
4944      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4945      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4946
4947      // If this is an EXTLOAD, the VT's must match.
4948      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
4949        // FIXME: this conflates two src values, discarding one.  This is not
4950        // the right thing to do, but nothing uses srcvalues now.  When they do,
4951        // turn SrcValue into a list of locations.
4952        SDOperand Addr;
4953        if (TheSelect->getOpcode() == ISD::SELECT) {
4954          // Check that the condition doesn't reach either load.  If so, folding
4955          // this will induce a cycle into the DAG.
4956          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4957              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4958            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4959                               TheSelect->getOperand(0), LLD->getBasePtr(),
4960                               RLD->getBasePtr());
4961          }
4962        } else {
4963          // Check that the condition doesn't reach either load.  If so, folding
4964          // this will induce a cycle into the DAG.
4965          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4966              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4967              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4968              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4969            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4970                             TheSelect->getOperand(0),
4971                             TheSelect->getOperand(1),
4972                             LLD->getBasePtr(), RLD->getBasePtr(),
4973                             TheSelect->getOperand(4));
4974          }
4975        }
4976
4977        if (Addr.Val) {
4978          SDOperand Load;
4979          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4980            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4981                               Addr,LLD->getSrcValue(),
4982                               LLD->getSrcValueOffset(),
4983                               LLD->isVolatile(),
4984                               LLD->getAlignment());
4985          else {
4986            Load = DAG.getExtLoad(LLD->getExtensionType(),
4987                                  TheSelect->getValueType(0),
4988                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4989                                  LLD->getSrcValueOffset(),
4990                                  LLD->getMemoryVT(),
4991                                  LLD->isVolatile(),
4992                                  LLD->getAlignment());
4993          }
4994          // Users of the select now use the result of the load.
4995          CombineTo(TheSelect, Load);
4996
4997          // Users of the old loads now use the new load's chain.  We know the
4998          // old-load value is dead now.
4999          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5000          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5001          return true;
5002        }
5003      }
5004    }
5005  }
5006
5007  return false;
5008}
5009
5010SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5011                                        SDOperand N2, SDOperand N3,
5012                                        ISD::CondCode CC, bool NotExtCompare) {
5013
5014  MVT::ValueType VT = N2.getValueType();
5015  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5016  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5017  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5018
5019  // Determine if the condition we're dealing with is constant
5020  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
5021  if (SCC.Val) AddToWorkList(SCC.Val);
5022  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5023
5024  // fold select_cc true, x, y -> x
5025  if (SCCC && SCCC->getValue())
5026    return N2;
5027  // fold select_cc false, x, y -> y
5028  if (SCCC && SCCC->getValue() == 0)
5029    return N3;
5030
5031  // Check to see if we can simplify the select into an fabs node
5032  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5033    // Allow either -0.0 or 0.0
5034    if (CFP->getValueAPF().isZero()) {
5035      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5036      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5037          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5038          N2 == N3.getOperand(0))
5039        return DAG.getNode(ISD::FABS, VT, N0);
5040
5041      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5042      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5043          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5044          N2.getOperand(0) == N3)
5045        return DAG.getNode(ISD::FABS, VT, N3);
5046    }
5047  }
5048
5049  // Check to see if we can perform the "gzip trick", transforming
5050  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5051  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5052      MVT::isInteger(N0.getValueType()) &&
5053      MVT::isInteger(N2.getValueType()) &&
5054      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5055       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5056    MVT::ValueType XType = N0.getValueType();
5057    MVT::ValueType AType = N2.getValueType();
5058    if (XType >= AType) {
5059      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5060      // single-bit constant.
5061      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5062        unsigned ShCtV = Log2_64(N2C->getValue());
5063        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5064        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5065        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5066        AddToWorkList(Shift.Val);
5067        if (XType > AType) {
5068          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5069          AddToWorkList(Shift.Val);
5070        }
5071        return DAG.getNode(ISD::AND, AType, Shift, N2);
5072      }
5073      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5074                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5075                                                    TLI.getShiftAmountTy()));
5076      AddToWorkList(Shift.Val);
5077      if (XType > AType) {
5078        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5079        AddToWorkList(Shift.Val);
5080      }
5081      return DAG.getNode(ISD::AND, AType, Shift, N2);
5082    }
5083  }
5084
5085  // fold select C, 16, 0 -> shl C, 4
5086  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5087      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5088
5089    // If the caller doesn't want us to simplify this into a zext of a compare,
5090    // don't do it.
5091    if (NotExtCompare && N2C->getValue() == 1)
5092      return SDOperand();
5093
5094    // Get a SetCC of the condition
5095    // FIXME: Should probably make sure that setcc is legal if we ever have a
5096    // target where it isn't.
5097    SDOperand Temp, SCC;
5098    // cast from setcc result type to select result type
5099    if (AfterLegalize) {
5100      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5101      if (N2.getValueType() < SCC.getValueType())
5102        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5103      else
5104        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5105    } else {
5106      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5107      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5108    }
5109    AddToWorkList(SCC.Val);
5110    AddToWorkList(Temp.Val);
5111
5112    if (N2C->getValue() == 1)
5113      return Temp;
5114    // shl setcc result by log2 n2c
5115    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5116                       DAG.getConstant(Log2_64(N2C->getValue()),
5117                                       TLI.getShiftAmountTy()));
5118  }
5119
5120  // Check to see if this is the equivalent of setcc
5121  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5122  // otherwise, go ahead with the folds.
5123  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5124    MVT::ValueType XType = N0.getValueType();
5125    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
5126      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5127      if (Res.getValueType() != VT)
5128        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5129      return Res;
5130    }
5131
5132    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5133    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5134        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5135      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5136      return DAG.getNode(ISD::SRL, XType, Ctlz,
5137                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5138                                         TLI.getShiftAmountTy()));
5139    }
5140    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5141    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5142      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5143                                    N0);
5144      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5145                                    DAG.getConstant(~0ULL, XType));
5146      return DAG.getNode(ISD::SRL, XType,
5147                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5148                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5149                                         TLI.getShiftAmountTy()));
5150    }
5151    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5152    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5153      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5154                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5155                                                   TLI.getShiftAmountTy()));
5156      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5157    }
5158  }
5159
5160  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5161  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5162  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5163      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5164      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5165    MVT::ValueType XType = N0.getValueType();
5166    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5167                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5168                                                  TLI.getShiftAmountTy()));
5169    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5170    AddToWorkList(Shift.Val);
5171    AddToWorkList(Add.Val);
5172    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5173  }
5174  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5175  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5176  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5177      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5178    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5179      MVT::ValueType XType = N0.getValueType();
5180      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5181        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5182                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5183                                                      TLI.getShiftAmountTy()));
5184        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5185        AddToWorkList(Shift.Val);
5186        AddToWorkList(Add.Val);
5187        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5188      }
5189    }
5190  }
5191
5192  return SDOperand();
5193}
5194
5195/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5196SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5197                                     SDOperand N1, ISD::CondCode Cond,
5198                                     bool foldBooleans) {
5199  TargetLowering::DAGCombinerInfo
5200    DagCombineInfo(DAG, !AfterLegalize, false, this);
5201  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5202}
5203
5204/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5205/// return a DAG expression to select that will generate the same value by
5206/// multiplying by a magic number.  See:
5207/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5208SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5209  std::vector<SDNode*> Built;
5210  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5211
5212  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5213       ii != ee; ++ii)
5214    AddToWorkList(*ii);
5215  return S;
5216}
5217
5218/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5219/// return a DAG expression to select that will generate the same value by
5220/// multiplying by a magic number.  See:
5221/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5222SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5223  std::vector<SDNode*> Built;
5224  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5225
5226  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5227       ii != ee; ++ii)
5228    AddToWorkList(*ii);
5229  return S;
5230}
5231
5232/// FindBaseOffset - Return true if base is known not to alias with anything
5233/// but itself.  Provides base object and offset as results.
5234static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5235  // Assume it is a primitive operation.
5236  Base = Ptr; Offset = 0;
5237
5238  // If it's an adding a simple constant then integrate the offset.
5239  if (Base.getOpcode() == ISD::ADD) {
5240    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5241      Base = Base.getOperand(0);
5242      Offset += C->getValue();
5243    }
5244  }
5245
5246  // If it's any of the following then it can't alias with anything but itself.
5247  return isa<FrameIndexSDNode>(Base) ||
5248         isa<ConstantPoolSDNode>(Base) ||
5249         isa<GlobalAddressSDNode>(Base);
5250}
5251
5252/// isAlias - Return true if there is any possibility that the two addresses
5253/// overlap.
5254bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5255                          const Value *SrcValue1, int SrcValueOffset1,
5256                          SDOperand Ptr2, int64_t Size2,
5257                          const Value *SrcValue2, int SrcValueOffset2)
5258{
5259  // If they are the same then they must be aliases.
5260  if (Ptr1 == Ptr2) return true;
5261
5262  // Gather base node and offset information.
5263  SDOperand Base1, Base2;
5264  int64_t Offset1, Offset2;
5265  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5266  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5267
5268  // If they have a same base address then...
5269  if (Base1 == Base2) {
5270    // Check to see if the addresses overlap.
5271    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5272  }
5273
5274  // If we know both bases then they can't alias.
5275  if (KnownBase1 && KnownBase2) return false;
5276
5277  if (CombinerGlobalAA) {
5278    // Use alias analysis information.
5279    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5280    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5281    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5282    AliasAnalysis::AliasResult AAResult =
5283                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5284    if (AAResult == AliasAnalysis::NoAlias)
5285      return false;
5286  }
5287
5288  // Otherwise we have to assume they alias.
5289  return true;
5290}
5291
5292/// FindAliasInfo - Extracts the relevant alias information from the memory
5293/// node.  Returns true if the operand was a load.
5294bool DAGCombiner::FindAliasInfo(SDNode *N,
5295                        SDOperand &Ptr, int64_t &Size,
5296                        const Value *&SrcValue, int &SrcValueOffset) {
5297  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5298    Ptr = LD->getBasePtr();
5299    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5300    SrcValue = LD->getSrcValue();
5301    SrcValueOffset = LD->getSrcValueOffset();
5302    return true;
5303  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5304    Ptr = ST->getBasePtr();
5305    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5306    SrcValue = ST->getSrcValue();
5307    SrcValueOffset = ST->getSrcValueOffset();
5308  } else {
5309    assert(0 && "FindAliasInfo expected a memory operand");
5310  }
5311
5312  return false;
5313}
5314
5315/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5316/// looking for aliasing nodes and adding them to the Aliases vector.
5317void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5318                                   SmallVector<SDOperand, 8> &Aliases) {
5319  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5320  std::set<SDNode *> Visited;           // Visited node set.
5321
5322  // Get alias information for node.
5323  SDOperand Ptr;
5324  int64_t Size;
5325  const Value *SrcValue;
5326  int SrcValueOffset;
5327  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5328
5329  // Starting off.
5330  Chains.push_back(OriginalChain);
5331
5332  // Look at each chain and determine if it is an alias.  If so, add it to the
5333  // aliases list.  If not, then continue up the chain looking for the next
5334  // candidate.
5335  while (!Chains.empty()) {
5336    SDOperand Chain = Chains.back();
5337    Chains.pop_back();
5338
5339     // Don't bother if we've been before.
5340    if (Visited.find(Chain.Val) != Visited.end()) continue;
5341    Visited.insert(Chain.Val);
5342
5343    switch (Chain.getOpcode()) {
5344    case ISD::EntryToken:
5345      // Entry token is ideal chain operand, but handled in FindBetterChain.
5346      break;
5347
5348    case ISD::LOAD:
5349    case ISD::STORE: {
5350      // Get alias information for Chain.
5351      SDOperand OpPtr;
5352      int64_t OpSize;
5353      const Value *OpSrcValue;
5354      int OpSrcValueOffset;
5355      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5356                                    OpSrcValue, OpSrcValueOffset);
5357
5358      // If chain is alias then stop here.
5359      if (!(IsLoad && IsOpLoad) &&
5360          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5361                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5362        Aliases.push_back(Chain);
5363      } else {
5364        // Look further up the chain.
5365        Chains.push_back(Chain.getOperand(0));
5366        // Clean up old chain.
5367        AddToWorkList(Chain.Val);
5368      }
5369      break;
5370    }
5371
5372    case ISD::TokenFactor:
5373      // We have to check each of the operands of the token factor, so we queue
5374      // then up.  Adding the  operands to the queue (stack) in reverse order
5375      // maintains the original order and increases the likelihood that getNode
5376      // will find a matching token factor (CSE.)
5377      for (unsigned n = Chain.getNumOperands(); n;)
5378        Chains.push_back(Chain.getOperand(--n));
5379      // Eliminate the token factor if we can.
5380      AddToWorkList(Chain.Val);
5381      break;
5382
5383    default:
5384      // For all other instructions we will just have to take what we can get.
5385      Aliases.push_back(Chain);
5386      break;
5387    }
5388  }
5389}
5390
5391/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5392/// for a better chain (aliasing node.)
5393SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5394  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5395
5396  // Accumulate all the aliases to this node.
5397  GatherAllAliases(N, OldChain, Aliases);
5398
5399  if (Aliases.size() == 0) {
5400    // If no operands then chain to entry token.
5401    return DAG.getEntryNode();
5402  } else if (Aliases.size() == 1) {
5403    // If a single operand then chain to it.  We don't need to revisit it.
5404    return Aliases[0];
5405  }
5406
5407  // Construct a custom tailored token factor.
5408  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5409                                   &Aliases[0], Aliases.size());
5410
5411  // Make sure the old chain gets cleaned up.
5412  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5413
5414  return NewChain;
5415}
5416
5417// SelectionDAG::Combine - This is the entry point for the file.
5418//
5419void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5420  if (!RunningAfterLegalize && ViewDAGCombine1)
5421    viewGraph();
5422  if (RunningAfterLegalize && ViewDAGCombine2)
5423    viewGraph();
5424  /// run - This is the main entry point to this class.
5425  ///
5426  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5427}
5428