DAGCombiner.cpp revision a4c5d8c6b4e91b880fcd1b8b293f330e3aa198a3
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: make truncate see through SIGN_EXTEND and AND
26// FIXME: divide by zero is currently left unfolded.  do we want to turn this
27//        into an undef?
28// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "dagcombine"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Target/TargetLowering.h"
38#include <algorithm>
39#include <cmath>
40#include <iostream>
41using namespace llvm;
42
43namespace {
44  Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined");
45
46  class DAGCombiner {
47    SelectionDAG &DAG;
48    TargetLowering &TLI;
49    bool AfterLegalize;
50
51    // Worklist of all of the nodes that need to be simplified.
52    std::vector<SDNode*> WorkList;
53
54    /// AddUsersToWorkList - When an instruction is simplified, add all users of
55    /// the instruction to the work lists because they might get more simplified
56    /// now.
57    ///
58    void AddUsersToWorkList(SDNode *N) {
59      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
60           UI != UE; ++UI)
61        WorkList.push_back(*UI);
62    }
63
64    /// removeFromWorkList - remove all instances of N from the worklist.
65    ///
66    void removeFromWorkList(SDNode *N) {
67      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
68                     WorkList.end());
69    }
70
71  public:
72    void AddToWorkList(SDNode *N) {
73      WorkList.push_back(N);
74    }
75
76    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
77      ++NodesCombined;
78      DEBUG(std::cerr << "\nReplacing "; N->dump();
79            std::cerr << "\nWith: "; To[0].Val->dump();
80            std::cerr << " and " << To.size()-1 << " other values\n");
81      std::vector<SDNode*> NowDead;
82      DAG.ReplaceAllUsesWith(N, To, &NowDead);
83
84      // Push the new nodes and any users onto the worklist
85      for (unsigned i = 0, e = To.size(); i != e; ++i) {
86        WorkList.push_back(To[i].Val);
87        AddUsersToWorkList(To[i].Val);
88      }
89
90      // Nodes can end up on the worklist more than once.  Make sure we do
91      // not process a node that has been replaced.
92      removeFromWorkList(N);
93      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
94        removeFromWorkList(NowDead[i]);
95
96      // Finally, since the node is now dead, remove it from the graph.
97      DAG.DeleteNode(N);
98      return SDOperand(N, 0);
99    }
100
101    SDOperand CombineTo(SDNode *N, SDOperand Res) {
102      std::vector<SDOperand> To;
103      To.push_back(Res);
104      return CombineTo(N, To);
105    }
106
107    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
108      std::vector<SDOperand> To;
109      To.push_back(Res0);
110      To.push_back(Res1);
111      return CombineTo(N, To);
112    }
113  private:
114
115    /// SimplifyDemandedBits - Check the specified integer node value to see if
116    /// it can be simplified or if things it uses can be simplified by bit
117    /// propagation.  If so, return true.
118    bool SimplifyDemandedBits(SDOperand Op) {
119      TargetLowering::TargetLoweringOpt TLO(DAG);
120      uint64_t KnownZero, KnownOne;
121      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
122      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
123        return false;
124
125      // Revisit the node.
126      WorkList.push_back(Op.Val);
127
128      // Replace the old value with the new one.
129      ++NodesCombined;
130      DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump();
131            std::cerr << "\nWith: "; TLO.New.Val->dump());
132
133      std::vector<SDNode*> NowDead;
134      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
135
136      // Push the new node and any (possibly new) users onto the worklist.
137      WorkList.push_back(TLO.New.Val);
138      AddUsersToWorkList(TLO.New.Val);
139
140      // Nodes can end up on the worklist more than once.  Make sure we do
141      // not process a node that has been replaced.
142      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
143        removeFromWorkList(NowDead[i]);
144
145      // Finally, if the node is now dead, remove it from the graph.  The node
146      // may not be dead if the replacement process recursively simplified to
147      // something else needing this node.
148      if (TLO.Old.Val->use_empty()) {
149        removeFromWorkList(TLO.Old.Val);
150        DAG.DeleteNode(TLO.Old.Val);
151      }
152      return true;
153    }
154
155    /// visit - call the node-specific routine that knows how to fold each
156    /// particular type of node.
157    SDOperand visit(SDNode *N);
158
159    // Visitation implementation - Implement dag node combining for different
160    // node types.  The semantics are as follows:
161    // Return Value:
162    //   SDOperand.Val == 0   - No change was made
163    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
164    //   otherwise            - N should be replaced by the returned Operand.
165    //
166    SDOperand visitTokenFactor(SDNode *N);
167    SDOperand visitADD(SDNode *N);
168    SDOperand visitSUB(SDNode *N);
169    SDOperand visitMUL(SDNode *N);
170    SDOperand visitSDIV(SDNode *N);
171    SDOperand visitUDIV(SDNode *N);
172    SDOperand visitSREM(SDNode *N);
173    SDOperand visitUREM(SDNode *N);
174    SDOperand visitMULHU(SDNode *N);
175    SDOperand visitMULHS(SDNode *N);
176    SDOperand visitAND(SDNode *N);
177    SDOperand visitOR(SDNode *N);
178    SDOperand visitXOR(SDNode *N);
179    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
180    SDOperand visitSHL(SDNode *N);
181    SDOperand visitSRA(SDNode *N);
182    SDOperand visitSRL(SDNode *N);
183    SDOperand visitCTLZ(SDNode *N);
184    SDOperand visitCTTZ(SDNode *N);
185    SDOperand visitCTPOP(SDNode *N);
186    SDOperand visitSELECT(SDNode *N);
187    SDOperand visitSELECT_CC(SDNode *N);
188    SDOperand visitSETCC(SDNode *N);
189    SDOperand visitSIGN_EXTEND(SDNode *N);
190    SDOperand visitZERO_EXTEND(SDNode *N);
191    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
192    SDOperand visitTRUNCATE(SDNode *N);
193    SDOperand visitBIT_CONVERT(SDNode *N);
194    SDOperand visitVBIT_CONVERT(SDNode *N);
195    SDOperand visitFADD(SDNode *N);
196    SDOperand visitFSUB(SDNode *N);
197    SDOperand visitFMUL(SDNode *N);
198    SDOperand visitFDIV(SDNode *N);
199    SDOperand visitFREM(SDNode *N);
200    SDOperand visitFCOPYSIGN(SDNode *N);
201    SDOperand visitSINT_TO_FP(SDNode *N);
202    SDOperand visitUINT_TO_FP(SDNode *N);
203    SDOperand visitFP_TO_SINT(SDNode *N);
204    SDOperand visitFP_TO_UINT(SDNode *N);
205    SDOperand visitFP_ROUND(SDNode *N);
206    SDOperand visitFP_ROUND_INREG(SDNode *N);
207    SDOperand visitFP_EXTEND(SDNode *N);
208    SDOperand visitFNEG(SDNode *N);
209    SDOperand visitFABS(SDNode *N);
210    SDOperand visitBRCOND(SDNode *N);
211    SDOperand visitBR_CC(SDNode *N);
212    SDOperand visitLOAD(SDNode *N);
213    SDOperand visitXEXTLOAD(SDNode *N);
214    SDOperand visitSTORE(SDNode *N);
215    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
216    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
217    SDOperand visitVBUILD_VECTOR(SDNode *N);
218    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
219    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
220
221    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
222
223    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
224    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
225    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
226                               SDOperand N3, ISD::CondCode CC);
227    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
228                            ISD::CondCode Cond, bool foldBooleans = true);
229    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
230    SDOperand BuildSDIV(SDNode *N);
231    SDOperand BuildUDIV(SDNode *N);
232public:
233    DAGCombiner(SelectionDAG &D)
234      : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
235
236    /// Run - runs the dag combiner on all nodes in the work list
237    void Run(bool RunningAfterLegalize);
238  };
239}
240
241//===----------------------------------------------------------------------===//
242//  TargetLowering::DAGCombinerInfo implementation
243//===----------------------------------------------------------------------===//
244
245void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
246  ((DAGCombiner*)DC)->AddToWorkList(N);
247}
248
249SDOperand TargetLowering::DAGCombinerInfo::
250CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
251  return ((DAGCombiner*)DC)->CombineTo(N, To);
252}
253
254SDOperand TargetLowering::DAGCombinerInfo::
255CombineTo(SDNode *N, SDOperand Res) {
256  return ((DAGCombiner*)DC)->CombineTo(N, Res);
257}
258
259
260SDOperand TargetLowering::DAGCombinerInfo::
261CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
262  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
263}
264
265
266
267
268//===----------------------------------------------------------------------===//
269
270
271struct ms {
272  int64_t m;  // magic number
273  int64_t s;  // shift amount
274};
275
276struct mu {
277  uint64_t m; // magic number
278  int64_t a;  // add indicator
279  int64_t s;  // shift amount
280};
281
282/// magic - calculate the magic numbers required to codegen an integer sdiv as
283/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
284/// or -1.
285static ms magic32(int32_t d) {
286  int32_t p;
287  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
288  const uint32_t two31 = 0x80000000U;
289  struct ms mag;
290
291  ad = abs(d);
292  t = two31 + ((uint32_t)d >> 31);
293  anc = t - 1 - t%ad;   // absolute value of nc
294  p = 31;               // initialize p
295  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
296  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
297  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
298  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
299  do {
300    p = p + 1;
301    q1 = 2*q1;        // update q1 = 2p/abs(nc)
302    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
303    if (r1 >= anc) {  // must be unsigned comparison
304      q1 = q1 + 1;
305      r1 = r1 - anc;
306    }
307    q2 = 2*q2;        // update q2 = 2p/abs(d)
308    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
309    if (r2 >= ad) {   // must be unsigned comparison
310      q2 = q2 + 1;
311      r2 = r2 - ad;
312    }
313    delta = ad - r2;
314  } while (q1 < delta || (q1 == delta && r1 == 0));
315
316  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
317  if (d < 0) mag.m = -mag.m; // resulting magic number
318  mag.s = p - 32;            // resulting shift
319  return mag;
320}
321
322/// magicu - calculate the magic numbers required to codegen an integer udiv as
323/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
324static mu magicu32(uint32_t d) {
325  int32_t p;
326  uint32_t nc, delta, q1, r1, q2, r2;
327  struct mu magu;
328  magu.a = 0;               // initialize "add" indicator
329  nc = - 1 - (-d)%d;
330  p = 31;                   // initialize p
331  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
332  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
333  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
334  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
335  do {
336    p = p + 1;
337    if (r1 >= nc - r1 ) {
338      q1 = 2*q1 + 1;  // update q1
339      r1 = 2*r1 - nc; // update r1
340    }
341    else {
342      q1 = 2*q1; // update q1
343      r1 = 2*r1; // update r1
344    }
345    if (r2 + 1 >= d - r2) {
346      if (q2 >= 0x7FFFFFFF) magu.a = 1;
347      q2 = 2*q2 + 1;     // update q2
348      r2 = 2*r2 + 1 - d; // update r2
349    }
350    else {
351      if (q2 >= 0x80000000) magu.a = 1;
352      q2 = 2*q2;     // update q2
353      r2 = 2*r2 + 1; // update r2
354    }
355    delta = d - 1 - r2;
356  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
357  magu.m = q2 + 1; // resulting magic number
358  magu.s = p - 32;  // resulting shift
359  return magu;
360}
361
362/// magic - calculate the magic numbers required to codegen an integer sdiv as
363/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
364/// or -1.
365static ms magic64(int64_t d) {
366  int64_t p;
367  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
368  const uint64_t two63 = 9223372036854775808ULL; // 2^63
369  struct ms mag;
370
371  ad = d >= 0 ? d : -d;
372  t = two63 + ((uint64_t)d >> 63);
373  anc = t - 1 - t%ad;   // absolute value of nc
374  p = 63;               // initialize p
375  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
376  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
377  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
378  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
379  do {
380    p = p + 1;
381    q1 = 2*q1;        // update q1 = 2p/abs(nc)
382    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
383    if (r1 >= anc) {  // must be unsigned comparison
384      q1 = q1 + 1;
385      r1 = r1 - anc;
386    }
387    q2 = 2*q2;        // update q2 = 2p/abs(d)
388    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
389    if (r2 >= ad) {   // must be unsigned comparison
390      q2 = q2 + 1;
391      r2 = r2 - ad;
392    }
393    delta = ad - r2;
394  } while (q1 < delta || (q1 == delta && r1 == 0));
395
396  mag.m = q2 + 1;
397  if (d < 0) mag.m = -mag.m; // resulting magic number
398  mag.s = p - 64;            // resulting shift
399  return mag;
400}
401
402/// magicu - calculate the magic numbers required to codegen an integer udiv as
403/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
404static mu magicu64(uint64_t d)
405{
406  int64_t p;
407  uint64_t nc, delta, q1, r1, q2, r2;
408  struct mu magu;
409  magu.a = 0;               // initialize "add" indicator
410  nc = - 1 - (-d)%d;
411  p = 63;                   // initialize p
412  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
413  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
414  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
415  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
416  do {
417    p = p + 1;
418    if (r1 >= nc - r1 ) {
419      q1 = 2*q1 + 1;  // update q1
420      r1 = 2*r1 - nc; // update r1
421    }
422    else {
423      q1 = 2*q1; // update q1
424      r1 = 2*r1; // update r1
425    }
426    if (r2 + 1 >= d - r2) {
427      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
428      q2 = 2*q2 + 1;     // update q2
429      r2 = 2*r2 + 1 - d; // update r2
430    }
431    else {
432      if (q2 >= 0x8000000000000000ull) magu.a = 1;
433      q2 = 2*q2;     // update q2
434      r2 = 2*r2 + 1; // update r2
435    }
436    delta = d - 1 - r2;
437  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
438  magu.m = q2 + 1; // resulting magic number
439  magu.s = p - 64;  // resulting shift
440  return magu;
441}
442
443// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
444// that selects between the values 1 and 0, making it equivalent to a setcc.
445// Also, set the incoming LHS, RHS, and CC references to the appropriate
446// nodes based on the type of node we are checking.  This simplifies life a
447// bit for the callers.
448static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
449                              SDOperand &CC) {
450  if (N.getOpcode() == ISD::SETCC) {
451    LHS = N.getOperand(0);
452    RHS = N.getOperand(1);
453    CC  = N.getOperand(2);
454    return true;
455  }
456  if (N.getOpcode() == ISD::SELECT_CC &&
457      N.getOperand(2).getOpcode() == ISD::Constant &&
458      N.getOperand(3).getOpcode() == ISD::Constant &&
459      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
460      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
461    LHS = N.getOperand(0);
462    RHS = N.getOperand(1);
463    CC  = N.getOperand(4);
464    return true;
465  }
466  return false;
467}
468
469// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
470// one use.  If this is true, it allows the users to invert the operation for
471// free when it is profitable to do so.
472static bool isOneUseSetCC(SDOperand N) {
473  SDOperand N0, N1, N2;
474  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
475    return true;
476  return false;
477}
478
479// FIXME: This should probably go in the ISD class rather than being duplicated
480// in several files.
481static bool isCommutativeBinOp(unsigned Opcode) {
482  switch (Opcode) {
483    case ISD::ADD:
484    case ISD::MUL:
485    case ISD::AND:
486    case ISD::OR:
487    case ISD::XOR: return true;
488    default: return false; // FIXME: Need commutative info for user ops!
489  }
490}
491
492SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
493  MVT::ValueType VT = N0.getValueType();
494  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
495  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
496  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
497    if (isa<ConstantSDNode>(N1)) {
498      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
499      AddToWorkList(OpNode.Val);
500      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
501    } else if (N0.hasOneUse()) {
502      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
503      AddToWorkList(OpNode.Val);
504      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
505    }
506  }
507  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
508  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
509  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
510    if (isa<ConstantSDNode>(N0)) {
511      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
512      AddToWorkList(OpNode.Val);
513      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
514    } else if (N1.hasOneUse()) {
515      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
516      AddToWorkList(OpNode.Val);
517      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
518    }
519  }
520  return SDOperand();
521}
522
523void DAGCombiner::Run(bool RunningAfterLegalize) {
524  // set the instance variable, so that the various visit routines may use it.
525  AfterLegalize = RunningAfterLegalize;
526
527  // Add all the dag nodes to the worklist.
528  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
529       E = DAG.allnodes_end(); I != E; ++I)
530    WorkList.push_back(I);
531
532  // Create a dummy node (which is not added to allnodes), that adds a reference
533  // to the root node, preventing it from being deleted, and tracking any
534  // changes of the root.
535  HandleSDNode Dummy(DAG.getRoot());
536
537
538  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
539  TargetLowering::DAGCombinerInfo
540    DagCombineInfo(DAG, !RunningAfterLegalize, this);
541
542  // while the worklist isn't empty, inspect the node on the end of it and
543  // try and combine it.
544  while (!WorkList.empty()) {
545    SDNode *N = WorkList.back();
546    WorkList.pop_back();
547
548    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
549    // N is deleted from the DAG, since they too may now be dead or may have a
550    // reduced number of uses, allowing other xforms.
551    if (N->use_empty() && N != &Dummy) {
552      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
553        WorkList.push_back(N->getOperand(i).Val);
554
555      removeFromWorkList(N);
556      DAG.DeleteNode(N);
557      continue;
558    }
559
560    SDOperand RV = visit(N);
561
562    // If nothing happened, try a target-specific DAG combine.
563    if (RV.Val == 0) {
564      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
565          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
566        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
567    }
568
569    if (RV.Val) {
570      ++NodesCombined;
571      // If we get back the same node we passed in, rather than a new node or
572      // zero, we know that the node must have defined multiple values and
573      // CombineTo was used.  Since CombineTo takes care of the worklist
574      // mechanics for us, we have no work to do in this case.
575      if (RV.Val != N) {
576        DEBUG(std::cerr << "\nReplacing "; N->dump();
577              std::cerr << "\nWith: "; RV.Val->dump();
578              std::cerr << '\n');
579        std::vector<SDNode*> NowDead;
580        DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead);
581
582        // Push the new node and any users onto the worklist
583        WorkList.push_back(RV.Val);
584        AddUsersToWorkList(RV.Val);
585
586        // Nodes can end up on the worklist more than once.  Make sure we do
587        // not process a node that has been replaced.
588        removeFromWorkList(N);
589        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
590          removeFromWorkList(NowDead[i]);
591
592        // Finally, since the node is now dead, remove it from the graph.
593        DAG.DeleteNode(N);
594      }
595    }
596  }
597
598  // If the root changed (e.g. it was a dead load, update the root).
599  DAG.setRoot(Dummy.getValue());
600}
601
602SDOperand DAGCombiner::visit(SDNode *N) {
603  switch(N->getOpcode()) {
604  default: break;
605  case ISD::TokenFactor:        return visitTokenFactor(N);
606  case ISD::ADD:                return visitADD(N);
607  case ISD::SUB:                return visitSUB(N);
608  case ISD::MUL:                return visitMUL(N);
609  case ISD::SDIV:               return visitSDIV(N);
610  case ISD::UDIV:               return visitUDIV(N);
611  case ISD::SREM:               return visitSREM(N);
612  case ISD::UREM:               return visitUREM(N);
613  case ISD::MULHU:              return visitMULHU(N);
614  case ISD::MULHS:              return visitMULHS(N);
615  case ISD::AND:                return visitAND(N);
616  case ISD::OR:                 return visitOR(N);
617  case ISD::XOR:                return visitXOR(N);
618  case ISD::SHL:                return visitSHL(N);
619  case ISD::SRA:                return visitSRA(N);
620  case ISD::SRL:                return visitSRL(N);
621  case ISD::CTLZ:               return visitCTLZ(N);
622  case ISD::CTTZ:               return visitCTTZ(N);
623  case ISD::CTPOP:              return visitCTPOP(N);
624  case ISD::SELECT:             return visitSELECT(N);
625  case ISD::SELECT_CC:          return visitSELECT_CC(N);
626  case ISD::SETCC:              return visitSETCC(N);
627  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
628  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
629  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
630  case ISD::TRUNCATE:           return visitTRUNCATE(N);
631  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
632  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
633  case ISD::FADD:               return visitFADD(N);
634  case ISD::FSUB:               return visitFSUB(N);
635  case ISD::FMUL:               return visitFMUL(N);
636  case ISD::FDIV:               return visitFDIV(N);
637  case ISD::FREM:               return visitFREM(N);
638  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
639  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
640  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
641  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
642  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
643  case ISD::FP_ROUND:           return visitFP_ROUND(N);
644  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
645  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
646  case ISD::FNEG:               return visitFNEG(N);
647  case ISD::FABS:               return visitFABS(N);
648  case ISD::BRCOND:             return visitBRCOND(N);
649  case ISD::BR_CC:              return visitBR_CC(N);
650  case ISD::LOAD:               return visitLOAD(N);
651  case ISD::EXTLOAD:
652  case ISD::SEXTLOAD:
653  case ISD::ZEXTLOAD:           return visitXEXTLOAD(N);
654  case ISD::STORE:              return visitSTORE(N);
655  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
656  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
657  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
658  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
659  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
660  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
661  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
662  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
663  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
664  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
665  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
666  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
667  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
668  }
669  return SDOperand();
670}
671
672SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
673  std::vector<SDOperand> Ops;
674  bool Changed = false;
675
676  // If the token factor has two operands and one is the entry token, replace
677  // the token factor with the other operand.
678  if (N->getNumOperands() == 2) {
679    if (N->getOperand(0).getOpcode() == ISD::EntryToken)
680      return N->getOperand(1);
681    if (N->getOperand(1).getOpcode() == ISD::EntryToken)
682      return N->getOperand(0);
683  }
684
685  // fold (tokenfactor (tokenfactor)) -> tokenfactor
686  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
687    SDOperand Op = N->getOperand(i);
688    if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) {
689      AddToWorkList(Op.Val);  // Remove dead node.
690      Changed = true;
691      for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j)
692        Ops.push_back(Op.getOperand(j));
693    } else {
694      Ops.push_back(Op);
695    }
696  }
697  if (Changed)
698    return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
699  return SDOperand();
700}
701
702SDOperand DAGCombiner::visitADD(SDNode *N) {
703  SDOperand N0 = N->getOperand(0);
704  SDOperand N1 = N->getOperand(1);
705  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
706  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
707  MVT::ValueType VT = N0.getValueType();
708
709  // fold (add c1, c2) -> c1+c2
710  if (N0C && N1C)
711    return DAG.getNode(ISD::ADD, VT, N0, N1);
712  // canonicalize constant to RHS
713  if (N0C && !N1C)
714    return DAG.getNode(ISD::ADD, VT, N1, N0);
715  // fold (add x, 0) -> x
716  if (N1C && N1C->isNullValue())
717    return N0;
718  // fold ((c1-A)+c2) -> (c1+c2)-A
719  if (N1C && N0.getOpcode() == ISD::SUB)
720    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
721      return DAG.getNode(ISD::SUB, VT,
722                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
723                         N0.getOperand(1));
724  // reassociate add
725  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
726  if (RADD.Val != 0)
727    return RADD;
728  // fold ((0-A) + B) -> B-A
729  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
730      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
731    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
732  // fold (A + (0-B)) -> A-B
733  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
734      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
735    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
736  // fold (A+(B-A)) -> B
737  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
738    return N1.getOperand(0);
739
740  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
741    return SDOperand();
742
743  // fold (a+b) -> (a|b) iff a and b share no bits.
744  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
745    uint64_t LHSZero, LHSOne;
746    uint64_t RHSZero, RHSOne;
747    uint64_t Mask = MVT::getIntVTBitMask(VT);
748    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
749    if (LHSZero) {
750      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
751
752      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
753      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
754      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
755          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
756        return DAG.getNode(ISD::OR, VT, N0, N1);
757    }
758  }
759
760  return SDOperand();
761}
762
763SDOperand DAGCombiner::visitSUB(SDNode *N) {
764  SDOperand N0 = N->getOperand(0);
765  SDOperand N1 = N->getOperand(1);
766  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
767  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
768  MVT::ValueType VT = N0.getValueType();
769
770  // fold (sub x, x) -> 0
771  if (N0 == N1)
772    return DAG.getConstant(0, N->getValueType(0));
773  // fold (sub c1, c2) -> c1-c2
774  if (N0C && N1C)
775    return DAG.getNode(ISD::SUB, VT, N0, N1);
776  // fold (sub x, c) -> (add x, -c)
777  if (N1C)
778    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
779  // fold (A+B)-A -> B
780  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
781    return N0.getOperand(1);
782  // fold (A+B)-B -> A
783  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
784    return N0.getOperand(0);
785  return SDOperand();
786}
787
788SDOperand DAGCombiner::visitMUL(SDNode *N) {
789  SDOperand N0 = N->getOperand(0);
790  SDOperand N1 = N->getOperand(1);
791  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
792  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
793  MVT::ValueType VT = N0.getValueType();
794
795  // fold (mul c1, c2) -> c1*c2
796  if (N0C && N1C)
797    return DAG.getNode(ISD::MUL, VT, N0, N1);
798  // canonicalize constant to RHS
799  if (N0C && !N1C)
800    return DAG.getNode(ISD::MUL, VT, N1, N0);
801  // fold (mul x, 0) -> 0
802  if (N1C && N1C->isNullValue())
803    return N1;
804  // fold (mul x, -1) -> 0-x
805  if (N1C && N1C->isAllOnesValue())
806    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
807  // fold (mul x, (1 << c)) -> x << c
808  if (N1C && isPowerOf2_64(N1C->getValue()))
809    return DAG.getNode(ISD::SHL, VT, N0,
810                       DAG.getConstant(Log2_64(N1C->getValue()),
811                                       TLI.getShiftAmountTy()));
812  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
813  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
814    // FIXME: If the input is something that is easily negated (e.g. a
815    // single-use add), we should put the negate there.
816    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
817                       DAG.getNode(ISD::SHL, VT, N0,
818                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
819                                            TLI.getShiftAmountTy())));
820  }
821
822  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
823  if (N1C && N0.getOpcode() == ISD::SHL &&
824      isa<ConstantSDNode>(N0.getOperand(1))) {
825    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
826    AddToWorkList(C3.Val);
827    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
828  }
829
830  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
831  // use.
832  {
833    SDOperand Sh(0,0), Y(0,0);
834    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
835    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
836        N0.Val->hasOneUse()) {
837      Sh = N0; Y = N1;
838    } else if (N1.getOpcode() == ISD::SHL &&
839               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
840      Sh = N1; Y = N0;
841    }
842    if (Sh.Val) {
843      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
844      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
845    }
846  }
847  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
848  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
849      isa<ConstantSDNode>(N0.getOperand(1))) {
850    return DAG.getNode(ISD::ADD, VT,
851                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
852                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
853  }
854
855  // reassociate mul
856  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
857  if (RMUL.Val != 0)
858    return RMUL;
859  return SDOperand();
860}
861
862SDOperand DAGCombiner::visitSDIV(SDNode *N) {
863  SDOperand N0 = N->getOperand(0);
864  SDOperand N1 = N->getOperand(1);
865  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
866  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
867  MVT::ValueType VT = N->getValueType(0);
868
869  // fold (sdiv c1, c2) -> c1/c2
870  if (N0C && N1C && !N1C->isNullValue())
871    return DAG.getNode(ISD::SDIV, VT, N0, N1);
872  // fold (sdiv X, 1) -> X
873  if (N1C && N1C->getSignExtended() == 1LL)
874    return N0;
875  // fold (sdiv X, -1) -> 0-X
876  if (N1C && N1C->isAllOnesValue())
877    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
878  // If we know the sign bits of both operands are zero, strength reduce to a
879  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
880  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
881  if (TLI.MaskedValueIsZero(N1, SignBit) &&
882      TLI.MaskedValueIsZero(N0, SignBit))
883    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
884  // fold (sdiv X, pow2) -> simple ops after legalize
885  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
886      (isPowerOf2_64(N1C->getSignExtended()) ||
887       isPowerOf2_64(-N1C->getSignExtended()))) {
888    // If dividing by powers of two is cheap, then don't perform the following
889    // fold.
890    if (TLI.isPow2DivCheap())
891      return SDOperand();
892    int64_t pow2 = N1C->getSignExtended();
893    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
894    unsigned lg2 = Log2_64(abs2);
895    // Splat the sign bit into the register
896    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
897                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
898                                                TLI.getShiftAmountTy()));
899    AddToWorkList(SGN.Val);
900    // Add (N0 < 0) ? abs2 - 1 : 0;
901    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
902                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
903                                                TLI.getShiftAmountTy()));
904    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
905    AddToWorkList(SRL.Val);
906    AddToWorkList(ADD.Val);    // Divide by pow2
907    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
908                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
909    // If we're dividing by a positive value, we're done.  Otherwise, we must
910    // negate the result.
911    if (pow2 > 0)
912      return SRA;
913    AddToWorkList(SRA.Val);
914    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
915  }
916  // if integer divide is expensive and we satisfy the requirements, emit an
917  // alternate sequence.
918  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
919      !TLI.isIntDivCheap()) {
920    SDOperand Op = BuildSDIV(N);
921    if (Op.Val) return Op;
922  }
923  return SDOperand();
924}
925
926SDOperand DAGCombiner::visitUDIV(SDNode *N) {
927  SDOperand N0 = N->getOperand(0);
928  SDOperand N1 = N->getOperand(1);
929  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
930  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
931  MVT::ValueType VT = N->getValueType(0);
932
933  // fold (udiv c1, c2) -> c1/c2
934  if (N0C && N1C && !N1C->isNullValue())
935    return DAG.getNode(ISD::UDIV, VT, N0, N1);
936  // fold (udiv x, (1 << c)) -> x >>u c
937  if (N1C && isPowerOf2_64(N1C->getValue()))
938    return DAG.getNode(ISD::SRL, VT, N0,
939                       DAG.getConstant(Log2_64(N1C->getValue()),
940                                       TLI.getShiftAmountTy()));
941  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
942  if (N1.getOpcode() == ISD::SHL) {
943    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
944      if (isPowerOf2_64(SHC->getValue())) {
945        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
946        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
947                                    DAG.getConstant(Log2_64(SHC->getValue()),
948                                                    ADDVT));
949        AddToWorkList(Add.Val);
950        return DAG.getNode(ISD::SRL, VT, N0, Add);
951      }
952    }
953  }
954  // fold (udiv x, c) -> alternate
955  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
956    SDOperand Op = BuildUDIV(N);
957    if (Op.Val) return Op;
958  }
959  return SDOperand();
960}
961
962SDOperand DAGCombiner::visitSREM(SDNode *N) {
963  SDOperand N0 = N->getOperand(0);
964  SDOperand N1 = N->getOperand(1);
965  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
966  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
967  MVT::ValueType VT = N->getValueType(0);
968
969  // fold (srem c1, c2) -> c1%c2
970  if (N0C && N1C && !N1C->isNullValue())
971    return DAG.getNode(ISD::SREM, VT, N0, N1);
972  // If we know the sign bits of both operands are zero, strength reduce to a
973  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
974  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
975  if (TLI.MaskedValueIsZero(N1, SignBit) &&
976      TLI.MaskedValueIsZero(N0, SignBit))
977    return DAG.getNode(ISD::UREM, VT, N0, N1);
978  return SDOperand();
979}
980
981SDOperand DAGCombiner::visitUREM(SDNode *N) {
982  SDOperand N0 = N->getOperand(0);
983  SDOperand N1 = N->getOperand(1);
984  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
985  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
986  MVT::ValueType VT = N->getValueType(0);
987
988  // fold (urem c1, c2) -> c1%c2
989  if (N0C && N1C && !N1C->isNullValue())
990    return DAG.getNode(ISD::UREM, VT, N0, N1);
991  // fold (urem x, pow2) -> (and x, pow2-1)
992  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
993    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
994  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
995  if (N1.getOpcode() == ISD::SHL) {
996    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
997      if (isPowerOf2_64(SHC->getValue())) {
998        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
999        AddToWorkList(Add.Val);
1000        return DAG.getNode(ISD::AND, VT, N0, Add);
1001      }
1002    }
1003  }
1004  return SDOperand();
1005}
1006
1007SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1008  SDOperand N0 = N->getOperand(0);
1009  SDOperand N1 = N->getOperand(1);
1010  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1011
1012  // fold (mulhs x, 0) -> 0
1013  if (N1C && N1C->isNullValue())
1014    return N1;
1015  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1016  if (N1C && N1C->getValue() == 1)
1017    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1018                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1019                                       TLI.getShiftAmountTy()));
1020  return SDOperand();
1021}
1022
1023SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1024  SDOperand N0 = N->getOperand(0);
1025  SDOperand N1 = N->getOperand(1);
1026  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1027
1028  // fold (mulhu x, 0) -> 0
1029  if (N1C && N1C->isNullValue())
1030    return N1;
1031  // fold (mulhu x, 1) -> 0
1032  if (N1C && N1C->getValue() == 1)
1033    return DAG.getConstant(0, N0.getValueType());
1034  return SDOperand();
1035}
1036
1037SDOperand DAGCombiner::visitAND(SDNode *N) {
1038  SDOperand N0 = N->getOperand(0);
1039  SDOperand N1 = N->getOperand(1);
1040  SDOperand LL, LR, RL, RR, CC0, CC1;
1041  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1042  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1043  MVT::ValueType VT = N1.getValueType();
1044  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1045
1046  // fold (and c1, c2) -> c1&c2
1047  if (N0C && N1C)
1048    return DAG.getNode(ISD::AND, VT, N0, N1);
1049  // canonicalize constant to RHS
1050  if (N0C && !N1C)
1051    return DAG.getNode(ISD::AND, VT, N1, N0);
1052  // fold (and x, -1) -> x
1053  if (N1C && N1C->isAllOnesValue())
1054    return N0;
1055  // if (and x, c) is known to be zero, return 0
1056  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1057    return DAG.getConstant(0, VT);
1058  // reassociate and
1059  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1060  if (RAND.Val != 0)
1061    return RAND;
1062  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1063  if (N1C && N0.getOpcode() == ISD::OR)
1064    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1065      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1066        return N1;
1067  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1068  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1069    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1070    if (TLI.MaskedValueIsZero(N0.getOperand(0),
1071                              ~N1C->getValue() & InMask)) {
1072      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1073                                   N0.getOperand(0));
1074
1075      // Replace uses of the AND with uses of the Zero extend node.
1076      CombineTo(N, Zext);
1077
1078      // We actually want to replace all uses of the any_extend with the
1079      // zero_extend, to avoid duplicating things.  This will later cause this
1080      // AND to be folded.
1081      CombineTo(N0.Val, Zext);
1082      return SDOperand();
1083    }
1084  }
1085  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1086  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1087    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1088    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1089
1090    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1091        MVT::isInteger(LL.getValueType())) {
1092      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1093      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1094        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1095        AddToWorkList(ORNode.Val);
1096        return DAG.getSetCC(VT, ORNode, LR, Op1);
1097      }
1098      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1099      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1100        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1101        AddToWorkList(ANDNode.Val);
1102        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1103      }
1104      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1105      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1106        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1107        AddToWorkList(ORNode.Val);
1108        return DAG.getSetCC(VT, ORNode, LR, Op1);
1109      }
1110    }
1111    // canonicalize equivalent to ll == rl
1112    if (LL == RR && LR == RL) {
1113      Op1 = ISD::getSetCCSwappedOperands(Op1);
1114      std::swap(RL, RR);
1115    }
1116    if (LL == RL && LR == RR) {
1117      bool isInteger = MVT::isInteger(LL.getValueType());
1118      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1119      if (Result != ISD::SETCC_INVALID)
1120        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1121    }
1122  }
1123  // fold (and (zext x), (zext y)) -> (zext (and x, y))
1124  if (N0.getOpcode() == ISD::ZERO_EXTEND &&
1125      N1.getOpcode() == ISD::ZERO_EXTEND &&
1126      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1127    SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
1128                                    N0.getOperand(0), N1.getOperand(0));
1129    AddToWorkList(ANDNode.Val);
1130    return DAG.getNode(ISD::ZERO_EXTEND, VT, ANDNode);
1131  }
1132  // fold (and (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (and x, y))
1133  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
1134       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
1135       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
1136      N0.getOperand(1) == N1.getOperand(1)) {
1137    SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(),
1138                                    N0.getOperand(0), N1.getOperand(0));
1139    AddToWorkList(ANDNode.Val);
1140    return DAG.getNode(N0.getOpcode(), VT, ANDNode, N0.getOperand(1));
1141  }
1142  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1143  // fold (and (sra)) -> (and (srl)) when possible.
1144  if (!MVT::isVector(VT) &&
1145      SimplifyDemandedBits(SDOperand(N, 0)))
1146    return SDOperand();
1147  // fold (zext_inreg (extload x)) -> (zextload x)
1148  if (N0.getOpcode() == ISD::EXTLOAD) {
1149    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1150    // If we zero all the possible extended bits, then we can turn this into
1151    // a zextload if we are running before legalize or the operation is legal.
1152    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1153        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1154      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1155                                         N0.getOperand(1), N0.getOperand(2),
1156                                         EVT);
1157      AddToWorkList(N);
1158      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1159      return SDOperand();
1160    }
1161  }
1162  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1163  if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) {
1164    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1165    // If we zero all the possible extended bits, then we can turn this into
1166    // a zextload if we are running before legalize or the operation is legal.
1167    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1168        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1169      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1170                                         N0.getOperand(1), N0.getOperand(2),
1171                                         EVT);
1172      AddToWorkList(N);
1173      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1174      return SDOperand();
1175    }
1176  }
1177
1178  // fold (and (load x), 255) -> (zextload x, i8)
1179  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1180  if (N1C &&
1181      (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD ||
1182       N0.getOpcode() == ISD::ZEXTLOAD) &&
1183      N0.hasOneUse()) {
1184    MVT::ValueType EVT, LoadedVT;
1185    if (N1C->getValue() == 255)
1186      EVT = MVT::i8;
1187    else if (N1C->getValue() == 65535)
1188      EVT = MVT::i16;
1189    else if (N1C->getValue() == ~0U)
1190      EVT = MVT::i32;
1191    else
1192      EVT = MVT::Other;
1193
1194    LoadedVT = N0.getOpcode() == ISD::LOAD ? VT :
1195                           cast<VTSDNode>(N0.getOperand(3))->getVT();
1196    if (EVT != MVT::Other && LoadedVT > EVT) {
1197      MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1198      // For big endian targets, we need to add an offset to the pointer to load
1199      // the correct bytes.  For little endian systems, we merely need to read
1200      // fewer bytes from the same pointer.
1201      unsigned PtrOff =
1202        (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1203      SDOperand NewPtr = N0.getOperand(1);
1204      if (!TLI.isLittleEndian())
1205        NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1206                             DAG.getConstant(PtrOff, PtrType));
1207      AddToWorkList(NewPtr.Val);
1208      SDOperand Load =
1209        DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr,
1210                       N0.getOperand(2), EVT);
1211      AddToWorkList(N);
1212      CombineTo(N0.Val, Load, Load.getValue(1));
1213      return SDOperand();
1214    }
1215  }
1216
1217  return SDOperand();
1218}
1219
1220SDOperand DAGCombiner::visitOR(SDNode *N) {
1221  SDOperand N0 = N->getOperand(0);
1222  SDOperand N1 = N->getOperand(1);
1223  SDOperand LL, LR, RL, RR, CC0, CC1;
1224  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1225  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1226  MVT::ValueType VT = N1.getValueType();
1227  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1228
1229  // fold (or c1, c2) -> c1|c2
1230  if (N0C && N1C)
1231    return DAG.getNode(ISD::OR, VT, N0, N1);
1232  // canonicalize constant to RHS
1233  if (N0C && !N1C)
1234    return DAG.getNode(ISD::OR, VT, N1, N0);
1235  // fold (or x, 0) -> x
1236  if (N1C && N1C->isNullValue())
1237    return N0;
1238  // fold (or x, -1) -> -1
1239  if (N1C && N1C->isAllOnesValue())
1240    return N1;
1241  // fold (or x, c) -> c iff (x & ~c) == 0
1242  if (N1C &&
1243      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1244    return N1;
1245  // reassociate or
1246  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1247  if (ROR.Val != 0)
1248    return ROR;
1249  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1250  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1251             isa<ConstantSDNode>(N0.getOperand(1))) {
1252    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1253    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1254                                                 N1),
1255                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1256  }
1257  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1258  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1259    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1260    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1261
1262    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1263        MVT::isInteger(LL.getValueType())) {
1264      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1265      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1266      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1267          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1268        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1269        AddToWorkList(ORNode.Val);
1270        return DAG.getSetCC(VT, ORNode, LR, Op1);
1271      }
1272      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1273      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1274      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1275          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1276        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1277        AddToWorkList(ANDNode.Val);
1278        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1279      }
1280    }
1281    // canonicalize equivalent to ll == rl
1282    if (LL == RR && LR == RL) {
1283      Op1 = ISD::getSetCCSwappedOperands(Op1);
1284      std::swap(RL, RR);
1285    }
1286    if (LL == RL && LR == RR) {
1287      bool isInteger = MVT::isInteger(LL.getValueType());
1288      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1289      if (Result != ISD::SETCC_INVALID)
1290        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1291    }
1292  }
1293  // fold (or (zext x), (zext y)) -> (zext (or x, y))
1294  if (N0.getOpcode() == ISD::ZERO_EXTEND &&
1295      N1.getOpcode() == ISD::ZERO_EXTEND &&
1296      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1297    SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(),
1298                                   N0.getOperand(0), N1.getOperand(0));
1299    AddToWorkList(ORNode.Val);
1300    return DAG.getNode(ISD::ZERO_EXTEND, VT, ORNode);
1301  }
1302  // fold (or (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (or x, y))
1303  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
1304       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
1305       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
1306      N0.getOperand(1) == N1.getOperand(1)) {
1307    SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(),
1308                                   N0.getOperand(0), N1.getOperand(0));
1309    AddToWorkList(ORNode.Val);
1310    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1311  }
1312  // canonicalize shl to left side in a shl/srl pair, to match rotate
1313  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
1314    std::swap(N0, N1);
1315  // check for rotl, rotr
1316  if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL &&
1317      N0.getOperand(0) == N1.getOperand(0) &&
1318      TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) {
1319    // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1320    if (N0.getOperand(1).getOpcode() == ISD::Constant &&
1321        N1.getOperand(1).getOpcode() == ISD::Constant) {
1322      uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1323      uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1324      if ((c1val + c2val) == OpSizeInBits)
1325        return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1326    }
1327    // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1328    if (N1.getOperand(1).getOpcode() == ISD::SUB &&
1329        N0.getOperand(1) == N1.getOperand(1).getOperand(1))
1330      if (ConstantSDNode *SUBC =
1331          dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0)))
1332        if (SUBC->getValue() == OpSizeInBits)
1333          return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1334    // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1335    if (N0.getOperand(1).getOpcode() == ISD::SUB &&
1336        N1.getOperand(1) == N0.getOperand(1).getOperand(1))
1337      if (ConstantSDNode *SUBC =
1338          dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0)))
1339        if (SUBC->getValue() == OpSizeInBits) {
1340          if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT))
1341            return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0),
1342                               N1.getOperand(1));
1343          else
1344            return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0),
1345                               N0.getOperand(1));
1346        }
1347  }
1348  return SDOperand();
1349}
1350
1351SDOperand DAGCombiner::visitXOR(SDNode *N) {
1352  SDOperand N0 = N->getOperand(0);
1353  SDOperand N1 = N->getOperand(1);
1354  SDOperand LHS, RHS, CC;
1355  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1356  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1357  MVT::ValueType VT = N0.getValueType();
1358
1359  // fold (xor c1, c2) -> c1^c2
1360  if (N0C && N1C)
1361    return DAG.getNode(ISD::XOR, VT, N0, N1);
1362  // canonicalize constant to RHS
1363  if (N0C && !N1C)
1364    return DAG.getNode(ISD::XOR, VT, N1, N0);
1365  // fold (xor x, 0) -> x
1366  if (N1C && N1C->isNullValue())
1367    return N0;
1368  // reassociate xor
1369  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1370  if (RXOR.Val != 0)
1371    return RXOR;
1372  // fold !(x cc y) -> (x !cc y)
1373  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1374    bool isInt = MVT::isInteger(LHS.getValueType());
1375    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1376                                               isInt);
1377    if (N0.getOpcode() == ISD::SETCC)
1378      return DAG.getSetCC(VT, LHS, RHS, NotCC);
1379    if (N0.getOpcode() == ISD::SELECT_CC)
1380      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1381    assert(0 && "Unhandled SetCC Equivalent!");
1382    abort();
1383  }
1384  // fold !(x or y) -> (!x and !y) iff x or y are setcc
1385  if (N1C && N1C->getValue() == 1 &&
1386      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1387    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1388    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1389      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1390      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1391      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1392      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1393      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1394    }
1395  }
1396  // fold !(x or y) -> (!x and !y) iff x or y are constants
1397  if (N1C && N1C->isAllOnesValue() &&
1398      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1399    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1400    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1401      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1402      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1403      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1404      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1405      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1406    }
1407  }
1408  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1409  if (N1C && N0.getOpcode() == ISD::XOR) {
1410    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1411    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1412    if (N00C)
1413      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1414                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1415    if (N01C)
1416      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1417                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1418  }
1419  // fold (xor x, x) -> 0
1420  if (N0 == N1) {
1421    if (!MVT::isVector(VT)) {
1422      return DAG.getConstant(0, VT);
1423    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1424      // Produce a vector of zeros.
1425      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
1426      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1427      return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops);
1428    }
1429  }
1430  // fold (xor (zext x), (zext y)) -> (zext (xor x, y))
1431  if (N0.getOpcode() == ISD::ZERO_EXTEND &&
1432      N1.getOpcode() == ISD::ZERO_EXTEND &&
1433      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1434    SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(),
1435                                   N0.getOperand(0), N1.getOperand(0));
1436    AddToWorkList(XORNode.Val);
1437    return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
1438  }
1439  // fold (xor (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (xor x, y))
1440  if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) ||
1441       (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) ||
1442       (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) &&
1443      N0.getOperand(1) == N1.getOperand(1)) {
1444    SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(),
1445                                    N0.getOperand(0), N1.getOperand(0));
1446    AddToWorkList(XORNode.Val);
1447    return DAG.getNode(N0.getOpcode(), VT, XORNode, N0.getOperand(1));
1448  }
1449  return SDOperand();
1450}
1451
1452SDOperand DAGCombiner::visitSHL(SDNode *N) {
1453  SDOperand N0 = N->getOperand(0);
1454  SDOperand N1 = N->getOperand(1);
1455  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1456  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1457  MVT::ValueType VT = N0.getValueType();
1458  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1459
1460  // fold (shl c1, c2) -> c1<<c2
1461  if (N0C && N1C)
1462    return DAG.getNode(ISD::SHL, VT, N0, N1);
1463  // fold (shl 0, x) -> 0
1464  if (N0C && N0C->isNullValue())
1465    return N0;
1466  // fold (shl x, c >= size(x)) -> undef
1467  if (N1C && N1C->getValue() >= OpSizeInBits)
1468    return DAG.getNode(ISD::UNDEF, VT);
1469  // fold (shl x, 0) -> x
1470  if (N1C && N1C->isNullValue())
1471    return N0;
1472  // if (shl x, c) is known to be zero, return 0
1473  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1474    return DAG.getConstant(0, VT);
1475  if (SimplifyDemandedBits(SDOperand(N, 0)))
1476    return SDOperand();
1477  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1478  if (N1C && N0.getOpcode() == ISD::SHL &&
1479      N0.getOperand(1).getOpcode() == ISD::Constant) {
1480    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1481    uint64_t c2 = N1C->getValue();
1482    if (c1 + c2 > OpSizeInBits)
1483      return DAG.getConstant(0, VT);
1484    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1485                       DAG.getConstant(c1 + c2, N1.getValueType()));
1486  }
1487  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1488  //                               (srl (and x, -1 << c1), c1-c2)
1489  if (N1C && N0.getOpcode() == ISD::SRL &&
1490      N0.getOperand(1).getOpcode() == ISD::Constant) {
1491    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1492    uint64_t c2 = N1C->getValue();
1493    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1494                                 DAG.getConstant(~0ULL << c1, VT));
1495    if (c2 > c1)
1496      return DAG.getNode(ISD::SHL, VT, Mask,
1497                         DAG.getConstant(c2-c1, N1.getValueType()));
1498    else
1499      return DAG.getNode(ISD::SRL, VT, Mask,
1500                         DAG.getConstant(c1-c2, N1.getValueType()));
1501  }
1502  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1503  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1504    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1505                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
1506  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<<c2)
1507  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1508      isa<ConstantSDNode>(N0.getOperand(1))) {
1509    return DAG.getNode(ISD::ADD, VT,
1510                       DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1),
1511                       DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1));
1512  }
1513  return SDOperand();
1514}
1515
1516SDOperand DAGCombiner::visitSRA(SDNode *N) {
1517  SDOperand N0 = N->getOperand(0);
1518  SDOperand N1 = N->getOperand(1);
1519  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1520  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1521  MVT::ValueType VT = N0.getValueType();
1522
1523  // fold (sra c1, c2) -> c1>>c2
1524  if (N0C && N1C)
1525    return DAG.getNode(ISD::SRA, VT, N0, N1);
1526  // fold (sra 0, x) -> 0
1527  if (N0C && N0C->isNullValue())
1528    return N0;
1529  // fold (sra -1, x) -> -1
1530  if (N0C && N0C->isAllOnesValue())
1531    return N0;
1532  // fold (sra x, c >= size(x)) -> undef
1533  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1534    return DAG.getNode(ISD::UNDEF, VT);
1535  // fold (sra x, 0) -> x
1536  if (N1C && N1C->isNullValue())
1537    return N0;
1538  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1539  // sext_inreg.
1540  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1541    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1542    MVT::ValueType EVT;
1543    switch (LowBits) {
1544    default: EVT = MVT::Other; break;
1545    case  1: EVT = MVT::i1;    break;
1546    case  8: EVT = MVT::i8;    break;
1547    case 16: EVT = MVT::i16;   break;
1548    case 32: EVT = MVT::i32;   break;
1549    }
1550    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1551      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1552                         DAG.getValueType(EVT));
1553  }
1554
1555  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1556  if (N1C && N0.getOpcode() == ISD::SRA) {
1557    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1558      unsigned Sum = N1C->getValue() + C1->getValue();
1559      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1560      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1561                         DAG.getConstant(Sum, N1C->getValueType(0)));
1562    }
1563  }
1564
1565  // If the sign bit is known to be zero, switch this to a SRL.
1566  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1567    return DAG.getNode(ISD::SRL, VT, N0, N1);
1568  return SDOperand();
1569}
1570
1571SDOperand DAGCombiner::visitSRL(SDNode *N) {
1572  SDOperand N0 = N->getOperand(0);
1573  SDOperand N1 = N->getOperand(1);
1574  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576  MVT::ValueType VT = N0.getValueType();
1577  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1578
1579  // fold (srl c1, c2) -> c1 >>u c2
1580  if (N0C && N1C)
1581    return DAG.getNode(ISD::SRL, VT, N0, N1);
1582  // fold (srl 0, x) -> 0
1583  if (N0C && N0C->isNullValue())
1584    return N0;
1585  // fold (srl x, c >= size(x)) -> undef
1586  if (N1C && N1C->getValue() >= OpSizeInBits)
1587    return DAG.getNode(ISD::UNDEF, VT);
1588  // fold (srl x, 0) -> x
1589  if (N1C && N1C->isNullValue())
1590    return N0;
1591  // if (srl x, c) is known to be zero, return 0
1592  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1593    return DAG.getConstant(0, VT);
1594  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1595  if (N1C && N0.getOpcode() == ISD::SRL &&
1596      N0.getOperand(1).getOpcode() == ISD::Constant) {
1597    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1598    uint64_t c2 = N1C->getValue();
1599    if (c1 + c2 > OpSizeInBits)
1600      return DAG.getConstant(0, VT);
1601    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1602                       DAG.getConstant(c1 + c2, N1.getValueType()));
1603  }
1604
1605  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
1606  if (N1C && N0.getOpcode() == ISD::CTLZ &&
1607      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
1608    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
1609    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
1610
1611    // If any of the input bits are KnownOne, then the input couldn't be all
1612    // zeros, thus the result of the srl will always be zero.
1613    if (KnownOne) return DAG.getConstant(0, VT);
1614
1615    // If all of the bits input the to ctlz node are known to be zero, then
1616    // the result of the ctlz is "32" and the result of the shift is one.
1617    uint64_t UnknownBits = ~KnownZero & Mask;
1618    if (UnknownBits == 0) return DAG.getConstant(1, VT);
1619
1620    // Otherwise, check to see if there is exactly one bit input to the ctlz.
1621    if ((UnknownBits & (UnknownBits-1)) == 0) {
1622      // Okay, we know that only that the single bit specified by UnknownBits
1623      // could be set on input to the CTLZ node.  If this bit is set, the SRL
1624      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
1625      // to an SRL,XOR pair, which is likely to simplify more.
1626      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
1627      SDOperand Op = N0.getOperand(0);
1628      if (ShAmt) {
1629        Op = DAG.getNode(ISD::SRL, VT, Op,
1630                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
1631        AddToWorkList(Op.Val);
1632      }
1633      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
1634    }
1635  }
1636
1637  return SDOperand();
1638}
1639
1640SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
1641  SDOperand N0 = N->getOperand(0);
1642  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1643  MVT::ValueType VT = N->getValueType(0);
1644
1645  // fold (ctlz c1) -> c2
1646  if (N0C)
1647    return DAG.getNode(ISD::CTLZ, VT, N0);
1648  return SDOperand();
1649}
1650
1651SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
1652  SDOperand N0 = N->getOperand(0);
1653  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1654  MVT::ValueType VT = N->getValueType(0);
1655
1656  // fold (cttz c1) -> c2
1657  if (N0C)
1658    return DAG.getNode(ISD::CTTZ, VT, N0);
1659  return SDOperand();
1660}
1661
1662SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
1663  SDOperand N0 = N->getOperand(0);
1664  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1665  MVT::ValueType VT = N->getValueType(0);
1666
1667  // fold (ctpop c1) -> c2
1668  if (N0C)
1669    return DAG.getNode(ISD::CTPOP, VT, N0);
1670  return SDOperand();
1671}
1672
1673SDOperand DAGCombiner::visitSELECT(SDNode *N) {
1674  SDOperand N0 = N->getOperand(0);
1675  SDOperand N1 = N->getOperand(1);
1676  SDOperand N2 = N->getOperand(2);
1677  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1678  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1679  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1680  MVT::ValueType VT = N->getValueType(0);
1681
1682  // fold select C, X, X -> X
1683  if (N1 == N2)
1684    return N1;
1685  // fold select true, X, Y -> X
1686  if (N0C && !N0C->isNullValue())
1687    return N1;
1688  // fold select false, X, Y -> Y
1689  if (N0C && N0C->isNullValue())
1690    return N2;
1691  // fold select C, 1, X -> C | X
1692  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
1693    return DAG.getNode(ISD::OR, VT, N0, N2);
1694  // fold select C, 0, X -> ~C & X
1695  // FIXME: this should check for C type == X type, not i1?
1696  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
1697    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1698    AddToWorkList(XORNode.Val);
1699    return DAG.getNode(ISD::AND, VT, XORNode, N2);
1700  }
1701  // fold select C, X, 1 -> ~C | X
1702  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
1703    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1704    AddToWorkList(XORNode.Val);
1705    return DAG.getNode(ISD::OR, VT, XORNode, N1);
1706  }
1707  // fold select C, X, 0 -> C & X
1708  // FIXME: this should check for C type == X type, not i1?
1709  if (MVT::i1 == VT && N2C && N2C->isNullValue())
1710    return DAG.getNode(ISD::AND, VT, N0, N1);
1711  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
1712  if (MVT::i1 == VT && N0 == N1)
1713    return DAG.getNode(ISD::OR, VT, N0, N2);
1714  // fold X ? Y : X --> X ? Y : 0 --> X & Y
1715  if (MVT::i1 == VT && N0 == N2)
1716    return DAG.getNode(ISD::AND, VT, N0, N1);
1717  // If we can fold this based on the true/false value, do so.
1718  if (SimplifySelectOps(N, N1, N2))
1719    return SDOperand();
1720  // fold selects based on a setcc into other things, such as min/max/abs
1721  if (N0.getOpcode() == ISD::SETCC)
1722    // FIXME:
1723    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
1724    // having to say they don't support SELECT_CC on every type the DAG knows
1725    // about, since there is no way to mark an opcode illegal at all value types
1726    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
1727      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
1728                         N1, N2, N0.getOperand(2));
1729    else
1730      return SimplifySelect(N0, N1, N2);
1731  return SDOperand();
1732}
1733
1734SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
1735  SDOperand N0 = N->getOperand(0);
1736  SDOperand N1 = N->getOperand(1);
1737  SDOperand N2 = N->getOperand(2);
1738  SDOperand N3 = N->getOperand(3);
1739  SDOperand N4 = N->getOperand(4);
1740  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1741  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1742  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1743  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
1744
1745  // Determine if the condition we're dealing with is constant
1746  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
1747  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
1748
1749  // fold select_cc lhs, rhs, x, x, cc -> x
1750  if (N2 == N3)
1751    return N2;
1752
1753  // If we can fold this based on the true/false value, do so.
1754  if (SimplifySelectOps(N, N2, N3))
1755    return SDOperand();
1756
1757  // fold select_cc into other things, such as min/max/abs
1758  return SimplifySelectCC(N0, N1, N2, N3, CC);
1759}
1760
1761SDOperand DAGCombiner::visitSETCC(SDNode *N) {
1762  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
1763                       cast<CondCodeSDNode>(N->getOperand(2))->get());
1764}
1765
1766SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
1767  SDOperand N0 = N->getOperand(0);
1768  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1769  MVT::ValueType VT = N->getValueType(0);
1770
1771  // fold (sext c1) -> c1
1772  if (N0C)
1773    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
1774  // fold (sext (sext x)) -> (sext x)
1775  if (N0.getOpcode() == ISD::SIGN_EXTEND)
1776    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
1777  // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size.
1778  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1779      (!AfterLegalize ||
1780       TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())))
1781    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1782                       DAG.getValueType(N0.getValueType()));
1783  // fold (sext (load x)) -> (sext (truncate (sextload x)))
1784  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1785      (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){
1786    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1787                                       N0.getOperand(1), N0.getOperand(2),
1788                                       N0.getValueType());
1789    CombineTo(N, ExtLoad);
1790    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1791              ExtLoad.getValue(1));
1792    return SDOperand();
1793  }
1794
1795  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
1796  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
1797  if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1798      N0.hasOneUse()) {
1799    SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0),
1800                                    N0.getOperand(1), N0.getOperand(2),
1801                                    N0.getOperand(3));
1802    CombineTo(N, ExtLoad);
1803    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1804              ExtLoad.getValue(1));
1805    return SDOperand();
1806  }
1807
1808  return SDOperand();
1809}
1810
1811SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
1812  SDOperand N0 = N->getOperand(0);
1813  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1814  MVT::ValueType VT = N->getValueType(0);
1815
1816  // fold (zext c1) -> c1
1817  if (N0C)
1818    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1819  // fold (zext (zext x)) -> (zext x)
1820  if (N0.getOpcode() == ISD::ZERO_EXTEND)
1821    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
1822  // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size.
1823  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1824      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType())))
1825    return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType());
1826  // fold (zext (load x)) -> (zext (truncate (zextload x)))
1827  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1828      (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){
1829    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1830                                       N0.getOperand(1), N0.getOperand(2),
1831                                       N0.getValueType());
1832    CombineTo(N, ExtLoad);
1833    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1834              ExtLoad.getValue(1));
1835    return SDOperand();
1836  }
1837
1838  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
1839  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
1840  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1841      N0.hasOneUse()) {
1842    SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1843                                    N0.getOperand(1), N0.getOperand(2),
1844                                    N0.getOperand(3));
1845    CombineTo(N, ExtLoad);
1846    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1847              ExtLoad.getValue(1));
1848    return SDOperand();
1849  }
1850  return SDOperand();
1851}
1852
1853SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
1854  SDOperand N0 = N->getOperand(0);
1855  SDOperand N1 = N->getOperand(1);
1856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1857  MVT::ValueType VT = N->getValueType(0);
1858  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
1859  unsigned EVTBits = MVT::getSizeInBits(EVT);
1860
1861  // fold (sext_in_reg c1) -> c1
1862  if (N0C) {
1863    SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT);
1864    return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate);
1865  }
1866  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1
1867  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1868      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
1869    return N0;
1870  }
1871  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
1872  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1873      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
1874    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
1875  }
1876  // fold (sext_in_reg (assert_sext x)) -> (assert_sext x)
1877  if (N0.getOpcode() == ISD::AssertSext &&
1878      cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) {
1879    return N0;
1880  }
1881  // fold (sext_in_reg (sextload x)) -> (sextload x)
1882  if (N0.getOpcode() == ISD::SEXTLOAD &&
1883      cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) {
1884    return N0;
1885  }
1886  // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1
1887  if (N0.getOpcode() == ISD::SETCC &&
1888      TLI.getSetCCResultContents() ==
1889        TargetLowering::ZeroOrNegativeOneSetCCResult)
1890    return N0;
1891  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
1892  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
1893    return DAG.getZeroExtendInReg(N0, EVT);
1894  // fold (sext_in_reg (srl x)) -> sra x
1895  if (N0.getOpcode() == ISD::SRL &&
1896      N0.getOperand(1).getOpcode() == ISD::Constant &&
1897      cast<ConstantSDNode>(N0.getOperand(1))->getValue() == EVTBits) {
1898    return DAG.getNode(ISD::SRA, N0.getValueType(), N0.getOperand(0),
1899                       N0.getOperand(1));
1900  }
1901  // fold (sext_inreg (extload x)) -> (sextload x)
1902  if (N0.getOpcode() == ISD::EXTLOAD &&
1903      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1904      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1905    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1906                                       N0.getOperand(1), N0.getOperand(2),
1907                                       EVT);
1908    CombineTo(N, ExtLoad);
1909    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1910    return SDOperand();
1911  }
1912  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
1913  if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() &&
1914      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1915      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1916    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1917                                       N0.getOperand(1), N0.getOperand(2),
1918                                       EVT);
1919    CombineTo(N, ExtLoad);
1920    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1921    return SDOperand();
1922  }
1923  return SDOperand();
1924}
1925
1926SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
1927  SDOperand N0 = N->getOperand(0);
1928  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1929  MVT::ValueType VT = N->getValueType(0);
1930
1931  // noop truncate
1932  if (N0.getValueType() == N->getValueType(0))
1933    return N0;
1934  // fold (truncate c1) -> c1
1935  if (N0C)
1936    return DAG.getNode(ISD::TRUNCATE, VT, N0);
1937  // fold (truncate (truncate x)) -> (truncate x)
1938  if (N0.getOpcode() == ISD::TRUNCATE)
1939    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
1940  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
1941  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){
1942    if (N0.getValueType() < VT)
1943      // if the source is smaller than the dest, we still need an extend
1944      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
1945    else if (N0.getValueType() > VT)
1946      // if the source is larger than the dest, than we just need the truncate
1947      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
1948    else
1949      // if the source and dest are the same type, we can drop both the extend
1950      // and the truncate
1951      return N0.getOperand(0);
1952  }
1953  // fold (truncate (load x)) -> (smaller load x)
1954  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
1955    assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
1956           "Cannot truncate to larger type!");
1957    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1958    // For big endian targets, we need to add an offset to the pointer to load
1959    // the correct bytes.  For little endian systems, we merely need to read
1960    // fewer bytes from the same pointer.
1961    uint64_t PtrOff =
1962      (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
1963    SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) :
1964      DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1),
1965                  DAG.getConstant(PtrOff, PtrType));
1966    AddToWorkList(NewPtr.Val);
1967    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2));
1968    AddToWorkList(N);
1969    CombineTo(N0.Val, Load, Load.getValue(1));
1970    return SDOperand();
1971  }
1972  return SDOperand();
1973}
1974
1975SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
1976  SDOperand N0 = N->getOperand(0);
1977  MVT::ValueType VT = N->getValueType(0);
1978
1979  // If the input is a constant, let getNode() fold it.
1980  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
1981    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
1982    if (Res.Val != N) return Res;
1983  }
1984
1985  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
1986    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
1987
1988  // fold (conv (load x)) -> (load (conv*)x)
1989  // FIXME: These xforms need to know that the resultant load doesn't need a
1990  // higher alignment than the original!
1991  if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
1992    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1),
1993                                 N0.getOperand(2));
1994    AddToWorkList(N);
1995    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
1996              Load.getValue(1));
1997    return Load;
1998  }
1999
2000  return SDOperand();
2001}
2002
2003SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2004  SDOperand N0 = N->getOperand(0);
2005  MVT::ValueType VT = N->getValueType(0);
2006
2007  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2008  // First check to see if this is all constant.
2009  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2010      VT == MVT::Vector) {
2011    bool isSimple = true;
2012    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2013      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2014          N0.getOperand(i).getOpcode() != ISD::Constant &&
2015          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2016        isSimple = false;
2017        break;
2018      }
2019
2020    if (isSimple) {
2021      MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2022      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2023    }
2024  }
2025
2026  return SDOperand();
2027}
2028
2029/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2030/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
2031/// destination element value type.
2032SDOperand DAGCombiner::
2033ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2034  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2035
2036  // If this is already the right type, we're done.
2037  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2038
2039  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2040  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2041
2042  // If this is a conversion of N elements of one type to N elements of another
2043  // type, convert each element.  This handles FP<->INT cases.
2044  if (SrcBitSize == DstBitSize) {
2045    std::vector<SDOperand> Ops;
2046    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i)
2047      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2048    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2049    Ops.push_back(DAG.getValueType(DstEltVT));
2050    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2051  }
2052
2053  // Otherwise, we're growing or shrinking the elements.  To avoid having to
2054  // handle annoying details of growing/shrinking FP values, we convert them to
2055  // int first.
2056  if (MVT::isFloatingPoint(SrcEltVT)) {
2057    // Convert the input float vector to a int vector where the elements are the
2058    // same sizes.
2059    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2060    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2061    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2062    SrcEltVT = IntVT;
2063  }
2064
2065  // Now we know the input is an integer vector.  If the output is a FP type,
2066  // convert to integer first, then to FP of the right size.
2067  if (MVT::isFloatingPoint(DstEltVT)) {
2068    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2069    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2070    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2071
2072    // Next, convert to FP elements of the same size.
2073    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2074  }
2075
2076  // Okay, we know the src/dst types are both integers of differing types.
2077  // Handling growing first.
2078  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2079  if (SrcBitSize < DstBitSize) {
2080    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2081
2082    std::vector<SDOperand> Ops;
2083    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2084         i += NumInputsPerOutput) {
2085      bool isLE = TLI.isLittleEndian();
2086      uint64_t NewBits = 0;
2087      bool EltIsUndef = true;
2088      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2089        // Shift the previously computed bits over.
2090        NewBits <<= SrcBitSize;
2091        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2092        if (Op.getOpcode() == ISD::UNDEF) continue;
2093        EltIsUndef = false;
2094
2095        NewBits |= cast<ConstantSDNode>(Op)->getValue();
2096      }
2097
2098      if (EltIsUndef)
2099        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2100      else
2101        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2102    }
2103
2104    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2105    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2106    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2107  }
2108
2109  // Finally, this must be the case where we are shrinking elements: each input
2110  // turns into multiple outputs.
2111  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2112  std::vector<SDOperand> Ops;
2113  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2114    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2115      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2116        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2117      continue;
2118    }
2119    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2120
2121    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2122      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2123      OpVal >>= DstBitSize;
2124      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2125    }
2126
2127    // For big endian targets, swap the order of the pieces of each element.
2128    if (!TLI.isLittleEndian())
2129      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2130  }
2131  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2132  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2133  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2134}
2135
2136
2137
2138SDOperand DAGCombiner::visitFADD(SDNode *N) {
2139  SDOperand N0 = N->getOperand(0);
2140  SDOperand N1 = N->getOperand(1);
2141  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2142  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2143  MVT::ValueType VT = N->getValueType(0);
2144
2145  // fold (fadd c1, c2) -> c1+c2
2146  if (N0CFP && N1CFP)
2147    return DAG.getNode(ISD::FADD, VT, N0, N1);
2148  // canonicalize constant to RHS
2149  if (N0CFP && !N1CFP)
2150    return DAG.getNode(ISD::FADD, VT, N1, N0);
2151  // fold (A + (-B)) -> A-B
2152  if (N1.getOpcode() == ISD::FNEG)
2153    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
2154  // fold ((-A) + B) -> B-A
2155  if (N0.getOpcode() == ISD::FNEG)
2156    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
2157  return SDOperand();
2158}
2159
2160SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2161  SDOperand N0 = N->getOperand(0);
2162  SDOperand N1 = N->getOperand(1);
2163  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2164  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2165  MVT::ValueType VT = N->getValueType(0);
2166
2167  // fold (fsub c1, c2) -> c1-c2
2168  if (N0CFP && N1CFP)
2169    return DAG.getNode(ISD::FSUB, VT, N0, N1);
2170  // fold (A-(-B)) -> A+B
2171  if (N1.getOpcode() == ISD::FNEG)
2172    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
2173  return SDOperand();
2174}
2175
2176SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2177  SDOperand N0 = N->getOperand(0);
2178  SDOperand N1 = N->getOperand(1);
2179  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2180  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2181  MVT::ValueType VT = N->getValueType(0);
2182
2183  // fold (fmul c1, c2) -> c1*c2
2184  if (N0CFP && N1CFP)
2185    return DAG.getNode(ISD::FMUL, VT, N0, N1);
2186  // canonicalize constant to RHS
2187  if (N0CFP && !N1CFP)
2188    return DAG.getNode(ISD::FMUL, VT, N1, N0);
2189  // fold (fmul X, 2.0) -> (fadd X, X)
2190  if (N1CFP && N1CFP->isExactlyValue(+2.0))
2191    return DAG.getNode(ISD::FADD, VT, N0, N0);
2192  return SDOperand();
2193}
2194
2195SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2196  SDOperand N0 = N->getOperand(0);
2197  SDOperand N1 = N->getOperand(1);
2198  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2199  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2200  MVT::ValueType VT = N->getValueType(0);
2201
2202  // fold (fdiv c1, c2) -> c1/c2
2203  if (N0CFP && N1CFP)
2204    return DAG.getNode(ISD::FDIV, VT, N0, N1);
2205  return SDOperand();
2206}
2207
2208SDOperand DAGCombiner::visitFREM(SDNode *N) {
2209  SDOperand N0 = N->getOperand(0);
2210  SDOperand N1 = N->getOperand(1);
2211  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2212  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2213  MVT::ValueType VT = N->getValueType(0);
2214
2215  // fold (frem c1, c2) -> fmod(c1,c2)
2216  if (N0CFP && N1CFP)
2217    return DAG.getNode(ISD::FREM, VT, N0, N1);
2218  return SDOperand();
2219}
2220
2221SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2222  SDOperand N0 = N->getOperand(0);
2223  SDOperand N1 = N->getOperand(1);
2224  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2225  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2226  MVT::ValueType VT = N->getValueType(0);
2227
2228  if (N0CFP && N1CFP)  // Constant fold
2229    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2230
2231  if (N1CFP) {
2232    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
2233    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2234    union {
2235      double d;
2236      int64_t i;
2237    } u;
2238    u.d = N1CFP->getValue();
2239    if (u.i >= 0)
2240      return DAG.getNode(ISD::FABS, VT, N0);
2241    else
2242      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2243  }
2244
2245  // copysign(fabs(x), y) -> copysign(x, y)
2246  // copysign(fneg(x), y) -> copysign(x, y)
2247  // copysign(copysign(x,z), y) -> copysign(x, y)
2248  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
2249      N0.getOpcode() == ISD::FCOPYSIGN)
2250    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
2251
2252  // copysign(x, abs(y)) -> abs(x)
2253  if (N1.getOpcode() == ISD::FABS)
2254    return DAG.getNode(ISD::FABS, VT, N0);
2255
2256  // copysign(x, copysign(y,z)) -> copysign(x, z)
2257  if (N1.getOpcode() == ISD::FCOPYSIGN)
2258    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
2259
2260  // copysign(x, fp_extend(y)) -> copysign(x, y)
2261  // copysign(x, fp_round(y)) -> copysign(x, y)
2262  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
2263    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
2264
2265  return SDOperand();
2266}
2267
2268
2269
2270SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
2271  SDOperand N0 = N->getOperand(0);
2272  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2273  MVT::ValueType VT = N->getValueType(0);
2274
2275  // fold (sint_to_fp c1) -> c1fp
2276  if (N0C)
2277    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
2278  return SDOperand();
2279}
2280
2281SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
2282  SDOperand N0 = N->getOperand(0);
2283  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2284  MVT::ValueType VT = N->getValueType(0);
2285
2286  // fold (uint_to_fp c1) -> c1fp
2287  if (N0C)
2288    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
2289  return SDOperand();
2290}
2291
2292SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
2293  SDOperand N0 = N->getOperand(0);
2294  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2295  MVT::ValueType VT = N->getValueType(0);
2296
2297  // fold (fp_to_sint c1fp) -> c1
2298  if (N0CFP)
2299    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
2300  return SDOperand();
2301}
2302
2303SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
2304  SDOperand N0 = N->getOperand(0);
2305  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2306  MVT::ValueType VT = N->getValueType(0);
2307
2308  // fold (fp_to_uint c1fp) -> c1
2309  if (N0CFP)
2310    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
2311  return SDOperand();
2312}
2313
2314SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
2315  SDOperand N0 = N->getOperand(0);
2316  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2317  MVT::ValueType VT = N->getValueType(0);
2318
2319  // fold (fp_round c1fp) -> c1fp
2320  if (N0CFP)
2321    return DAG.getNode(ISD::FP_ROUND, VT, N0);
2322
2323  // fold (fp_round (fp_extend x)) -> x
2324  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
2325    return N0.getOperand(0);
2326
2327  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
2328  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
2329    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
2330    AddToWorkList(Tmp.Val);
2331    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
2332  }
2333
2334  return SDOperand();
2335}
2336
2337SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
2338  SDOperand N0 = N->getOperand(0);
2339  MVT::ValueType VT = N->getValueType(0);
2340  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2341  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2342
2343  // fold (fp_round_inreg c1fp) -> c1fp
2344  if (N0CFP) {
2345    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
2346    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
2347  }
2348  return SDOperand();
2349}
2350
2351SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
2352  SDOperand N0 = N->getOperand(0);
2353  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2354  MVT::ValueType VT = N->getValueType(0);
2355
2356  // fold (fp_extend c1fp) -> c1fp
2357  if (N0CFP)
2358    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
2359  return SDOperand();
2360}
2361
2362SDOperand DAGCombiner::visitFNEG(SDNode *N) {
2363  SDOperand N0 = N->getOperand(0);
2364  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2365  MVT::ValueType VT = N->getValueType(0);
2366
2367  // fold (fneg c1) -> -c1
2368  if (N0CFP)
2369    return DAG.getNode(ISD::FNEG, VT, N0);
2370  // fold (fneg (sub x, y)) -> (sub y, x)
2371  if (N0.getOpcode() == ISD::SUB)
2372    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
2373  // fold (fneg (fneg x)) -> x
2374  if (N0.getOpcode() == ISD::FNEG)
2375    return N0.getOperand(0);
2376  return SDOperand();
2377}
2378
2379SDOperand DAGCombiner::visitFABS(SDNode *N) {
2380  SDOperand N0 = N->getOperand(0);
2381  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2382  MVT::ValueType VT = N->getValueType(0);
2383
2384  // fold (fabs c1) -> fabs(c1)
2385  if (N0CFP)
2386    return DAG.getNode(ISD::FABS, VT, N0);
2387  // fold (fabs (fabs x)) -> (fabs x)
2388  if (N0.getOpcode() == ISD::FABS)
2389    return N->getOperand(0);
2390  // fold (fabs (fneg x)) -> (fabs x)
2391  // fold (fabs (fcopysign x, y)) -> (fabs x)
2392  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
2393    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
2394
2395  return SDOperand();
2396}
2397
2398SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
2399  SDOperand Chain = N->getOperand(0);
2400  SDOperand N1 = N->getOperand(1);
2401  SDOperand N2 = N->getOperand(2);
2402  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2403
2404  // never taken branch, fold to chain
2405  if (N1C && N1C->isNullValue())
2406    return Chain;
2407  // unconditional branch
2408  if (N1C && N1C->getValue() == 1)
2409    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
2410  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
2411  // on the target.
2412  if (N1.getOpcode() == ISD::SETCC &&
2413      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
2414    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
2415                       N1.getOperand(0), N1.getOperand(1), N2);
2416  }
2417  return SDOperand();
2418}
2419
2420// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
2421//
2422SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
2423  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
2424  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
2425
2426  // Use SimplifySetCC  to simplify SETCC's.
2427  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
2428  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
2429
2430  // fold br_cc true, dest -> br dest (unconditional branch)
2431  if (SCCC && SCCC->getValue())
2432    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
2433                       N->getOperand(4));
2434  // fold br_cc false, dest -> unconditional fall through
2435  if (SCCC && SCCC->isNullValue())
2436    return N->getOperand(0);
2437  // fold to a simpler setcc
2438  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
2439    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
2440                       Simp.getOperand(2), Simp.getOperand(0),
2441                       Simp.getOperand(1), N->getOperand(4));
2442  return SDOperand();
2443}
2444
2445SDOperand DAGCombiner::visitLOAD(SDNode *N) {
2446  SDOperand Chain    = N->getOperand(0);
2447  SDOperand Ptr      = N->getOperand(1);
2448  SDOperand SrcValue = N->getOperand(2);
2449
2450  // If there are no uses of the loaded value, change uses of the chain value
2451  // into uses of the chain input (i.e. delete the dead load).
2452  if (N->hasNUsesOfValue(0, 0))
2453    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2454
2455  // If this load is directly stored, replace the load value with the stored
2456  // value.
2457  // TODO: Handle store large -> read small portion.
2458  // TODO: Handle TRUNCSTORE/EXTLOAD
2459  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2460      Chain.getOperand(1).getValueType() == N->getValueType(0))
2461    return CombineTo(N, Chain.getOperand(1), Chain);
2462
2463  return SDOperand();
2464}
2465
2466/// visitXEXTLOAD - Handle EXTLOAD/ZEXTLOAD/SEXTLOAD.
2467SDOperand DAGCombiner::visitXEXTLOAD(SDNode *N) {
2468  SDOperand Chain    = N->getOperand(0);
2469  SDOperand Ptr      = N->getOperand(1);
2470  SDOperand SrcValue = N->getOperand(2);
2471  SDOperand EVT      = N->getOperand(3);
2472
2473  // If there are no uses of the loaded value, change uses of the chain value
2474  // into uses of the chain input (i.e. delete the dead load).
2475  if (N->hasNUsesOfValue(0, 0))
2476    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2477
2478  return SDOperand();
2479}
2480
2481SDOperand DAGCombiner::visitSTORE(SDNode *N) {
2482  SDOperand Chain    = N->getOperand(0);
2483  SDOperand Value    = N->getOperand(1);
2484  SDOperand Ptr      = N->getOperand(2);
2485  SDOperand SrcValue = N->getOperand(3);
2486
2487  // If this is a store that kills a previous store, remove the previous store.
2488  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2489      Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ &&
2490      // Make sure that these stores are the same value type:
2491      // FIXME: we really care that the second store is >= size of the first.
2492      Value.getValueType() == Chain.getOperand(1).getValueType()) {
2493    // Create a new store of Value that replaces both stores.
2494    SDNode *PrevStore = Chain.Val;
2495    if (PrevStore->getOperand(1) == Value) // Same value multiply stored.
2496      return Chain;
2497    SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other,
2498                                     PrevStore->getOperand(0), Value, Ptr,
2499                                     SrcValue);
2500    CombineTo(N, NewStore);                 // Nuke this store.
2501    CombineTo(PrevStore, NewStore);  // Nuke the previous store.
2502    return SDOperand(N, 0);
2503  }
2504
2505  // If this is a store of a bit convert, store the input value.
2506  // FIXME: This needs to know that the resultant store does not need a
2507  // higher alignment than the original.
2508  if (0 && Value.getOpcode() == ISD::BIT_CONVERT)
2509    return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0),
2510                       Ptr, SrcValue);
2511
2512  return SDOperand();
2513}
2514
2515SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
2516  SDOperand InVec = N->getOperand(0);
2517  SDOperand InVal = N->getOperand(1);
2518  SDOperand EltNo = N->getOperand(2);
2519
2520  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
2521  // vector with the inserted element.
2522  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2523    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2524    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2525    if (Elt < Ops.size())
2526      Ops[Elt] = InVal;
2527    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops);
2528  }
2529
2530  return SDOperand();
2531}
2532
2533SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
2534  SDOperand InVec = N->getOperand(0);
2535  SDOperand InVal = N->getOperand(1);
2536  SDOperand EltNo = N->getOperand(2);
2537  SDOperand NumElts = N->getOperand(3);
2538  SDOperand EltType = N->getOperand(4);
2539
2540  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
2541  // vector with the inserted element.
2542  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2543    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2544    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2545    if (Elt < Ops.size()-2)
2546      Ops[Elt] = InVal;
2547    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops);
2548  }
2549
2550  return SDOperand();
2551}
2552
2553SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
2554  unsigned NumInScalars = N->getNumOperands()-2;
2555  SDOperand NumElts = N->getOperand(NumInScalars);
2556  SDOperand EltType = N->getOperand(NumInScalars+1);
2557
2558  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
2559  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
2560  // two distinct vectors, turn this into a shuffle node.
2561  SDOperand VecIn1, VecIn2;
2562  for (unsigned i = 0; i != NumInScalars; ++i) {
2563    // Ignore undef inputs.
2564    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
2565
2566    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
2567    // constant index, bail out.
2568    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
2569        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
2570      VecIn1 = VecIn2 = SDOperand(0, 0);
2571      break;
2572    }
2573
2574    // If the input vector type disagrees with the result of the vbuild_vector,
2575    // we can't make a shuffle.
2576    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
2577    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
2578        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
2579      VecIn1 = VecIn2 = SDOperand(0, 0);
2580      break;
2581    }
2582
2583    // Otherwise, remember this.  We allow up to two distinct input vectors.
2584    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
2585      continue;
2586
2587    if (VecIn1.Val == 0) {
2588      VecIn1 = ExtractedFromVec;
2589    } else if (VecIn2.Val == 0) {
2590      VecIn2 = ExtractedFromVec;
2591    } else {
2592      // Too many inputs.
2593      VecIn1 = VecIn2 = SDOperand(0, 0);
2594      break;
2595    }
2596  }
2597
2598  // If everything is good, we can make a shuffle operation.
2599  if (VecIn1.Val) {
2600    std::vector<SDOperand> BuildVecIndices;
2601    for (unsigned i = 0; i != NumInScalars; ++i) {
2602      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
2603        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2604        continue;
2605      }
2606
2607      SDOperand Extract = N->getOperand(i);
2608
2609      // If extracting from the first vector, just use the index directly.
2610      if (Extract.getOperand(0) == VecIn1) {
2611        BuildVecIndices.push_back(Extract.getOperand(1));
2612        continue;
2613      }
2614
2615      // Otherwise, use InIdx + VecSize
2616      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
2617      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars, MVT::i32));
2618    }
2619
2620    // Add count and size info.
2621    BuildVecIndices.push_back(NumElts);
2622    BuildVecIndices.push_back(DAG.getValueType(MVT::i32));
2623
2624    // Return the new VVECTOR_SHUFFLE node.
2625    std::vector<SDOperand> Ops;
2626    Ops.push_back(VecIn1);
2627    if (VecIn2.Val) {
2628      Ops.push_back(VecIn2);
2629    } else {
2630       // Use an undef vbuild_vector as input for the second operand.
2631      std::vector<SDOperand> UnOps(NumInScalars,
2632                                   DAG.getNode(ISD::UNDEF,
2633                                           cast<VTSDNode>(EltType)->getVT()));
2634      UnOps.push_back(NumElts);
2635      UnOps.push_back(EltType);
2636      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, UnOps));
2637    }
2638    Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector, BuildVecIndices));
2639    Ops.push_back(NumElts);
2640    Ops.push_back(EltType);
2641    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
2642  }
2643
2644  return SDOperand();
2645}
2646
2647SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
2648  SDOperand ShufMask = N->getOperand(2);
2649  unsigned NumElts = ShufMask.getNumOperands();
2650
2651  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2652  bool isIdentity = true;
2653  for (unsigned i = 0; i != NumElts; ++i) {
2654    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2655        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2656      isIdentity = false;
2657      break;
2658    }
2659  }
2660  if (isIdentity) return N->getOperand(0);
2661
2662  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2663  isIdentity = true;
2664  for (unsigned i = 0; i != NumElts; ++i) {
2665    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2666        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2667      isIdentity = false;
2668      break;
2669    }
2670  }
2671  if (isIdentity) return N->getOperand(1);
2672
2673  // If the LHS and the RHS are the same node, turn the RHS into an undef.
2674  if (N->getOperand(0) == N->getOperand(1)) {
2675    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
2676    // first operand.
2677    std::vector<SDOperand> MappedOps;
2678    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
2679      if (cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() >= NumElts) {
2680        unsigned NewIdx =
2681           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
2682        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
2683      } else {
2684        MappedOps.push_back(ShufMask.getOperand(i));
2685      }
2686    }
2687    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
2688                           MappedOps);
2689    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
2690                       N->getOperand(0),
2691                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
2692                       ShufMask);
2693  }
2694
2695  return SDOperand();
2696}
2697
2698SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
2699  SDOperand ShufMask = N->getOperand(2);
2700  unsigned NumElts = ShufMask.getNumOperands()-2;
2701
2702  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2703  bool isIdentity = true;
2704  for (unsigned i = 0; i != NumElts; ++i) {
2705    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2706        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2707      isIdentity = false;
2708      break;
2709    }
2710  }
2711  if (isIdentity) return N->getOperand(0);
2712
2713  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2714  isIdentity = true;
2715  for (unsigned i = 0; i != NumElts; ++i) {
2716    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2717        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2718      isIdentity = false;
2719      break;
2720    }
2721  }
2722  if (isIdentity) return N->getOperand(1);
2723
2724  return SDOperand();
2725}
2726
2727/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
2728/// the scalar operation of the vop if it is operating on an integer vector
2729/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
2730SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
2731                                   ISD::NodeType FPOp) {
2732  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
2733  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
2734  SDOperand LHS = N->getOperand(0);
2735  SDOperand RHS = N->getOperand(1);
2736
2737  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
2738  // this operation.
2739  if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
2740      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
2741    std::vector<SDOperand> Ops;
2742    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
2743      SDOperand LHSOp = LHS.getOperand(i);
2744      SDOperand RHSOp = RHS.getOperand(i);
2745      // If these two elements can't be folded, bail out.
2746      if ((LHSOp.getOpcode() != ISD::UNDEF &&
2747           LHSOp.getOpcode() != ISD::Constant &&
2748           LHSOp.getOpcode() != ISD::ConstantFP) ||
2749          (RHSOp.getOpcode() != ISD::UNDEF &&
2750           RHSOp.getOpcode() != ISD::Constant &&
2751           RHSOp.getOpcode() != ISD::ConstantFP))
2752        break;
2753      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
2754      assert((Ops.back().getOpcode() == ISD::UNDEF ||
2755              Ops.back().getOpcode() == ISD::Constant ||
2756              Ops.back().getOpcode() == ISD::ConstantFP) &&
2757             "Scalar binop didn't fold!");
2758    }
2759
2760    if (Ops.size() == LHS.getNumOperands()-2) {
2761      Ops.push_back(*(LHS.Val->op_end()-2));
2762      Ops.push_back(*(LHS.Val->op_end()-1));
2763      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2764    }
2765  }
2766
2767  return SDOperand();
2768}
2769
2770SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
2771  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
2772
2773  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
2774                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
2775  // If we got a simplified select_cc node back from SimplifySelectCC, then
2776  // break it down into a new SETCC node, and a new SELECT node, and then return
2777  // the SELECT node, since we were called with a SELECT node.
2778  if (SCC.Val) {
2779    // Check to see if we got a select_cc back (to turn into setcc/select).
2780    // Otherwise, just return whatever node we got back, like fabs.
2781    if (SCC.getOpcode() == ISD::SELECT_CC) {
2782      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
2783                                    SCC.getOperand(0), SCC.getOperand(1),
2784                                    SCC.getOperand(4));
2785      AddToWorkList(SETCC.Val);
2786      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
2787                         SCC.getOperand(3), SETCC);
2788    }
2789    return SCC;
2790  }
2791  return SDOperand();
2792}
2793
2794/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
2795/// are the two values being selected between, see if we can simplify the
2796/// select.
2797///
2798bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
2799                                    SDOperand RHS) {
2800
2801  // If this is a select from two identical things, try to pull the operation
2802  // through the select.
2803  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
2804#if 0
2805    std::cerr << "SELECT: ["; LHS.Val->dump();
2806    std::cerr << "] ["; RHS.Val->dump();
2807    std::cerr << "]\n";
2808#endif
2809
2810    // If this is a load and the token chain is identical, replace the select
2811    // of two loads with a load through a select of the address to load from.
2812    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
2813    // constants have been dropped into the constant pool.
2814    if ((LHS.getOpcode() == ISD::LOAD ||
2815         LHS.getOpcode() == ISD::EXTLOAD ||
2816         LHS.getOpcode() == ISD::ZEXTLOAD ||
2817         LHS.getOpcode() == ISD::SEXTLOAD) &&
2818        // Token chains must be identical.
2819        LHS.getOperand(0) == RHS.getOperand(0) &&
2820        // If this is an EXTLOAD, the VT's must match.
2821        (LHS.getOpcode() == ISD::LOAD ||
2822         LHS.getOperand(3) == RHS.getOperand(3))) {
2823      // FIXME: this conflates two src values, discarding one.  This is not
2824      // the right thing to do, but nothing uses srcvalues now.  When they do,
2825      // turn SrcValue into a list of locations.
2826      SDOperand Addr;
2827      if (TheSelect->getOpcode() == ISD::SELECT)
2828        Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(),
2829                           TheSelect->getOperand(0), LHS.getOperand(1),
2830                           RHS.getOperand(1));
2831      else
2832        Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(),
2833                           TheSelect->getOperand(0),
2834                           TheSelect->getOperand(1),
2835                           LHS.getOperand(1), RHS.getOperand(1),
2836                           TheSelect->getOperand(4));
2837
2838      SDOperand Load;
2839      if (LHS.getOpcode() == ISD::LOAD)
2840        Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0),
2841                           Addr, LHS.getOperand(2));
2842      else
2843        Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0),
2844                              LHS.getOperand(0), Addr, LHS.getOperand(2),
2845                              cast<VTSDNode>(LHS.getOperand(3))->getVT());
2846      // Users of the select now use the result of the load.
2847      CombineTo(TheSelect, Load);
2848
2849      // Users of the old loads now use the new load's chain.  We know the
2850      // old-load value is dead now.
2851      CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
2852      CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
2853      return true;
2854    }
2855  }
2856
2857  return false;
2858}
2859
2860SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
2861                                        SDOperand N2, SDOperand N3,
2862                                        ISD::CondCode CC) {
2863
2864  MVT::ValueType VT = N2.getValueType();
2865  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
2866  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2867  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2868  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
2869
2870  // Determine if the condition we're dealing with is constant
2871  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2872  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
2873
2874  // fold select_cc true, x, y -> x
2875  if (SCCC && SCCC->getValue())
2876    return N2;
2877  // fold select_cc false, x, y -> y
2878  if (SCCC && SCCC->getValue() == 0)
2879    return N3;
2880
2881  // Check to see if we can simplify the select into an fabs node
2882  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
2883    // Allow either -0.0 or 0.0
2884    if (CFP->getValue() == 0.0) {
2885      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
2886      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
2887          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
2888          N2 == N3.getOperand(0))
2889        return DAG.getNode(ISD::FABS, VT, N0);
2890
2891      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
2892      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
2893          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
2894          N2.getOperand(0) == N3)
2895        return DAG.getNode(ISD::FABS, VT, N3);
2896    }
2897  }
2898
2899  // Check to see if we can perform the "gzip trick", transforming
2900  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
2901  if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() &&
2902      MVT::isInteger(N0.getValueType()) &&
2903      MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) {
2904    MVT::ValueType XType = N0.getValueType();
2905    MVT::ValueType AType = N2.getValueType();
2906    if (XType >= AType) {
2907      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
2908      // single-bit constant.
2909      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
2910        unsigned ShCtV = Log2_64(N2C->getValue());
2911        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
2912        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
2913        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
2914        AddToWorkList(Shift.Val);
2915        if (XType > AType) {
2916          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
2917          AddToWorkList(Shift.Val);
2918        }
2919        return DAG.getNode(ISD::AND, AType, Shift, N2);
2920      }
2921      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
2922                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
2923                                                    TLI.getShiftAmountTy()));
2924      AddToWorkList(Shift.Val);
2925      if (XType > AType) {
2926        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
2927        AddToWorkList(Shift.Val);
2928      }
2929      return DAG.getNode(ISD::AND, AType, Shift, N2);
2930    }
2931  }
2932
2933  // fold select C, 16, 0 -> shl C, 4
2934  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
2935      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
2936    // Get a SetCC of the condition
2937    // FIXME: Should probably make sure that setcc is legal if we ever have a
2938    // target where it isn't.
2939    SDOperand Temp, SCC;
2940    // cast from setcc result type to select result type
2941    if (AfterLegalize) {
2942      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
2943      Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
2944    } else {
2945      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
2946      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
2947    }
2948    AddToWorkList(SCC.Val);
2949    AddToWorkList(Temp.Val);
2950    // shl setcc result by log2 n2c
2951    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
2952                       DAG.getConstant(Log2_64(N2C->getValue()),
2953                                       TLI.getShiftAmountTy()));
2954  }
2955
2956  // Check to see if this is the equivalent of setcc
2957  // FIXME: Turn all of these into setcc if setcc if setcc is legal
2958  // otherwise, go ahead with the folds.
2959  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
2960    MVT::ValueType XType = N0.getValueType();
2961    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
2962      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
2963      if (Res.getValueType() != VT)
2964        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
2965      return Res;
2966    }
2967
2968    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
2969    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
2970        TLI.isOperationLegal(ISD::CTLZ, XType)) {
2971      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
2972      return DAG.getNode(ISD::SRL, XType, Ctlz,
2973                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
2974                                         TLI.getShiftAmountTy()));
2975    }
2976    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
2977    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
2978      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
2979                                    N0);
2980      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
2981                                    DAG.getConstant(~0ULL, XType));
2982      return DAG.getNode(ISD::SRL, XType,
2983                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
2984                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
2985                                         TLI.getShiftAmountTy()));
2986    }
2987    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
2988    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
2989      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
2990                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
2991                                                   TLI.getShiftAmountTy()));
2992      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
2993    }
2994  }
2995
2996  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
2997  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2998  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
2999      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
3000    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
3001      MVT::ValueType XType = N0.getValueType();
3002      if (SubC->isNullValue() && MVT::isInteger(XType)) {
3003        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3004                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3005                                                    TLI.getShiftAmountTy()));
3006        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
3007        AddToWorkList(Shift.Val);
3008        AddToWorkList(Add.Val);
3009        return DAG.getNode(ISD::XOR, XType, Add, Shift);
3010      }
3011    }
3012  }
3013
3014  return SDOperand();
3015}
3016
3017SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
3018                                     SDOperand N1, ISD::CondCode Cond,
3019                                     bool foldBooleans) {
3020  // These setcc operations always fold.
3021  switch (Cond) {
3022  default: break;
3023  case ISD::SETFALSE:
3024  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
3025  case ISD::SETTRUE:
3026  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
3027  }
3028
3029  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
3030    uint64_t C1 = N1C->getValue();
3031    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) {
3032      uint64_t C0 = N0C->getValue();
3033
3034      // Sign extend the operands if required
3035      if (ISD::isSignedIntSetCC(Cond)) {
3036        C0 = N0C->getSignExtended();
3037        C1 = N1C->getSignExtended();
3038      }
3039
3040      switch (Cond) {
3041      default: assert(0 && "Unknown integer setcc!");
3042      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3043      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3044      case ISD::SETULT: return DAG.getConstant(C0 <  C1, VT);
3045      case ISD::SETUGT: return DAG.getConstant(C0 >  C1, VT);
3046      case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT);
3047      case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT);
3048      case ISD::SETLT:  return DAG.getConstant((int64_t)C0 <  (int64_t)C1, VT);
3049      case ISD::SETGT:  return DAG.getConstant((int64_t)C0 >  (int64_t)C1, VT);
3050      case ISD::SETLE:  return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT);
3051      case ISD::SETGE:  return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT);
3052      }
3053    } else {
3054      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3055      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3056        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
3057
3058        // If the comparison constant has bits in the upper part, the
3059        // zero-extended value could never match.
3060        if (C1 & (~0ULL << InSize)) {
3061          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
3062          switch (Cond) {
3063          case ISD::SETUGT:
3064          case ISD::SETUGE:
3065          case ISD::SETEQ: return DAG.getConstant(0, VT);
3066          case ISD::SETULT:
3067          case ISD::SETULE:
3068          case ISD::SETNE: return DAG.getConstant(1, VT);
3069          case ISD::SETGT:
3070          case ISD::SETGE:
3071            // True if the sign bit of C1 is set.
3072            return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT);
3073          case ISD::SETLT:
3074          case ISD::SETLE:
3075            // True if the sign bit of C1 isn't set.
3076            return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT);
3077          default:
3078            break;
3079          }
3080        }
3081
3082        // Otherwise, we can perform the comparison with the low bits.
3083        switch (Cond) {
3084        case ISD::SETEQ:
3085        case ISD::SETNE:
3086        case ISD::SETUGT:
3087        case ISD::SETUGE:
3088        case ISD::SETULT:
3089        case ISD::SETULE:
3090          return DAG.getSetCC(VT, N0.getOperand(0),
3091                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
3092                          Cond);
3093        default:
3094          break;   // todo, be more careful with signed comparisons
3095        }
3096      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3097                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3098        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3099        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
3100        MVT::ValueType ExtDstTy = N0.getValueType();
3101        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
3102
3103        // If the extended part has any inconsistent bits, it cannot ever
3104        // compare equal.  In other words, they have to be all ones or all
3105        // zeros.
3106        uint64_t ExtBits =
3107          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
3108        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
3109          return DAG.getConstant(Cond == ISD::SETNE, VT);
3110
3111        SDOperand ZextOp;
3112        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
3113        if (Op0Ty == ExtSrcTy) {
3114          ZextOp = N0.getOperand(0);
3115        } else {
3116          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
3117          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
3118                               DAG.getConstant(Imm, Op0Ty));
3119        }
3120        AddToWorkList(ZextOp.Val);
3121        // Otherwise, make this a use of a zext.
3122        return DAG.getSetCC(VT, ZextOp,
3123                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
3124                                            ExtDstTy),
3125                            Cond);
3126      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
3127                 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3128                 (N0.getOpcode() == ISD::XOR ||
3129                  (N0.getOpcode() == ISD::AND &&
3130                   N0.getOperand(0).getOpcode() == ISD::XOR &&
3131                   N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3132                 isa<ConstantSDNode>(N0.getOperand(1)) &&
3133                 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
3134        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We can
3135        // only do this if the top bits are known zero.
3136        if (TLI.MaskedValueIsZero(N1,
3137                                  MVT::getIntVTBitMask(N0.getValueType())-1)) {
3138          // Okay, get the un-inverted input value.
3139          SDOperand Val;
3140          if (N0.getOpcode() == ISD::XOR)
3141            Val = N0.getOperand(0);
3142          else {
3143            assert(N0.getOpcode() == ISD::AND &&
3144                   N0.getOperand(0).getOpcode() == ISD::XOR);
3145            // ((X^1)&1)^1 -> X & 1
3146            Val = DAG.getNode(ISD::AND, N0.getValueType(),
3147                              N0.getOperand(0).getOperand(0), N0.getOperand(1));
3148          }
3149          return DAG.getSetCC(VT, Val, N1,
3150                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3151        }
3152      }
3153
3154      uint64_t MinVal, MaxVal;
3155      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
3156      if (ISD::isSignedIntSetCC(Cond)) {
3157        MinVal = 1ULL << (OperandBitSize-1);
3158        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
3159          MaxVal = ~0ULL >> (65-OperandBitSize);
3160        else
3161          MaxVal = 0;
3162      } else {
3163        MinVal = 0;
3164        MaxVal = ~0ULL >> (64-OperandBitSize);
3165      }
3166
3167      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3168      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3169        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
3170        --C1;                                          // X >= C0 --> X > (C0-1)
3171        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3172                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
3173      }
3174
3175      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3176        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
3177        ++C1;                                          // X <= C0 --> X < (C0+1)
3178        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3179                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
3180      }
3181
3182      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
3183        return DAG.getConstant(0, VT);      // X < MIN --> false
3184
3185      // Canonicalize setgt X, Min --> setne X, Min
3186      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
3187        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3188      // Canonicalize setlt X, Max --> setne X, Max
3189      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
3190        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3191
3192      // If we have setult X, 1, turn it into seteq X, 0
3193      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
3194        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
3195                        ISD::SETEQ);
3196      // If we have setugt X, Max-1, turn it into seteq X, Max
3197      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
3198        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
3199                        ISD::SETEQ);
3200
3201      // If we have "setcc X, C0", check to see if we can shrink the immediate
3202      // by changing cc.
3203
3204      // SETUGT X, SINTMAX  -> SETLT X, 0
3205      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
3206          C1 == (~0ULL >> (65-OperandBitSize)))
3207        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
3208                            ISD::SETLT);
3209
3210      // FIXME: Implement the rest of these.
3211
3212      // Fold bit comparisons when we can.
3213      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3214          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
3215        if (ConstantSDNode *AndRHS =
3216                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3217          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3218            // Perform the xform if the AND RHS is a single bit.
3219            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
3220              return DAG.getNode(ISD::SRL, VT, N0,
3221                             DAG.getConstant(Log2_64(AndRHS->getValue()),
3222                                                   TLI.getShiftAmountTy()));
3223            }
3224          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
3225            // (X & 8) == 8  -->  (X & 8) >> 3
3226            // Perform the xform if C1 is a single bit.
3227            if ((C1 & (C1-1)) == 0) {
3228              return DAG.getNode(ISD::SRL, VT, N0,
3229                             DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy()));
3230            }
3231          }
3232        }
3233    }
3234  } else if (isa<ConstantSDNode>(N0.Val)) {
3235      // Ensure that the constant occurs on the RHS.
3236    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3237  }
3238
3239  if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val))
3240    if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
3241      double C0 = N0C->getValue(), C1 = N1C->getValue();
3242
3243      switch (Cond) {
3244      default: break; // FIXME: Implement the rest of these!
3245      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3246      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3247      case ISD::SETLT:  return DAG.getConstant(C0 < C1, VT);
3248      case ISD::SETGT:  return DAG.getConstant(C0 > C1, VT);
3249      case ISD::SETLE:  return DAG.getConstant(C0 <= C1, VT);
3250      case ISD::SETGE:  return DAG.getConstant(C0 >= C1, VT);
3251      }
3252    } else {
3253      // Ensure that the constant occurs on the RHS.
3254      return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3255    }
3256
3257  if (N0 == N1) {
3258    // We can always fold X == Y for integer setcc's.
3259    if (MVT::isInteger(N0.getValueType()))
3260      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3261    unsigned UOF = ISD::getUnorderedFlavor(Cond);
3262    if (UOF == 2)   // FP operators that are undefined on NaNs.
3263      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3264    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
3265      return DAG.getConstant(UOF, VT);
3266    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3267    // if it is not already.
3268    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3269    if (NewCond != Cond)
3270      return DAG.getSetCC(VT, N0, N1, NewCond);
3271  }
3272
3273  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3274      MVT::isInteger(N0.getValueType())) {
3275    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3276        N0.getOpcode() == ISD::XOR) {
3277      // Simplify (X+Y) == (X+Z) -->  Y == Z
3278      if (N0.getOpcode() == N1.getOpcode()) {
3279        if (N0.getOperand(0) == N1.getOperand(0))
3280          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
3281        if (N0.getOperand(1) == N1.getOperand(1))
3282          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
3283        if (isCommutativeBinOp(N0.getOpcode())) {
3284          // If X op Y == Y op X, try other combinations.
3285          if (N0.getOperand(0) == N1.getOperand(1))
3286            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
3287          if (N0.getOperand(1) == N1.getOperand(0))
3288            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
3289        }
3290      }
3291
3292      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3293        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3294          // Turn (X+C1) == C2 --> X == C2-C1
3295          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
3296            return DAG.getSetCC(VT, N0.getOperand(0),
3297                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
3298                                N0.getValueType()), Cond);
3299          }
3300
3301          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3302          if (N0.getOpcode() == ISD::XOR)
3303            // If we know that all of the inverted bits are zero, don't bother
3304            // performing the inversion.
3305            if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
3306              return DAG.getSetCC(VT, N0.getOperand(0),
3307                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
3308                                              N0.getValueType()), Cond);
3309        }
3310
3311        // Turn (C1-X) == C2 --> X == C1-C2
3312        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3313          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
3314            return DAG.getSetCC(VT, N0.getOperand(1),
3315                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
3316                                             N0.getValueType()), Cond);
3317          }
3318        }
3319      }
3320
3321      // Simplify (X+Z) == X -->  Z == 0
3322      if (N0.getOperand(0) == N1)
3323        return DAG.getSetCC(VT, N0.getOperand(1),
3324                        DAG.getConstant(0, N0.getValueType()), Cond);
3325      if (N0.getOperand(1) == N1) {
3326        if (isCommutativeBinOp(N0.getOpcode()))
3327          return DAG.getSetCC(VT, N0.getOperand(0),
3328                          DAG.getConstant(0, N0.getValueType()), Cond);
3329        else {
3330          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3331          // (Z-X) == X  --> Z == X<<1
3332          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
3333                                     N1,
3334                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3335          AddToWorkList(SH.Val);
3336          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
3337        }
3338      }
3339    }
3340
3341    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3342        N1.getOpcode() == ISD::XOR) {
3343      // Simplify  X == (X+Z) -->  Z == 0
3344      if (N1.getOperand(0) == N0) {
3345        return DAG.getSetCC(VT, N1.getOperand(1),
3346                        DAG.getConstant(0, N1.getValueType()), Cond);
3347      } else if (N1.getOperand(1) == N0) {
3348        if (isCommutativeBinOp(N1.getOpcode())) {
3349          return DAG.getSetCC(VT, N1.getOperand(0),
3350                          DAG.getConstant(0, N1.getValueType()), Cond);
3351        } else {
3352          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3353          // X == (Z-X)  --> X<<1 == Z
3354          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
3355                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3356          AddToWorkList(SH.Val);
3357          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
3358        }
3359      }
3360    }
3361  }
3362
3363  // Fold away ALL boolean setcc's.
3364  SDOperand Temp;
3365  if (N0.getValueType() == MVT::i1 && foldBooleans) {
3366    switch (Cond) {
3367    default: assert(0 && "Unknown integer setcc!");
3368    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
3369      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3370      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
3371      AddToWorkList(Temp.Val);
3372      break;
3373    case ISD::SETNE:  // X != Y   -->  (X^Y)
3374      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3375      break;
3376    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3377    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3378      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3379      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
3380      AddToWorkList(Temp.Val);
3381      break;
3382    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
3383    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
3384      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3385      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
3386      AddToWorkList(Temp.Val);
3387      break;
3388    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
3389    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
3390      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3391      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
3392      AddToWorkList(Temp.Val);
3393      break;
3394    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
3395    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
3396      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3397      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
3398      break;
3399    }
3400    if (VT != MVT::i1) {
3401      AddToWorkList(N0.Val);
3402      // FIXME: If running after legalize, we probably can't do this.
3403      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
3404    }
3405    return N0;
3406  }
3407
3408  // Could not fold it.
3409  return SDOperand();
3410}
3411
3412/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3413/// return a DAG expression to select that will generate the same value by
3414/// multiplying by a magic number.  See:
3415/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3416SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
3417  MVT::ValueType VT = N->getValueType(0);
3418
3419  // Check to see if we can do this.
3420  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3421    return SDOperand();       // BuildSDIV only operates on i32 or i64
3422  if (!TLI.isOperationLegal(ISD::MULHS, VT))
3423    return SDOperand();       // Make sure the target supports MULHS.
3424
3425  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
3426  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
3427
3428  // Multiply the numerator (operand 0) by the magic value
3429  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
3430                            DAG.getConstant(magics.m, VT));
3431  // If d > 0 and m < 0, add the numerator
3432  if (d > 0 && magics.m < 0) {
3433    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
3434    AddToWorkList(Q.Val);
3435  }
3436  // If d < 0 and m > 0, subtract the numerator.
3437  if (d < 0 && magics.m > 0) {
3438    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
3439    AddToWorkList(Q.Val);
3440  }
3441  // Shift right algebraic if shift value is nonzero
3442  if (magics.s > 0) {
3443    Q = DAG.getNode(ISD::SRA, VT, Q,
3444                    DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3445    AddToWorkList(Q.Val);
3446  }
3447  // Extract the sign bit and add it to the quotient
3448  SDOperand T =
3449    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
3450                                                 TLI.getShiftAmountTy()));
3451  AddToWorkList(T.Val);
3452  return DAG.getNode(ISD::ADD, VT, Q, T);
3453}
3454
3455/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3456/// return a DAG expression to select that will generate the same value by
3457/// multiplying by a magic number.  See:
3458/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3459SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
3460  MVT::ValueType VT = N->getValueType(0);
3461
3462  // Check to see if we can do this.
3463  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3464    return SDOperand();       // BuildUDIV only operates on i32 or i64
3465  if (!TLI.isOperationLegal(ISD::MULHU, VT))
3466    return SDOperand();       // Make sure the target supports MULHU.
3467
3468  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
3469  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
3470
3471  // Multiply the numerator (operand 0) by the magic value
3472  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
3473                            DAG.getConstant(magics.m, VT));
3474  AddToWorkList(Q.Val);
3475
3476  if (magics.a == 0) {
3477    return DAG.getNode(ISD::SRL, VT, Q,
3478                       DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3479  } else {
3480    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
3481    AddToWorkList(NPQ.Val);
3482    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
3483                      DAG.getConstant(1, TLI.getShiftAmountTy()));
3484    AddToWorkList(NPQ.Val);
3485    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
3486    AddToWorkList(NPQ.Val);
3487    return DAG.getNode(ISD::SRL, VT, NPQ,
3488                       DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
3489  }
3490}
3491
3492// SelectionDAG::Combine - This is the entry point for the file.
3493//
3494void SelectionDAG::Combine(bool RunningAfterLegalize) {
3495  /// run - This is the main entry point to this class.
3496  ///
3497  DAGCombiner(*this).Run(RunningAfterLegalize);
3498}
3499