DAGCombiner.cpp revision a7be36c8eb4717e44b05e00008544b883fc87de9
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined   , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51  static cl::opt<bool>
52    CombinerAA("combiner-alias-analysis", cl::Hidden,
53               cl::desc("Turn on alias analysis during testing"));
54
55  static cl::opt<bool>
56    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57               cl::desc("Include global information in alias analysis"));
58
59  /// Hidden option to stress test load slicing, i.e., when this option
60  /// is enabled, load slicing bypasses most of its profitability guards.
61  static cl::opt<bool>
62  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63                    cl::desc("Bypass the profitability model of load "
64                             "slicing"),
65                    cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69  class DAGCombiner {
70    SelectionDAG &DAG;
71    const TargetLowering &TLI;
72    CombineLevel Level;
73    CodeGenOpt::Level OptLevel;
74    bool LegalOperations;
75    bool LegalTypes;
76    bool ForCodeSize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    //
80    // This has the semantics that when adding to the worklist,
81    // the item added must be next to be processed. It should
82    // also only appear once. The naive approach to this takes
83    // linear time.
84    //
85    // To reduce the insert/remove time to logarithmic, we use
86    // a set and a vector to maintain our worklist.
87    //
88    // The set contains the items on the worklist, but does not
89    // maintain the order they should be visited.
90    //
91    // The vector maintains the order nodes should be visited, but may
92    // contain duplicate or removed nodes. When choosing a node to
93    // visit, we pop off the order stack until we find an item that is
94    // also in the contents set. All operations are O(log N).
95    SmallPtrSet<SDNode*, 64> WorkListContents;
96    SmallVector<SDNode*, 64> WorkListOrder;
97
98    // AA - Used for DAG load/store alias analysis.
99    AliasAnalysis &AA;
100
101    /// AddUsersToWorkList - When an instruction is simplified, add all users of
102    /// the instruction to the work lists because they might get more simplified
103    /// now.
104    ///
105    void AddUsersToWorkList(SDNode *N) {
106      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107           UI != UE; ++UI)
108        AddToWorkList(*UI);
109    }
110
111    /// visit - call the node-specific routine that knows how to fold each
112    /// particular type of node.
113    SDValue visit(SDNode *N);
114
115  public:
116    /// AddToWorkList - Add to the work list making sure its instance is at the
117    /// back (next to be processed.)
118    void AddToWorkList(SDNode *N) {
119      WorkListContents.insert(N);
120      WorkListOrder.push_back(N);
121    }
122
123    /// removeFromWorkList - remove all instances of N from the worklist.
124    ///
125    void removeFromWorkList(SDNode *N) {
126      WorkListContents.erase(N);
127    }
128
129    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130                      bool AddTo = true);
131
132    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133      return CombineTo(N, &Res, 1, AddTo);
134    }
135
136    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137                      bool AddTo = true) {
138      SDValue To[] = { Res0, Res1 };
139      return CombineTo(N, To, 2, AddTo);
140    }
141
142    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144  private:
145
146    /// SimplifyDemandedBits - Check the specified integer node value to see if
147    /// it can be simplified or if things it uses can be simplified by bit
148    /// propagation.  If so, return true.
149    bool SimplifyDemandedBits(SDValue Op) {
150      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151      APInt Demanded = APInt::getAllOnesValue(BitWidth);
152      return SimplifyDemandedBits(Op, Demanded);
153    }
154
155    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157    bool CombineToPreIndexedLoadStore(SDNode *N);
158    bool CombineToPostIndexedLoadStore(SDNode *N);
159    bool SliceUpLoad(SDNode *N);
160
161    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165    SDValue PromoteIntBinOp(SDValue Op);
166    SDValue PromoteIntShiftOp(SDValue Op);
167    SDValue PromoteExtend(SDValue Op);
168    bool PromoteLoad(SDValue Op);
169
170    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172                         ISD::NodeType ExtType);
173
174    /// combine - call the node-specific routine that knows how to fold each
175    /// particular type of node. If that doesn't do anything, try the
176    /// target-specific DAG combines.
177    SDValue combine(SDNode *N);
178
179    // Visitation implementation - Implement dag node combining for different
180    // node types.  The semantics are as follows:
181    // Return Value:
182    //   SDValue.getNode() == 0 - No change was made
183    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
184    //   otherwise              - N should be replaced by the returned Operand.
185    //
186    SDValue visitTokenFactor(SDNode *N);
187    SDValue visitMERGE_VALUES(SDNode *N);
188    SDValue visitADD(SDNode *N);
189    SDValue visitSUB(SDNode *N);
190    SDValue visitADDC(SDNode *N);
191    SDValue visitSUBC(SDNode *N);
192    SDValue visitADDE(SDNode *N);
193    SDValue visitSUBE(SDNode *N);
194    SDValue visitMUL(SDNode *N);
195    SDValue visitSDIV(SDNode *N);
196    SDValue visitUDIV(SDNode *N);
197    SDValue visitSREM(SDNode *N);
198    SDValue visitUREM(SDNode *N);
199    SDValue visitMULHU(SDNode *N);
200    SDValue visitMULHS(SDNode *N);
201    SDValue visitSMUL_LOHI(SDNode *N);
202    SDValue visitUMUL_LOHI(SDNode *N);
203    SDValue visitSMULO(SDNode *N);
204    SDValue visitUMULO(SDNode *N);
205    SDValue visitSDIVREM(SDNode *N);
206    SDValue visitUDIVREM(SDNode *N);
207    SDValue visitAND(SDNode *N);
208    SDValue visitOR(SDNode *N);
209    SDValue visitXOR(SDNode *N);
210    SDValue SimplifyVBinOp(SDNode *N);
211    SDValue SimplifyVUnaryOp(SDNode *N);
212    SDValue visitSHL(SDNode *N);
213    SDValue visitSRA(SDNode *N);
214    SDValue visitSRL(SDNode *N);
215    SDValue visitCTLZ(SDNode *N);
216    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217    SDValue visitCTTZ(SDNode *N);
218    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219    SDValue visitCTPOP(SDNode *N);
220    SDValue visitSELECT(SDNode *N);
221    SDValue visitVSELECT(SDNode *N);
222    SDValue visitSELECT_CC(SDNode *N);
223    SDValue visitSETCC(SDNode *N);
224    SDValue visitSIGN_EXTEND(SDNode *N);
225    SDValue visitZERO_EXTEND(SDNode *N);
226    SDValue visitANY_EXTEND(SDNode *N);
227    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228    SDValue visitTRUNCATE(SDNode *N);
229    SDValue visitBITCAST(SDNode *N);
230    SDValue visitBUILD_PAIR(SDNode *N);
231    SDValue visitFADD(SDNode *N);
232    SDValue visitFSUB(SDNode *N);
233    SDValue visitFMUL(SDNode *N);
234    SDValue visitFMA(SDNode *N);
235    SDValue visitFDIV(SDNode *N);
236    SDValue visitFREM(SDNode *N);
237    SDValue visitFCOPYSIGN(SDNode *N);
238    SDValue visitSINT_TO_FP(SDNode *N);
239    SDValue visitUINT_TO_FP(SDNode *N);
240    SDValue visitFP_TO_SINT(SDNode *N);
241    SDValue visitFP_TO_UINT(SDNode *N);
242    SDValue visitFP_ROUND(SDNode *N);
243    SDValue visitFP_ROUND_INREG(SDNode *N);
244    SDValue visitFP_EXTEND(SDNode *N);
245    SDValue visitFNEG(SDNode *N);
246    SDValue visitFABS(SDNode *N);
247    SDValue visitFCEIL(SDNode *N);
248    SDValue visitFTRUNC(SDNode *N);
249    SDValue visitFFLOOR(SDNode *N);
250    SDValue visitBRCOND(SDNode *N);
251    SDValue visitBR_CC(SDNode *N);
252    SDValue visitLOAD(SDNode *N);
253    SDValue visitSTORE(SDNode *N);
254    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256    SDValue visitBUILD_VECTOR(SDNode *N);
257    SDValue visitCONCAT_VECTORS(SDNode *N);
258    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259    SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261    SDValue XformToShuffleWithZero(SDNode *N);
262    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270                             SDValue N3, ISD::CondCode CC,
271                             bool NotExtCompare = false);
272    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273                          SDLoc DL, bool foldBooleans = true);
274    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275                                         unsigned HiOp);
276    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278    SDValue BuildSDIV(SDNode *N);
279    SDValue BuildUDIV(SDNode *N);
280    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281                               bool DemandHighBits = true);
282    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284    SDValue ReduceLoadWidth(SDNode *N);
285    SDValue ReduceLoadOpStoreWidth(SDNode *N);
286    SDValue TransformFPLoadStorePair(SDNode *N);
287    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293    /// looking for aliasing nodes and adding them to the Aliases vector.
294    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295                          SmallVectorImpl<SDValue> &Aliases);
296
297    /// isAlias - Return true if there is any possibility that the two addresses
298    /// overlap.
299    bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
300                 const Value *SrcValue1, int SrcValueOffset1,
301                 unsigned SrcValueAlign1,
302                 const MDNode *TBAAInfo1,
303                 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
304                 const Value *SrcValue2, int SrcValueOffset2,
305                 unsigned SrcValueAlign2,
306                 const MDNode *TBAAInfo2) const;
307
308    /// isAlias - Return true if there is any possibility that the two addresses
309    /// overlap.
310    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDValue &Ptr, int64_t &Size, bool &IsVolatile,
316                       const Value *&SrcValue, int &SrcValueOffset,
317                       unsigned &SrcValueAlignment,
318                       const MDNode *&TBAAInfo) const;
319
320    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321    /// looking for a better chain (aliasing node.)
322    SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324    /// Merge consecutive store operations into a wide store.
325    /// This optimization uses wide integers or vectors when possible.
326    /// \return True if some memory operations were changed.
327    bool MergeConsecutiveStores(StoreSDNode *N);
328
329  public:
330    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333      AttributeSet FnAttrs =
334          DAG.getMachineFunction().getFunction()->getAttributes();
335      ForCodeSize =
336          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337                               Attribute::OptimizeForSize) ||
338          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339    }
340
341    /// Run - runs the dag combiner on all nodes in the work list
342    void Run(CombineLevel AtLevel);
343
344    SelectionDAG &getDAG() const { return DAG; }
345
346    /// getShiftAmountTy - Returns a type large enough to hold any valid
347    /// shift amount - before type legalization these can be huge.
348    EVT getShiftAmountTy(EVT LHSTy) {
349      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350      if (LHSTy.isVector())
351        return LHSTy;
352      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353                        : TLI.getPointerTy();
354    }
355
356    /// isTypeLegal - This method returns true if we are running before type
357    /// legalization or if the specified VT is legal.
358    bool isTypeLegal(const EVT &VT) {
359      if (!LegalTypes) return true;
360      return TLI.isTypeLegal(VT);
361    }
362
363    /// getSetCCResultType - Convenience wrapper around
364    /// TargetLowering::getSetCCResultType
365    EVT getSetCCResultType(EVT VT) const {
366      return TLI.getSetCCResultType(*DAG.getContext(), VT);
367    }
368  };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376  DAGCombiner &DC;
377public:
378  explicit WorkListRemover(DAGCombiner &dc)
379    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381  virtual void NodeDeleted(SDNode *N, SDNode *E) {
382    DC.removeFromWorkList(N);
383  }
384};
385}
386
387//===----------------------------------------------------------------------===//
388//  TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392  ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396  ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428                               const TargetLowering &TLI,
429                               const TargetOptions *Options,
430                               unsigned Depth = 0) {
431  // fneg is removable even if it has multiple uses.
432  if (Op.getOpcode() == ISD::FNEG) return 2;
433
434  // Don't allow anything with multiple uses.
435  if (!Op.hasOneUse()) return 0;
436
437  // Don't recurse exponentially.
438  if (Depth > 6) return 0;
439
440  switch (Op.getOpcode()) {
441  default: return false;
442  case ISD::ConstantFP:
443    // Don't invert constant FP values after legalize.  The negated constant
444    // isn't necessarily legal.
445    return LegalOperations ? 0 : 1;
446  case ISD::FADD:
447    // FIXME: determine better conditions for this xform.
448    if (!Options->UnsafeFPMath) return 0;
449
450    // After operation legalization, it might not be legal to create new FSUBs.
451    if (LegalOperations &&
452        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
453      return 0;
454
455    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457                                    Options, Depth + 1))
458      return V;
459    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461                              Depth + 1);
462  case ISD::FSUB:
463    // We can't turn -(A-B) into B-A when we honor signed zeros.
464    if (!Options->UnsafeFPMath) return 0;
465
466    // fold (fneg (fsub A, B)) -> (fsub B, A)
467    return 1;
468
469  case ISD::FMUL:
470  case ISD::FDIV:
471    if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475                                    Options, Depth + 1))
476      return V;
477
478    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479                              Depth + 1);
480
481  case ISD::FP_EXTEND:
482  case ISD::FP_ROUND:
483  case ISD::FSIN:
484    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485                              Depth + 1);
486  }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492                                    bool LegalOperations, unsigned Depth = 0) {
493  // fneg is removable even if it has multiple uses.
494  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496  // Don't allow anything with multiple uses.
497  assert(Op.hasOneUse() && "Unknown reuse!");
498
499  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500  switch (Op.getOpcode()) {
501  default: llvm_unreachable("Unknown code");
502  case ISD::ConstantFP: {
503    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504    V.changeSign();
505    return DAG.getConstantFP(V, Op.getValueType());
506  }
507  case ISD::FADD:
508    // FIXME: determine better conditions for this xform.
509    assert(DAG.getTarget().Options.UnsafeFPMath);
510
511    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521                       GetNegatedExpression(Op.getOperand(1), DAG,
522                                            LegalOperations, Depth+1),
523                       Op.getOperand(0));
524  case ISD::FSUB:
525    // We can't turn -(A-B) into B-A when we honor signed zeros.
526    assert(DAG.getTarget().Options.UnsafeFPMath);
527
528    // fold (fneg (fsub 0, B)) -> B
529    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530      if (N0CFP->getValueAPF().isZero())
531        return Op.getOperand(1);
532
533    // fold (fneg (fsub A, B)) -> (fsub B, A)
534    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535                       Op.getOperand(1), Op.getOperand(0));
536
537  case ISD::FMUL:
538  case ISD::FDIV:
539    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543                           DAG.getTargetLoweringInfo(),
544                           &DAG.getTarget().Options, Depth+1))
545      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546                         GetNegatedExpression(Op.getOperand(0), DAG,
547                                              LegalOperations, Depth+1),
548                         Op.getOperand(1));
549
550    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552                       Op.getOperand(0),
553                       GetNegatedExpression(Op.getOperand(1), DAG,
554                                            LegalOperations, Depth+1));
555
556  case ISD::FP_EXTEND:
557  case ISD::FSIN:
558    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559                       GetNegatedExpression(Op.getOperand(0), DAG,
560                                            LegalOperations, Depth+1));
561  case ISD::FP_ROUND:
562      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563                         GetNegatedExpression(Op.getOperand(0), DAG,
564                                              LegalOperations, Depth+1),
565                         Op.getOperand(1));
566  }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking.  This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576                              SDValue &CC) {
577  if (N.getOpcode() == ISD::SETCC) {
578    LHS = N.getOperand(0);
579    RHS = N.getOperand(1);
580    CC  = N.getOperand(2);
581    return true;
582  }
583  if (N.getOpcode() == ISD::SELECT_CC &&
584      N.getOperand(2).getOpcode() == ISD::Constant &&
585      N.getOperand(3).getOpcode() == ISD::Constant &&
586      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588    LHS = N.getOperand(0);
589    RHS = N.getOperand(1);
590    CC  = N.getOperand(4);
591    return true;
592  }
593  return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use.  If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600  SDValue N0, N1, N2;
601  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602    return true;
603  return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607                                    SDValue N0, SDValue N1) {
608  EVT VT = N0.getValueType();
609  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610    if (isa<ConstantSDNode>(N1)) {
611      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612      SDValue OpNode =
613        DAG.FoldConstantArithmetic(Opc, VT,
614                                   cast<ConstantSDNode>(N0.getOperand(1)),
615                                   cast<ConstantSDNode>(N1));
616      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617    }
618    if (N0.hasOneUse()) {
619      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621                                   N0.getOperand(0), N1);
622      AddToWorkList(OpNode.getNode());
623      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624    }
625  }
626
627  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628    if (isa<ConstantSDNode>(N0)) {
629      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630      SDValue OpNode =
631        DAG.FoldConstantArithmetic(Opc, VT,
632                                   cast<ConstantSDNode>(N1.getOperand(1)),
633                                   cast<ConstantSDNode>(N0));
634      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635    }
636    if (N1.hasOneUse()) {
637      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639                                   N1.getOperand(0), N0);
640      AddToWorkList(OpNode.getNode());
641      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642    }
643  }
644
645  return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649                               bool AddTo) {
650  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651  ++NodesCombined;
652  DEBUG(dbgs() << "\nReplacing.1 ";
653        N->dump(&DAG);
654        dbgs() << "\nWith: ";
655        To[0].getNode()->dump(&DAG);
656        dbgs() << " and " << NumTo-1 << " other values\n";
657        for (unsigned i = 0, e = NumTo; i != e; ++i)
658          assert((!To[i].getNode() ||
659                  N->getValueType(i) == To[i].getValueType()) &&
660                 "Cannot combine value to value of different type!"));
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesWith(N, To);
663  if (AddTo) {
664    // Push the new nodes and any users onto the worklist
665    for (unsigned i = 0, e = NumTo; i != e; ++i) {
666      if (To[i].getNode()) {
667        AddToWorkList(To[i].getNode());
668        AddUsersToWorkList(To[i].getNode());
669      }
670    }
671  }
672
673  // Finally, if the node is now dead, remove it from the graph.  The node
674  // may not be dead if the replacement process recursively simplified to
675  // something else needing this node.
676  if (N->use_empty()) {
677    // Nodes can be reintroduced into the worklist.  Make sure we do not
678    // process a node that has been replaced.
679    removeFromWorkList(N);
680
681    // Finally, since the node is now dead, remove it from the graph.
682    DAG.DeleteNode(N);
683  }
684  return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689  // Replace all uses.  If any nodes become isomorphic to other nodes and
690  // are deleted, make sure to remove them from our worklist.
691  WorkListRemover DeadNodes(*this);
692  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694  // Push the new node and any (possibly new) users onto the worklist.
695  AddToWorkList(TLO.New.getNode());
696  AddUsersToWorkList(TLO.New.getNode());
697
698  // Finally, if the node is now dead, remove it from the graph.  The node
699  // may not be dead if the replacement process recursively simplified to
700  // something else needing this node.
701  if (TLO.Old.getNode()->use_empty()) {
702    removeFromWorkList(TLO.Old.getNode());
703
704    // If the operands of this node are only used by the node, they will now
705    // be dead.  Make sure to visit them first to delete dead nodes early.
706    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710    DAG.DeleteNode(TLO.Old.getNode());
711  }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation.  If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719  APInt KnownZero, KnownOne;
720  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721    return false;
722
723  // Revisit the node.
724  AddToWorkList(Op.getNode());
725
726  // Replace the old value with the new one.
727  ++NodesCombined;
728  DEBUG(dbgs() << "\nReplacing.2 ";
729        TLO.Old.getNode()->dump(&DAG);
730        dbgs() << "\nWith: ";
731        TLO.New.getNode()->dump(&DAG);
732        dbgs() << '\n');
733
734  CommitTargetLoweringOpt(TLO);
735  return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739  SDLoc dl(Load);
740  EVT VT = Load->getValueType(0);
741  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743  DEBUG(dbgs() << "\nReplacing.9 ";
744        Load->dump(&DAG);
745        dbgs() << "\nWith: ";
746        Trunc.getNode()->dump(&DAG);
747        dbgs() << '\n');
748  WorkListRemover DeadNodes(*this);
749  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751  removeFromWorkList(Load);
752  DAG.DeleteNode(Load);
753  AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757  Replace = false;
758  SDLoc dl(Op);
759  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760    EVT MemVT = LD->getMemoryVT();
761    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763                                                  : ISD::EXTLOAD)
764      : LD->getExtensionType();
765    Replace = true;
766    return DAG.getExtLoad(ExtType, dl, PVT,
767                          LD->getChain(), LD->getBasePtr(),
768                          MemVT, LD->getMemOperand());
769  }
770
771  unsigned Opc = Op.getOpcode();
772  switch (Opc) {
773  default: break;
774  case ISD::AssertSext:
775    return DAG.getNode(ISD::AssertSext, dl, PVT,
776                       SExtPromoteOperand(Op.getOperand(0), PVT),
777                       Op.getOperand(1));
778  case ISD::AssertZext:
779    return DAG.getNode(ISD::AssertZext, dl, PVT,
780                       ZExtPromoteOperand(Op.getOperand(0), PVT),
781                       Op.getOperand(1));
782  case ISD::Constant: {
783    unsigned ExtOpc =
784      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
785    return DAG.getNode(ExtOpc, dl, PVT, Op);
786  }
787  }
788
789  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
790    return SDValue();
791  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
792}
793
794SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
795  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
796    return SDValue();
797  EVT OldVT = Op.getValueType();
798  SDLoc dl(Op);
799  bool Replace = false;
800  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
801  if (NewOp.getNode() == 0)
802    return SDValue();
803  AddToWorkList(NewOp.getNode());
804
805  if (Replace)
806    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
807  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
808                     DAG.getValueType(OldVT));
809}
810
811SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
812  EVT OldVT = Op.getValueType();
813  SDLoc dl(Op);
814  bool Replace = false;
815  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
816  if (NewOp.getNode() == 0)
817    return SDValue();
818  AddToWorkList(NewOp.getNode());
819
820  if (Replace)
821    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
822  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
823}
824
825/// PromoteIntBinOp - Promote the specified integer binary operation if the
826/// target indicates it is beneficial. e.g. On x86, it's usually better to
827/// promote i16 operations to i32 since i16 instructions are longer.
828SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
829  if (!LegalOperations)
830    return SDValue();
831
832  EVT VT = Op.getValueType();
833  if (VT.isVector() || !VT.isInteger())
834    return SDValue();
835
836  // If operation type is 'undesirable', e.g. i16 on x86, consider
837  // promoting it.
838  unsigned Opc = Op.getOpcode();
839  if (TLI.isTypeDesirableForOp(Opc, VT))
840    return SDValue();
841
842  EVT PVT = VT;
843  // Consult target whether it is a good idea to promote this operation and
844  // what's the right type to promote it to.
845  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
846    assert(PVT != VT && "Don't know what type to promote to!");
847
848    bool Replace0 = false;
849    SDValue N0 = Op.getOperand(0);
850    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
851    if (NN0.getNode() == 0)
852      return SDValue();
853
854    bool Replace1 = false;
855    SDValue N1 = Op.getOperand(1);
856    SDValue NN1;
857    if (N0 == N1)
858      NN1 = NN0;
859    else {
860      NN1 = PromoteOperand(N1, PVT, Replace1);
861      if (NN1.getNode() == 0)
862        return SDValue();
863    }
864
865    AddToWorkList(NN0.getNode());
866    if (NN1.getNode())
867      AddToWorkList(NN1.getNode());
868
869    if (Replace0)
870      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
871    if (Replace1)
872      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
873
874    DEBUG(dbgs() << "\nPromoting ";
875          Op.getNode()->dump(&DAG));
876    SDLoc dl(Op);
877    return DAG.getNode(ISD::TRUNCATE, dl, VT,
878                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
879  }
880  return SDValue();
881}
882
883/// PromoteIntShiftOp - Promote the specified integer shift operation if the
884/// target indicates it is beneficial. e.g. On x86, it's usually better to
885/// promote i16 operations to i32 since i16 instructions are longer.
886SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
887  if (!LegalOperations)
888    return SDValue();
889
890  EVT VT = Op.getValueType();
891  if (VT.isVector() || !VT.isInteger())
892    return SDValue();
893
894  // If operation type is 'undesirable', e.g. i16 on x86, consider
895  // promoting it.
896  unsigned Opc = Op.getOpcode();
897  if (TLI.isTypeDesirableForOp(Opc, VT))
898    return SDValue();
899
900  EVT PVT = VT;
901  // Consult target whether it is a good idea to promote this operation and
902  // what's the right type to promote it to.
903  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
904    assert(PVT != VT && "Don't know what type to promote to!");
905
906    bool Replace = false;
907    SDValue N0 = Op.getOperand(0);
908    if (Opc == ISD::SRA)
909      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
910    else if (Opc == ISD::SRL)
911      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
912    else
913      N0 = PromoteOperand(N0, PVT, Replace);
914    if (N0.getNode() == 0)
915      return SDValue();
916
917    AddToWorkList(N0.getNode());
918    if (Replace)
919      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
920
921    DEBUG(dbgs() << "\nPromoting ";
922          Op.getNode()->dump(&DAG));
923    SDLoc dl(Op);
924    return DAG.getNode(ISD::TRUNCATE, dl, VT,
925                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
926  }
927  return SDValue();
928}
929
930SDValue DAGCombiner::PromoteExtend(SDValue Op) {
931  if (!LegalOperations)
932    return SDValue();
933
934  EVT VT = Op.getValueType();
935  if (VT.isVector() || !VT.isInteger())
936    return SDValue();
937
938  // If operation type is 'undesirable', e.g. i16 on x86, consider
939  // promoting it.
940  unsigned Opc = Op.getOpcode();
941  if (TLI.isTypeDesirableForOp(Opc, VT))
942    return SDValue();
943
944  EVT PVT = VT;
945  // Consult target whether it is a good idea to promote this operation and
946  // what's the right type to promote it to.
947  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948    assert(PVT != VT && "Don't know what type to promote to!");
949    // fold (aext (aext x)) -> (aext x)
950    // fold (aext (zext x)) -> (zext x)
951    // fold (aext (sext x)) -> (sext x)
952    DEBUG(dbgs() << "\nPromoting ";
953          Op.getNode()->dump(&DAG));
954    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
955  }
956  return SDValue();
957}
958
959bool DAGCombiner::PromoteLoad(SDValue Op) {
960  if (!LegalOperations)
961    return false;
962
963  EVT VT = Op.getValueType();
964  if (VT.isVector() || !VT.isInteger())
965    return false;
966
967  // If operation type is 'undesirable', e.g. i16 on x86, consider
968  // promoting it.
969  unsigned Opc = Op.getOpcode();
970  if (TLI.isTypeDesirableForOp(Opc, VT))
971    return false;
972
973  EVT PVT = VT;
974  // Consult target whether it is a good idea to promote this operation and
975  // what's the right type to promote it to.
976  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
977    assert(PVT != VT && "Don't know what type to promote to!");
978
979    SDLoc dl(Op);
980    SDNode *N = Op.getNode();
981    LoadSDNode *LD = cast<LoadSDNode>(N);
982    EVT MemVT = LD->getMemoryVT();
983    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
984      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
985                                                  : ISD::EXTLOAD)
986      : LD->getExtensionType();
987    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
988                                   LD->getChain(), LD->getBasePtr(),
989                                   MemVT, LD->getMemOperand());
990    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
991
992    DEBUG(dbgs() << "\nPromoting ";
993          N->dump(&DAG);
994          dbgs() << "\nTo: ";
995          Result.getNode()->dump(&DAG);
996          dbgs() << '\n');
997    WorkListRemover DeadNodes(*this);
998    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
999    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1000    removeFromWorkList(N);
1001    DAG.DeleteNode(N);
1002    AddToWorkList(Result.getNode());
1003    return true;
1004  }
1005  return false;
1006}
1007
1008
1009//===----------------------------------------------------------------------===//
1010//  Main DAG Combiner implementation
1011//===----------------------------------------------------------------------===//
1012
1013void DAGCombiner::Run(CombineLevel AtLevel) {
1014  // set the instance variables, so that the various visit routines may use it.
1015  Level = AtLevel;
1016  LegalOperations = Level >= AfterLegalizeVectorOps;
1017  LegalTypes = Level >= AfterLegalizeTypes;
1018
1019  // Add all the dag nodes to the worklist.
1020  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1021       E = DAG.allnodes_end(); I != E; ++I)
1022    AddToWorkList(I);
1023
1024  // Create a dummy node (which is not added to allnodes), that adds a reference
1025  // to the root node, preventing it from being deleted, and tracking any
1026  // changes of the root.
1027  HandleSDNode Dummy(DAG.getRoot());
1028
1029  // The root of the dag may dangle to deleted nodes until the dag combiner is
1030  // done.  Set it to null to avoid confusion.
1031  DAG.setRoot(SDValue());
1032
1033  // while the worklist isn't empty, find a node and
1034  // try and combine it.
1035  while (!WorkListContents.empty()) {
1036    SDNode *N;
1037    // The WorkListOrder holds the SDNodes in order, but it may contain
1038    // duplicates.
1039    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1040    // worklist *should* contain, and check the node we want to visit is should
1041    // actually be visited.
1042    do {
1043      N = WorkListOrder.pop_back_val();
1044    } while (!WorkListContents.erase(N));
1045
1046    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1047    // N is deleted from the DAG, since they too may now be dead or may have a
1048    // reduced number of uses, allowing other xforms.
1049    if (N->use_empty() && N != &Dummy) {
1050      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1051        AddToWorkList(N->getOperand(i).getNode());
1052
1053      DAG.DeleteNode(N);
1054      continue;
1055    }
1056
1057    SDValue RV = combine(N);
1058
1059    if (RV.getNode() == 0)
1060      continue;
1061
1062    ++NodesCombined;
1063
1064    // If we get back the same node we passed in, rather than a new node or
1065    // zero, we know that the node must have defined multiple values and
1066    // CombineTo was used.  Since CombineTo takes care of the worklist
1067    // mechanics for us, we have no work to do in this case.
1068    if (RV.getNode() == N)
1069      continue;
1070
1071    assert(N->getOpcode() != ISD::DELETED_NODE &&
1072           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1073           "Node was deleted but visit returned new node!");
1074
1075    DEBUG(dbgs() << "\nReplacing.3 ";
1076          N->dump(&DAG);
1077          dbgs() << "\nWith: ";
1078          RV.getNode()->dump(&DAG);
1079          dbgs() << '\n');
1080
1081    // Transfer debug value.
1082    DAG.TransferDbgValues(SDValue(N, 0), RV);
1083    WorkListRemover DeadNodes(*this);
1084    if (N->getNumValues() == RV.getNode()->getNumValues())
1085      DAG.ReplaceAllUsesWith(N, RV.getNode());
1086    else {
1087      assert(N->getValueType(0) == RV.getValueType() &&
1088             N->getNumValues() == 1 && "Type mismatch");
1089      SDValue OpV = RV;
1090      DAG.ReplaceAllUsesWith(N, &OpV);
1091    }
1092
1093    // Push the new node and any users onto the worklist
1094    AddToWorkList(RV.getNode());
1095    AddUsersToWorkList(RV.getNode());
1096
1097    // Add any uses of the old node to the worklist in case this node is the
1098    // last one that uses them.  They may become dead after this node is
1099    // deleted.
1100    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1101      AddToWorkList(N->getOperand(i).getNode());
1102
1103    // Finally, if the node is now dead, remove it from the graph.  The node
1104    // may not be dead if the replacement process recursively simplified to
1105    // something else needing this node.
1106    if (N->use_empty()) {
1107      // Nodes can be reintroduced into the worklist.  Make sure we do not
1108      // process a node that has been replaced.
1109      removeFromWorkList(N);
1110
1111      // Finally, since the node is now dead, remove it from the graph.
1112      DAG.DeleteNode(N);
1113    }
1114  }
1115
1116  // If the root changed (e.g. it was a dead load, update the root).
1117  DAG.setRoot(Dummy.getValue());
1118  DAG.RemoveDeadNodes();
1119}
1120
1121SDValue DAGCombiner::visit(SDNode *N) {
1122  switch (N->getOpcode()) {
1123  default: break;
1124  case ISD::TokenFactor:        return visitTokenFactor(N);
1125  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1126  case ISD::ADD:                return visitADD(N);
1127  case ISD::SUB:                return visitSUB(N);
1128  case ISD::ADDC:               return visitADDC(N);
1129  case ISD::SUBC:               return visitSUBC(N);
1130  case ISD::ADDE:               return visitADDE(N);
1131  case ISD::SUBE:               return visitSUBE(N);
1132  case ISD::MUL:                return visitMUL(N);
1133  case ISD::SDIV:               return visitSDIV(N);
1134  case ISD::UDIV:               return visitUDIV(N);
1135  case ISD::SREM:               return visitSREM(N);
1136  case ISD::UREM:               return visitUREM(N);
1137  case ISD::MULHU:              return visitMULHU(N);
1138  case ISD::MULHS:              return visitMULHS(N);
1139  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1140  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1141  case ISD::SMULO:              return visitSMULO(N);
1142  case ISD::UMULO:              return visitUMULO(N);
1143  case ISD::SDIVREM:            return visitSDIVREM(N);
1144  case ISD::UDIVREM:            return visitUDIVREM(N);
1145  case ISD::AND:                return visitAND(N);
1146  case ISD::OR:                 return visitOR(N);
1147  case ISD::XOR:                return visitXOR(N);
1148  case ISD::SHL:                return visitSHL(N);
1149  case ISD::SRA:                return visitSRA(N);
1150  case ISD::SRL:                return visitSRL(N);
1151  case ISD::CTLZ:               return visitCTLZ(N);
1152  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1153  case ISD::CTTZ:               return visitCTTZ(N);
1154  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1155  case ISD::CTPOP:              return visitCTPOP(N);
1156  case ISD::SELECT:             return visitSELECT(N);
1157  case ISD::VSELECT:            return visitVSELECT(N);
1158  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1159  case ISD::SETCC:              return visitSETCC(N);
1160  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1161  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1162  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1163  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1164  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1165  case ISD::BITCAST:            return visitBITCAST(N);
1166  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1167  case ISD::FADD:               return visitFADD(N);
1168  case ISD::FSUB:               return visitFSUB(N);
1169  case ISD::FMUL:               return visitFMUL(N);
1170  case ISD::FMA:                return visitFMA(N);
1171  case ISD::FDIV:               return visitFDIV(N);
1172  case ISD::FREM:               return visitFREM(N);
1173  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1174  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1175  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1176  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1177  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1178  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1179  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1180  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1181  case ISD::FNEG:               return visitFNEG(N);
1182  case ISD::FABS:               return visitFABS(N);
1183  case ISD::FFLOOR:             return visitFFLOOR(N);
1184  case ISD::FCEIL:              return visitFCEIL(N);
1185  case ISD::FTRUNC:             return visitFTRUNC(N);
1186  case ISD::BRCOND:             return visitBRCOND(N);
1187  case ISD::BR_CC:              return visitBR_CC(N);
1188  case ISD::LOAD:               return visitLOAD(N);
1189  case ISD::STORE:              return visitSTORE(N);
1190  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1191  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1192  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1193  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1194  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1195  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1196  }
1197  return SDValue();
1198}
1199
1200SDValue DAGCombiner::combine(SDNode *N) {
1201  SDValue RV = visit(N);
1202
1203  // If nothing happened, try a target-specific DAG combine.
1204  if (RV.getNode() == 0) {
1205    assert(N->getOpcode() != ISD::DELETED_NODE &&
1206           "Node was deleted but visit returned NULL!");
1207
1208    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1209        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1210
1211      // Expose the DAG combiner to the target combiner impls.
1212      TargetLowering::DAGCombinerInfo
1213        DagCombineInfo(DAG, Level, false, this);
1214
1215      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1216    }
1217  }
1218
1219  // If nothing happened still, try promoting the operation.
1220  if (RV.getNode() == 0) {
1221    switch (N->getOpcode()) {
1222    default: break;
1223    case ISD::ADD:
1224    case ISD::SUB:
1225    case ISD::MUL:
1226    case ISD::AND:
1227    case ISD::OR:
1228    case ISD::XOR:
1229      RV = PromoteIntBinOp(SDValue(N, 0));
1230      break;
1231    case ISD::SHL:
1232    case ISD::SRA:
1233    case ISD::SRL:
1234      RV = PromoteIntShiftOp(SDValue(N, 0));
1235      break;
1236    case ISD::SIGN_EXTEND:
1237    case ISD::ZERO_EXTEND:
1238    case ISD::ANY_EXTEND:
1239      RV = PromoteExtend(SDValue(N, 0));
1240      break;
1241    case ISD::LOAD:
1242      if (PromoteLoad(SDValue(N, 0)))
1243        RV = SDValue(N, 0);
1244      break;
1245    }
1246  }
1247
1248  // If N is a commutative binary node, try commuting it to enable more
1249  // sdisel CSE.
1250  if (RV.getNode() == 0 &&
1251      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1252      N->getNumValues() == 1) {
1253    SDValue N0 = N->getOperand(0);
1254    SDValue N1 = N->getOperand(1);
1255
1256    // Constant operands are canonicalized to RHS.
1257    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1258      SDValue Ops[] = { N1, N0 };
1259      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1260                                            Ops, 2);
1261      if (CSENode)
1262        return SDValue(CSENode, 0);
1263    }
1264  }
1265
1266  return RV;
1267}
1268
1269/// getInputChainForNode - Given a node, return its input chain if it has one,
1270/// otherwise return a null sd operand.
1271static SDValue getInputChainForNode(SDNode *N) {
1272  if (unsigned NumOps = N->getNumOperands()) {
1273    if (N->getOperand(0).getValueType() == MVT::Other)
1274      return N->getOperand(0);
1275    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1276      return N->getOperand(NumOps-1);
1277    for (unsigned i = 1; i < NumOps-1; ++i)
1278      if (N->getOperand(i).getValueType() == MVT::Other)
1279        return N->getOperand(i);
1280  }
1281  return SDValue();
1282}
1283
1284SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1285  // If N has two operands, where one has an input chain equal to the other,
1286  // the 'other' chain is redundant.
1287  if (N->getNumOperands() == 2) {
1288    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1289      return N->getOperand(0);
1290    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1291      return N->getOperand(1);
1292  }
1293
1294  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1295  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1296  SmallPtrSet<SDNode*, 16> SeenOps;
1297  bool Changed = false;             // If we should replace this token factor.
1298
1299  // Start out with this token factor.
1300  TFs.push_back(N);
1301
1302  // Iterate through token factors.  The TFs grows when new token factors are
1303  // encountered.
1304  for (unsigned i = 0; i < TFs.size(); ++i) {
1305    SDNode *TF = TFs[i];
1306
1307    // Check each of the operands.
1308    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1309      SDValue Op = TF->getOperand(i);
1310
1311      switch (Op.getOpcode()) {
1312      case ISD::EntryToken:
1313        // Entry tokens don't need to be added to the list. They are
1314        // rededundant.
1315        Changed = true;
1316        break;
1317
1318      case ISD::TokenFactor:
1319        if (Op.hasOneUse() &&
1320            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1321          // Queue up for processing.
1322          TFs.push_back(Op.getNode());
1323          // Clean up in case the token factor is removed.
1324          AddToWorkList(Op.getNode());
1325          Changed = true;
1326          break;
1327        }
1328        // Fall thru
1329
1330      default:
1331        // Only add if it isn't already in the list.
1332        if (SeenOps.insert(Op.getNode()))
1333          Ops.push_back(Op);
1334        else
1335          Changed = true;
1336        break;
1337      }
1338    }
1339  }
1340
1341  SDValue Result;
1342
1343  // If we've change things around then replace token factor.
1344  if (Changed) {
1345    if (Ops.empty()) {
1346      // The entry token is the only possible outcome.
1347      Result = DAG.getEntryNode();
1348    } else {
1349      // New and improved token factor.
1350      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1351                           MVT::Other, &Ops[0], Ops.size());
1352    }
1353
1354    // Don't add users to work list.
1355    return CombineTo(N, Result, false);
1356  }
1357
1358  return Result;
1359}
1360
1361/// MERGE_VALUES can always be eliminated.
1362SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1363  WorkListRemover DeadNodes(*this);
1364  // Replacing results may cause a different MERGE_VALUES to suddenly
1365  // be CSE'd with N, and carry its uses with it. Iterate until no
1366  // uses remain, to ensure that the node can be safely deleted.
1367  // First add the users of this node to the work list so that they
1368  // can be tried again once they have new operands.
1369  AddUsersToWorkList(N);
1370  do {
1371    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1372      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1373  } while (!N->use_empty());
1374  removeFromWorkList(N);
1375  DAG.DeleteNode(N);
1376  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1377}
1378
1379static
1380SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1381                              SelectionDAG &DAG) {
1382  EVT VT = N0.getValueType();
1383  SDValue N00 = N0.getOperand(0);
1384  SDValue N01 = N0.getOperand(1);
1385  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1386
1387  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1388      isa<ConstantSDNode>(N00.getOperand(1))) {
1389    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1390    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1391                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1392                                 N00.getOperand(0), N01),
1393                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1394                                 N00.getOperand(1), N01));
1395    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1396  }
1397
1398  return SDValue();
1399}
1400
1401SDValue DAGCombiner::visitADD(SDNode *N) {
1402  SDValue N0 = N->getOperand(0);
1403  SDValue N1 = N->getOperand(1);
1404  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1406  EVT VT = N0.getValueType();
1407
1408  // fold vector ops
1409  if (VT.isVector()) {
1410    SDValue FoldedVOp = SimplifyVBinOp(N);
1411    if (FoldedVOp.getNode()) return FoldedVOp;
1412
1413    // fold (add x, 0) -> x, vector edition
1414    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1415      return N0;
1416    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1417      return N1;
1418  }
1419
1420  // fold (add x, undef) -> undef
1421  if (N0.getOpcode() == ISD::UNDEF)
1422    return N0;
1423  if (N1.getOpcode() == ISD::UNDEF)
1424    return N1;
1425  // fold (add c1, c2) -> c1+c2
1426  if (N0C && N1C)
1427    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1428  // canonicalize constant to RHS
1429  if (N0C && !N1C)
1430    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1431  // fold (add x, 0) -> x
1432  if (N1C && N1C->isNullValue())
1433    return N0;
1434  // fold (add Sym, c) -> Sym+c
1435  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1436    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1437        GA->getOpcode() == ISD::GlobalAddress)
1438      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1439                                  GA->getOffset() +
1440                                    (uint64_t)N1C->getSExtValue());
1441  // fold ((c1-A)+c2) -> (c1+c2)-A
1442  if (N1C && N0.getOpcode() == ISD::SUB)
1443    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1444      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1445                         DAG.getConstant(N1C->getAPIntValue()+
1446                                         N0C->getAPIntValue(), VT),
1447                         N0.getOperand(1));
1448  // reassociate add
1449  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1450  if (RADD.getNode() != 0)
1451    return RADD;
1452  // fold ((0-A) + B) -> B-A
1453  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1454      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1455    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1456  // fold (A + (0-B)) -> A-B
1457  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1458      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1459    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1460  // fold (A+(B-A)) -> B
1461  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1462    return N1.getOperand(0);
1463  // fold ((B-A)+A) -> B
1464  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1465    return N0.getOperand(0);
1466  // fold (A+(B-(A+C))) to (B-C)
1467  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1468      N0 == N1.getOperand(1).getOperand(0))
1469    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1470                       N1.getOperand(1).getOperand(1));
1471  // fold (A+(B-(C+A))) to (B-C)
1472  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1473      N0 == N1.getOperand(1).getOperand(1))
1474    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1475                       N1.getOperand(1).getOperand(0));
1476  // fold (A+((B-A)+or-C)) to (B+or-C)
1477  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1478      N1.getOperand(0).getOpcode() == ISD::SUB &&
1479      N0 == N1.getOperand(0).getOperand(1))
1480    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1481                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1482
1483  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1484  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1485    SDValue N00 = N0.getOperand(0);
1486    SDValue N01 = N0.getOperand(1);
1487    SDValue N10 = N1.getOperand(0);
1488    SDValue N11 = N1.getOperand(1);
1489
1490    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1491      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1492                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1493                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1494  }
1495
1496  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1497    return SDValue(N, 0);
1498
1499  // fold (a+b) -> (a|b) iff a and b share no bits.
1500  if (VT.isInteger() && !VT.isVector()) {
1501    APInt LHSZero, LHSOne;
1502    APInt RHSZero, RHSOne;
1503    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1504
1505    if (LHSZero.getBoolValue()) {
1506      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1507
1508      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1509      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1510      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1511        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1512    }
1513  }
1514
1515  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1516  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1517    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1518    if (Result.getNode()) return Result;
1519  }
1520  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1521    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1522    if (Result.getNode()) return Result;
1523  }
1524
1525  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1526  if (N1.getOpcode() == ISD::SHL &&
1527      N1.getOperand(0).getOpcode() == ISD::SUB)
1528    if (ConstantSDNode *C =
1529          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1530      if (C->getAPIntValue() == 0)
1531        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1532                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1533                                       N1.getOperand(0).getOperand(1),
1534                                       N1.getOperand(1)));
1535  if (N0.getOpcode() == ISD::SHL &&
1536      N0.getOperand(0).getOpcode() == ISD::SUB)
1537    if (ConstantSDNode *C =
1538          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1539      if (C->getAPIntValue() == 0)
1540        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1541                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1542                                       N0.getOperand(0).getOperand(1),
1543                                       N0.getOperand(1)));
1544
1545  if (N1.getOpcode() == ISD::AND) {
1546    SDValue AndOp0 = N1.getOperand(0);
1547    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1548    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1549    unsigned DestBits = VT.getScalarType().getSizeInBits();
1550
1551    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1552    // and similar xforms where the inner op is either ~0 or 0.
1553    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1554      SDLoc DL(N);
1555      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1556    }
1557  }
1558
1559  // add (sext i1), X -> sub X, (zext i1)
1560  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1561      N0.getOperand(0).getValueType() == MVT::i1 &&
1562      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1563    SDLoc DL(N);
1564    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1565    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1566  }
1567
1568  return SDValue();
1569}
1570
1571SDValue DAGCombiner::visitADDC(SDNode *N) {
1572  SDValue N0 = N->getOperand(0);
1573  SDValue N1 = N->getOperand(1);
1574  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576  EVT VT = N0.getValueType();
1577
1578  // If the flag result is dead, turn this into an ADD.
1579  if (!N->hasAnyUseOfValue(1))
1580    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1581                     DAG.getNode(ISD::CARRY_FALSE,
1582                                 SDLoc(N), MVT::Glue));
1583
1584  // canonicalize constant to RHS.
1585  if (N0C && !N1C)
1586    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1587
1588  // fold (addc x, 0) -> x + no carry out
1589  if (N1C && N1C->isNullValue())
1590    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1591                                        SDLoc(N), MVT::Glue));
1592
1593  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1594  APInt LHSZero, LHSOne;
1595  APInt RHSZero, RHSOne;
1596  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1597
1598  if (LHSZero.getBoolValue()) {
1599    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1600
1601    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1602    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1603    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1604      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1605                       DAG.getNode(ISD::CARRY_FALSE,
1606                                   SDLoc(N), MVT::Glue));
1607  }
1608
1609  return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitADDE(SDNode *N) {
1613  SDValue N0 = N->getOperand(0);
1614  SDValue N1 = N->getOperand(1);
1615  SDValue CarryIn = N->getOperand(2);
1616  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1617  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1618
1619  // canonicalize constant to RHS
1620  if (N0C && !N1C)
1621    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1622                       N1, N0, CarryIn);
1623
1624  // fold (adde x, y, false) -> (addc x, y)
1625  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1626    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1627
1628  return SDValue();
1629}
1630
1631// Since it may not be valid to emit a fold to zero for vector initializers
1632// check if we can before folding.
1633static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1634                             SelectionDAG &DAG,
1635                             bool LegalOperations, bool LegalTypes) {
1636  if (!VT.isVector())
1637    return DAG.getConstant(0, VT);
1638  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1639    // Produce a vector of zeros.
1640    EVT ElemTy = VT.getVectorElementType();
1641    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1642                      TargetLowering::TypePromoteInteger)
1643      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1644    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1645           "Type for zero vector elements is not legal");
1646    SDValue El = DAG.getConstant(0, ElemTy);
1647    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1648    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1649      &Ops[0], Ops.size());
1650  }
1651  return SDValue();
1652}
1653
1654SDValue DAGCombiner::visitSUB(SDNode *N) {
1655  SDValue N0 = N->getOperand(0);
1656  SDValue N1 = N->getOperand(1);
1657  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1658  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1659  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1660    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1661  EVT VT = N0.getValueType();
1662
1663  // fold vector ops
1664  if (VT.isVector()) {
1665    SDValue FoldedVOp = SimplifyVBinOp(N);
1666    if (FoldedVOp.getNode()) return FoldedVOp;
1667
1668    // fold (sub x, 0) -> x, vector edition
1669    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1670      return N0;
1671  }
1672
1673  // fold (sub x, x) -> 0
1674  // FIXME: Refactor this and xor and other similar operations together.
1675  if (N0 == N1)
1676    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1677  // fold (sub c1, c2) -> c1-c2
1678  if (N0C && N1C)
1679    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1680  // fold (sub x, c) -> (add x, -c)
1681  if (N1C)
1682    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1683                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1684  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1685  if (N0C && N0C->isAllOnesValue())
1686    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1687  // fold A-(A-B) -> B
1688  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1689    return N1.getOperand(1);
1690  // fold (A+B)-A -> B
1691  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1692    return N0.getOperand(1);
1693  // fold (A+B)-B -> A
1694  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1695    return N0.getOperand(0);
1696  // fold C2-(A+C1) -> (C2-C1)-A
1697  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1698    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1699                                   VT);
1700    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1701                       N1.getOperand(0));
1702  }
1703  // fold ((A+(B+or-C))-B) -> A+or-C
1704  if (N0.getOpcode() == ISD::ADD &&
1705      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1706       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1707      N0.getOperand(1).getOperand(0) == N1)
1708    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1709                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1710  // fold ((A+(C+B))-B) -> A+C
1711  if (N0.getOpcode() == ISD::ADD &&
1712      N0.getOperand(1).getOpcode() == ISD::ADD &&
1713      N0.getOperand(1).getOperand(1) == N1)
1714    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1715                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1716  // fold ((A-(B-C))-C) -> A-B
1717  if (N0.getOpcode() == ISD::SUB &&
1718      N0.getOperand(1).getOpcode() == ISD::SUB &&
1719      N0.getOperand(1).getOperand(1) == N1)
1720    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1721                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1722
1723  // If either operand of a sub is undef, the result is undef
1724  if (N0.getOpcode() == ISD::UNDEF)
1725    return N0;
1726  if (N1.getOpcode() == ISD::UNDEF)
1727    return N1;
1728
1729  // If the relocation model supports it, consider symbol offsets.
1730  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1731    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1732      // fold (sub Sym, c) -> Sym-c
1733      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1734        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1735                                    GA->getOffset() -
1736                                      (uint64_t)N1C->getSExtValue());
1737      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1738      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1739        if (GA->getGlobal() == GB->getGlobal())
1740          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1741                                 VT);
1742    }
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBC(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1752  EVT VT = N0.getValueType();
1753
1754  // If the flag result is dead, turn this into an SUB.
1755  if (!N->hasAnyUseOfValue(1))
1756    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1757                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758                                 MVT::Glue));
1759
1760  // fold (subc x, x) -> 0 + no borrow
1761  if (N0 == N1)
1762    return CombineTo(N, DAG.getConstant(0, VT),
1763                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1764                                 MVT::Glue));
1765
1766  // fold (subc x, 0) -> x + no borrow
1767  if (N1C && N1C->isNullValue())
1768    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1769                                        MVT::Glue));
1770
1771  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1772  if (N0C && N0C->isAllOnesValue())
1773    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1774                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1775                                 MVT::Glue));
1776
1777  return SDValue();
1778}
1779
1780SDValue DAGCombiner::visitSUBE(SDNode *N) {
1781  SDValue N0 = N->getOperand(0);
1782  SDValue N1 = N->getOperand(1);
1783  SDValue CarryIn = N->getOperand(2);
1784
1785  // fold (sube x, y, false) -> (subc x, y)
1786  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1787    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1788
1789  return SDValue();
1790}
1791
1792/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1793/// elements are all the same constant or undefined.
1794static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1795  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1796  if (!C)
1797    return false;
1798
1799  APInt SplatUndef;
1800  unsigned SplatBitSize;
1801  bool HasAnyUndefs;
1802  EVT EltVT = N->getValueType(0).getVectorElementType();
1803  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1804                             HasAnyUndefs) &&
1805          EltVT.getSizeInBits() >= SplatBitSize);
1806}
1807
1808SDValue DAGCombiner::visitMUL(SDNode *N) {
1809  SDValue N0 = N->getOperand(0);
1810  SDValue N1 = N->getOperand(1);
1811  EVT VT = N0.getValueType();
1812
1813  // fold (mul x, undef) -> 0
1814  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1815    return DAG.getConstant(0, VT);
1816
1817  bool N0IsConst = false;
1818  bool N1IsConst = false;
1819  APInt ConstValue0, ConstValue1;
1820  // fold vector ops
1821  if (VT.isVector()) {
1822    SDValue FoldedVOp = SimplifyVBinOp(N);
1823    if (FoldedVOp.getNode()) return FoldedVOp;
1824
1825    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1826    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1827  } else {
1828    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1829    ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1830                            : APInt();
1831    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1832    ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1833                            : APInt();
1834  }
1835
1836  // fold (mul c1, c2) -> c1*c2
1837  if (N0IsConst && N1IsConst)
1838    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1839
1840  // canonicalize constant to RHS
1841  if (N0IsConst && !N1IsConst)
1842    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1843  // fold (mul x, 0) -> 0
1844  if (N1IsConst && ConstValue1 == 0)
1845    return N1;
1846  // We require a splat of the entire scalar bit width for non-contiguous
1847  // bit patterns.
1848  bool IsFullSplat =
1849    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1850  // fold (mul x, 1) -> x
1851  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1852    return N0;
1853  // fold (mul x, -1) -> 0-x
1854  if (N1IsConst && ConstValue1.isAllOnesValue())
1855    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1856                       DAG.getConstant(0, VT), N0);
1857  // fold (mul x, (1 << c)) -> x << c
1858  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1859    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1860                       DAG.getConstant(ConstValue1.logBase2(),
1861                                       getShiftAmountTy(N0.getValueType())));
1862  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1863  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1864    unsigned Log2Val = (-ConstValue1).logBase2();
1865    // FIXME: If the input is something that is easily negated (e.g. a
1866    // single-use add), we should put the negate there.
1867    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1868                       DAG.getConstant(0, VT),
1869                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1870                            DAG.getConstant(Log2Val,
1871                                      getShiftAmountTy(N0.getValueType()))));
1872  }
1873
1874  APInt Val;
1875  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1876  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1877      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1878                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1879    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1880                             N1, N0.getOperand(1));
1881    AddToWorkList(C3.getNode());
1882    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1883                       N0.getOperand(0), C3);
1884  }
1885
1886  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1887  // use.
1888  {
1889    SDValue Sh(0,0), Y(0,0);
1890    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1891    if (N0.getOpcode() == ISD::SHL &&
1892        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1893                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1894        N0.getNode()->hasOneUse()) {
1895      Sh = N0; Y = N1;
1896    } else if (N1.getOpcode() == ISD::SHL &&
1897               isa<ConstantSDNode>(N1.getOperand(1)) &&
1898               N1.getNode()->hasOneUse()) {
1899      Sh = N1; Y = N0;
1900    }
1901
1902    if (Sh.getNode()) {
1903      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1904                                Sh.getOperand(0), Y);
1905      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1906                         Mul, Sh.getOperand(1));
1907    }
1908  }
1909
1910  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1911  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1912      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1913                     isa<ConstantSDNode>(N0.getOperand(1))))
1914    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1915                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1916                                   N0.getOperand(0), N1),
1917                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1918                                   N0.getOperand(1), N1));
1919
1920  // reassociate mul
1921  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1922  if (RMUL.getNode() != 0)
1923    return RMUL;
1924
1925  return SDValue();
1926}
1927
1928SDValue DAGCombiner::visitSDIV(SDNode *N) {
1929  SDValue N0 = N->getOperand(0);
1930  SDValue N1 = N->getOperand(1);
1931  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1932  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1933  EVT VT = N->getValueType(0);
1934
1935  // fold vector ops
1936  if (VT.isVector()) {
1937    SDValue FoldedVOp = SimplifyVBinOp(N);
1938    if (FoldedVOp.getNode()) return FoldedVOp;
1939  }
1940
1941  // fold (sdiv c1, c2) -> c1/c2
1942  if (N0C && N1C && !N1C->isNullValue())
1943    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1944  // fold (sdiv X, 1) -> X
1945  if (N1C && N1C->getAPIntValue() == 1LL)
1946    return N0;
1947  // fold (sdiv X, -1) -> 0-X
1948  if (N1C && N1C->isAllOnesValue())
1949    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1950                       DAG.getConstant(0, VT), N0);
1951  // If we know the sign bits of both operands are zero, strength reduce to a
1952  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1953  if (!VT.isVector()) {
1954    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1955      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1956                         N0, N1);
1957  }
1958  // fold (sdiv X, pow2) -> simple ops after legalize
1959  if (N1C && !N1C->isNullValue() &&
1960      (N1C->getAPIntValue().isPowerOf2() ||
1961       (-N1C->getAPIntValue()).isPowerOf2())) {
1962    // If dividing by powers of two is cheap, then don't perform the following
1963    // fold.
1964    if (TLI.isPow2DivCheap())
1965      return SDValue();
1966
1967    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1968
1969    // Splat the sign bit into the register
1970    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1971                              DAG.getConstant(VT.getSizeInBits()-1,
1972                                       getShiftAmountTy(N0.getValueType())));
1973    AddToWorkList(SGN.getNode());
1974
1975    // Add (N0 < 0) ? abs2 - 1 : 0;
1976    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1977                              DAG.getConstant(VT.getSizeInBits() - lg2,
1978                                       getShiftAmountTy(SGN.getValueType())));
1979    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1980    AddToWorkList(SRL.getNode());
1981    AddToWorkList(ADD.getNode());    // Divide by pow2
1982    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1983                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1984
1985    // If we're dividing by a positive value, we're done.  Otherwise, we must
1986    // negate the result.
1987    if (N1C->getAPIntValue().isNonNegative())
1988      return SRA;
1989
1990    AddToWorkList(SRA.getNode());
1991    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1992                       DAG.getConstant(0, VT), SRA);
1993  }
1994
1995  // if integer divide is expensive and we satisfy the requirements, emit an
1996  // alternate sequence.
1997  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1998    SDValue Op = BuildSDIV(N);
1999    if (Op.getNode()) return Op;
2000  }
2001
2002  // undef / X -> 0
2003  if (N0.getOpcode() == ISD::UNDEF)
2004    return DAG.getConstant(0, VT);
2005  // X / undef -> undef
2006  if (N1.getOpcode() == ISD::UNDEF)
2007    return N1;
2008
2009  return SDValue();
2010}
2011
2012SDValue DAGCombiner::visitUDIV(SDNode *N) {
2013  SDValue N0 = N->getOperand(0);
2014  SDValue N1 = N->getOperand(1);
2015  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2017  EVT VT = N->getValueType(0);
2018
2019  // fold vector ops
2020  if (VT.isVector()) {
2021    SDValue FoldedVOp = SimplifyVBinOp(N);
2022    if (FoldedVOp.getNode()) return FoldedVOp;
2023  }
2024
2025  // fold (udiv c1, c2) -> c1/c2
2026  if (N0C && N1C && !N1C->isNullValue())
2027    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2028  // fold (udiv x, (1 << c)) -> x >>u c
2029  if (N1C && N1C->getAPIntValue().isPowerOf2())
2030    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2031                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2032                                       getShiftAmountTy(N0.getValueType())));
2033  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2034  if (N1.getOpcode() == ISD::SHL) {
2035    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2036      if (SHC->getAPIntValue().isPowerOf2()) {
2037        EVT ADDVT = N1.getOperand(1).getValueType();
2038        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2039                                  N1.getOperand(1),
2040                                  DAG.getConstant(SHC->getAPIntValue()
2041                                                                  .logBase2(),
2042                                                  ADDVT));
2043        AddToWorkList(Add.getNode());
2044        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2045      }
2046    }
2047  }
2048  // fold (udiv x, c) -> alternate
2049  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2050    SDValue Op = BuildUDIV(N);
2051    if (Op.getNode()) return Op;
2052  }
2053
2054  // undef / X -> 0
2055  if (N0.getOpcode() == ISD::UNDEF)
2056    return DAG.getConstant(0, VT);
2057  // X / undef -> undef
2058  if (N1.getOpcode() == ISD::UNDEF)
2059    return N1;
2060
2061  return SDValue();
2062}
2063
2064SDValue DAGCombiner::visitSREM(SDNode *N) {
2065  SDValue N0 = N->getOperand(0);
2066  SDValue N1 = N->getOperand(1);
2067  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2068  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2069  EVT VT = N->getValueType(0);
2070
2071  // fold (srem c1, c2) -> c1%c2
2072  if (N0C && N1C && !N1C->isNullValue())
2073    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2074  // If we know the sign bits of both operands are zero, strength reduce to a
2075  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2076  if (!VT.isVector()) {
2077    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2078      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2079  }
2080
2081  // If X/C can be simplified by the division-by-constant logic, lower
2082  // X%C to the equivalent of X-X/C*C.
2083  if (N1C && !N1C->isNullValue()) {
2084    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2085    AddToWorkList(Div.getNode());
2086    SDValue OptimizedDiv = combine(Div.getNode());
2087    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2088      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2089                                OptimizedDiv, N1);
2090      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2091      AddToWorkList(Mul.getNode());
2092      return Sub;
2093    }
2094  }
2095
2096  // undef % X -> 0
2097  if (N0.getOpcode() == ISD::UNDEF)
2098    return DAG.getConstant(0, VT);
2099  // X % undef -> undef
2100  if (N1.getOpcode() == ISD::UNDEF)
2101    return N1;
2102
2103  return SDValue();
2104}
2105
2106SDValue DAGCombiner::visitUREM(SDNode *N) {
2107  SDValue N0 = N->getOperand(0);
2108  SDValue N1 = N->getOperand(1);
2109  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2110  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2111  EVT VT = N->getValueType(0);
2112
2113  // fold (urem c1, c2) -> c1%c2
2114  if (N0C && N1C && !N1C->isNullValue())
2115    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2116  // fold (urem x, pow2) -> (and x, pow2-1)
2117  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2118    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2119                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2120  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2121  if (N1.getOpcode() == ISD::SHL) {
2122    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2123      if (SHC->getAPIntValue().isPowerOf2()) {
2124        SDValue Add =
2125          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2126                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2127                                 VT));
2128        AddToWorkList(Add.getNode());
2129        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2130      }
2131    }
2132  }
2133
2134  // If X/C can be simplified by the division-by-constant logic, lower
2135  // X%C to the equivalent of X-X/C*C.
2136  if (N1C && !N1C->isNullValue()) {
2137    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2138    AddToWorkList(Div.getNode());
2139    SDValue OptimizedDiv = combine(Div.getNode());
2140    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2141      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2142                                OptimizedDiv, N1);
2143      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2144      AddToWorkList(Mul.getNode());
2145      return Sub;
2146    }
2147  }
2148
2149  // undef % X -> 0
2150  if (N0.getOpcode() == ISD::UNDEF)
2151    return DAG.getConstant(0, VT);
2152  // X % undef -> undef
2153  if (N1.getOpcode() == ISD::UNDEF)
2154    return N1;
2155
2156  return SDValue();
2157}
2158
2159SDValue DAGCombiner::visitMULHS(SDNode *N) {
2160  SDValue N0 = N->getOperand(0);
2161  SDValue N1 = N->getOperand(1);
2162  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2163  EVT VT = N->getValueType(0);
2164  SDLoc DL(N);
2165
2166  // fold (mulhs x, 0) -> 0
2167  if (N1C && N1C->isNullValue())
2168    return N1;
2169  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2170  if (N1C && N1C->getAPIntValue() == 1)
2171    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2172                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2173                                       getShiftAmountTy(N0.getValueType())));
2174  // fold (mulhs x, undef) -> 0
2175  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2176    return DAG.getConstant(0, VT);
2177
2178  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2179  // plus a shift.
2180  if (VT.isSimple() && !VT.isVector()) {
2181    MVT Simple = VT.getSimpleVT();
2182    unsigned SimpleSize = Simple.getSizeInBits();
2183    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2184    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2185      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2186      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2187      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2188      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2189            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2190      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2191    }
2192  }
2193
2194  return SDValue();
2195}
2196
2197SDValue DAGCombiner::visitMULHU(SDNode *N) {
2198  SDValue N0 = N->getOperand(0);
2199  SDValue N1 = N->getOperand(1);
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2201  EVT VT = N->getValueType(0);
2202  SDLoc DL(N);
2203
2204  // fold (mulhu x, 0) -> 0
2205  if (N1C && N1C->isNullValue())
2206    return N1;
2207  // fold (mulhu x, 1) -> 0
2208  if (N1C && N1C->getAPIntValue() == 1)
2209    return DAG.getConstant(0, N0.getValueType());
2210  // fold (mulhu x, undef) -> 0
2211  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2212    return DAG.getConstant(0, VT);
2213
2214  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2215  // plus a shift.
2216  if (VT.isSimple() && !VT.isVector()) {
2217    MVT Simple = VT.getSimpleVT();
2218    unsigned SimpleSize = Simple.getSizeInBits();
2219    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2220    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2221      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2222      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2223      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2224      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2225            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2226      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2227    }
2228  }
2229
2230  return SDValue();
2231}
2232
2233/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2234/// compute two values. LoOp and HiOp give the opcodes for the two computations
2235/// that are being performed. Return true if a simplification was made.
2236///
2237SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2238                                                unsigned HiOp) {
2239  // If the high half is not needed, just compute the low half.
2240  bool HiExists = N->hasAnyUseOfValue(1);
2241  if (!HiExists &&
2242      (!LegalOperations ||
2243       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2244    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2245                              N->op_begin(), N->getNumOperands());
2246    return CombineTo(N, Res, Res);
2247  }
2248
2249  // If the low half is not needed, just compute the high half.
2250  bool LoExists = N->hasAnyUseOfValue(0);
2251  if (!LoExists &&
2252      (!LegalOperations ||
2253       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2254    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2255                              N->op_begin(), N->getNumOperands());
2256    return CombineTo(N, Res, Res);
2257  }
2258
2259  // If both halves are used, return as it is.
2260  if (LoExists && HiExists)
2261    return SDValue();
2262
2263  // If the two computed results can be simplified separately, separate them.
2264  if (LoExists) {
2265    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2266                             N->op_begin(), N->getNumOperands());
2267    AddToWorkList(Lo.getNode());
2268    SDValue LoOpt = combine(Lo.getNode());
2269    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2270        (!LegalOperations ||
2271         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2272      return CombineTo(N, LoOpt, LoOpt);
2273  }
2274
2275  if (HiExists) {
2276    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2277                             N->op_begin(), N->getNumOperands());
2278    AddToWorkList(Hi.getNode());
2279    SDValue HiOpt = combine(Hi.getNode());
2280    if (HiOpt.getNode() && HiOpt != Hi &&
2281        (!LegalOperations ||
2282         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2283      return CombineTo(N, HiOpt, HiOpt);
2284  }
2285
2286  return SDValue();
2287}
2288
2289SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2290  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2291  if (Res.getNode()) return Res;
2292
2293  EVT VT = N->getValueType(0);
2294  SDLoc DL(N);
2295
2296  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2297  // plus a shift.
2298  if (VT.isSimple() && !VT.isVector()) {
2299    MVT Simple = VT.getSimpleVT();
2300    unsigned SimpleSize = Simple.getSizeInBits();
2301    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2302    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2303      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2304      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2305      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2306      // Compute the high part as N1.
2307      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2308            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2309      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2310      // Compute the low part as N0.
2311      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2312      return CombineTo(N, Lo, Hi);
2313    }
2314  }
2315
2316  return SDValue();
2317}
2318
2319SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2320  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2321  if (Res.getNode()) return Res;
2322
2323  EVT VT = N->getValueType(0);
2324  SDLoc DL(N);
2325
2326  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2327  // plus a shift.
2328  if (VT.isSimple() && !VT.isVector()) {
2329    MVT Simple = VT.getSimpleVT();
2330    unsigned SimpleSize = Simple.getSizeInBits();
2331    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2332    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2333      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2334      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2335      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2336      // Compute the high part as N1.
2337      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2338            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2339      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2340      // Compute the low part as N0.
2341      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2342      return CombineTo(N, Lo, Hi);
2343    }
2344  }
2345
2346  return SDValue();
2347}
2348
2349SDValue DAGCombiner::visitSMULO(SDNode *N) {
2350  // (smulo x, 2) -> (saddo x, x)
2351  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2352    if (C2->getAPIntValue() == 2)
2353      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2354                         N->getOperand(0), N->getOperand(0));
2355
2356  return SDValue();
2357}
2358
2359SDValue DAGCombiner::visitUMULO(SDNode *N) {
2360  // (umulo x, 2) -> (uaddo x, x)
2361  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2362    if (C2->getAPIntValue() == 2)
2363      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2364                         N->getOperand(0), N->getOperand(0));
2365
2366  return SDValue();
2367}
2368
2369SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2370  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2371  if (Res.getNode()) return Res;
2372
2373  return SDValue();
2374}
2375
2376SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2377  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2378  if (Res.getNode()) return Res;
2379
2380  return SDValue();
2381}
2382
2383/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2384/// two operands of the same opcode, try to simplify it.
2385SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2386  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2387  EVT VT = N0.getValueType();
2388  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2389
2390  // Bail early if none of these transforms apply.
2391  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2392
2393  // For each of OP in AND/OR/XOR:
2394  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2395  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2396  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2397  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2398  //
2399  // do not sink logical op inside of a vector extend, since it may combine
2400  // into a vsetcc.
2401  EVT Op0VT = N0.getOperand(0).getValueType();
2402  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2403       N0.getOpcode() == ISD::SIGN_EXTEND ||
2404       // Avoid infinite looping with PromoteIntBinOp.
2405       (N0.getOpcode() == ISD::ANY_EXTEND &&
2406        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2407       (N0.getOpcode() == ISD::TRUNCATE &&
2408        (!TLI.isZExtFree(VT, Op0VT) ||
2409         !TLI.isTruncateFree(Op0VT, VT)) &&
2410        TLI.isTypeLegal(Op0VT))) &&
2411      !VT.isVector() &&
2412      Op0VT == N1.getOperand(0).getValueType() &&
2413      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2414    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2415                                 N0.getOperand(0).getValueType(),
2416                                 N0.getOperand(0), N1.getOperand(0));
2417    AddToWorkList(ORNode.getNode());
2418    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2419  }
2420
2421  // For each of OP in SHL/SRL/SRA/AND...
2422  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2423  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2424  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2425  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2426       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2427      N0.getOperand(1) == N1.getOperand(1)) {
2428    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2429                                 N0.getOperand(0).getValueType(),
2430                                 N0.getOperand(0), N1.getOperand(0));
2431    AddToWorkList(ORNode.getNode());
2432    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2433                       ORNode, N0.getOperand(1));
2434  }
2435
2436  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2437  // Only perform this optimization after type legalization and before
2438  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2439  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2440  // we don't want to undo this promotion.
2441  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2442  // on scalars.
2443  if ((N0.getOpcode() == ISD::BITCAST ||
2444       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2445      Level == AfterLegalizeTypes) {
2446    SDValue In0 = N0.getOperand(0);
2447    SDValue In1 = N1.getOperand(0);
2448    EVT In0Ty = In0.getValueType();
2449    EVT In1Ty = In1.getValueType();
2450    SDLoc DL(N);
2451    // If both incoming values are integers, and the original types are the
2452    // same.
2453    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2454      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2455      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2456      AddToWorkList(Op.getNode());
2457      return BC;
2458    }
2459  }
2460
2461  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2462  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2463  // If both shuffles use the same mask, and both shuffle within a single
2464  // vector, then it is worthwhile to move the swizzle after the operation.
2465  // The type-legalizer generates this pattern when loading illegal
2466  // vector types from memory. In many cases this allows additional shuffle
2467  // optimizations.
2468  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2469      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2470      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2471    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2472    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2473
2474    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2475           "Inputs to shuffles are not the same type");
2476
2477    unsigned NumElts = VT.getVectorNumElements();
2478
2479    // Check that both shuffles use the same mask. The masks are known to be of
2480    // the same length because the result vector type is the same.
2481    bool SameMask = true;
2482    for (unsigned i = 0; i != NumElts; ++i) {
2483      int Idx0 = SVN0->getMaskElt(i);
2484      int Idx1 = SVN1->getMaskElt(i);
2485      if (Idx0 != Idx1) {
2486        SameMask = false;
2487        break;
2488      }
2489    }
2490
2491    if (SameMask) {
2492      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2493                               N0.getOperand(0), N1.getOperand(0));
2494      AddToWorkList(Op.getNode());
2495      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2496                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2497    }
2498  }
2499
2500  return SDValue();
2501}
2502
2503SDValue DAGCombiner::visitAND(SDNode *N) {
2504  SDValue N0 = N->getOperand(0);
2505  SDValue N1 = N->getOperand(1);
2506  SDValue LL, LR, RL, RR, CC0, CC1;
2507  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2508  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2509  EVT VT = N1.getValueType();
2510  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2511
2512  // fold vector ops
2513  if (VT.isVector()) {
2514    SDValue FoldedVOp = SimplifyVBinOp(N);
2515    if (FoldedVOp.getNode()) return FoldedVOp;
2516
2517    // fold (and x, 0) -> 0, vector edition
2518    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2519      return N0;
2520    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2521      return N1;
2522
2523    // fold (and x, -1) -> x, vector edition
2524    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2525      return N1;
2526    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2527      return N0;
2528  }
2529
2530  // fold (and x, undef) -> 0
2531  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2532    return DAG.getConstant(0, VT);
2533  // fold (and c1, c2) -> c1&c2
2534  if (N0C && N1C)
2535    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2536  // canonicalize constant to RHS
2537  if (N0C && !N1C)
2538    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2539  // fold (and x, -1) -> x
2540  if (N1C && N1C->isAllOnesValue())
2541    return N0;
2542  // if (and x, c) is known to be zero, return 0
2543  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2544                                   APInt::getAllOnesValue(BitWidth)))
2545    return DAG.getConstant(0, VT);
2546  // reassociate and
2547  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2548  if (RAND.getNode() != 0)
2549    return RAND;
2550  // fold (and (or x, C), D) -> D if (C & D) == D
2551  if (N1C && N0.getOpcode() == ISD::OR)
2552    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2553      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2554        return N1;
2555  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2556  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2557    SDValue N0Op0 = N0.getOperand(0);
2558    APInt Mask = ~N1C->getAPIntValue();
2559    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2560    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2561      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2562                                 N0.getValueType(), N0Op0);
2563
2564      // Replace uses of the AND with uses of the Zero extend node.
2565      CombineTo(N, Zext);
2566
2567      // We actually want to replace all uses of the any_extend with the
2568      // zero_extend, to avoid duplicating things.  This will later cause this
2569      // AND to be folded.
2570      CombineTo(N0.getNode(), Zext);
2571      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2572    }
2573  }
2574  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2575  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2576  // already be zero by virtue of the width of the base type of the load.
2577  //
2578  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2579  // more cases.
2580  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2581       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2582      N0.getOpcode() == ISD::LOAD) {
2583    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2584                                         N0 : N0.getOperand(0) );
2585
2586    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2587    // This can be a pure constant or a vector splat, in which case we treat the
2588    // vector as a scalar and use the splat value.
2589    APInt Constant = APInt::getNullValue(1);
2590    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2591      Constant = C->getAPIntValue();
2592    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2593      APInt SplatValue, SplatUndef;
2594      unsigned SplatBitSize;
2595      bool HasAnyUndefs;
2596      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2597                                             SplatBitSize, HasAnyUndefs);
2598      if (IsSplat) {
2599        // Undef bits can contribute to a possible optimisation if set, so
2600        // set them.
2601        SplatValue |= SplatUndef;
2602
2603        // The splat value may be something like "0x00FFFFFF", which means 0 for
2604        // the first vector value and FF for the rest, repeating. We need a mask
2605        // that will apply equally to all members of the vector, so AND all the
2606        // lanes of the constant together.
2607        EVT VT = Vector->getValueType(0);
2608        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2609
2610        // If the splat value has been compressed to a bitlength lower
2611        // than the size of the vector lane, we need to re-expand it to
2612        // the lane size.
2613        if (BitWidth > SplatBitSize)
2614          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2615               SplatBitSize < BitWidth;
2616               SplatBitSize = SplatBitSize * 2)
2617            SplatValue |= SplatValue.shl(SplatBitSize);
2618
2619        Constant = APInt::getAllOnesValue(BitWidth);
2620        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2621          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2622      }
2623    }
2624
2625    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2626    // actually legal and isn't going to get expanded, else this is a false
2627    // optimisation.
2628    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2629                                                    Load->getMemoryVT());
2630
2631    // Resize the constant to the same size as the original memory access before
2632    // extension. If it is still the AllOnesValue then this AND is completely
2633    // unneeded.
2634    Constant =
2635      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2636
2637    bool B;
2638    switch (Load->getExtensionType()) {
2639    default: B = false; break;
2640    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2641    case ISD::ZEXTLOAD:
2642    case ISD::NON_EXTLOAD: B = true; break;
2643    }
2644
2645    if (B && Constant.isAllOnesValue()) {
2646      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2647      // preserve semantics once we get rid of the AND.
2648      SDValue NewLoad(Load, 0);
2649      if (Load->getExtensionType() == ISD::EXTLOAD) {
2650        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2651                              Load->getValueType(0), SDLoc(Load),
2652                              Load->getChain(), Load->getBasePtr(),
2653                              Load->getOffset(), Load->getMemoryVT(),
2654                              Load->getMemOperand());
2655        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2656        if (Load->getNumValues() == 3) {
2657          // PRE/POST_INC loads have 3 values.
2658          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2659                           NewLoad.getValue(2) };
2660          CombineTo(Load, To, 3, true);
2661        } else {
2662          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2663        }
2664      }
2665
2666      // Fold the AND away, taking care not to fold to the old load node if we
2667      // replaced it.
2668      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2669
2670      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2671    }
2672  }
2673  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2674  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2675    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2676    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2677
2678    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2679        LL.getValueType().isInteger()) {
2680      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2681      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2682        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2683                                     LR.getValueType(), LL, RL);
2684        AddToWorkList(ORNode.getNode());
2685        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2686      }
2687      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2688      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2689        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2690                                      LR.getValueType(), LL, RL);
2691        AddToWorkList(ANDNode.getNode());
2692        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2693      }
2694      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2695      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2696        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2697                                     LR.getValueType(), LL, RL);
2698        AddToWorkList(ORNode.getNode());
2699        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2700      }
2701    }
2702    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2703    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2704        Op0 == Op1 && LL.getValueType().isInteger() &&
2705      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2706                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2707                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2708                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2709      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2710                                    LL, DAG.getConstant(1, LL.getValueType()));
2711      AddToWorkList(ADDNode.getNode());
2712      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2713                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2714    }
2715    // canonicalize equivalent to ll == rl
2716    if (LL == RR && LR == RL) {
2717      Op1 = ISD::getSetCCSwappedOperands(Op1);
2718      std::swap(RL, RR);
2719    }
2720    if (LL == RL && LR == RR) {
2721      bool isInteger = LL.getValueType().isInteger();
2722      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2723      if (Result != ISD::SETCC_INVALID &&
2724          (!LegalOperations ||
2725           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2726            TLI.isOperationLegal(ISD::SETCC,
2727                            getSetCCResultType(N0.getSimpleValueType())))))
2728        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2729                            LL, LR, Result);
2730    }
2731  }
2732
2733  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2734  if (N0.getOpcode() == N1.getOpcode()) {
2735    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2736    if (Tmp.getNode()) return Tmp;
2737  }
2738
2739  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2740  // fold (and (sra)) -> (and (srl)) when possible.
2741  if (!VT.isVector() &&
2742      SimplifyDemandedBits(SDValue(N, 0)))
2743    return SDValue(N, 0);
2744
2745  // fold (zext_inreg (extload x)) -> (zextload x)
2746  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2747    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2748    EVT MemVT = LN0->getMemoryVT();
2749    // If we zero all the possible extended bits, then we can turn this into
2750    // a zextload if we are running before legalize or the operation is legal.
2751    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2752    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2753                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2754        ((!LegalOperations && !LN0->isVolatile()) ||
2755         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2756      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2757                                       LN0->getChain(), LN0->getBasePtr(),
2758                                       MemVT, LN0->getMemOperand());
2759      AddToWorkList(N);
2760      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2761      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2762    }
2763  }
2764  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2765  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2766      N0.hasOneUse()) {
2767    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2768    EVT MemVT = LN0->getMemoryVT();
2769    // If we zero all the possible extended bits, then we can turn this into
2770    // a zextload if we are running before legalize or the operation is legal.
2771    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2772    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2773                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2774        ((!LegalOperations && !LN0->isVolatile()) ||
2775         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2776      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2777                                       LN0->getChain(), LN0->getBasePtr(),
2778                                       MemVT, LN0->getMemOperand());
2779      AddToWorkList(N);
2780      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2781      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2782    }
2783  }
2784
2785  // fold (and (load x), 255) -> (zextload x, i8)
2786  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2787  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2788  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2789              (N0.getOpcode() == ISD::ANY_EXTEND &&
2790               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2791    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2792    LoadSDNode *LN0 = HasAnyExt
2793      ? cast<LoadSDNode>(N0.getOperand(0))
2794      : cast<LoadSDNode>(N0);
2795    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2796        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2797      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2798      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2799        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2800        EVT LoadedVT = LN0->getMemoryVT();
2801
2802        if (ExtVT == LoadedVT &&
2803            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2804          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2805
2806          SDValue NewLoad =
2807            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2808                           LN0->getChain(), LN0->getBasePtr(), ExtVT,
2809                           LN0->getMemOperand());
2810          AddToWorkList(N);
2811          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2812          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2813        }
2814
2815        // Do not change the width of a volatile load.
2816        // Do not generate loads of non-round integer types since these can
2817        // be expensive (and would be wrong if the type is not byte sized).
2818        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2819            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2820          EVT PtrType = LN0->getOperand(1).getValueType();
2821
2822          unsigned Alignment = LN0->getAlignment();
2823          SDValue NewPtr = LN0->getBasePtr();
2824
2825          // For big endian targets, we need to add an offset to the pointer
2826          // to load the correct bytes.  For little endian systems, we merely
2827          // need to read fewer bytes from the same pointer.
2828          if (TLI.isBigEndian()) {
2829            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2830            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2831            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2832            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2833                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2834            Alignment = MinAlign(Alignment, PtrOff);
2835          }
2836
2837          AddToWorkList(NewPtr.getNode());
2838
2839          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2840          SDValue Load =
2841            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2842                           LN0->getChain(), NewPtr,
2843                           LN0->getPointerInfo(),
2844                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2845                           Alignment, LN0->getTBAAInfo());
2846          AddToWorkList(N);
2847          CombineTo(LN0, Load, Load.getValue(1));
2848          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2849        }
2850      }
2851    }
2852  }
2853
2854  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2855      VT.getSizeInBits() <= 64) {
2856    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2857      APInt ADDC = ADDI->getAPIntValue();
2858      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2859        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2860        // immediate for an add, but it is legal if its top c2 bits are set,
2861        // transform the ADD so the immediate doesn't need to be materialized
2862        // in a register.
2863        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2864          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2865                                             SRLI->getZExtValue());
2866          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2867            ADDC |= Mask;
2868            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2869              SDValue NewAdd =
2870                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2871                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2872              CombineTo(N0.getNode(), NewAdd);
2873              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2874            }
2875          }
2876        }
2877      }
2878    }
2879  }
2880
2881  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2882  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2883    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2884                                       N0.getOperand(1), false);
2885    if (BSwap.getNode())
2886      return BSwap;
2887  }
2888
2889  return SDValue();
2890}
2891
2892/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2893///
2894SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2895                                        bool DemandHighBits) {
2896  if (!LegalOperations)
2897    return SDValue();
2898
2899  EVT VT = N->getValueType(0);
2900  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2901    return SDValue();
2902  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2903    return SDValue();
2904
2905  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2906  bool LookPassAnd0 = false;
2907  bool LookPassAnd1 = false;
2908  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2909      std::swap(N0, N1);
2910  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2911      std::swap(N0, N1);
2912  if (N0.getOpcode() == ISD::AND) {
2913    if (!N0.getNode()->hasOneUse())
2914      return SDValue();
2915    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2916    if (!N01C || N01C->getZExtValue() != 0xFF00)
2917      return SDValue();
2918    N0 = N0.getOperand(0);
2919    LookPassAnd0 = true;
2920  }
2921
2922  if (N1.getOpcode() == ISD::AND) {
2923    if (!N1.getNode()->hasOneUse())
2924      return SDValue();
2925    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2926    if (!N11C || N11C->getZExtValue() != 0xFF)
2927      return SDValue();
2928    N1 = N1.getOperand(0);
2929    LookPassAnd1 = true;
2930  }
2931
2932  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2933    std::swap(N0, N1);
2934  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2935    return SDValue();
2936  if (!N0.getNode()->hasOneUse() ||
2937      !N1.getNode()->hasOneUse())
2938    return SDValue();
2939
2940  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2941  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2942  if (!N01C || !N11C)
2943    return SDValue();
2944  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2945    return SDValue();
2946
2947  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2948  SDValue N00 = N0->getOperand(0);
2949  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2950    if (!N00.getNode()->hasOneUse())
2951      return SDValue();
2952    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2953    if (!N001C || N001C->getZExtValue() != 0xFF)
2954      return SDValue();
2955    N00 = N00.getOperand(0);
2956    LookPassAnd0 = true;
2957  }
2958
2959  SDValue N10 = N1->getOperand(0);
2960  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2961    if (!N10.getNode()->hasOneUse())
2962      return SDValue();
2963    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2964    if (!N101C || N101C->getZExtValue() != 0xFF00)
2965      return SDValue();
2966    N10 = N10.getOperand(0);
2967    LookPassAnd1 = true;
2968  }
2969
2970  if (N00 != N10)
2971    return SDValue();
2972
2973  // Make sure everything beyond the low halfword gets set to zero since the SRL
2974  // 16 will clear the top bits.
2975  unsigned OpSizeInBits = VT.getSizeInBits();
2976  if (DemandHighBits && OpSizeInBits > 16) {
2977    // If the left-shift isn't masked out then the only way this is a bswap is
2978    // if all bits beyond the low 8 are 0. In that case the entire pattern
2979    // reduces to a left shift anyway: leave it for other parts of the combiner.
2980    if (!LookPassAnd0)
2981      return SDValue();
2982
2983    // However, if the right shift isn't masked out then it might be because
2984    // it's not needed. See if we can spot that too.
2985    if (!LookPassAnd1 &&
2986        !DAG.MaskedValueIsZero(
2987            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2988      return SDValue();
2989  }
2990
2991  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2992  if (OpSizeInBits > 16)
2993    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2994                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2995  return Res;
2996}
2997
2998/// isBSwapHWordElement - Return true if the specified node is an element
2999/// that makes up a 32-bit packed halfword byteswap. i.e.
3000/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3001static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
3002  if (!N.getNode()->hasOneUse())
3003    return false;
3004
3005  unsigned Opc = N.getOpcode();
3006  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3007    return false;
3008
3009  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3010  if (!N1C)
3011    return false;
3012
3013  unsigned Num;
3014  switch (N1C->getZExtValue()) {
3015  default:
3016    return false;
3017  case 0xFF:       Num = 0; break;
3018  case 0xFF00:     Num = 1; break;
3019  case 0xFF0000:   Num = 2; break;
3020  case 0xFF000000: Num = 3; break;
3021  }
3022
3023  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3024  SDValue N0 = N.getOperand(0);
3025  if (Opc == ISD::AND) {
3026    if (Num == 0 || Num == 2) {
3027      // (x >> 8) & 0xff
3028      // (x >> 8) & 0xff0000
3029      if (N0.getOpcode() != ISD::SRL)
3030        return false;
3031      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3032      if (!C || C->getZExtValue() != 8)
3033        return false;
3034    } else {
3035      // (x << 8) & 0xff00
3036      // (x << 8) & 0xff000000
3037      if (N0.getOpcode() != ISD::SHL)
3038        return false;
3039      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3040      if (!C || C->getZExtValue() != 8)
3041        return false;
3042    }
3043  } else if (Opc == ISD::SHL) {
3044    // (x & 0xff) << 8
3045    // (x & 0xff0000) << 8
3046    if (Num != 0 && Num != 2)
3047      return false;
3048    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3049    if (!C || C->getZExtValue() != 8)
3050      return false;
3051  } else { // Opc == ISD::SRL
3052    // (x & 0xff00) >> 8
3053    // (x & 0xff000000) >> 8
3054    if (Num != 1 && Num != 3)
3055      return false;
3056    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3057    if (!C || C->getZExtValue() != 8)
3058      return false;
3059  }
3060
3061  if (Parts[Num])
3062    return false;
3063
3064  Parts[Num] = N0.getOperand(0).getNode();
3065  return true;
3066}
3067
3068/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3069/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3070/// => (rotl (bswap x), 16)
3071SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3072  if (!LegalOperations)
3073    return SDValue();
3074
3075  EVT VT = N->getValueType(0);
3076  if (VT != MVT::i32)
3077    return SDValue();
3078  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3079    return SDValue();
3080
3081  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3082  // Look for either
3083  // (or (or (and), (and)), (or (and), (and)))
3084  // (or (or (or (and), (and)), (and)), (and))
3085  if (N0.getOpcode() != ISD::OR)
3086    return SDValue();
3087  SDValue N00 = N0.getOperand(0);
3088  SDValue N01 = N0.getOperand(1);
3089
3090  if (N1.getOpcode() == ISD::OR &&
3091      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3092    // (or (or (and), (and)), (or (and), (and)))
3093    SDValue N000 = N00.getOperand(0);
3094    if (!isBSwapHWordElement(N000, Parts))
3095      return SDValue();
3096
3097    SDValue N001 = N00.getOperand(1);
3098    if (!isBSwapHWordElement(N001, Parts))
3099      return SDValue();
3100    SDValue N010 = N01.getOperand(0);
3101    if (!isBSwapHWordElement(N010, Parts))
3102      return SDValue();
3103    SDValue N011 = N01.getOperand(1);
3104    if (!isBSwapHWordElement(N011, Parts))
3105      return SDValue();
3106  } else {
3107    // (or (or (or (and), (and)), (and)), (and))
3108    if (!isBSwapHWordElement(N1, Parts))
3109      return SDValue();
3110    if (!isBSwapHWordElement(N01, Parts))
3111      return SDValue();
3112    if (N00.getOpcode() != ISD::OR)
3113      return SDValue();
3114    SDValue N000 = N00.getOperand(0);
3115    if (!isBSwapHWordElement(N000, Parts))
3116      return SDValue();
3117    SDValue N001 = N00.getOperand(1);
3118    if (!isBSwapHWordElement(N001, Parts))
3119      return SDValue();
3120  }
3121
3122  // Make sure the parts are all coming from the same node.
3123  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3124    return SDValue();
3125
3126  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3127                              SDValue(Parts[0],0));
3128
3129  // Result of the bswap should be rotated by 16. If it's not legal, then
3130  // do  (x << 16) | (x >> 16).
3131  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3132  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3133    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3134  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3135    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3136  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3137                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3138                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3139}
3140
3141SDValue DAGCombiner::visitOR(SDNode *N) {
3142  SDValue N0 = N->getOperand(0);
3143  SDValue N1 = N->getOperand(1);
3144  SDValue LL, LR, RL, RR, CC0, CC1;
3145  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3146  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3147  EVT VT = N1.getValueType();
3148
3149  // fold vector ops
3150  if (VT.isVector()) {
3151    SDValue FoldedVOp = SimplifyVBinOp(N);
3152    if (FoldedVOp.getNode()) return FoldedVOp;
3153
3154    // fold (or x, 0) -> x, vector edition
3155    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3156      return N1;
3157    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3158      return N0;
3159
3160    // fold (or x, -1) -> -1, vector edition
3161    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3162      return N0;
3163    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3164      return N1;
3165  }
3166
3167  // fold (or x, undef) -> -1
3168  if (!LegalOperations &&
3169      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3170    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3171    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3172  }
3173  // fold (or c1, c2) -> c1|c2
3174  if (N0C && N1C)
3175    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3176  // canonicalize constant to RHS
3177  if (N0C && !N1C)
3178    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3179  // fold (or x, 0) -> x
3180  if (N1C && N1C->isNullValue())
3181    return N0;
3182  // fold (or x, -1) -> -1
3183  if (N1C && N1C->isAllOnesValue())
3184    return N1;
3185  // fold (or x, c) -> c iff (x & ~c) == 0
3186  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3187    return N1;
3188
3189  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3190  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3191  if (BSwap.getNode() != 0)
3192    return BSwap;
3193  BSwap = MatchBSwapHWordLow(N, N0, N1);
3194  if (BSwap.getNode() != 0)
3195    return BSwap;
3196
3197  // reassociate or
3198  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3199  if (ROR.getNode() != 0)
3200    return ROR;
3201  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3202  // iff (c1 & c2) == 0.
3203  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3204             isa<ConstantSDNode>(N0.getOperand(1))) {
3205    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3206    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3207      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3208                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3209                                     N0.getOperand(0), N1),
3210                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3211  }
3212  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3213  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3214    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3215    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3216
3217    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3218        LL.getValueType().isInteger()) {
3219      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3220      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3221      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3222          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3223        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3224                                     LR.getValueType(), LL, RL);
3225        AddToWorkList(ORNode.getNode());
3226        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3227      }
3228      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3229      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3230      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3231          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3232        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3233                                      LR.getValueType(), LL, RL);
3234        AddToWorkList(ANDNode.getNode());
3235        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3236      }
3237    }
3238    // canonicalize equivalent to ll == rl
3239    if (LL == RR && LR == RL) {
3240      Op1 = ISD::getSetCCSwappedOperands(Op1);
3241      std::swap(RL, RR);
3242    }
3243    if (LL == RL && LR == RR) {
3244      bool isInteger = LL.getValueType().isInteger();
3245      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3246      if (Result != ISD::SETCC_INVALID &&
3247          (!LegalOperations ||
3248           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3249            TLI.isOperationLegal(ISD::SETCC,
3250              getSetCCResultType(N0.getValueType())))))
3251        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3252                            LL, LR, Result);
3253    }
3254  }
3255
3256  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3257  if (N0.getOpcode() == N1.getOpcode()) {
3258    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3259    if (Tmp.getNode()) return Tmp;
3260  }
3261
3262  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3263  if (N0.getOpcode() == ISD::AND &&
3264      N1.getOpcode() == ISD::AND &&
3265      N0.getOperand(1).getOpcode() == ISD::Constant &&
3266      N1.getOperand(1).getOpcode() == ISD::Constant &&
3267      // Don't increase # computations.
3268      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3269    // We can only do this xform if we know that bits from X that are set in C2
3270    // but not in C1 are already zero.  Likewise for Y.
3271    const APInt &LHSMask =
3272      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3273    const APInt &RHSMask =
3274      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3275
3276    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3277        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3278      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3279                              N0.getOperand(0), N1.getOperand(0));
3280      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3281                         DAG.getConstant(LHSMask | RHSMask, VT));
3282    }
3283  }
3284
3285  // See if this is some rotate idiom.
3286  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3287    return SDValue(Rot, 0);
3288
3289  // Simplify the operands using demanded-bits information.
3290  if (!VT.isVector() &&
3291      SimplifyDemandedBits(SDValue(N, 0)))
3292    return SDValue(N, 0);
3293
3294  return SDValue();
3295}
3296
3297/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3298static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3299  if (Op.getOpcode() == ISD::AND) {
3300    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3301      Mask = Op.getOperand(1);
3302      Op = Op.getOperand(0);
3303    } else {
3304      return false;
3305    }
3306  }
3307
3308  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3309    Shift = Op;
3310    return true;
3311  }
3312
3313  return false;
3314}
3315
3316// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3317// idioms for rotate, and if the target supports rotation instructions, generate
3318// a rot[lr].
3319SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3320  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3321  EVT VT = LHS.getValueType();
3322  if (!TLI.isTypeLegal(VT)) return 0;
3323
3324  // The target must have at least one rotate flavor.
3325  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3326  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3327  if (!HasROTL && !HasROTR) return 0;
3328
3329  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3330  SDValue LHSShift;   // The shift.
3331  SDValue LHSMask;    // AND value if any.
3332  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3333    return 0; // Not part of a rotate.
3334
3335  SDValue RHSShift;   // The shift.
3336  SDValue RHSMask;    // AND value if any.
3337  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3338    return 0; // Not part of a rotate.
3339
3340  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3341    return 0;   // Not shifting the same value.
3342
3343  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3344    return 0;   // Shifts must disagree.
3345
3346  // Canonicalize shl to left side in a shl/srl pair.
3347  if (RHSShift.getOpcode() == ISD::SHL) {
3348    std::swap(LHS, RHS);
3349    std::swap(LHSShift, RHSShift);
3350    std::swap(LHSMask , RHSMask );
3351  }
3352
3353  unsigned OpSizeInBits = VT.getSizeInBits();
3354  SDValue LHSShiftArg = LHSShift.getOperand(0);
3355  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3356  SDValue RHSShiftArg = RHSShift.getOperand(0);
3357  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3358
3359  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3360  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3361  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3362      RHSShiftAmt.getOpcode() == ISD::Constant) {
3363    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3364    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3365    if ((LShVal + RShVal) != OpSizeInBits)
3366      return 0;
3367
3368    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3369                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3370
3371    // If there is an AND of either shifted operand, apply it to the result.
3372    if (LHSMask.getNode() || RHSMask.getNode()) {
3373      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3374
3375      if (LHSMask.getNode()) {
3376        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3377        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3378      }
3379      if (RHSMask.getNode()) {
3380        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3381        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3382      }
3383
3384      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3385    }
3386
3387    return Rot.getNode();
3388  }
3389
3390  // If there is a mask here, and we have a variable shift, we can't be sure
3391  // that we're masking out the right stuff.
3392  if (LHSMask.getNode() || RHSMask.getNode())
3393    return 0;
3394
3395  // If the shift amount is sign/zext/any-extended just peel it off.
3396  SDValue LExtOp0 = LHSShiftAmt;
3397  SDValue RExtOp0 = RHSShiftAmt;
3398  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3399       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3400       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3401       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3402      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3403       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3404       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3405       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3406    LExtOp0 = LHSShiftAmt.getOperand(0);
3407    RExtOp0 = RHSShiftAmt.getOperand(0);
3408  }
3409
3410  if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3411    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3412    //   (rotl x, y)
3413    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3414    //   (rotr x, (sub 32, y))
3415    if (ConstantSDNode *SUBC =
3416            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3417      if (SUBC->getAPIntValue() == OpSizeInBits) {
3418        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3419                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3420      } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3421                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3422        // fold (or (shl (*ext x), (*ext y)),
3423        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3424        //   (*ext (rotl x, y))
3425        // fold (or (shl (*ext x), (*ext y)),
3426        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3427        //   (*ext (rotr x, (sub 32, y)))
3428        SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3429        EVT LArgVT = LArgExtOp0.getValueType();
3430        bool HasROTRWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTR, LArgVT);
3431        bool HasROTLWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTL, LArgVT);
3432        if (HasROTRWithLArg || HasROTLWithLArg) {
3433          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3434            SDValue V =
3435                DAG.getNode(HasROTLWithLArg ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3436                            LArgExtOp0, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3437            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3438          }
3439        }
3440      }
3441    }
3442  } else if (LExtOp0.getOpcode() == ISD::SUB &&
3443             RExtOp0 == LExtOp0.getOperand(1)) {
3444    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3445    //   (rotr x, y)
3446    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3447    //   (rotl x, (sub 32, y))
3448    if (ConstantSDNode *SUBC =
3449            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3450      if (SUBC->getAPIntValue() == OpSizeInBits) {
3451        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3452                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3453      } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3454                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3455        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3456        //          (srl (*ext x), (*ext y))) ->
3457        //   (*ext (rotl x, y))
3458        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3459        //          (srl (*ext x), (*ext y))) ->
3460        //   (*ext (rotr x, (sub 32, y)))
3461        SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3462        EVT RArgVT = RArgExtOp0.getValueType();
3463        bool HasROTRWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTR, RArgVT);
3464        bool HasROTLWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTL, RArgVT);
3465        if (HasROTRWithRArg || HasROTLWithRArg) {
3466          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3467            SDValue V =
3468                DAG.getNode(HasROTRWithRArg ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3469                            RArgExtOp0, HasROTR ? RHSShiftAmt : LHSShiftAmt);
3470            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3471          }
3472        }
3473      }
3474    }
3475  }
3476
3477  return 0;
3478}
3479
3480SDValue DAGCombiner::visitXOR(SDNode *N) {
3481  SDValue N0 = N->getOperand(0);
3482  SDValue N1 = N->getOperand(1);
3483  SDValue LHS, RHS, CC;
3484  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3485  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3486  EVT VT = N0.getValueType();
3487
3488  // fold vector ops
3489  if (VT.isVector()) {
3490    SDValue FoldedVOp = SimplifyVBinOp(N);
3491    if (FoldedVOp.getNode()) return FoldedVOp;
3492
3493    // fold (xor x, 0) -> x, vector edition
3494    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3495      return N1;
3496    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3497      return N0;
3498  }
3499
3500  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3501  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3502    return DAG.getConstant(0, VT);
3503  // fold (xor x, undef) -> undef
3504  if (N0.getOpcode() == ISD::UNDEF)
3505    return N0;
3506  if (N1.getOpcode() == ISD::UNDEF)
3507    return N1;
3508  // fold (xor c1, c2) -> c1^c2
3509  if (N0C && N1C)
3510    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3511  // canonicalize constant to RHS
3512  if (N0C && !N1C)
3513    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3514  // fold (xor x, 0) -> x
3515  if (N1C && N1C->isNullValue())
3516    return N0;
3517  // reassociate xor
3518  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3519  if (RXOR.getNode() != 0)
3520    return RXOR;
3521
3522  // fold !(x cc y) -> (x !cc y)
3523  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3524    bool isInt = LHS.getValueType().isInteger();
3525    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3526                                               isInt);
3527
3528    if (!LegalOperations ||
3529        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3530      switch (N0.getOpcode()) {
3531      default:
3532        llvm_unreachable("Unhandled SetCC Equivalent!");
3533      case ISD::SETCC:
3534        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3535      case ISD::SELECT_CC:
3536        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3537                               N0.getOperand(3), NotCC);
3538      }
3539    }
3540  }
3541
3542  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3543  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3544      N0.getNode()->hasOneUse() &&
3545      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3546    SDValue V = N0.getOperand(0);
3547    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3548                    DAG.getConstant(1, V.getValueType()));
3549    AddToWorkList(V.getNode());
3550    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3551  }
3552
3553  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3554  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3555      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3556    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3557    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3558      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3559      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3560      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3561      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3562      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3563    }
3564  }
3565  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3566  if (N1C && N1C->isAllOnesValue() &&
3567      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3568    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3569    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3570      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3571      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3572      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3573      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3574      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3575    }
3576  }
3577  // fold (xor (and x, y), y) -> (and (not x), y)
3578  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3579      N0->getOperand(1) == N1 && isTypeLegal(VT.getScalarType())) {
3580    SDValue X = N0->getOperand(0);
3581    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3582    AddToWorkList(NotX.getNode());
3583    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3584  }
3585  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3586  if (N1C && N0.getOpcode() == ISD::XOR) {
3587    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3588    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3589    if (N00C)
3590      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3591                         DAG.getConstant(N1C->getAPIntValue() ^
3592                                         N00C->getAPIntValue(), VT));
3593    if (N01C)
3594      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3595                         DAG.getConstant(N1C->getAPIntValue() ^
3596                                         N01C->getAPIntValue(), VT));
3597  }
3598  // fold (xor x, x) -> 0
3599  if (N0 == N1)
3600    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3601
3602  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3603  if (N0.getOpcode() == N1.getOpcode()) {
3604    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3605    if (Tmp.getNode()) return Tmp;
3606  }
3607
3608  // Simplify the expression using non-local knowledge.
3609  if (!VT.isVector() &&
3610      SimplifyDemandedBits(SDValue(N, 0)))
3611    return SDValue(N, 0);
3612
3613  return SDValue();
3614}
3615
3616/// visitShiftByConstant - Handle transforms common to the three shifts, when
3617/// the shift amount is a constant.
3618SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3619  SDNode *LHS = N->getOperand(0).getNode();
3620  if (!LHS->hasOneUse()) return SDValue();
3621
3622  // We want to pull some binops through shifts, so that we have (and (shift))
3623  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3624  // thing happens with address calculations, so it's important to canonicalize
3625  // it.
3626  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3627
3628  switch (LHS->getOpcode()) {
3629  default: return SDValue();
3630  case ISD::OR:
3631  case ISD::XOR:
3632    HighBitSet = false; // We can only transform sra if the high bit is clear.
3633    break;
3634  case ISD::AND:
3635    HighBitSet = true;  // We can only transform sra if the high bit is set.
3636    break;
3637  case ISD::ADD:
3638    if (N->getOpcode() != ISD::SHL)
3639      return SDValue(); // only shl(add) not sr[al](add).
3640    HighBitSet = false; // We can only transform sra if the high bit is clear.
3641    break;
3642  }
3643
3644  // We require the RHS of the binop to be a constant as well.
3645  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3646  if (!BinOpCst) return SDValue();
3647
3648  // FIXME: disable this unless the input to the binop is a shift by a constant.
3649  // If it is not a shift, it pessimizes some common cases like:
3650  //
3651  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3652  //    int bar(int *X, int i) { return X[i & 255]; }
3653  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3654  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3655       BinOpLHSVal->getOpcode() != ISD::SRA &&
3656       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3657      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3658    return SDValue();
3659
3660  EVT VT = N->getValueType(0);
3661
3662  // If this is a signed shift right, and the high bit is modified by the
3663  // logical operation, do not perform the transformation. The highBitSet
3664  // boolean indicates the value of the high bit of the constant which would
3665  // cause it to be modified for this operation.
3666  if (N->getOpcode() == ISD::SRA) {
3667    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3668    if (BinOpRHSSignSet != HighBitSet)
3669      return SDValue();
3670  }
3671
3672  // Fold the constants, shifting the binop RHS by the shift amount.
3673  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3674                               N->getValueType(0),
3675                               LHS->getOperand(1), N->getOperand(1));
3676
3677  // Create the new shift.
3678  SDValue NewShift = DAG.getNode(N->getOpcode(),
3679                                 SDLoc(LHS->getOperand(0)),
3680                                 VT, LHS->getOperand(0), N->getOperand(1));
3681
3682  // Create the new binop.
3683  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3684}
3685
3686SDValue DAGCombiner::visitSHL(SDNode *N) {
3687  SDValue N0 = N->getOperand(0);
3688  SDValue N1 = N->getOperand(1);
3689  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3691  EVT VT = N0.getValueType();
3692  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3693
3694  // fold (shl c1, c2) -> c1<<c2
3695  if (N0C && N1C)
3696    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3697  // fold (shl 0, x) -> 0
3698  if (N0C && N0C->isNullValue())
3699    return N0;
3700  // fold (shl x, c >= size(x)) -> undef
3701  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3702    return DAG.getUNDEF(VT);
3703  // fold (shl x, 0) -> x
3704  if (N1C && N1C->isNullValue())
3705    return N0;
3706  // fold (shl undef, x) -> 0
3707  if (N0.getOpcode() == ISD::UNDEF)
3708    return DAG.getConstant(0, VT);
3709  // if (shl x, c) is known to be zero, return 0
3710  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3711                            APInt::getAllOnesValue(OpSizeInBits)))
3712    return DAG.getConstant(0, VT);
3713  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3714  if (N1.getOpcode() == ISD::TRUNCATE &&
3715      N1.getOperand(0).getOpcode() == ISD::AND &&
3716      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3717    SDValue N101 = N1.getOperand(0).getOperand(1);
3718    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3719      EVT TruncVT = N1.getValueType();
3720      SDValue N100 = N1.getOperand(0).getOperand(0);
3721      APInt TruncC = N101C->getAPIntValue();
3722      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3723      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3724                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3725                                     DAG.getNode(ISD::TRUNCATE,
3726                                                 SDLoc(N),
3727                                                 TruncVT, N100),
3728                                     DAG.getConstant(TruncC, TruncVT)));
3729    }
3730  }
3731
3732  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3733    return SDValue(N, 0);
3734
3735  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3736  if (N1C && N0.getOpcode() == ISD::SHL &&
3737      N0.getOperand(1).getOpcode() == ISD::Constant) {
3738    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3739    uint64_t c2 = N1C->getZExtValue();
3740    if (c1 + c2 >= OpSizeInBits)
3741      return DAG.getConstant(0, VT);
3742    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3743                       DAG.getConstant(c1 + c2, N1.getValueType()));
3744  }
3745
3746  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3747  // For this to be valid, the second form must not preserve any of the bits
3748  // that are shifted out by the inner shift in the first form.  This means
3749  // the outer shift size must be >= the number of bits added by the ext.
3750  // As a corollary, we don't care what kind of ext it is.
3751  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3752              N0.getOpcode() == ISD::ANY_EXTEND ||
3753              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3754      N0.getOperand(0).getOpcode() == ISD::SHL &&
3755      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3756    uint64_t c1 =
3757      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3758    uint64_t c2 = N1C->getZExtValue();
3759    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3760    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3761    if (c2 >= OpSizeInBits - InnerShiftSize) {
3762      if (c1 + c2 >= OpSizeInBits)
3763        return DAG.getConstant(0, VT);
3764      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3765                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3766                                     N0.getOperand(0)->getOperand(0)),
3767                         DAG.getConstant(c1 + c2, N1.getValueType()));
3768    }
3769  }
3770
3771  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3772  // Only fold this if the inner zext has no other uses to avoid increasing
3773  // the total number of instructions.
3774  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3775      N0.getOperand(0).getOpcode() == ISD::SRL &&
3776      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3777    uint64_t c1 =
3778      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3779    if (c1 < VT.getSizeInBits()) {
3780      uint64_t c2 = N1C->getZExtValue();
3781      if (c1 == c2) {
3782        SDValue NewOp0 = N0.getOperand(0);
3783        EVT CountVT = NewOp0.getOperand(1).getValueType();
3784        SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3785                                     NewOp0, DAG.getConstant(c2, CountVT));
3786        AddToWorkList(NewSHL.getNode());
3787        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3788      }
3789    }
3790  }
3791
3792  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3793  //                               (and (srl x, (sub c1, c2), MASK)
3794  // Only fold this if the inner shift has no other uses -- if it does, folding
3795  // this will increase the total number of instructions.
3796  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3797      N0.getOperand(1).getOpcode() == ISD::Constant) {
3798    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3799    if (c1 < VT.getSizeInBits()) {
3800      uint64_t c2 = N1C->getZExtValue();
3801      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3802                                         VT.getSizeInBits() - c1);
3803      SDValue Shift;
3804      if (c2 > c1) {
3805        Mask = Mask.shl(c2-c1);
3806        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3807                            DAG.getConstant(c2-c1, N1.getValueType()));
3808      } else {
3809        Mask = Mask.lshr(c1-c2);
3810        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3811                            DAG.getConstant(c1-c2, N1.getValueType()));
3812      }
3813      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3814                         DAG.getConstant(Mask, VT));
3815    }
3816  }
3817  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3818  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3819    SDValue HiBitsMask =
3820      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3821                                            VT.getSizeInBits() -
3822                                              N1C->getZExtValue()),
3823                      VT);
3824    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3825                       HiBitsMask);
3826  }
3827
3828  if (N1C) {
3829    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3830    if (NewSHL.getNode())
3831      return NewSHL;
3832  }
3833
3834  return SDValue();
3835}
3836
3837SDValue DAGCombiner::visitSRA(SDNode *N) {
3838  SDValue N0 = N->getOperand(0);
3839  SDValue N1 = N->getOperand(1);
3840  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3841  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3842  EVT VT = N0.getValueType();
3843  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3844
3845  // fold (sra c1, c2) -> (sra c1, c2)
3846  if (N0C && N1C)
3847    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3848  // fold (sra 0, x) -> 0
3849  if (N0C && N0C->isNullValue())
3850    return N0;
3851  // fold (sra -1, x) -> -1
3852  if (N0C && N0C->isAllOnesValue())
3853    return N0;
3854  // fold (sra x, (setge c, size(x))) -> undef
3855  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3856    return DAG.getUNDEF(VT);
3857  // fold (sra x, 0) -> x
3858  if (N1C && N1C->isNullValue())
3859    return N0;
3860  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3861  // sext_inreg.
3862  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3863    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3864    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3865    if (VT.isVector())
3866      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3867                               ExtVT, VT.getVectorNumElements());
3868    if ((!LegalOperations ||
3869         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3870      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3871                         N0.getOperand(0), DAG.getValueType(ExtVT));
3872  }
3873
3874  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3875  if (N1C && N0.getOpcode() == ISD::SRA) {
3876    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3877      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3878      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3879      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3880                         DAG.getConstant(Sum, N1C->getValueType(0)));
3881    }
3882  }
3883
3884  // fold (sra (shl X, m), (sub result_size, n))
3885  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3886  // result_size - n != m.
3887  // If truncate is free for the target sext(shl) is likely to result in better
3888  // code.
3889  if (N0.getOpcode() == ISD::SHL) {
3890    // Get the two constanst of the shifts, CN0 = m, CN = n.
3891    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3892    if (N01C && N1C) {
3893      // Determine what the truncate's result bitsize and type would be.
3894      EVT TruncVT =
3895        EVT::getIntegerVT(*DAG.getContext(),
3896                          OpSizeInBits - N1C->getZExtValue());
3897      // Determine the residual right-shift amount.
3898      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3899
3900      // If the shift is not a no-op (in which case this should be just a sign
3901      // extend already), the truncated to type is legal, sign_extend is legal
3902      // on that type, and the truncate to that type is both legal and free,
3903      // perform the transform.
3904      if ((ShiftAmt > 0) &&
3905          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3906          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3907          TLI.isTruncateFree(VT, TruncVT)) {
3908
3909          SDValue Amt = DAG.getConstant(ShiftAmt,
3910              getShiftAmountTy(N0.getOperand(0).getValueType()));
3911          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3912                                      N0.getOperand(0), Amt);
3913          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3914                                      Shift);
3915          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3916                             N->getValueType(0), Trunc);
3917      }
3918    }
3919  }
3920
3921  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3922  if (N1.getOpcode() == ISD::TRUNCATE &&
3923      N1.getOperand(0).getOpcode() == ISD::AND &&
3924      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3925    SDValue N101 = N1.getOperand(0).getOperand(1);
3926    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3927      EVT TruncVT = N1.getValueType();
3928      SDValue N100 = N1.getOperand(0).getOperand(0);
3929      APInt TruncC = N101C->getAPIntValue();
3930      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3931      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3932                         DAG.getNode(ISD::AND, SDLoc(N),
3933                                     TruncVT,
3934                                     DAG.getNode(ISD::TRUNCATE,
3935                                                 SDLoc(N),
3936                                                 TruncVT, N100),
3937                                     DAG.getConstant(TruncC, TruncVT)));
3938    }
3939  }
3940
3941  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3942  //      if c1 is equal to the number of bits the trunc removes
3943  if (N0.getOpcode() == ISD::TRUNCATE &&
3944      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3945       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3946      N0.getOperand(0).hasOneUse() &&
3947      N0.getOperand(0).getOperand(1).hasOneUse() &&
3948      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3949    EVT LargeVT = N0.getOperand(0).getValueType();
3950    ConstantSDNode *LargeShiftAmt =
3951      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3952
3953    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3954        LargeShiftAmt->getZExtValue()) {
3955      SDValue Amt =
3956        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3957              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3958      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3959                                N0.getOperand(0).getOperand(0), Amt);
3960      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3961    }
3962  }
3963
3964  // Simplify, based on bits shifted out of the LHS.
3965  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3966    return SDValue(N, 0);
3967
3968
3969  // If the sign bit is known to be zero, switch this to a SRL.
3970  if (DAG.SignBitIsZero(N0))
3971    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3972
3973  if (N1C) {
3974    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3975    if (NewSRA.getNode())
3976      return NewSRA;
3977  }
3978
3979  return SDValue();
3980}
3981
3982SDValue DAGCombiner::visitSRL(SDNode *N) {
3983  SDValue N0 = N->getOperand(0);
3984  SDValue N1 = N->getOperand(1);
3985  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3986  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3987  EVT VT = N0.getValueType();
3988  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3989
3990  // fold (srl c1, c2) -> c1 >>u c2
3991  if (N0C && N1C)
3992    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3993  // fold (srl 0, x) -> 0
3994  if (N0C && N0C->isNullValue())
3995    return N0;
3996  // fold (srl x, c >= size(x)) -> undef
3997  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3998    return DAG.getUNDEF(VT);
3999  // fold (srl x, 0) -> x
4000  if (N1C && N1C->isNullValue())
4001    return N0;
4002  // if (srl x, c) is known to be zero, return 0
4003  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4004                                   APInt::getAllOnesValue(OpSizeInBits)))
4005    return DAG.getConstant(0, VT);
4006
4007  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4008  if (N1C && N0.getOpcode() == ISD::SRL &&
4009      N0.getOperand(1).getOpcode() == ISD::Constant) {
4010    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
4011    uint64_t c2 = N1C->getZExtValue();
4012    if (c1 + c2 >= OpSizeInBits)
4013      return DAG.getConstant(0, VT);
4014    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4015                       DAG.getConstant(c1 + c2, N1.getValueType()));
4016  }
4017
4018  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4019  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4020      N0.getOperand(0).getOpcode() == ISD::SRL &&
4021      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4022    uint64_t c1 =
4023      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4024    uint64_t c2 = N1C->getZExtValue();
4025    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4026    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4027    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4028    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4029    if (c1 + OpSizeInBits == InnerShiftSize) {
4030      if (c1 + c2 >= InnerShiftSize)
4031        return DAG.getConstant(0, VT);
4032      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4033                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4034                                     N0.getOperand(0)->getOperand(0),
4035                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4036    }
4037  }
4038
4039  // fold (srl (shl x, c), c) -> (and x, cst2)
4040  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4041      N0.getValueSizeInBits() <= 64) {
4042    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4043    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4044                       DAG.getConstant(~0ULL >> ShAmt, VT));
4045  }
4046
4047  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4048  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4049    // Shifting in all undef bits?
4050    EVT SmallVT = N0.getOperand(0).getValueType();
4051    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4052      return DAG.getUNDEF(VT);
4053
4054    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4055      uint64_t ShiftAmt = N1C->getZExtValue();
4056      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4057                                       N0.getOperand(0),
4058                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4059      AddToWorkList(SmallShift.getNode());
4060      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4061      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4062                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4063                         DAG.getConstant(Mask, VT));
4064    }
4065  }
4066
4067  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4068  // bit, which is unmodified by sra.
4069  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4070    if (N0.getOpcode() == ISD::SRA)
4071      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4072  }
4073
4074  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4075  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4076      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4077    APInt KnownZero, KnownOne;
4078    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4079
4080    // If any of the input bits are KnownOne, then the input couldn't be all
4081    // zeros, thus the result of the srl will always be zero.
4082    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4083
4084    // If all of the bits input the to ctlz node are known to be zero, then
4085    // the result of the ctlz is "32" and the result of the shift is one.
4086    APInt UnknownBits = ~KnownZero;
4087    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4088
4089    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4090    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4091      // Okay, we know that only that the single bit specified by UnknownBits
4092      // could be set on input to the CTLZ node. If this bit is set, the SRL
4093      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4094      // to an SRL/XOR pair, which is likely to simplify more.
4095      unsigned ShAmt = UnknownBits.countTrailingZeros();
4096      SDValue Op = N0.getOperand(0);
4097
4098      if (ShAmt) {
4099        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4100                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4101        AddToWorkList(Op.getNode());
4102      }
4103
4104      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4105                         Op, DAG.getConstant(1, VT));
4106    }
4107  }
4108
4109  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4110  if (N1.getOpcode() == ISD::TRUNCATE &&
4111      N1.getOperand(0).getOpcode() == ISD::AND &&
4112      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4113    SDValue N101 = N1.getOperand(0).getOperand(1);
4114    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4115      EVT TruncVT = N1.getValueType();
4116      SDValue N100 = N1.getOperand(0).getOperand(0);
4117      APInt TruncC = N101C->getAPIntValue();
4118      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4119      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4120                         DAG.getNode(ISD::AND, SDLoc(N),
4121                                     TruncVT,
4122                                     DAG.getNode(ISD::TRUNCATE,
4123                                                 SDLoc(N),
4124                                                 TruncVT, N100),
4125                                     DAG.getConstant(TruncC, TruncVT)));
4126    }
4127  }
4128
4129  // fold operands of srl based on knowledge that the low bits are not
4130  // demanded.
4131  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4132    return SDValue(N, 0);
4133
4134  if (N1C) {
4135    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4136    if (NewSRL.getNode())
4137      return NewSRL;
4138  }
4139
4140  // Attempt to convert a srl of a load into a narrower zero-extending load.
4141  SDValue NarrowLoad = ReduceLoadWidth(N);
4142  if (NarrowLoad.getNode())
4143    return NarrowLoad;
4144
4145  // Here is a common situation. We want to optimize:
4146  //
4147  //   %a = ...
4148  //   %b = and i32 %a, 2
4149  //   %c = srl i32 %b, 1
4150  //   brcond i32 %c ...
4151  //
4152  // into
4153  //
4154  //   %a = ...
4155  //   %b = and %a, 2
4156  //   %c = setcc eq %b, 0
4157  //   brcond %c ...
4158  //
4159  // However when after the source operand of SRL is optimized into AND, the SRL
4160  // itself may not be optimized further. Look for it and add the BRCOND into
4161  // the worklist.
4162  if (N->hasOneUse()) {
4163    SDNode *Use = *N->use_begin();
4164    if (Use->getOpcode() == ISD::BRCOND)
4165      AddToWorkList(Use);
4166    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4167      // Also look pass the truncate.
4168      Use = *Use->use_begin();
4169      if (Use->getOpcode() == ISD::BRCOND)
4170        AddToWorkList(Use);
4171    }
4172  }
4173
4174  return SDValue();
4175}
4176
4177SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4178  SDValue N0 = N->getOperand(0);
4179  EVT VT = N->getValueType(0);
4180
4181  // fold (ctlz c1) -> c2
4182  if (isa<ConstantSDNode>(N0))
4183    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4184  return SDValue();
4185}
4186
4187SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4188  SDValue N0 = N->getOperand(0);
4189  EVT VT = N->getValueType(0);
4190
4191  // fold (ctlz_zero_undef c1) -> c2
4192  if (isa<ConstantSDNode>(N0))
4193    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4194  return SDValue();
4195}
4196
4197SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4198  SDValue N0 = N->getOperand(0);
4199  EVT VT = N->getValueType(0);
4200
4201  // fold (cttz c1) -> c2
4202  if (isa<ConstantSDNode>(N0))
4203    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4204  return SDValue();
4205}
4206
4207SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4208  SDValue N0 = N->getOperand(0);
4209  EVT VT = N->getValueType(0);
4210
4211  // fold (cttz_zero_undef c1) -> c2
4212  if (isa<ConstantSDNode>(N0))
4213    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4214  return SDValue();
4215}
4216
4217SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4218  SDValue N0 = N->getOperand(0);
4219  EVT VT = N->getValueType(0);
4220
4221  // fold (ctpop c1) -> c2
4222  if (isa<ConstantSDNode>(N0))
4223    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4224  return SDValue();
4225}
4226
4227SDValue DAGCombiner::visitSELECT(SDNode *N) {
4228  SDValue N0 = N->getOperand(0);
4229  SDValue N1 = N->getOperand(1);
4230  SDValue N2 = N->getOperand(2);
4231  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4232  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4233  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4234  EVT VT = N->getValueType(0);
4235  EVT VT0 = N0.getValueType();
4236
4237  // fold (select C, X, X) -> X
4238  if (N1 == N2)
4239    return N1;
4240  // fold (select true, X, Y) -> X
4241  if (N0C && !N0C->isNullValue())
4242    return N1;
4243  // fold (select false, X, Y) -> Y
4244  if (N0C && N0C->isNullValue())
4245    return N2;
4246  // fold (select C, 1, X) -> (or C, X)
4247  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4248    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4249  // fold (select C, 0, 1) -> (xor C, 1)
4250  if (VT.isInteger() &&
4251      (VT0 == MVT::i1 ||
4252       (VT0.isInteger() &&
4253        TLI.getBooleanContents(false) ==
4254        TargetLowering::ZeroOrOneBooleanContent)) &&
4255      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4256    SDValue XORNode;
4257    if (VT == VT0)
4258      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4259                         N0, DAG.getConstant(1, VT0));
4260    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4261                          N0, DAG.getConstant(1, VT0));
4262    AddToWorkList(XORNode.getNode());
4263    if (VT.bitsGT(VT0))
4264      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4265    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4266  }
4267  // fold (select C, 0, X) -> (and (not C), X)
4268  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4269    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4270    AddToWorkList(NOTNode.getNode());
4271    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4272  }
4273  // fold (select C, X, 1) -> (or (not C), X)
4274  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4275    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4276    AddToWorkList(NOTNode.getNode());
4277    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4278  }
4279  // fold (select C, X, 0) -> (and C, X)
4280  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4281    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4282  // fold (select X, X, Y) -> (or X, Y)
4283  // fold (select X, 1, Y) -> (or X, Y)
4284  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4285    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4286  // fold (select X, Y, X) -> (and X, Y)
4287  // fold (select X, Y, 0) -> (and X, Y)
4288  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4289    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4290
4291  // If we can fold this based on the true/false value, do so.
4292  if (SimplifySelectOps(N, N1, N2))
4293    return SDValue(N, 0);  // Don't revisit N.
4294
4295  // fold selects based on a setcc into other things, such as min/max/abs
4296  if (N0.getOpcode() == ISD::SETCC) {
4297    // FIXME:
4298    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4299    // having to say they don't support SELECT_CC on every type the DAG knows
4300    // about, since there is no way to mark an opcode illegal at all value types
4301    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4302        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4303      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4304                         N0.getOperand(0), N0.getOperand(1),
4305                         N1, N2, N0.getOperand(2));
4306    return SimplifySelect(SDLoc(N), N0, N1, N2);
4307  }
4308
4309  return SDValue();
4310}
4311
4312SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4313  SDValue N0 = N->getOperand(0);
4314  SDValue N1 = N->getOperand(1);
4315  SDValue N2 = N->getOperand(2);
4316  SDLoc DL(N);
4317
4318  // Canonicalize integer abs.
4319  // vselect (setg[te] X,  0),  X, -X ->
4320  // vselect (setgt    X, -1),  X, -X ->
4321  // vselect (setl[te] X,  0), -X,  X ->
4322  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4323  if (N0.getOpcode() == ISD::SETCC) {
4324    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4325    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4326    bool isAbs = false;
4327    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4328
4329    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4330         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4331        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4332      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4333    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4334             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4335      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4336
4337    if (isAbs) {
4338      EVT VT = LHS.getValueType();
4339      SDValue Shift = DAG.getNode(
4340          ISD::SRA, DL, VT, LHS,
4341          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4342      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4343      AddToWorkList(Shift.getNode());
4344      AddToWorkList(Add.getNode());
4345      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4346    }
4347  }
4348
4349  return SDValue();
4350}
4351
4352SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4353  SDValue N0 = N->getOperand(0);
4354  SDValue N1 = N->getOperand(1);
4355  SDValue N2 = N->getOperand(2);
4356  SDValue N3 = N->getOperand(3);
4357  SDValue N4 = N->getOperand(4);
4358  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4359
4360  // fold select_cc lhs, rhs, x, x, cc -> x
4361  if (N2 == N3)
4362    return N2;
4363
4364  // Determine if the condition we're dealing with is constant
4365  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4366                              N0, N1, CC, SDLoc(N), false);
4367  if (SCC.getNode()) {
4368    AddToWorkList(SCC.getNode());
4369
4370    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4371      if (!SCCC->isNullValue())
4372        return N2;    // cond always true -> true val
4373      else
4374        return N3;    // cond always false -> false val
4375    }
4376
4377    // Fold to a simpler select_cc
4378    if (SCC.getOpcode() == ISD::SETCC)
4379      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4380                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4381                         SCC.getOperand(2));
4382  }
4383
4384  // If we can fold this based on the true/false value, do so.
4385  if (SimplifySelectOps(N, N2, N3))
4386    return SDValue(N, 0);  // Don't revisit N.
4387
4388  // fold select_cc into other things, such as min/max/abs
4389  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4390}
4391
4392SDValue DAGCombiner::visitSETCC(SDNode *N) {
4393  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4394                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4395                       SDLoc(N));
4396}
4397
4398// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4399// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4400// transformation. Returns true if extension are possible and the above
4401// mentioned transformation is profitable.
4402static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4403                                    unsigned ExtOpc,
4404                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4405                                    const TargetLowering &TLI) {
4406  bool HasCopyToRegUses = false;
4407  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4408  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4409                            UE = N0.getNode()->use_end();
4410       UI != UE; ++UI) {
4411    SDNode *User = *UI;
4412    if (User == N)
4413      continue;
4414    if (UI.getUse().getResNo() != N0.getResNo())
4415      continue;
4416    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4417    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4418      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4419      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4420        // Sign bits will be lost after a zext.
4421        return false;
4422      bool Add = false;
4423      for (unsigned i = 0; i != 2; ++i) {
4424        SDValue UseOp = User->getOperand(i);
4425        if (UseOp == N0)
4426          continue;
4427        if (!isa<ConstantSDNode>(UseOp))
4428          return false;
4429        Add = true;
4430      }
4431      if (Add)
4432        ExtendNodes.push_back(User);
4433      continue;
4434    }
4435    // If truncates aren't free and there are users we can't
4436    // extend, it isn't worthwhile.
4437    if (!isTruncFree)
4438      return false;
4439    // Remember if this value is live-out.
4440    if (User->getOpcode() == ISD::CopyToReg)
4441      HasCopyToRegUses = true;
4442  }
4443
4444  if (HasCopyToRegUses) {
4445    bool BothLiveOut = false;
4446    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4447         UI != UE; ++UI) {
4448      SDUse &Use = UI.getUse();
4449      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4450        BothLiveOut = true;
4451        break;
4452      }
4453    }
4454    if (BothLiveOut)
4455      // Both unextended and extended values are live out. There had better be
4456      // a good reason for the transformation.
4457      return ExtendNodes.size();
4458  }
4459  return true;
4460}
4461
4462void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4463                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4464                                  ISD::NodeType ExtType) {
4465  // Extend SetCC uses if necessary.
4466  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4467    SDNode *SetCC = SetCCs[i];
4468    SmallVector<SDValue, 4> Ops;
4469
4470    for (unsigned j = 0; j != 2; ++j) {
4471      SDValue SOp = SetCC->getOperand(j);
4472      if (SOp == Trunc)
4473        Ops.push_back(ExtLoad);
4474      else
4475        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4476    }
4477
4478    Ops.push_back(SetCC->getOperand(2));
4479    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4480                                 &Ops[0], Ops.size()));
4481  }
4482}
4483
4484SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4485  SDValue N0 = N->getOperand(0);
4486  EVT VT = N->getValueType(0);
4487
4488  // fold (sext c1) -> c1
4489  if (isa<ConstantSDNode>(N0))
4490    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4491
4492  // fold (sext (sext x)) -> (sext x)
4493  // fold (sext (aext x)) -> (sext x)
4494  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4495    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4496                       N0.getOperand(0));
4497
4498  if (N0.getOpcode() == ISD::TRUNCATE) {
4499    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4500    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4501    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4502    if (NarrowLoad.getNode()) {
4503      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4504      if (NarrowLoad.getNode() != N0.getNode()) {
4505        CombineTo(N0.getNode(), NarrowLoad);
4506        // CombineTo deleted the truncate, if needed, but not what's under it.
4507        AddToWorkList(oye);
4508      }
4509      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4510    }
4511
4512    // See if the value being truncated is already sign extended.  If so, just
4513    // eliminate the trunc/sext pair.
4514    SDValue Op = N0.getOperand(0);
4515    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4516    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4517    unsigned DestBits = VT.getScalarType().getSizeInBits();
4518    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4519
4520    if (OpBits == DestBits) {
4521      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4522      // bits, it is already ready.
4523      if (NumSignBits > DestBits-MidBits)
4524        return Op;
4525    } else if (OpBits < DestBits) {
4526      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4527      // bits, just sext from i32.
4528      if (NumSignBits > OpBits-MidBits)
4529        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4530    } else {
4531      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4532      // bits, just truncate to i32.
4533      if (NumSignBits > OpBits-MidBits)
4534        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4535    }
4536
4537    // fold (sext (truncate x)) -> (sextinreg x).
4538    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4539                                                 N0.getValueType())) {
4540      if (OpBits < DestBits)
4541        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4542      else if (OpBits > DestBits)
4543        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4544      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4545                         DAG.getValueType(N0.getValueType()));
4546    }
4547  }
4548
4549  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4550  // None of the supported targets knows how to perform load and sign extend
4551  // on vectors in one instruction.  We only perform this transformation on
4552  // scalars.
4553  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4554      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4555       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4556    bool DoXform = true;
4557    SmallVector<SDNode*, 4> SetCCs;
4558    if (!N0.hasOneUse())
4559      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4560    if (DoXform) {
4561      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4562      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4563                                       LN0->getChain(),
4564                                       LN0->getBasePtr(), N0.getValueType(),
4565                                       LN0->getMemOperand());
4566      CombineTo(N, ExtLoad);
4567      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4568                                  N0.getValueType(), ExtLoad);
4569      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4570      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4571                      ISD::SIGN_EXTEND);
4572      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4573    }
4574  }
4575
4576  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4577  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4578  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4579      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4580    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4581    EVT MemVT = LN0->getMemoryVT();
4582    if ((!LegalOperations && !LN0->isVolatile()) ||
4583        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4584      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4585                                       LN0->getChain(),
4586                                       LN0->getBasePtr(), MemVT,
4587                                       LN0->getMemOperand());
4588      CombineTo(N, ExtLoad);
4589      CombineTo(N0.getNode(),
4590                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4591                            N0.getValueType(), ExtLoad),
4592                ExtLoad.getValue(1));
4593      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4594    }
4595  }
4596
4597  // fold (sext (and/or/xor (load x), cst)) ->
4598  //      (and/or/xor (sextload x), (sext cst))
4599  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4600       N0.getOpcode() == ISD::XOR) &&
4601      isa<LoadSDNode>(N0.getOperand(0)) &&
4602      N0.getOperand(1).getOpcode() == ISD::Constant &&
4603      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4604      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4605    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4606    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4607      bool DoXform = true;
4608      SmallVector<SDNode*, 4> SetCCs;
4609      if (!N0.hasOneUse())
4610        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4611                                          SetCCs, TLI);
4612      if (DoXform) {
4613        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4614                                         LN0->getChain(), LN0->getBasePtr(),
4615                                         LN0->getMemoryVT(),
4616                                         LN0->getMemOperand());
4617        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4618        Mask = Mask.sext(VT.getSizeInBits());
4619        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4620                                  ExtLoad, DAG.getConstant(Mask, VT));
4621        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4622                                    SDLoc(N0.getOperand(0)),
4623                                    N0.getOperand(0).getValueType(), ExtLoad);
4624        CombineTo(N, And);
4625        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4626        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4627                        ISD::SIGN_EXTEND);
4628        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4629      }
4630    }
4631  }
4632
4633  if (N0.getOpcode() == ISD::SETCC) {
4634    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4635    // Only do this before legalize for now.
4636    if (VT.isVector() && !LegalOperations &&
4637        TLI.getBooleanContents(true) ==
4638          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4639      EVT N0VT = N0.getOperand(0).getValueType();
4640      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4641      // of the same size as the compared operands. Only optimize sext(setcc())
4642      // if this is the case.
4643      EVT SVT = getSetCCResultType(N0VT);
4644
4645      // We know that the # elements of the results is the same as the
4646      // # elements of the compare (and the # elements of the compare result
4647      // for that matter).  Check to see that they are the same size.  If so,
4648      // we know that the element size of the sext'd result matches the
4649      // element size of the compare operands.
4650      if (VT.getSizeInBits() == SVT.getSizeInBits())
4651        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4652                             N0.getOperand(1),
4653                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4654
4655      // If the desired elements are smaller or larger than the source
4656      // elements we can use a matching integer vector type and then
4657      // truncate/sign extend
4658      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4659      if (SVT == MatchingVectorType) {
4660        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4661                               N0.getOperand(0), N0.getOperand(1),
4662                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4663        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4664      }
4665    }
4666
4667    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4668    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4669    SDValue NegOne =
4670      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4671    SDValue SCC =
4672      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4673                       NegOne, DAG.getConstant(0, VT),
4674                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4675    if (SCC.getNode()) return SCC;
4676    if (!VT.isVector() &&
4677        (!LegalOperations ||
4678         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4679      return DAG.getSelect(SDLoc(N), VT,
4680                           DAG.getSetCC(SDLoc(N),
4681                           getSetCCResultType(VT),
4682                           N0.getOperand(0), N0.getOperand(1),
4683                           cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4684                           NegOne, DAG.getConstant(0, VT));
4685    }
4686  }
4687
4688  // fold (sext x) -> (zext x) if the sign bit is known zero.
4689  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4690      DAG.SignBitIsZero(N0))
4691    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4692
4693  return SDValue();
4694}
4695
4696// isTruncateOf - If N is a truncate of some other value, return true, record
4697// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4698// This function computes KnownZero to avoid a duplicated call to
4699// ComputeMaskedBits in the caller.
4700static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4701                         APInt &KnownZero) {
4702  APInt KnownOne;
4703  if (N->getOpcode() == ISD::TRUNCATE) {
4704    Op = N->getOperand(0);
4705    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4706    return true;
4707  }
4708
4709  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4710      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4711    return false;
4712
4713  SDValue Op0 = N->getOperand(0);
4714  SDValue Op1 = N->getOperand(1);
4715  assert(Op0.getValueType() == Op1.getValueType());
4716
4717  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4718  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4719  if (COp0 && COp0->isNullValue())
4720    Op = Op1;
4721  else if (COp1 && COp1->isNullValue())
4722    Op = Op0;
4723  else
4724    return false;
4725
4726  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4727
4728  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4729    return false;
4730
4731  return true;
4732}
4733
4734SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4735  SDValue N0 = N->getOperand(0);
4736  EVT VT = N->getValueType(0);
4737
4738  // fold (zext c1) -> c1
4739  if (isa<ConstantSDNode>(N0))
4740    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4741  // fold (zext (zext x)) -> (zext x)
4742  // fold (zext (aext x)) -> (zext x)
4743  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4744    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4745                       N0.getOperand(0));
4746
4747  // fold (zext (truncate x)) -> (zext x) or
4748  //      (zext (truncate x)) -> (truncate x)
4749  // This is valid when the truncated bits of x are already zero.
4750  // FIXME: We should extend this to work for vectors too.
4751  SDValue Op;
4752  APInt KnownZero;
4753  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4754    APInt TruncatedBits =
4755      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4756      APInt(Op.getValueSizeInBits(), 0) :
4757      APInt::getBitsSet(Op.getValueSizeInBits(),
4758                        N0.getValueSizeInBits(),
4759                        std::min(Op.getValueSizeInBits(),
4760                                 VT.getSizeInBits()));
4761    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4762      if (VT.bitsGT(Op.getValueType()))
4763        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4764      if (VT.bitsLT(Op.getValueType()))
4765        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4766
4767      return Op;
4768    }
4769  }
4770
4771  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4772  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4773  if (N0.getOpcode() == ISD::TRUNCATE) {
4774    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4775    if (NarrowLoad.getNode()) {
4776      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4777      if (NarrowLoad.getNode() != N0.getNode()) {
4778        CombineTo(N0.getNode(), NarrowLoad);
4779        // CombineTo deleted the truncate, if needed, but not what's under it.
4780        AddToWorkList(oye);
4781      }
4782      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4783    }
4784  }
4785
4786  // fold (zext (truncate x)) -> (and x, mask)
4787  if (N0.getOpcode() == ISD::TRUNCATE &&
4788      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4789
4790    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4791    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4792    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4793    if (NarrowLoad.getNode()) {
4794      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4795      if (NarrowLoad.getNode() != N0.getNode()) {
4796        CombineTo(N0.getNode(), NarrowLoad);
4797        // CombineTo deleted the truncate, if needed, but not what's under it.
4798        AddToWorkList(oye);
4799      }
4800      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4801    }
4802
4803    SDValue Op = N0.getOperand(0);
4804    if (Op.getValueType().bitsLT(VT)) {
4805      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4806      AddToWorkList(Op.getNode());
4807    } else if (Op.getValueType().bitsGT(VT)) {
4808      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4809      AddToWorkList(Op.getNode());
4810    }
4811    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4812                                  N0.getValueType().getScalarType());
4813  }
4814
4815  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4816  // if either of the casts is not free.
4817  if (N0.getOpcode() == ISD::AND &&
4818      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4819      N0.getOperand(1).getOpcode() == ISD::Constant &&
4820      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4821                           N0.getValueType()) ||
4822       !TLI.isZExtFree(N0.getValueType(), VT))) {
4823    SDValue X = N0.getOperand(0).getOperand(0);
4824    if (X.getValueType().bitsLT(VT)) {
4825      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4826    } else if (X.getValueType().bitsGT(VT)) {
4827      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4828    }
4829    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4830    Mask = Mask.zext(VT.getSizeInBits());
4831    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4832                       X, DAG.getConstant(Mask, VT));
4833  }
4834
4835  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4836  // None of the supported targets knows how to perform load and vector_zext
4837  // on vectors in one instruction.  We only perform this transformation on
4838  // scalars.
4839  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4840      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4841       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4842    bool DoXform = true;
4843    SmallVector<SDNode*, 4> SetCCs;
4844    if (!N0.hasOneUse())
4845      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4846    if (DoXform) {
4847      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4848      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4849                                       LN0->getChain(),
4850                                       LN0->getBasePtr(), N0.getValueType(),
4851                                       LN0->getMemOperand());
4852      CombineTo(N, ExtLoad);
4853      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4854                                  N0.getValueType(), ExtLoad);
4855      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4856
4857      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4858                      ISD::ZERO_EXTEND);
4859      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4860    }
4861  }
4862
4863  // fold (zext (and/or/xor (load x), cst)) ->
4864  //      (and/or/xor (zextload x), (zext cst))
4865  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4866       N0.getOpcode() == ISD::XOR) &&
4867      isa<LoadSDNode>(N0.getOperand(0)) &&
4868      N0.getOperand(1).getOpcode() == ISD::Constant &&
4869      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4870      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4871    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4872    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4873      bool DoXform = true;
4874      SmallVector<SDNode*, 4> SetCCs;
4875      if (!N0.hasOneUse())
4876        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4877                                          SetCCs, TLI);
4878      if (DoXform) {
4879        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4880                                         LN0->getChain(), LN0->getBasePtr(),
4881                                         LN0->getMemoryVT(),
4882                                         LN0->getMemOperand());
4883        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4884        Mask = Mask.zext(VT.getSizeInBits());
4885        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4886                                  ExtLoad, DAG.getConstant(Mask, VT));
4887        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4888                                    SDLoc(N0.getOperand(0)),
4889                                    N0.getOperand(0).getValueType(), ExtLoad);
4890        CombineTo(N, And);
4891        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4892        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4893                        ISD::ZERO_EXTEND);
4894        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4895      }
4896    }
4897  }
4898
4899  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4900  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4901  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4902      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4903    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4904    EVT MemVT = LN0->getMemoryVT();
4905    if ((!LegalOperations && !LN0->isVolatile()) ||
4906        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4907      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4908                                       LN0->getChain(),
4909                                       LN0->getBasePtr(), MemVT,
4910                                       LN0->getMemOperand());
4911      CombineTo(N, ExtLoad);
4912      CombineTo(N0.getNode(),
4913                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4914                            ExtLoad),
4915                ExtLoad.getValue(1));
4916      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4917    }
4918  }
4919
4920  if (N0.getOpcode() == ISD::SETCC) {
4921    if (!LegalOperations && VT.isVector()) {
4922      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4923      // Only do this before legalize for now.
4924      EVT N0VT = N0.getOperand(0).getValueType();
4925      EVT EltVT = VT.getVectorElementType();
4926      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4927                                    DAG.getConstant(1, EltVT));
4928      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4929        // We know that the # elements of the results is the same as the
4930        // # elements of the compare (and the # elements of the compare result
4931        // for that matter).  Check to see that they are the same size.  If so,
4932        // we know that the element size of the sext'd result matches the
4933        // element size of the compare operands.
4934        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4935                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4936                                         N0.getOperand(1),
4937                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4938                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4939                                       &OneOps[0], OneOps.size()));
4940
4941      // If the desired elements are smaller or larger than the source
4942      // elements we can use a matching integer vector type and then
4943      // truncate/sign extend
4944      EVT MatchingElementType =
4945        EVT::getIntegerVT(*DAG.getContext(),
4946                          N0VT.getScalarType().getSizeInBits());
4947      EVT MatchingVectorType =
4948        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4949                         N0VT.getVectorNumElements());
4950      SDValue VsetCC =
4951        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
4952                      N0.getOperand(1),
4953                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4954      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4955                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
4956                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4957                                     &OneOps[0], OneOps.size()));
4958    }
4959
4960    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4961    SDValue SCC =
4962      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4963                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4964                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4965    if (SCC.getNode()) return SCC;
4966  }
4967
4968  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4969  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4970      isa<ConstantSDNode>(N0.getOperand(1)) &&
4971      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4972      N0.hasOneUse()) {
4973    SDValue ShAmt = N0.getOperand(1);
4974    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4975    if (N0.getOpcode() == ISD::SHL) {
4976      SDValue InnerZExt = N0.getOperand(0);
4977      // If the original shl may be shifting out bits, do not perform this
4978      // transformation.
4979      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4980        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4981      if (ShAmtVal > KnownZeroBits)
4982        return SDValue();
4983    }
4984
4985    SDLoc DL(N);
4986
4987    // Ensure that the shift amount is wide enough for the shifted value.
4988    if (VT.getSizeInBits() >= 256)
4989      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4990
4991    return DAG.getNode(N0.getOpcode(), DL, VT,
4992                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4993                       ShAmt);
4994  }
4995
4996  return SDValue();
4997}
4998
4999SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5000  SDValue N0 = N->getOperand(0);
5001  EVT VT = N->getValueType(0);
5002
5003  // fold (aext c1) -> c1
5004  if (isa<ConstantSDNode>(N0))
5005    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5006  // fold (aext (aext x)) -> (aext x)
5007  // fold (aext (zext x)) -> (zext x)
5008  // fold (aext (sext x)) -> (sext x)
5009  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5010      N0.getOpcode() == ISD::ZERO_EXTEND ||
5011      N0.getOpcode() == ISD::SIGN_EXTEND)
5012    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5013
5014  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5015  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5016  if (N0.getOpcode() == ISD::TRUNCATE) {
5017    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5018    if (NarrowLoad.getNode()) {
5019      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5020      if (NarrowLoad.getNode() != N0.getNode()) {
5021        CombineTo(N0.getNode(), NarrowLoad);
5022        // CombineTo deleted the truncate, if needed, but not what's under it.
5023        AddToWorkList(oye);
5024      }
5025      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5026    }
5027  }
5028
5029  // fold (aext (truncate x))
5030  if (N0.getOpcode() == ISD::TRUNCATE) {
5031    SDValue TruncOp = N0.getOperand(0);
5032    if (TruncOp.getValueType() == VT)
5033      return TruncOp; // x iff x size == zext size.
5034    if (TruncOp.getValueType().bitsGT(VT))
5035      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5036    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5037  }
5038
5039  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5040  // if the trunc is not free.
5041  if (N0.getOpcode() == ISD::AND &&
5042      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5043      N0.getOperand(1).getOpcode() == ISD::Constant &&
5044      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5045                          N0.getValueType())) {
5046    SDValue X = N0.getOperand(0).getOperand(0);
5047    if (X.getValueType().bitsLT(VT)) {
5048      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5049    } else if (X.getValueType().bitsGT(VT)) {
5050      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5051    }
5052    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5053    Mask = Mask.zext(VT.getSizeInBits());
5054    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5055                       X, DAG.getConstant(Mask, VT));
5056  }
5057
5058  // fold (aext (load x)) -> (aext (truncate (extload x)))
5059  // None of the supported targets knows how to perform load and any_ext
5060  // on vectors in one instruction.  We only perform this transformation on
5061  // scalars.
5062  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5063      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5064       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5065    bool DoXform = true;
5066    SmallVector<SDNode*, 4> SetCCs;
5067    if (!N0.hasOneUse())
5068      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5069    if (DoXform) {
5070      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5071      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5072                                       LN0->getChain(),
5073                                       LN0->getBasePtr(), N0.getValueType(),
5074                                       LN0->getMemOperand());
5075      CombineTo(N, ExtLoad);
5076      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5077                                  N0.getValueType(), ExtLoad);
5078      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5079      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5080                      ISD::ANY_EXTEND);
5081      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5082    }
5083  }
5084
5085  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5086  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5087  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5088  if (N0.getOpcode() == ISD::LOAD &&
5089      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5090      N0.hasOneUse()) {
5091    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5092    EVT MemVT = LN0->getMemoryVT();
5093    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5094                                     VT, LN0->getChain(), LN0->getBasePtr(),
5095                                     MemVT, LN0->getMemOperand());
5096    CombineTo(N, ExtLoad);
5097    CombineTo(N0.getNode(),
5098              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5099                          N0.getValueType(), ExtLoad),
5100              ExtLoad.getValue(1));
5101    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5102  }
5103
5104  if (N0.getOpcode() == ISD::SETCC) {
5105    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5106    // Only do this before legalize for now.
5107    if (VT.isVector() && !LegalOperations) {
5108      EVT N0VT = N0.getOperand(0).getValueType();
5109        // We know that the # elements of the results is the same as the
5110        // # elements of the compare (and the # elements of the compare result
5111        // for that matter).  Check to see that they are the same size.  If so,
5112        // we know that the element size of the sext'd result matches the
5113        // element size of the compare operands.
5114      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5115        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5116                             N0.getOperand(1),
5117                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5118      // If the desired elements are smaller or larger than the source
5119      // elements we can use a matching integer vector type and then
5120      // truncate/sign extend
5121      else {
5122        EVT MatchingElementType =
5123          EVT::getIntegerVT(*DAG.getContext(),
5124                            N0VT.getScalarType().getSizeInBits());
5125        EVT MatchingVectorType =
5126          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5127                           N0VT.getVectorNumElements());
5128        SDValue VsetCC =
5129          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5130                        N0.getOperand(1),
5131                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5132        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5133      }
5134    }
5135
5136    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5137    SDValue SCC =
5138      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5139                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5140                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5141    if (SCC.getNode())
5142      return SCC;
5143  }
5144
5145  return SDValue();
5146}
5147
5148/// GetDemandedBits - See if the specified operand can be simplified with the
5149/// knowledge that only the bits specified by Mask are used.  If so, return the
5150/// simpler operand, otherwise return a null SDValue.
5151SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5152  switch (V.getOpcode()) {
5153  default: break;
5154  case ISD::Constant: {
5155    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5156    assert(CV != 0 && "Const value should be ConstSDNode.");
5157    const APInt &CVal = CV->getAPIntValue();
5158    APInt NewVal = CVal & Mask;
5159    if (NewVal != CVal)
5160      return DAG.getConstant(NewVal, V.getValueType());
5161    break;
5162  }
5163  case ISD::OR:
5164  case ISD::XOR:
5165    // If the LHS or RHS don't contribute bits to the or, drop them.
5166    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5167      return V.getOperand(1);
5168    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5169      return V.getOperand(0);
5170    break;
5171  case ISD::SRL:
5172    // Only look at single-use SRLs.
5173    if (!V.getNode()->hasOneUse())
5174      break;
5175    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5176      // See if we can recursively simplify the LHS.
5177      unsigned Amt = RHSC->getZExtValue();
5178
5179      // Watch out for shift count overflow though.
5180      if (Amt >= Mask.getBitWidth()) break;
5181      APInt NewMask = Mask << Amt;
5182      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5183      if (SimplifyLHS.getNode())
5184        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5185                           SimplifyLHS, V.getOperand(1));
5186    }
5187  }
5188  return SDValue();
5189}
5190
5191/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5192/// bits and then truncated to a narrower type and where N is a multiple
5193/// of number of bits of the narrower type, transform it to a narrower load
5194/// from address + N / num of bits of new type. If the result is to be
5195/// extended, also fold the extension to form a extending load.
5196SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5197  unsigned Opc = N->getOpcode();
5198
5199  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5200  SDValue N0 = N->getOperand(0);
5201  EVT VT = N->getValueType(0);
5202  EVT ExtVT = VT;
5203
5204  // This transformation isn't valid for vector loads.
5205  if (VT.isVector())
5206    return SDValue();
5207
5208  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5209  // extended to VT.
5210  if (Opc == ISD::SIGN_EXTEND_INREG) {
5211    ExtType = ISD::SEXTLOAD;
5212    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5213  } else if (Opc == ISD::SRL) {
5214    // Another special-case: SRL is basically zero-extending a narrower value.
5215    ExtType = ISD::ZEXTLOAD;
5216    N0 = SDValue(N, 0);
5217    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5218    if (!N01) return SDValue();
5219    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5220                              VT.getSizeInBits() - N01->getZExtValue());
5221  }
5222  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5223    return SDValue();
5224
5225  unsigned EVTBits = ExtVT.getSizeInBits();
5226
5227  // Do not generate loads of non-round integer types since these can
5228  // be expensive (and would be wrong if the type is not byte sized).
5229  if (!ExtVT.isRound())
5230    return SDValue();
5231
5232  unsigned ShAmt = 0;
5233  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5234    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5235      ShAmt = N01->getZExtValue();
5236      // Is the shift amount a multiple of size of VT?
5237      if ((ShAmt & (EVTBits-1)) == 0) {
5238        N0 = N0.getOperand(0);
5239        // Is the load width a multiple of size of VT?
5240        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5241          return SDValue();
5242      }
5243
5244      // At this point, we must have a load or else we can't do the transform.
5245      if (!isa<LoadSDNode>(N0)) return SDValue();
5246
5247      // Because a SRL must be assumed to *need* to zero-extend the high bits
5248      // (as opposed to anyext the high bits), we can't combine the zextload
5249      // lowering of SRL and an sextload.
5250      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5251        return SDValue();
5252
5253      // If the shift amount is larger than the input type then we're not
5254      // accessing any of the loaded bytes.  If the load was a zextload/extload
5255      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5256      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5257        return SDValue();
5258    }
5259  }
5260
5261  // If the load is shifted left (and the result isn't shifted back right),
5262  // we can fold the truncate through the shift.
5263  unsigned ShLeftAmt = 0;
5264  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5265      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5266    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5267      ShLeftAmt = N01->getZExtValue();
5268      N0 = N0.getOperand(0);
5269    }
5270  }
5271
5272  // If we haven't found a load, we can't narrow it.  Don't transform one with
5273  // multiple uses, this would require adding a new load.
5274  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5275    return SDValue();
5276
5277  // Don't change the width of a volatile load.
5278  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5279  if (LN0->isVolatile())
5280    return SDValue();
5281
5282  // Verify that we are actually reducing a load width here.
5283  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5284    return SDValue();
5285
5286  // For the transform to be legal, the load must produce only two values
5287  // (the value loaded and the chain).  Don't transform a pre-increment
5288  // load, for example, which produces an extra value.  Otherwise the
5289  // transformation is not equivalent, and the downstream logic to replace
5290  // uses gets things wrong.
5291  if (LN0->getNumValues() > 2)
5292    return SDValue();
5293
5294  // If the load that we're shrinking is an extload and we're not just
5295  // discarding the extension we can't simply shrink the load. Bail.
5296  // TODO: It would be possible to merge the extensions in some cases.
5297  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5298      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5299    return SDValue();
5300
5301  EVT PtrType = N0.getOperand(1).getValueType();
5302
5303  if (PtrType == MVT::Untyped || PtrType.isExtended())
5304    // It's not possible to generate a constant of extended or untyped type.
5305    return SDValue();
5306
5307  // For big endian targets, we need to adjust the offset to the pointer to
5308  // load the correct bytes.
5309  if (TLI.isBigEndian()) {
5310    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5311    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5312    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5313  }
5314
5315  uint64_t PtrOff = ShAmt / 8;
5316  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5317  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5318                               PtrType, LN0->getBasePtr(),
5319                               DAG.getConstant(PtrOff, PtrType));
5320  AddToWorkList(NewPtr.getNode());
5321
5322  SDValue Load;
5323  if (ExtType == ISD::NON_EXTLOAD)
5324    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5325                        LN0->getPointerInfo().getWithOffset(PtrOff),
5326                        LN0->isVolatile(), LN0->isNonTemporal(),
5327                        LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5328  else
5329    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5330                          LN0->getPointerInfo().getWithOffset(PtrOff),
5331                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5332                          NewAlign, LN0->getTBAAInfo());
5333
5334  // Replace the old load's chain with the new load's chain.
5335  WorkListRemover DeadNodes(*this);
5336  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5337
5338  // Shift the result left, if we've swallowed a left shift.
5339  SDValue Result = Load;
5340  if (ShLeftAmt != 0) {
5341    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5342    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5343      ShImmTy = VT;
5344    // If the shift amount is as large as the result size (but, presumably,
5345    // no larger than the source) then the useful bits of the result are
5346    // zero; we can't simply return the shortened shift, because the result
5347    // of that operation is undefined.
5348    if (ShLeftAmt >= VT.getSizeInBits())
5349      Result = DAG.getConstant(0, VT);
5350    else
5351      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5352                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5353  }
5354
5355  // Return the new loaded value.
5356  return Result;
5357}
5358
5359SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5360  SDValue N0 = N->getOperand(0);
5361  SDValue N1 = N->getOperand(1);
5362  EVT VT = N->getValueType(0);
5363  EVT EVT = cast<VTSDNode>(N1)->getVT();
5364  unsigned VTBits = VT.getScalarType().getSizeInBits();
5365  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5366
5367  // fold (sext_in_reg c1) -> c1
5368  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5369    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5370
5371  // If the input is already sign extended, just drop the extension.
5372  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5373    return N0;
5374
5375  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5376  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5377      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5378    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5379                       N0.getOperand(0), N1);
5380
5381  // fold (sext_in_reg (sext x)) -> (sext x)
5382  // fold (sext_in_reg (aext x)) -> (sext x)
5383  // if x is small enough.
5384  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5385    SDValue N00 = N0.getOperand(0);
5386    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5387        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5388      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5389  }
5390
5391  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5392  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5393    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5394
5395  // fold operands of sext_in_reg based on knowledge that the top bits are not
5396  // demanded.
5397  if (SimplifyDemandedBits(SDValue(N, 0)))
5398    return SDValue(N, 0);
5399
5400  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5401  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5402  SDValue NarrowLoad = ReduceLoadWidth(N);
5403  if (NarrowLoad.getNode())
5404    return NarrowLoad;
5405
5406  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5407  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5408  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5409  if (N0.getOpcode() == ISD::SRL) {
5410    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5411      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5412        // We can turn this into an SRA iff the input to the SRL is already sign
5413        // extended enough.
5414        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5415        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5416          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5417                             N0.getOperand(0), N0.getOperand(1));
5418      }
5419  }
5420
5421  // fold (sext_inreg (extload x)) -> (sextload x)
5422  if (ISD::isEXTLoad(N0.getNode()) &&
5423      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5424      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5425      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5426       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5427    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5428    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5429                                     LN0->getChain(),
5430                                     LN0->getBasePtr(), EVT,
5431                                     LN0->getMemOperand());
5432    CombineTo(N, ExtLoad);
5433    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5434    AddToWorkList(ExtLoad.getNode());
5435    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5436  }
5437  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5438  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5439      N0.hasOneUse() &&
5440      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5441      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5442       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5443    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5444    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5445                                     LN0->getChain(),
5446                                     LN0->getBasePtr(), EVT,
5447                                     LN0->getMemOperand());
5448    CombineTo(N, ExtLoad);
5449    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5450    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5451  }
5452
5453  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5454  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5455    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5456                                       N0.getOperand(1), false);
5457    if (BSwap.getNode() != 0)
5458      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5459                         BSwap, N1);
5460  }
5461
5462  return SDValue();
5463}
5464
5465SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5466  SDValue N0 = N->getOperand(0);
5467  EVT VT = N->getValueType(0);
5468  bool isLE = TLI.isLittleEndian();
5469
5470  // noop truncate
5471  if (N0.getValueType() == N->getValueType(0))
5472    return N0;
5473  // fold (truncate c1) -> c1
5474  if (isa<ConstantSDNode>(N0))
5475    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5476  // fold (truncate (truncate x)) -> (truncate x)
5477  if (N0.getOpcode() == ISD::TRUNCATE)
5478    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5479  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5480  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5481      N0.getOpcode() == ISD::SIGN_EXTEND ||
5482      N0.getOpcode() == ISD::ANY_EXTEND) {
5483    if (N0.getOperand(0).getValueType().bitsLT(VT))
5484      // if the source is smaller than the dest, we still need an extend
5485      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5486                         N0.getOperand(0));
5487    if (N0.getOperand(0).getValueType().bitsGT(VT))
5488      // if the source is larger than the dest, than we just need the truncate
5489      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5490    // if the source and dest are the same type, we can drop both the extend
5491    // and the truncate.
5492    return N0.getOperand(0);
5493  }
5494
5495  // Fold extract-and-trunc into a narrow extract. For example:
5496  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5497  //   i32 y = TRUNCATE(i64 x)
5498  //        -- becomes --
5499  //   v16i8 b = BITCAST (v2i64 val)
5500  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5501  //
5502  // Note: We only run this optimization after type legalization (which often
5503  // creates this pattern) and before operation legalization after which
5504  // we need to be more careful about the vector instructions that we generate.
5505  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5506      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5507
5508    EVT VecTy = N0.getOperand(0).getValueType();
5509    EVT ExTy = N0.getValueType();
5510    EVT TrTy = N->getValueType(0);
5511
5512    unsigned NumElem = VecTy.getVectorNumElements();
5513    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5514
5515    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5516    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5517
5518    SDValue EltNo = N0->getOperand(1);
5519    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5520      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5521      EVT IndexTy = TLI.getVectorIdxTy();
5522      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5523
5524      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5525                              NVT, N0.getOperand(0));
5526
5527      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5528                         SDLoc(N), TrTy, V,
5529                         DAG.getConstant(Index, IndexTy));
5530    }
5531  }
5532
5533  // Fold a series of buildvector, bitcast, and truncate if possible.
5534  // For example fold
5535  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5536  //   (2xi32 (buildvector x, y)).
5537  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5538      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5539      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5540      N0.getOperand(0).hasOneUse()) {
5541
5542    SDValue BuildVect = N0.getOperand(0);
5543    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5544    EVT TruncVecEltTy = VT.getVectorElementType();
5545
5546    // Check that the element types match.
5547    if (BuildVectEltTy == TruncVecEltTy) {
5548      // Now we only need to compute the offset of the truncated elements.
5549      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5550      unsigned TruncVecNumElts = VT.getVectorNumElements();
5551      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5552
5553      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5554             "Invalid number of elements");
5555
5556      SmallVector<SDValue, 8> Opnds;
5557      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5558        Opnds.push_back(BuildVect.getOperand(i));
5559
5560      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5561                         Opnds.size());
5562    }
5563  }
5564
5565  // See if we can simplify the input to this truncate through knowledge that
5566  // only the low bits are being used.
5567  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5568  // Currently we only perform this optimization on scalars because vectors
5569  // may have different active low bits.
5570  if (!VT.isVector()) {
5571    SDValue Shorter =
5572      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5573                                               VT.getSizeInBits()));
5574    if (Shorter.getNode())
5575      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5576  }
5577  // fold (truncate (load x)) -> (smaller load x)
5578  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5579  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5580    SDValue Reduced = ReduceLoadWidth(N);
5581    if (Reduced.getNode())
5582      return Reduced;
5583  }
5584  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5585  // where ... are all 'undef'.
5586  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5587    SmallVector<EVT, 8> VTs;
5588    SDValue V;
5589    unsigned Idx = 0;
5590    unsigned NumDefs = 0;
5591
5592    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5593      SDValue X = N0.getOperand(i);
5594      if (X.getOpcode() != ISD::UNDEF) {
5595        V = X;
5596        Idx = i;
5597        NumDefs++;
5598      }
5599      // Stop if more than one members are non-undef.
5600      if (NumDefs > 1)
5601        break;
5602      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5603                                     VT.getVectorElementType(),
5604                                     X.getValueType().getVectorNumElements()));
5605    }
5606
5607    if (NumDefs == 0)
5608      return DAG.getUNDEF(VT);
5609
5610    if (NumDefs == 1) {
5611      assert(V.getNode() && "The single defined operand is empty!");
5612      SmallVector<SDValue, 8> Opnds;
5613      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5614        if (i != Idx) {
5615          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5616          continue;
5617        }
5618        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5619        AddToWorkList(NV.getNode());
5620        Opnds.push_back(NV);
5621      }
5622      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5623                         &Opnds[0], Opnds.size());
5624    }
5625  }
5626
5627  // Simplify the operands using demanded-bits information.
5628  if (!VT.isVector() &&
5629      SimplifyDemandedBits(SDValue(N, 0)))
5630    return SDValue(N, 0);
5631
5632  return SDValue();
5633}
5634
5635static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5636  SDValue Elt = N->getOperand(i);
5637  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5638    return Elt.getNode();
5639  return Elt.getOperand(Elt.getResNo()).getNode();
5640}
5641
5642/// CombineConsecutiveLoads - build_pair (load, load) -> load
5643/// if load locations are consecutive.
5644SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5645  assert(N->getOpcode() == ISD::BUILD_PAIR);
5646
5647  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5648  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5649  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5650      LD1->getPointerInfo().getAddrSpace() !=
5651         LD2->getPointerInfo().getAddrSpace())
5652    return SDValue();
5653  EVT LD1VT = LD1->getValueType(0);
5654
5655  if (ISD::isNON_EXTLoad(LD2) &&
5656      LD2->hasOneUse() &&
5657      // If both are volatile this would reduce the number of volatile loads.
5658      // If one is volatile it might be ok, but play conservative and bail out.
5659      !LD1->isVolatile() &&
5660      !LD2->isVolatile() &&
5661      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5662    unsigned Align = LD1->getAlignment();
5663    unsigned NewAlign = TLI.getDataLayout()->
5664      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5665
5666    if (NewAlign <= Align &&
5667        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5668      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5669                         LD1->getBasePtr(), LD1->getPointerInfo(),
5670                         false, false, false, Align);
5671  }
5672
5673  return SDValue();
5674}
5675
5676SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5677  SDValue N0 = N->getOperand(0);
5678  EVT VT = N->getValueType(0);
5679
5680  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5681  // Only do this before legalize, since afterward the target may be depending
5682  // on the bitconvert.
5683  // First check to see if this is all constant.
5684  if (!LegalTypes &&
5685      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5686      VT.isVector()) {
5687    bool isSimple = true;
5688    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5689      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5690          N0.getOperand(i).getOpcode() != ISD::Constant &&
5691          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5692        isSimple = false;
5693        break;
5694      }
5695
5696    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5697    assert(!DestEltVT.isVector() &&
5698           "Element type of vector ValueType must not be vector!");
5699    if (isSimple)
5700      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5701  }
5702
5703  // If the input is a constant, let getNode fold it.
5704  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5705    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5706    if (Res.getNode() != N) {
5707      if (!LegalOperations ||
5708          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5709        return Res;
5710
5711      // Folding it resulted in an illegal node, and it's too late to
5712      // do that. Clean up the old node and forego the transformation.
5713      // Ideally this won't happen very often, because instcombine
5714      // and the earlier dagcombine runs (where illegal nodes are
5715      // permitted) should have folded most of them already.
5716      DAG.DeleteNode(Res.getNode());
5717    }
5718  }
5719
5720  // (conv (conv x, t1), t2) -> (conv x, t2)
5721  if (N0.getOpcode() == ISD::BITCAST)
5722    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5723                       N0.getOperand(0));
5724
5725  // fold (conv (load x)) -> (load (conv*)x)
5726  // If the resultant load doesn't need a higher alignment than the original!
5727  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5728      // Do not change the width of a volatile load.
5729      !cast<LoadSDNode>(N0)->isVolatile() &&
5730      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5731    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5732    unsigned Align = TLI.getDataLayout()->
5733      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5734    unsigned OrigAlign = LN0->getAlignment();
5735
5736    if (Align <= OrigAlign) {
5737      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5738                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5739                                 LN0->isVolatile(), LN0->isNonTemporal(),
5740                                 LN0->isInvariant(), OrigAlign,
5741                                 LN0->getTBAAInfo());
5742      AddToWorkList(N);
5743      CombineTo(N0.getNode(),
5744                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5745                            N0.getValueType(), Load),
5746                Load.getValue(1));
5747      return Load;
5748    }
5749  }
5750
5751  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5752  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5753  // This often reduces constant pool loads.
5754  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5755       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5756      N0.getNode()->hasOneUse() && VT.isInteger() &&
5757      !VT.isVector() && !N0.getValueType().isVector()) {
5758    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5759                                  N0.getOperand(0));
5760    AddToWorkList(NewConv.getNode());
5761
5762    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5763    if (N0.getOpcode() == ISD::FNEG)
5764      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5765                         NewConv, DAG.getConstant(SignBit, VT));
5766    assert(N0.getOpcode() == ISD::FABS);
5767    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5768                       NewConv, DAG.getConstant(~SignBit, VT));
5769  }
5770
5771  // fold (bitconvert (fcopysign cst, x)) ->
5772  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5773  // Note that we don't handle (copysign x, cst) because this can always be
5774  // folded to an fneg or fabs.
5775  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5776      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5777      VT.isInteger() && !VT.isVector()) {
5778    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5779    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5780    if (isTypeLegal(IntXVT)) {
5781      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5782                              IntXVT, N0.getOperand(1));
5783      AddToWorkList(X.getNode());
5784
5785      // If X has a different width than the result/lhs, sext it or truncate it.
5786      unsigned VTWidth = VT.getSizeInBits();
5787      if (OrigXWidth < VTWidth) {
5788        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5789        AddToWorkList(X.getNode());
5790      } else if (OrigXWidth > VTWidth) {
5791        // To get the sign bit in the right place, we have to shift it right
5792        // before truncating.
5793        X = DAG.getNode(ISD::SRL, SDLoc(X),
5794                        X.getValueType(), X,
5795                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5796        AddToWorkList(X.getNode());
5797        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5798        AddToWorkList(X.getNode());
5799      }
5800
5801      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5802      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5803                      X, DAG.getConstant(SignBit, VT));
5804      AddToWorkList(X.getNode());
5805
5806      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5807                                VT, N0.getOperand(0));
5808      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5809                        Cst, DAG.getConstant(~SignBit, VT));
5810      AddToWorkList(Cst.getNode());
5811
5812      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5813    }
5814  }
5815
5816  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5817  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5818    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5819    if (CombineLD.getNode())
5820      return CombineLD;
5821  }
5822
5823  return SDValue();
5824}
5825
5826SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5827  EVT VT = N->getValueType(0);
5828  return CombineConsecutiveLoads(N, VT);
5829}
5830
5831/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5832/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5833/// destination element value type.
5834SDValue DAGCombiner::
5835ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5836  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5837
5838  // If this is already the right type, we're done.
5839  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5840
5841  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5842  unsigned DstBitSize = DstEltVT.getSizeInBits();
5843
5844  // If this is a conversion of N elements of one type to N elements of another
5845  // type, convert each element.  This handles FP<->INT cases.
5846  if (SrcBitSize == DstBitSize) {
5847    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5848                              BV->getValueType(0).getVectorNumElements());
5849
5850    // Due to the FP element handling below calling this routine recursively,
5851    // we can end up with a scalar-to-vector node here.
5852    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5853      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5854                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5855                                     DstEltVT, BV->getOperand(0)));
5856
5857    SmallVector<SDValue, 8> Ops;
5858    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5859      SDValue Op = BV->getOperand(i);
5860      // If the vector element type is not legal, the BUILD_VECTOR operands
5861      // are promoted and implicitly truncated.  Make that explicit here.
5862      if (Op.getValueType() != SrcEltVT)
5863        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5864      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5865                                DstEltVT, Op));
5866      AddToWorkList(Ops.back().getNode());
5867    }
5868    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5869                       &Ops[0], Ops.size());
5870  }
5871
5872  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5873  // handle annoying details of growing/shrinking FP values, we convert them to
5874  // int first.
5875  if (SrcEltVT.isFloatingPoint()) {
5876    // Convert the input float vector to a int vector where the elements are the
5877    // same sizes.
5878    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5879    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5880    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5881    SrcEltVT = IntVT;
5882  }
5883
5884  // Now we know the input is an integer vector.  If the output is a FP type,
5885  // convert to integer first, then to FP of the right size.
5886  if (DstEltVT.isFloatingPoint()) {
5887    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5888    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5889    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5890
5891    // Next, convert to FP elements of the same size.
5892    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5893  }
5894
5895  // Okay, we know the src/dst types are both integers of differing types.
5896  // Handling growing first.
5897  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5898  if (SrcBitSize < DstBitSize) {
5899    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5900
5901    SmallVector<SDValue, 8> Ops;
5902    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5903         i += NumInputsPerOutput) {
5904      bool isLE = TLI.isLittleEndian();
5905      APInt NewBits = APInt(DstBitSize, 0);
5906      bool EltIsUndef = true;
5907      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5908        // Shift the previously computed bits over.
5909        NewBits <<= SrcBitSize;
5910        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5911        if (Op.getOpcode() == ISD::UNDEF) continue;
5912        EltIsUndef = false;
5913
5914        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5915                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5916      }
5917
5918      if (EltIsUndef)
5919        Ops.push_back(DAG.getUNDEF(DstEltVT));
5920      else
5921        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5922    }
5923
5924    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5925    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5926                       &Ops[0], Ops.size());
5927  }
5928
5929  // Finally, this must be the case where we are shrinking elements: each input
5930  // turns into multiple outputs.
5931  bool isS2V = ISD::isScalarToVector(BV);
5932  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5933  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5934                            NumOutputsPerInput*BV->getNumOperands());
5935  SmallVector<SDValue, 8> Ops;
5936
5937  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5938    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5939      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5940        Ops.push_back(DAG.getUNDEF(DstEltVT));
5941      continue;
5942    }
5943
5944    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5945                  getAPIntValue().zextOrTrunc(SrcBitSize);
5946
5947    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5948      APInt ThisVal = OpVal.trunc(DstBitSize);
5949      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5950      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5951        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5952        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5953                           Ops[0]);
5954      OpVal = OpVal.lshr(DstBitSize);
5955    }
5956
5957    // For big endian targets, swap the order of the pieces of each element.
5958    if (TLI.isBigEndian())
5959      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5960  }
5961
5962  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5963                     &Ops[0], Ops.size());
5964}
5965
5966SDValue DAGCombiner::visitFADD(SDNode *N) {
5967  SDValue N0 = N->getOperand(0);
5968  SDValue N1 = N->getOperand(1);
5969  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5970  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5971  EVT VT = N->getValueType(0);
5972
5973  // fold vector ops
5974  if (VT.isVector()) {
5975    SDValue FoldedVOp = SimplifyVBinOp(N);
5976    if (FoldedVOp.getNode()) return FoldedVOp;
5977  }
5978
5979  // fold (fadd c1, c2) -> c1 + c2
5980  if (N0CFP && N1CFP)
5981    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
5982  // canonicalize constant to RHS
5983  if (N0CFP && !N1CFP)
5984    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
5985  // fold (fadd A, 0) -> A
5986  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5987      N1CFP->getValueAPF().isZero())
5988    return N0;
5989  // fold (fadd A, (fneg B)) -> (fsub A, B)
5990  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5991    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5992    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
5993                       GetNegatedExpression(N1, DAG, LegalOperations));
5994  // fold (fadd (fneg A), B) -> (fsub B, A)
5995  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5996    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5997    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
5998                       GetNegatedExpression(N0, DAG, LegalOperations));
5999
6000  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6001  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6002      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6003      isa<ConstantFPSDNode>(N0.getOperand(1)))
6004    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6005                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6006                                   N0.getOperand(1), N1));
6007
6008  // No FP constant should be created after legalization as Instruction
6009  // Selection pass has hard time in dealing with FP constant.
6010  //
6011  // We don't need test this condition for transformation like following, as
6012  // the DAG being transformed implies it is legal to take FP constant as
6013  // operand.
6014  //
6015  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6016  //
6017  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6018
6019  // If allow, fold (fadd (fneg x), x) -> 0.0
6020  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6021      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6022    return DAG.getConstantFP(0.0, VT);
6023
6024    // If allow, fold (fadd x, (fneg x)) -> 0.0
6025  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6026      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6027    return DAG.getConstantFP(0.0, VT);
6028
6029  // In unsafe math mode, we can fold chains of FADD's of the same value
6030  // into multiplications.  This transform is not safe in general because
6031  // we are reducing the number of rounding steps.
6032  if (DAG.getTarget().Options.UnsafeFPMath &&
6033      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6034      !N0CFP && !N1CFP) {
6035    if (N0.getOpcode() == ISD::FMUL) {
6036      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6037      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6038
6039      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6040      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6041        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6042                                     SDValue(CFP00, 0),
6043                                     DAG.getConstantFP(1.0, VT));
6044        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6045                           N1, NewCFP);
6046      }
6047
6048      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6049      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6050        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6051                                     SDValue(CFP01, 0),
6052                                     DAG.getConstantFP(1.0, VT));
6053        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6054                           N1, NewCFP);
6055      }
6056
6057      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6058      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6059          N1.getOperand(0) == N1.getOperand(1) &&
6060          N0.getOperand(1) == N1.getOperand(0)) {
6061        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6062                                     SDValue(CFP00, 0),
6063                                     DAG.getConstantFP(2.0, VT));
6064        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6065                           N0.getOperand(1), NewCFP);
6066      }
6067
6068      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6069      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6070          N1.getOperand(0) == N1.getOperand(1) &&
6071          N0.getOperand(0) == N1.getOperand(0)) {
6072        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6073                                     SDValue(CFP01, 0),
6074                                     DAG.getConstantFP(2.0, VT));
6075        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6076                           N0.getOperand(0), NewCFP);
6077      }
6078    }
6079
6080    if (N1.getOpcode() == ISD::FMUL) {
6081      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6082      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6083
6084      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6085      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6086        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6087                                     SDValue(CFP10, 0),
6088                                     DAG.getConstantFP(1.0, VT));
6089        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6090                           N0, NewCFP);
6091      }
6092
6093      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6094      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6095        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6096                                     SDValue(CFP11, 0),
6097                                     DAG.getConstantFP(1.0, VT));
6098        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6099                           N0, NewCFP);
6100      }
6101
6102
6103      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6104      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6105          N0.getOperand(0) == N0.getOperand(1) &&
6106          N1.getOperand(1) == N0.getOperand(0)) {
6107        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6108                                     SDValue(CFP10, 0),
6109                                     DAG.getConstantFP(2.0, VT));
6110        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6111                           N1.getOperand(1), NewCFP);
6112      }
6113
6114      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6115      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6116          N0.getOperand(0) == N0.getOperand(1) &&
6117          N1.getOperand(0) == N0.getOperand(0)) {
6118        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6119                                     SDValue(CFP11, 0),
6120                                     DAG.getConstantFP(2.0, VT));
6121        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6122                           N1.getOperand(0), NewCFP);
6123      }
6124    }
6125
6126    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6127      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6128      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6129      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6130          (N0.getOperand(0) == N1))
6131        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6132                           N1, DAG.getConstantFP(3.0, VT));
6133    }
6134
6135    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6136      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6137      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6138      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6139          N1.getOperand(0) == N0)
6140        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6141                           N0, DAG.getConstantFP(3.0, VT));
6142    }
6143
6144    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6145    if (AllowNewFpConst &&
6146        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6147        N0.getOperand(0) == N0.getOperand(1) &&
6148        N1.getOperand(0) == N1.getOperand(1) &&
6149        N0.getOperand(0) == N1.getOperand(0))
6150      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6151                         N0.getOperand(0),
6152                         DAG.getConstantFP(4.0, VT));
6153  }
6154
6155  // FADD -> FMA combines:
6156  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6157       DAG.getTarget().Options.UnsafeFPMath) &&
6158      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6159      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6160
6161    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6162    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6163      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6164                         N0.getOperand(0), N0.getOperand(1), N1);
6165
6166    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6167    // Note: Commutes FADD operands.
6168    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6169      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6170                         N1.getOperand(0), N1.getOperand(1), N0);
6171  }
6172
6173  return SDValue();
6174}
6175
6176SDValue DAGCombiner::visitFSUB(SDNode *N) {
6177  SDValue N0 = N->getOperand(0);
6178  SDValue N1 = N->getOperand(1);
6179  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6180  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6181  EVT VT = N->getValueType(0);
6182  SDLoc dl(N);
6183
6184  // fold vector ops
6185  if (VT.isVector()) {
6186    SDValue FoldedVOp = SimplifyVBinOp(N);
6187    if (FoldedVOp.getNode()) return FoldedVOp;
6188  }
6189
6190  // fold (fsub c1, c2) -> c1-c2
6191  if (N0CFP && N1CFP)
6192    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6193  // fold (fsub A, 0) -> A
6194  if (DAG.getTarget().Options.UnsafeFPMath &&
6195      N1CFP && N1CFP->getValueAPF().isZero())
6196    return N0;
6197  // fold (fsub 0, B) -> -B
6198  if (DAG.getTarget().Options.UnsafeFPMath &&
6199      N0CFP && N0CFP->getValueAPF().isZero()) {
6200    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6201      return GetNegatedExpression(N1, DAG, LegalOperations);
6202    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6203      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6204  }
6205  // fold (fsub A, (fneg B)) -> (fadd A, B)
6206  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6207    return DAG.getNode(ISD::FADD, dl, VT, N0,
6208                       GetNegatedExpression(N1, DAG, LegalOperations));
6209
6210  // If 'unsafe math' is enabled, fold
6211  //    (fsub x, x) -> 0.0 &
6212  //    (fsub x, (fadd x, y)) -> (fneg y) &
6213  //    (fsub x, (fadd y, x)) -> (fneg y)
6214  if (DAG.getTarget().Options.UnsafeFPMath) {
6215    if (N0 == N1)
6216      return DAG.getConstantFP(0.0f, VT);
6217
6218    if (N1.getOpcode() == ISD::FADD) {
6219      SDValue N10 = N1->getOperand(0);
6220      SDValue N11 = N1->getOperand(1);
6221
6222      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6223                                          &DAG.getTarget().Options))
6224        return GetNegatedExpression(N11, DAG, LegalOperations);
6225
6226      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6227                                          &DAG.getTarget().Options))
6228        return GetNegatedExpression(N10, DAG, LegalOperations);
6229    }
6230  }
6231
6232  // FSUB -> FMA combines:
6233  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6234       DAG.getTarget().Options.UnsafeFPMath) &&
6235      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6236      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6237
6238    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6239    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6240      return DAG.getNode(ISD::FMA, dl, VT,
6241                         N0.getOperand(0), N0.getOperand(1),
6242                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6243
6244    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6245    // Note: Commutes FSUB operands.
6246    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6247      return DAG.getNode(ISD::FMA, dl, VT,
6248                         DAG.getNode(ISD::FNEG, dl, VT,
6249                         N1.getOperand(0)),
6250                         N1.getOperand(1), N0);
6251
6252    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6253    if (N0.getOpcode() == ISD::FNEG &&
6254        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6255        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6256      SDValue N00 = N0.getOperand(0).getOperand(0);
6257      SDValue N01 = N0.getOperand(0).getOperand(1);
6258      return DAG.getNode(ISD::FMA, dl, VT,
6259                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6260                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6261    }
6262  }
6263
6264  return SDValue();
6265}
6266
6267SDValue DAGCombiner::visitFMUL(SDNode *N) {
6268  SDValue N0 = N->getOperand(0);
6269  SDValue N1 = N->getOperand(1);
6270  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6271  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6272  EVT VT = N->getValueType(0);
6273  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6274
6275  // fold vector ops
6276  if (VT.isVector()) {
6277    SDValue FoldedVOp = SimplifyVBinOp(N);
6278    if (FoldedVOp.getNode()) return FoldedVOp;
6279  }
6280
6281  // fold (fmul c1, c2) -> c1*c2
6282  if (N0CFP && N1CFP)
6283    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6284  // canonicalize constant to RHS
6285  if (N0CFP && !N1CFP)
6286    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6287  // fold (fmul A, 0) -> 0
6288  if (DAG.getTarget().Options.UnsafeFPMath &&
6289      N1CFP && N1CFP->getValueAPF().isZero())
6290    return N1;
6291  // fold (fmul A, 0) -> 0, vector edition.
6292  if (DAG.getTarget().Options.UnsafeFPMath &&
6293      ISD::isBuildVectorAllZeros(N1.getNode()))
6294    return N1;
6295  // fold (fmul A, 1.0) -> A
6296  if (N1CFP && N1CFP->isExactlyValue(1.0))
6297    return N0;
6298  // fold (fmul X, 2.0) -> (fadd X, X)
6299  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6300    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6301  // fold (fmul X, -1.0) -> (fneg X)
6302  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6303    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6304      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6305
6306  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6307  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6308                                       &DAG.getTarget().Options)) {
6309    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6310                                         &DAG.getTarget().Options)) {
6311      // Both can be negated for free, check to see if at least one is cheaper
6312      // negated.
6313      if (LHSNeg == 2 || RHSNeg == 2)
6314        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6315                           GetNegatedExpression(N0, DAG, LegalOperations),
6316                           GetNegatedExpression(N1, DAG, LegalOperations));
6317    }
6318  }
6319
6320  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6321  if (DAG.getTarget().Options.UnsafeFPMath &&
6322      N1CFP && N0.getOpcode() == ISD::FMUL &&
6323      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6324    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6325                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6326                                   N0.getOperand(1), N1));
6327
6328  return SDValue();
6329}
6330
6331SDValue DAGCombiner::visitFMA(SDNode *N) {
6332  SDValue N0 = N->getOperand(0);
6333  SDValue N1 = N->getOperand(1);
6334  SDValue N2 = N->getOperand(2);
6335  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6336  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6337  EVT VT = N->getValueType(0);
6338  SDLoc dl(N);
6339
6340  if (DAG.getTarget().Options.UnsafeFPMath) {
6341    if (N0CFP && N0CFP->isZero())
6342      return N2;
6343    if (N1CFP && N1CFP->isZero())
6344      return N2;
6345  }
6346  if (N0CFP && N0CFP->isExactlyValue(1.0))
6347    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6348  if (N1CFP && N1CFP->isExactlyValue(1.0))
6349    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6350
6351  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6352  if (N0CFP && !N1CFP)
6353    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6354
6355  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6356  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6357      N2.getOpcode() == ISD::FMUL &&
6358      N0 == N2.getOperand(0) &&
6359      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6360    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6361                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6362  }
6363
6364
6365  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6366  if (DAG.getTarget().Options.UnsafeFPMath &&
6367      N0.getOpcode() == ISD::FMUL && N1CFP &&
6368      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6369    return DAG.getNode(ISD::FMA, dl, VT,
6370                       N0.getOperand(0),
6371                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6372                       N2);
6373  }
6374
6375  // (fma x, 1, y) -> (fadd x, y)
6376  // (fma x, -1, y) -> (fadd (fneg x), y)
6377  if (N1CFP) {
6378    if (N1CFP->isExactlyValue(1.0))
6379      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6380
6381    if (N1CFP->isExactlyValue(-1.0) &&
6382        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6383      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6384      AddToWorkList(RHSNeg.getNode());
6385      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6386    }
6387  }
6388
6389  // (fma x, c, x) -> (fmul x, (c+1))
6390  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6391    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6392                       DAG.getNode(ISD::FADD, dl, VT,
6393                                   N1, DAG.getConstantFP(1.0, VT)));
6394
6395  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6396  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6397      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6398    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6399                       DAG.getNode(ISD::FADD, dl, VT,
6400                                   N1, DAG.getConstantFP(-1.0, VT)));
6401
6402
6403  return SDValue();
6404}
6405
6406SDValue DAGCombiner::visitFDIV(SDNode *N) {
6407  SDValue N0 = N->getOperand(0);
6408  SDValue N1 = N->getOperand(1);
6409  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6410  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6411  EVT VT = N->getValueType(0);
6412  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6413
6414  // fold vector ops
6415  if (VT.isVector()) {
6416    SDValue FoldedVOp = SimplifyVBinOp(N);
6417    if (FoldedVOp.getNode()) return FoldedVOp;
6418  }
6419
6420  // fold (fdiv c1, c2) -> c1/c2
6421  if (N0CFP && N1CFP)
6422    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6423
6424  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6425  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6426    // Compute the reciprocal 1.0 / c2.
6427    APFloat N1APF = N1CFP->getValueAPF();
6428    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6429    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6430    // Only do the transform if the reciprocal is a legal fp immediate that
6431    // isn't too nasty (eg NaN, denormal, ...).
6432    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6433        (!LegalOperations ||
6434         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6435         // backend)... we should handle this gracefully after Legalize.
6436         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6437         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6438         TLI.isFPImmLegal(Recip, VT)))
6439      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6440                         DAG.getConstantFP(Recip, VT));
6441  }
6442
6443  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6444  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6445                                       &DAG.getTarget().Options)) {
6446    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6447                                         &DAG.getTarget().Options)) {
6448      // Both can be negated for free, check to see if at least one is cheaper
6449      // negated.
6450      if (LHSNeg == 2 || RHSNeg == 2)
6451        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6452                           GetNegatedExpression(N0, DAG, LegalOperations),
6453                           GetNegatedExpression(N1, DAG, LegalOperations));
6454    }
6455  }
6456
6457  return SDValue();
6458}
6459
6460SDValue DAGCombiner::visitFREM(SDNode *N) {
6461  SDValue N0 = N->getOperand(0);
6462  SDValue N1 = N->getOperand(1);
6463  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6464  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6465  EVT VT = N->getValueType(0);
6466
6467  // fold (frem c1, c2) -> fmod(c1,c2)
6468  if (N0CFP && N1CFP)
6469    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6470
6471  return SDValue();
6472}
6473
6474SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6475  SDValue N0 = N->getOperand(0);
6476  SDValue N1 = N->getOperand(1);
6477  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6478  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6479  EVT VT = N->getValueType(0);
6480
6481  if (N0CFP && N1CFP)  // Constant fold
6482    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6483
6484  if (N1CFP) {
6485    const APFloat& V = N1CFP->getValueAPF();
6486    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6487    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6488    if (!V.isNegative()) {
6489      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6490        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6491    } else {
6492      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6493        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6494                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6495    }
6496  }
6497
6498  // copysign(fabs(x), y) -> copysign(x, y)
6499  // copysign(fneg(x), y) -> copysign(x, y)
6500  // copysign(copysign(x,z), y) -> copysign(x, y)
6501  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6502      N0.getOpcode() == ISD::FCOPYSIGN)
6503    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6504                       N0.getOperand(0), N1);
6505
6506  // copysign(x, abs(y)) -> abs(x)
6507  if (N1.getOpcode() == ISD::FABS)
6508    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6509
6510  // copysign(x, copysign(y,z)) -> copysign(x, z)
6511  if (N1.getOpcode() == ISD::FCOPYSIGN)
6512    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6513                       N0, N1.getOperand(1));
6514
6515  // copysign(x, fp_extend(y)) -> copysign(x, y)
6516  // copysign(x, fp_round(y)) -> copysign(x, y)
6517  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6518    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6519                       N0, N1.getOperand(0));
6520
6521  return SDValue();
6522}
6523
6524SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6525  SDValue N0 = N->getOperand(0);
6526  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6527  EVT VT = N->getValueType(0);
6528  EVT OpVT = N0.getValueType();
6529
6530  // fold (sint_to_fp c1) -> c1fp
6531  if (N0C &&
6532      // ...but only if the target supports immediate floating-point values
6533      (!LegalOperations ||
6534       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6535    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6536
6537  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6538  // but UINT_TO_FP is legal on this target, try to convert.
6539  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6540      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6541    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6542    if (DAG.SignBitIsZero(N0))
6543      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6544  }
6545
6546  // The next optimizations are desireable only if SELECT_CC can be lowered.
6547  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6548  // having to say they don't support SELECT_CC on every type the DAG knows
6549  // about, since there is no way to mark an opcode illegal at all value types
6550  // (See also visitSELECT)
6551  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6552    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6553    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6554        !VT.isVector() &&
6555        (!LegalOperations ||
6556         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6557      SDValue Ops[] =
6558        { N0.getOperand(0), N0.getOperand(1),
6559          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6560          N0.getOperand(2) };
6561      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6562    }
6563
6564    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6565    //      (select_cc x, y, 1.0, 0.0,, cc)
6566    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6567        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6568        (!LegalOperations ||
6569         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6570      SDValue Ops[] =
6571        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6572          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6573          N0.getOperand(0).getOperand(2) };
6574      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6575    }
6576  }
6577
6578  return SDValue();
6579}
6580
6581SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6582  SDValue N0 = N->getOperand(0);
6583  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6584  EVT VT = N->getValueType(0);
6585  EVT OpVT = N0.getValueType();
6586
6587  // fold (uint_to_fp c1) -> c1fp
6588  if (N0C &&
6589      // ...but only if the target supports immediate floating-point values
6590      (!LegalOperations ||
6591       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6592    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6593
6594  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6595  // but SINT_TO_FP is legal on this target, try to convert.
6596  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6597      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6598    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6599    if (DAG.SignBitIsZero(N0))
6600      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6601  }
6602
6603  // The next optimizations are desireable only if SELECT_CC can be lowered.
6604  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6605  // having to say they don't support SELECT_CC on every type the DAG knows
6606  // about, since there is no way to mark an opcode illegal at all value types
6607  // (See also visitSELECT)
6608  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6609    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6610
6611    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6612        (!LegalOperations ||
6613         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6614      SDValue Ops[] =
6615        { N0.getOperand(0), N0.getOperand(1),
6616          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6617          N0.getOperand(2) };
6618      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6619    }
6620  }
6621
6622  return SDValue();
6623}
6624
6625SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6626  SDValue N0 = N->getOperand(0);
6627  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6628  EVT VT = N->getValueType(0);
6629
6630  // fold (fp_to_sint c1fp) -> c1
6631  if (N0CFP)
6632    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6633
6634  return SDValue();
6635}
6636
6637SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6638  SDValue N0 = N->getOperand(0);
6639  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6640  EVT VT = N->getValueType(0);
6641
6642  // fold (fp_to_uint c1fp) -> c1
6643  if (N0CFP)
6644    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6645
6646  return SDValue();
6647}
6648
6649SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6650  SDValue N0 = N->getOperand(0);
6651  SDValue N1 = N->getOperand(1);
6652  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6653  EVT VT = N->getValueType(0);
6654
6655  // fold (fp_round c1fp) -> c1fp
6656  if (N0CFP)
6657    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6658
6659  // fold (fp_round (fp_extend x)) -> x
6660  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6661    return N0.getOperand(0);
6662
6663  // fold (fp_round (fp_round x)) -> (fp_round x)
6664  if (N0.getOpcode() == ISD::FP_ROUND) {
6665    // This is a value preserving truncation if both round's are.
6666    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6667                   N0.getNode()->getConstantOperandVal(1) == 1;
6668    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6669                       DAG.getIntPtrConstant(IsTrunc));
6670  }
6671
6672  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6673  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6674    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6675                              N0.getOperand(0), N1);
6676    AddToWorkList(Tmp.getNode());
6677    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6678                       Tmp, N0.getOperand(1));
6679  }
6680
6681  return SDValue();
6682}
6683
6684SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6685  SDValue N0 = N->getOperand(0);
6686  EVT VT = N->getValueType(0);
6687  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6688  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6689
6690  // fold (fp_round_inreg c1fp) -> c1fp
6691  if (N0CFP && isTypeLegal(EVT)) {
6692    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6693    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6694  }
6695
6696  return SDValue();
6697}
6698
6699SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6700  SDValue N0 = N->getOperand(0);
6701  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6702  EVT VT = N->getValueType(0);
6703
6704  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6705  if (N->hasOneUse() &&
6706      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6707    return SDValue();
6708
6709  // fold (fp_extend c1fp) -> c1fp
6710  if (N0CFP)
6711    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6712
6713  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6714  // value of X.
6715  if (N0.getOpcode() == ISD::FP_ROUND
6716      && N0.getNode()->getConstantOperandVal(1) == 1) {
6717    SDValue In = N0.getOperand(0);
6718    if (In.getValueType() == VT) return In;
6719    if (VT.bitsLT(In.getValueType()))
6720      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6721                         In, N0.getOperand(1));
6722    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6723  }
6724
6725  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6726  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6727      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6728       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6729    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6730    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6731                                     LN0->getChain(),
6732                                     LN0->getBasePtr(), N0.getValueType(),
6733                                     LN0->getMemOperand());
6734    CombineTo(N, ExtLoad);
6735    CombineTo(N0.getNode(),
6736              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6737                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6738              ExtLoad.getValue(1));
6739    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6740  }
6741
6742  return SDValue();
6743}
6744
6745SDValue DAGCombiner::visitFNEG(SDNode *N) {
6746  SDValue N0 = N->getOperand(0);
6747  EVT VT = N->getValueType(0);
6748
6749  if (VT.isVector()) {
6750    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6751    if (FoldedVOp.getNode()) return FoldedVOp;
6752  }
6753
6754  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6755                         &DAG.getTarget().Options))
6756    return GetNegatedExpression(N0, DAG, LegalOperations);
6757
6758  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6759  // constant pool values.
6760  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6761      !VT.isVector() &&
6762      N0.getNode()->hasOneUse() &&
6763      N0.getOperand(0).getValueType().isInteger()) {
6764    SDValue Int = N0.getOperand(0);
6765    EVT IntVT = Int.getValueType();
6766    if (IntVT.isInteger() && !IntVT.isVector()) {
6767      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6768              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6769      AddToWorkList(Int.getNode());
6770      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6771                         VT, Int);
6772    }
6773  }
6774
6775  // (fneg (fmul c, x)) -> (fmul -c, x)
6776  if (N0.getOpcode() == ISD::FMUL) {
6777    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6778    if (CFP1)
6779      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6780                         N0.getOperand(0),
6781                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6782                                     N0.getOperand(1)));
6783  }
6784
6785  return SDValue();
6786}
6787
6788SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6789  SDValue N0 = N->getOperand(0);
6790  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6791  EVT VT = N->getValueType(0);
6792
6793  // fold (fceil c1) -> fceil(c1)
6794  if (N0CFP)
6795    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6796
6797  return SDValue();
6798}
6799
6800SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6801  SDValue N0 = N->getOperand(0);
6802  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6803  EVT VT = N->getValueType(0);
6804
6805  // fold (ftrunc c1) -> ftrunc(c1)
6806  if (N0CFP)
6807    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6808
6809  return SDValue();
6810}
6811
6812SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6813  SDValue N0 = N->getOperand(0);
6814  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6815  EVT VT = N->getValueType(0);
6816
6817  // fold (ffloor c1) -> ffloor(c1)
6818  if (N0CFP)
6819    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6820
6821  return SDValue();
6822}
6823
6824SDValue DAGCombiner::visitFABS(SDNode *N) {
6825  SDValue N0 = N->getOperand(0);
6826  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6827  EVT VT = N->getValueType(0);
6828
6829  if (VT.isVector()) {
6830    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6831    if (FoldedVOp.getNode()) return FoldedVOp;
6832  }
6833
6834  // fold (fabs c1) -> fabs(c1)
6835  if (N0CFP)
6836    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6837  // fold (fabs (fabs x)) -> (fabs x)
6838  if (N0.getOpcode() == ISD::FABS)
6839    return N->getOperand(0);
6840  // fold (fabs (fneg x)) -> (fabs x)
6841  // fold (fabs (fcopysign x, y)) -> (fabs x)
6842  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6843    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6844
6845  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6846  // constant pool values.
6847  if (!TLI.isFAbsFree(VT) &&
6848      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6849      N0.getOperand(0).getValueType().isInteger() &&
6850      !N0.getOperand(0).getValueType().isVector()) {
6851    SDValue Int = N0.getOperand(0);
6852    EVT IntVT = Int.getValueType();
6853    if (IntVT.isInteger() && !IntVT.isVector()) {
6854      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6855             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6856      AddToWorkList(Int.getNode());
6857      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6858                         N->getValueType(0), Int);
6859    }
6860  }
6861
6862  return SDValue();
6863}
6864
6865SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6866  SDValue Chain = N->getOperand(0);
6867  SDValue N1 = N->getOperand(1);
6868  SDValue N2 = N->getOperand(2);
6869
6870  // If N is a constant we could fold this into a fallthrough or unconditional
6871  // branch. However that doesn't happen very often in normal code, because
6872  // Instcombine/SimplifyCFG should have handled the available opportunities.
6873  // If we did this folding here, it would be necessary to update the
6874  // MachineBasicBlock CFG, which is awkward.
6875
6876  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6877  // on the target.
6878  if (N1.getOpcode() == ISD::SETCC &&
6879      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6880                                   N1.getOperand(0).getValueType())) {
6881    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6882                       Chain, N1.getOperand(2),
6883                       N1.getOperand(0), N1.getOperand(1), N2);
6884  }
6885
6886  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6887      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6888       (N1.getOperand(0).hasOneUse() &&
6889        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6890    SDNode *Trunc = 0;
6891    if (N1.getOpcode() == ISD::TRUNCATE) {
6892      // Look pass the truncate.
6893      Trunc = N1.getNode();
6894      N1 = N1.getOperand(0);
6895    }
6896
6897    // Match this pattern so that we can generate simpler code:
6898    //
6899    //   %a = ...
6900    //   %b = and i32 %a, 2
6901    //   %c = srl i32 %b, 1
6902    //   brcond i32 %c ...
6903    //
6904    // into
6905    //
6906    //   %a = ...
6907    //   %b = and i32 %a, 2
6908    //   %c = setcc eq %b, 0
6909    //   brcond %c ...
6910    //
6911    // This applies only when the AND constant value has one bit set and the
6912    // SRL constant is equal to the log2 of the AND constant. The back-end is
6913    // smart enough to convert the result into a TEST/JMP sequence.
6914    SDValue Op0 = N1.getOperand(0);
6915    SDValue Op1 = N1.getOperand(1);
6916
6917    if (Op0.getOpcode() == ISD::AND &&
6918        Op1.getOpcode() == ISD::Constant) {
6919      SDValue AndOp1 = Op0.getOperand(1);
6920
6921      if (AndOp1.getOpcode() == ISD::Constant) {
6922        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6923
6924        if (AndConst.isPowerOf2() &&
6925            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6926          SDValue SetCC =
6927            DAG.getSetCC(SDLoc(N),
6928                         getSetCCResultType(Op0.getValueType()),
6929                         Op0, DAG.getConstant(0, Op0.getValueType()),
6930                         ISD::SETNE);
6931
6932          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6933                                          MVT::Other, Chain, SetCC, N2);
6934          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6935          // will convert it back to (X & C1) >> C2.
6936          CombineTo(N, NewBRCond, false);
6937          // Truncate is dead.
6938          if (Trunc) {
6939            removeFromWorkList(Trunc);
6940            DAG.DeleteNode(Trunc);
6941          }
6942          // Replace the uses of SRL with SETCC
6943          WorkListRemover DeadNodes(*this);
6944          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6945          removeFromWorkList(N1.getNode());
6946          DAG.DeleteNode(N1.getNode());
6947          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6948        }
6949      }
6950    }
6951
6952    if (Trunc)
6953      // Restore N1 if the above transformation doesn't match.
6954      N1 = N->getOperand(1);
6955  }
6956
6957  // Transform br(xor(x, y)) -> br(x != y)
6958  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6959  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6960    SDNode *TheXor = N1.getNode();
6961    SDValue Op0 = TheXor->getOperand(0);
6962    SDValue Op1 = TheXor->getOperand(1);
6963    if (Op0.getOpcode() == Op1.getOpcode()) {
6964      // Avoid missing important xor optimizations.
6965      SDValue Tmp = visitXOR(TheXor);
6966      if (Tmp.getNode()) {
6967        if (Tmp.getNode() != TheXor) {
6968          DEBUG(dbgs() << "\nReplacing.8 ";
6969                TheXor->dump(&DAG);
6970                dbgs() << "\nWith: ";
6971                Tmp.getNode()->dump(&DAG);
6972                dbgs() << '\n');
6973          WorkListRemover DeadNodes(*this);
6974          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6975          removeFromWorkList(TheXor);
6976          DAG.DeleteNode(TheXor);
6977          return DAG.getNode(ISD::BRCOND, SDLoc(N),
6978                             MVT::Other, Chain, Tmp, N2);
6979        }
6980
6981        // visitXOR has changed XOR's operands or replaced the XOR completely,
6982        // bail out.
6983        return SDValue(N, 0);
6984      }
6985    }
6986
6987    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6988      bool Equal = false;
6989      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6990        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6991            Op0.getOpcode() == ISD::XOR) {
6992          TheXor = Op0.getNode();
6993          Equal = true;
6994        }
6995
6996      EVT SetCCVT = N1.getValueType();
6997      if (LegalTypes)
6998        SetCCVT = getSetCCResultType(SetCCVT);
6999      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7000                                   SetCCVT,
7001                                   Op0, Op1,
7002                                   Equal ? ISD::SETEQ : ISD::SETNE);
7003      // Replace the uses of XOR with SETCC
7004      WorkListRemover DeadNodes(*this);
7005      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7006      removeFromWorkList(N1.getNode());
7007      DAG.DeleteNode(N1.getNode());
7008      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7009                         MVT::Other, Chain, SetCC, N2);
7010    }
7011  }
7012
7013  return SDValue();
7014}
7015
7016// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7017//
7018SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7019  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7020  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7021
7022  // If N is a constant we could fold this into a fallthrough or unconditional
7023  // branch. However that doesn't happen very often in normal code, because
7024  // Instcombine/SimplifyCFG should have handled the available opportunities.
7025  // If we did this folding here, it would be necessary to update the
7026  // MachineBasicBlock CFG, which is awkward.
7027
7028  // Use SimplifySetCC to simplify SETCC's.
7029  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7030                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7031                               false);
7032  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7033
7034  // fold to a simpler setcc
7035  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7036    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7037                       N->getOperand(0), Simp.getOperand(2),
7038                       Simp.getOperand(0), Simp.getOperand(1),
7039                       N->getOperand(4));
7040
7041  return SDValue();
7042}
7043
7044/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7045/// uses N as its base pointer and that N may be folded in the load / store
7046/// addressing mode.
7047static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7048                                    SelectionDAG &DAG,
7049                                    const TargetLowering &TLI) {
7050  EVT VT;
7051  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7052    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7053      return false;
7054    VT = Use->getValueType(0);
7055  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7056    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7057      return false;
7058    VT = ST->getValue().getValueType();
7059  } else
7060    return false;
7061
7062  TargetLowering::AddrMode AM;
7063  if (N->getOpcode() == ISD::ADD) {
7064    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7065    if (Offset)
7066      // [reg +/- imm]
7067      AM.BaseOffs = Offset->getSExtValue();
7068    else
7069      // [reg +/- reg]
7070      AM.Scale = 1;
7071  } else if (N->getOpcode() == ISD::SUB) {
7072    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7073    if (Offset)
7074      // [reg +/- imm]
7075      AM.BaseOffs = -Offset->getSExtValue();
7076    else
7077      // [reg +/- reg]
7078      AM.Scale = 1;
7079  } else
7080    return false;
7081
7082  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7083}
7084
7085/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7086/// pre-indexed load / store when the base pointer is an add or subtract
7087/// and it has other uses besides the load / store. After the
7088/// transformation, the new indexed load / store has effectively folded
7089/// the add / subtract in and all of its other uses are redirected to the
7090/// new load / store.
7091bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7092  if (Level < AfterLegalizeDAG)
7093    return false;
7094
7095  bool isLoad = true;
7096  SDValue Ptr;
7097  EVT VT;
7098  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7099    if (LD->isIndexed())
7100      return false;
7101    VT = LD->getMemoryVT();
7102    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7103        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7104      return false;
7105    Ptr = LD->getBasePtr();
7106  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7107    if (ST->isIndexed())
7108      return false;
7109    VT = ST->getMemoryVT();
7110    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7111        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7112      return false;
7113    Ptr = ST->getBasePtr();
7114    isLoad = false;
7115  } else {
7116    return false;
7117  }
7118
7119  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7120  // out.  There is no reason to make this a preinc/predec.
7121  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7122      Ptr.getNode()->hasOneUse())
7123    return false;
7124
7125  // Ask the target to do addressing mode selection.
7126  SDValue BasePtr;
7127  SDValue Offset;
7128  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7129  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7130    return false;
7131
7132  // Backends without true r+i pre-indexed forms may need to pass a
7133  // constant base with a variable offset so that constant coercion
7134  // will work with the patterns in canonical form.
7135  bool Swapped = false;
7136  if (isa<ConstantSDNode>(BasePtr)) {
7137    std::swap(BasePtr, Offset);
7138    Swapped = true;
7139  }
7140
7141  // Don't create a indexed load / store with zero offset.
7142  if (isa<ConstantSDNode>(Offset) &&
7143      cast<ConstantSDNode>(Offset)->isNullValue())
7144    return false;
7145
7146  // Try turning it into a pre-indexed load / store except when:
7147  // 1) The new base ptr is a frame index.
7148  // 2) If N is a store and the new base ptr is either the same as or is a
7149  //    predecessor of the value being stored.
7150  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7151  //    that would create a cycle.
7152  // 4) All uses are load / store ops that use it as old base ptr.
7153
7154  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7155  // (plus the implicit offset) to a register to preinc anyway.
7156  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7157    return false;
7158
7159  // Check #2.
7160  if (!isLoad) {
7161    SDValue Val = cast<StoreSDNode>(N)->getValue();
7162    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7163      return false;
7164  }
7165
7166  // If the offset is a constant, there may be other adds of constants that
7167  // can be folded with this one. We should do this to avoid having to keep
7168  // a copy of the original base pointer.
7169  SmallVector<SDNode *, 16> OtherUses;
7170  if (isa<ConstantSDNode>(Offset))
7171    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7172         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7173      SDNode *Use = *I;
7174      if (Use == Ptr.getNode())
7175        continue;
7176
7177      if (Use->isPredecessorOf(N))
7178        continue;
7179
7180      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7181        OtherUses.clear();
7182        break;
7183      }
7184
7185      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7186      if (Op1.getNode() == BasePtr.getNode())
7187        std::swap(Op0, Op1);
7188      assert(Op0.getNode() == BasePtr.getNode() &&
7189             "Use of ADD/SUB but not an operand");
7190
7191      if (!isa<ConstantSDNode>(Op1)) {
7192        OtherUses.clear();
7193        break;
7194      }
7195
7196      // FIXME: In some cases, we can be smarter about this.
7197      if (Op1.getValueType() != Offset.getValueType()) {
7198        OtherUses.clear();
7199        break;
7200      }
7201
7202      OtherUses.push_back(Use);
7203    }
7204
7205  if (Swapped)
7206    std::swap(BasePtr, Offset);
7207
7208  // Now check for #3 and #4.
7209  bool RealUse = false;
7210
7211  // Caches for hasPredecessorHelper
7212  SmallPtrSet<const SDNode *, 32> Visited;
7213  SmallVector<const SDNode *, 16> Worklist;
7214
7215  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7216         E = Ptr.getNode()->use_end(); I != E; ++I) {
7217    SDNode *Use = *I;
7218    if (Use == N)
7219      continue;
7220    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7221      return false;
7222
7223    // If Ptr may be folded in addressing mode of other use, then it's
7224    // not profitable to do this transformation.
7225    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7226      RealUse = true;
7227  }
7228
7229  if (!RealUse)
7230    return false;
7231
7232  SDValue Result;
7233  if (isLoad)
7234    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7235                                BasePtr, Offset, AM);
7236  else
7237    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7238                                 BasePtr, Offset, AM);
7239  ++PreIndexedNodes;
7240  ++NodesCombined;
7241  DEBUG(dbgs() << "\nReplacing.4 ";
7242        N->dump(&DAG);
7243        dbgs() << "\nWith: ";
7244        Result.getNode()->dump(&DAG);
7245        dbgs() << '\n');
7246  WorkListRemover DeadNodes(*this);
7247  if (isLoad) {
7248    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7249    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7250  } else {
7251    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7252  }
7253
7254  // Finally, since the node is now dead, remove it from the graph.
7255  DAG.DeleteNode(N);
7256
7257  if (Swapped)
7258    std::swap(BasePtr, Offset);
7259
7260  // Replace other uses of BasePtr that can be updated to use Ptr
7261  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7262    unsigned OffsetIdx = 1;
7263    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7264      OffsetIdx = 0;
7265    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7266           BasePtr.getNode() && "Expected BasePtr operand");
7267
7268    // We need to replace ptr0 in the following expression:
7269    //   x0 * offset0 + y0 * ptr0 = t0
7270    // knowing that
7271    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7272    //
7273    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7274    // indexed load/store and the expresion that needs to be re-written.
7275    //
7276    // Therefore, we have:
7277    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7278
7279    ConstantSDNode *CN =
7280      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7281    int X0, X1, Y0, Y1;
7282    APInt Offset0 = CN->getAPIntValue();
7283    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7284
7285    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7286    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7287    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7288    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7289
7290    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7291
7292    APInt CNV = Offset0;
7293    if (X0 < 0) CNV = -CNV;
7294    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7295    else CNV = CNV - Offset1;
7296
7297    // We can now generate the new expression.
7298    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7299    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7300
7301    SDValue NewUse = DAG.getNode(Opcode,
7302                                 SDLoc(OtherUses[i]),
7303                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7304    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7305    removeFromWorkList(OtherUses[i]);
7306    DAG.DeleteNode(OtherUses[i]);
7307  }
7308
7309  // Replace the uses of Ptr with uses of the updated base value.
7310  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7311  removeFromWorkList(Ptr.getNode());
7312  DAG.DeleteNode(Ptr.getNode());
7313
7314  return true;
7315}
7316
7317/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7318/// add / sub of the base pointer node into a post-indexed load / store.
7319/// The transformation folded the add / subtract into the new indexed
7320/// load / store effectively and all of its uses are redirected to the
7321/// new load / store.
7322bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7323  if (Level < AfterLegalizeDAG)
7324    return false;
7325
7326  bool isLoad = true;
7327  SDValue Ptr;
7328  EVT VT;
7329  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7330    if (LD->isIndexed())
7331      return false;
7332    VT = LD->getMemoryVT();
7333    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7334        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7335      return false;
7336    Ptr = LD->getBasePtr();
7337  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7338    if (ST->isIndexed())
7339      return false;
7340    VT = ST->getMemoryVT();
7341    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7342        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7343      return false;
7344    Ptr = ST->getBasePtr();
7345    isLoad = false;
7346  } else {
7347    return false;
7348  }
7349
7350  if (Ptr.getNode()->hasOneUse())
7351    return false;
7352
7353  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7354         E = Ptr.getNode()->use_end(); I != E; ++I) {
7355    SDNode *Op = *I;
7356    if (Op == N ||
7357        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7358      continue;
7359
7360    SDValue BasePtr;
7361    SDValue Offset;
7362    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7363    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7364      // Don't create a indexed load / store with zero offset.
7365      if (isa<ConstantSDNode>(Offset) &&
7366          cast<ConstantSDNode>(Offset)->isNullValue())
7367        continue;
7368
7369      // Try turning it into a post-indexed load / store except when
7370      // 1) All uses are load / store ops that use it as base ptr (and
7371      //    it may be folded as addressing mmode).
7372      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7373      //    nor a successor of N. Otherwise, if Op is folded that would
7374      //    create a cycle.
7375
7376      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7377        continue;
7378
7379      // Check for #1.
7380      bool TryNext = false;
7381      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7382             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7383        SDNode *Use = *II;
7384        if (Use == Ptr.getNode())
7385          continue;
7386
7387        // If all the uses are load / store addresses, then don't do the
7388        // transformation.
7389        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7390          bool RealUse = false;
7391          for (SDNode::use_iterator III = Use->use_begin(),
7392                 EEE = Use->use_end(); III != EEE; ++III) {
7393            SDNode *UseUse = *III;
7394            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7395              RealUse = true;
7396          }
7397
7398          if (!RealUse) {
7399            TryNext = true;
7400            break;
7401          }
7402        }
7403      }
7404
7405      if (TryNext)
7406        continue;
7407
7408      // Check for #2
7409      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7410        SDValue Result = isLoad
7411          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7412                               BasePtr, Offset, AM)
7413          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7414                                BasePtr, Offset, AM);
7415        ++PostIndexedNodes;
7416        ++NodesCombined;
7417        DEBUG(dbgs() << "\nReplacing.5 ";
7418              N->dump(&DAG);
7419              dbgs() << "\nWith: ";
7420              Result.getNode()->dump(&DAG);
7421              dbgs() << '\n');
7422        WorkListRemover DeadNodes(*this);
7423        if (isLoad) {
7424          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7425          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7426        } else {
7427          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7428        }
7429
7430        // Finally, since the node is now dead, remove it from the graph.
7431        DAG.DeleteNode(N);
7432
7433        // Replace the uses of Use with uses of the updated base value.
7434        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7435                                      Result.getValue(isLoad ? 1 : 0));
7436        removeFromWorkList(Op);
7437        DAG.DeleteNode(Op);
7438        return true;
7439      }
7440    }
7441  }
7442
7443  return false;
7444}
7445
7446SDValue DAGCombiner::visitLOAD(SDNode *N) {
7447  LoadSDNode *LD  = cast<LoadSDNode>(N);
7448  SDValue Chain = LD->getChain();
7449  SDValue Ptr   = LD->getBasePtr();
7450
7451  // If load is not volatile and there are no uses of the loaded value (and
7452  // the updated indexed value in case of indexed loads), change uses of the
7453  // chain value into uses of the chain input (i.e. delete the dead load).
7454  if (!LD->isVolatile()) {
7455    if (N->getValueType(1) == MVT::Other) {
7456      // Unindexed loads.
7457      if (!N->hasAnyUseOfValue(0)) {
7458        // It's not safe to use the two value CombineTo variant here. e.g.
7459        // v1, chain2 = load chain1, loc
7460        // v2, chain3 = load chain2, loc
7461        // v3         = add v2, c
7462        // Now we replace use of chain2 with chain1.  This makes the second load
7463        // isomorphic to the one we are deleting, and thus makes this load live.
7464        DEBUG(dbgs() << "\nReplacing.6 ";
7465              N->dump(&DAG);
7466              dbgs() << "\nWith chain: ";
7467              Chain.getNode()->dump(&DAG);
7468              dbgs() << "\n");
7469        WorkListRemover DeadNodes(*this);
7470        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7471
7472        if (N->use_empty()) {
7473          removeFromWorkList(N);
7474          DAG.DeleteNode(N);
7475        }
7476
7477        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7478      }
7479    } else {
7480      // Indexed loads.
7481      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7482      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7483        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7484        DEBUG(dbgs() << "\nReplacing.7 ";
7485              N->dump(&DAG);
7486              dbgs() << "\nWith: ";
7487              Undef.getNode()->dump(&DAG);
7488              dbgs() << " and 2 other values\n");
7489        WorkListRemover DeadNodes(*this);
7490        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7491        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7492                                      DAG.getUNDEF(N->getValueType(1)));
7493        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7494        removeFromWorkList(N);
7495        DAG.DeleteNode(N);
7496        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7497      }
7498    }
7499  }
7500
7501  // If this load is directly stored, replace the load value with the stored
7502  // value.
7503  // TODO: Handle store large -> read small portion.
7504  // TODO: Handle TRUNCSTORE/LOADEXT
7505  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7506    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7507      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7508      if (PrevST->getBasePtr() == Ptr &&
7509          PrevST->getValue().getValueType() == N->getValueType(0))
7510      return CombineTo(N, Chain.getOperand(1), Chain);
7511    }
7512  }
7513
7514  // Try to infer better alignment information than the load already has.
7515  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7516    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7517      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7518        SDValue NewLoad =
7519               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7520                              LD->getValueType(0),
7521                              Chain, Ptr, LD->getPointerInfo(),
7522                              LD->getMemoryVT(),
7523                              LD->isVolatile(), LD->isNonTemporal(), Align,
7524                              LD->getTBAAInfo());
7525        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7526      }
7527    }
7528  }
7529
7530  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7531    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7532  if (UseAA) {
7533    // Walk up chain skipping non-aliasing memory nodes.
7534    SDValue BetterChain = FindBetterChain(N, Chain);
7535
7536    // If there is a better chain.
7537    if (Chain != BetterChain) {
7538      SDValue ReplLoad;
7539
7540      // Replace the chain to void dependency.
7541      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7542        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7543                               BetterChain, Ptr, LD->getMemOperand());
7544      } else {
7545        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7546                                  LD->getValueType(0),
7547                                  BetterChain, Ptr, LD->getMemoryVT(),
7548                                  LD->getMemOperand());
7549      }
7550
7551      // Create token factor to keep old chain connected.
7552      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7553                                  MVT::Other, Chain, ReplLoad.getValue(1));
7554
7555      // Make sure the new and old chains are cleaned up.
7556      AddToWorkList(Token.getNode());
7557
7558      // Replace uses with load result and token factor. Don't add users
7559      // to work list.
7560      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7561    }
7562  }
7563
7564  // Try transforming N to an indexed load.
7565  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7566    return SDValue(N, 0);
7567
7568  // Try to slice up N to more direct loads if the slices are mapped to
7569  // different register banks or pairing can take place.
7570  if (SliceUpLoad(N))
7571    return SDValue(N, 0);
7572
7573  return SDValue();
7574}
7575
7576namespace {
7577/// \brief Helper structure used to slice a load in smaller loads.
7578/// Basically a slice is obtained from the following sequence:
7579/// Origin = load Ty1, Base
7580/// Shift = srl Ty1 Origin, CstTy Amount
7581/// Inst = trunc Shift to Ty2
7582///
7583/// Then, it will be rewriten into:
7584/// Slice = load SliceTy, Base + SliceOffset
7585/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7586///
7587/// SliceTy is deduced from the number of bits that are actually used to
7588/// build Inst.
7589struct LoadedSlice {
7590  /// \brief Helper structure used to compute the cost of a slice.
7591  struct Cost {
7592    /// Are we optimizing for code size.
7593    bool ForCodeSize;
7594    /// Various cost.
7595    unsigned Loads;
7596    unsigned Truncates;
7597    unsigned CrossRegisterBanksCopies;
7598    unsigned ZExts;
7599    unsigned Shift;
7600
7601    Cost(bool ForCodeSize = false)
7602        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7603          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7604
7605    /// \brief Get the cost of one isolated slice.
7606    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7607        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7608          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7609      EVT TruncType = LS.Inst->getValueType(0);
7610      EVT LoadedType = LS.getLoadedType();
7611      if (TruncType != LoadedType &&
7612          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7613        ZExts = 1;
7614    }
7615
7616    /// \brief Account for slicing gain in the current cost.
7617    /// Slicing provide a few gains like removing a shift or a
7618    /// truncate. This method allows to grow the cost of the original
7619    /// load with the gain from this slice.
7620    void addSliceGain(const LoadedSlice &LS) {
7621      // Each slice saves a truncate.
7622      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7623      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7624                              LS.Inst->getOperand(0).getValueType()))
7625        ++Truncates;
7626      // If there is a shift amount, this slice gets rid of it.
7627      if (LS.Shift)
7628        ++Shift;
7629      // If this slice can merge a cross register bank copy, account for it.
7630      if (LS.canMergeExpensiveCrossRegisterBankCopy())
7631        ++CrossRegisterBanksCopies;
7632    }
7633
7634    Cost &operator+=(const Cost &RHS) {
7635      Loads += RHS.Loads;
7636      Truncates += RHS.Truncates;
7637      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7638      ZExts += RHS.ZExts;
7639      Shift += RHS.Shift;
7640      return *this;
7641    }
7642
7643    bool operator==(const Cost &RHS) const {
7644      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7645             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7646             ZExts == RHS.ZExts && Shift == RHS.Shift;
7647    }
7648
7649    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7650
7651    bool operator<(const Cost &RHS) const {
7652      // Assume cross register banks copies are as expensive as loads.
7653      // FIXME: Do we want some more target hooks?
7654      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7655      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7656      // Unless we are optimizing for code size, consider the
7657      // expensive operation first.
7658      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7659        return ExpensiveOpsLHS < ExpensiveOpsRHS;
7660      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7661             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7662    }
7663
7664    bool operator>(const Cost &RHS) const { return RHS < *this; }
7665
7666    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7667
7668    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7669  };
7670  // The last instruction that represent the slice. This should be a
7671  // truncate instruction.
7672  SDNode *Inst;
7673  // The original load instruction.
7674  LoadSDNode *Origin;
7675  // The right shift amount in bits from the original load.
7676  unsigned Shift;
7677  // The DAG from which Origin came from.
7678  // This is used to get some contextual information about legal types, etc.
7679  SelectionDAG *DAG;
7680
7681  LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7682              unsigned Shift = 0, SelectionDAG *DAG = NULL)
7683      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7684
7685  LoadedSlice(const LoadedSlice &LS)
7686      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7687
7688  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7689  /// \return Result is \p BitWidth and has used bits set to 1 and
7690  ///         not used bits set to 0.
7691  APInt getUsedBits() const {
7692    // Reproduce the trunc(lshr) sequence:
7693    // - Start from the truncated value.
7694    // - Zero extend to the desired bit width.
7695    // - Shift left.
7696    assert(Origin && "No original load to compare against.");
7697    unsigned BitWidth = Origin->getValueSizeInBits(0);
7698    assert(Inst && "This slice is not bound to an instruction");
7699    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7700           "Extracted slice is bigger than the whole type!");
7701    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7702    UsedBits.setAllBits();
7703    UsedBits = UsedBits.zext(BitWidth);
7704    UsedBits <<= Shift;
7705    return UsedBits;
7706  }
7707
7708  /// \brief Get the size of the slice to be loaded in bytes.
7709  unsigned getLoadedSize() const {
7710    unsigned SliceSize = getUsedBits().countPopulation();
7711    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7712    return SliceSize / 8;
7713  }
7714
7715  /// \brief Get the type that will be loaded for this slice.
7716  /// Note: This may not be the final type for the slice.
7717  EVT getLoadedType() const {
7718    assert(DAG && "Missing context");
7719    LLVMContext &Ctxt = *DAG->getContext();
7720    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7721  }
7722
7723  /// \brief Get the alignment of the load used for this slice.
7724  unsigned getAlignment() const {
7725    unsigned Alignment = Origin->getAlignment();
7726    unsigned Offset = getOffsetFromBase();
7727    if (Offset != 0)
7728      Alignment = MinAlign(Alignment, Alignment + Offset);
7729    return Alignment;
7730  }
7731
7732  /// \brief Check if this slice can be rewritten with legal operations.
7733  bool isLegal() const {
7734    // An invalid slice is not legal.
7735    if (!Origin || !Inst || !DAG)
7736      return false;
7737
7738    // Offsets are for indexed load only, we do not handle that.
7739    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7740      return false;
7741
7742    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7743
7744    // Check that the type is legal.
7745    EVT SliceType = getLoadedType();
7746    if (!TLI.isTypeLegal(SliceType))
7747      return false;
7748
7749    // Check that the load is legal for this type.
7750    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7751      return false;
7752
7753    // Check that the offset can be computed.
7754    // 1. Check its type.
7755    EVT PtrType = Origin->getBasePtr().getValueType();
7756    if (PtrType == MVT::Untyped || PtrType.isExtended())
7757      return false;
7758
7759    // 2. Check that it fits in the immediate.
7760    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7761      return false;
7762
7763    // 3. Check that the computation is legal.
7764    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7765      return false;
7766
7767    // Check that the zext is legal if it needs one.
7768    EVT TruncateType = Inst->getValueType(0);
7769    if (TruncateType != SliceType &&
7770        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7771      return false;
7772
7773    return true;
7774  }
7775
7776  /// \brief Get the offset in bytes of this slice in the original chunk of
7777  /// bits.
7778  /// \pre DAG != NULL.
7779  uint64_t getOffsetFromBase() const {
7780    assert(DAG && "Missing context.");
7781    bool IsBigEndian =
7782        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7783    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7784    uint64_t Offset = Shift / 8;
7785    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7786    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7787           "The size of the original loaded type is not a multiple of a"
7788           " byte.");
7789    // If Offset is bigger than TySizeInBytes, it means we are loading all
7790    // zeros. This should have been optimized before in the process.
7791    assert(TySizeInBytes > Offset &&
7792           "Invalid shift amount for given loaded size");
7793    if (IsBigEndian)
7794      Offset = TySizeInBytes - Offset - getLoadedSize();
7795    return Offset;
7796  }
7797
7798  /// \brief Generate the sequence of instructions to load the slice
7799  /// represented by this object and redirect the uses of this slice to
7800  /// this new sequence of instructions.
7801  /// \pre this->Inst && this->Origin are valid Instructions and this
7802  /// object passed the legal check: LoadedSlice::isLegal returned true.
7803  /// \return The last instruction of the sequence used to load the slice.
7804  SDValue loadSlice() const {
7805    assert(Inst && Origin && "Unable to replace a non-existing slice.");
7806    const SDValue &OldBaseAddr = Origin->getBasePtr();
7807    SDValue BaseAddr = OldBaseAddr;
7808    // Get the offset in that chunk of bytes w.r.t. the endianess.
7809    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7810    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7811    if (Offset) {
7812      // BaseAddr = BaseAddr + Offset.
7813      EVT ArithType = BaseAddr.getValueType();
7814      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7815                              DAG->getConstant(Offset, ArithType));
7816    }
7817
7818    // Create the type of the loaded slice according to its size.
7819    EVT SliceType = getLoadedType();
7820
7821    // Create the load for the slice.
7822    SDValue LastInst = DAG->getLoad(
7823        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7824        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7825        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7826    // If the final type is not the same as the loaded type, this means that
7827    // we have to pad with zero. Create a zero extend for that.
7828    EVT FinalType = Inst->getValueType(0);
7829    if (SliceType != FinalType)
7830      LastInst =
7831          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7832    return LastInst;
7833  }
7834
7835  /// \brief Check if this slice can be merged with an expensive cross register
7836  /// bank copy. E.g.,
7837  /// i = load i32
7838  /// f = bitcast i32 i to float
7839  bool canMergeExpensiveCrossRegisterBankCopy() const {
7840    if (!Inst || !Inst->hasOneUse())
7841      return false;
7842    SDNode *Use = *Inst->use_begin();
7843    if (Use->getOpcode() != ISD::BITCAST)
7844      return false;
7845    assert(DAG && "Missing context");
7846    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7847    EVT ResVT = Use->getValueType(0);
7848    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7849    const TargetRegisterClass *ArgRC =
7850        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7851    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7852      return false;
7853
7854    // At this point, we know that we perform a cross-register-bank copy.
7855    // Check if it is expensive.
7856    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7857    // Assume bitcasts are cheap, unless both register classes do not
7858    // explicitly share a common sub class.
7859    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7860      return false;
7861
7862    // Check if it will be merged with the load.
7863    // 1. Check the alignment constraint.
7864    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7865        ResVT.getTypeForEVT(*DAG->getContext()));
7866
7867    if (RequiredAlignment > getAlignment())
7868      return false;
7869
7870    // 2. Check that the load is a legal operation for that type.
7871    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7872      return false;
7873
7874    // 3. Check that we do not have a zext in the way.
7875    if (Inst->getValueType(0) != getLoadedType())
7876      return false;
7877
7878    return true;
7879  }
7880};
7881}
7882
7883/// \brief Sorts LoadedSlice according to their offset.
7884struct LoadedSliceSorter {
7885  bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7886    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7887    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7888  }
7889};
7890
7891/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7892/// \p UsedBits looks like 0..0 1..1 0..0.
7893static bool areUsedBitsDense(const APInt &UsedBits) {
7894  // If all the bits are one, this is dense!
7895  if (UsedBits.isAllOnesValue())
7896    return true;
7897
7898  // Get rid of the unused bits on the right.
7899  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7900  // Get rid of the unused bits on the left.
7901  if (NarrowedUsedBits.countLeadingZeros())
7902    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7903  // Check that the chunk of bits is completely used.
7904  return NarrowedUsedBits.isAllOnesValue();
7905}
7906
7907/// \brief Check whether or not \p First and \p Second are next to each other
7908/// in memory. This means that there is no hole between the bits loaded
7909/// by \p First and the bits loaded by \p Second.
7910static bool areSlicesNextToEachOther(const LoadedSlice &First,
7911                                     const LoadedSlice &Second) {
7912  assert(First.Origin == Second.Origin && First.Origin &&
7913         "Unable to match different memory origins.");
7914  APInt UsedBits = First.getUsedBits();
7915  assert((UsedBits & Second.getUsedBits()) == 0 &&
7916         "Slices are not supposed to overlap.");
7917  UsedBits |= Second.getUsedBits();
7918  return areUsedBitsDense(UsedBits);
7919}
7920
7921/// \brief Adjust the \p GlobalLSCost according to the target
7922/// paring capabilities and the layout of the slices.
7923/// \pre \p GlobalLSCost should account for at least as many loads as
7924/// there is in the slices in \p LoadedSlices.
7925static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7926                                 LoadedSlice::Cost &GlobalLSCost) {
7927  unsigned NumberOfSlices = LoadedSlices.size();
7928  // If there is less than 2 elements, no pairing is possible.
7929  if (NumberOfSlices < 2)
7930    return;
7931
7932  // Sort the slices so that elements that are likely to be next to each
7933  // other in memory are next to each other in the list.
7934  std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7935  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7936  // First (resp. Second) is the first (resp. Second) potentially candidate
7937  // to be placed in a paired load.
7938  const LoadedSlice *First = NULL;
7939  const LoadedSlice *Second = NULL;
7940  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7941                // Set the beginning of the pair.
7942                                                           First = Second) {
7943
7944    Second = &LoadedSlices[CurrSlice];
7945
7946    // If First is NULL, it means we start a new pair.
7947    // Get to the next slice.
7948    if (!First)
7949      continue;
7950
7951    EVT LoadedType = First->getLoadedType();
7952
7953    // If the types of the slices are different, we cannot pair them.
7954    if (LoadedType != Second->getLoadedType())
7955      continue;
7956
7957    // Check if the target supplies paired loads for this type.
7958    unsigned RequiredAlignment = 0;
7959    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
7960      // move to the next pair, this type is hopeless.
7961      Second = NULL;
7962      continue;
7963    }
7964    // Check if we meet the alignment requirement.
7965    if (RequiredAlignment > First->getAlignment())
7966      continue;
7967
7968    // Check that both loads are next to each other in memory.
7969    if (!areSlicesNextToEachOther(*First, *Second))
7970      continue;
7971
7972    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
7973    --GlobalLSCost.Loads;
7974    // Move to the next pair.
7975    Second = NULL;
7976  }
7977}
7978
7979/// \brief Check the profitability of all involved LoadedSlice.
7980/// Currently, it is considered profitable if there is exactly two
7981/// involved slices (1) which are (2) next to each other in memory, and
7982/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
7983///
7984/// Note: The order of the elements in \p LoadedSlices may be modified, but not
7985/// the elements themselves.
7986///
7987/// FIXME: When the cost model will be mature enough, we can relax
7988/// constraints (1) and (2).
7989static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7990                                const APInt &UsedBits, bool ForCodeSize) {
7991  unsigned NumberOfSlices = LoadedSlices.size();
7992  if (StressLoadSlicing)
7993    return NumberOfSlices > 1;
7994
7995  // Check (1).
7996  if (NumberOfSlices != 2)
7997    return false;
7998
7999  // Check (2).
8000  if (!areUsedBitsDense(UsedBits))
8001    return false;
8002
8003  // Check (3).
8004  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8005  // The original code has one big load.
8006  OrigCost.Loads = 1;
8007  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8008    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8009    // Accumulate the cost of all the slices.
8010    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8011    GlobalSlicingCost += SliceCost;
8012
8013    // Account as cost in the original configuration the gain obtained
8014    // with the current slices.
8015    OrigCost.addSliceGain(LS);
8016  }
8017
8018  // If the target supports paired load, adjust the cost accordingly.
8019  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8020  return OrigCost > GlobalSlicingCost;
8021}
8022
8023/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8024/// operations, split it in the various pieces being extracted.
8025///
8026/// This sort of thing is introduced by SROA.
8027/// This slicing takes care not to insert overlapping loads.
8028/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8029bool DAGCombiner::SliceUpLoad(SDNode *N) {
8030  if (Level < AfterLegalizeDAG)
8031    return false;
8032
8033  LoadSDNode *LD = cast<LoadSDNode>(N);
8034  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8035      !LD->getValueType(0).isInteger())
8036    return false;
8037
8038  // Keep track of already used bits to detect overlapping values.
8039  // In that case, we will just abort the transformation.
8040  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8041
8042  SmallVector<LoadedSlice, 4> LoadedSlices;
8043
8044  // Check if this load is used as several smaller chunks of bits.
8045  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8046  // of computation for each trunc.
8047  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8048       UI != UIEnd; ++UI) {
8049    // Skip the uses of the chain.
8050    if (UI.getUse().getResNo() != 0)
8051      continue;
8052
8053    SDNode *User = *UI;
8054    unsigned Shift = 0;
8055
8056    // Check if this is a trunc(lshr).
8057    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8058        isa<ConstantSDNode>(User->getOperand(1))) {
8059      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8060      User = *User->use_begin();
8061    }
8062
8063    // At this point, User is a Truncate, iff we encountered, trunc or
8064    // trunc(lshr).
8065    if (User->getOpcode() != ISD::TRUNCATE)
8066      return false;
8067
8068    // The width of the type must be a power of 2 and greater than 8-bits.
8069    // Otherwise the load cannot be represented in LLVM IR.
8070    // Moreover, if we shifted with a non 8-bits multiple, the slice
8071    // will be accross several bytes. We do not support that.
8072    unsigned Width = User->getValueSizeInBits(0);
8073    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8074      return 0;
8075
8076    // Build the slice for this chain of computations.
8077    LoadedSlice LS(User, LD, Shift, &DAG);
8078    APInt CurrentUsedBits = LS.getUsedBits();
8079
8080    // Check if this slice overlaps with another.
8081    if ((CurrentUsedBits & UsedBits) != 0)
8082      return false;
8083    // Update the bits used globally.
8084    UsedBits |= CurrentUsedBits;
8085
8086    // Check if the new slice would be legal.
8087    if (!LS.isLegal())
8088      return false;
8089
8090    // Record the slice.
8091    LoadedSlices.push_back(LS);
8092  }
8093
8094  // Abort slicing if it does not seem to be profitable.
8095  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8096    return false;
8097
8098  ++SlicedLoads;
8099
8100  // Rewrite each chain to use an independent load.
8101  // By construction, each chain can be represented by a unique load.
8102
8103  // Prepare the argument for the new token factor for all the slices.
8104  SmallVector<SDValue, 8> ArgChains;
8105  for (SmallVectorImpl<LoadedSlice>::const_iterator
8106           LSIt = LoadedSlices.begin(),
8107           LSItEnd = LoadedSlices.end();
8108       LSIt != LSItEnd; ++LSIt) {
8109    SDValue SliceInst = LSIt->loadSlice();
8110    CombineTo(LSIt->Inst, SliceInst, true);
8111    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8112      SliceInst = SliceInst.getOperand(0);
8113    assert(SliceInst->getOpcode() == ISD::LOAD &&
8114           "It takes more than a zext to get to the loaded slice!!");
8115    ArgChains.push_back(SliceInst.getValue(1));
8116  }
8117
8118  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8119                              &ArgChains[0], ArgChains.size());
8120  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8121  return true;
8122}
8123
8124/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8125/// load is having specific bytes cleared out.  If so, return the byte size
8126/// being masked out and the shift amount.
8127static std::pair<unsigned, unsigned>
8128CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8129  std::pair<unsigned, unsigned> Result(0, 0);
8130
8131  // Check for the structure we're looking for.
8132  if (V->getOpcode() != ISD::AND ||
8133      !isa<ConstantSDNode>(V->getOperand(1)) ||
8134      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8135    return Result;
8136
8137  // Check the chain and pointer.
8138  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8139  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8140
8141  // The store should be chained directly to the load or be an operand of a
8142  // tokenfactor.
8143  if (LD == Chain.getNode())
8144    ; // ok.
8145  else if (Chain->getOpcode() != ISD::TokenFactor)
8146    return Result; // Fail.
8147  else {
8148    bool isOk = false;
8149    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8150      if (Chain->getOperand(i).getNode() == LD) {
8151        isOk = true;
8152        break;
8153      }
8154    if (!isOk) return Result;
8155  }
8156
8157  // This only handles simple types.
8158  if (V.getValueType() != MVT::i16 &&
8159      V.getValueType() != MVT::i32 &&
8160      V.getValueType() != MVT::i64)
8161    return Result;
8162
8163  // Check the constant mask.  Invert it so that the bits being masked out are
8164  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8165  // follow the sign bit for uniformity.
8166  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8167  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8168  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8169  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8170  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8171  if (NotMaskLZ == 64) return Result;  // All zero mask.
8172
8173  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8174  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8175    return Result;
8176
8177  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8178  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8179    NotMaskLZ -= 64-V.getValueSizeInBits();
8180
8181  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8182  switch (MaskedBytes) {
8183  case 1:
8184  case 2:
8185  case 4: break;
8186  default: return Result; // All one mask, or 5-byte mask.
8187  }
8188
8189  // Verify that the first bit starts at a multiple of mask so that the access
8190  // is aligned the same as the access width.
8191  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8192
8193  Result.first = MaskedBytes;
8194  Result.second = NotMaskTZ/8;
8195  return Result;
8196}
8197
8198
8199/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8200/// provides a value as specified by MaskInfo.  If so, replace the specified
8201/// store with a narrower store of truncated IVal.
8202static SDNode *
8203ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8204                                SDValue IVal, StoreSDNode *St,
8205                                DAGCombiner *DC) {
8206  unsigned NumBytes = MaskInfo.first;
8207  unsigned ByteShift = MaskInfo.second;
8208  SelectionDAG &DAG = DC->getDAG();
8209
8210  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8211  // that uses this.  If not, this is not a replacement.
8212  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8213                                  ByteShift*8, (ByteShift+NumBytes)*8);
8214  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8215
8216  // Check that it is legal on the target to do this.  It is legal if the new
8217  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8218  // legalization.
8219  MVT VT = MVT::getIntegerVT(NumBytes*8);
8220  if (!DC->isTypeLegal(VT))
8221    return 0;
8222
8223  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8224  // shifted by ByteShift and truncated down to NumBytes.
8225  if (ByteShift)
8226    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8227                       DAG.getConstant(ByteShift*8,
8228                                    DC->getShiftAmountTy(IVal.getValueType())));
8229
8230  // Figure out the offset for the store and the alignment of the access.
8231  unsigned StOffset;
8232  unsigned NewAlign = St->getAlignment();
8233
8234  if (DAG.getTargetLoweringInfo().isLittleEndian())
8235    StOffset = ByteShift;
8236  else
8237    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8238
8239  SDValue Ptr = St->getBasePtr();
8240  if (StOffset) {
8241    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8242                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8243    NewAlign = MinAlign(NewAlign, StOffset);
8244  }
8245
8246  // Truncate down to the new size.
8247  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8248
8249  ++OpsNarrowed;
8250  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8251                      St->getPointerInfo().getWithOffset(StOffset),
8252                      false, false, NewAlign).getNode();
8253}
8254
8255
8256/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8257/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8258/// of the loaded bits, try narrowing the load and store if it would end up
8259/// being a win for performance or code size.
8260SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8261  StoreSDNode *ST  = cast<StoreSDNode>(N);
8262  if (ST->isVolatile())
8263    return SDValue();
8264
8265  SDValue Chain = ST->getChain();
8266  SDValue Value = ST->getValue();
8267  SDValue Ptr   = ST->getBasePtr();
8268  EVT VT = Value.getValueType();
8269
8270  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8271    return SDValue();
8272
8273  unsigned Opc = Value.getOpcode();
8274
8275  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8276  // is a byte mask indicating a consecutive number of bytes, check to see if
8277  // Y is known to provide just those bytes.  If so, we try to replace the
8278  // load + replace + store sequence with a single (narrower) store, which makes
8279  // the load dead.
8280  if (Opc == ISD::OR) {
8281    std::pair<unsigned, unsigned> MaskedLoad;
8282    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8283    if (MaskedLoad.first)
8284      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8285                                                  Value.getOperand(1), ST,this))
8286        return SDValue(NewST, 0);
8287
8288    // Or is commutative, so try swapping X and Y.
8289    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8290    if (MaskedLoad.first)
8291      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8292                                                  Value.getOperand(0), ST,this))
8293        return SDValue(NewST, 0);
8294  }
8295
8296  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8297      Value.getOperand(1).getOpcode() != ISD::Constant)
8298    return SDValue();
8299
8300  SDValue N0 = Value.getOperand(0);
8301  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8302      Chain == SDValue(N0.getNode(), 1)) {
8303    LoadSDNode *LD = cast<LoadSDNode>(N0);
8304    if (LD->getBasePtr() != Ptr ||
8305        LD->getPointerInfo().getAddrSpace() !=
8306        ST->getPointerInfo().getAddrSpace())
8307      return SDValue();
8308
8309    // Find the type to narrow it the load / op / store to.
8310    SDValue N1 = Value.getOperand(1);
8311    unsigned BitWidth = N1.getValueSizeInBits();
8312    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8313    if (Opc == ISD::AND)
8314      Imm ^= APInt::getAllOnesValue(BitWidth);
8315    if (Imm == 0 || Imm.isAllOnesValue())
8316      return SDValue();
8317    unsigned ShAmt = Imm.countTrailingZeros();
8318    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8319    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8320    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8321    while (NewBW < BitWidth &&
8322           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8323             TLI.isNarrowingProfitable(VT, NewVT))) {
8324      NewBW = NextPowerOf2(NewBW);
8325      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8326    }
8327    if (NewBW >= BitWidth)
8328      return SDValue();
8329
8330    // If the lsb changed does not start at the type bitwidth boundary,
8331    // start at the previous one.
8332    if (ShAmt % NewBW)
8333      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8334    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8335                                   std::min(BitWidth, ShAmt + NewBW));
8336    if ((Imm & Mask) == Imm) {
8337      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8338      if (Opc == ISD::AND)
8339        NewImm ^= APInt::getAllOnesValue(NewBW);
8340      uint64_t PtrOff = ShAmt / 8;
8341      // For big endian targets, we need to adjust the offset to the pointer to
8342      // load the correct bytes.
8343      if (TLI.isBigEndian())
8344        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8345
8346      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8347      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8348      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8349        return SDValue();
8350
8351      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8352                                   Ptr.getValueType(), Ptr,
8353                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8354      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8355                                  LD->getChain(), NewPtr,
8356                                  LD->getPointerInfo().getWithOffset(PtrOff),
8357                                  LD->isVolatile(), LD->isNonTemporal(),
8358                                  LD->isInvariant(), NewAlign,
8359                                  LD->getTBAAInfo());
8360      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8361                                   DAG.getConstant(NewImm, NewVT));
8362      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8363                                   NewVal, NewPtr,
8364                                   ST->getPointerInfo().getWithOffset(PtrOff),
8365                                   false, false, NewAlign);
8366
8367      AddToWorkList(NewPtr.getNode());
8368      AddToWorkList(NewLD.getNode());
8369      AddToWorkList(NewVal.getNode());
8370      WorkListRemover DeadNodes(*this);
8371      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8372      ++OpsNarrowed;
8373      return NewST;
8374    }
8375  }
8376
8377  return SDValue();
8378}
8379
8380/// TransformFPLoadStorePair - For a given floating point load / store pair,
8381/// if the load value isn't used by any other operations, then consider
8382/// transforming the pair to integer load / store operations if the target
8383/// deems the transformation profitable.
8384SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8385  StoreSDNode *ST  = cast<StoreSDNode>(N);
8386  SDValue Chain = ST->getChain();
8387  SDValue Value = ST->getValue();
8388  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8389      Value.hasOneUse() &&
8390      Chain == SDValue(Value.getNode(), 1)) {
8391    LoadSDNode *LD = cast<LoadSDNode>(Value);
8392    EVT VT = LD->getMemoryVT();
8393    if (!VT.isFloatingPoint() ||
8394        VT != ST->getMemoryVT() ||
8395        LD->isNonTemporal() ||
8396        ST->isNonTemporal() ||
8397        LD->getPointerInfo().getAddrSpace() != 0 ||
8398        ST->getPointerInfo().getAddrSpace() != 0)
8399      return SDValue();
8400
8401    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8402    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8403        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8404        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8405        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8406      return SDValue();
8407
8408    unsigned LDAlign = LD->getAlignment();
8409    unsigned STAlign = ST->getAlignment();
8410    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8411    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8412    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8413      return SDValue();
8414
8415    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8416                                LD->getChain(), LD->getBasePtr(),
8417                                LD->getPointerInfo(),
8418                                false, false, false, LDAlign);
8419
8420    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8421                                 NewLD, ST->getBasePtr(),
8422                                 ST->getPointerInfo(),
8423                                 false, false, STAlign);
8424
8425    AddToWorkList(NewLD.getNode());
8426    AddToWorkList(NewST.getNode());
8427    WorkListRemover DeadNodes(*this);
8428    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8429    ++LdStFP2Int;
8430    return NewST;
8431  }
8432
8433  return SDValue();
8434}
8435
8436/// Helper struct to parse and store a memory address as base + index + offset.
8437/// We ignore sign extensions when it is safe to do so.
8438/// The following two expressions are not equivalent. To differentiate we need
8439/// to store whether there was a sign extension involved in the index
8440/// computation.
8441///  (load (i64 add (i64 copyfromreg %c)
8442///                 (i64 signextend (add (i8 load %index)
8443///                                      (i8 1))))
8444/// vs
8445///
8446/// (load (i64 add (i64 copyfromreg %c)
8447///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8448///                                         (i32 1)))))
8449struct BaseIndexOffset {
8450  SDValue Base;
8451  SDValue Index;
8452  int64_t Offset;
8453  bool IsIndexSignExt;
8454
8455  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8456
8457  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8458                  bool IsIndexSignExt) :
8459    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8460
8461  bool equalBaseIndex(const BaseIndexOffset &Other) {
8462    return Other.Base == Base && Other.Index == Index &&
8463      Other.IsIndexSignExt == IsIndexSignExt;
8464  }
8465
8466  /// Parses tree in Ptr for base, index, offset addresses.
8467  static BaseIndexOffset match(SDValue Ptr) {
8468    bool IsIndexSignExt = false;
8469
8470    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8471    // instruction, then it could be just the BASE or everything else we don't
8472    // know how to handle. Just use Ptr as BASE and give up.
8473    if (Ptr->getOpcode() != ISD::ADD)
8474      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8475
8476    // We know that we have at least an ADD instruction. Try to pattern match
8477    // the simple case of BASE + OFFSET.
8478    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8479      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8480      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8481                              IsIndexSignExt);
8482    }
8483
8484    // Inside a loop the current BASE pointer is calculated using an ADD and a
8485    // MUL instruction. In this case Ptr is the actual BASE pointer.
8486    // (i64 add (i64 %array_ptr)
8487    //          (i64 mul (i64 %induction_var)
8488    //                   (i64 %element_size)))
8489    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8490      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8491
8492    // Look at Base + Index + Offset cases.
8493    SDValue Base = Ptr->getOperand(0);
8494    SDValue IndexOffset = Ptr->getOperand(1);
8495
8496    // Skip signextends.
8497    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8498      IndexOffset = IndexOffset->getOperand(0);
8499      IsIndexSignExt = true;
8500    }
8501
8502    // Either the case of Base + Index (no offset) or something else.
8503    if (IndexOffset->getOpcode() != ISD::ADD)
8504      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8505
8506    // Now we have the case of Base + Index + offset.
8507    SDValue Index = IndexOffset->getOperand(0);
8508    SDValue Offset = IndexOffset->getOperand(1);
8509
8510    if (!isa<ConstantSDNode>(Offset))
8511      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8512
8513    // Ignore signextends.
8514    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8515      Index = Index->getOperand(0);
8516      IsIndexSignExt = true;
8517    } else IsIndexSignExt = false;
8518
8519    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8520    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8521  }
8522};
8523
8524/// Holds a pointer to an LSBaseSDNode as well as information on where it
8525/// is located in a sequence of memory operations connected by a chain.
8526struct MemOpLink {
8527  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8528    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8529  // Ptr to the mem node.
8530  LSBaseSDNode *MemNode;
8531  // Offset from the base ptr.
8532  int64_t OffsetFromBase;
8533  // What is the sequence number of this mem node.
8534  // Lowest mem operand in the DAG starts at zero.
8535  unsigned SequenceNum;
8536};
8537
8538/// Sorts store nodes in a link according to their offset from a shared
8539// base ptr.
8540struct ConsecutiveMemoryChainSorter {
8541  bool operator()(MemOpLink LHS, MemOpLink RHS) {
8542    return LHS.OffsetFromBase < RHS.OffsetFromBase;
8543  }
8544};
8545
8546bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8547  EVT MemVT = St->getMemoryVT();
8548  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8549  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8550    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8551
8552  // Don't merge vectors into wider inputs.
8553  if (MemVT.isVector() || !MemVT.isSimple())
8554    return false;
8555
8556  // Perform an early exit check. Do not bother looking at stored values that
8557  // are not constants or loads.
8558  SDValue StoredVal = St->getValue();
8559  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8560  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8561      !IsLoadSrc)
8562    return false;
8563
8564  // Only look at ends of store sequences.
8565  SDValue Chain = SDValue(St, 1);
8566  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8567    return false;
8568
8569  // This holds the base pointer, index, and the offset in bytes from the base
8570  // pointer.
8571  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8572
8573  // We must have a base and an offset.
8574  if (!BasePtr.Base.getNode())
8575    return false;
8576
8577  // Do not handle stores to undef base pointers.
8578  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8579    return false;
8580
8581  // Save the LoadSDNodes that we find in the chain.
8582  // We need to make sure that these nodes do not interfere with
8583  // any of the store nodes.
8584  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8585
8586  // Save the StoreSDNodes that we find in the chain.
8587  SmallVector<MemOpLink, 8> StoreNodes;
8588
8589  // Walk up the chain and look for nodes with offsets from the same
8590  // base pointer. Stop when reaching an instruction with a different kind
8591  // or instruction which has a different base pointer.
8592  unsigned Seq = 0;
8593  StoreSDNode *Index = St;
8594  while (Index) {
8595    // If the chain has more than one use, then we can't reorder the mem ops.
8596    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8597      break;
8598
8599    // Find the base pointer and offset for this memory node.
8600    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8601
8602    // Check that the base pointer is the same as the original one.
8603    if (!Ptr.equalBaseIndex(BasePtr))
8604      break;
8605
8606    // Check that the alignment is the same.
8607    if (Index->getAlignment() != St->getAlignment())
8608      break;
8609
8610    // The memory operands must not be volatile.
8611    if (Index->isVolatile() || Index->isIndexed())
8612      break;
8613
8614    // No truncation.
8615    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8616      if (St->isTruncatingStore())
8617        break;
8618
8619    // The stored memory type must be the same.
8620    if (Index->getMemoryVT() != MemVT)
8621      break;
8622
8623    // We do not allow unaligned stores because we want to prevent overriding
8624    // stores.
8625    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8626      break;
8627
8628    // We found a potential memory operand to merge.
8629    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8630
8631    // Find the next memory operand in the chain. If the next operand in the
8632    // chain is a store then move up and continue the scan with the next
8633    // memory operand. If the next operand is a load save it and use alias
8634    // information to check if it interferes with anything.
8635    SDNode *NextInChain = Index->getChain().getNode();
8636    while (1) {
8637      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8638        // We found a store node. Use it for the next iteration.
8639        Index = STn;
8640        break;
8641      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8642        // Save the load node for later. Continue the scan.
8643        AliasLoadNodes.push_back(Ldn);
8644        NextInChain = Ldn->getChain().getNode();
8645        continue;
8646      } else {
8647        Index = NULL;
8648        break;
8649      }
8650    }
8651  }
8652
8653  // Check if there is anything to merge.
8654  if (StoreNodes.size() < 2)
8655    return false;
8656
8657  // Sort the memory operands according to their distance from the base pointer.
8658  std::sort(StoreNodes.begin(), StoreNodes.end(),
8659            ConsecutiveMemoryChainSorter());
8660
8661  // Scan the memory operations on the chain and find the first non-consecutive
8662  // store memory address.
8663  unsigned LastConsecutiveStore = 0;
8664  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8665  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8666
8667    // Check that the addresses are consecutive starting from the second
8668    // element in the list of stores.
8669    if (i > 0) {
8670      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8671      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8672        break;
8673    }
8674
8675    bool Alias = false;
8676    // Check if this store interferes with any of the loads that we found.
8677    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8678      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8679        Alias = true;
8680        break;
8681      }
8682    // We found a load that alias with this store. Stop the sequence.
8683    if (Alias)
8684      break;
8685
8686    // Mark this node as useful.
8687    LastConsecutiveStore = i;
8688  }
8689
8690  // The node with the lowest store address.
8691  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8692
8693  // Store the constants into memory as one consecutive store.
8694  if (!IsLoadSrc) {
8695    unsigned LastLegalType = 0;
8696    unsigned LastLegalVectorType = 0;
8697    bool NonZero = false;
8698    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8699      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8700      SDValue StoredVal = St->getValue();
8701
8702      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8703        NonZero |= !C->isNullValue();
8704      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8705        NonZero |= !C->getConstantFPValue()->isNullValue();
8706      } else {
8707        // Non constant.
8708        break;
8709      }
8710
8711      // Find a legal type for the constant store.
8712      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8713      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8714      if (TLI.isTypeLegal(StoreTy))
8715        LastLegalType = i+1;
8716      // Or check whether a truncstore is legal.
8717      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8718               TargetLowering::TypePromoteInteger) {
8719        EVT LegalizedStoredValueTy =
8720          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8721        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8722          LastLegalType = i+1;
8723      }
8724
8725      // Find a legal type for the vector store.
8726      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8727      if (TLI.isTypeLegal(Ty))
8728        LastLegalVectorType = i + 1;
8729    }
8730
8731    // We only use vectors if the constant is known to be zero and the
8732    // function is not marked with the noimplicitfloat attribute.
8733    if (NonZero || NoVectors)
8734      LastLegalVectorType = 0;
8735
8736    // Check if we found a legal integer type to store.
8737    if (LastLegalType == 0 && LastLegalVectorType == 0)
8738      return false;
8739
8740    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8741    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8742
8743    // Make sure we have something to merge.
8744    if (NumElem < 2)
8745      return false;
8746
8747    unsigned EarliestNodeUsed = 0;
8748    for (unsigned i=0; i < NumElem; ++i) {
8749      // Find a chain for the new wide-store operand. Notice that some
8750      // of the store nodes that we found may not be selected for inclusion
8751      // in the wide store. The chain we use needs to be the chain of the
8752      // earliest store node which is *used* and replaced by the wide store.
8753      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8754        EarliestNodeUsed = i;
8755    }
8756
8757    // The earliest Node in the DAG.
8758    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8759    SDLoc DL(StoreNodes[0].MemNode);
8760
8761    SDValue StoredVal;
8762    if (UseVector) {
8763      // Find a legal type for the vector store.
8764      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8765      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8766      StoredVal = DAG.getConstant(0, Ty);
8767    } else {
8768      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8769      APInt StoreInt(StoreBW, 0);
8770
8771      // Construct a single integer constant which is made of the smaller
8772      // constant inputs.
8773      bool IsLE = TLI.isLittleEndian();
8774      for (unsigned i = 0; i < NumElem ; ++i) {
8775        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8776        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8777        SDValue Val = St->getValue();
8778        StoreInt<<=ElementSizeBytes*8;
8779        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8780          StoreInt|=C->getAPIntValue().zext(StoreBW);
8781        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8782          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8783        } else {
8784          assert(false && "Invalid constant element type");
8785        }
8786      }
8787
8788      // Create the new Load and Store operations.
8789      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8790      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8791    }
8792
8793    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8794                                    FirstInChain->getBasePtr(),
8795                                    FirstInChain->getPointerInfo(),
8796                                    false, false,
8797                                    FirstInChain->getAlignment());
8798
8799    // Replace the first store with the new store
8800    CombineTo(EarliestOp, NewStore);
8801    // Erase all other stores.
8802    for (unsigned i = 0; i < NumElem ; ++i) {
8803      if (StoreNodes[i].MemNode == EarliestOp)
8804        continue;
8805      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8806      // ReplaceAllUsesWith will replace all uses that existed when it was
8807      // called, but graph optimizations may cause new ones to appear. For
8808      // example, the case in pr14333 looks like
8809      //
8810      //  St's chain -> St -> another store -> X
8811      //
8812      // And the only difference from St to the other store is the chain.
8813      // When we change it's chain to be St's chain they become identical,
8814      // get CSEed and the net result is that X is now a use of St.
8815      // Since we know that St is redundant, just iterate.
8816      while (!St->use_empty())
8817        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8818      removeFromWorkList(St);
8819      DAG.DeleteNode(St);
8820    }
8821
8822    return true;
8823  }
8824
8825  // Below we handle the case of multiple consecutive stores that
8826  // come from multiple consecutive loads. We merge them into a single
8827  // wide load and a single wide store.
8828
8829  // Look for load nodes which are used by the stored values.
8830  SmallVector<MemOpLink, 8> LoadNodes;
8831
8832  // Find acceptable loads. Loads need to have the same chain (token factor),
8833  // must not be zext, volatile, indexed, and they must be consecutive.
8834  BaseIndexOffset LdBasePtr;
8835  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8836    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8837    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8838    if (!Ld) break;
8839
8840    // Loads must only have one use.
8841    if (!Ld->hasNUsesOfValue(1, 0))
8842      break;
8843
8844    // Check that the alignment is the same as the stores.
8845    if (Ld->getAlignment() != St->getAlignment())
8846      break;
8847
8848    // The memory operands must not be volatile.
8849    if (Ld->isVolatile() || Ld->isIndexed())
8850      break;
8851
8852    // We do not accept ext loads.
8853    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8854      break;
8855
8856    // The stored memory type must be the same.
8857    if (Ld->getMemoryVT() != MemVT)
8858      break;
8859
8860    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8861    // If this is not the first ptr that we check.
8862    if (LdBasePtr.Base.getNode()) {
8863      // The base ptr must be the same.
8864      if (!LdPtr.equalBaseIndex(LdBasePtr))
8865        break;
8866    } else {
8867      // Check that all other base pointers are the same as this one.
8868      LdBasePtr = LdPtr;
8869    }
8870
8871    // We found a potential memory operand to merge.
8872    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8873  }
8874
8875  if (LoadNodes.size() < 2)
8876    return false;
8877
8878  // Scan the memory operations on the chain and find the first non-consecutive
8879  // load memory address. These variables hold the index in the store node
8880  // array.
8881  unsigned LastConsecutiveLoad = 0;
8882  // This variable refers to the size and not index in the array.
8883  unsigned LastLegalVectorType = 0;
8884  unsigned LastLegalIntegerType = 0;
8885  StartAddress = LoadNodes[0].OffsetFromBase;
8886  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8887  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8888    // All loads much share the same chain.
8889    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8890      break;
8891
8892    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8893    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8894      break;
8895    LastConsecutiveLoad = i;
8896
8897    // Find a legal type for the vector store.
8898    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8899    if (TLI.isTypeLegal(StoreTy))
8900      LastLegalVectorType = i + 1;
8901
8902    // Find a legal type for the integer store.
8903    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8904    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8905    if (TLI.isTypeLegal(StoreTy))
8906      LastLegalIntegerType = i + 1;
8907    // Or check whether a truncstore and extload is legal.
8908    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8909             TargetLowering::TypePromoteInteger) {
8910      EVT LegalizedStoredValueTy =
8911        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8912      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8913          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8914          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8915          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8916        LastLegalIntegerType = i+1;
8917    }
8918  }
8919
8920  // Only use vector types if the vector type is larger than the integer type.
8921  // If they are the same, use integers.
8922  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8923  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8924
8925  // We add +1 here because the LastXXX variables refer to location while
8926  // the NumElem refers to array/index size.
8927  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8928  NumElem = std::min(LastLegalType, NumElem);
8929
8930  if (NumElem < 2)
8931    return false;
8932
8933  // The earliest Node in the DAG.
8934  unsigned EarliestNodeUsed = 0;
8935  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8936  for (unsigned i=1; i<NumElem; ++i) {
8937    // Find a chain for the new wide-store operand. Notice that some
8938    // of the store nodes that we found may not be selected for inclusion
8939    // in the wide store. The chain we use needs to be the chain of the
8940    // earliest store node which is *used* and replaced by the wide store.
8941    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8942      EarliestNodeUsed = i;
8943  }
8944
8945  // Find if it is better to use vectors or integers to load and store
8946  // to memory.
8947  EVT JointMemOpVT;
8948  if (UseVectorTy) {
8949    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8950  } else {
8951    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8952    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8953  }
8954
8955  SDLoc LoadDL(LoadNodes[0].MemNode);
8956  SDLoc StoreDL(StoreNodes[0].MemNode);
8957
8958  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8959  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8960                                FirstLoad->getChain(),
8961                                FirstLoad->getBasePtr(),
8962                                FirstLoad->getPointerInfo(),
8963                                false, false, false,
8964                                FirstLoad->getAlignment());
8965
8966  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8967                                  FirstInChain->getBasePtr(),
8968                                  FirstInChain->getPointerInfo(), false, false,
8969                                  FirstInChain->getAlignment());
8970
8971  // Replace one of the loads with the new load.
8972  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8973  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8974                                SDValue(NewLoad.getNode(), 1));
8975
8976  // Remove the rest of the load chains.
8977  for (unsigned i = 1; i < NumElem ; ++i) {
8978    // Replace all chain users of the old load nodes with the chain of the new
8979    // load node.
8980    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8981    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8982  }
8983
8984  // Replace the first store with the new store.
8985  CombineTo(EarliestOp, NewStore);
8986  // Erase all other stores.
8987  for (unsigned i = 0; i < NumElem ; ++i) {
8988    // Remove all Store nodes.
8989    if (StoreNodes[i].MemNode == EarliestOp)
8990      continue;
8991    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8992    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8993    removeFromWorkList(St);
8994    DAG.DeleteNode(St);
8995  }
8996
8997  return true;
8998}
8999
9000SDValue DAGCombiner::visitSTORE(SDNode *N) {
9001  StoreSDNode *ST  = cast<StoreSDNode>(N);
9002  SDValue Chain = ST->getChain();
9003  SDValue Value = ST->getValue();
9004  SDValue Ptr   = ST->getBasePtr();
9005
9006  // If this is a store of a bit convert, store the input value if the
9007  // resultant store does not need a higher alignment than the original.
9008  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9009      ST->isUnindexed()) {
9010    unsigned OrigAlign = ST->getAlignment();
9011    EVT SVT = Value.getOperand(0).getValueType();
9012    unsigned Align = TLI.getDataLayout()->
9013      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9014    if (Align <= OrigAlign &&
9015        ((!LegalOperations && !ST->isVolatile()) ||
9016         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9017      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9018                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9019                          ST->isNonTemporal(), OrigAlign,
9020                          ST->getTBAAInfo());
9021  }
9022
9023  // Turn 'store undef, Ptr' -> nothing.
9024  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9025    return Chain;
9026
9027  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9028  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9029    // NOTE: If the original store is volatile, this transform must not increase
9030    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9031    // processor operation but an i64 (which is not legal) requires two.  So the
9032    // transform should not be done in this case.
9033    if (Value.getOpcode() != ISD::TargetConstantFP) {
9034      SDValue Tmp;
9035      switch (CFP->getSimpleValueType(0).SimpleTy) {
9036      default: llvm_unreachable("Unknown FP type");
9037      case MVT::f16:    // We don't do this for these yet.
9038      case MVT::f80:
9039      case MVT::f128:
9040      case MVT::ppcf128:
9041        break;
9042      case MVT::f32:
9043        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9044            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9045          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9046                              bitcastToAPInt().getZExtValue(), MVT::i32);
9047          return DAG.getStore(Chain, SDLoc(N), Tmp,
9048                              Ptr, ST->getMemOperand());
9049        }
9050        break;
9051      case MVT::f64:
9052        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9053             !ST->isVolatile()) ||
9054            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9055          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9056                                getZExtValue(), MVT::i64);
9057          return DAG.getStore(Chain, SDLoc(N), Tmp,
9058                              Ptr, ST->getMemOperand());
9059        }
9060
9061        if (!ST->isVolatile() &&
9062            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9063          // Many FP stores are not made apparent until after legalize, e.g. for
9064          // argument passing.  Since this is so common, custom legalize the
9065          // 64-bit integer store into two 32-bit stores.
9066          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9067          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9068          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9069          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9070
9071          unsigned Alignment = ST->getAlignment();
9072          bool isVolatile = ST->isVolatile();
9073          bool isNonTemporal = ST->isNonTemporal();
9074          const MDNode *TBAAInfo = ST->getTBAAInfo();
9075
9076          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9077                                     Ptr, ST->getPointerInfo(),
9078                                     isVolatile, isNonTemporal,
9079                                     ST->getAlignment(), TBAAInfo);
9080          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9081                            DAG.getConstant(4, Ptr.getValueType()));
9082          Alignment = MinAlign(Alignment, 4U);
9083          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9084                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9085                                     isVolatile, isNonTemporal,
9086                                     Alignment, TBAAInfo);
9087          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9088                             St0, St1);
9089        }
9090
9091        break;
9092      }
9093    }
9094  }
9095
9096  // Try to infer better alignment information than the store already has.
9097  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9098    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9099      if (Align > ST->getAlignment())
9100        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9101                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9102                                 ST->isVolatile(), ST->isNonTemporal(), Align,
9103                                 ST->getTBAAInfo());
9104    }
9105  }
9106
9107  // Try transforming a pair floating point load / store ops to integer
9108  // load / store ops.
9109  SDValue NewST = TransformFPLoadStorePair(N);
9110  if (NewST.getNode())
9111    return NewST;
9112
9113  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9114    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9115  if (UseAA) {
9116    // Walk up chain skipping non-aliasing memory nodes.
9117    SDValue BetterChain = FindBetterChain(N, Chain);
9118
9119    // If there is a better chain.
9120    if (Chain != BetterChain) {
9121      SDValue ReplStore;
9122
9123      // Replace the chain to avoid dependency.
9124      if (ST->isTruncatingStore()) {
9125        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9126                                      ST->getMemoryVT(), ST->getMemOperand());
9127      } else {
9128        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9129                                 ST->getMemOperand());
9130      }
9131
9132      // Create token to keep both nodes around.
9133      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9134                                  MVT::Other, Chain, ReplStore);
9135
9136      // Make sure the new and old chains are cleaned up.
9137      AddToWorkList(Token.getNode());
9138
9139      // Don't add users to work list.
9140      return CombineTo(N, Token, false);
9141    }
9142  }
9143
9144  // Try transforming N to an indexed store.
9145  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9146    return SDValue(N, 0);
9147
9148  // FIXME: is there such a thing as a truncating indexed store?
9149  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9150      Value.getValueType().isInteger()) {
9151    // See if we can simplify the input to this truncstore with knowledge that
9152    // only the low bits are being used.  For example:
9153    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9154    SDValue Shorter =
9155      GetDemandedBits(Value,
9156                      APInt::getLowBitsSet(
9157                        Value.getValueType().getScalarType().getSizeInBits(),
9158                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9159    AddToWorkList(Value.getNode());
9160    if (Shorter.getNode())
9161      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9162                               Ptr, ST->getMemoryVT(), ST->getMemOperand());
9163
9164    // Otherwise, see if we can simplify the operation with
9165    // SimplifyDemandedBits, which only works if the value has a single use.
9166    if (SimplifyDemandedBits(Value,
9167                        APInt::getLowBitsSet(
9168                          Value.getValueType().getScalarType().getSizeInBits(),
9169                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9170      return SDValue(N, 0);
9171  }
9172
9173  // If this is a load followed by a store to the same location, then the store
9174  // is dead/noop.
9175  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9176    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9177        ST->isUnindexed() && !ST->isVolatile() &&
9178        // There can't be any side effects between the load and store, such as
9179        // a call or store.
9180        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9181      // The store is dead, remove it.
9182      return Chain;
9183    }
9184  }
9185
9186  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9187  // truncating store.  We can do this even if this is already a truncstore.
9188  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9189      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9190      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9191                            ST->getMemoryVT())) {
9192    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9193                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
9194  }
9195
9196  // Only perform this optimization before the types are legal, because we
9197  // don't want to perform this optimization on every DAGCombine invocation.
9198  if (!LegalTypes) {
9199    bool EverChanged = false;
9200
9201    do {
9202      // There can be multiple store sequences on the same chain.
9203      // Keep trying to merge store sequences until we are unable to do so
9204      // or until we merge the last store on the chain.
9205      bool Changed = MergeConsecutiveStores(ST);
9206      EverChanged |= Changed;
9207      if (!Changed) break;
9208    } while (ST->getOpcode() != ISD::DELETED_NODE);
9209
9210    if (EverChanged)
9211      return SDValue(N, 0);
9212  }
9213
9214  return ReduceLoadOpStoreWidth(N);
9215}
9216
9217SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9218  SDValue InVec = N->getOperand(0);
9219  SDValue InVal = N->getOperand(1);
9220  SDValue EltNo = N->getOperand(2);
9221  SDLoc dl(N);
9222
9223  // If the inserted element is an UNDEF, just use the input vector.
9224  if (InVal.getOpcode() == ISD::UNDEF)
9225    return InVec;
9226
9227  EVT VT = InVec.getValueType();
9228
9229  // If we can't generate a legal BUILD_VECTOR, exit
9230  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9231    return SDValue();
9232
9233  // Check that we know which element is being inserted
9234  if (!isa<ConstantSDNode>(EltNo))
9235    return SDValue();
9236  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9237
9238  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9239  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9240  // vector elements.
9241  SmallVector<SDValue, 8> Ops;
9242  // Do not combine these two vectors if the output vector will not replace
9243  // the input vector.
9244  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9245    Ops.append(InVec.getNode()->op_begin(),
9246               InVec.getNode()->op_end());
9247  } else if (InVec.getOpcode() == ISD::UNDEF) {
9248    unsigned NElts = VT.getVectorNumElements();
9249    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9250  } else {
9251    return SDValue();
9252  }
9253
9254  // Insert the element
9255  if (Elt < Ops.size()) {
9256    // All the operands of BUILD_VECTOR must have the same type;
9257    // we enforce that here.
9258    EVT OpVT = Ops[0].getValueType();
9259    if (InVal.getValueType() != OpVT)
9260      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9261                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9262                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9263    Ops[Elt] = InVal;
9264  }
9265
9266  // Return the new vector
9267  return DAG.getNode(ISD::BUILD_VECTOR, dl,
9268                     VT, &Ops[0], Ops.size());
9269}
9270
9271SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9272  // (vextract (scalar_to_vector val, 0) -> val
9273  SDValue InVec = N->getOperand(0);
9274  EVT VT = InVec.getValueType();
9275  EVT NVT = N->getValueType(0);
9276
9277  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9278    // Check if the result type doesn't match the inserted element type. A
9279    // SCALAR_TO_VECTOR may truncate the inserted element and the
9280    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9281    SDValue InOp = InVec.getOperand(0);
9282    if (InOp.getValueType() != NVT) {
9283      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9284      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9285    }
9286    return InOp;
9287  }
9288
9289  SDValue EltNo = N->getOperand(1);
9290  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9291
9292  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9293  // We only perform this optimization before the op legalization phase because
9294  // we may introduce new vector instructions which are not backed by TD
9295  // patterns. For example on AVX, extracting elements from a wide vector
9296  // without using extract_subvector.
9297  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9298      && ConstEltNo && !LegalOperations) {
9299    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9300    int NumElem = VT.getVectorNumElements();
9301    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9302    // Find the new index to extract from.
9303    int OrigElt = SVOp->getMaskElt(Elt);
9304
9305    // Extracting an undef index is undef.
9306    if (OrigElt == -1)
9307      return DAG.getUNDEF(NVT);
9308
9309    // Select the right vector half to extract from.
9310    if (OrigElt < NumElem) {
9311      InVec = InVec->getOperand(0);
9312    } else {
9313      InVec = InVec->getOperand(1);
9314      OrigElt -= NumElem;
9315    }
9316
9317    EVT IndexTy = TLI.getVectorIdxTy();
9318    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9319                       InVec, DAG.getConstant(OrigElt, IndexTy));
9320  }
9321
9322  // Perform only after legalization to ensure build_vector / vector_shuffle
9323  // optimizations have already been done.
9324  if (!LegalOperations) return SDValue();
9325
9326  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9327  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9328  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9329
9330  if (ConstEltNo) {
9331    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9332    bool NewLoad = false;
9333    bool BCNumEltsChanged = false;
9334    EVT ExtVT = VT.getVectorElementType();
9335    EVT LVT = ExtVT;
9336
9337    // If the result of load has to be truncated, then it's not necessarily
9338    // profitable.
9339    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9340      return SDValue();
9341
9342    if (InVec.getOpcode() == ISD::BITCAST) {
9343      // Don't duplicate a load with other uses.
9344      if (!InVec.hasOneUse())
9345        return SDValue();
9346
9347      EVT BCVT = InVec.getOperand(0).getValueType();
9348      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9349        return SDValue();
9350      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9351        BCNumEltsChanged = true;
9352      InVec = InVec.getOperand(0);
9353      ExtVT = BCVT.getVectorElementType();
9354      NewLoad = true;
9355    }
9356
9357    LoadSDNode *LN0 = NULL;
9358    const ShuffleVectorSDNode *SVN = NULL;
9359    if (ISD::isNormalLoad(InVec.getNode())) {
9360      LN0 = cast<LoadSDNode>(InVec);
9361    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9362               InVec.getOperand(0).getValueType() == ExtVT &&
9363               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9364      // Don't duplicate a load with other uses.
9365      if (!InVec.hasOneUse())
9366        return SDValue();
9367
9368      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9369    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9370      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9371      // =>
9372      // (load $addr+1*size)
9373
9374      // Don't duplicate a load with other uses.
9375      if (!InVec.hasOneUse())
9376        return SDValue();
9377
9378      // If the bit convert changed the number of elements, it is unsafe
9379      // to examine the mask.
9380      if (BCNumEltsChanged)
9381        return SDValue();
9382
9383      // Select the input vector, guarding against out of range extract vector.
9384      unsigned NumElems = VT.getVectorNumElements();
9385      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9386      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9387
9388      if (InVec.getOpcode() == ISD::BITCAST) {
9389        // Don't duplicate a load with other uses.
9390        if (!InVec.hasOneUse())
9391          return SDValue();
9392
9393        InVec = InVec.getOperand(0);
9394      }
9395      if (ISD::isNormalLoad(InVec.getNode())) {
9396        LN0 = cast<LoadSDNode>(InVec);
9397        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9398      }
9399    }
9400
9401    // Make sure we found a non-volatile load and the extractelement is
9402    // the only use.
9403    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9404      return SDValue();
9405
9406    // If Idx was -1 above, Elt is going to be -1, so just return undef.
9407    if (Elt == -1)
9408      return DAG.getUNDEF(LVT);
9409
9410    unsigned Align = LN0->getAlignment();
9411    if (NewLoad) {
9412      // Check the resultant load doesn't need a higher alignment than the
9413      // original load.
9414      unsigned NewAlign =
9415        TLI.getDataLayout()
9416            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9417
9418      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9419        return SDValue();
9420
9421      Align = NewAlign;
9422    }
9423
9424    SDValue NewPtr = LN0->getBasePtr();
9425    unsigned PtrOff = 0;
9426
9427    if (Elt) {
9428      PtrOff = LVT.getSizeInBits() * Elt / 8;
9429      EVT PtrType = NewPtr.getValueType();
9430      if (TLI.isBigEndian())
9431        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9432      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9433                           DAG.getConstant(PtrOff, PtrType));
9434    }
9435
9436    // The replacement we need to do here is a little tricky: we need to
9437    // replace an extractelement of a load with a load.
9438    // Use ReplaceAllUsesOfValuesWith to do the replacement.
9439    // Note that this replacement assumes that the extractvalue is the only
9440    // use of the load; that's okay because we don't want to perform this
9441    // transformation in other cases anyway.
9442    SDValue Load;
9443    SDValue Chain;
9444    if (NVT.bitsGT(LVT)) {
9445      // If the result type of vextract is wider than the load, then issue an
9446      // extending load instead.
9447      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9448        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9449      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9450                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9451                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),
9452                            Align, LN0->getTBAAInfo());
9453      Chain = Load.getValue(1);
9454    } else {
9455      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9456                         LN0->getPointerInfo().getWithOffset(PtrOff),
9457                         LN0->isVolatile(), LN0->isNonTemporal(),
9458                         LN0->isInvariant(), Align, LN0->getTBAAInfo());
9459      Chain = Load.getValue(1);
9460      if (NVT.bitsLT(LVT))
9461        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9462      else
9463        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9464    }
9465    WorkListRemover DeadNodes(*this);
9466    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9467    SDValue To[] = { Load, Chain };
9468    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9469    // Since we're explcitly calling ReplaceAllUses, add the new node to the
9470    // worklist explicitly as well.
9471    AddToWorkList(Load.getNode());
9472    AddUsersToWorkList(Load.getNode()); // Add users too
9473    // Make sure to revisit this node to clean it up; it will usually be dead.
9474    AddToWorkList(N);
9475    return SDValue(N, 0);
9476  }
9477
9478  return SDValue();
9479}
9480
9481// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9482SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9483  // We perform this optimization post type-legalization because
9484  // the type-legalizer often scalarizes integer-promoted vectors.
9485  // Performing this optimization before may create bit-casts which
9486  // will be type-legalized to complex code sequences.
9487  // We perform this optimization only before the operation legalizer because we
9488  // may introduce illegal operations.
9489  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9490    return SDValue();
9491
9492  unsigned NumInScalars = N->getNumOperands();
9493  SDLoc dl(N);
9494  EVT VT = N->getValueType(0);
9495
9496  // Check to see if this is a BUILD_VECTOR of a bunch of values
9497  // which come from any_extend or zero_extend nodes. If so, we can create
9498  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9499  // optimizations. We do not handle sign-extend because we can't fill the sign
9500  // using shuffles.
9501  EVT SourceType = MVT::Other;
9502  bool AllAnyExt = true;
9503
9504  for (unsigned i = 0; i != NumInScalars; ++i) {
9505    SDValue In = N->getOperand(i);
9506    // Ignore undef inputs.
9507    if (In.getOpcode() == ISD::UNDEF) continue;
9508
9509    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
9510    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9511
9512    // Abort if the element is not an extension.
9513    if (!ZeroExt && !AnyExt) {
9514      SourceType = MVT::Other;
9515      break;
9516    }
9517
9518    // The input is a ZeroExt or AnyExt. Check the original type.
9519    EVT InTy = In.getOperand(0).getValueType();
9520
9521    // Check that all of the widened source types are the same.
9522    if (SourceType == MVT::Other)
9523      // First time.
9524      SourceType = InTy;
9525    else if (InTy != SourceType) {
9526      // Multiple income types. Abort.
9527      SourceType = MVT::Other;
9528      break;
9529    }
9530
9531    // Check if all of the extends are ANY_EXTENDs.
9532    AllAnyExt &= AnyExt;
9533  }
9534
9535  // In order to have valid types, all of the inputs must be extended from the
9536  // same source type and all of the inputs must be any or zero extend.
9537  // Scalar sizes must be a power of two.
9538  EVT OutScalarTy = VT.getScalarType();
9539  bool ValidTypes = SourceType != MVT::Other &&
9540                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9541                 isPowerOf2_32(SourceType.getSizeInBits());
9542
9543  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9544  // turn into a single shuffle instruction.
9545  if (!ValidTypes)
9546    return SDValue();
9547
9548  bool isLE = TLI.isLittleEndian();
9549  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9550  assert(ElemRatio > 1 && "Invalid element size ratio");
9551  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9552                               DAG.getConstant(0, SourceType);
9553
9554  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9555  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9556
9557  // Populate the new build_vector
9558  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9559    SDValue Cast = N->getOperand(i);
9560    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9561            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9562            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9563    SDValue In;
9564    if (Cast.getOpcode() == ISD::UNDEF)
9565      In = DAG.getUNDEF(SourceType);
9566    else
9567      In = Cast->getOperand(0);
9568    unsigned Index = isLE ? (i * ElemRatio) :
9569                            (i * ElemRatio + (ElemRatio - 1));
9570
9571    assert(Index < Ops.size() && "Invalid index");
9572    Ops[Index] = In;
9573  }
9574
9575  // The type of the new BUILD_VECTOR node.
9576  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9577  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9578         "Invalid vector size");
9579  // Check if the new vector type is legal.
9580  if (!isTypeLegal(VecVT)) return SDValue();
9581
9582  // Make the new BUILD_VECTOR.
9583  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9584
9585  // The new BUILD_VECTOR node has the potential to be further optimized.
9586  AddToWorkList(BV.getNode());
9587  // Bitcast to the desired type.
9588  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9589}
9590
9591SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9592  EVT VT = N->getValueType(0);
9593
9594  unsigned NumInScalars = N->getNumOperands();
9595  SDLoc dl(N);
9596
9597  EVT SrcVT = MVT::Other;
9598  unsigned Opcode = ISD::DELETED_NODE;
9599  unsigned NumDefs = 0;
9600
9601  for (unsigned i = 0; i != NumInScalars; ++i) {
9602    SDValue In = N->getOperand(i);
9603    unsigned Opc = In.getOpcode();
9604
9605    if (Opc == ISD::UNDEF)
9606      continue;
9607
9608    // If all scalar values are floats and converted from integers.
9609    if (Opcode == ISD::DELETED_NODE &&
9610        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9611      Opcode = Opc;
9612    }
9613
9614    if (Opc != Opcode)
9615      return SDValue();
9616
9617    EVT InVT = In.getOperand(0).getValueType();
9618
9619    // If all scalar values are typed differently, bail out. It's chosen to
9620    // simplify BUILD_VECTOR of integer types.
9621    if (SrcVT == MVT::Other)
9622      SrcVT = InVT;
9623    if (SrcVT != InVT)
9624      return SDValue();
9625    NumDefs++;
9626  }
9627
9628  // If the vector has just one element defined, it's not worth to fold it into
9629  // a vectorized one.
9630  if (NumDefs < 2)
9631    return SDValue();
9632
9633  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9634         && "Should only handle conversion from integer to float.");
9635  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9636
9637  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9638
9639  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9640    return SDValue();
9641
9642  SmallVector<SDValue, 8> Opnds;
9643  for (unsigned i = 0; i != NumInScalars; ++i) {
9644    SDValue In = N->getOperand(i);
9645
9646    if (In.getOpcode() == ISD::UNDEF)
9647      Opnds.push_back(DAG.getUNDEF(SrcVT));
9648    else
9649      Opnds.push_back(In.getOperand(0));
9650  }
9651  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9652                           &Opnds[0], Opnds.size());
9653  AddToWorkList(BV.getNode());
9654
9655  return DAG.getNode(Opcode, dl, VT, BV);
9656}
9657
9658SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9659  unsigned NumInScalars = N->getNumOperands();
9660  SDLoc dl(N);
9661  EVT VT = N->getValueType(0);
9662
9663  // A vector built entirely of undefs is undef.
9664  if (ISD::allOperandsUndef(N))
9665    return DAG.getUNDEF(VT);
9666
9667  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9668  if (V.getNode())
9669    return V;
9670
9671  V = reduceBuildVecConvertToConvertBuildVec(N);
9672  if (V.getNode())
9673    return V;
9674
9675  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9676  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9677  // at most two distinct vectors, turn this into a shuffle node.
9678
9679  // May only combine to shuffle after legalize if shuffle is legal.
9680  if (LegalOperations &&
9681      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9682    return SDValue();
9683
9684  SDValue VecIn1, VecIn2;
9685  for (unsigned i = 0; i != NumInScalars; ++i) {
9686    // Ignore undef inputs.
9687    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9688
9689    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9690    // constant index, bail out.
9691    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9692        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9693      VecIn1 = VecIn2 = SDValue(0, 0);
9694      break;
9695    }
9696
9697    // We allow up to two distinct input vectors.
9698    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9699    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9700      continue;
9701
9702    if (VecIn1.getNode() == 0) {
9703      VecIn1 = ExtractedFromVec;
9704    } else if (VecIn2.getNode() == 0) {
9705      VecIn2 = ExtractedFromVec;
9706    } else {
9707      // Too many inputs.
9708      VecIn1 = VecIn2 = SDValue(0, 0);
9709      break;
9710    }
9711  }
9712
9713    // If everything is good, we can make a shuffle operation.
9714  if (VecIn1.getNode()) {
9715    SmallVector<int, 8> Mask;
9716    for (unsigned i = 0; i != NumInScalars; ++i) {
9717      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9718        Mask.push_back(-1);
9719        continue;
9720      }
9721
9722      // If extracting from the first vector, just use the index directly.
9723      SDValue Extract = N->getOperand(i);
9724      SDValue ExtVal = Extract.getOperand(1);
9725      if (Extract.getOperand(0) == VecIn1) {
9726        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9727        if (ExtIndex > VT.getVectorNumElements())
9728          return SDValue();
9729
9730        Mask.push_back(ExtIndex);
9731        continue;
9732      }
9733
9734      // Otherwise, use InIdx + VecSize
9735      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9736      Mask.push_back(Idx+NumInScalars);
9737    }
9738
9739    // We can't generate a shuffle node with mismatched input and output types.
9740    // Attempt to transform a single input vector to the correct type.
9741    if ((VT != VecIn1.getValueType())) {
9742      // We don't support shuffeling between TWO values of different types.
9743      if (VecIn2.getNode() != 0)
9744        return SDValue();
9745
9746      // We only support widening of vectors which are half the size of the
9747      // output registers. For example XMM->YMM widening on X86 with AVX.
9748      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9749        return SDValue();
9750
9751      // If the input vector type has a different base type to the output
9752      // vector type, bail out.
9753      if (VecIn1.getValueType().getVectorElementType() !=
9754          VT.getVectorElementType())
9755        return SDValue();
9756
9757      // Widen the input vector by adding undef values.
9758      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9759                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9760    }
9761
9762    // If VecIn2 is unused then change it to undef.
9763    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9764
9765    // Check that we were able to transform all incoming values to the same
9766    // type.
9767    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9768        VecIn1.getValueType() != VT)
9769          return SDValue();
9770
9771    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9772    if (!isTypeLegal(VT))
9773      return SDValue();
9774
9775    // Return the new VECTOR_SHUFFLE node.
9776    SDValue Ops[2];
9777    Ops[0] = VecIn1;
9778    Ops[1] = VecIn2;
9779    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9780  }
9781
9782  return SDValue();
9783}
9784
9785SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9786  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9787  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9788  // inputs come from at most two distinct vectors, turn this into a shuffle
9789  // node.
9790
9791  // If we only have one input vector, we don't need to do any concatenation.
9792  if (N->getNumOperands() == 1)
9793    return N->getOperand(0);
9794
9795  // Check if all of the operands are undefs.
9796  EVT VT = N->getValueType(0);
9797  if (ISD::allOperandsUndef(N))
9798    return DAG.getUNDEF(VT);
9799
9800  // Optimize concat_vectors where one of the vectors is undef.
9801  if (N->getNumOperands() == 2 &&
9802      N->getOperand(1)->getOpcode() == ISD::UNDEF) {
9803    SDValue In = N->getOperand(0);
9804    assert(In->getValueType(0).isVector() && "Must concat vectors");
9805
9806    // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
9807    if (In->getOpcode() == ISD::BITCAST &&
9808        !In->getOperand(0)->getValueType(0).isVector()) {
9809      SDValue Scalar = In->getOperand(0);
9810      EVT SclTy = Scalar->getValueType(0);
9811
9812      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
9813        return SDValue();
9814
9815      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
9816                                 VT.getSizeInBits() / SclTy.getSizeInBits());
9817      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
9818        return SDValue();
9819
9820      SDLoc dl = SDLoc(N);
9821      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
9822      return DAG.getNode(ISD::BITCAST, dl, VT, Res);
9823    }
9824  }
9825
9826  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9827  // nodes often generate nop CONCAT_VECTOR nodes.
9828  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9829  // place the incoming vectors at the exact same location.
9830  SDValue SingleSource = SDValue();
9831  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9832
9833  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9834    SDValue Op = N->getOperand(i);
9835
9836    if (Op.getOpcode() == ISD::UNDEF)
9837      continue;
9838
9839    // Check if this is the identity extract:
9840    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9841      return SDValue();
9842
9843    // Find the single incoming vector for the extract_subvector.
9844    if (SingleSource.getNode()) {
9845      if (Op.getOperand(0) != SingleSource)
9846        return SDValue();
9847    } else {
9848      SingleSource = Op.getOperand(0);
9849
9850      // Check the source type is the same as the type of the result.
9851      // If not, this concat may extend the vector, so we can not
9852      // optimize it away.
9853      if (SingleSource.getValueType() != N->getValueType(0))
9854        return SDValue();
9855    }
9856
9857    unsigned IdentityIndex = i * PartNumElem;
9858    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9859    // The extract index must be constant.
9860    if (!CS)
9861      return SDValue();
9862
9863    // Check that we are reading from the identity index.
9864    if (CS->getZExtValue() != IdentityIndex)
9865      return SDValue();
9866  }
9867
9868  if (SingleSource.getNode())
9869    return SingleSource;
9870
9871  return SDValue();
9872}
9873
9874SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9875  EVT NVT = N->getValueType(0);
9876  SDValue V = N->getOperand(0);
9877
9878  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9879    // Combine:
9880    //    (extract_subvec (concat V1, V2, ...), i)
9881    // Into:
9882    //    Vi if possible
9883    // Only operand 0 is checked as 'concat' assumes all inputs of the same
9884    // type.
9885    if (V->getOperand(0).getValueType() != NVT)
9886      return SDValue();
9887    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9888    unsigned NumElems = NVT.getVectorNumElements();
9889    assert((Idx % NumElems) == 0 &&
9890           "IDX in concat is not a multiple of the result vector length.");
9891    return V->getOperand(Idx / NumElems);
9892  }
9893
9894  // Skip bitcasting
9895  if (V->getOpcode() == ISD::BITCAST)
9896    V = V.getOperand(0);
9897
9898  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9899    SDLoc dl(N);
9900    // Handle only simple case where vector being inserted and vector
9901    // being extracted are of same type, and are half size of larger vectors.
9902    EVT BigVT = V->getOperand(0).getValueType();
9903    EVT SmallVT = V->getOperand(1).getValueType();
9904    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9905      return SDValue();
9906
9907    // Only handle cases where both indexes are constants with the same type.
9908    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9909    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9910
9911    if (InsIdx && ExtIdx &&
9912        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9913        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9914      // Combine:
9915      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9916      // Into:
9917      //    indices are equal or bit offsets are equal => V1
9918      //    otherwise => (extract_subvec V1, ExtIdx)
9919      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9920          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9921        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9922      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9923                         DAG.getNode(ISD::BITCAST, dl,
9924                                     N->getOperand(0).getValueType(),
9925                                     V->getOperand(0)), N->getOperand(1));
9926    }
9927  }
9928
9929  return SDValue();
9930}
9931
9932// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9933static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9934  EVT VT = N->getValueType(0);
9935  unsigned NumElts = VT.getVectorNumElements();
9936
9937  SDValue N0 = N->getOperand(0);
9938  SDValue N1 = N->getOperand(1);
9939  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9940
9941  SmallVector<SDValue, 4> Ops;
9942  EVT ConcatVT = N0.getOperand(0).getValueType();
9943  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9944  unsigned NumConcats = NumElts / NumElemsPerConcat;
9945
9946  // Look at every vector that's inserted. We're looking for exact
9947  // subvector-sized copies from a concatenated vector
9948  for (unsigned I = 0; I != NumConcats; ++I) {
9949    // Make sure we're dealing with a copy.
9950    unsigned Begin = I * NumElemsPerConcat;
9951    bool AllUndef = true, NoUndef = true;
9952    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
9953      if (SVN->getMaskElt(J) >= 0)
9954        AllUndef = false;
9955      else
9956        NoUndef = false;
9957    }
9958
9959    if (NoUndef) {
9960      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9961        return SDValue();
9962
9963      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
9964        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9965          return SDValue();
9966
9967      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9968      if (FirstElt < N0.getNumOperands())
9969        Ops.push_back(N0.getOperand(FirstElt));
9970      else
9971        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9972
9973    } else if (AllUndef) {
9974      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
9975    } else { // Mixed with general masks and undefs, can't do optimization.
9976      return SDValue();
9977    }
9978  }
9979
9980  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
9981                     Ops.size());
9982}
9983
9984SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9985  EVT VT = N->getValueType(0);
9986  unsigned NumElts = VT.getVectorNumElements();
9987
9988  SDValue N0 = N->getOperand(0);
9989  SDValue N1 = N->getOperand(1);
9990
9991  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9992
9993  // Canonicalize shuffle undef, undef -> undef
9994  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9995    return DAG.getUNDEF(VT);
9996
9997  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9998
9999  // Canonicalize shuffle v, v -> v, undef
10000  if (N0 == N1) {
10001    SmallVector<int, 8> NewMask;
10002    for (unsigned i = 0; i != NumElts; ++i) {
10003      int Idx = SVN->getMaskElt(i);
10004      if (Idx >= (int)NumElts) Idx -= NumElts;
10005      NewMask.push_back(Idx);
10006    }
10007    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10008                                &NewMask[0]);
10009  }
10010
10011  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10012  if (N0.getOpcode() == ISD::UNDEF) {
10013    SmallVector<int, 8> NewMask;
10014    for (unsigned i = 0; i != NumElts; ++i) {
10015      int Idx = SVN->getMaskElt(i);
10016      if (Idx >= 0) {
10017        if (Idx >= (int)NumElts)
10018          Idx -= NumElts;
10019        else
10020          Idx = -1; // remove reference to lhs
10021      }
10022      NewMask.push_back(Idx);
10023    }
10024    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10025                                &NewMask[0]);
10026  }
10027
10028  // Remove references to rhs if it is undef
10029  if (N1.getOpcode() == ISD::UNDEF) {
10030    bool Changed = false;
10031    SmallVector<int, 8> NewMask;
10032    for (unsigned i = 0; i != NumElts; ++i) {
10033      int Idx = SVN->getMaskElt(i);
10034      if (Idx >= (int)NumElts) {
10035        Idx = -1;
10036        Changed = true;
10037      }
10038      NewMask.push_back(Idx);
10039    }
10040    if (Changed)
10041      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10042  }
10043
10044  // If it is a splat, check if the argument vector is another splat or a
10045  // build_vector with all scalar elements the same.
10046  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10047    SDNode *V = N0.getNode();
10048
10049    // If this is a bit convert that changes the element type of the vector but
10050    // not the number of vector elements, look through it.  Be careful not to
10051    // look though conversions that change things like v4f32 to v2f64.
10052    if (V->getOpcode() == ISD::BITCAST) {
10053      SDValue ConvInput = V->getOperand(0);
10054      if (ConvInput.getValueType().isVector() &&
10055          ConvInput.getValueType().getVectorNumElements() == NumElts)
10056        V = ConvInput.getNode();
10057    }
10058
10059    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10060      assert(V->getNumOperands() == NumElts &&
10061             "BUILD_VECTOR has wrong number of operands");
10062      SDValue Base;
10063      bool AllSame = true;
10064      for (unsigned i = 0; i != NumElts; ++i) {
10065        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10066          Base = V->getOperand(i);
10067          break;
10068        }
10069      }
10070      // Splat of <u, u, u, u>, return <u, u, u, u>
10071      if (!Base.getNode())
10072        return N0;
10073      for (unsigned i = 0; i != NumElts; ++i) {
10074        if (V->getOperand(i) != Base) {
10075          AllSame = false;
10076          break;
10077        }
10078      }
10079      // Splat of <x, x, x, x>, return <x, x, x, x>
10080      if (AllSame)
10081        return N0;
10082    }
10083  }
10084
10085  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10086      Level < AfterLegalizeVectorOps &&
10087      (N1.getOpcode() == ISD::UNDEF ||
10088      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10089       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10090    SDValue V = partitionShuffleOfConcats(N, DAG);
10091
10092    if (V.getNode())
10093      return V;
10094  }
10095
10096  // If this shuffle node is simply a swizzle of another shuffle node,
10097  // and it reverses the swizzle of the previous shuffle then we can
10098  // optimize shuffle(shuffle(x, undef), undef) -> x.
10099  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10100      N1.getOpcode() == ISD::UNDEF) {
10101
10102    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10103
10104    // Shuffle nodes can only reverse shuffles with a single non-undef value.
10105    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10106      return SDValue();
10107
10108    // The incoming shuffle must be of the same type as the result of the
10109    // current shuffle.
10110    assert(OtherSV->getOperand(0).getValueType() == VT &&
10111           "Shuffle types don't match");
10112
10113    for (unsigned i = 0; i != NumElts; ++i) {
10114      int Idx = SVN->getMaskElt(i);
10115      assert(Idx < (int)NumElts && "Index references undef operand");
10116      // Next, this index comes from the first value, which is the incoming
10117      // shuffle. Adopt the incoming index.
10118      if (Idx >= 0)
10119        Idx = OtherSV->getMaskElt(Idx);
10120
10121      // The combined shuffle must map each index to itself.
10122      if (Idx >= 0 && (unsigned)Idx != i)
10123        return SDValue();
10124    }
10125
10126    return OtherSV->getOperand(0);
10127  }
10128
10129  return SDValue();
10130}
10131
10132/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10133/// an AND to a vector_shuffle with the destination vector and a zero vector.
10134/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10135///      vector_shuffle V, Zero, <0, 4, 2, 4>
10136SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10137  EVT VT = N->getValueType(0);
10138  SDLoc dl(N);
10139  SDValue LHS = N->getOperand(0);
10140  SDValue RHS = N->getOperand(1);
10141  if (N->getOpcode() == ISD::AND) {
10142    if (RHS.getOpcode() == ISD::BITCAST)
10143      RHS = RHS.getOperand(0);
10144    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10145      SmallVector<int, 8> Indices;
10146      unsigned NumElts = RHS.getNumOperands();
10147      for (unsigned i = 0; i != NumElts; ++i) {
10148        SDValue Elt = RHS.getOperand(i);
10149        if (!isa<ConstantSDNode>(Elt))
10150          return SDValue();
10151
10152        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10153          Indices.push_back(i);
10154        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10155          Indices.push_back(NumElts);
10156        else
10157          return SDValue();
10158      }
10159
10160      // Let's see if the target supports this vector_shuffle.
10161      EVT RVT = RHS.getValueType();
10162      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10163        return SDValue();
10164
10165      // Return the new VECTOR_SHUFFLE node.
10166      EVT EltVT = RVT.getVectorElementType();
10167      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10168                                     DAG.getConstant(0, EltVT));
10169      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10170                                 RVT, &ZeroOps[0], ZeroOps.size());
10171      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10172      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10173      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10174    }
10175  }
10176
10177  return SDValue();
10178}
10179
10180/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10181SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10182  assert(N->getValueType(0).isVector() &&
10183         "SimplifyVBinOp only works on vectors!");
10184
10185  SDValue LHS = N->getOperand(0);
10186  SDValue RHS = N->getOperand(1);
10187  SDValue Shuffle = XformToShuffleWithZero(N);
10188  if (Shuffle.getNode()) return Shuffle;
10189
10190  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10191  // this operation.
10192  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10193      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10194    SmallVector<SDValue, 8> Ops;
10195    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10196      SDValue LHSOp = LHS.getOperand(i);
10197      SDValue RHSOp = RHS.getOperand(i);
10198      // If these two elements can't be folded, bail out.
10199      if ((LHSOp.getOpcode() != ISD::UNDEF &&
10200           LHSOp.getOpcode() != ISD::Constant &&
10201           LHSOp.getOpcode() != ISD::ConstantFP) ||
10202          (RHSOp.getOpcode() != ISD::UNDEF &&
10203           RHSOp.getOpcode() != ISD::Constant &&
10204           RHSOp.getOpcode() != ISD::ConstantFP))
10205        break;
10206
10207      // Can't fold divide by zero.
10208      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10209          N->getOpcode() == ISD::FDIV) {
10210        if ((RHSOp.getOpcode() == ISD::Constant &&
10211             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10212            (RHSOp.getOpcode() == ISD::ConstantFP &&
10213             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10214          break;
10215      }
10216
10217      EVT VT = LHSOp.getValueType();
10218      EVT RVT = RHSOp.getValueType();
10219      if (RVT != VT) {
10220        // Integer BUILD_VECTOR operands may have types larger than the element
10221        // size (e.g., when the element type is not legal).  Prior to type
10222        // legalization, the types may not match between the two BUILD_VECTORS.
10223        // Truncate one of the operands to make them match.
10224        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10225          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10226        } else {
10227          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10228          VT = RVT;
10229        }
10230      }
10231      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10232                                   LHSOp, RHSOp);
10233      if (FoldOp.getOpcode() != ISD::UNDEF &&
10234          FoldOp.getOpcode() != ISD::Constant &&
10235          FoldOp.getOpcode() != ISD::ConstantFP)
10236        break;
10237      Ops.push_back(FoldOp);
10238      AddToWorkList(FoldOp.getNode());
10239    }
10240
10241    if (Ops.size() == LHS.getNumOperands())
10242      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10243                         LHS.getValueType(), &Ops[0], Ops.size());
10244  }
10245
10246  return SDValue();
10247}
10248
10249/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10250SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10251  assert(N->getValueType(0).isVector() &&
10252         "SimplifyVUnaryOp only works on vectors!");
10253
10254  SDValue N0 = N->getOperand(0);
10255
10256  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10257    return SDValue();
10258
10259  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10260  SmallVector<SDValue, 8> Ops;
10261  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10262    SDValue Op = N0.getOperand(i);
10263    if (Op.getOpcode() != ISD::UNDEF &&
10264        Op.getOpcode() != ISD::ConstantFP)
10265      break;
10266    EVT EltVT = Op.getValueType();
10267    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10268    if (FoldOp.getOpcode() != ISD::UNDEF &&
10269        FoldOp.getOpcode() != ISD::ConstantFP)
10270      break;
10271    Ops.push_back(FoldOp);
10272    AddToWorkList(FoldOp.getNode());
10273  }
10274
10275  if (Ops.size() != N0.getNumOperands())
10276    return SDValue();
10277
10278  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10279                     N0.getValueType(), &Ops[0], Ops.size());
10280}
10281
10282SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10283                                    SDValue N1, SDValue N2){
10284  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10285
10286  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10287                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10288
10289  // If we got a simplified select_cc node back from SimplifySelectCC, then
10290  // break it down into a new SETCC node, and a new SELECT node, and then return
10291  // the SELECT node, since we were called with a SELECT node.
10292  if (SCC.getNode()) {
10293    // Check to see if we got a select_cc back (to turn into setcc/select).
10294    // Otherwise, just return whatever node we got back, like fabs.
10295    if (SCC.getOpcode() == ISD::SELECT_CC) {
10296      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10297                                  N0.getValueType(),
10298                                  SCC.getOperand(0), SCC.getOperand(1),
10299                                  SCC.getOperand(4));
10300      AddToWorkList(SETCC.getNode());
10301      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10302                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10303    }
10304
10305    return SCC;
10306  }
10307  return SDValue();
10308}
10309
10310/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10311/// are the two values being selected between, see if we can simplify the
10312/// select.  Callers of this should assume that TheSelect is deleted if this
10313/// returns true.  As such, they should return the appropriate thing (e.g. the
10314/// node) back to the top-level of the DAG combiner loop to avoid it being
10315/// looked at.
10316bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10317                                    SDValue RHS) {
10318
10319  // Cannot simplify select with vector condition
10320  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10321
10322  // If this is a select from two identical things, try to pull the operation
10323  // through the select.
10324  if (LHS.getOpcode() != RHS.getOpcode() ||
10325      !LHS.hasOneUse() || !RHS.hasOneUse())
10326    return false;
10327
10328  // If this is a load and the token chain is identical, replace the select
10329  // of two loads with a load through a select of the address to load from.
10330  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10331  // constants have been dropped into the constant pool.
10332  if (LHS.getOpcode() == ISD::LOAD) {
10333    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10334    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10335
10336    // Token chains must be identical.
10337    if (LHS.getOperand(0) != RHS.getOperand(0) ||
10338        // Do not let this transformation reduce the number of volatile loads.
10339        LLD->isVolatile() || RLD->isVolatile() ||
10340        // If this is an EXTLOAD, the VT's must match.
10341        LLD->getMemoryVT() != RLD->getMemoryVT() ||
10342        // If this is an EXTLOAD, the kind of extension must match.
10343        (LLD->getExtensionType() != RLD->getExtensionType() &&
10344         // The only exception is if one of the extensions is anyext.
10345         LLD->getExtensionType() != ISD::EXTLOAD &&
10346         RLD->getExtensionType() != ISD::EXTLOAD) ||
10347        // FIXME: this discards src value information.  This is
10348        // over-conservative. It would be beneficial to be able to remember
10349        // both potential memory locations.  Since we are discarding
10350        // src value info, don't do the transformation if the memory
10351        // locations are not in the default address space.
10352        LLD->getPointerInfo().getAddrSpace() != 0 ||
10353        RLD->getPointerInfo().getAddrSpace() != 0 ||
10354        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10355                                      LLD->getBasePtr().getValueType()))
10356      return false;
10357
10358    // Check that the select condition doesn't reach either load.  If so,
10359    // folding this will induce a cycle into the DAG.  If not, this is safe to
10360    // xform, so create a select of the addresses.
10361    SDValue Addr;
10362    if (TheSelect->getOpcode() == ISD::SELECT) {
10363      SDNode *CondNode = TheSelect->getOperand(0).getNode();
10364      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10365          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10366        return false;
10367      // The loads must not depend on one another.
10368      if (LLD->isPredecessorOf(RLD) ||
10369          RLD->isPredecessorOf(LLD))
10370        return false;
10371      Addr = DAG.getSelect(SDLoc(TheSelect),
10372                           LLD->getBasePtr().getValueType(),
10373                           TheSelect->getOperand(0), LLD->getBasePtr(),
10374                           RLD->getBasePtr());
10375    } else {  // Otherwise SELECT_CC
10376      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10377      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10378
10379      if ((LLD->hasAnyUseOfValue(1) &&
10380           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10381          (RLD->hasAnyUseOfValue(1) &&
10382           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10383        return false;
10384
10385      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10386                         LLD->getBasePtr().getValueType(),
10387                         TheSelect->getOperand(0),
10388                         TheSelect->getOperand(1),
10389                         LLD->getBasePtr(), RLD->getBasePtr(),
10390                         TheSelect->getOperand(4));
10391    }
10392
10393    SDValue Load;
10394    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10395      Load = DAG.getLoad(TheSelect->getValueType(0),
10396                         SDLoc(TheSelect),
10397                         // FIXME: Discards pointer and TBAA info.
10398                         LLD->getChain(), Addr, MachinePointerInfo(),
10399                         LLD->isVolatile(), LLD->isNonTemporal(),
10400                         LLD->isInvariant(), LLD->getAlignment());
10401    } else {
10402      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10403                            RLD->getExtensionType() : LLD->getExtensionType(),
10404                            SDLoc(TheSelect),
10405                            TheSelect->getValueType(0),
10406                            // FIXME: Discards pointer and TBAA info.
10407                            LLD->getChain(), Addr, MachinePointerInfo(),
10408                            LLD->getMemoryVT(), LLD->isVolatile(),
10409                            LLD->isNonTemporal(), LLD->getAlignment());
10410    }
10411
10412    // Users of the select now use the result of the load.
10413    CombineTo(TheSelect, Load);
10414
10415    // Users of the old loads now use the new load's chain.  We know the
10416    // old-load value is dead now.
10417    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10418    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10419    return true;
10420  }
10421
10422  return false;
10423}
10424
10425/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10426/// where 'cond' is the comparison specified by CC.
10427SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10428                                      SDValue N2, SDValue N3,
10429                                      ISD::CondCode CC, bool NotExtCompare) {
10430  // (x ? y : y) -> y.
10431  if (N2 == N3) return N2;
10432
10433  EVT VT = N2.getValueType();
10434  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10435  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10436  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10437
10438  // Determine if the condition we're dealing with is constant
10439  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10440                              N0, N1, CC, DL, false);
10441  if (SCC.getNode()) AddToWorkList(SCC.getNode());
10442  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10443
10444  // fold select_cc true, x, y -> x
10445  if (SCCC && !SCCC->isNullValue())
10446    return N2;
10447  // fold select_cc false, x, y -> y
10448  if (SCCC && SCCC->isNullValue())
10449    return N3;
10450
10451  // Check to see if we can simplify the select into an fabs node
10452  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10453    // Allow either -0.0 or 0.0
10454    if (CFP->getValueAPF().isZero()) {
10455      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10456      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10457          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10458          N2 == N3.getOperand(0))
10459        return DAG.getNode(ISD::FABS, DL, VT, N0);
10460
10461      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10462      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10463          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10464          N2.getOperand(0) == N3)
10465        return DAG.getNode(ISD::FABS, DL, VT, N3);
10466    }
10467  }
10468
10469  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10470  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10471  // in it.  This is a win when the constant is not otherwise available because
10472  // it replaces two constant pool loads with one.  We only do this if the FP
10473  // type is known to be legal, because if it isn't, then we are before legalize
10474  // types an we want the other legalization to happen first (e.g. to avoid
10475  // messing with soft float) and if the ConstantFP is not legal, because if
10476  // it is legal, we may not need to store the FP constant in a constant pool.
10477  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10478    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10479      if (TLI.isTypeLegal(N2.getValueType()) &&
10480          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10481           TargetLowering::Legal) &&
10482          // If both constants have multiple uses, then we won't need to do an
10483          // extra load, they are likely around in registers for other users.
10484          (TV->hasOneUse() || FV->hasOneUse())) {
10485        Constant *Elts[] = {
10486          const_cast<ConstantFP*>(FV->getConstantFPValue()),
10487          const_cast<ConstantFP*>(TV->getConstantFPValue())
10488        };
10489        Type *FPTy = Elts[0]->getType();
10490        const DataLayout &TD = *TLI.getDataLayout();
10491
10492        // Create a ConstantArray of the two constants.
10493        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10494        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10495                                            TD.getPrefTypeAlignment(FPTy));
10496        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10497
10498        // Get the offsets to the 0 and 1 element of the array so that we can
10499        // select between them.
10500        SDValue Zero = DAG.getIntPtrConstant(0);
10501        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10502        SDValue One = DAG.getIntPtrConstant(EltSize);
10503
10504        SDValue Cond = DAG.getSetCC(DL,
10505                                    getSetCCResultType(N0.getValueType()),
10506                                    N0, N1, CC);
10507        AddToWorkList(Cond.getNode());
10508        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10509                                          Cond, One, Zero);
10510        AddToWorkList(CstOffset.getNode());
10511        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10512                            CstOffset);
10513        AddToWorkList(CPIdx.getNode());
10514        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10515                           MachinePointerInfo::getConstantPool(), false,
10516                           false, false, Alignment);
10517
10518      }
10519    }
10520
10521  // Check to see if we can perform the "gzip trick", transforming
10522  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10523  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10524      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
10525       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
10526    EVT XType = N0.getValueType();
10527    EVT AType = N2.getValueType();
10528    if (XType.bitsGE(AType)) {
10529      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10530      // single-bit constant.
10531      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10532        unsigned ShCtV = N2C->getAPIntValue().logBase2();
10533        ShCtV = XType.getSizeInBits()-ShCtV-1;
10534        SDValue ShCt = DAG.getConstant(ShCtV,
10535                                       getShiftAmountTy(N0.getValueType()));
10536        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10537                                    XType, N0, ShCt);
10538        AddToWorkList(Shift.getNode());
10539
10540        if (XType.bitsGT(AType)) {
10541          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10542          AddToWorkList(Shift.getNode());
10543        }
10544
10545        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10546      }
10547
10548      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10549                                  XType, N0,
10550                                  DAG.getConstant(XType.getSizeInBits()-1,
10551                                         getShiftAmountTy(N0.getValueType())));
10552      AddToWorkList(Shift.getNode());
10553
10554      if (XType.bitsGT(AType)) {
10555        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10556        AddToWorkList(Shift.getNode());
10557      }
10558
10559      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10560    }
10561  }
10562
10563  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10564  // where y is has a single bit set.
10565  // A plaintext description would be, we can turn the SELECT_CC into an AND
10566  // when the condition can be materialized as an all-ones register.  Any
10567  // single bit-test can be materialized as an all-ones register with
10568  // shift-left and shift-right-arith.
10569  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10570      N0->getValueType(0) == VT &&
10571      N1C && N1C->isNullValue() &&
10572      N2C && N2C->isNullValue()) {
10573    SDValue AndLHS = N0->getOperand(0);
10574    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10575    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10576      // Shift the tested bit over the sign bit.
10577      APInt AndMask = ConstAndRHS->getAPIntValue();
10578      SDValue ShlAmt =
10579        DAG.getConstant(AndMask.countLeadingZeros(),
10580                        getShiftAmountTy(AndLHS.getValueType()));
10581      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10582
10583      // Now arithmetic right shift it all the way over, so the result is either
10584      // all-ones, or zero.
10585      SDValue ShrAmt =
10586        DAG.getConstant(AndMask.getBitWidth()-1,
10587                        getShiftAmountTy(Shl.getValueType()));
10588      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10589
10590      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10591    }
10592  }
10593
10594  // fold select C, 16, 0 -> shl C, 4
10595  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10596    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10597      TargetLowering::ZeroOrOneBooleanContent) {
10598
10599    // If the caller doesn't want us to simplify this into a zext of a compare,
10600    // don't do it.
10601    if (NotExtCompare && N2C->getAPIntValue() == 1)
10602      return SDValue();
10603
10604    // Get a SetCC of the condition
10605    // NOTE: Don't create a SETCC if it's not legal on this target.
10606    if (!LegalOperations ||
10607        TLI.isOperationLegal(ISD::SETCC,
10608          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10609      SDValue Temp, SCC;
10610      // cast from setcc result type to select result type
10611      if (LegalTypes) {
10612        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10613                            N0, N1, CC);
10614        if (N2.getValueType().bitsLT(SCC.getValueType()))
10615          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10616                                        N2.getValueType());
10617        else
10618          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10619                             N2.getValueType(), SCC);
10620      } else {
10621        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10622        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10623                           N2.getValueType(), SCC);
10624      }
10625
10626      AddToWorkList(SCC.getNode());
10627      AddToWorkList(Temp.getNode());
10628
10629      if (N2C->getAPIntValue() == 1)
10630        return Temp;
10631
10632      // shl setcc result by log2 n2c
10633      return DAG.getNode(
10634          ISD::SHL, DL, N2.getValueType(), Temp,
10635          DAG.getConstant(N2C->getAPIntValue().logBase2(),
10636                          getShiftAmountTy(Temp.getValueType())));
10637    }
10638  }
10639
10640  // Check to see if this is the equivalent of setcc
10641  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10642  // otherwise, go ahead with the folds.
10643  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10644    EVT XType = N0.getValueType();
10645    if (!LegalOperations ||
10646        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10647      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10648      if (Res.getValueType() != VT)
10649        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10650      return Res;
10651    }
10652
10653    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10654    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10655        (!LegalOperations ||
10656         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10657      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10658      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10659                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10660                                       getShiftAmountTy(Ctlz.getValueType())));
10661    }
10662    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10663    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10664      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10665                                  XType, DAG.getConstant(0, XType), N0);
10666      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10667      return DAG.getNode(ISD::SRL, DL, XType,
10668                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10669                         DAG.getConstant(XType.getSizeInBits()-1,
10670                                         getShiftAmountTy(XType)));
10671    }
10672    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10673    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10674      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10675                                 DAG.getConstant(XType.getSizeInBits()-1,
10676                                         getShiftAmountTy(N0.getValueType())));
10677      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10678    }
10679  }
10680
10681  // Check to see if this is an integer abs.
10682  // select_cc setg[te] X,  0,  X, -X ->
10683  // select_cc setgt    X, -1,  X, -X ->
10684  // select_cc setl[te] X,  0, -X,  X ->
10685  // select_cc setlt    X,  1, -X,  X ->
10686  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10687  if (N1C) {
10688    ConstantSDNode *SubC = NULL;
10689    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10690         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10691        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10692      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10693    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10694              (N1C->isOne() && CC == ISD::SETLT)) &&
10695             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10696      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10697
10698    EVT XType = N0.getValueType();
10699    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10700      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10701                                  N0,
10702                                  DAG.getConstant(XType.getSizeInBits()-1,
10703                                         getShiftAmountTy(N0.getValueType())));
10704      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10705                                XType, N0, Shift);
10706      AddToWorkList(Shift.getNode());
10707      AddToWorkList(Add.getNode());
10708      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10709    }
10710  }
10711
10712  return SDValue();
10713}
10714
10715/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10716SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10717                                   SDValue N1, ISD::CondCode Cond,
10718                                   SDLoc DL, bool foldBooleans) {
10719  TargetLowering::DAGCombinerInfo
10720    DagCombineInfo(DAG, Level, false, this);
10721  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10722}
10723
10724/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10725/// return a DAG expression to select that will generate the same value by
10726/// multiplying by a magic number.  See:
10727/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10728SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10729  std::vector<SDNode*> Built;
10730  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10731
10732  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10733       ii != ee; ++ii)
10734    AddToWorkList(*ii);
10735  return S;
10736}
10737
10738/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10739/// return a DAG expression to select that will generate the same value by
10740/// multiplying by a magic number.  See:
10741/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10742SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10743  std::vector<SDNode*> Built;
10744  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10745
10746  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10747       ii != ee; ++ii)
10748    AddToWorkList(*ii);
10749  return S;
10750}
10751
10752/// FindBaseOffset - Return true if base is a frame index, which is known not
10753// to alias with anything but itself.  Provides base object and offset as
10754// results.
10755static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10756                           const GlobalValue *&GV, const void *&CV) {
10757  // Assume it is a primitive operation.
10758  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10759
10760  // If it's an adding a simple constant then integrate the offset.
10761  if (Base.getOpcode() == ISD::ADD) {
10762    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10763      Base = Base.getOperand(0);
10764      Offset += C->getZExtValue();
10765    }
10766  }
10767
10768  // Return the underlying GlobalValue, and update the Offset.  Return false
10769  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10770  // by multiple nodes with different offsets.
10771  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10772    GV = G->getGlobal();
10773    Offset += G->getOffset();
10774    return false;
10775  }
10776
10777  // Return the underlying Constant value, and update the Offset.  Return false
10778  // for ConstantSDNodes since the same constant pool entry may be represented
10779  // by multiple nodes with different offsets.
10780  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10781    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10782                                         : (const void *)C->getConstVal();
10783    Offset += C->getOffset();
10784    return false;
10785  }
10786  // If it's any of the following then it can't alias with anything but itself.
10787  return isa<FrameIndexSDNode>(Base);
10788}
10789
10790/// isAlias - Return true if there is any possibility that the two addresses
10791/// overlap.
10792bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
10793                          const Value *SrcValue1, int SrcValueOffset1,
10794                          unsigned SrcValueAlign1,
10795                          const MDNode *TBAAInfo1,
10796                          SDValue Ptr2, int64_t Size2, bool IsVolatile2,
10797                          const Value *SrcValue2, int SrcValueOffset2,
10798                          unsigned SrcValueAlign2,
10799                          const MDNode *TBAAInfo2) const {
10800  // If they are the same then they must be aliases.
10801  if (Ptr1 == Ptr2) return true;
10802
10803  // If they are both volatile then they cannot be reordered.
10804  if (IsVolatile1 && IsVolatile2) return true;
10805
10806  // Gather base node and offset information.
10807  SDValue Base1, Base2;
10808  int64_t Offset1, Offset2;
10809  const GlobalValue *GV1, *GV2;
10810  const void *CV1, *CV2;
10811  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10812  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10813
10814  // If they have a same base address then check to see if they overlap.
10815  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10816    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10817
10818  // It is possible for different frame indices to alias each other, mostly
10819  // when tail call optimization reuses return address slots for arguments.
10820  // To catch this case, look up the actual index of frame indices to compute
10821  // the real alias relationship.
10822  if (isFrameIndex1 && isFrameIndex2) {
10823    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10824    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10825    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10826    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10827  }
10828
10829  // Otherwise, if we know what the bases are, and they aren't identical, then
10830  // we know they cannot alias.
10831  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10832    return false;
10833
10834  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10835  // compared to the size and offset of the access, we may be able to prove they
10836  // do not alias.  This check is conservative for now to catch cases created by
10837  // splitting vector types.
10838  if ((SrcValueAlign1 == SrcValueAlign2) &&
10839      (SrcValueOffset1 != SrcValueOffset2) &&
10840      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10841    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10842    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10843
10844    // There is no overlap between these relatively aligned accesses of similar
10845    // size, return no alias.
10846    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10847      return false;
10848  }
10849
10850  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10851    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10852  if (UseAA && SrcValue1 && SrcValue2) {
10853    // Use alias analysis information.
10854    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10855    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10856    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10857    AliasAnalysis::AliasResult AAResult =
10858      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10859               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10860    if (AAResult == AliasAnalysis::NoAlias)
10861      return false;
10862  }
10863
10864  // Otherwise we have to assume they alias.
10865  return true;
10866}
10867
10868bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10869  SDValue Ptr0, Ptr1;
10870  int64_t Size0, Size1;
10871  bool IsVolatile0, IsVolatile1;
10872  const Value *SrcValue0, *SrcValue1;
10873  int SrcValueOffset0, SrcValueOffset1;
10874  unsigned SrcValueAlign0, SrcValueAlign1;
10875  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10876  FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10877                SrcValueAlign0, SrcTBAAInfo0);
10878  FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10879                SrcValueAlign1, SrcTBAAInfo1);
10880  return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10881                 SrcValueAlign0, SrcTBAAInfo0,
10882                 Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10883                 SrcValueAlign1, SrcTBAAInfo1);
10884}
10885
10886/// FindAliasInfo - Extracts the relevant alias information from the memory
10887/// node.  Returns true if the operand was a nonvolatile load.
10888bool DAGCombiner::FindAliasInfo(SDNode *N,
10889                                SDValue &Ptr, int64_t &Size, bool &IsVolatile,
10890                                const Value *&SrcValue,
10891                                int &SrcValueOffset,
10892                                unsigned &SrcValueAlign,
10893                                const MDNode *&TBAAInfo) const {
10894  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10895
10896  Ptr = LS->getBasePtr();
10897  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10898  IsVolatile = LS->isVolatile();
10899  SrcValue = LS->getSrcValue();
10900  SrcValueOffset = LS->getSrcValueOffset();
10901  SrcValueAlign = LS->getOriginalAlignment();
10902  TBAAInfo = LS->getTBAAInfo();
10903  return isa<LoadSDNode>(LS) && !IsVolatile;
10904}
10905
10906/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10907/// looking for aliasing nodes and adding them to the Aliases vector.
10908void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10909                                   SmallVectorImpl<SDValue> &Aliases) {
10910  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10911  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10912
10913  // Get alias information for node.
10914  SDValue Ptr;
10915  int64_t Size;
10916  bool IsVolatile;
10917  const Value *SrcValue;
10918  int SrcValueOffset;
10919  unsigned SrcValueAlign;
10920  const MDNode *SrcTBAAInfo;
10921  bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
10922                              SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
10923
10924  // Starting off.
10925  Chains.push_back(OriginalChain);
10926  unsigned Depth = 0;
10927
10928  // Look at each chain and determine if it is an alias.  If so, add it to the
10929  // aliases list.  If not, then continue up the chain looking for the next
10930  // candidate.
10931  while (!Chains.empty()) {
10932    SDValue Chain = Chains.back();
10933    Chains.pop_back();
10934
10935    // For TokenFactor nodes, look at each operand and only continue up the
10936    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10937    // find more and revert to original chain since the xform is unlikely to be
10938    // profitable.
10939    //
10940    // FIXME: The depth check could be made to return the last non-aliasing
10941    // chain we found before we hit a tokenfactor rather than the original
10942    // chain.
10943    if (Depth > 6 || Aliases.size() == 2) {
10944      Aliases.clear();
10945      Aliases.push_back(OriginalChain);
10946      break;
10947    }
10948
10949    // Don't bother if we've been before.
10950    if (!Visited.insert(Chain.getNode()))
10951      continue;
10952
10953    switch (Chain.getOpcode()) {
10954    case ISD::EntryToken:
10955      // Entry token is ideal chain operand, but handled in FindBetterChain.
10956      break;
10957
10958    case ISD::LOAD:
10959    case ISD::STORE: {
10960      // Get alias information for Chain.
10961      SDValue OpPtr;
10962      int64_t OpSize;
10963      bool OpIsVolatile;
10964      const Value *OpSrcValue;
10965      int OpSrcValueOffset;
10966      unsigned OpSrcValueAlign;
10967      const MDNode *OpSrcTBAAInfo;
10968      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10969                                    OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10970                                    OpSrcValueAlign,
10971                                    OpSrcTBAAInfo);
10972
10973      // If chain is alias then stop here.
10974      if (!(IsLoad && IsOpLoad) &&
10975          isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
10976                  SrcValueAlign, SrcTBAAInfo,
10977                  OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
10978                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10979        Aliases.push_back(Chain);
10980      } else {
10981        // Look further up the chain.
10982        Chains.push_back(Chain.getOperand(0));
10983        ++Depth;
10984      }
10985      break;
10986    }
10987
10988    case ISD::TokenFactor:
10989      // We have to check each of the operands of the token factor for "small"
10990      // token factors, so we queue them up.  Adding the operands to the queue
10991      // (stack) in reverse order maintains the original order and increases the
10992      // likelihood that getNode will find a matching token factor (CSE.)
10993      if (Chain.getNumOperands() > 16) {
10994        Aliases.push_back(Chain);
10995        break;
10996      }
10997      for (unsigned n = Chain.getNumOperands(); n;)
10998        Chains.push_back(Chain.getOperand(--n));
10999      ++Depth;
11000      break;
11001
11002    default:
11003      // For all other instructions we will just have to take what we can get.
11004      Aliases.push_back(Chain);
11005      break;
11006    }
11007  }
11008}
11009
11010/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11011/// for a better chain (aliasing node.)
11012SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11013  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11014
11015  // Accumulate all the aliases to this node.
11016  GatherAllAliases(N, OldChain, Aliases);
11017
11018  // If no operands then chain to entry token.
11019  if (Aliases.size() == 0)
11020    return DAG.getEntryNode();
11021
11022  // If a single operand then chain to it.  We don't need to revisit it.
11023  if (Aliases.size() == 1)
11024    return Aliases[0];
11025
11026  // Construct a custom tailored token factor.
11027  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11028                     &Aliases[0], Aliases.size());
11029}
11030
11031// SelectionDAG::Combine - This is the entry point for the file.
11032//
11033void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11034                           CodeGenOpt::Level OptLevel) {
11035  /// run - This is the main entry point to this class.
11036  ///
11037  DAGCombiner(*this, AA, OptLevel).Run(Level);
11038}
11039