DAGCombiner.cpp revision adf38913f815a2a453d4783e88b1528473b4740d
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/DataLayout.h"
27#include "llvm/Target/TargetLowering.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetOptions.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include <algorithm>
38using namespace llvm;
39
40STATISTIC(NodesCombined   , "Number of dag nodes combined");
41STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
42STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
43STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
44STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
45
46namespace {
47  static cl::opt<bool>
48    CombinerAA("combiner-alias-analysis", cl::Hidden,
49               cl::desc("Turn on alias analysis during testing"));
50
51  static cl::opt<bool>
52    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
53               cl::desc("Include global information in alias analysis"));
54
55//------------------------------ DAGCombiner ---------------------------------//
56
57  class DAGCombiner {
58    SelectionDAG &DAG;
59    const TargetLowering &TLI;
60    CombineLevel Level;
61    CodeGenOpt::Level OptLevel;
62    bool LegalOperations;
63    bool LegalTypes;
64
65    // Worklist of all of the nodes that need to be simplified.
66    //
67    // This has the semantics that when adding to the worklist,
68    // the item added must be next to be processed. It should
69    // also only appear once. The naive approach to this takes
70    // linear time.
71    //
72    // To reduce the insert/remove time to logarithmic, we use
73    // a set and a vector to maintain our worklist.
74    //
75    // The set contains the items on the worklist, but does not
76    // maintain the order they should be visited.
77    //
78    // The vector maintains the order nodes should be visited, but may
79    // contain duplicate or removed nodes. When choosing a node to
80    // visit, we pop off the order stack until we find an item that is
81    // also in the contents set. All operations are O(log N).
82    SmallPtrSet<SDNode*, 64> WorkListContents;
83    SmallVector<SDNode*, 64> WorkListOrder;
84
85    // AA - Used for DAG load/store alias analysis.
86    AliasAnalysis &AA;
87
88    /// AddUsersToWorkList - When an instruction is simplified, add all users of
89    /// the instruction to the work lists because they might get more simplified
90    /// now.
91    ///
92    void AddUsersToWorkList(SDNode *N) {
93      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
94           UI != UE; ++UI)
95        AddToWorkList(*UI);
96    }
97
98    /// visit - call the node-specific routine that knows how to fold each
99    /// particular type of node.
100    SDValue visit(SDNode *N);
101
102  public:
103    /// AddToWorkList - Add to the work list making sure its instance is at the
104    /// back (next to be processed.)
105    void AddToWorkList(SDNode *N) {
106      WorkListContents.insert(N);
107      WorkListOrder.push_back(N);
108    }
109
110    /// removeFromWorkList - remove all instances of N from the worklist.
111    ///
112    void removeFromWorkList(SDNode *N) {
113      WorkListContents.erase(N);
114    }
115
116    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
117                      bool AddTo = true);
118
119    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
120      return CombineTo(N, &Res, 1, AddTo);
121    }
122
123    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
124                      bool AddTo = true) {
125      SDValue To[] = { Res0, Res1 };
126      return CombineTo(N, To, 2, AddTo);
127    }
128
129    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
130
131  private:
132
133    /// SimplifyDemandedBits - Check the specified integer node value to see if
134    /// it can be simplified or if things it uses can be simplified by bit
135    /// propagation.  If so, return true.
136    bool SimplifyDemandedBits(SDValue Op) {
137      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
138      APInt Demanded = APInt::getAllOnesValue(BitWidth);
139      return SimplifyDemandedBits(Op, Demanded);
140    }
141
142    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
143
144    bool CombineToPreIndexedLoadStore(SDNode *N);
145    bool CombineToPostIndexedLoadStore(SDNode *N);
146
147    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
148    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
149    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
150    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue PromoteIntBinOp(SDValue Op);
152    SDValue PromoteIntShiftOp(SDValue Op);
153    SDValue PromoteExtend(SDValue Op);
154    bool PromoteLoad(SDValue Op);
155
156    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
157                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
158                         ISD::NodeType ExtType);
159
160    /// combine - call the node-specific routine that knows how to fold each
161    /// particular type of node. If that doesn't do anything, try the
162    /// target-specific DAG combines.
163    SDValue combine(SDNode *N);
164
165    // Visitation implementation - Implement dag node combining for different
166    // node types.  The semantics are as follows:
167    // Return Value:
168    //   SDValue.getNode() == 0 - No change was made
169    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
170    //   otherwise              - N should be replaced by the returned Operand.
171    //
172    SDValue visitTokenFactor(SDNode *N);
173    SDValue visitMERGE_VALUES(SDNode *N);
174    SDValue visitADD(SDNode *N);
175    SDValue visitSUB(SDNode *N);
176    SDValue visitADDC(SDNode *N);
177    SDValue visitSUBC(SDNode *N);
178    SDValue visitADDE(SDNode *N);
179    SDValue visitSUBE(SDNode *N);
180    SDValue visitMUL(SDNode *N);
181    SDValue visitSDIV(SDNode *N);
182    SDValue visitUDIV(SDNode *N);
183    SDValue visitSREM(SDNode *N);
184    SDValue visitUREM(SDNode *N);
185    SDValue visitMULHU(SDNode *N);
186    SDValue visitMULHS(SDNode *N);
187    SDValue visitSMUL_LOHI(SDNode *N);
188    SDValue visitUMUL_LOHI(SDNode *N);
189    SDValue visitSMULO(SDNode *N);
190    SDValue visitUMULO(SDNode *N);
191    SDValue visitSDIVREM(SDNode *N);
192    SDValue visitUDIVREM(SDNode *N);
193    SDValue visitAND(SDNode *N);
194    SDValue visitOR(SDNode *N);
195    SDValue visitXOR(SDNode *N);
196    SDValue SimplifyVBinOp(SDNode *N);
197    SDValue SimplifyVUnaryOp(SDNode *N);
198    SDValue visitSHL(SDNode *N);
199    SDValue visitSRA(SDNode *N);
200    SDValue visitSRL(SDNode *N);
201    SDValue visitCTLZ(SDNode *N);
202    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
203    SDValue visitCTTZ(SDNode *N);
204    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
205    SDValue visitCTPOP(SDNode *N);
206    SDValue visitSELECT(SDNode *N);
207    SDValue visitSELECT_CC(SDNode *N);
208    SDValue visitSETCC(SDNode *N);
209    SDValue visitSIGN_EXTEND(SDNode *N);
210    SDValue visitZERO_EXTEND(SDNode *N);
211    SDValue visitANY_EXTEND(SDNode *N);
212    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
213    SDValue visitTRUNCATE(SDNode *N);
214    SDValue visitBITCAST(SDNode *N);
215    SDValue visitBUILD_PAIR(SDNode *N);
216    SDValue visitFADD(SDNode *N);
217    SDValue visitFSUB(SDNode *N);
218    SDValue visitFMUL(SDNode *N);
219    SDValue visitFMA(SDNode *N);
220    SDValue visitFDIV(SDNode *N);
221    SDValue visitFREM(SDNode *N);
222    SDValue visitFCOPYSIGN(SDNode *N);
223    SDValue visitSINT_TO_FP(SDNode *N);
224    SDValue visitUINT_TO_FP(SDNode *N);
225    SDValue visitFP_TO_SINT(SDNode *N);
226    SDValue visitFP_TO_UINT(SDNode *N);
227    SDValue visitFP_ROUND(SDNode *N);
228    SDValue visitFP_ROUND_INREG(SDNode *N);
229    SDValue visitFP_EXTEND(SDNode *N);
230    SDValue visitFNEG(SDNode *N);
231    SDValue visitFABS(SDNode *N);
232    SDValue visitFCEIL(SDNode *N);
233    SDValue visitFTRUNC(SDNode *N);
234    SDValue visitFFLOOR(SDNode *N);
235    SDValue visitBRCOND(SDNode *N);
236    SDValue visitBR_CC(SDNode *N);
237    SDValue visitLOAD(SDNode *N);
238    SDValue visitSTORE(SDNode *N);
239    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
240    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
241    SDValue visitBUILD_VECTOR(SDNode *N);
242    SDValue visitCONCAT_VECTORS(SDNode *N);
243    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
244    SDValue visitVECTOR_SHUFFLE(SDNode *N);
245    SDValue visitMEMBARRIER(SDNode *N);
246
247    SDValue XformToShuffleWithZero(SDNode *N);
248    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
249
250    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
251
252    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
253    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
254    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
255    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
256                             SDValue N3, ISD::CondCode CC,
257                             bool NotExtCompare = false);
258    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
259                          DebugLoc DL, bool foldBooleans = true);
260    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
261                                         unsigned HiOp);
262    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
263    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
264    SDValue BuildSDIV(SDNode *N);
265    SDValue BuildUDIV(SDNode *N);
266    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
267                               bool DemandHighBits = true);
268    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
269    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
270    SDValue ReduceLoadWidth(SDNode *N);
271    SDValue ReduceLoadOpStoreWidth(SDNode *N);
272    SDValue TransformFPLoadStorePair(SDNode *N);
273    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
274
275    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
276
277    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
278    /// looking for aliasing nodes and adding them to the Aliases vector.
279    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
280                          SmallVector<SDValue, 8> &Aliases);
281
282    /// isAlias - Return true if there is any possibility that the two addresses
283    /// overlap.
284    bool isAlias(SDValue Ptr1, int64_t Size1,
285                 const Value *SrcValue1, int SrcValueOffset1,
286                 unsigned SrcValueAlign1,
287                 const MDNode *TBAAInfo1,
288                 SDValue Ptr2, int64_t Size2,
289                 const Value *SrcValue2, int SrcValueOffset2,
290                 unsigned SrcValueAlign2,
291                 const MDNode *TBAAInfo2) const;
292
293    /// FindAliasInfo - Extracts the relevant alias information from the memory
294    /// node.  Returns true if the operand was a load.
295    bool FindAliasInfo(SDNode *N,
296                       SDValue &Ptr, int64_t &Size,
297                       const Value *&SrcValue, int &SrcValueOffset,
298                       unsigned &SrcValueAlignment,
299                       const MDNode *&TBAAInfo) const;
300
301    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
302    /// looking for a better chain (aliasing node.)
303    SDValue FindBetterChain(SDNode *N, SDValue Chain);
304
305    /// Merge consecutive store operations into a wide store.
306    /// This optimization uses wide integers or vectors when possible.
307    /// \return True if some memory operations were changed.
308    bool MergeConsecutiveStores(StoreSDNode *N);
309
310  public:
311    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
312      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
313        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
314
315    /// Run - runs the dag combiner on all nodes in the work list
316    void Run(CombineLevel AtLevel);
317
318    SelectionDAG &getDAG() const { return DAG; }
319
320    /// getShiftAmountTy - Returns a type large enough to hold any valid
321    /// shift amount - before type legalization these can be huge.
322    EVT getShiftAmountTy(EVT LHSTy) {
323      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
324    }
325
326    /// isTypeLegal - This method returns true if we are running before type
327    /// legalization or if the specified VT is legal.
328    bool isTypeLegal(const EVT &VT) {
329      if (!LegalTypes) return true;
330      return TLI.isTypeLegal(VT);
331    }
332  };
333}
334
335
336namespace {
337/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
338/// nodes from the worklist.
339class WorkListRemover : public SelectionDAG::DAGUpdateListener {
340  DAGCombiner &DC;
341public:
342  explicit WorkListRemover(DAGCombiner &dc)
343    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
344
345  virtual void NodeDeleted(SDNode *N, SDNode *E) {
346    DC.removeFromWorkList(N);
347  }
348};
349}
350
351//===----------------------------------------------------------------------===//
352//  TargetLowering::DAGCombinerInfo implementation
353//===----------------------------------------------------------------------===//
354
355void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
356  ((DAGCombiner*)DC)->AddToWorkList(N);
357}
358
359void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
360  ((DAGCombiner*)DC)->removeFromWorkList(N);
361}
362
363SDValue TargetLowering::DAGCombinerInfo::
364CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
365  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
366}
367
368SDValue TargetLowering::DAGCombinerInfo::
369CombineTo(SDNode *N, SDValue Res, bool AddTo) {
370  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
371}
372
373
374SDValue TargetLowering::DAGCombinerInfo::
375CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
376  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
377}
378
379void TargetLowering::DAGCombinerInfo::
380CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
381  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
382}
383
384//===----------------------------------------------------------------------===//
385// Helper Functions
386//===----------------------------------------------------------------------===//
387
388/// isNegatibleForFree - Return 1 if we can compute the negated form of the
389/// specified expression for the same cost as the expression itself, or 2 if we
390/// can compute the negated form more cheaply than the expression itself.
391static char isNegatibleForFree(SDValue Op, bool LegalOperations,
392                               const TargetLowering &TLI,
393                               const TargetOptions *Options,
394                               unsigned Depth = 0) {
395  // No compile time optimizations on this type.
396  if (Op.getValueType() == MVT::ppcf128)
397    return 0;
398
399  // fneg is removable even if it has multiple uses.
400  if (Op.getOpcode() == ISD::FNEG) return 2;
401
402  // Don't allow anything with multiple uses.
403  if (!Op.hasOneUse()) return 0;
404
405  // Don't recurse exponentially.
406  if (Depth > 6) return 0;
407
408  switch (Op.getOpcode()) {
409  default: return false;
410  case ISD::ConstantFP:
411    // Don't invert constant FP values after legalize.  The negated constant
412    // isn't necessarily legal.
413    return LegalOperations ? 0 : 1;
414  case ISD::FADD:
415    // FIXME: determine better conditions for this xform.
416    if (!Options->UnsafeFPMath) return 0;
417
418    // After operation legalization, it might not be legal to create new FSUBs.
419    if (LegalOperations &&
420        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
421      return 0;
422
423    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
424    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
425                                    Options, Depth + 1))
426      return V;
427    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
428    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
429                              Depth + 1);
430  case ISD::FSUB:
431    // We can't turn -(A-B) into B-A when we honor signed zeros.
432    if (!Options->UnsafeFPMath) return 0;
433
434    // fold (fneg (fsub A, B)) -> (fsub B, A)
435    return 1;
436
437  case ISD::FMUL:
438  case ISD::FDIV:
439    if (Options->HonorSignDependentRoundingFPMath()) return 0;
440
441    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
442    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
443                                    Options, Depth + 1))
444      return V;
445
446    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
447                              Depth + 1);
448
449  case ISD::FP_EXTEND:
450  case ISD::FP_ROUND:
451  case ISD::FSIN:
452    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
453                              Depth + 1);
454  }
455}
456
457/// GetNegatedExpression - If isNegatibleForFree returns true, this function
458/// returns the newly negated expression.
459static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
460                                    bool LegalOperations, unsigned Depth = 0) {
461  // fneg is removable even if it has multiple uses.
462  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
463
464  // Don't allow anything with multiple uses.
465  assert(Op.hasOneUse() && "Unknown reuse!");
466
467  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
468  switch (Op.getOpcode()) {
469  default: llvm_unreachable("Unknown code");
470  case ISD::ConstantFP: {
471    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
472    V.changeSign();
473    return DAG.getConstantFP(V, Op.getValueType());
474  }
475  case ISD::FADD:
476    // FIXME: determine better conditions for this xform.
477    assert(DAG.getTarget().Options.UnsafeFPMath);
478
479    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
480    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
481                           DAG.getTargetLoweringInfo(),
482                           &DAG.getTarget().Options, Depth+1))
483      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
484                         GetNegatedExpression(Op.getOperand(0), DAG,
485                                              LegalOperations, Depth+1),
486                         Op.getOperand(1));
487    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
488    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
489                       GetNegatedExpression(Op.getOperand(1), DAG,
490                                            LegalOperations, Depth+1),
491                       Op.getOperand(0));
492  case ISD::FSUB:
493    // We can't turn -(A-B) into B-A when we honor signed zeros.
494    assert(DAG.getTarget().Options.UnsafeFPMath);
495
496    // fold (fneg (fsub 0, B)) -> B
497    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
498      if (N0CFP->getValueAPF().isZero())
499        return Op.getOperand(1);
500
501    // fold (fneg (fsub A, B)) -> (fsub B, A)
502    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
503                       Op.getOperand(1), Op.getOperand(0));
504
505  case ISD::FMUL:
506  case ISD::FDIV:
507    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
508
509    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
510    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
511                           DAG.getTargetLoweringInfo(),
512                           &DAG.getTarget().Options, Depth+1))
513      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
514                         GetNegatedExpression(Op.getOperand(0), DAG,
515                                              LegalOperations, Depth+1),
516                         Op.getOperand(1));
517
518    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
519    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
520                       Op.getOperand(0),
521                       GetNegatedExpression(Op.getOperand(1), DAG,
522                                            LegalOperations, Depth+1));
523
524  case ISD::FP_EXTEND:
525  case ISD::FSIN:
526    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
527                       GetNegatedExpression(Op.getOperand(0), DAG,
528                                            LegalOperations, Depth+1));
529  case ISD::FP_ROUND:
530      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
531                         GetNegatedExpression(Op.getOperand(0), DAG,
532                                              LegalOperations, Depth+1),
533                         Op.getOperand(1));
534  }
535}
536
537
538// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
539// that selects between the values 1 and 0, making it equivalent to a setcc.
540// Also, set the incoming LHS, RHS, and CC references to the appropriate
541// nodes based on the type of node we are checking.  This simplifies life a
542// bit for the callers.
543static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
544                              SDValue &CC) {
545  if (N.getOpcode() == ISD::SETCC) {
546    LHS = N.getOperand(0);
547    RHS = N.getOperand(1);
548    CC  = N.getOperand(2);
549    return true;
550  }
551  if (N.getOpcode() == ISD::SELECT_CC &&
552      N.getOperand(2).getOpcode() == ISD::Constant &&
553      N.getOperand(3).getOpcode() == ISD::Constant &&
554      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
555      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
556    LHS = N.getOperand(0);
557    RHS = N.getOperand(1);
558    CC  = N.getOperand(4);
559    return true;
560  }
561  return false;
562}
563
564// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
565// one use.  If this is true, it allows the users to invert the operation for
566// free when it is profitable to do so.
567static bool isOneUseSetCC(SDValue N) {
568  SDValue N0, N1, N2;
569  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
570    return true;
571  return false;
572}
573
574SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
575                                    SDValue N0, SDValue N1) {
576  EVT VT = N0.getValueType();
577  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
578    if (isa<ConstantSDNode>(N1)) {
579      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
580      SDValue OpNode =
581        DAG.FoldConstantArithmetic(Opc, VT,
582                                   cast<ConstantSDNode>(N0.getOperand(1)),
583                                   cast<ConstantSDNode>(N1));
584      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
585    }
586    if (N0.hasOneUse()) {
587      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
588      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
589                                   N0.getOperand(0), N1);
590      AddToWorkList(OpNode.getNode());
591      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
592    }
593  }
594
595  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
596    if (isa<ConstantSDNode>(N0)) {
597      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
598      SDValue OpNode =
599        DAG.FoldConstantArithmetic(Opc, VT,
600                                   cast<ConstantSDNode>(N1.getOperand(1)),
601                                   cast<ConstantSDNode>(N0));
602      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
603    }
604    if (N1.hasOneUse()) {
605      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
606      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
607                                   N1.getOperand(0), N0);
608      AddToWorkList(OpNode.getNode());
609      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
610    }
611  }
612
613  return SDValue();
614}
615
616SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
617                               bool AddTo) {
618  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
619  ++NodesCombined;
620  DEBUG(dbgs() << "\nReplacing.1 ";
621        N->dump(&DAG);
622        dbgs() << "\nWith: ";
623        To[0].getNode()->dump(&DAG);
624        dbgs() << " and " << NumTo-1 << " other values\n";
625        for (unsigned i = 0, e = NumTo; i != e; ++i)
626          assert((!To[i].getNode() ||
627                  N->getValueType(i) == To[i].getValueType()) &&
628                 "Cannot combine value to value of different type!"));
629  WorkListRemover DeadNodes(*this);
630  DAG.ReplaceAllUsesWith(N, To);
631  if (AddTo) {
632    // Push the new nodes and any users onto the worklist
633    for (unsigned i = 0, e = NumTo; i != e; ++i) {
634      if (To[i].getNode()) {
635        AddToWorkList(To[i].getNode());
636        AddUsersToWorkList(To[i].getNode());
637      }
638    }
639  }
640
641  // Finally, if the node is now dead, remove it from the graph.  The node
642  // may not be dead if the replacement process recursively simplified to
643  // something else needing this node.
644  if (N->use_empty()) {
645    // Nodes can be reintroduced into the worklist.  Make sure we do not
646    // process a node that has been replaced.
647    removeFromWorkList(N);
648
649    // Finally, since the node is now dead, remove it from the graph.
650    DAG.DeleteNode(N);
651  }
652  return SDValue(N, 0);
653}
654
655void DAGCombiner::
656CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
657  // Replace all uses.  If any nodes become isomorphic to other nodes and
658  // are deleted, make sure to remove them from our worklist.
659  WorkListRemover DeadNodes(*this);
660  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
661
662  // Push the new node and any (possibly new) users onto the worklist.
663  AddToWorkList(TLO.New.getNode());
664  AddUsersToWorkList(TLO.New.getNode());
665
666  // Finally, if the node is now dead, remove it from the graph.  The node
667  // may not be dead if the replacement process recursively simplified to
668  // something else needing this node.
669  if (TLO.Old.getNode()->use_empty()) {
670    removeFromWorkList(TLO.Old.getNode());
671
672    // If the operands of this node are only used by the node, they will now
673    // be dead.  Make sure to visit them first to delete dead nodes early.
674    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
675      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
676        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
677
678    DAG.DeleteNode(TLO.Old.getNode());
679  }
680}
681
682/// SimplifyDemandedBits - Check the specified integer node value to see if
683/// it can be simplified or if things it uses can be simplified by bit
684/// propagation.  If so, return true.
685bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
686  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
687  APInt KnownZero, KnownOne;
688  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
689    return false;
690
691  // Revisit the node.
692  AddToWorkList(Op.getNode());
693
694  // Replace the old value with the new one.
695  ++NodesCombined;
696  DEBUG(dbgs() << "\nReplacing.2 ";
697        TLO.Old.getNode()->dump(&DAG);
698        dbgs() << "\nWith: ";
699        TLO.New.getNode()->dump(&DAG);
700        dbgs() << '\n');
701
702  CommitTargetLoweringOpt(TLO);
703  return true;
704}
705
706void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
707  DebugLoc dl = Load->getDebugLoc();
708  EVT VT = Load->getValueType(0);
709  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
710
711  DEBUG(dbgs() << "\nReplacing.9 ";
712        Load->dump(&DAG);
713        dbgs() << "\nWith: ";
714        Trunc.getNode()->dump(&DAG);
715        dbgs() << '\n');
716  WorkListRemover DeadNodes(*this);
717  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
718  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
719  removeFromWorkList(Load);
720  DAG.DeleteNode(Load);
721  AddToWorkList(Trunc.getNode());
722}
723
724SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
725  Replace = false;
726  DebugLoc dl = Op.getDebugLoc();
727  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
728    EVT MemVT = LD->getMemoryVT();
729    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
730      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
731                                                  : ISD::EXTLOAD)
732      : LD->getExtensionType();
733    Replace = true;
734    return DAG.getExtLoad(ExtType, dl, PVT,
735                          LD->getChain(), LD->getBasePtr(),
736                          LD->getPointerInfo(),
737                          MemVT, LD->isVolatile(),
738                          LD->isNonTemporal(), LD->getAlignment());
739  }
740
741  unsigned Opc = Op.getOpcode();
742  switch (Opc) {
743  default: break;
744  case ISD::AssertSext:
745    return DAG.getNode(ISD::AssertSext, dl, PVT,
746                       SExtPromoteOperand(Op.getOperand(0), PVT),
747                       Op.getOperand(1));
748  case ISD::AssertZext:
749    return DAG.getNode(ISD::AssertZext, dl, PVT,
750                       ZExtPromoteOperand(Op.getOperand(0), PVT),
751                       Op.getOperand(1));
752  case ISD::Constant: {
753    unsigned ExtOpc =
754      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
755    return DAG.getNode(ExtOpc, dl, PVT, Op);
756  }
757  }
758
759  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
760    return SDValue();
761  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
762}
763
764SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
765  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
766    return SDValue();
767  EVT OldVT = Op.getValueType();
768  DebugLoc dl = Op.getDebugLoc();
769  bool Replace = false;
770  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
771  if (NewOp.getNode() == 0)
772    return SDValue();
773  AddToWorkList(NewOp.getNode());
774
775  if (Replace)
776    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
777  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
778                     DAG.getValueType(OldVT));
779}
780
781SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
782  EVT OldVT = Op.getValueType();
783  DebugLoc dl = Op.getDebugLoc();
784  bool Replace = false;
785  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
786  if (NewOp.getNode() == 0)
787    return SDValue();
788  AddToWorkList(NewOp.getNode());
789
790  if (Replace)
791    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
792  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
793}
794
795/// PromoteIntBinOp - Promote the specified integer binary operation if the
796/// target indicates it is beneficial. e.g. On x86, it's usually better to
797/// promote i16 operations to i32 since i16 instructions are longer.
798SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
799  if (!LegalOperations)
800    return SDValue();
801
802  EVT VT = Op.getValueType();
803  if (VT.isVector() || !VT.isInteger())
804    return SDValue();
805
806  // If operation type is 'undesirable', e.g. i16 on x86, consider
807  // promoting it.
808  unsigned Opc = Op.getOpcode();
809  if (TLI.isTypeDesirableForOp(Opc, VT))
810    return SDValue();
811
812  EVT PVT = VT;
813  // Consult target whether it is a good idea to promote this operation and
814  // what's the right type to promote it to.
815  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
816    assert(PVT != VT && "Don't know what type to promote to!");
817
818    bool Replace0 = false;
819    SDValue N0 = Op.getOperand(0);
820    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
821    if (NN0.getNode() == 0)
822      return SDValue();
823
824    bool Replace1 = false;
825    SDValue N1 = Op.getOperand(1);
826    SDValue NN1;
827    if (N0 == N1)
828      NN1 = NN0;
829    else {
830      NN1 = PromoteOperand(N1, PVT, Replace1);
831      if (NN1.getNode() == 0)
832        return SDValue();
833    }
834
835    AddToWorkList(NN0.getNode());
836    if (NN1.getNode())
837      AddToWorkList(NN1.getNode());
838
839    if (Replace0)
840      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
841    if (Replace1)
842      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
843
844    DEBUG(dbgs() << "\nPromoting ";
845          Op.getNode()->dump(&DAG));
846    DebugLoc dl = Op.getDebugLoc();
847    return DAG.getNode(ISD::TRUNCATE, dl, VT,
848                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
849  }
850  return SDValue();
851}
852
853/// PromoteIntShiftOp - Promote the specified integer shift operation if the
854/// target indicates it is beneficial. e.g. On x86, it's usually better to
855/// promote i16 operations to i32 since i16 instructions are longer.
856SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
857  if (!LegalOperations)
858    return SDValue();
859
860  EVT VT = Op.getValueType();
861  if (VT.isVector() || !VT.isInteger())
862    return SDValue();
863
864  // If operation type is 'undesirable', e.g. i16 on x86, consider
865  // promoting it.
866  unsigned Opc = Op.getOpcode();
867  if (TLI.isTypeDesirableForOp(Opc, VT))
868    return SDValue();
869
870  EVT PVT = VT;
871  // Consult target whether it is a good idea to promote this operation and
872  // what's the right type to promote it to.
873  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
874    assert(PVT != VT && "Don't know what type to promote to!");
875
876    bool Replace = false;
877    SDValue N0 = Op.getOperand(0);
878    if (Opc == ISD::SRA)
879      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
880    else if (Opc == ISD::SRL)
881      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
882    else
883      N0 = PromoteOperand(N0, PVT, Replace);
884    if (N0.getNode() == 0)
885      return SDValue();
886
887    AddToWorkList(N0.getNode());
888    if (Replace)
889      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
890
891    DEBUG(dbgs() << "\nPromoting ";
892          Op.getNode()->dump(&DAG));
893    DebugLoc dl = Op.getDebugLoc();
894    return DAG.getNode(ISD::TRUNCATE, dl, VT,
895                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
896  }
897  return SDValue();
898}
899
900SDValue DAGCombiner::PromoteExtend(SDValue Op) {
901  if (!LegalOperations)
902    return SDValue();
903
904  EVT VT = Op.getValueType();
905  if (VT.isVector() || !VT.isInteger())
906    return SDValue();
907
908  // If operation type is 'undesirable', e.g. i16 on x86, consider
909  // promoting it.
910  unsigned Opc = Op.getOpcode();
911  if (TLI.isTypeDesirableForOp(Opc, VT))
912    return SDValue();
913
914  EVT PVT = VT;
915  // Consult target whether it is a good idea to promote this operation and
916  // what's the right type to promote it to.
917  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
918    assert(PVT != VT && "Don't know what type to promote to!");
919    // fold (aext (aext x)) -> (aext x)
920    // fold (aext (zext x)) -> (zext x)
921    // fold (aext (sext x)) -> (sext x)
922    DEBUG(dbgs() << "\nPromoting ";
923          Op.getNode()->dump(&DAG));
924    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
925  }
926  return SDValue();
927}
928
929bool DAGCombiner::PromoteLoad(SDValue Op) {
930  if (!LegalOperations)
931    return false;
932
933  EVT VT = Op.getValueType();
934  if (VT.isVector() || !VT.isInteger())
935    return false;
936
937  // If operation type is 'undesirable', e.g. i16 on x86, consider
938  // promoting it.
939  unsigned Opc = Op.getOpcode();
940  if (TLI.isTypeDesirableForOp(Opc, VT))
941    return false;
942
943  EVT PVT = VT;
944  // Consult target whether it is a good idea to promote this operation and
945  // what's the right type to promote it to.
946  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
947    assert(PVT != VT && "Don't know what type to promote to!");
948
949    DebugLoc dl = Op.getDebugLoc();
950    SDNode *N = Op.getNode();
951    LoadSDNode *LD = cast<LoadSDNode>(N);
952    EVT MemVT = LD->getMemoryVT();
953    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
954      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
955                                                  : ISD::EXTLOAD)
956      : LD->getExtensionType();
957    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
958                                   LD->getChain(), LD->getBasePtr(),
959                                   LD->getPointerInfo(),
960                                   MemVT, LD->isVolatile(),
961                                   LD->isNonTemporal(), LD->getAlignment());
962    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
963
964    DEBUG(dbgs() << "\nPromoting ";
965          N->dump(&DAG);
966          dbgs() << "\nTo: ";
967          Result.getNode()->dump(&DAG);
968          dbgs() << '\n');
969    WorkListRemover DeadNodes(*this);
970    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
971    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
972    removeFromWorkList(N);
973    DAG.DeleteNode(N);
974    AddToWorkList(Result.getNode());
975    return true;
976  }
977  return false;
978}
979
980
981//===----------------------------------------------------------------------===//
982//  Main DAG Combiner implementation
983//===----------------------------------------------------------------------===//
984
985void DAGCombiner::Run(CombineLevel AtLevel) {
986  // set the instance variables, so that the various visit routines may use it.
987  Level = AtLevel;
988  LegalOperations = Level >= AfterLegalizeVectorOps;
989  LegalTypes = Level >= AfterLegalizeTypes;
990
991  // Add all the dag nodes to the worklist.
992  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
993       E = DAG.allnodes_end(); I != E; ++I)
994    AddToWorkList(I);
995
996  // Create a dummy node (which is not added to allnodes), that adds a reference
997  // to the root node, preventing it from being deleted, and tracking any
998  // changes of the root.
999  HandleSDNode Dummy(DAG.getRoot());
1000
1001  // The root of the dag may dangle to deleted nodes until the dag combiner is
1002  // done.  Set it to null to avoid confusion.
1003  DAG.setRoot(SDValue());
1004
1005  // while the worklist isn't empty, find a node and
1006  // try and combine it.
1007  while (!WorkListContents.empty()) {
1008    SDNode *N;
1009    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1010    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1011    // worklist *should* contain, and check the node we want to visit is should
1012    // actually be visited.
1013    do {
1014      N = WorkListOrder.pop_back_val();
1015    } while (!WorkListContents.erase(N));
1016
1017    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1018    // N is deleted from the DAG, since they too may now be dead or may have a
1019    // reduced number of uses, allowing other xforms.
1020    if (N->use_empty() && N != &Dummy) {
1021      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1022        AddToWorkList(N->getOperand(i).getNode());
1023
1024      DAG.DeleteNode(N);
1025      continue;
1026    }
1027
1028    SDValue RV = combine(N);
1029
1030    if (RV.getNode() == 0)
1031      continue;
1032
1033    ++NodesCombined;
1034
1035    // If we get back the same node we passed in, rather than a new node or
1036    // zero, we know that the node must have defined multiple values and
1037    // CombineTo was used.  Since CombineTo takes care of the worklist
1038    // mechanics for us, we have no work to do in this case.
1039    if (RV.getNode() == N)
1040      continue;
1041
1042    assert(N->getOpcode() != ISD::DELETED_NODE &&
1043           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1044           "Node was deleted but visit returned new node!");
1045
1046    DEBUG(dbgs() << "\nReplacing.3 ";
1047          N->dump(&DAG);
1048          dbgs() << "\nWith: ";
1049          RV.getNode()->dump(&DAG);
1050          dbgs() << '\n');
1051
1052    // Transfer debug value.
1053    DAG.TransferDbgValues(SDValue(N, 0), RV);
1054    WorkListRemover DeadNodes(*this);
1055    if (N->getNumValues() == RV.getNode()->getNumValues())
1056      DAG.ReplaceAllUsesWith(N, RV.getNode());
1057    else {
1058      assert(N->getValueType(0) == RV.getValueType() &&
1059             N->getNumValues() == 1 && "Type mismatch");
1060      SDValue OpV = RV;
1061      DAG.ReplaceAllUsesWith(N, &OpV);
1062    }
1063
1064    // Push the new node and any users onto the worklist
1065    AddToWorkList(RV.getNode());
1066    AddUsersToWorkList(RV.getNode());
1067
1068    // Add any uses of the old node to the worklist in case this node is the
1069    // last one that uses them.  They may become dead after this node is
1070    // deleted.
1071    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1072      AddToWorkList(N->getOperand(i).getNode());
1073
1074    // Finally, if the node is now dead, remove it from the graph.  The node
1075    // may not be dead if the replacement process recursively simplified to
1076    // something else needing this node.
1077    if (N->use_empty()) {
1078      // Nodes can be reintroduced into the worklist.  Make sure we do not
1079      // process a node that has been replaced.
1080      removeFromWorkList(N);
1081
1082      // Finally, since the node is now dead, remove it from the graph.
1083      DAG.DeleteNode(N);
1084    }
1085  }
1086
1087  // If the root changed (e.g. it was a dead load, update the root).
1088  DAG.setRoot(Dummy.getValue());
1089  DAG.RemoveDeadNodes();
1090}
1091
1092SDValue DAGCombiner::visit(SDNode *N) {
1093  switch (N->getOpcode()) {
1094  default: break;
1095  case ISD::TokenFactor:        return visitTokenFactor(N);
1096  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1097  case ISD::ADD:                return visitADD(N);
1098  case ISD::SUB:                return visitSUB(N);
1099  case ISD::ADDC:               return visitADDC(N);
1100  case ISD::SUBC:               return visitSUBC(N);
1101  case ISD::ADDE:               return visitADDE(N);
1102  case ISD::SUBE:               return visitSUBE(N);
1103  case ISD::MUL:                return visitMUL(N);
1104  case ISD::SDIV:               return visitSDIV(N);
1105  case ISD::UDIV:               return visitUDIV(N);
1106  case ISD::SREM:               return visitSREM(N);
1107  case ISD::UREM:               return visitUREM(N);
1108  case ISD::MULHU:              return visitMULHU(N);
1109  case ISD::MULHS:              return visitMULHS(N);
1110  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1111  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1112  case ISD::SMULO:              return visitSMULO(N);
1113  case ISD::UMULO:              return visitUMULO(N);
1114  case ISD::SDIVREM:            return visitSDIVREM(N);
1115  case ISD::UDIVREM:            return visitUDIVREM(N);
1116  case ISD::AND:                return visitAND(N);
1117  case ISD::OR:                 return visitOR(N);
1118  case ISD::XOR:                return visitXOR(N);
1119  case ISD::SHL:                return visitSHL(N);
1120  case ISD::SRA:                return visitSRA(N);
1121  case ISD::SRL:                return visitSRL(N);
1122  case ISD::CTLZ:               return visitCTLZ(N);
1123  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1124  case ISD::CTTZ:               return visitCTTZ(N);
1125  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1126  case ISD::CTPOP:              return visitCTPOP(N);
1127  case ISD::SELECT:             return visitSELECT(N);
1128  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1129  case ISD::SETCC:              return visitSETCC(N);
1130  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1131  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1132  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1133  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1134  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1135  case ISD::BITCAST:            return visitBITCAST(N);
1136  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1137  case ISD::FADD:               return visitFADD(N);
1138  case ISD::FSUB:               return visitFSUB(N);
1139  case ISD::FMUL:               return visitFMUL(N);
1140  case ISD::FMA:                return visitFMA(N);
1141  case ISD::FDIV:               return visitFDIV(N);
1142  case ISD::FREM:               return visitFREM(N);
1143  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1144  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1145  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1146  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1147  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1148  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1149  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1150  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1151  case ISD::FNEG:               return visitFNEG(N);
1152  case ISD::FABS:               return visitFABS(N);
1153  case ISD::FFLOOR:             return visitFFLOOR(N);
1154  case ISD::FCEIL:              return visitFCEIL(N);
1155  case ISD::FTRUNC:             return visitFTRUNC(N);
1156  case ISD::BRCOND:             return visitBRCOND(N);
1157  case ISD::BR_CC:              return visitBR_CC(N);
1158  case ISD::LOAD:               return visitLOAD(N);
1159  case ISD::STORE:              return visitSTORE(N);
1160  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1161  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1162  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1163  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1164  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1165  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1166  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1167  }
1168  return SDValue();
1169}
1170
1171SDValue DAGCombiner::combine(SDNode *N) {
1172  SDValue RV = visit(N);
1173
1174  // If nothing happened, try a target-specific DAG combine.
1175  if (RV.getNode() == 0) {
1176    assert(N->getOpcode() != ISD::DELETED_NODE &&
1177           "Node was deleted but visit returned NULL!");
1178
1179    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1180        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1181
1182      // Expose the DAG combiner to the target combiner impls.
1183      TargetLowering::DAGCombinerInfo
1184        DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
1185
1186      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1187    }
1188  }
1189
1190  // If nothing happened still, try promoting the operation.
1191  if (RV.getNode() == 0) {
1192    switch (N->getOpcode()) {
1193    default: break;
1194    case ISD::ADD:
1195    case ISD::SUB:
1196    case ISD::MUL:
1197    case ISD::AND:
1198    case ISD::OR:
1199    case ISD::XOR:
1200      RV = PromoteIntBinOp(SDValue(N, 0));
1201      break;
1202    case ISD::SHL:
1203    case ISD::SRA:
1204    case ISD::SRL:
1205      RV = PromoteIntShiftOp(SDValue(N, 0));
1206      break;
1207    case ISD::SIGN_EXTEND:
1208    case ISD::ZERO_EXTEND:
1209    case ISD::ANY_EXTEND:
1210      RV = PromoteExtend(SDValue(N, 0));
1211      break;
1212    case ISD::LOAD:
1213      if (PromoteLoad(SDValue(N, 0)))
1214        RV = SDValue(N, 0);
1215      break;
1216    }
1217  }
1218
1219  // If N is a commutative binary node, try commuting it to enable more
1220  // sdisel CSE.
1221  if (RV.getNode() == 0 &&
1222      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1223      N->getNumValues() == 1) {
1224    SDValue N0 = N->getOperand(0);
1225    SDValue N1 = N->getOperand(1);
1226
1227    // Constant operands are canonicalized to RHS.
1228    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1229      SDValue Ops[] = { N1, N0 };
1230      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1231                                            Ops, 2);
1232      if (CSENode)
1233        return SDValue(CSENode, 0);
1234    }
1235  }
1236
1237  return RV;
1238}
1239
1240/// getInputChainForNode - Given a node, return its input chain if it has one,
1241/// otherwise return a null sd operand.
1242static SDValue getInputChainForNode(SDNode *N) {
1243  if (unsigned NumOps = N->getNumOperands()) {
1244    if (N->getOperand(0).getValueType() == MVT::Other)
1245      return N->getOperand(0);
1246    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1247      return N->getOperand(NumOps-1);
1248    for (unsigned i = 1; i < NumOps-1; ++i)
1249      if (N->getOperand(i).getValueType() == MVT::Other)
1250        return N->getOperand(i);
1251  }
1252  return SDValue();
1253}
1254
1255SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1256  // If N has two operands, where one has an input chain equal to the other,
1257  // the 'other' chain is redundant.
1258  if (N->getNumOperands() == 2) {
1259    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1260      return N->getOperand(0);
1261    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1262      return N->getOperand(1);
1263  }
1264
1265  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1266  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1267  SmallPtrSet<SDNode*, 16> SeenOps;
1268  bool Changed = false;             // If we should replace this token factor.
1269
1270  // Start out with this token factor.
1271  TFs.push_back(N);
1272
1273  // Iterate through token factors.  The TFs grows when new token factors are
1274  // encountered.
1275  for (unsigned i = 0; i < TFs.size(); ++i) {
1276    SDNode *TF = TFs[i];
1277
1278    // Check each of the operands.
1279    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1280      SDValue Op = TF->getOperand(i);
1281
1282      switch (Op.getOpcode()) {
1283      case ISD::EntryToken:
1284        // Entry tokens don't need to be added to the list. They are
1285        // rededundant.
1286        Changed = true;
1287        break;
1288
1289      case ISD::TokenFactor:
1290        if (Op.hasOneUse() &&
1291            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1292          // Queue up for processing.
1293          TFs.push_back(Op.getNode());
1294          // Clean up in case the token factor is removed.
1295          AddToWorkList(Op.getNode());
1296          Changed = true;
1297          break;
1298        }
1299        // Fall thru
1300
1301      default:
1302        // Only add if it isn't already in the list.
1303        if (SeenOps.insert(Op.getNode()))
1304          Ops.push_back(Op);
1305        else
1306          Changed = true;
1307        break;
1308      }
1309    }
1310  }
1311
1312  SDValue Result;
1313
1314  // If we've change things around then replace token factor.
1315  if (Changed) {
1316    if (Ops.empty()) {
1317      // The entry token is the only possible outcome.
1318      Result = DAG.getEntryNode();
1319    } else {
1320      // New and improved token factor.
1321      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1322                           MVT::Other, &Ops[0], Ops.size());
1323    }
1324
1325    // Don't add users to work list.
1326    return CombineTo(N, Result, false);
1327  }
1328
1329  return Result;
1330}
1331
1332/// MERGE_VALUES can always be eliminated.
1333SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1334  WorkListRemover DeadNodes(*this);
1335  // Replacing results may cause a different MERGE_VALUES to suddenly
1336  // be CSE'd with N, and carry its uses with it. Iterate until no
1337  // uses remain, to ensure that the node can be safely deleted.
1338  // First add the users of this node to the work list so that they
1339  // can be tried again once they have new operands.
1340  AddUsersToWorkList(N);
1341  do {
1342    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1343      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1344  } while (!N->use_empty());
1345  removeFromWorkList(N);
1346  DAG.DeleteNode(N);
1347  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1348}
1349
1350static
1351SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1352                              SelectionDAG &DAG) {
1353  EVT VT = N0.getValueType();
1354  SDValue N00 = N0.getOperand(0);
1355  SDValue N01 = N0.getOperand(1);
1356  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1357
1358  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1359      isa<ConstantSDNode>(N00.getOperand(1))) {
1360    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1361    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1362                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1363                                 N00.getOperand(0), N01),
1364                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1365                                 N00.getOperand(1), N01));
1366    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1367  }
1368
1369  return SDValue();
1370}
1371
1372SDValue DAGCombiner::visitADD(SDNode *N) {
1373  SDValue N0 = N->getOperand(0);
1374  SDValue N1 = N->getOperand(1);
1375  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1376  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1377  EVT VT = N0.getValueType();
1378
1379  // fold vector ops
1380  if (VT.isVector()) {
1381    SDValue FoldedVOp = SimplifyVBinOp(N);
1382    if (FoldedVOp.getNode()) return FoldedVOp;
1383  }
1384
1385  // fold (add x, undef) -> undef
1386  if (N0.getOpcode() == ISD::UNDEF)
1387    return N0;
1388  if (N1.getOpcode() == ISD::UNDEF)
1389    return N1;
1390  // fold (add c1, c2) -> c1+c2
1391  if (N0C && N1C)
1392    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1393  // canonicalize constant to RHS
1394  if (N0C && !N1C)
1395    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1396  // fold (add x, 0) -> x
1397  if (N1C && N1C->isNullValue())
1398    return N0;
1399  // fold (add Sym, c) -> Sym+c
1400  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1401    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1402        GA->getOpcode() == ISD::GlobalAddress)
1403      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1404                                  GA->getOffset() +
1405                                    (uint64_t)N1C->getSExtValue());
1406  // fold ((c1-A)+c2) -> (c1+c2)-A
1407  if (N1C && N0.getOpcode() == ISD::SUB)
1408    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1409      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1410                         DAG.getConstant(N1C->getAPIntValue()+
1411                                         N0C->getAPIntValue(), VT),
1412                         N0.getOperand(1));
1413  // reassociate add
1414  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1415  if (RADD.getNode() != 0)
1416    return RADD;
1417  // fold ((0-A) + B) -> B-A
1418  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1419      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1420    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1421  // fold (A + (0-B)) -> A-B
1422  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1423      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1424    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1425  // fold (A+(B-A)) -> B
1426  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1427    return N1.getOperand(0);
1428  // fold ((B-A)+A) -> B
1429  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1430    return N0.getOperand(0);
1431  // fold (A+(B-(A+C))) to (B-C)
1432  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1433      N0 == N1.getOperand(1).getOperand(0))
1434    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1435                       N1.getOperand(1).getOperand(1));
1436  // fold (A+(B-(C+A))) to (B-C)
1437  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1438      N0 == N1.getOperand(1).getOperand(1))
1439    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1440                       N1.getOperand(1).getOperand(0));
1441  // fold (A+((B-A)+or-C)) to (B+or-C)
1442  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1443      N1.getOperand(0).getOpcode() == ISD::SUB &&
1444      N0 == N1.getOperand(0).getOperand(1))
1445    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1446                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1447
1448  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1449  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1450    SDValue N00 = N0.getOperand(0);
1451    SDValue N01 = N0.getOperand(1);
1452    SDValue N10 = N1.getOperand(0);
1453    SDValue N11 = N1.getOperand(1);
1454
1455    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1456      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1457                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1458                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1459  }
1460
1461  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1462    return SDValue(N, 0);
1463
1464  // fold (a+b) -> (a|b) iff a and b share no bits.
1465  if (VT.isInteger() && !VT.isVector()) {
1466    APInt LHSZero, LHSOne;
1467    APInt RHSZero, RHSOne;
1468    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1469
1470    if (LHSZero.getBoolValue()) {
1471      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1472
1473      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1474      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1475      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1476        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1477    }
1478  }
1479
1480  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1481  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1482    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1483    if (Result.getNode()) return Result;
1484  }
1485  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1486    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1487    if (Result.getNode()) return Result;
1488  }
1489
1490  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1491  if (N1.getOpcode() == ISD::SHL &&
1492      N1.getOperand(0).getOpcode() == ISD::SUB)
1493    if (ConstantSDNode *C =
1494          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1495      if (C->getAPIntValue() == 0)
1496        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1497                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1498                                       N1.getOperand(0).getOperand(1),
1499                                       N1.getOperand(1)));
1500  if (N0.getOpcode() == ISD::SHL &&
1501      N0.getOperand(0).getOpcode() == ISD::SUB)
1502    if (ConstantSDNode *C =
1503          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1504      if (C->getAPIntValue() == 0)
1505        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1506                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1507                                       N0.getOperand(0).getOperand(1),
1508                                       N0.getOperand(1)));
1509
1510  if (N1.getOpcode() == ISD::AND) {
1511    SDValue AndOp0 = N1.getOperand(0);
1512    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1513    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1514    unsigned DestBits = VT.getScalarType().getSizeInBits();
1515
1516    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1517    // and similar xforms where the inner op is either ~0 or 0.
1518    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1519      DebugLoc DL = N->getDebugLoc();
1520      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1521    }
1522  }
1523
1524  // add (sext i1), X -> sub X, (zext i1)
1525  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1526      N0.getOperand(0).getValueType() == MVT::i1 &&
1527      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1528    DebugLoc DL = N->getDebugLoc();
1529    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1530    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1531  }
1532
1533  return SDValue();
1534}
1535
1536SDValue DAGCombiner::visitADDC(SDNode *N) {
1537  SDValue N0 = N->getOperand(0);
1538  SDValue N1 = N->getOperand(1);
1539  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1540  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1541  EVT VT = N0.getValueType();
1542
1543  // If the flag result is dead, turn this into an ADD.
1544  if (!N->hasAnyUseOfValue(1))
1545    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1546                     DAG.getNode(ISD::CARRY_FALSE,
1547                                 N->getDebugLoc(), MVT::Glue));
1548
1549  // canonicalize constant to RHS.
1550  if (N0C && !N1C)
1551    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1552
1553  // fold (addc x, 0) -> x + no carry out
1554  if (N1C && N1C->isNullValue())
1555    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1556                                        N->getDebugLoc(), MVT::Glue));
1557
1558  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1559  APInt LHSZero, LHSOne;
1560  APInt RHSZero, RHSOne;
1561  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1562
1563  if (LHSZero.getBoolValue()) {
1564    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1565
1566    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1567    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1568    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1569      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1570                       DAG.getNode(ISD::CARRY_FALSE,
1571                                   N->getDebugLoc(), MVT::Glue));
1572  }
1573
1574  return SDValue();
1575}
1576
1577SDValue DAGCombiner::visitADDE(SDNode *N) {
1578  SDValue N0 = N->getOperand(0);
1579  SDValue N1 = N->getOperand(1);
1580  SDValue CarryIn = N->getOperand(2);
1581  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1582  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1583
1584  // canonicalize constant to RHS
1585  if (N0C && !N1C)
1586    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1587                       N1, N0, CarryIn);
1588
1589  // fold (adde x, y, false) -> (addc x, y)
1590  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1591    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1592
1593  return SDValue();
1594}
1595
1596// Since it may not be valid to emit a fold to zero for vector initializers
1597// check if we can before folding.
1598static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1599                             SelectionDAG &DAG, bool LegalOperations) {
1600  if (!VT.isVector()) {
1601    return DAG.getConstant(0, VT);
1602  }
1603  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1604    // Produce a vector of zeros.
1605    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1606    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1607    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1608      &Ops[0], Ops.size());
1609  }
1610  return SDValue();
1611}
1612
1613SDValue DAGCombiner::visitSUB(SDNode *N) {
1614  SDValue N0 = N->getOperand(0);
1615  SDValue N1 = N->getOperand(1);
1616  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1617  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1618  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1619    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1620  EVT VT = N0.getValueType();
1621
1622  // fold vector ops
1623  if (VT.isVector()) {
1624    SDValue FoldedVOp = SimplifyVBinOp(N);
1625    if (FoldedVOp.getNode()) return FoldedVOp;
1626  }
1627
1628  // fold (sub x, x) -> 0
1629  // FIXME: Refactor this and xor and other similar operations together.
1630  if (N0 == N1)
1631    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1632  // fold (sub c1, c2) -> c1-c2
1633  if (N0C && N1C)
1634    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1635  // fold (sub x, c) -> (add x, -c)
1636  if (N1C)
1637    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1638                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1639  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1640  if (N0C && N0C->isAllOnesValue())
1641    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1642  // fold A-(A-B) -> B
1643  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1644    return N1.getOperand(1);
1645  // fold (A+B)-A -> B
1646  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1647    return N0.getOperand(1);
1648  // fold (A+B)-B -> A
1649  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1650    return N0.getOperand(0);
1651  // fold C2-(A+C1) -> (C2-C1)-A
1652  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1653    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1654                                   VT);
1655    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1656                       N1.getOperand(0));
1657  }
1658  // fold ((A+(B+or-C))-B) -> A+or-C
1659  if (N0.getOpcode() == ISD::ADD &&
1660      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1661       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1662      N0.getOperand(1).getOperand(0) == N1)
1663    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1664                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1665  // fold ((A+(C+B))-B) -> A+C
1666  if (N0.getOpcode() == ISD::ADD &&
1667      N0.getOperand(1).getOpcode() == ISD::ADD &&
1668      N0.getOperand(1).getOperand(1) == N1)
1669    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1670                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1671  // fold ((A-(B-C))-C) -> A-B
1672  if (N0.getOpcode() == ISD::SUB &&
1673      N0.getOperand(1).getOpcode() == ISD::SUB &&
1674      N0.getOperand(1).getOperand(1) == N1)
1675    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1676                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1677
1678  // If either operand of a sub is undef, the result is undef
1679  if (N0.getOpcode() == ISD::UNDEF)
1680    return N0;
1681  if (N1.getOpcode() == ISD::UNDEF)
1682    return N1;
1683
1684  // If the relocation model supports it, consider symbol offsets.
1685  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1686    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1687      // fold (sub Sym, c) -> Sym-c
1688      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1689        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1690                                    GA->getOffset() -
1691                                      (uint64_t)N1C->getSExtValue());
1692      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1693      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1694        if (GA->getGlobal() == GB->getGlobal())
1695          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1696                                 VT);
1697    }
1698
1699  return SDValue();
1700}
1701
1702SDValue DAGCombiner::visitSUBC(SDNode *N) {
1703  SDValue N0 = N->getOperand(0);
1704  SDValue N1 = N->getOperand(1);
1705  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1706  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1707  EVT VT = N0.getValueType();
1708
1709  // If the flag result is dead, turn this into an SUB.
1710  if (!N->hasAnyUseOfValue(1))
1711    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1712                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1713                                 MVT::Glue));
1714
1715  // fold (subc x, x) -> 0 + no borrow
1716  if (N0 == N1)
1717    return CombineTo(N, DAG.getConstant(0, VT),
1718                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1719                                 MVT::Glue));
1720
1721  // fold (subc x, 0) -> x + no borrow
1722  if (N1C && N1C->isNullValue())
1723    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1724                                        MVT::Glue));
1725
1726  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1727  if (N0C && N0C->isAllOnesValue())
1728    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1729                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1730                                 MVT::Glue));
1731
1732  return SDValue();
1733}
1734
1735SDValue DAGCombiner::visitSUBE(SDNode *N) {
1736  SDValue N0 = N->getOperand(0);
1737  SDValue N1 = N->getOperand(1);
1738  SDValue CarryIn = N->getOperand(2);
1739
1740  // fold (sube x, y, false) -> (subc x, y)
1741  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1742    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitMUL(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1752  EVT VT = N0.getValueType();
1753
1754  // fold vector ops
1755  if (VT.isVector()) {
1756    SDValue FoldedVOp = SimplifyVBinOp(N);
1757    if (FoldedVOp.getNode()) return FoldedVOp;
1758  }
1759
1760  // fold (mul x, undef) -> 0
1761  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1762    return DAG.getConstant(0, VT);
1763  // fold (mul c1, c2) -> c1*c2
1764  if (N0C && N1C)
1765    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1766  // canonicalize constant to RHS
1767  if (N0C && !N1C)
1768    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1769  // fold (mul x, 0) -> 0
1770  if (N1C && N1C->isNullValue())
1771    return N1;
1772  // fold (mul x, -1) -> 0-x
1773  if (N1C && N1C->isAllOnesValue())
1774    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1775                       DAG.getConstant(0, VT), N0);
1776  // fold (mul x, (1 << c)) -> x << c
1777  if (N1C && N1C->getAPIntValue().isPowerOf2())
1778    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1779                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1780                                       getShiftAmountTy(N0.getValueType())));
1781  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1782  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1783    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1784    // FIXME: If the input is something that is easily negated (e.g. a
1785    // single-use add), we should put the negate there.
1786    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1787                       DAG.getConstant(0, VT),
1788                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1789                            DAG.getConstant(Log2Val,
1790                                      getShiftAmountTy(N0.getValueType()))));
1791  }
1792  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1793  if (N1C && N0.getOpcode() == ISD::SHL &&
1794      isa<ConstantSDNode>(N0.getOperand(1))) {
1795    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1796                             N1, N0.getOperand(1));
1797    AddToWorkList(C3.getNode());
1798    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1799                       N0.getOperand(0), C3);
1800  }
1801
1802  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1803  // use.
1804  {
1805    SDValue Sh(0,0), Y(0,0);
1806    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1807    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1808        N0.getNode()->hasOneUse()) {
1809      Sh = N0; Y = N1;
1810    } else if (N1.getOpcode() == ISD::SHL &&
1811               isa<ConstantSDNode>(N1.getOperand(1)) &&
1812               N1.getNode()->hasOneUse()) {
1813      Sh = N1; Y = N0;
1814    }
1815
1816    if (Sh.getNode()) {
1817      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1818                                Sh.getOperand(0), Y);
1819      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1820                         Mul, Sh.getOperand(1));
1821    }
1822  }
1823
1824  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1825  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1826      isa<ConstantSDNode>(N0.getOperand(1)))
1827    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1828                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1829                                   N0.getOperand(0), N1),
1830                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1831                                   N0.getOperand(1), N1));
1832
1833  // reassociate mul
1834  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1835  if (RMUL.getNode() != 0)
1836    return RMUL;
1837
1838  return SDValue();
1839}
1840
1841SDValue DAGCombiner::visitSDIV(SDNode *N) {
1842  SDValue N0 = N->getOperand(0);
1843  SDValue N1 = N->getOperand(1);
1844  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1845  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1846  EVT VT = N->getValueType(0);
1847
1848  // fold vector ops
1849  if (VT.isVector()) {
1850    SDValue FoldedVOp = SimplifyVBinOp(N);
1851    if (FoldedVOp.getNode()) return FoldedVOp;
1852  }
1853
1854  // fold (sdiv c1, c2) -> c1/c2
1855  if (N0C && N1C && !N1C->isNullValue())
1856    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1857  // fold (sdiv X, 1) -> X
1858  if (N1C && N1C->getAPIntValue() == 1LL)
1859    return N0;
1860  // fold (sdiv X, -1) -> 0-X
1861  if (N1C && N1C->isAllOnesValue())
1862    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1863                       DAG.getConstant(0, VT), N0);
1864  // If we know the sign bits of both operands are zero, strength reduce to a
1865  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1866  if (!VT.isVector()) {
1867    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1868      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1869                         N0, N1);
1870  }
1871  // fold (sdiv X, pow2) -> simple ops after legalize
1872  if (N1C && !N1C->isNullValue() &&
1873      (N1C->getAPIntValue().isPowerOf2() ||
1874       (-N1C->getAPIntValue()).isPowerOf2())) {
1875    // If dividing by powers of two is cheap, then don't perform the following
1876    // fold.
1877    if (TLI.isPow2DivCheap())
1878      return SDValue();
1879
1880    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1881
1882    // Splat the sign bit into the register
1883    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1884                              DAG.getConstant(VT.getSizeInBits()-1,
1885                                       getShiftAmountTy(N0.getValueType())));
1886    AddToWorkList(SGN.getNode());
1887
1888    // Add (N0 < 0) ? abs2 - 1 : 0;
1889    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1890                              DAG.getConstant(VT.getSizeInBits() - lg2,
1891                                       getShiftAmountTy(SGN.getValueType())));
1892    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1893    AddToWorkList(SRL.getNode());
1894    AddToWorkList(ADD.getNode());    // Divide by pow2
1895    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1896                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1897
1898    // If we're dividing by a positive value, we're done.  Otherwise, we must
1899    // negate the result.
1900    if (N1C->getAPIntValue().isNonNegative())
1901      return SRA;
1902
1903    AddToWorkList(SRA.getNode());
1904    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1905                       DAG.getConstant(0, VT), SRA);
1906  }
1907
1908  // if integer divide is expensive and we satisfy the requirements, emit an
1909  // alternate sequence.
1910  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1911    SDValue Op = BuildSDIV(N);
1912    if (Op.getNode()) return Op;
1913  }
1914
1915  // undef / X -> 0
1916  if (N0.getOpcode() == ISD::UNDEF)
1917    return DAG.getConstant(0, VT);
1918  // X / undef -> undef
1919  if (N1.getOpcode() == ISD::UNDEF)
1920    return N1;
1921
1922  return SDValue();
1923}
1924
1925SDValue DAGCombiner::visitUDIV(SDNode *N) {
1926  SDValue N0 = N->getOperand(0);
1927  SDValue N1 = N->getOperand(1);
1928  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1929  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1930  EVT VT = N->getValueType(0);
1931
1932  // fold vector ops
1933  if (VT.isVector()) {
1934    SDValue FoldedVOp = SimplifyVBinOp(N);
1935    if (FoldedVOp.getNode()) return FoldedVOp;
1936  }
1937
1938  // fold (udiv c1, c2) -> c1/c2
1939  if (N0C && N1C && !N1C->isNullValue())
1940    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1941  // fold (udiv x, (1 << c)) -> x >>u c
1942  if (N1C && N1C->getAPIntValue().isPowerOf2())
1943    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1944                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1945                                       getShiftAmountTy(N0.getValueType())));
1946  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1947  if (N1.getOpcode() == ISD::SHL) {
1948    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1949      if (SHC->getAPIntValue().isPowerOf2()) {
1950        EVT ADDVT = N1.getOperand(1).getValueType();
1951        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1952                                  N1.getOperand(1),
1953                                  DAG.getConstant(SHC->getAPIntValue()
1954                                                                  .logBase2(),
1955                                                  ADDVT));
1956        AddToWorkList(Add.getNode());
1957        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1958      }
1959    }
1960  }
1961  // fold (udiv x, c) -> alternate
1962  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1963    SDValue Op = BuildUDIV(N);
1964    if (Op.getNode()) return Op;
1965  }
1966
1967  // undef / X -> 0
1968  if (N0.getOpcode() == ISD::UNDEF)
1969    return DAG.getConstant(0, VT);
1970  // X / undef -> undef
1971  if (N1.getOpcode() == ISD::UNDEF)
1972    return N1;
1973
1974  return SDValue();
1975}
1976
1977SDValue DAGCombiner::visitSREM(SDNode *N) {
1978  SDValue N0 = N->getOperand(0);
1979  SDValue N1 = N->getOperand(1);
1980  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1981  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1982  EVT VT = N->getValueType(0);
1983
1984  // fold (srem c1, c2) -> c1%c2
1985  if (N0C && N1C && !N1C->isNullValue())
1986    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1987  // If we know the sign bits of both operands are zero, strength reduce to a
1988  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1989  if (!VT.isVector()) {
1990    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1991      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
1992  }
1993
1994  // If X/C can be simplified by the division-by-constant logic, lower
1995  // X%C to the equivalent of X-X/C*C.
1996  if (N1C && !N1C->isNullValue()) {
1997    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
1998    AddToWorkList(Div.getNode());
1999    SDValue OptimizedDiv = combine(Div.getNode());
2000    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2001      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2002                                OptimizedDiv, N1);
2003      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2004      AddToWorkList(Mul.getNode());
2005      return Sub;
2006    }
2007  }
2008
2009  // undef % X -> 0
2010  if (N0.getOpcode() == ISD::UNDEF)
2011    return DAG.getConstant(0, VT);
2012  // X % undef -> undef
2013  if (N1.getOpcode() == ISD::UNDEF)
2014    return N1;
2015
2016  return SDValue();
2017}
2018
2019SDValue DAGCombiner::visitUREM(SDNode *N) {
2020  SDValue N0 = N->getOperand(0);
2021  SDValue N1 = N->getOperand(1);
2022  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2023  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2024  EVT VT = N->getValueType(0);
2025
2026  // fold (urem c1, c2) -> c1%c2
2027  if (N0C && N1C && !N1C->isNullValue())
2028    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2029  // fold (urem x, pow2) -> (and x, pow2-1)
2030  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2031    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2032                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2033  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2034  if (N1.getOpcode() == ISD::SHL) {
2035    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2036      if (SHC->getAPIntValue().isPowerOf2()) {
2037        SDValue Add =
2038          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2039                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2040                                 VT));
2041        AddToWorkList(Add.getNode());
2042        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2043      }
2044    }
2045  }
2046
2047  // If X/C can be simplified by the division-by-constant logic, lower
2048  // X%C to the equivalent of X-X/C*C.
2049  if (N1C && !N1C->isNullValue()) {
2050    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2051    AddToWorkList(Div.getNode());
2052    SDValue OptimizedDiv = combine(Div.getNode());
2053    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2054      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2055                                OptimizedDiv, N1);
2056      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2057      AddToWorkList(Mul.getNode());
2058      return Sub;
2059    }
2060  }
2061
2062  // undef % X -> 0
2063  if (N0.getOpcode() == ISD::UNDEF)
2064    return DAG.getConstant(0, VT);
2065  // X % undef -> undef
2066  if (N1.getOpcode() == ISD::UNDEF)
2067    return N1;
2068
2069  return SDValue();
2070}
2071
2072SDValue DAGCombiner::visitMULHS(SDNode *N) {
2073  SDValue N0 = N->getOperand(0);
2074  SDValue N1 = N->getOperand(1);
2075  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2076  EVT VT = N->getValueType(0);
2077  DebugLoc DL = N->getDebugLoc();
2078
2079  // fold (mulhs x, 0) -> 0
2080  if (N1C && N1C->isNullValue())
2081    return N1;
2082  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2083  if (N1C && N1C->getAPIntValue() == 1)
2084    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2085                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2086                                       getShiftAmountTy(N0.getValueType())));
2087  // fold (mulhs x, undef) -> 0
2088  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2089    return DAG.getConstant(0, VT);
2090
2091  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2092  // plus a shift.
2093  if (VT.isSimple() && !VT.isVector()) {
2094    MVT Simple = VT.getSimpleVT();
2095    unsigned SimpleSize = Simple.getSizeInBits();
2096    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2097    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2098      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2099      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2100      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2101      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2102            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2103      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2104    }
2105  }
2106
2107  return SDValue();
2108}
2109
2110SDValue DAGCombiner::visitMULHU(SDNode *N) {
2111  SDValue N0 = N->getOperand(0);
2112  SDValue N1 = N->getOperand(1);
2113  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2114  EVT VT = N->getValueType(0);
2115  DebugLoc DL = N->getDebugLoc();
2116
2117  // fold (mulhu x, 0) -> 0
2118  if (N1C && N1C->isNullValue())
2119    return N1;
2120  // fold (mulhu x, 1) -> 0
2121  if (N1C && N1C->getAPIntValue() == 1)
2122    return DAG.getConstant(0, N0.getValueType());
2123  // fold (mulhu x, undef) -> 0
2124  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2125    return DAG.getConstant(0, VT);
2126
2127  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2128  // plus a shift.
2129  if (VT.isSimple() && !VT.isVector()) {
2130    MVT Simple = VT.getSimpleVT();
2131    unsigned SimpleSize = Simple.getSizeInBits();
2132    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2133    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2134      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2135      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2136      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2137      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2138            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2139      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2140    }
2141  }
2142
2143  return SDValue();
2144}
2145
2146/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2147/// compute two values. LoOp and HiOp give the opcodes for the two computations
2148/// that are being performed. Return true if a simplification was made.
2149///
2150SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2151                                                unsigned HiOp) {
2152  // If the high half is not needed, just compute the low half.
2153  bool HiExists = N->hasAnyUseOfValue(1);
2154  if (!HiExists &&
2155      (!LegalOperations ||
2156       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2157    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2158                              N->op_begin(), N->getNumOperands());
2159    return CombineTo(N, Res, Res);
2160  }
2161
2162  // If the low half is not needed, just compute the high half.
2163  bool LoExists = N->hasAnyUseOfValue(0);
2164  if (!LoExists &&
2165      (!LegalOperations ||
2166       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2167    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2168                              N->op_begin(), N->getNumOperands());
2169    return CombineTo(N, Res, Res);
2170  }
2171
2172  // If both halves are used, return as it is.
2173  if (LoExists && HiExists)
2174    return SDValue();
2175
2176  // If the two computed results can be simplified separately, separate them.
2177  if (LoExists) {
2178    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2179                             N->op_begin(), N->getNumOperands());
2180    AddToWorkList(Lo.getNode());
2181    SDValue LoOpt = combine(Lo.getNode());
2182    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2183        (!LegalOperations ||
2184         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2185      return CombineTo(N, LoOpt, LoOpt);
2186  }
2187
2188  if (HiExists) {
2189    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2190                             N->op_begin(), N->getNumOperands());
2191    AddToWorkList(Hi.getNode());
2192    SDValue HiOpt = combine(Hi.getNode());
2193    if (HiOpt.getNode() && HiOpt != Hi &&
2194        (!LegalOperations ||
2195         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2196      return CombineTo(N, HiOpt, HiOpt);
2197  }
2198
2199  return SDValue();
2200}
2201
2202SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2203  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2204  if (Res.getNode()) return Res;
2205
2206  EVT VT = N->getValueType(0);
2207  DebugLoc DL = N->getDebugLoc();
2208
2209  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2210  // plus a shift.
2211  if (VT.isSimple() && !VT.isVector()) {
2212    MVT Simple = VT.getSimpleVT();
2213    unsigned SimpleSize = Simple.getSizeInBits();
2214    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2215    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2216      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2217      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2218      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2219      // Compute the high part as N1.
2220      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2221            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2222      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2223      // Compute the low part as N0.
2224      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2225      return CombineTo(N, Lo, Hi);
2226    }
2227  }
2228
2229  return SDValue();
2230}
2231
2232SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2233  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2234  if (Res.getNode()) return Res;
2235
2236  EVT VT = N->getValueType(0);
2237  DebugLoc DL = N->getDebugLoc();
2238
2239  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2240  // plus a shift.
2241  if (VT.isSimple() && !VT.isVector()) {
2242    MVT Simple = VT.getSimpleVT();
2243    unsigned SimpleSize = Simple.getSizeInBits();
2244    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2245    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2246      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2247      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2248      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2249      // Compute the high part as N1.
2250      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2251            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2252      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2253      // Compute the low part as N0.
2254      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2255      return CombineTo(N, Lo, Hi);
2256    }
2257  }
2258
2259  return SDValue();
2260}
2261
2262SDValue DAGCombiner::visitSMULO(SDNode *N) {
2263  // (smulo x, 2) -> (saddo x, x)
2264  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2265    if (C2->getAPIntValue() == 2)
2266      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2267                         N->getOperand(0), N->getOperand(0));
2268
2269  return SDValue();
2270}
2271
2272SDValue DAGCombiner::visitUMULO(SDNode *N) {
2273  // (umulo x, 2) -> (uaddo x, x)
2274  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2275    if (C2->getAPIntValue() == 2)
2276      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2277                         N->getOperand(0), N->getOperand(0));
2278
2279  return SDValue();
2280}
2281
2282SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2283  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2284  if (Res.getNode()) return Res;
2285
2286  return SDValue();
2287}
2288
2289SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2290  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2291  if (Res.getNode()) return Res;
2292
2293  return SDValue();
2294}
2295
2296/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2297/// two operands of the same opcode, try to simplify it.
2298SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2299  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2300  EVT VT = N0.getValueType();
2301  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2302
2303  // Bail early if none of these transforms apply.
2304  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2305
2306  // For each of OP in AND/OR/XOR:
2307  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2308  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2309  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2310  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2311  //
2312  // do not sink logical op inside of a vector extend, since it may combine
2313  // into a vsetcc.
2314  EVT Op0VT = N0.getOperand(0).getValueType();
2315  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2316       N0.getOpcode() == ISD::SIGN_EXTEND ||
2317       // Avoid infinite looping with PromoteIntBinOp.
2318       (N0.getOpcode() == ISD::ANY_EXTEND &&
2319        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2320       (N0.getOpcode() == ISD::TRUNCATE &&
2321        (!TLI.isZExtFree(VT, Op0VT) ||
2322         !TLI.isTruncateFree(Op0VT, VT)) &&
2323        TLI.isTypeLegal(Op0VT))) &&
2324      !VT.isVector() &&
2325      Op0VT == N1.getOperand(0).getValueType() &&
2326      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2327    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2328                                 N0.getOperand(0).getValueType(),
2329                                 N0.getOperand(0), N1.getOperand(0));
2330    AddToWorkList(ORNode.getNode());
2331    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2332  }
2333
2334  // For each of OP in SHL/SRL/SRA/AND...
2335  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2336  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2337  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2338  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2339       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2340      N0.getOperand(1) == N1.getOperand(1)) {
2341    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2342                                 N0.getOperand(0).getValueType(),
2343                                 N0.getOperand(0), N1.getOperand(0));
2344    AddToWorkList(ORNode.getNode());
2345    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2346                       ORNode, N0.getOperand(1));
2347  }
2348
2349  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2350  // Only perform this optimization after type legalization and before
2351  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2352  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2353  // we don't want to undo this promotion.
2354  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2355  // on scalars.
2356  if ((N0.getOpcode() == ISD::BITCAST ||
2357       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2358      Level == AfterLegalizeTypes) {
2359    SDValue In0 = N0.getOperand(0);
2360    SDValue In1 = N1.getOperand(0);
2361    EVT In0Ty = In0.getValueType();
2362    EVT In1Ty = In1.getValueType();
2363    DebugLoc DL = N->getDebugLoc();
2364    // If both incoming values are integers, and the original types are the
2365    // same.
2366    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2367      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2368      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2369      AddToWorkList(Op.getNode());
2370      return BC;
2371    }
2372  }
2373
2374  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2375  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2376  // If both shuffles use the same mask, and both shuffle within a single
2377  // vector, then it is worthwhile to move the swizzle after the operation.
2378  // The type-legalizer generates this pattern when loading illegal
2379  // vector types from memory. In many cases this allows additional shuffle
2380  // optimizations.
2381  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2382      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2383      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2384    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2385    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2386
2387    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2388           "Inputs to shuffles are not the same type");
2389
2390    unsigned NumElts = VT.getVectorNumElements();
2391
2392    // Check that both shuffles use the same mask. The masks are known to be of
2393    // the same length because the result vector type is the same.
2394    bool SameMask = true;
2395    for (unsigned i = 0; i != NumElts; ++i) {
2396      int Idx0 = SVN0->getMaskElt(i);
2397      int Idx1 = SVN1->getMaskElt(i);
2398      if (Idx0 != Idx1) {
2399        SameMask = false;
2400        break;
2401      }
2402    }
2403
2404    if (SameMask) {
2405      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2406                               N0.getOperand(0), N1.getOperand(0));
2407      AddToWorkList(Op.getNode());
2408      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2409                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2410    }
2411  }
2412
2413  return SDValue();
2414}
2415
2416SDValue DAGCombiner::visitAND(SDNode *N) {
2417  SDValue N0 = N->getOperand(0);
2418  SDValue N1 = N->getOperand(1);
2419  SDValue LL, LR, RL, RR, CC0, CC1;
2420  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2421  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2422  EVT VT = N1.getValueType();
2423  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2424
2425  // fold vector ops
2426  if (VT.isVector()) {
2427    SDValue FoldedVOp = SimplifyVBinOp(N);
2428    if (FoldedVOp.getNode()) return FoldedVOp;
2429  }
2430
2431  // fold (and x, undef) -> 0
2432  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2433    return DAG.getConstant(0, VT);
2434  // fold (and c1, c2) -> c1&c2
2435  if (N0C && N1C)
2436    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2437  // canonicalize constant to RHS
2438  if (N0C && !N1C)
2439    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2440  // fold (and x, -1) -> x
2441  if (N1C && N1C->isAllOnesValue())
2442    return N0;
2443  // if (and x, c) is known to be zero, return 0
2444  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2445                                   APInt::getAllOnesValue(BitWidth)))
2446    return DAG.getConstant(0, VT);
2447  // reassociate and
2448  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2449  if (RAND.getNode() != 0)
2450    return RAND;
2451  // fold (and (or x, C), D) -> D if (C & D) == D
2452  if (N1C && N0.getOpcode() == ISD::OR)
2453    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2454      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2455        return N1;
2456  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2457  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2458    SDValue N0Op0 = N0.getOperand(0);
2459    APInt Mask = ~N1C->getAPIntValue();
2460    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2461    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2462      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2463                                 N0.getValueType(), N0Op0);
2464
2465      // Replace uses of the AND with uses of the Zero extend node.
2466      CombineTo(N, Zext);
2467
2468      // We actually want to replace all uses of the any_extend with the
2469      // zero_extend, to avoid duplicating things.  This will later cause this
2470      // AND to be folded.
2471      CombineTo(N0.getNode(), Zext);
2472      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2473    }
2474  }
2475  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2476  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2477  // already be zero by virtue of the width of the base type of the load.
2478  //
2479  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2480  // more cases.
2481  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2482       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2483      N0.getOpcode() == ISD::LOAD) {
2484    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2485                                         N0 : N0.getOperand(0) );
2486
2487    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2488    // This can be a pure constant or a vector splat, in which case we treat the
2489    // vector as a scalar and use the splat value.
2490    APInt Constant = APInt::getNullValue(1);
2491    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2492      Constant = C->getAPIntValue();
2493    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2494      APInt SplatValue, SplatUndef;
2495      unsigned SplatBitSize;
2496      bool HasAnyUndefs;
2497      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2498                                             SplatBitSize, HasAnyUndefs);
2499      if (IsSplat) {
2500        // Undef bits can contribute to a possible optimisation if set, so
2501        // set them.
2502        SplatValue |= SplatUndef;
2503
2504        // The splat value may be something like "0x00FFFFFF", which means 0 for
2505        // the first vector value and FF for the rest, repeating. We need a mask
2506        // that will apply equally to all members of the vector, so AND all the
2507        // lanes of the constant together.
2508        EVT VT = Vector->getValueType(0);
2509        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2510
2511        // If the splat value has been compressed to a bitlength lower
2512        // than the size of the vector lane, we need to re-expand it to
2513        // the lane size.
2514        if (BitWidth > SplatBitSize)
2515          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2516               SplatBitSize < BitWidth;
2517               SplatBitSize = SplatBitSize * 2)
2518            SplatValue |= SplatValue.shl(SplatBitSize);
2519
2520        Constant = APInt::getAllOnesValue(BitWidth);
2521        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2522          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2523      }
2524    }
2525
2526    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2527    // actually legal and isn't going to get expanded, else this is a false
2528    // optimisation.
2529    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2530                                                    Load->getMemoryVT());
2531
2532    // Resize the constant to the same size as the original memory access before
2533    // extension. If it is still the AllOnesValue then this AND is completely
2534    // unneeded.
2535    Constant =
2536      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2537
2538    bool B;
2539    switch (Load->getExtensionType()) {
2540    default: B = false; break;
2541    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2542    case ISD::ZEXTLOAD:
2543    case ISD::NON_EXTLOAD: B = true; break;
2544    }
2545
2546    if (B && Constant.isAllOnesValue()) {
2547      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2548      // preserve semantics once we get rid of the AND.
2549      SDValue NewLoad(Load, 0);
2550      if (Load->getExtensionType() == ISD::EXTLOAD) {
2551        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2552                              Load->getValueType(0), Load->getDebugLoc(),
2553                              Load->getChain(), Load->getBasePtr(),
2554                              Load->getOffset(), Load->getMemoryVT(),
2555                              Load->getMemOperand());
2556        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2557        if (Load->getNumValues() == 3) {
2558          // PRE/POST_INC loads have 3 values.
2559          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2560                           NewLoad.getValue(2) };
2561          CombineTo(Load, To, 3, true);
2562        } else {
2563          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2564        }
2565      }
2566
2567      // Fold the AND away, taking care not to fold to the old load node if we
2568      // replaced it.
2569      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2570
2571      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2572    }
2573  }
2574  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2575  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2576    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2577    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2578
2579    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2580        LL.getValueType().isInteger()) {
2581      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2582      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2583        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2584                                     LR.getValueType(), LL, RL);
2585        AddToWorkList(ORNode.getNode());
2586        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2587      }
2588      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2589      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2590        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2591                                      LR.getValueType(), LL, RL);
2592        AddToWorkList(ANDNode.getNode());
2593        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2594      }
2595      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2596      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2597        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2598                                     LR.getValueType(), LL, RL);
2599        AddToWorkList(ORNode.getNode());
2600        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2601      }
2602    }
2603    // canonicalize equivalent to ll == rl
2604    if (LL == RR && LR == RL) {
2605      Op1 = ISD::getSetCCSwappedOperands(Op1);
2606      std::swap(RL, RR);
2607    }
2608    if (LL == RL && LR == RR) {
2609      bool isInteger = LL.getValueType().isInteger();
2610      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2611      if (Result != ISD::SETCC_INVALID &&
2612          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
2613        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2614                            LL, LR, Result);
2615    }
2616  }
2617
2618  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2619  if (N0.getOpcode() == N1.getOpcode()) {
2620    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2621    if (Tmp.getNode()) return Tmp;
2622  }
2623
2624  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2625  // fold (and (sra)) -> (and (srl)) when possible.
2626  if (!VT.isVector() &&
2627      SimplifyDemandedBits(SDValue(N, 0)))
2628    return SDValue(N, 0);
2629
2630  // fold (zext_inreg (extload x)) -> (zextload x)
2631  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2632    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2633    EVT MemVT = LN0->getMemoryVT();
2634    // If we zero all the possible extended bits, then we can turn this into
2635    // a zextload if we are running before legalize or the operation is legal.
2636    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2637    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2638                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2639        ((!LegalOperations && !LN0->isVolatile()) ||
2640         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2641      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2642                                       LN0->getChain(), LN0->getBasePtr(),
2643                                       LN0->getPointerInfo(), MemVT,
2644                                       LN0->isVolatile(), LN0->isNonTemporal(),
2645                                       LN0->getAlignment());
2646      AddToWorkList(N);
2647      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2648      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2649    }
2650  }
2651  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2652  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2653      N0.hasOneUse()) {
2654    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2655    EVT MemVT = LN0->getMemoryVT();
2656    // If we zero all the possible extended bits, then we can turn this into
2657    // a zextload if we are running before legalize or the operation is legal.
2658    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2659    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2660                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2661        ((!LegalOperations && !LN0->isVolatile()) ||
2662         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2663      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2664                                       LN0->getChain(),
2665                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2666                                       MemVT,
2667                                       LN0->isVolatile(), LN0->isNonTemporal(),
2668                                       LN0->getAlignment());
2669      AddToWorkList(N);
2670      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2671      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2672    }
2673  }
2674
2675  // fold (and (load x), 255) -> (zextload x, i8)
2676  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2677  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2678  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2679              (N0.getOpcode() == ISD::ANY_EXTEND &&
2680               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2681    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2682    LoadSDNode *LN0 = HasAnyExt
2683      ? cast<LoadSDNode>(N0.getOperand(0))
2684      : cast<LoadSDNode>(N0);
2685    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2686        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2687      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2688      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2689        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2690        EVT LoadedVT = LN0->getMemoryVT();
2691
2692        if (ExtVT == LoadedVT &&
2693            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2694          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2695
2696          SDValue NewLoad =
2697            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2698                           LN0->getChain(), LN0->getBasePtr(),
2699                           LN0->getPointerInfo(),
2700                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2701                           LN0->getAlignment());
2702          AddToWorkList(N);
2703          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2704          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2705        }
2706
2707        // Do not change the width of a volatile load.
2708        // Do not generate loads of non-round integer types since these can
2709        // be expensive (and would be wrong if the type is not byte sized).
2710        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2711            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2712          EVT PtrType = LN0->getOperand(1).getValueType();
2713
2714          unsigned Alignment = LN0->getAlignment();
2715          SDValue NewPtr = LN0->getBasePtr();
2716
2717          // For big endian targets, we need to add an offset to the pointer
2718          // to load the correct bytes.  For little endian systems, we merely
2719          // need to read fewer bytes from the same pointer.
2720          if (TLI.isBigEndian()) {
2721            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2722            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2723            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2724            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2725                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2726            Alignment = MinAlign(Alignment, PtrOff);
2727          }
2728
2729          AddToWorkList(NewPtr.getNode());
2730
2731          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2732          SDValue Load =
2733            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2734                           LN0->getChain(), NewPtr,
2735                           LN0->getPointerInfo(),
2736                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2737                           Alignment);
2738          AddToWorkList(N);
2739          CombineTo(LN0, Load, Load.getValue(1));
2740          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2741        }
2742      }
2743    }
2744  }
2745
2746  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2747      VT.getSizeInBits() <= 64) {
2748    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2749      APInt ADDC = ADDI->getAPIntValue();
2750      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2751        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2752        // immediate for an add, but it is legal if its top c2 bits are set,
2753        // transform the ADD so the immediate doesn't need to be materialized
2754        // in a register.
2755        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2756          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2757                                             SRLI->getZExtValue());
2758          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2759            ADDC |= Mask;
2760            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2761              SDValue NewAdd =
2762                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2763                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2764              CombineTo(N0.getNode(), NewAdd);
2765              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2766            }
2767          }
2768        }
2769      }
2770    }
2771  }
2772
2773
2774  return SDValue();
2775}
2776
2777/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2778///
2779SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2780                                        bool DemandHighBits) {
2781  if (!LegalOperations)
2782    return SDValue();
2783
2784  EVT VT = N->getValueType(0);
2785  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2786    return SDValue();
2787  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2788    return SDValue();
2789
2790  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2791  bool LookPassAnd0 = false;
2792  bool LookPassAnd1 = false;
2793  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2794      std::swap(N0, N1);
2795  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2796      std::swap(N0, N1);
2797  if (N0.getOpcode() == ISD::AND) {
2798    if (!N0.getNode()->hasOneUse())
2799      return SDValue();
2800    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2801    if (!N01C || N01C->getZExtValue() != 0xFF00)
2802      return SDValue();
2803    N0 = N0.getOperand(0);
2804    LookPassAnd0 = true;
2805  }
2806
2807  if (N1.getOpcode() == ISD::AND) {
2808    if (!N1.getNode()->hasOneUse())
2809      return SDValue();
2810    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2811    if (!N11C || N11C->getZExtValue() != 0xFF)
2812      return SDValue();
2813    N1 = N1.getOperand(0);
2814    LookPassAnd1 = true;
2815  }
2816
2817  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2818    std::swap(N0, N1);
2819  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2820    return SDValue();
2821  if (!N0.getNode()->hasOneUse() ||
2822      !N1.getNode()->hasOneUse())
2823    return SDValue();
2824
2825  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2826  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2827  if (!N01C || !N11C)
2828    return SDValue();
2829  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2830    return SDValue();
2831
2832  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2833  SDValue N00 = N0->getOperand(0);
2834  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2835    if (!N00.getNode()->hasOneUse())
2836      return SDValue();
2837    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2838    if (!N001C || N001C->getZExtValue() != 0xFF)
2839      return SDValue();
2840    N00 = N00.getOperand(0);
2841    LookPassAnd0 = true;
2842  }
2843
2844  SDValue N10 = N1->getOperand(0);
2845  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2846    if (!N10.getNode()->hasOneUse())
2847      return SDValue();
2848    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2849    if (!N101C || N101C->getZExtValue() != 0xFF00)
2850      return SDValue();
2851    N10 = N10.getOperand(0);
2852    LookPassAnd1 = true;
2853  }
2854
2855  if (N00 != N10)
2856    return SDValue();
2857
2858  // Make sure everything beyond the low halfword is zero since the SRL 16
2859  // will clear the top bits.
2860  unsigned OpSizeInBits = VT.getSizeInBits();
2861  if (DemandHighBits && OpSizeInBits > 16 &&
2862      (!LookPassAnd0 || !LookPassAnd1) &&
2863      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2864    return SDValue();
2865
2866  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2867  if (OpSizeInBits > 16)
2868    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2869                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2870  return Res;
2871}
2872
2873/// isBSwapHWordElement - Return true if the specified node is an element
2874/// that makes up a 32-bit packed halfword byteswap. i.e.
2875/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2876static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2877  if (!N.getNode()->hasOneUse())
2878    return false;
2879
2880  unsigned Opc = N.getOpcode();
2881  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2882    return false;
2883
2884  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2885  if (!N1C)
2886    return false;
2887
2888  unsigned Num;
2889  switch (N1C->getZExtValue()) {
2890  default:
2891    return false;
2892  case 0xFF:       Num = 0; break;
2893  case 0xFF00:     Num = 1; break;
2894  case 0xFF0000:   Num = 2; break;
2895  case 0xFF000000: Num = 3; break;
2896  }
2897
2898  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2899  SDValue N0 = N.getOperand(0);
2900  if (Opc == ISD::AND) {
2901    if (Num == 0 || Num == 2) {
2902      // (x >> 8) & 0xff
2903      // (x >> 8) & 0xff0000
2904      if (N0.getOpcode() != ISD::SRL)
2905        return false;
2906      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2907      if (!C || C->getZExtValue() != 8)
2908        return false;
2909    } else {
2910      // (x << 8) & 0xff00
2911      // (x << 8) & 0xff000000
2912      if (N0.getOpcode() != ISD::SHL)
2913        return false;
2914      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2915      if (!C || C->getZExtValue() != 8)
2916        return false;
2917    }
2918  } else if (Opc == ISD::SHL) {
2919    // (x & 0xff) << 8
2920    // (x & 0xff0000) << 8
2921    if (Num != 0 && Num != 2)
2922      return false;
2923    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2924    if (!C || C->getZExtValue() != 8)
2925      return false;
2926  } else { // Opc == ISD::SRL
2927    // (x & 0xff00) >> 8
2928    // (x & 0xff000000) >> 8
2929    if (Num != 1 && Num != 3)
2930      return false;
2931    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2932    if (!C || C->getZExtValue() != 8)
2933      return false;
2934  }
2935
2936  if (Parts[Num])
2937    return false;
2938
2939  Parts[Num] = N0.getOperand(0).getNode();
2940  return true;
2941}
2942
2943/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2944/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2945/// => (rotl (bswap x), 16)
2946SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2947  if (!LegalOperations)
2948    return SDValue();
2949
2950  EVT VT = N->getValueType(0);
2951  if (VT != MVT::i32)
2952    return SDValue();
2953  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2954    return SDValue();
2955
2956  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2957  // Look for either
2958  // (or (or (and), (and)), (or (and), (and)))
2959  // (or (or (or (and), (and)), (and)), (and))
2960  if (N0.getOpcode() != ISD::OR)
2961    return SDValue();
2962  SDValue N00 = N0.getOperand(0);
2963  SDValue N01 = N0.getOperand(1);
2964
2965  if (N1.getOpcode() == ISD::OR) {
2966    // (or (or (and), (and)), (or (and), (and)))
2967    SDValue N000 = N00.getOperand(0);
2968    if (!isBSwapHWordElement(N000, Parts))
2969      return SDValue();
2970
2971    SDValue N001 = N00.getOperand(1);
2972    if (!isBSwapHWordElement(N001, Parts))
2973      return SDValue();
2974    SDValue N010 = N01.getOperand(0);
2975    if (!isBSwapHWordElement(N010, Parts))
2976      return SDValue();
2977    SDValue N011 = N01.getOperand(1);
2978    if (!isBSwapHWordElement(N011, Parts))
2979      return SDValue();
2980  } else {
2981    // (or (or (or (and), (and)), (and)), (and))
2982    if (!isBSwapHWordElement(N1, Parts))
2983      return SDValue();
2984    if (!isBSwapHWordElement(N01, Parts))
2985      return SDValue();
2986    if (N00.getOpcode() != ISD::OR)
2987      return SDValue();
2988    SDValue N000 = N00.getOperand(0);
2989    if (!isBSwapHWordElement(N000, Parts))
2990      return SDValue();
2991    SDValue N001 = N00.getOperand(1);
2992    if (!isBSwapHWordElement(N001, Parts))
2993      return SDValue();
2994  }
2995
2996  // Make sure the parts are all coming from the same node.
2997  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
2998    return SDValue();
2999
3000  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3001                              SDValue(Parts[0],0));
3002
3003  // Result of the bswap should be rotated by 16. If it's not legal, than
3004  // do  (x << 16) | (x >> 16).
3005  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3006  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3007    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3008  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3009    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3010  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3011                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3012                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3013}
3014
3015SDValue DAGCombiner::visitOR(SDNode *N) {
3016  SDValue N0 = N->getOperand(0);
3017  SDValue N1 = N->getOperand(1);
3018  SDValue LL, LR, RL, RR, CC0, CC1;
3019  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3020  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3021  EVT VT = N1.getValueType();
3022
3023  // fold vector ops
3024  if (VT.isVector()) {
3025    SDValue FoldedVOp = SimplifyVBinOp(N);
3026    if (FoldedVOp.getNode()) return FoldedVOp;
3027  }
3028
3029  // fold (or x, undef) -> -1
3030  if (!LegalOperations &&
3031      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3032    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3033    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3034  }
3035  // fold (or c1, c2) -> c1|c2
3036  if (N0C && N1C)
3037    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3038  // canonicalize constant to RHS
3039  if (N0C && !N1C)
3040    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3041  // fold (or x, 0) -> x
3042  if (N1C && N1C->isNullValue())
3043    return N0;
3044  // fold (or x, -1) -> -1
3045  if (N1C && N1C->isAllOnesValue())
3046    return N1;
3047  // fold (or x, c) -> c iff (x & ~c) == 0
3048  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3049    return N1;
3050
3051  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3052  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3053  if (BSwap.getNode() != 0)
3054    return BSwap;
3055  BSwap = MatchBSwapHWordLow(N, N0, N1);
3056  if (BSwap.getNode() != 0)
3057    return BSwap;
3058
3059  // reassociate or
3060  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3061  if (ROR.getNode() != 0)
3062    return ROR;
3063  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3064  // iff (c1 & c2) == 0.
3065  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3066             isa<ConstantSDNode>(N0.getOperand(1))) {
3067    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3068    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3069      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3070                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3071                                     N0.getOperand(0), N1),
3072                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3073  }
3074  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3075  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3076    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3077    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3078
3079    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3080        LL.getValueType().isInteger()) {
3081      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3082      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3083      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3084          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3085        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3086                                     LR.getValueType(), LL, RL);
3087        AddToWorkList(ORNode.getNode());
3088        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3089      }
3090      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3091      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3092      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3093          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3094        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3095                                      LR.getValueType(), LL, RL);
3096        AddToWorkList(ANDNode.getNode());
3097        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3098      }
3099    }
3100    // canonicalize equivalent to ll == rl
3101    if (LL == RR && LR == RL) {
3102      Op1 = ISD::getSetCCSwappedOperands(Op1);
3103      std::swap(RL, RR);
3104    }
3105    if (LL == RL && LR == RR) {
3106      bool isInteger = LL.getValueType().isInteger();
3107      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3108      if (Result != ISD::SETCC_INVALID &&
3109          (!LegalOperations || TLI.isCondCodeLegal(Result, LL.getValueType())))
3110        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3111                            LL, LR, Result);
3112    }
3113  }
3114
3115  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3116  if (N0.getOpcode() == N1.getOpcode()) {
3117    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3118    if (Tmp.getNode()) return Tmp;
3119  }
3120
3121  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3122  if (N0.getOpcode() == ISD::AND &&
3123      N1.getOpcode() == ISD::AND &&
3124      N0.getOperand(1).getOpcode() == ISD::Constant &&
3125      N1.getOperand(1).getOpcode() == ISD::Constant &&
3126      // Don't increase # computations.
3127      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3128    // We can only do this xform if we know that bits from X that are set in C2
3129    // but not in C1 are already zero.  Likewise for Y.
3130    const APInt &LHSMask =
3131      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3132    const APInt &RHSMask =
3133      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3134
3135    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3136        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3137      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3138                              N0.getOperand(0), N1.getOperand(0));
3139      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3140                         DAG.getConstant(LHSMask | RHSMask, VT));
3141    }
3142  }
3143
3144  // See if this is some rotate idiom.
3145  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3146    return SDValue(Rot, 0);
3147
3148  // Simplify the operands using demanded-bits information.
3149  if (!VT.isVector() &&
3150      SimplifyDemandedBits(SDValue(N, 0)))
3151    return SDValue(N, 0);
3152
3153  return SDValue();
3154}
3155
3156/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3157static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3158  if (Op.getOpcode() == ISD::AND) {
3159    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3160      Mask = Op.getOperand(1);
3161      Op = Op.getOperand(0);
3162    } else {
3163      return false;
3164    }
3165  }
3166
3167  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3168    Shift = Op;
3169    return true;
3170  }
3171
3172  return false;
3173}
3174
3175// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3176// idioms for rotate, and if the target supports rotation instructions, generate
3177// a rot[lr].
3178SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3179  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3180  EVT VT = LHS.getValueType();
3181  if (!TLI.isTypeLegal(VT)) return 0;
3182
3183  // The target must have at least one rotate flavor.
3184  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3185  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3186  if (!HasROTL && !HasROTR) return 0;
3187
3188  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3189  SDValue LHSShift;   // The shift.
3190  SDValue LHSMask;    // AND value if any.
3191  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3192    return 0; // Not part of a rotate.
3193
3194  SDValue RHSShift;   // The shift.
3195  SDValue RHSMask;    // AND value if any.
3196  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3197    return 0; // Not part of a rotate.
3198
3199  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3200    return 0;   // Not shifting the same value.
3201
3202  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3203    return 0;   // Shifts must disagree.
3204
3205  // Canonicalize shl to left side in a shl/srl pair.
3206  if (RHSShift.getOpcode() == ISD::SHL) {
3207    std::swap(LHS, RHS);
3208    std::swap(LHSShift, RHSShift);
3209    std::swap(LHSMask , RHSMask );
3210  }
3211
3212  unsigned OpSizeInBits = VT.getSizeInBits();
3213  SDValue LHSShiftArg = LHSShift.getOperand(0);
3214  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3215  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3216
3217  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3218  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3219  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3220      RHSShiftAmt.getOpcode() == ISD::Constant) {
3221    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3222    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3223    if ((LShVal + RShVal) != OpSizeInBits)
3224      return 0;
3225
3226    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3227                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3228
3229    // If there is an AND of either shifted operand, apply it to the result.
3230    if (LHSMask.getNode() || RHSMask.getNode()) {
3231      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3232
3233      if (LHSMask.getNode()) {
3234        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3235        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3236      }
3237      if (RHSMask.getNode()) {
3238        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3239        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3240      }
3241
3242      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3243    }
3244
3245    return Rot.getNode();
3246  }
3247
3248  // If there is a mask here, and we have a variable shift, we can't be sure
3249  // that we're masking out the right stuff.
3250  if (LHSMask.getNode() || RHSMask.getNode())
3251    return 0;
3252
3253  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3254  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3255  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3256      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3257    if (ConstantSDNode *SUBC =
3258          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3259      if (SUBC->getAPIntValue() == OpSizeInBits) {
3260        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3261                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3262      }
3263    }
3264  }
3265
3266  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3267  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3268  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3269      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3270    if (ConstantSDNode *SUBC =
3271          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3272      if (SUBC->getAPIntValue() == OpSizeInBits) {
3273        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3274                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3275      }
3276    }
3277  }
3278
3279  // Look for sign/zext/any-extended or truncate cases:
3280  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3281       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3282       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3283       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3284      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3285       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3286       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3287       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3288    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3289    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3290    if (RExtOp0.getOpcode() == ISD::SUB &&
3291        RExtOp0.getOperand(1) == LExtOp0) {
3292      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3293      //   (rotl x, y)
3294      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3295      //   (rotr x, (sub 32, y))
3296      if (ConstantSDNode *SUBC =
3297            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3298        if (SUBC->getAPIntValue() == OpSizeInBits) {
3299          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3300                             LHSShiftArg,
3301                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3302        }
3303      }
3304    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3305               RExtOp0 == LExtOp0.getOperand(1)) {
3306      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3307      //   (rotr x, y)
3308      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3309      //   (rotl x, (sub 32, y))
3310      if (ConstantSDNode *SUBC =
3311            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3312        if (SUBC->getAPIntValue() == OpSizeInBits) {
3313          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3314                             LHSShiftArg,
3315                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3316        }
3317      }
3318    }
3319  }
3320
3321  return 0;
3322}
3323
3324SDValue DAGCombiner::visitXOR(SDNode *N) {
3325  SDValue N0 = N->getOperand(0);
3326  SDValue N1 = N->getOperand(1);
3327  SDValue LHS, RHS, CC;
3328  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3329  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3330  EVT VT = N0.getValueType();
3331
3332  // fold vector ops
3333  if (VT.isVector()) {
3334    SDValue FoldedVOp = SimplifyVBinOp(N);
3335    if (FoldedVOp.getNode()) return FoldedVOp;
3336  }
3337
3338  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3339  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3340    return DAG.getConstant(0, VT);
3341  // fold (xor x, undef) -> undef
3342  if (N0.getOpcode() == ISD::UNDEF)
3343    return N0;
3344  if (N1.getOpcode() == ISD::UNDEF)
3345    return N1;
3346  // fold (xor c1, c2) -> c1^c2
3347  if (N0C && N1C)
3348    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3349  // canonicalize constant to RHS
3350  if (N0C && !N1C)
3351    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3352  // fold (xor x, 0) -> x
3353  if (N1C && N1C->isNullValue())
3354    return N0;
3355  // reassociate xor
3356  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3357  if (RXOR.getNode() != 0)
3358    return RXOR;
3359
3360  // fold !(x cc y) -> (x !cc y)
3361  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3362    bool isInt = LHS.getValueType().isInteger();
3363    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3364                                               isInt);
3365
3366    if (!LegalOperations || TLI.isCondCodeLegal(NotCC, LHS.getValueType())) {
3367      switch (N0.getOpcode()) {
3368      default:
3369        llvm_unreachable("Unhandled SetCC Equivalent!");
3370      case ISD::SETCC:
3371        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3372      case ISD::SELECT_CC:
3373        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3374                               N0.getOperand(3), NotCC);
3375      }
3376    }
3377  }
3378
3379  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3380  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3381      N0.getNode()->hasOneUse() &&
3382      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3383    SDValue V = N0.getOperand(0);
3384    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3385                    DAG.getConstant(1, V.getValueType()));
3386    AddToWorkList(V.getNode());
3387    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3388  }
3389
3390  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3391  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3392      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3393    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3394    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3395      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3396      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3397      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3398      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3399      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3400    }
3401  }
3402  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3403  if (N1C && N1C->isAllOnesValue() &&
3404      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3405    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3406    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3407      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3408      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3409      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3410      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3411      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3412    }
3413  }
3414  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3415  if (N1C && N0.getOpcode() == ISD::XOR) {
3416    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3417    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3418    if (N00C)
3419      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3420                         DAG.getConstant(N1C->getAPIntValue() ^
3421                                         N00C->getAPIntValue(), VT));
3422    if (N01C)
3423      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3424                         DAG.getConstant(N1C->getAPIntValue() ^
3425                                         N01C->getAPIntValue(), VT));
3426  }
3427  // fold (xor x, x) -> 0
3428  if (N0 == N1)
3429    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3430
3431  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3432  if (N0.getOpcode() == N1.getOpcode()) {
3433    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3434    if (Tmp.getNode()) return Tmp;
3435  }
3436
3437  // Simplify the expression using non-local knowledge.
3438  if (!VT.isVector() &&
3439      SimplifyDemandedBits(SDValue(N, 0)))
3440    return SDValue(N, 0);
3441
3442  return SDValue();
3443}
3444
3445/// visitShiftByConstant - Handle transforms common to the three shifts, when
3446/// the shift amount is a constant.
3447SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3448  SDNode *LHS = N->getOperand(0).getNode();
3449  if (!LHS->hasOneUse()) return SDValue();
3450
3451  // We want to pull some binops through shifts, so that we have (and (shift))
3452  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3453  // thing happens with address calculations, so it's important to canonicalize
3454  // it.
3455  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3456
3457  switch (LHS->getOpcode()) {
3458  default: return SDValue();
3459  case ISD::OR:
3460  case ISD::XOR:
3461    HighBitSet = false; // We can only transform sra if the high bit is clear.
3462    break;
3463  case ISD::AND:
3464    HighBitSet = true;  // We can only transform sra if the high bit is set.
3465    break;
3466  case ISD::ADD:
3467    if (N->getOpcode() != ISD::SHL)
3468      return SDValue(); // only shl(add) not sr[al](add).
3469    HighBitSet = false; // We can only transform sra if the high bit is clear.
3470    break;
3471  }
3472
3473  // We require the RHS of the binop to be a constant as well.
3474  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3475  if (!BinOpCst) return SDValue();
3476
3477  // FIXME: disable this unless the input to the binop is a shift by a constant.
3478  // If it is not a shift, it pessimizes some common cases like:
3479  //
3480  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3481  //    int bar(int *X, int i) { return X[i & 255]; }
3482  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3483  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3484       BinOpLHSVal->getOpcode() != ISD::SRA &&
3485       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3486      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3487    return SDValue();
3488
3489  EVT VT = N->getValueType(0);
3490
3491  // If this is a signed shift right, and the high bit is modified by the
3492  // logical operation, do not perform the transformation. The highBitSet
3493  // boolean indicates the value of the high bit of the constant which would
3494  // cause it to be modified for this operation.
3495  if (N->getOpcode() == ISD::SRA) {
3496    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3497    if (BinOpRHSSignSet != HighBitSet)
3498      return SDValue();
3499  }
3500
3501  // Fold the constants, shifting the binop RHS by the shift amount.
3502  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3503                               N->getValueType(0),
3504                               LHS->getOperand(1), N->getOperand(1));
3505
3506  // Create the new shift.
3507  SDValue NewShift = DAG.getNode(N->getOpcode(),
3508                                 LHS->getOperand(0).getDebugLoc(),
3509                                 VT, LHS->getOperand(0), N->getOperand(1));
3510
3511  // Create the new binop.
3512  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3513}
3514
3515SDValue DAGCombiner::visitSHL(SDNode *N) {
3516  SDValue N0 = N->getOperand(0);
3517  SDValue N1 = N->getOperand(1);
3518  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3519  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3520  EVT VT = N0.getValueType();
3521  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3522
3523  // fold (shl c1, c2) -> c1<<c2
3524  if (N0C && N1C)
3525    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3526  // fold (shl 0, x) -> 0
3527  if (N0C && N0C->isNullValue())
3528    return N0;
3529  // fold (shl x, c >= size(x)) -> undef
3530  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3531    return DAG.getUNDEF(VT);
3532  // fold (shl x, 0) -> x
3533  if (N1C && N1C->isNullValue())
3534    return N0;
3535  // fold (shl undef, x) -> 0
3536  if (N0.getOpcode() == ISD::UNDEF)
3537    return DAG.getConstant(0, VT);
3538  // if (shl x, c) is known to be zero, return 0
3539  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3540                            APInt::getAllOnesValue(OpSizeInBits)))
3541    return DAG.getConstant(0, VT);
3542  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3543  if (N1.getOpcode() == ISD::TRUNCATE &&
3544      N1.getOperand(0).getOpcode() == ISD::AND &&
3545      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3546    SDValue N101 = N1.getOperand(0).getOperand(1);
3547    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3548      EVT TruncVT = N1.getValueType();
3549      SDValue N100 = N1.getOperand(0).getOperand(0);
3550      APInt TruncC = N101C->getAPIntValue();
3551      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3552      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3553                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3554                                     DAG.getNode(ISD::TRUNCATE,
3555                                                 N->getDebugLoc(),
3556                                                 TruncVT, N100),
3557                                     DAG.getConstant(TruncC, TruncVT)));
3558    }
3559  }
3560
3561  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3562    return SDValue(N, 0);
3563
3564  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3565  if (N1C && N0.getOpcode() == ISD::SHL &&
3566      N0.getOperand(1).getOpcode() == ISD::Constant) {
3567    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3568    uint64_t c2 = N1C->getZExtValue();
3569    if (c1 + c2 >= OpSizeInBits)
3570      return DAG.getConstant(0, VT);
3571    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3572                       DAG.getConstant(c1 + c2, N1.getValueType()));
3573  }
3574
3575  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3576  // For this to be valid, the second form must not preserve any of the bits
3577  // that are shifted out by the inner shift in the first form.  This means
3578  // the outer shift size must be >= the number of bits added by the ext.
3579  // As a corollary, we don't care what kind of ext it is.
3580  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3581              N0.getOpcode() == ISD::ANY_EXTEND ||
3582              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3583      N0.getOperand(0).getOpcode() == ISD::SHL &&
3584      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3585    uint64_t c1 =
3586      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3587    uint64_t c2 = N1C->getZExtValue();
3588    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3589    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3590    if (c2 >= OpSizeInBits - InnerShiftSize) {
3591      if (c1 + c2 >= OpSizeInBits)
3592        return DAG.getConstant(0, VT);
3593      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3594                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3595                                     N0.getOperand(0)->getOperand(0)),
3596                         DAG.getConstant(c1 + c2, N1.getValueType()));
3597    }
3598  }
3599
3600  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3601  //                               (and (srl x, (sub c1, c2), MASK)
3602  // Only fold this if the inner shift has no other uses -- if it does, folding
3603  // this will increase the total number of instructions.
3604  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3605      N0.getOperand(1).getOpcode() == ISD::Constant) {
3606    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3607    if (c1 < VT.getSizeInBits()) {
3608      uint64_t c2 = N1C->getZExtValue();
3609      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3610                                         VT.getSizeInBits() - c1);
3611      SDValue Shift;
3612      if (c2 > c1) {
3613        Mask = Mask.shl(c2-c1);
3614        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3615                            DAG.getConstant(c2-c1, N1.getValueType()));
3616      } else {
3617        Mask = Mask.lshr(c1-c2);
3618        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3619                            DAG.getConstant(c1-c2, N1.getValueType()));
3620      }
3621      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3622                         DAG.getConstant(Mask, VT));
3623    }
3624  }
3625  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3626  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3627    SDValue HiBitsMask =
3628      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3629                                            VT.getSizeInBits() -
3630                                              N1C->getZExtValue()),
3631                      VT);
3632    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3633                       HiBitsMask);
3634  }
3635
3636  if (N1C) {
3637    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3638    if (NewSHL.getNode())
3639      return NewSHL;
3640  }
3641
3642  return SDValue();
3643}
3644
3645SDValue DAGCombiner::visitSRA(SDNode *N) {
3646  SDValue N0 = N->getOperand(0);
3647  SDValue N1 = N->getOperand(1);
3648  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3649  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3650  EVT VT = N0.getValueType();
3651  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3652
3653  // fold (sra c1, c2) -> (sra c1, c2)
3654  if (N0C && N1C)
3655    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3656  // fold (sra 0, x) -> 0
3657  if (N0C && N0C->isNullValue())
3658    return N0;
3659  // fold (sra -1, x) -> -1
3660  if (N0C && N0C->isAllOnesValue())
3661    return N0;
3662  // fold (sra x, (setge c, size(x))) -> undef
3663  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3664    return DAG.getUNDEF(VT);
3665  // fold (sra x, 0) -> x
3666  if (N1C && N1C->isNullValue())
3667    return N0;
3668  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3669  // sext_inreg.
3670  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3671    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3672    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3673    if (VT.isVector())
3674      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3675                               ExtVT, VT.getVectorNumElements());
3676    if ((!LegalOperations ||
3677         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3678      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3679                         N0.getOperand(0), DAG.getValueType(ExtVT));
3680  }
3681
3682  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3683  if (N1C && N0.getOpcode() == ISD::SRA) {
3684    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3685      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3686      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3687      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3688                         DAG.getConstant(Sum, N1C->getValueType(0)));
3689    }
3690  }
3691
3692  // fold (sra (shl X, m), (sub result_size, n))
3693  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3694  // result_size - n != m.
3695  // If truncate is free for the target sext(shl) is likely to result in better
3696  // code.
3697  if (N0.getOpcode() == ISD::SHL) {
3698    // Get the two constanst of the shifts, CN0 = m, CN = n.
3699    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3700    if (N01C && N1C) {
3701      // Determine what the truncate's result bitsize and type would be.
3702      EVT TruncVT =
3703        EVT::getIntegerVT(*DAG.getContext(),
3704                          OpSizeInBits - N1C->getZExtValue());
3705      // Determine the residual right-shift amount.
3706      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3707
3708      // If the shift is not a no-op (in which case this should be just a sign
3709      // extend already), the truncated to type is legal, sign_extend is legal
3710      // on that type, and the truncate to that type is both legal and free,
3711      // perform the transform.
3712      if ((ShiftAmt > 0) &&
3713          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3714          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3715          TLI.isTruncateFree(VT, TruncVT)) {
3716
3717          SDValue Amt = DAG.getConstant(ShiftAmt,
3718              getShiftAmountTy(N0.getOperand(0).getValueType()));
3719          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3720                                      N0.getOperand(0), Amt);
3721          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3722                                      Shift);
3723          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3724                             N->getValueType(0), Trunc);
3725      }
3726    }
3727  }
3728
3729  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3730  if (N1.getOpcode() == ISD::TRUNCATE &&
3731      N1.getOperand(0).getOpcode() == ISD::AND &&
3732      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3733    SDValue N101 = N1.getOperand(0).getOperand(1);
3734    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3735      EVT TruncVT = N1.getValueType();
3736      SDValue N100 = N1.getOperand(0).getOperand(0);
3737      APInt TruncC = N101C->getAPIntValue();
3738      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3739      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3740                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3741                                     TruncVT,
3742                                     DAG.getNode(ISD::TRUNCATE,
3743                                                 N->getDebugLoc(),
3744                                                 TruncVT, N100),
3745                                     DAG.getConstant(TruncC, TruncVT)));
3746    }
3747  }
3748
3749  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3750  //      if c1 is equal to the number of bits the trunc removes
3751  if (N0.getOpcode() == ISD::TRUNCATE &&
3752      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3753       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3754      N0.getOperand(0).hasOneUse() &&
3755      N0.getOperand(0).getOperand(1).hasOneUse() &&
3756      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3757    EVT LargeVT = N0.getOperand(0).getValueType();
3758    ConstantSDNode *LargeShiftAmt =
3759      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3760
3761    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3762        LargeShiftAmt->getZExtValue()) {
3763      SDValue Amt =
3764        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3765              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3766      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3767                                N0.getOperand(0).getOperand(0), Amt);
3768      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3769    }
3770  }
3771
3772  // Simplify, based on bits shifted out of the LHS.
3773  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3774    return SDValue(N, 0);
3775
3776
3777  // If the sign bit is known to be zero, switch this to a SRL.
3778  if (DAG.SignBitIsZero(N0))
3779    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3780
3781  if (N1C) {
3782    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3783    if (NewSRA.getNode())
3784      return NewSRA;
3785  }
3786
3787  return SDValue();
3788}
3789
3790SDValue DAGCombiner::visitSRL(SDNode *N) {
3791  SDValue N0 = N->getOperand(0);
3792  SDValue N1 = N->getOperand(1);
3793  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3794  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3795  EVT VT = N0.getValueType();
3796  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3797
3798  // fold (srl c1, c2) -> c1 >>u c2
3799  if (N0C && N1C)
3800    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3801  // fold (srl 0, x) -> 0
3802  if (N0C && N0C->isNullValue())
3803    return N0;
3804  // fold (srl x, c >= size(x)) -> undef
3805  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3806    return DAG.getUNDEF(VT);
3807  // fold (srl x, 0) -> x
3808  if (N1C && N1C->isNullValue())
3809    return N0;
3810  // if (srl x, c) is known to be zero, return 0
3811  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3812                                   APInt::getAllOnesValue(OpSizeInBits)))
3813    return DAG.getConstant(0, VT);
3814
3815  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3816  if (N1C && N0.getOpcode() == ISD::SRL &&
3817      N0.getOperand(1).getOpcode() == ISD::Constant) {
3818    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3819    uint64_t c2 = N1C->getZExtValue();
3820    if (c1 + c2 >= OpSizeInBits)
3821      return DAG.getConstant(0, VT);
3822    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3823                       DAG.getConstant(c1 + c2, N1.getValueType()));
3824  }
3825
3826  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3827  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3828      N0.getOperand(0).getOpcode() == ISD::SRL &&
3829      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3830    uint64_t c1 =
3831      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3832    uint64_t c2 = N1C->getZExtValue();
3833    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3834    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3835    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3836    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3837    if (c1 + OpSizeInBits == InnerShiftSize) {
3838      if (c1 + c2 >= InnerShiftSize)
3839        return DAG.getConstant(0, VT);
3840      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3841                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3842                                     N0.getOperand(0)->getOperand(0),
3843                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3844    }
3845  }
3846
3847  // fold (srl (shl x, c), c) -> (and x, cst2)
3848  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3849      N0.getValueSizeInBits() <= 64) {
3850    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3851    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3852                       DAG.getConstant(~0ULL >> ShAmt, VT));
3853  }
3854
3855
3856  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3857  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3858    // Shifting in all undef bits?
3859    EVT SmallVT = N0.getOperand(0).getValueType();
3860    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3861      return DAG.getUNDEF(VT);
3862
3863    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3864      uint64_t ShiftAmt = N1C->getZExtValue();
3865      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3866                                       N0.getOperand(0),
3867                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3868      AddToWorkList(SmallShift.getNode());
3869      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3870    }
3871  }
3872
3873  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3874  // bit, which is unmodified by sra.
3875  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3876    if (N0.getOpcode() == ISD::SRA)
3877      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3878  }
3879
3880  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3881  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3882      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3883    APInt KnownZero, KnownOne;
3884    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3885
3886    // If any of the input bits are KnownOne, then the input couldn't be all
3887    // zeros, thus the result of the srl will always be zero.
3888    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3889
3890    // If all of the bits input the to ctlz node are known to be zero, then
3891    // the result of the ctlz is "32" and the result of the shift is one.
3892    APInt UnknownBits = ~KnownZero;
3893    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3894
3895    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3896    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3897      // Okay, we know that only that the single bit specified by UnknownBits
3898      // could be set on input to the CTLZ node. If this bit is set, the SRL
3899      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3900      // to an SRL/XOR pair, which is likely to simplify more.
3901      unsigned ShAmt = UnknownBits.countTrailingZeros();
3902      SDValue Op = N0.getOperand(0);
3903
3904      if (ShAmt) {
3905        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3906                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3907        AddToWorkList(Op.getNode());
3908      }
3909
3910      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3911                         Op, DAG.getConstant(1, VT));
3912    }
3913  }
3914
3915  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3916  if (N1.getOpcode() == ISD::TRUNCATE &&
3917      N1.getOperand(0).getOpcode() == ISD::AND &&
3918      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3919    SDValue N101 = N1.getOperand(0).getOperand(1);
3920    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3921      EVT TruncVT = N1.getValueType();
3922      SDValue N100 = N1.getOperand(0).getOperand(0);
3923      APInt TruncC = N101C->getAPIntValue();
3924      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3925      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3926                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3927                                     TruncVT,
3928                                     DAG.getNode(ISD::TRUNCATE,
3929                                                 N->getDebugLoc(),
3930                                                 TruncVT, N100),
3931                                     DAG.getConstant(TruncC, TruncVT)));
3932    }
3933  }
3934
3935  // fold operands of srl based on knowledge that the low bits are not
3936  // demanded.
3937  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3938    return SDValue(N, 0);
3939
3940  if (N1C) {
3941    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3942    if (NewSRL.getNode())
3943      return NewSRL;
3944  }
3945
3946  // Attempt to convert a srl of a load into a narrower zero-extending load.
3947  SDValue NarrowLoad = ReduceLoadWidth(N);
3948  if (NarrowLoad.getNode())
3949    return NarrowLoad;
3950
3951  // Here is a common situation. We want to optimize:
3952  //
3953  //   %a = ...
3954  //   %b = and i32 %a, 2
3955  //   %c = srl i32 %b, 1
3956  //   brcond i32 %c ...
3957  //
3958  // into
3959  //
3960  //   %a = ...
3961  //   %b = and %a, 2
3962  //   %c = setcc eq %b, 0
3963  //   brcond %c ...
3964  //
3965  // However when after the source operand of SRL is optimized into AND, the SRL
3966  // itself may not be optimized further. Look for it and add the BRCOND into
3967  // the worklist.
3968  if (N->hasOneUse()) {
3969    SDNode *Use = *N->use_begin();
3970    if (Use->getOpcode() == ISD::BRCOND)
3971      AddToWorkList(Use);
3972    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
3973      // Also look pass the truncate.
3974      Use = *Use->use_begin();
3975      if (Use->getOpcode() == ISD::BRCOND)
3976        AddToWorkList(Use);
3977    }
3978  }
3979
3980  return SDValue();
3981}
3982
3983SDValue DAGCombiner::visitCTLZ(SDNode *N) {
3984  SDValue N0 = N->getOperand(0);
3985  EVT VT = N->getValueType(0);
3986
3987  // fold (ctlz c1) -> c2
3988  if (isa<ConstantSDNode>(N0))
3989    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
3990  return SDValue();
3991}
3992
3993SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
3994  SDValue N0 = N->getOperand(0);
3995  EVT VT = N->getValueType(0);
3996
3997  // fold (ctlz_zero_undef c1) -> c2
3998  if (isa<ConstantSDNode>(N0))
3999    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4000  return SDValue();
4001}
4002
4003SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4004  SDValue N0 = N->getOperand(0);
4005  EVT VT = N->getValueType(0);
4006
4007  // fold (cttz c1) -> c2
4008  if (isa<ConstantSDNode>(N0))
4009    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4010  return SDValue();
4011}
4012
4013SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4014  SDValue N0 = N->getOperand(0);
4015  EVT VT = N->getValueType(0);
4016
4017  // fold (cttz_zero_undef c1) -> c2
4018  if (isa<ConstantSDNode>(N0))
4019    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4020  return SDValue();
4021}
4022
4023SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4024  SDValue N0 = N->getOperand(0);
4025  EVT VT = N->getValueType(0);
4026
4027  // fold (ctpop c1) -> c2
4028  if (isa<ConstantSDNode>(N0))
4029    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4030  return SDValue();
4031}
4032
4033SDValue DAGCombiner::visitSELECT(SDNode *N) {
4034  SDValue N0 = N->getOperand(0);
4035  SDValue N1 = N->getOperand(1);
4036  SDValue N2 = N->getOperand(2);
4037  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4038  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4039  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4040  EVT VT = N->getValueType(0);
4041  EVT VT0 = N0.getValueType();
4042
4043  // fold (select C, X, X) -> X
4044  if (N1 == N2)
4045    return N1;
4046  // fold (select true, X, Y) -> X
4047  if (N0C && !N0C->isNullValue())
4048    return N1;
4049  // fold (select false, X, Y) -> Y
4050  if (N0C && N0C->isNullValue())
4051    return N2;
4052  // fold (select C, 1, X) -> (or C, X)
4053  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4054    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4055  // fold (select C, 0, 1) -> (xor C, 1)
4056  if (VT.isInteger() &&
4057      (VT0 == MVT::i1 ||
4058       (VT0.isInteger() &&
4059        TLI.getBooleanContents(false) ==
4060        TargetLowering::ZeroOrOneBooleanContent)) &&
4061      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4062    SDValue XORNode;
4063    if (VT == VT0)
4064      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4065                         N0, DAG.getConstant(1, VT0));
4066    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4067                          N0, DAG.getConstant(1, VT0));
4068    AddToWorkList(XORNode.getNode());
4069    if (VT.bitsGT(VT0))
4070      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4071    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4072  }
4073  // fold (select C, 0, X) -> (and (not C), X)
4074  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4075    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4076    AddToWorkList(NOTNode.getNode());
4077    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4078  }
4079  // fold (select C, X, 1) -> (or (not C), X)
4080  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4081    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4082    AddToWorkList(NOTNode.getNode());
4083    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4084  }
4085  // fold (select C, X, 0) -> (and C, X)
4086  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4087    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4088  // fold (select X, X, Y) -> (or X, Y)
4089  // fold (select X, 1, Y) -> (or X, Y)
4090  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4091    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4092  // fold (select X, Y, X) -> (and X, Y)
4093  // fold (select X, Y, 0) -> (and X, Y)
4094  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4095    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4096
4097  // If we can fold this based on the true/false value, do so.
4098  if (SimplifySelectOps(N, N1, N2))
4099    return SDValue(N, 0);  // Don't revisit N.
4100
4101  // fold selects based on a setcc into other things, such as min/max/abs
4102  if (N0.getOpcode() == ISD::SETCC) {
4103    // FIXME:
4104    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4105    // having to say they don't support SELECT_CC on every type the DAG knows
4106    // about, since there is no way to mark an opcode illegal at all value types
4107    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4108        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4109      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4110                         N0.getOperand(0), N0.getOperand(1),
4111                         N1, N2, N0.getOperand(2));
4112    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4113  }
4114
4115  return SDValue();
4116}
4117
4118SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4119  SDValue N0 = N->getOperand(0);
4120  SDValue N1 = N->getOperand(1);
4121  SDValue N2 = N->getOperand(2);
4122  SDValue N3 = N->getOperand(3);
4123  SDValue N4 = N->getOperand(4);
4124  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4125
4126  // fold select_cc lhs, rhs, x, x, cc -> x
4127  if (N2 == N3)
4128    return N2;
4129
4130  // Determine if the condition we're dealing with is constant
4131  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4132                              N0, N1, CC, N->getDebugLoc(), false);
4133  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4134
4135  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4136    if (!SCCC->isNullValue())
4137      return N2;    // cond always true -> true val
4138    else
4139      return N3;    // cond always false -> false val
4140  }
4141
4142  // Fold to a simpler select_cc
4143  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4144    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4145                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4146                       SCC.getOperand(2));
4147
4148  // If we can fold this based on the true/false value, do so.
4149  if (SimplifySelectOps(N, N2, N3))
4150    return SDValue(N, 0);  // Don't revisit N.
4151
4152  // fold select_cc into other things, such as min/max/abs
4153  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4154}
4155
4156SDValue DAGCombiner::visitSETCC(SDNode *N) {
4157  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4158                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4159                       N->getDebugLoc());
4160}
4161
4162// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4163// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4164// transformation. Returns true if extension are possible and the above
4165// mentioned transformation is profitable.
4166static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4167                                    unsigned ExtOpc,
4168                                    SmallVector<SDNode*, 4> &ExtendNodes,
4169                                    const TargetLowering &TLI) {
4170  bool HasCopyToRegUses = false;
4171  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4172  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4173                            UE = N0.getNode()->use_end();
4174       UI != UE; ++UI) {
4175    SDNode *User = *UI;
4176    if (User == N)
4177      continue;
4178    if (UI.getUse().getResNo() != N0.getResNo())
4179      continue;
4180    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4181    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4182      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4183      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4184        // Sign bits will be lost after a zext.
4185        return false;
4186      bool Add = false;
4187      for (unsigned i = 0; i != 2; ++i) {
4188        SDValue UseOp = User->getOperand(i);
4189        if (UseOp == N0)
4190          continue;
4191        if (!isa<ConstantSDNode>(UseOp))
4192          return false;
4193        Add = true;
4194      }
4195      if (Add)
4196        ExtendNodes.push_back(User);
4197      continue;
4198    }
4199    // If truncates aren't free and there are users we can't
4200    // extend, it isn't worthwhile.
4201    if (!isTruncFree)
4202      return false;
4203    // Remember if this value is live-out.
4204    if (User->getOpcode() == ISD::CopyToReg)
4205      HasCopyToRegUses = true;
4206  }
4207
4208  if (HasCopyToRegUses) {
4209    bool BothLiveOut = false;
4210    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4211         UI != UE; ++UI) {
4212      SDUse &Use = UI.getUse();
4213      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4214        BothLiveOut = true;
4215        break;
4216      }
4217    }
4218    if (BothLiveOut)
4219      // Both unextended and extended values are live out. There had better be
4220      // a good reason for the transformation.
4221      return ExtendNodes.size();
4222  }
4223  return true;
4224}
4225
4226void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4227                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4228                                  ISD::NodeType ExtType) {
4229  // Extend SetCC uses if necessary.
4230  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4231    SDNode *SetCC = SetCCs[i];
4232    SmallVector<SDValue, 4> Ops;
4233
4234    for (unsigned j = 0; j != 2; ++j) {
4235      SDValue SOp = SetCC->getOperand(j);
4236      if (SOp == Trunc)
4237        Ops.push_back(ExtLoad);
4238      else
4239        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4240    }
4241
4242    Ops.push_back(SetCC->getOperand(2));
4243    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4244                                 &Ops[0], Ops.size()));
4245  }
4246}
4247
4248SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4249  SDValue N0 = N->getOperand(0);
4250  EVT VT = N->getValueType(0);
4251
4252  // fold (sext c1) -> c1
4253  if (isa<ConstantSDNode>(N0))
4254    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4255
4256  // fold (sext (sext x)) -> (sext x)
4257  // fold (sext (aext x)) -> (sext x)
4258  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4259    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4260                       N0.getOperand(0));
4261
4262  if (N0.getOpcode() == ISD::TRUNCATE) {
4263    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4264    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4265    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4266    if (NarrowLoad.getNode()) {
4267      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4268      if (NarrowLoad.getNode() != N0.getNode()) {
4269        CombineTo(N0.getNode(), NarrowLoad);
4270        // CombineTo deleted the truncate, if needed, but not what's under it.
4271        AddToWorkList(oye);
4272      }
4273      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4274    }
4275
4276    // See if the value being truncated is already sign extended.  If so, just
4277    // eliminate the trunc/sext pair.
4278    SDValue Op = N0.getOperand(0);
4279    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4280    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4281    unsigned DestBits = VT.getScalarType().getSizeInBits();
4282    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4283
4284    if (OpBits == DestBits) {
4285      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4286      // bits, it is already ready.
4287      if (NumSignBits > DestBits-MidBits)
4288        return Op;
4289    } else if (OpBits < DestBits) {
4290      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4291      // bits, just sext from i32.
4292      if (NumSignBits > OpBits-MidBits)
4293        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4294    } else {
4295      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4296      // bits, just truncate to i32.
4297      if (NumSignBits > OpBits-MidBits)
4298        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4299    }
4300
4301    // fold (sext (truncate x)) -> (sextinreg x).
4302    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4303                                                 N0.getValueType())) {
4304      if (OpBits < DestBits)
4305        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4306      else if (OpBits > DestBits)
4307        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4308      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4309                         DAG.getValueType(N0.getValueType()));
4310    }
4311  }
4312
4313  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4314  // None of the supported targets knows how to perform load and sign extend
4315  // on vectors in one instruction.  We only perform this transformation on
4316  // scalars.
4317  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4318      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4319       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4320    bool DoXform = true;
4321    SmallVector<SDNode*, 4> SetCCs;
4322    if (!N0.hasOneUse())
4323      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4324    if (DoXform) {
4325      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4326      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4327                                       LN0->getChain(),
4328                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4329                                       N0.getValueType(),
4330                                       LN0->isVolatile(), LN0->isNonTemporal(),
4331                                       LN0->getAlignment());
4332      CombineTo(N, ExtLoad);
4333      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4334                                  N0.getValueType(), ExtLoad);
4335      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4336      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4337                      ISD::SIGN_EXTEND);
4338      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4339    }
4340  }
4341
4342  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4343  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4344  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4345      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4346    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4347    EVT MemVT = LN0->getMemoryVT();
4348    if ((!LegalOperations && !LN0->isVolatile()) ||
4349        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4350      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4351                                       LN0->getChain(),
4352                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4353                                       MemVT,
4354                                       LN0->isVolatile(), LN0->isNonTemporal(),
4355                                       LN0->getAlignment());
4356      CombineTo(N, ExtLoad);
4357      CombineTo(N0.getNode(),
4358                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4359                            N0.getValueType(), ExtLoad),
4360                ExtLoad.getValue(1));
4361      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4362    }
4363  }
4364
4365  // fold (sext (and/or/xor (load x), cst)) ->
4366  //      (and/or/xor (sextload x), (sext cst))
4367  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4368       N0.getOpcode() == ISD::XOR) &&
4369      isa<LoadSDNode>(N0.getOperand(0)) &&
4370      N0.getOperand(1).getOpcode() == ISD::Constant &&
4371      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4372      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4373    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4374    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4375      bool DoXform = true;
4376      SmallVector<SDNode*, 4> SetCCs;
4377      if (!N0.hasOneUse())
4378        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4379                                          SetCCs, TLI);
4380      if (DoXform) {
4381        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4382                                         LN0->getChain(), LN0->getBasePtr(),
4383                                         LN0->getPointerInfo(),
4384                                         LN0->getMemoryVT(),
4385                                         LN0->isVolatile(),
4386                                         LN0->isNonTemporal(),
4387                                         LN0->getAlignment());
4388        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4389        Mask = Mask.sext(VT.getSizeInBits());
4390        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4391                                  ExtLoad, DAG.getConstant(Mask, VT));
4392        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4393                                    N0.getOperand(0).getDebugLoc(),
4394                                    N0.getOperand(0).getValueType(), ExtLoad);
4395        CombineTo(N, And);
4396        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4397        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4398                        ISD::SIGN_EXTEND);
4399        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4400      }
4401    }
4402  }
4403
4404  if (N0.getOpcode() == ISD::SETCC) {
4405    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4406    // Only do this before legalize for now.
4407    if (VT.isVector() && !LegalOperations) {
4408      EVT N0VT = N0.getOperand(0).getValueType();
4409      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4410      // of the same size as the compared operands. Only optimize sext(setcc())
4411      // if this is the case.
4412      EVT SVT = TLI.getSetCCResultType(N0VT);
4413
4414      // We know that the # elements of the results is the same as the
4415      // # elements of the compare (and the # elements of the compare result
4416      // for that matter).  Check to see that they are the same size.  If so,
4417      // we know that the element size of the sext'd result matches the
4418      // element size of the compare operands.
4419      if (VT.getSizeInBits() == SVT.getSizeInBits())
4420        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4421                             N0.getOperand(1),
4422                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4423      // If the desired elements are smaller or larger than the source
4424      // elements we can use a matching integer vector type and then
4425      // truncate/sign extend
4426      EVT MatchingElementType =
4427        EVT::getIntegerVT(*DAG.getContext(),
4428                          N0VT.getScalarType().getSizeInBits());
4429      EVT MatchingVectorType =
4430        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4431                         N0VT.getVectorNumElements());
4432
4433      if (SVT == MatchingVectorType) {
4434        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4435                               N0.getOperand(0), N0.getOperand(1),
4436                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4437        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4438      }
4439    }
4440
4441    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4442    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4443    SDValue NegOne =
4444      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4445    SDValue SCC =
4446      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4447                       NegOne, DAG.getConstant(0, VT),
4448                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4449    if (SCC.getNode()) return SCC;
4450    if (!LegalOperations ||
4451        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4452      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4453                         DAG.getSetCC(N->getDebugLoc(),
4454                                      TLI.getSetCCResultType(VT),
4455                                      N0.getOperand(0), N0.getOperand(1),
4456                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4457                         NegOne, DAG.getConstant(0, VT));
4458  }
4459
4460  // fold (sext x) -> (zext x) if the sign bit is known zero.
4461  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4462      DAG.SignBitIsZero(N0))
4463    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4464
4465  return SDValue();
4466}
4467
4468// isTruncateOf - If N is a truncate of some other value, return true, record
4469// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4470// This function computes KnownZero to avoid a duplicated call to
4471// ComputeMaskedBits in the caller.
4472static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4473                         APInt &KnownZero) {
4474  APInt KnownOne;
4475  if (N->getOpcode() == ISD::TRUNCATE) {
4476    Op = N->getOperand(0);
4477    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4478    return true;
4479  }
4480
4481  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4482      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4483    return false;
4484
4485  SDValue Op0 = N->getOperand(0);
4486  SDValue Op1 = N->getOperand(1);
4487  assert(Op0.getValueType() == Op1.getValueType());
4488
4489  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4490  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4491  if (COp0 && COp0->isNullValue())
4492    Op = Op1;
4493  else if (COp1 && COp1->isNullValue())
4494    Op = Op0;
4495  else
4496    return false;
4497
4498  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4499
4500  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4501    return false;
4502
4503  return true;
4504}
4505
4506SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4507  SDValue N0 = N->getOperand(0);
4508  EVT VT = N->getValueType(0);
4509
4510  // fold (zext c1) -> c1
4511  if (isa<ConstantSDNode>(N0))
4512    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4513  // fold (zext (zext x)) -> (zext x)
4514  // fold (zext (aext x)) -> (zext x)
4515  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4516    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4517                       N0.getOperand(0));
4518
4519  // fold (zext (truncate x)) -> (zext x) or
4520  //      (zext (truncate x)) -> (truncate x)
4521  // This is valid when the truncated bits of x are already zero.
4522  // FIXME: We should extend this to work for vectors too.
4523  SDValue Op;
4524  APInt KnownZero;
4525  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4526    APInt TruncatedBits =
4527      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4528      APInt(Op.getValueSizeInBits(), 0) :
4529      APInt::getBitsSet(Op.getValueSizeInBits(),
4530                        N0.getValueSizeInBits(),
4531                        std::min(Op.getValueSizeInBits(),
4532                                 VT.getSizeInBits()));
4533    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4534      if (VT.bitsGT(Op.getValueType()))
4535        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4536      if (VT.bitsLT(Op.getValueType()))
4537        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4538
4539      return Op;
4540    }
4541  }
4542
4543  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4544  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4545  if (N0.getOpcode() == ISD::TRUNCATE) {
4546    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4547    if (NarrowLoad.getNode()) {
4548      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4549      if (NarrowLoad.getNode() != N0.getNode()) {
4550        CombineTo(N0.getNode(), NarrowLoad);
4551        // CombineTo deleted the truncate, if needed, but not what's under it.
4552        AddToWorkList(oye);
4553      }
4554      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4555    }
4556  }
4557
4558  // fold (zext (truncate x)) -> (and x, mask)
4559  if (N0.getOpcode() == ISD::TRUNCATE &&
4560      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4561
4562    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4563    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4564    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4565    if (NarrowLoad.getNode()) {
4566      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4567      if (NarrowLoad.getNode() != N0.getNode()) {
4568        CombineTo(N0.getNode(), NarrowLoad);
4569        // CombineTo deleted the truncate, if needed, but not what's under it.
4570        AddToWorkList(oye);
4571      }
4572      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4573    }
4574
4575    SDValue Op = N0.getOperand(0);
4576    if (Op.getValueType().bitsLT(VT)) {
4577      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4578      AddToWorkList(Op.getNode());
4579    } else if (Op.getValueType().bitsGT(VT)) {
4580      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4581      AddToWorkList(Op.getNode());
4582    }
4583    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4584                                  N0.getValueType().getScalarType());
4585  }
4586
4587  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4588  // if either of the casts is not free.
4589  if (N0.getOpcode() == ISD::AND &&
4590      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4591      N0.getOperand(1).getOpcode() == ISD::Constant &&
4592      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4593                           N0.getValueType()) ||
4594       !TLI.isZExtFree(N0.getValueType(), VT))) {
4595    SDValue X = N0.getOperand(0).getOperand(0);
4596    if (X.getValueType().bitsLT(VT)) {
4597      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4598    } else if (X.getValueType().bitsGT(VT)) {
4599      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4600    }
4601    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4602    Mask = Mask.zext(VT.getSizeInBits());
4603    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4604                       X, DAG.getConstant(Mask, VT));
4605  }
4606
4607  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4608  // None of the supported targets knows how to perform load and vector_zext
4609  // on vectors in one instruction.  We only perform this transformation on
4610  // scalars.
4611  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4612      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4613       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4614    bool DoXform = true;
4615    SmallVector<SDNode*, 4> SetCCs;
4616    if (!N0.hasOneUse())
4617      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4618    if (DoXform) {
4619      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4620      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4621                                       LN0->getChain(),
4622                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4623                                       N0.getValueType(),
4624                                       LN0->isVolatile(), LN0->isNonTemporal(),
4625                                       LN0->getAlignment());
4626      CombineTo(N, ExtLoad);
4627      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4628                                  N0.getValueType(), ExtLoad);
4629      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4630
4631      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4632                      ISD::ZERO_EXTEND);
4633      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4634    }
4635  }
4636
4637  // fold (zext (and/or/xor (load x), cst)) ->
4638  //      (and/or/xor (zextload x), (zext cst))
4639  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4640       N0.getOpcode() == ISD::XOR) &&
4641      isa<LoadSDNode>(N0.getOperand(0)) &&
4642      N0.getOperand(1).getOpcode() == ISD::Constant &&
4643      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4644      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4645    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4646    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4647      bool DoXform = true;
4648      SmallVector<SDNode*, 4> SetCCs;
4649      if (!N0.hasOneUse())
4650        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4651                                          SetCCs, TLI);
4652      if (DoXform) {
4653        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4654                                         LN0->getChain(), LN0->getBasePtr(),
4655                                         LN0->getPointerInfo(),
4656                                         LN0->getMemoryVT(),
4657                                         LN0->isVolatile(),
4658                                         LN0->isNonTemporal(),
4659                                         LN0->getAlignment());
4660        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4661        Mask = Mask.zext(VT.getSizeInBits());
4662        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4663                                  ExtLoad, DAG.getConstant(Mask, VT));
4664        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4665                                    N0.getOperand(0).getDebugLoc(),
4666                                    N0.getOperand(0).getValueType(), ExtLoad);
4667        CombineTo(N, And);
4668        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4669        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4670                        ISD::ZERO_EXTEND);
4671        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4672      }
4673    }
4674  }
4675
4676  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4677  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4678  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4679      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4680    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4681    EVT MemVT = LN0->getMemoryVT();
4682    if ((!LegalOperations && !LN0->isVolatile()) ||
4683        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4684      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4685                                       LN0->getChain(),
4686                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4687                                       MemVT,
4688                                       LN0->isVolatile(), LN0->isNonTemporal(),
4689                                       LN0->getAlignment());
4690      CombineTo(N, ExtLoad);
4691      CombineTo(N0.getNode(),
4692                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4693                            ExtLoad),
4694                ExtLoad.getValue(1));
4695      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4696    }
4697  }
4698
4699  if (N0.getOpcode() == ISD::SETCC) {
4700    if (!LegalOperations && VT.isVector()) {
4701      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4702      // Only do this before legalize for now.
4703      EVT N0VT = N0.getOperand(0).getValueType();
4704      EVT EltVT = VT.getVectorElementType();
4705      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4706                                    DAG.getConstant(1, EltVT));
4707      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4708        // We know that the # elements of the results is the same as the
4709        // # elements of the compare (and the # elements of the compare result
4710        // for that matter).  Check to see that they are the same size.  If so,
4711        // we know that the element size of the sext'd result matches the
4712        // element size of the compare operands.
4713        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4714                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4715                                         N0.getOperand(1),
4716                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4717                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4718                                       &OneOps[0], OneOps.size()));
4719
4720      // If the desired elements are smaller or larger than the source
4721      // elements we can use a matching integer vector type and then
4722      // truncate/sign extend
4723      EVT MatchingElementType =
4724        EVT::getIntegerVT(*DAG.getContext(),
4725                          N0VT.getScalarType().getSizeInBits());
4726      EVT MatchingVectorType =
4727        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4728                         N0VT.getVectorNumElements());
4729      SDValue VsetCC =
4730        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4731                      N0.getOperand(1),
4732                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4733      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4734                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4735                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4736                                     &OneOps[0], OneOps.size()));
4737    }
4738
4739    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4740    SDValue SCC =
4741      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4742                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4743                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4744    if (SCC.getNode()) return SCC;
4745  }
4746
4747  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4748  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4749      isa<ConstantSDNode>(N0.getOperand(1)) &&
4750      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4751      N0.hasOneUse()) {
4752    SDValue ShAmt = N0.getOperand(1);
4753    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4754    if (N0.getOpcode() == ISD::SHL) {
4755      SDValue InnerZExt = N0.getOperand(0);
4756      // If the original shl may be shifting out bits, do not perform this
4757      // transformation.
4758      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4759        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4760      if (ShAmtVal > KnownZeroBits)
4761        return SDValue();
4762    }
4763
4764    DebugLoc DL = N->getDebugLoc();
4765
4766    // Ensure that the shift amount is wide enough for the shifted value.
4767    if (VT.getSizeInBits() >= 256)
4768      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4769
4770    return DAG.getNode(N0.getOpcode(), DL, VT,
4771                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4772                       ShAmt);
4773  }
4774
4775  return SDValue();
4776}
4777
4778SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4779  SDValue N0 = N->getOperand(0);
4780  EVT VT = N->getValueType(0);
4781
4782  // fold (aext c1) -> c1
4783  if (isa<ConstantSDNode>(N0))
4784    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4785  // fold (aext (aext x)) -> (aext x)
4786  // fold (aext (zext x)) -> (zext x)
4787  // fold (aext (sext x)) -> (sext x)
4788  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4789      N0.getOpcode() == ISD::ZERO_EXTEND ||
4790      N0.getOpcode() == ISD::SIGN_EXTEND)
4791    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4792
4793  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4794  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4795  if (N0.getOpcode() == ISD::TRUNCATE) {
4796    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4797    if (NarrowLoad.getNode()) {
4798      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4799      if (NarrowLoad.getNode() != N0.getNode()) {
4800        CombineTo(N0.getNode(), NarrowLoad);
4801        // CombineTo deleted the truncate, if needed, but not what's under it.
4802        AddToWorkList(oye);
4803      }
4804      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4805    }
4806  }
4807
4808  // fold (aext (truncate x))
4809  if (N0.getOpcode() == ISD::TRUNCATE) {
4810    SDValue TruncOp = N0.getOperand(0);
4811    if (TruncOp.getValueType() == VT)
4812      return TruncOp; // x iff x size == zext size.
4813    if (TruncOp.getValueType().bitsGT(VT))
4814      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4815    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4816  }
4817
4818  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4819  // if the trunc is not free.
4820  if (N0.getOpcode() == ISD::AND &&
4821      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4822      N0.getOperand(1).getOpcode() == ISD::Constant &&
4823      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4824                          N0.getValueType())) {
4825    SDValue X = N0.getOperand(0).getOperand(0);
4826    if (X.getValueType().bitsLT(VT)) {
4827      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4828    } else if (X.getValueType().bitsGT(VT)) {
4829      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4830    }
4831    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4832    Mask = Mask.zext(VT.getSizeInBits());
4833    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4834                       X, DAG.getConstant(Mask, VT));
4835  }
4836
4837  // fold (aext (load x)) -> (aext (truncate (extload x)))
4838  // None of the supported targets knows how to perform load and any_ext
4839  // on vectors in one instruction.  We only perform this transformation on
4840  // scalars.
4841  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4842      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4843       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4844    bool DoXform = true;
4845    SmallVector<SDNode*, 4> SetCCs;
4846    if (!N0.hasOneUse())
4847      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4848    if (DoXform) {
4849      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4850      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4851                                       LN0->getChain(),
4852                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4853                                       N0.getValueType(),
4854                                       LN0->isVolatile(), LN0->isNonTemporal(),
4855                                       LN0->getAlignment());
4856      CombineTo(N, ExtLoad);
4857      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4858                                  N0.getValueType(), ExtLoad);
4859      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4860      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4861                      ISD::ANY_EXTEND);
4862      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4863    }
4864  }
4865
4866  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4867  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4868  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4869  if (N0.getOpcode() == ISD::LOAD &&
4870      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4871      N0.hasOneUse()) {
4872    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4873    EVT MemVT = LN0->getMemoryVT();
4874    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4875                                     VT, LN0->getChain(), LN0->getBasePtr(),
4876                                     LN0->getPointerInfo(), MemVT,
4877                                     LN0->isVolatile(), LN0->isNonTemporal(),
4878                                     LN0->getAlignment());
4879    CombineTo(N, ExtLoad);
4880    CombineTo(N0.getNode(),
4881              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4882                          N0.getValueType(), ExtLoad),
4883              ExtLoad.getValue(1));
4884    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4885  }
4886
4887  if (N0.getOpcode() == ISD::SETCC) {
4888    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4889    // Only do this before legalize for now.
4890    if (VT.isVector() && !LegalOperations) {
4891      EVT N0VT = N0.getOperand(0).getValueType();
4892        // We know that the # elements of the results is the same as the
4893        // # elements of the compare (and the # elements of the compare result
4894        // for that matter).  Check to see that they are the same size.  If so,
4895        // we know that the element size of the sext'd result matches the
4896        // element size of the compare operands.
4897      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4898        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4899                             N0.getOperand(1),
4900                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4901      // If the desired elements are smaller or larger than the source
4902      // elements we can use a matching integer vector type and then
4903      // truncate/sign extend
4904      else {
4905        EVT MatchingElementType =
4906          EVT::getIntegerVT(*DAG.getContext(),
4907                            N0VT.getScalarType().getSizeInBits());
4908        EVT MatchingVectorType =
4909          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4910                           N0VT.getVectorNumElements());
4911        SDValue VsetCC =
4912          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4913                        N0.getOperand(1),
4914                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4915        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4916      }
4917    }
4918
4919    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4920    SDValue SCC =
4921      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4922                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4923                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4924    if (SCC.getNode())
4925      return SCC;
4926  }
4927
4928  return SDValue();
4929}
4930
4931/// GetDemandedBits - See if the specified operand can be simplified with the
4932/// knowledge that only the bits specified by Mask are used.  If so, return the
4933/// simpler operand, otherwise return a null SDValue.
4934SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4935  switch (V.getOpcode()) {
4936  default: break;
4937  case ISD::Constant: {
4938    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4939    assert(CV != 0 && "Const value should be ConstSDNode.");
4940    const APInt &CVal = CV->getAPIntValue();
4941    APInt NewVal = CVal & Mask;
4942    if (NewVal != CVal) {
4943      return DAG.getConstant(NewVal, V.getValueType());
4944    }
4945    break;
4946  }
4947  case ISD::OR:
4948  case ISD::XOR:
4949    // If the LHS or RHS don't contribute bits to the or, drop them.
4950    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
4951      return V.getOperand(1);
4952    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
4953      return V.getOperand(0);
4954    break;
4955  case ISD::SRL:
4956    // Only look at single-use SRLs.
4957    if (!V.getNode()->hasOneUse())
4958      break;
4959    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
4960      // See if we can recursively simplify the LHS.
4961      unsigned Amt = RHSC->getZExtValue();
4962
4963      // Watch out for shift count overflow though.
4964      if (Amt >= Mask.getBitWidth()) break;
4965      APInt NewMask = Mask << Amt;
4966      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
4967      if (SimplifyLHS.getNode())
4968        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
4969                           SimplifyLHS, V.getOperand(1));
4970    }
4971  }
4972  return SDValue();
4973}
4974
4975/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
4976/// bits and then truncated to a narrower type and where N is a multiple
4977/// of number of bits of the narrower type, transform it to a narrower load
4978/// from address + N / num of bits of new type. If the result is to be
4979/// extended, also fold the extension to form a extending load.
4980SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
4981  unsigned Opc = N->getOpcode();
4982
4983  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
4984  SDValue N0 = N->getOperand(0);
4985  EVT VT = N->getValueType(0);
4986  EVT ExtVT = VT;
4987
4988  // This transformation isn't valid for vector loads.
4989  if (VT.isVector())
4990    return SDValue();
4991
4992  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
4993  // extended to VT.
4994  if (Opc == ISD::SIGN_EXTEND_INREG) {
4995    ExtType = ISD::SEXTLOAD;
4996    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
4997  } else if (Opc == ISD::SRL) {
4998    // Another special-case: SRL is basically zero-extending a narrower value.
4999    ExtType = ISD::ZEXTLOAD;
5000    N0 = SDValue(N, 0);
5001    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5002    if (!N01) return SDValue();
5003    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5004                              VT.getSizeInBits() - N01->getZExtValue());
5005  }
5006  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5007    return SDValue();
5008
5009  unsigned EVTBits = ExtVT.getSizeInBits();
5010
5011  // Do not generate loads of non-round integer types since these can
5012  // be expensive (and would be wrong if the type is not byte sized).
5013  if (!ExtVT.isRound())
5014    return SDValue();
5015
5016  unsigned ShAmt = 0;
5017  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5018    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5019      ShAmt = N01->getZExtValue();
5020      // Is the shift amount a multiple of size of VT?
5021      if ((ShAmt & (EVTBits-1)) == 0) {
5022        N0 = N0.getOperand(0);
5023        // Is the load width a multiple of size of VT?
5024        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5025          return SDValue();
5026      }
5027
5028      // At this point, we must have a load or else we can't do the transform.
5029      if (!isa<LoadSDNode>(N0)) return SDValue();
5030
5031      // If the shift amount is larger than the input type then we're not
5032      // accessing any of the loaded bytes.  If the load was a zextload/extload
5033      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5034      // If the load was a sextload then the result is a splat of the sign bit
5035      // of the extended byte.  This is not worth optimizing for.
5036      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5037        return SDValue();
5038    }
5039  }
5040
5041  // If the load is shifted left (and the result isn't shifted back right),
5042  // we can fold the truncate through the shift.
5043  unsigned ShLeftAmt = 0;
5044  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5045      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5046    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5047      ShLeftAmt = N01->getZExtValue();
5048      N0 = N0.getOperand(0);
5049    }
5050  }
5051
5052  // If we haven't found a load, we can't narrow it.  Don't transform one with
5053  // multiple uses, this would require adding a new load.
5054  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse() ||
5055      // Don't change the width of a volatile load.
5056      cast<LoadSDNode>(N0)->isVolatile())
5057    return SDValue();
5058
5059  // Verify that we are actually reducing a load width here.
5060  if (cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits() < EVTBits)
5061    return SDValue();
5062
5063  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5064  EVT PtrType = N0.getOperand(1).getValueType();
5065
5066  if (PtrType == MVT::Untyped || PtrType.isExtended())
5067    // It's not possible to generate a constant of extended or untyped type.
5068    return SDValue();
5069
5070  // For big endian targets, we need to adjust the offset to the pointer to
5071  // load the correct bytes.
5072  if (TLI.isBigEndian()) {
5073    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5074    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5075    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5076  }
5077
5078  uint64_t PtrOff = ShAmt / 8;
5079  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5080  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5081                               PtrType, LN0->getBasePtr(),
5082                               DAG.getConstant(PtrOff, PtrType));
5083  AddToWorkList(NewPtr.getNode());
5084
5085  SDValue Load;
5086  if (ExtType == ISD::NON_EXTLOAD)
5087    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5088                        LN0->getPointerInfo().getWithOffset(PtrOff),
5089                        LN0->isVolatile(), LN0->isNonTemporal(),
5090                        LN0->isInvariant(), NewAlign);
5091  else
5092    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5093                          LN0->getPointerInfo().getWithOffset(PtrOff),
5094                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5095                          NewAlign);
5096
5097  // Replace the old load's chain with the new load's chain.
5098  WorkListRemover DeadNodes(*this);
5099  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5100
5101  // Shift the result left, if we've swallowed a left shift.
5102  SDValue Result = Load;
5103  if (ShLeftAmt != 0) {
5104    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5105    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5106      ShImmTy = VT;
5107    Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5108                         Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5109  }
5110
5111  // Return the new loaded value.
5112  return Result;
5113}
5114
5115SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5116  SDValue N0 = N->getOperand(0);
5117  SDValue N1 = N->getOperand(1);
5118  EVT VT = N->getValueType(0);
5119  EVT EVT = cast<VTSDNode>(N1)->getVT();
5120  unsigned VTBits = VT.getScalarType().getSizeInBits();
5121  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5122
5123  // fold (sext_in_reg c1) -> c1
5124  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5125    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5126
5127  // If the input is already sign extended, just drop the extension.
5128  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5129    return N0;
5130
5131  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5132  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5133      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5134    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5135                       N0.getOperand(0), N1);
5136  }
5137
5138  // fold (sext_in_reg (sext x)) -> (sext x)
5139  // fold (sext_in_reg (aext x)) -> (sext x)
5140  // if x is small enough.
5141  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5142    SDValue N00 = N0.getOperand(0);
5143    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5144        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5145      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5146  }
5147
5148  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5149  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5150    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5151
5152  // fold operands of sext_in_reg based on knowledge that the top bits are not
5153  // demanded.
5154  if (SimplifyDemandedBits(SDValue(N, 0)))
5155    return SDValue(N, 0);
5156
5157  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5158  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5159  SDValue NarrowLoad = ReduceLoadWidth(N);
5160  if (NarrowLoad.getNode())
5161    return NarrowLoad;
5162
5163  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5164  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5165  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5166  if (N0.getOpcode() == ISD::SRL) {
5167    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5168      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5169        // We can turn this into an SRA iff the input to the SRL is already sign
5170        // extended enough.
5171        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5172        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5173          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5174                             N0.getOperand(0), N0.getOperand(1));
5175      }
5176  }
5177
5178  // fold (sext_inreg (extload x)) -> (sextload x)
5179  if (ISD::isEXTLoad(N0.getNode()) &&
5180      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5181      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5182      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5183       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5184    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5185    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5186                                     LN0->getChain(),
5187                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5188                                     EVT,
5189                                     LN0->isVolatile(), LN0->isNonTemporal(),
5190                                     LN0->getAlignment());
5191    CombineTo(N, ExtLoad);
5192    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5193    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5194  }
5195  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5196  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5197      N0.hasOneUse() &&
5198      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5199      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5200       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5201    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5202    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5203                                     LN0->getChain(),
5204                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5205                                     EVT,
5206                                     LN0->isVolatile(), LN0->isNonTemporal(),
5207                                     LN0->getAlignment());
5208    CombineTo(N, ExtLoad);
5209    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5210    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5211  }
5212
5213  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5214  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5215    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5216                                       N0.getOperand(1), false);
5217    if (BSwap.getNode() != 0)
5218      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5219                         BSwap, N1);
5220  }
5221
5222  return SDValue();
5223}
5224
5225SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5226  SDValue N0 = N->getOperand(0);
5227  EVT VT = N->getValueType(0);
5228  bool isLE = TLI.isLittleEndian();
5229
5230  // noop truncate
5231  if (N0.getValueType() == N->getValueType(0))
5232    return N0;
5233  // fold (truncate c1) -> c1
5234  if (isa<ConstantSDNode>(N0))
5235    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5236  // fold (truncate (truncate x)) -> (truncate x)
5237  if (N0.getOpcode() == ISD::TRUNCATE)
5238    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5239  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5240  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5241      N0.getOpcode() == ISD::SIGN_EXTEND ||
5242      N0.getOpcode() == ISD::ANY_EXTEND) {
5243    if (N0.getOperand(0).getValueType().bitsLT(VT))
5244      // if the source is smaller than the dest, we still need an extend
5245      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5246                         N0.getOperand(0));
5247    if (N0.getOperand(0).getValueType().bitsGT(VT))
5248      // if the source is larger than the dest, than we just need the truncate
5249      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5250    // if the source and dest are the same type, we can drop both the extend
5251    // and the truncate.
5252    return N0.getOperand(0);
5253  }
5254
5255  // Fold extract-and-trunc into a narrow extract. For example:
5256  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5257  //   i32 y = TRUNCATE(i64 x)
5258  //        -- becomes --
5259  //   v16i8 b = BITCAST (v2i64 val)
5260  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5261  //
5262  // Note: We only run this optimization after type legalization (which often
5263  // creates this pattern) and before operation legalization after which
5264  // we need to be more careful about the vector instructions that we generate.
5265  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5266      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5267
5268    EVT VecTy = N0.getOperand(0).getValueType();
5269    EVT ExTy = N0.getValueType();
5270    EVT TrTy = N->getValueType(0);
5271
5272    unsigned NumElem = VecTy.getVectorNumElements();
5273    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5274
5275    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5276    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5277
5278    SDValue EltNo = N0->getOperand(1);
5279    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5280      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5281      EVT IndexTy = N0->getOperand(1).getValueType();
5282      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5283
5284      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5285                              NVT, N0.getOperand(0));
5286
5287      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5288                         N->getDebugLoc(), TrTy, V,
5289                         DAG.getConstant(Index, IndexTy));
5290    }
5291  }
5292
5293  // See if we can simplify the input to this truncate through knowledge that
5294  // only the low bits are being used.
5295  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5296  // Currently we only perform this optimization on scalars because vectors
5297  // may have different active low bits.
5298  if (!VT.isVector()) {
5299    SDValue Shorter =
5300      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5301                                               VT.getSizeInBits()));
5302    if (Shorter.getNode())
5303      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5304  }
5305  // fold (truncate (load x)) -> (smaller load x)
5306  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5307  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5308    SDValue Reduced = ReduceLoadWidth(N);
5309    if (Reduced.getNode())
5310      return Reduced;
5311  }
5312  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5313  // where ... are all 'undef'.
5314  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5315    SmallVector<EVT, 8> VTs;
5316    SDValue V;
5317    unsigned Idx = 0;
5318    unsigned NumDefs = 0;
5319
5320    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5321      SDValue X = N0.getOperand(i);
5322      if (X.getOpcode() != ISD::UNDEF) {
5323        V = X;
5324        Idx = i;
5325        NumDefs++;
5326      }
5327      // Stop if more than one members are non-undef.
5328      if (NumDefs > 1)
5329        break;
5330      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5331                                     VT.getVectorElementType(),
5332                                     X.getValueType().getVectorNumElements()));
5333    }
5334
5335    if (NumDefs == 0)
5336      return DAG.getUNDEF(VT);
5337
5338    if (NumDefs == 1) {
5339      assert(V.getNode() && "The single defined operand is empty!");
5340      SmallVector<SDValue, 8> Opnds;
5341      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5342        if (i != Idx) {
5343          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5344          continue;
5345        }
5346        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5347        AddToWorkList(NV.getNode());
5348        Opnds.push_back(NV);
5349      }
5350      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5351                         &Opnds[0], Opnds.size());
5352    }
5353  }
5354
5355  // Simplify the operands using demanded-bits information.
5356  if (!VT.isVector() &&
5357      SimplifyDemandedBits(SDValue(N, 0)))
5358    return SDValue(N, 0);
5359
5360  return SDValue();
5361}
5362
5363static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5364  SDValue Elt = N->getOperand(i);
5365  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5366    return Elt.getNode();
5367  return Elt.getOperand(Elt.getResNo()).getNode();
5368}
5369
5370/// CombineConsecutiveLoads - build_pair (load, load) -> load
5371/// if load locations are consecutive.
5372SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5373  assert(N->getOpcode() == ISD::BUILD_PAIR);
5374
5375  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5376  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5377  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5378      LD1->getPointerInfo().getAddrSpace() !=
5379         LD2->getPointerInfo().getAddrSpace())
5380    return SDValue();
5381  EVT LD1VT = LD1->getValueType(0);
5382
5383  if (ISD::isNON_EXTLoad(LD2) &&
5384      LD2->hasOneUse() &&
5385      // If both are volatile this would reduce the number of volatile loads.
5386      // If one is volatile it might be ok, but play conservative and bail out.
5387      !LD1->isVolatile() &&
5388      !LD2->isVolatile() &&
5389      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5390    unsigned Align = LD1->getAlignment();
5391    unsigned NewAlign = TLI.getDataLayout()->
5392      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5393
5394    if (NewAlign <= Align &&
5395        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5396      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5397                         LD1->getBasePtr(), LD1->getPointerInfo(),
5398                         false, false, false, Align);
5399  }
5400
5401  return SDValue();
5402}
5403
5404SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5405  SDValue N0 = N->getOperand(0);
5406  EVT VT = N->getValueType(0);
5407
5408  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5409  // Only do this before legalize, since afterward the target may be depending
5410  // on the bitconvert.
5411  // First check to see if this is all constant.
5412  if (!LegalTypes &&
5413      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5414      VT.isVector()) {
5415    bool isSimple = true;
5416    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5417      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5418          N0.getOperand(i).getOpcode() != ISD::Constant &&
5419          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5420        isSimple = false;
5421        break;
5422      }
5423
5424    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5425    assert(!DestEltVT.isVector() &&
5426           "Element type of vector ValueType must not be vector!");
5427    if (isSimple)
5428      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5429  }
5430
5431  // If the input is a constant, let getNode fold it.
5432  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5433    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5434    if (Res.getNode() != N) {
5435      if (!LegalOperations ||
5436          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5437        return Res;
5438
5439      // Folding it resulted in an illegal node, and it's too late to
5440      // do that. Clean up the old node and forego the transformation.
5441      // Ideally this won't happen very often, because instcombine
5442      // and the earlier dagcombine runs (where illegal nodes are
5443      // permitted) should have folded most of them already.
5444      DAG.DeleteNode(Res.getNode());
5445    }
5446  }
5447
5448  // (conv (conv x, t1), t2) -> (conv x, t2)
5449  if (N0.getOpcode() == ISD::BITCAST)
5450    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5451                       N0.getOperand(0));
5452
5453  // fold (conv (load x)) -> (load (conv*)x)
5454  // If the resultant load doesn't need a higher alignment than the original!
5455  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5456      // Do not change the width of a volatile load.
5457      !cast<LoadSDNode>(N0)->isVolatile() &&
5458      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5459    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5460    unsigned Align = TLI.getDataLayout()->
5461      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5462    unsigned OrigAlign = LN0->getAlignment();
5463
5464    if (Align <= OrigAlign) {
5465      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5466                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5467                                 LN0->isVolatile(), LN0->isNonTemporal(),
5468                                 LN0->isInvariant(), OrigAlign);
5469      AddToWorkList(N);
5470      CombineTo(N0.getNode(),
5471                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5472                            N0.getValueType(), Load),
5473                Load.getValue(1));
5474      return Load;
5475    }
5476  }
5477
5478  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5479  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5480  // This often reduces constant pool loads.
5481  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5482       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5483      N0.getNode()->hasOneUse() && VT.isInteger() &&
5484      !VT.isVector() && !N0.getValueType().isVector()) {
5485    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5486                                  N0.getOperand(0));
5487    AddToWorkList(NewConv.getNode());
5488
5489    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5490    if (N0.getOpcode() == ISD::FNEG)
5491      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5492                         NewConv, DAG.getConstant(SignBit, VT));
5493    assert(N0.getOpcode() == ISD::FABS);
5494    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5495                       NewConv, DAG.getConstant(~SignBit, VT));
5496  }
5497
5498  // fold (bitconvert (fcopysign cst, x)) ->
5499  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5500  // Note that we don't handle (copysign x, cst) because this can always be
5501  // folded to an fneg or fabs.
5502  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5503      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5504      VT.isInteger() && !VT.isVector()) {
5505    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5506    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5507    if (isTypeLegal(IntXVT)) {
5508      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5509                              IntXVT, N0.getOperand(1));
5510      AddToWorkList(X.getNode());
5511
5512      // If X has a different width than the result/lhs, sext it or truncate it.
5513      unsigned VTWidth = VT.getSizeInBits();
5514      if (OrigXWidth < VTWidth) {
5515        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5516        AddToWorkList(X.getNode());
5517      } else if (OrigXWidth > VTWidth) {
5518        // To get the sign bit in the right place, we have to shift it right
5519        // before truncating.
5520        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5521                        X.getValueType(), X,
5522                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5523        AddToWorkList(X.getNode());
5524        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5525        AddToWorkList(X.getNode());
5526      }
5527
5528      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5529      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5530                      X, DAG.getConstant(SignBit, VT));
5531      AddToWorkList(X.getNode());
5532
5533      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5534                                VT, N0.getOperand(0));
5535      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5536                        Cst, DAG.getConstant(~SignBit, VT));
5537      AddToWorkList(Cst.getNode());
5538
5539      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5540    }
5541  }
5542
5543  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5544  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5545    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5546    if (CombineLD.getNode())
5547      return CombineLD;
5548  }
5549
5550  return SDValue();
5551}
5552
5553SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5554  EVT VT = N->getValueType(0);
5555  return CombineConsecutiveLoads(N, VT);
5556}
5557
5558/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5559/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5560/// destination element value type.
5561SDValue DAGCombiner::
5562ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5563  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5564
5565  // If this is already the right type, we're done.
5566  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5567
5568  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5569  unsigned DstBitSize = DstEltVT.getSizeInBits();
5570
5571  // If this is a conversion of N elements of one type to N elements of another
5572  // type, convert each element.  This handles FP<->INT cases.
5573  if (SrcBitSize == DstBitSize) {
5574    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5575                              BV->getValueType(0).getVectorNumElements());
5576
5577    // Due to the FP element handling below calling this routine recursively,
5578    // we can end up with a scalar-to-vector node here.
5579    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5580      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5581                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5582                                     DstEltVT, BV->getOperand(0)));
5583
5584    SmallVector<SDValue, 8> Ops;
5585    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5586      SDValue Op = BV->getOperand(i);
5587      // If the vector element type is not legal, the BUILD_VECTOR operands
5588      // are promoted and implicitly truncated.  Make that explicit here.
5589      if (Op.getValueType() != SrcEltVT)
5590        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5591      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5592                                DstEltVT, Op));
5593      AddToWorkList(Ops.back().getNode());
5594    }
5595    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5596                       &Ops[0], Ops.size());
5597  }
5598
5599  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5600  // handle annoying details of growing/shrinking FP values, we convert them to
5601  // int first.
5602  if (SrcEltVT.isFloatingPoint()) {
5603    // Convert the input float vector to a int vector where the elements are the
5604    // same sizes.
5605    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5606    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5607    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5608    SrcEltVT = IntVT;
5609  }
5610
5611  // Now we know the input is an integer vector.  If the output is a FP type,
5612  // convert to integer first, then to FP of the right size.
5613  if (DstEltVT.isFloatingPoint()) {
5614    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5615    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5616    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5617
5618    // Next, convert to FP elements of the same size.
5619    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5620  }
5621
5622  // Okay, we know the src/dst types are both integers of differing types.
5623  // Handling growing first.
5624  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5625  if (SrcBitSize < DstBitSize) {
5626    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5627
5628    SmallVector<SDValue, 8> Ops;
5629    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5630         i += NumInputsPerOutput) {
5631      bool isLE = TLI.isLittleEndian();
5632      APInt NewBits = APInt(DstBitSize, 0);
5633      bool EltIsUndef = true;
5634      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5635        // Shift the previously computed bits over.
5636        NewBits <<= SrcBitSize;
5637        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5638        if (Op.getOpcode() == ISD::UNDEF) continue;
5639        EltIsUndef = false;
5640
5641        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5642                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5643      }
5644
5645      if (EltIsUndef)
5646        Ops.push_back(DAG.getUNDEF(DstEltVT));
5647      else
5648        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5649    }
5650
5651    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5652    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5653                       &Ops[0], Ops.size());
5654  }
5655
5656  // Finally, this must be the case where we are shrinking elements: each input
5657  // turns into multiple outputs.
5658  bool isS2V = ISD::isScalarToVector(BV);
5659  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5660  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5661                            NumOutputsPerInput*BV->getNumOperands());
5662  SmallVector<SDValue, 8> Ops;
5663
5664  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5665    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5666      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5667        Ops.push_back(DAG.getUNDEF(DstEltVT));
5668      continue;
5669    }
5670
5671    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5672                  getAPIntValue().zextOrTrunc(SrcBitSize);
5673
5674    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5675      APInt ThisVal = OpVal.trunc(DstBitSize);
5676      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5677      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5678        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5679        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5680                           Ops[0]);
5681      OpVal = OpVal.lshr(DstBitSize);
5682    }
5683
5684    // For big endian targets, swap the order of the pieces of each element.
5685    if (TLI.isBigEndian())
5686      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5687  }
5688
5689  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5690                     &Ops[0], Ops.size());
5691}
5692
5693SDValue DAGCombiner::visitFADD(SDNode *N) {
5694  SDValue N0 = N->getOperand(0);
5695  SDValue N1 = N->getOperand(1);
5696  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5697  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5698  EVT VT = N->getValueType(0);
5699
5700  // fold vector ops
5701  if (VT.isVector()) {
5702    SDValue FoldedVOp = SimplifyVBinOp(N);
5703    if (FoldedVOp.getNode()) return FoldedVOp;
5704  }
5705
5706  // fold (fadd c1, c2) -> c1 + c2
5707  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5708    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5709  // canonicalize constant to RHS
5710  if (N0CFP && !N1CFP)
5711    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5712  // fold (fadd A, 0) -> A
5713  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5714      N1CFP->getValueAPF().isZero())
5715    return N0;
5716  // fold (fadd A, (fneg B)) -> (fsub A, B)
5717  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5718    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5719    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5720                       GetNegatedExpression(N1, DAG, LegalOperations));
5721  // fold (fadd (fneg A), B) -> (fsub B, A)
5722  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5723    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5724    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5725                       GetNegatedExpression(N0, DAG, LegalOperations));
5726
5727  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5728  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5729      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5730      isa<ConstantFPSDNode>(N0.getOperand(1)))
5731    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5732                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5733                                   N0.getOperand(1), N1));
5734
5735  // In unsafe math mode, we can fold chains of FADD's of the same value
5736  // into multiplications.  This transform is not safe in general because
5737  // we are reducing the number of rounding steps.
5738  if (DAG.getTarget().Options.UnsafeFPMath &&
5739      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5740      !N0CFP && !N1CFP) {
5741    if (N0.getOpcode() == ISD::FMUL) {
5742      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5743      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5744
5745      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5746      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5747        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5748                                     SDValue(CFP00, 0),
5749                                     DAG.getConstantFP(1.0, VT));
5750        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5751                           N1, NewCFP);
5752      }
5753
5754      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5755      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5756        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5757                                     SDValue(CFP01, 0),
5758                                     DAG.getConstantFP(1.0, VT));
5759        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5760                           N1, NewCFP);
5761      }
5762
5763      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5764      if (!CFP00 && !CFP01 && N0.getOperand(0) == N0.getOperand(1) &&
5765          N0.getOperand(0) == N1) {
5766        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5767                           N1, DAG.getConstantFP(3.0, VT));
5768      }
5769
5770      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5771      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5772          N1.getOperand(0) == N1.getOperand(1) &&
5773          N0.getOperand(1) == N1.getOperand(0)) {
5774        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5775                                     SDValue(CFP00, 0),
5776                                     DAG.getConstantFP(2.0, VT));
5777        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5778                           N0.getOperand(1), NewCFP);
5779      }
5780
5781      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5782      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5783          N1.getOperand(0) == N1.getOperand(1) &&
5784          N0.getOperand(0) == N1.getOperand(0)) {
5785        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5786                                     SDValue(CFP01, 0),
5787                                     DAG.getConstantFP(2.0, VT));
5788        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5789                           N0.getOperand(0), NewCFP);
5790      }
5791    }
5792
5793    if (N1.getOpcode() == ISD::FMUL) {
5794      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5795      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5796
5797      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5798      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5799        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5800                                     SDValue(CFP10, 0),
5801                                     DAG.getConstantFP(1.0, VT));
5802        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5803                           N0, NewCFP);
5804      }
5805
5806      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5807      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5808        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5809                                     SDValue(CFP11, 0),
5810                                     DAG.getConstantFP(1.0, VT));
5811        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5812                           N0, NewCFP);
5813      }
5814
5815      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5816      if (!CFP10 && !CFP11 && N1.getOperand(0) == N1.getOperand(1) &&
5817          N1.getOperand(0) == N0) {
5818        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5819                           N0, DAG.getConstantFP(3.0, VT));
5820      }
5821
5822      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5823      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5824          N1.getOperand(0) == N1.getOperand(1) &&
5825          N0.getOperand(1) == N1.getOperand(0)) {
5826        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5827                                     SDValue(CFP10, 0),
5828                                     DAG.getConstantFP(2.0, VT));
5829        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5830                           N0.getOperand(1), NewCFP);
5831      }
5832
5833      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5834      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5835          N1.getOperand(0) == N1.getOperand(1) &&
5836          N0.getOperand(0) == N1.getOperand(0)) {
5837        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5838                                     SDValue(CFP11, 0),
5839                                     DAG.getConstantFP(2.0, VT));
5840        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5841                           N0.getOperand(0), NewCFP);
5842      }
5843    }
5844
5845    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5846    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5847        N0.getOperand(0) == N0.getOperand(1) &&
5848        N1.getOperand(0) == N1.getOperand(1) &&
5849        N0.getOperand(0) == N1.getOperand(0)) {
5850      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5851                         N0.getOperand(0),
5852                         DAG.getConstantFP(4.0, VT));
5853    }
5854  }
5855
5856  // FADD -> FMA combines:
5857  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5858       DAG.getTarget().Options.UnsafeFPMath) &&
5859      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5860      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5861
5862    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5863    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5864      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5865                         N0.getOperand(0), N0.getOperand(1), N1);
5866    }
5867
5868    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5869    // Note: Commutes FADD operands.
5870    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5871      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5872                         N1.getOperand(0), N1.getOperand(1), N0);
5873    }
5874  }
5875
5876  return SDValue();
5877}
5878
5879SDValue DAGCombiner::visitFSUB(SDNode *N) {
5880  SDValue N0 = N->getOperand(0);
5881  SDValue N1 = N->getOperand(1);
5882  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5883  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5884  EVT VT = N->getValueType(0);
5885  DebugLoc dl = N->getDebugLoc();
5886
5887  // fold vector ops
5888  if (VT.isVector()) {
5889    SDValue FoldedVOp = SimplifyVBinOp(N);
5890    if (FoldedVOp.getNode()) return FoldedVOp;
5891  }
5892
5893  // fold (fsub c1, c2) -> c1-c2
5894  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5895    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
5896  // fold (fsub A, 0) -> A
5897  if (DAG.getTarget().Options.UnsafeFPMath &&
5898      N1CFP && N1CFP->getValueAPF().isZero())
5899    return N0;
5900  // fold (fsub 0, B) -> -B
5901  if (DAG.getTarget().Options.UnsafeFPMath &&
5902      N0CFP && N0CFP->getValueAPF().isZero()) {
5903    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5904      return GetNegatedExpression(N1, DAG, LegalOperations);
5905    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
5906      return DAG.getNode(ISD::FNEG, dl, VT, N1);
5907  }
5908  // fold (fsub A, (fneg B)) -> (fadd A, B)
5909  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
5910    return DAG.getNode(ISD::FADD, dl, VT, N0,
5911                       GetNegatedExpression(N1, DAG, LegalOperations));
5912
5913  // If 'unsafe math' is enabled, fold
5914  //    (fsub x, x) -> 0.0 &
5915  //    (fsub x, (fadd x, y)) -> (fneg y) &
5916  //    (fsub x, (fadd y, x)) -> (fneg y)
5917  if (DAG.getTarget().Options.UnsafeFPMath) {
5918    if (N0 == N1)
5919      return DAG.getConstantFP(0.0f, VT);
5920
5921    if (N1.getOpcode() == ISD::FADD) {
5922      SDValue N10 = N1->getOperand(0);
5923      SDValue N11 = N1->getOperand(1);
5924
5925      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
5926                                          &DAG.getTarget().Options))
5927        return GetNegatedExpression(N11, DAG, LegalOperations);
5928      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
5929                                               &DAG.getTarget().Options))
5930        return GetNegatedExpression(N10, DAG, LegalOperations);
5931    }
5932  }
5933
5934  // FSUB -> FMA combines:
5935  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5936       DAG.getTarget().Options.UnsafeFPMath) &&
5937      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5938      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5939
5940    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
5941    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5942      return DAG.getNode(ISD::FMA, dl, VT,
5943                         N0.getOperand(0), N0.getOperand(1),
5944                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5945    }
5946
5947    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
5948    // Note: Commutes FSUB operands.
5949    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5950      return DAG.getNode(ISD::FMA, dl, VT,
5951                         DAG.getNode(ISD::FNEG, dl, VT,
5952                         N1.getOperand(0)),
5953                         N1.getOperand(1), N0);
5954    }
5955
5956    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
5957    if (N0.getOpcode() == ISD::FNEG &&
5958        N0.getOperand(0).getOpcode() == ISD::FMUL &&
5959        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
5960      SDValue N00 = N0.getOperand(0).getOperand(0);
5961      SDValue N01 = N0.getOperand(0).getOperand(1);
5962      return DAG.getNode(ISD::FMA, dl, VT,
5963                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
5964                         DAG.getNode(ISD::FNEG, dl, VT, N1));
5965    }
5966  }
5967
5968  return SDValue();
5969}
5970
5971SDValue DAGCombiner::visitFMUL(SDNode *N) {
5972  SDValue N0 = N->getOperand(0);
5973  SDValue N1 = N->getOperand(1);
5974  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5975  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5976  EVT VT = N->getValueType(0);
5977  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5978
5979  // fold vector ops
5980  if (VT.isVector()) {
5981    SDValue FoldedVOp = SimplifyVBinOp(N);
5982    if (FoldedVOp.getNode()) return FoldedVOp;
5983  }
5984
5985  // fold (fmul c1, c2) -> c1*c2
5986  if (N0CFP && N1CFP && VT != MVT::ppcf128)
5987    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
5988  // canonicalize constant to RHS
5989  if (N0CFP && !N1CFP)
5990    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
5991  // fold (fmul A, 0) -> 0
5992  if (DAG.getTarget().Options.UnsafeFPMath &&
5993      N1CFP && N1CFP->getValueAPF().isZero())
5994    return N1;
5995  // fold (fmul A, 0) -> 0, vector edition.
5996  if (DAG.getTarget().Options.UnsafeFPMath &&
5997      ISD::isBuildVectorAllZeros(N1.getNode()))
5998    return N1;
5999  // fold (fmul A, 1.0) -> A
6000  if (N1CFP && N1CFP->isExactlyValue(1.0))
6001    return N0;
6002  // fold (fmul X, 2.0) -> (fadd X, X)
6003  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6004    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6005  // fold (fmul X, -1.0) -> (fneg X)
6006  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6007    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6008      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6009
6010  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6011  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6012                                       &DAG.getTarget().Options)) {
6013    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6014                                         &DAG.getTarget().Options)) {
6015      // Both can be negated for free, check to see if at least one is cheaper
6016      // negated.
6017      if (LHSNeg == 2 || RHSNeg == 2)
6018        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6019                           GetNegatedExpression(N0, DAG, LegalOperations),
6020                           GetNegatedExpression(N1, DAG, LegalOperations));
6021    }
6022  }
6023
6024  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6025  if (DAG.getTarget().Options.UnsafeFPMath &&
6026      N1CFP && N0.getOpcode() == ISD::FMUL &&
6027      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6028    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6029                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6030                                   N0.getOperand(1), N1));
6031
6032  return SDValue();
6033}
6034
6035SDValue DAGCombiner::visitFMA(SDNode *N) {
6036  SDValue N0 = N->getOperand(0);
6037  SDValue N1 = N->getOperand(1);
6038  SDValue N2 = N->getOperand(2);
6039  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6040  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6041  EVT VT = N->getValueType(0);
6042  DebugLoc dl = N->getDebugLoc();
6043
6044  if (N0CFP && N0CFP->isExactlyValue(1.0))
6045    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6046  if (N1CFP && N1CFP->isExactlyValue(1.0))
6047    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6048
6049  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6050  if (N0CFP && !N1CFP)
6051    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6052
6053  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6054  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6055      N2.getOpcode() == ISD::FMUL &&
6056      N0 == N2.getOperand(0) &&
6057      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6058    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6059                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6060  }
6061
6062
6063  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6064  if (DAG.getTarget().Options.UnsafeFPMath &&
6065      N0.getOpcode() == ISD::FMUL && N1CFP &&
6066      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6067    return DAG.getNode(ISD::FMA, dl, VT,
6068                       N0.getOperand(0),
6069                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6070                       N2);
6071  }
6072
6073  // (fma x, 1, y) -> (fadd x, y)
6074  // (fma x, -1, y) -> (fadd (fneg x), y)
6075  if (N1CFP) {
6076    if (N1CFP->isExactlyValue(1.0))
6077      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6078
6079    if (N1CFP->isExactlyValue(-1.0) &&
6080        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6081      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6082      AddToWorkList(RHSNeg.getNode());
6083      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6084    }
6085  }
6086
6087  // (fma x, c, x) -> (fmul x, (c+1))
6088  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6089    return DAG.getNode(ISD::FMUL, dl, VT,
6090                       N0,
6091                       DAG.getNode(ISD::FADD, dl, VT,
6092                                   N1, DAG.getConstantFP(1.0, VT)));
6093  }
6094
6095  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6096  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6097      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6098    return DAG.getNode(ISD::FMUL, dl, VT,
6099                       N0,
6100                       DAG.getNode(ISD::FADD, dl, VT,
6101                                   N1, DAG.getConstantFP(-1.0, VT)));
6102  }
6103
6104
6105  return SDValue();
6106}
6107
6108SDValue DAGCombiner::visitFDIV(SDNode *N) {
6109  SDValue N0 = N->getOperand(0);
6110  SDValue N1 = N->getOperand(1);
6111  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6112  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6113  EVT VT = N->getValueType(0);
6114  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6115
6116  // fold vector ops
6117  if (VT.isVector()) {
6118    SDValue FoldedVOp = SimplifyVBinOp(N);
6119    if (FoldedVOp.getNode()) return FoldedVOp;
6120  }
6121
6122  // fold (fdiv c1, c2) -> c1/c2
6123  if (N0CFP && N1CFP && VT != MVT::ppcf128)
6124    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6125
6126  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6127  if (N1CFP && VT != MVT::ppcf128 && DAG.getTarget().Options.UnsafeFPMath) {
6128    // Compute the reciprocal 1.0 / c2.
6129    APFloat N1APF = N1CFP->getValueAPF();
6130    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6131    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6132    // Only do the transform if the reciprocal is a legal fp immediate that
6133    // isn't too nasty (eg NaN, denormal, ...).
6134    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6135        (!LegalOperations ||
6136         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6137         // backend)... we should handle this gracefully after Legalize.
6138         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6139         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6140         TLI.isFPImmLegal(Recip, VT)))
6141      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6142                         DAG.getConstantFP(Recip, VT));
6143  }
6144
6145  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6146  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6147                                       &DAG.getTarget().Options)) {
6148    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6149                                         &DAG.getTarget().Options)) {
6150      // Both can be negated for free, check to see if at least one is cheaper
6151      // negated.
6152      if (LHSNeg == 2 || RHSNeg == 2)
6153        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6154                           GetNegatedExpression(N0, DAG, LegalOperations),
6155                           GetNegatedExpression(N1, DAG, LegalOperations));
6156    }
6157  }
6158
6159  return SDValue();
6160}
6161
6162SDValue DAGCombiner::visitFREM(SDNode *N) {
6163  SDValue N0 = N->getOperand(0);
6164  SDValue N1 = N->getOperand(1);
6165  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6166  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6167  EVT VT = N->getValueType(0);
6168
6169  // fold (frem c1, c2) -> fmod(c1,c2)
6170  if (N0CFP && N1CFP && VT != MVT::ppcf128)
6171    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6172
6173  return SDValue();
6174}
6175
6176SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6177  SDValue N0 = N->getOperand(0);
6178  SDValue N1 = N->getOperand(1);
6179  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6180  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6181  EVT VT = N->getValueType(0);
6182
6183  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
6184    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6185
6186  if (N1CFP) {
6187    const APFloat& V = N1CFP->getValueAPF();
6188    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6189    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6190    if (!V.isNegative()) {
6191      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6192        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6193    } else {
6194      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6195        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6196                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6197    }
6198  }
6199
6200  // copysign(fabs(x), y) -> copysign(x, y)
6201  // copysign(fneg(x), y) -> copysign(x, y)
6202  // copysign(copysign(x,z), y) -> copysign(x, y)
6203  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6204      N0.getOpcode() == ISD::FCOPYSIGN)
6205    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6206                       N0.getOperand(0), N1);
6207
6208  // copysign(x, abs(y)) -> abs(x)
6209  if (N1.getOpcode() == ISD::FABS)
6210    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6211
6212  // copysign(x, copysign(y,z)) -> copysign(x, z)
6213  if (N1.getOpcode() == ISD::FCOPYSIGN)
6214    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6215                       N0, N1.getOperand(1));
6216
6217  // copysign(x, fp_extend(y)) -> copysign(x, y)
6218  // copysign(x, fp_round(y)) -> copysign(x, y)
6219  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6220    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6221                       N0, N1.getOperand(0));
6222
6223  return SDValue();
6224}
6225
6226SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6227  SDValue N0 = N->getOperand(0);
6228  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6229  EVT VT = N->getValueType(0);
6230  EVT OpVT = N0.getValueType();
6231
6232  // fold (sint_to_fp c1) -> c1fp
6233  if (N0C && OpVT != MVT::ppcf128 &&
6234      // ...but only if the target supports immediate floating-point values
6235      (!LegalOperations ||
6236       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6237    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6238
6239  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6240  // but UINT_TO_FP is legal on this target, try to convert.
6241  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6242      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6243    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6244    if (DAG.SignBitIsZero(N0))
6245      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6246  }
6247
6248  // The next optimizations are desireable only if SELECT_CC can be lowered.
6249  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6250  // having to say they don't support SELECT_CC on every type the DAG knows
6251  // about, since there is no way to mark an opcode illegal at all value types
6252  // (See also visitSELECT)
6253  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6254    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6255    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6256        !VT.isVector() &&
6257        (!LegalOperations ||
6258         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6259      SDValue Ops[] =
6260        { N0.getOperand(0), N0.getOperand(1),
6261          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6262          N0.getOperand(2) };
6263      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6264    }
6265
6266    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6267    //      (select_cc x, y, 1.0, 0.0,, cc)
6268    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6269        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6270        (!LegalOperations ||
6271         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6272      SDValue Ops[] =
6273        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6274          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6275          N0.getOperand(0).getOperand(2) };
6276      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6277    }
6278  }
6279
6280  return SDValue();
6281}
6282
6283SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6284  SDValue N0 = N->getOperand(0);
6285  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6286  EVT VT = N->getValueType(0);
6287  EVT OpVT = N0.getValueType();
6288
6289  // fold (uint_to_fp c1) -> c1fp
6290  if (N0C && OpVT != MVT::ppcf128 &&
6291      // ...but only if the target supports immediate floating-point values
6292      (!LegalOperations ||
6293       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6294    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6295
6296  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6297  // but SINT_TO_FP is legal on this target, try to convert.
6298  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6299      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6300    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6301    if (DAG.SignBitIsZero(N0))
6302      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6303  }
6304
6305  // The next optimizations are desireable only if SELECT_CC can be lowered.
6306  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6307  // having to say they don't support SELECT_CC on every type the DAG knows
6308  // about, since there is no way to mark an opcode illegal at all value types
6309  // (See also visitSELECT)
6310  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6311    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6312
6313    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6314        (!LegalOperations ||
6315         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6316      SDValue Ops[] =
6317        { N0.getOperand(0), N0.getOperand(1),
6318          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6319          N0.getOperand(2) };
6320      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6321    }
6322  }
6323
6324  return SDValue();
6325}
6326
6327SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6328  SDValue N0 = N->getOperand(0);
6329  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6330  EVT VT = N->getValueType(0);
6331
6332  // fold (fp_to_sint c1fp) -> c1
6333  if (N0CFP)
6334    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6335
6336  return SDValue();
6337}
6338
6339SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6340  SDValue N0 = N->getOperand(0);
6341  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6342  EVT VT = N->getValueType(0);
6343
6344  // fold (fp_to_uint c1fp) -> c1
6345  if (N0CFP && VT != MVT::ppcf128)
6346    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6347
6348  return SDValue();
6349}
6350
6351SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6352  SDValue N0 = N->getOperand(0);
6353  SDValue N1 = N->getOperand(1);
6354  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6355  EVT VT = N->getValueType(0);
6356
6357  // fold (fp_round c1fp) -> c1fp
6358  if (N0CFP && N0.getValueType() != MVT::ppcf128)
6359    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6360
6361  // fold (fp_round (fp_extend x)) -> x
6362  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6363    return N0.getOperand(0);
6364
6365  // fold (fp_round (fp_round x)) -> (fp_round x)
6366  if (N0.getOpcode() == ISD::FP_ROUND) {
6367    // This is a value preserving truncation if both round's are.
6368    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6369                   N0.getNode()->getConstantOperandVal(1) == 1;
6370    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6371                       DAG.getIntPtrConstant(IsTrunc));
6372  }
6373
6374  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6375  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6376    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6377                              N0.getOperand(0), N1);
6378    AddToWorkList(Tmp.getNode());
6379    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6380                       Tmp, N0.getOperand(1));
6381  }
6382
6383  return SDValue();
6384}
6385
6386SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6387  SDValue N0 = N->getOperand(0);
6388  EVT VT = N->getValueType(0);
6389  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6390  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6391
6392  // fold (fp_round_inreg c1fp) -> c1fp
6393  if (N0CFP && isTypeLegal(EVT)) {
6394    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6395    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6396  }
6397
6398  return SDValue();
6399}
6400
6401SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6402  SDValue N0 = N->getOperand(0);
6403  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6404  EVT VT = N->getValueType(0);
6405
6406  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6407  if (N->hasOneUse() &&
6408      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6409    return SDValue();
6410
6411  // fold (fp_extend c1fp) -> c1fp
6412  if (N0CFP && VT != MVT::ppcf128)
6413    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6414
6415  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6416  // value of X.
6417  if (N0.getOpcode() == ISD::FP_ROUND
6418      && N0.getNode()->getConstantOperandVal(1) == 1) {
6419    SDValue In = N0.getOperand(0);
6420    if (In.getValueType() == VT) return In;
6421    if (VT.bitsLT(In.getValueType()))
6422      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6423                         In, N0.getOperand(1));
6424    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6425  }
6426
6427  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6428  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6429      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6430       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6431    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6432    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6433                                     LN0->getChain(),
6434                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6435                                     N0.getValueType(),
6436                                     LN0->isVolatile(), LN0->isNonTemporal(),
6437                                     LN0->getAlignment());
6438    CombineTo(N, ExtLoad);
6439    CombineTo(N0.getNode(),
6440              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6441                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6442              ExtLoad.getValue(1));
6443    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6444  }
6445
6446  return SDValue();
6447}
6448
6449SDValue DAGCombiner::visitFNEG(SDNode *N) {
6450  SDValue N0 = N->getOperand(0);
6451  EVT VT = N->getValueType(0);
6452
6453  if (VT.isVector()) {
6454    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6455    if (FoldedVOp.getNode()) return FoldedVOp;
6456  }
6457
6458  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6459                         &DAG.getTarget().Options))
6460    return GetNegatedExpression(N0, DAG, LegalOperations);
6461
6462  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6463  // constant pool values.
6464  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6465      !VT.isVector() &&
6466      N0.getNode()->hasOneUse() &&
6467      N0.getOperand(0).getValueType().isInteger()) {
6468    SDValue Int = N0.getOperand(0);
6469    EVT IntVT = Int.getValueType();
6470    if (IntVT.isInteger() && !IntVT.isVector()) {
6471      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6472              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6473      AddToWorkList(Int.getNode());
6474      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6475                         VT, Int);
6476    }
6477  }
6478
6479  // (fneg (fmul c, x)) -> (fmul -c, x)
6480  if (N0.getOpcode() == ISD::FMUL) {
6481    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6482    if (CFP1) {
6483      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6484                         N0.getOperand(0),
6485                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6486                                     N0.getOperand(1)));
6487    }
6488  }
6489
6490  return SDValue();
6491}
6492
6493SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6494  SDValue N0 = N->getOperand(0);
6495  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6496  EVT VT = N->getValueType(0);
6497
6498  // fold (fceil c1) -> fceil(c1)
6499  if (N0CFP && VT != MVT::ppcf128)
6500    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6501
6502  return SDValue();
6503}
6504
6505SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6506  SDValue N0 = N->getOperand(0);
6507  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6508  EVT VT = N->getValueType(0);
6509
6510  // fold (ftrunc c1) -> ftrunc(c1)
6511  if (N0CFP && VT != MVT::ppcf128)
6512    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6513
6514  return SDValue();
6515}
6516
6517SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6518  SDValue N0 = N->getOperand(0);
6519  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6520  EVT VT = N->getValueType(0);
6521
6522  // fold (ffloor c1) -> ffloor(c1)
6523  if (N0CFP && VT != MVT::ppcf128)
6524    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6525
6526  return SDValue();
6527}
6528
6529SDValue DAGCombiner::visitFABS(SDNode *N) {
6530  SDValue N0 = N->getOperand(0);
6531  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6532  EVT VT = N->getValueType(0);
6533
6534  if (VT.isVector()) {
6535    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6536    if (FoldedVOp.getNode()) return FoldedVOp;
6537  }
6538
6539  // fold (fabs c1) -> fabs(c1)
6540  if (N0CFP && VT != MVT::ppcf128)
6541    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6542  // fold (fabs (fabs x)) -> (fabs x)
6543  if (N0.getOpcode() == ISD::FABS)
6544    return N->getOperand(0);
6545  // fold (fabs (fneg x)) -> (fabs x)
6546  // fold (fabs (fcopysign x, y)) -> (fabs x)
6547  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6548    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6549
6550  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6551  // constant pool values.
6552  if (!TLI.isFAbsFree(VT) &&
6553      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6554      N0.getOperand(0).getValueType().isInteger() &&
6555      !N0.getOperand(0).getValueType().isVector()) {
6556    SDValue Int = N0.getOperand(0);
6557    EVT IntVT = Int.getValueType();
6558    if (IntVT.isInteger() && !IntVT.isVector()) {
6559      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6560             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6561      AddToWorkList(Int.getNode());
6562      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6563                         N->getValueType(0), Int);
6564    }
6565  }
6566
6567  return SDValue();
6568}
6569
6570SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6571  SDValue Chain = N->getOperand(0);
6572  SDValue N1 = N->getOperand(1);
6573  SDValue N2 = N->getOperand(2);
6574
6575  // If N is a constant we could fold this into a fallthrough or unconditional
6576  // branch. However that doesn't happen very often in normal code, because
6577  // Instcombine/SimplifyCFG should have handled the available opportunities.
6578  // If we did this folding here, it would be necessary to update the
6579  // MachineBasicBlock CFG, which is awkward.
6580
6581  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6582  // on the target.
6583  if (N1.getOpcode() == ISD::SETCC &&
6584      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6585    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6586                       Chain, N1.getOperand(2),
6587                       N1.getOperand(0), N1.getOperand(1), N2);
6588  }
6589
6590  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6591      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6592       (N1.getOperand(0).hasOneUse() &&
6593        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6594    SDNode *Trunc = 0;
6595    if (N1.getOpcode() == ISD::TRUNCATE) {
6596      // Look pass the truncate.
6597      Trunc = N1.getNode();
6598      N1 = N1.getOperand(0);
6599    }
6600
6601    // Match this pattern so that we can generate simpler code:
6602    //
6603    //   %a = ...
6604    //   %b = and i32 %a, 2
6605    //   %c = srl i32 %b, 1
6606    //   brcond i32 %c ...
6607    //
6608    // into
6609    //
6610    //   %a = ...
6611    //   %b = and i32 %a, 2
6612    //   %c = setcc eq %b, 0
6613    //   brcond %c ...
6614    //
6615    // This applies only when the AND constant value has one bit set and the
6616    // SRL constant is equal to the log2 of the AND constant. The back-end is
6617    // smart enough to convert the result into a TEST/JMP sequence.
6618    SDValue Op0 = N1.getOperand(0);
6619    SDValue Op1 = N1.getOperand(1);
6620
6621    if (Op0.getOpcode() == ISD::AND &&
6622        Op1.getOpcode() == ISD::Constant) {
6623      SDValue AndOp1 = Op0.getOperand(1);
6624
6625      if (AndOp1.getOpcode() == ISD::Constant) {
6626        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6627
6628        if (AndConst.isPowerOf2() &&
6629            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6630          SDValue SetCC =
6631            DAG.getSetCC(N->getDebugLoc(),
6632                         TLI.getSetCCResultType(Op0.getValueType()),
6633                         Op0, DAG.getConstant(0, Op0.getValueType()),
6634                         ISD::SETNE);
6635
6636          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6637                                          MVT::Other, Chain, SetCC, N2);
6638          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6639          // will convert it back to (X & C1) >> C2.
6640          CombineTo(N, NewBRCond, false);
6641          // Truncate is dead.
6642          if (Trunc) {
6643            removeFromWorkList(Trunc);
6644            DAG.DeleteNode(Trunc);
6645          }
6646          // Replace the uses of SRL with SETCC
6647          WorkListRemover DeadNodes(*this);
6648          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6649          removeFromWorkList(N1.getNode());
6650          DAG.DeleteNode(N1.getNode());
6651          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6652        }
6653      }
6654    }
6655
6656    if (Trunc)
6657      // Restore N1 if the above transformation doesn't match.
6658      N1 = N->getOperand(1);
6659  }
6660
6661  // Transform br(xor(x, y)) -> br(x != y)
6662  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6663  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6664    SDNode *TheXor = N1.getNode();
6665    SDValue Op0 = TheXor->getOperand(0);
6666    SDValue Op1 = TheXor->getOperand(1);
6667    if (Op0.getOpcode() == Op1.getOpcode()) {
6668      // Avoid missing important xor optimizations.
6669      SDValue Tmp = visitXOR(TheXor);
6670      if (Tmp.getNode() && Tmp.getNode() != TheXor) {
6671        DEBUG(dbgs() << "\nReplacing.8 ";
6672              TheXor->dump(&DAG);
6673              dbgs() << "\nWith: ";
6674              Tmp.getNode()->dump(&DAG);
6675              dbgs() << '\n');
6676        WorkListRemover DeadNodes(*this);
6677        DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6678        removeFromWorkList(TheXor);
6679        DAG.DeleteNode(TheXor);
6680        return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6681                           MVT::Other, Chain, Tmp, N2);
6682      }
6683    }
6684
6685    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6686      bool Equal = false;
6687      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6688        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6689            Op0.getOpcode() == ISD::XOR) {
6690          TheXor = Op0.getNode();
6691          Equal = true;
6692        }
6693
6694      EVT SetCCVT = N1.getValueType();
6695      if (LegalTypes)
6696        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6697      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6698                                   SetCCVT,
6699                                   Op0, Op1,
6700                                   Equal ? ISD::SETEQ : ISD::SETNE);
6701      // Replace the uses of XOR with SETCC
6702      WorkListRemover DeadNodes(*this);
6703      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6704      removeFromWorkList(N1.getNode());
6705      DAG.DeleteNode(N1.getNode());
6706      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6707                         MVT::Other, Chain, SetCC, N2);
6708    }
6709  }
6710
6711  return SDValue();
6712}
6713
6714// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6715//
6716SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6717  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6718  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6719
6720  // If N is a constant we could fold this into a fallthrough or unconditional
6721  // branch. However that doesn't happen very often in normal code, because
6722  // Instcombine/SimplifyCFG should have handled the available opportunities.
6723  // If we did this folding here, it would be necessary to update the
6724  // MachineBasicBlock CFG, which is awkward.
6725
6726  // Use SimplifySetCC to simplify SETCC's.
6727  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6728                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6729                               false);
6730  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6731
6732  // fold to a simpler setcc
6733  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6734    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6735                       N->getOperand(0), Simp.getOperand(2),
6736                       Simp.getOperand(0), Simp.getOperand(1),
6737                       N->getOperand(4));
6738
6739  return SDValue();
6740}
6741
6742/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6743/// uses N as its base pointer and that N may be folded in the load / store
6744/// addressing mode.
6745static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6746                                    SelectionDAG &DAG,
6747                                    const TargetLowering &TLI) {
6748  EVT VT;
6749  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6750    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6751      return false;
6752    VT = Use->getValueType(0);
6753  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6754    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6755      return false;
6756    VT = ST->getValue().getValueType();
6757  } else
6758    return false;
6759
6760  AddrMode AM;
6761  if (N->getOpcode() == ISD::ADD) {
6762    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6763    if (Offset)
6764      // [reg +/- imm]
6765      AM.BaseOffs = Offset->getSExtValue();
6766    else
6767      // [reg +/- reg]
6768      AM.Scale = 1;
6769  } else if (N->getOpcode() == ISD::SUB) {
6770    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6771    if (Offset)
6772      // [reg +/- imm]
6773      AM.BaseOffs = -Offset->getSExtValue();
6774    else
6775      // [reg +/- reg]
6776      AM.Scale = 1;
6777  } else
6778    return false;
6779
6780  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6781}
6782
6783/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6784/// pre-indexed load / store when the base pointer is an add or subtract
6785/// and it has other uses besides the load / store. After the
6786/// transformation, the new indexed load / store has effectively folded
6787/// the add / subtract in and all of its other uses are redirected to the
6788/// new load / store.
6789bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6790  if (Level < AfterLegalizeDAG)
6791    return false;
6792
6793  bool isLoad = true;
6794  SDValue Ptr;
6795  EVT VT;
6796  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6797    if (LD->isIndexed())
6798      return false;
6799    VT = LD->getMemoryVT();
6800    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6801        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6802      return false;
6803    Ptr = LD->getBasePtr();
6804  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6805    if (ST->isIndexed())
6806      return false;
6807    VT = ST->getMemoryVT();
6808    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6809        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6810      return false;
6811    Ptr = ST->getBasePtr();
6812    isLoad = false;
6813  } else {
6814    return false;
6815  }
6816
6817  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6818  // out.  There is no reason to make this a preinc/predec.
6819  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6820      Ptr.getNode()->hasOneUse())
6821    return false;
6822
6823  // Ask the target to do addressing mode selection.
6824  SDValue BasePtr;
6825  SDValue Offset;
6826  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6827  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6828    return false;
6829  // Don't create a indexed load / store with zero offset.
6830  if (isa<ConstantSDNode>(Offset) &&
6831      cast<ConstantSDNode>(Offset)->isNullValue())
6832    return false;
6833
6834  // Try turning it into a pre-indexed load / store except when:
6835  // 1) The new base ptr is a frame index.
6836  // 2) If N is a store and the new base ptr is either the same as or is a
6837  //    predecessor of the value being stored.
6838  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6839  //    that would create a cycle.
6840  // 4) All uses are load / store ops that use it as old base ptr.
6841
6842  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6843  // (plus the implicit offset) to a register to preinc anyway.
6844  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6845    return false;
6846
6847  // Check #2.
6848  if (!isLoad) {
6849    SDValue Val = cast<StoreSDNode>(N)->getValue();
6850    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6851      return false;
6852  }
6853
6854  // Now check for #3 and #4.
6855  bool RealUse = false;
6856
6857  // Caches for hasPredecessorHelper
6858  SmallPtrSet<const SDNode *, 32> Visited;
6859  SmallVector<const SDNode *, 16> Worklist;
6860
6861  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6862         E = Ptr.getNode()->use_end(); I != E; ++I) {
6863    SDNode *Use = *I;
6864    if (Use == N)
6865      continue;
6866    if (N->hasPredecessorHelper(Use, Visited, Worklist))
6867      return false;
6868
6869    // If Ptr may be folded in addressing mode of other use, then it's
6870    // not profitable to do this transformation.
6871    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
6872      RealUse = true;
6873  }
6874
6875  if (!RealUse)
6876    return false;
6877
6878  SDValue Result;
6879  if (isLoad)
6880    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
6881                                BasePtr, Offset, AM);
6882  else
6883    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
6884                                 BasePtr, Offset, AM);
6885  ++PreIndexedNodes;
6886  ++NodesCombined;
6887  DEBUG(dbgs() << "\nReplacing.4 ";
6888        N->dump(&DAG);
6889        dbgs() << "\nWith: ";
6890        Result.getNode()->dump(&DAG);
6891        dbgs() << '\n');
6892  WorkListRemover DeadNodes(*this);
6893  if (isLoad) {
6894    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
6895    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
6896  } else {
6897    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
6898  }
6899
6900  // Finally, since the node is now dead, remove it from the graph.
6901  DAG.DeleteNode(N);
6902
6903  // Replace the uses of Ptr with uses of the updated base value.
6904  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
6905  removeFromWorkList(Ptr.getNode());
6906  DAG.DeleteNode(Ptr.getNode());
6907
6908  return true;
6909}
6910
6911/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
6912/// add / sub of the base pointer node into a post-indexed load / store.
6913/// The transformation folded the add / subtract into the new indexed
6914/// load / store effectively and all of its uses are redirected to the
6915/// new load / store.
6916bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
6917  if (Level < AfterLegalizeDAG)
6918    return false;
6919
6920  bool isLoad = true;
6921  SDValue Ptr;
6922  EVT VT;
6923  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6924    if (LD->isIndexed())
6925      return false;
6926    VT = LD->getMemoryVT();
6927    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
6928        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
6929      return false;
6930    Ptr = LD->getBasePtr();
6931  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6932    if (ST->isIndexed())
6933      return false;
6934    VT = ST->getMemoryVT();
6935    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
6936        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
6937      return false;
6938    Ptr = ST->getBasePtr();
6939    isLoad = false;
6940  } else {
6941    return false;
6942  }
6943
6944  if (Ptr.getNode()->hasOneUse())
6945    return false;
6946
6947  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
6948         E = Ptr.getNode()->use_end(); I != E; ++I) {
6949    SDNode *Op = *I;
6950    if (Op == N ||
6951        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
6952      continue;
6953
6954    SDValue BasePtr;
6955    SDValue Offset;
6956    ISD::MemIndexedMode AM = ISD::UNINDEXED;
6957    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
6958      // Don't create a indexed load / store with zero offset.
6959      if (isa<ConstantSDNode>(Offset) &&
6960          cast<ConstantSDNode>(Offset)->isNullValue())
6961        continue;
6962
6963      // Try turning it into a post-indexed load / store except when
6964      // 1) All uses are load / store ops that use it as base ptr (and
6965      //    it may be folded as addressing mmode).
6966      // 2) Op must be independent of N, i.e. Op is neither a predecessor
6967      //    nor a successor of N. Otherwise, if Op is folded that would
6968      //    create a cycle.
6969
6970      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6971        continue;
6972
6973      // Check for #1.
6974      bool TryNext = false;
6975      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
6976             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
6977        SDNode *Use = *II;
6978        if (Use == Ptr.getNode())
6979          continue;
6980
6981        // If all the uses are load / store addresses, then don't do the
6982        // transformation.
6983        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
6984          bool RealUse = false;
6985          for (SDNode::use_iterator III = Use->use_begin(),
6986                 EEE = Use->use_end(); III != EEE; ++III) {
6987            SDNode *UseUse = *III;
6988            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
6989              RealUse = true;
6990          }
6991
6992          if (!RealUse) {
6993            TryNext = true;
6994            break;
6995          }
6996        }
6997      }
6998
6999      if (TryNext)
7000        continue;
7001
7002      // Check for #2
7003      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7004        SDValue Result = isLoad
7005          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7006                               BasePtr, Offset, AM)
7007          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7008                                BasePtr, Offset, AM);
7009        ++PostIndexedNodes;
7010        ++NodesCombined;
7011        DEBUG(dbgs() << "\nReplacing.5 ";
7012              N->dump(&DAG);
7013              dbgs() << "\nWith: ";
7014              Result.getNode()->dump(&DAG);
7015              dbgs() << '\n');
7016        WorkListRemover DeadNodes(*this);
7017        if (isLoad) {
7018          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7019          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7020        } else {
7021          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7022        }
7023
7024        // Finally, since the node is now dead, remove it from the graph.
7025        DAG.DeleteNode(N);
7026
7027        // Replace the uses of Use with uses of the updated base value.
7028        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7029                                      Result.getValue(isLoad ? 1 : 0));
7030        removeFromWorkList(Op);
7031        DAG.DeleteNode(Op);
7032        return true;
7033      }
7034    }
7035  }
7036
7037  return false;
7038}
7039
7040SDValue DAGCombiner::visitLOAD(SDNode *N) {
7041  LoadSDNode *LD  = cast<LoadSDNode>(N);
7042  SDValue Chain = LD->getChain();
7043  SDValue Ptr   = LD->getBasePtr();
7044
7045  // If load is not volatile and there are no uses of the loaded value (and
7046  // the updated indexed value in case of indexed loads), change uses of the
7047  // chain value into uses of the chain input (i.e. delete the dead load).
7048  if (!LD->isVolatile()) {
7049    if (N->getValueType(1) == MVT::Other) {
7050      // Unindexed loads.
7051      if (!N->hasAnyUseOfValue(0)) {
7052        // It's not safe to use the two value CombineTo variant here. e.g.
7053        // v1, chain2 = load chain1, loc
7054        // v2, chain3 = load chain2, loc
7055        // v3         = add v2, c
7056        // Now we replace use of chain2 with chain1.  This makes the second load
7057        // isomorphic to the one we are deleting, and thus makes this load live.
7058        DEBUG(dbgs() << "\nReplacing.6 ";
7059              N->dump(&DAG);
7060              dbgs() << "\nWith chain: ";
7061              Chain.getNode()->dump(&DAG);
7062              dbgs() << "\n");
7063        WorkListRemover DeadNodes(*this);
7064        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7065
7066        if (N->use_empty()) {
7067          removeFromWorkList(N);
7068          DAG.DeleteNode(N);
7069        }
7070
7071        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7072      }
7073    } else {
7074      // Indexed loads.
7075      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7076      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7077        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7078        DEBUG(dbgs() << "\nReplacing.7 ";
7079              N->dump(&DAG);
7080              dbgs() << "\nWith: ";
7081              Undef.getNode()->dump(&DAG);
7082              dbgs() << " and 2 other values\n");
7083        WorkListRemover DeadNodes(*this);
7084        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7085        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7086                                      DAG.getUNDEF(N->getValueType(1)));
7087        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7088        removeFromWorkList(N);
7089        DAG.DeleteNode(N);
7090        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7091      }
7092    }
7093  }
7094
7095  // If this load is directly stored, replace the load value with the stored
7096  // value.
7097  // TODO: Handle store large -> read small portion.
7098  // TODO: Handle TRUNCSTORE/LOADEXT
7099  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7100    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7101      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7102      if (PrevST->getBasePtr() == Ptr &&
7103          PrevST->getValue().getValueType() == N->getValueType(0))
7104      return CombineTo(N, Chain.getOperand(1), Chain);
7105    }
7106  }
7107
7108  // Try to infer better alignment information than the load already has.
7109  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7110    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7111      if (Align > LD->getAlignment())
7112        return DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7113                              LD->getValueType(0),
7114                              Chain, Ptr, LD->getPointerInfo(),
7115                              LD->getMemoryVT(),
7116                              LD->isVolatile(), LD->isNonTemporal(), Align);
7117    }
7118  }
7119
7120  if (CombinerAA) {
7121    // Walk up chain skipping non-aliasing memory nodes.
7122    SDValue BetterChain = FindBetterChain(N, Chain);
7123
7124    // If there is a better chain.
7125    if (Chain != BetterChain) {
7126      SDValue ReplLoad;
7127
7128      // Replace the chain to void dependency.
7129      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7130        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7131                               BetterChain, Ptr, LD->getPointerInfo(),
7132                               LD->isVolatile(), LD->isNonTemporal(),
7133                               LD->isInvariant(), LD->getAlignment());
7134      } else {
7135        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7136                                  LD->getValueType(0),
7137                                  BetterChain, Ptr, LD->getPointerInfo(),
7138                                  LD->getMemoryVT(),
7139                                  LD->isVolatile(),
7140                                  LD->isNonTemporal(),
7141                                  LD->getAlignment());
7142      }
7143
7144      // Create token factor to keep old chain connected.
7145      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7146                                  MVT::Other, Chain, ReplLoad.getValue(1));
7147
7148      // Make sure the new and old chains are cleaned up.
7149      AddToWorkList(Token.getNode());
7150
7151      // Replace uses with load result and token factor. Don't add users
7152      // to work list.
7153      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7154    }
7155  }
7156
7157  // Try transforming N to an indexed load.
7158  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7159    return SDValue(N, 0);
7160
7161  return SDValue();
7162}
7163
7164/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7165/// load is having specific bytes cleared out.  If so, return the byte size
7166/// being masked out and the shift amount.
7167static std::pair<unsigned, unsigned>
7168CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7169  std::pair<unsigned, unsigned> Result(0, 0);
7170
7171  // Check for the structure we're looking for.
7172  if (V->getOpcode() != ISD::AND ||
7173      !isa<ConstantSDNode>(V->getOperand(1)) ||
7174      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7175    return Result;
7176
7177  // Check the chain and pointer.
7178  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7179  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7180
7181  // The store should be chained directly to the load or be an operand of a
7182  // tokenfactor.
7183  if (LD == Chain.getNode())
7184    ; // ok.
7185  else if (Chain->getOpcode() != ISD::TokenFactor)
7186    return Result; // Fail.
7187  else {
7188    bool isOk = false;
7189    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7190      if (Chain->getOperand(i).getNode() == LD) {
7191        isOk = true;
7192        break;
7193      }
7194    if (!isOk) return Result;
7195  }
7196
7197  // This only handles simple types.
7198  if (V.getValueType() != MVT::i16 &&
7199      V.getValueType() != MVT::i32 &&
7200      V.getValueType() != MVT::i64)
7201    return Result;
7202
7203  // Check the constant mask.  Invert it so that the bits being masked out are
7204  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7205  // follow the sign bit for uniformity.
7206  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7207  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7208  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7209  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7210  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7211  if (NotMaskLZ == 64) return Result;  // All zero mask.
7212
7213  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7214  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7215    return Result;
7216
7217  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7218  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7219    NotMaskLZ -= 64-V.getValueSizeInBits();
7220
7221  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7222  switch (MaskedBytes) {
7223  case 1:
7224  case 2:
7225  case 4: break;
7226  default: return Result; // All one mask, or 5-byte mask.
7227  }
7228
7229  // Verify that the first bit starts at a multiple of mask so that the access
7230  // is aligned the same as the access width.
7231  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7232
7233  Result.first = MaskedBytes;
7234  Result.second = NotMaskTZ/8;
7235  return Result;
7236}
7237
7238
7239/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7240/// provides a value as specified by MaskInfo.  If so, replace the specified
7241/// store with a narrower store of truncated IVal.
7242static SDNode *
7243ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7244                                SDValue IVal, StoreSDNode *St,
7245                                DAGCombiner *DC) {
7246  unsigned NumBytes = MaskInfo.first;
7247  unsigned ByteShift = MaskInfo.second;
7248  SelectionDAG &DAG = DC->getDAG();
7249
7250  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7251  // that uses this.  If not, this is not a replacement.
7252  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7253                                  ByteShift*8, (ByteShift+NumBytes)*8);
7254  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7255
7256  // Check that it is legal on the target to do this.  It is legal if the new
7257  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7258  // legalization.
7259  MVT VT = MVT::getIntegerVT(NumBytes*8);
7260  if (!DC->isTypeLegal(VT))
7261    return 0;
7262
7263  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7264  // shifted by ByteShift and truncated down to NumBytes.
7265  if (ByteShift)
7266    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7267                       DAG.getConstant(ByteShift*8,
7268                                    DC->getShiftAmountTy(IVal.getValueType())));
7269
7270  // Figure out the offset for the store and the alignment of the access.
7271  unsigned StOffset;
7272  unsigned NewAlign = St->getAlignment();
7273
7274  if (DAG.getTargetLoweringInfo().isLittleEndian())
7275    StOffset = ByteShift;
7276  else
7277    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7278
7279  SDValue Ptr = St->getBasePtr();
7280  if (StOffset) {
7281    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7282                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7283    NewAlign = MinAlign(NewAlign, StOffset);
7284  }
7285
7286  // Truncate down to the new size.
7287  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7288
7289  ++OpsNarrowed;
7290  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7291                      St->getPointerInfo().getWithOffset(StOffset),
7292                      false, false, NewAlign).getNode();
7293}
7294
7295
7296/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7297/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7298/// of the loaded bits, try narrowing the load and store if it would end up
7299/// being a win for performance or code size.
7300SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7301  StoreSDNode *ST  = cast<StoreSDNode>(N);
7302  if (ST->isVolatile())
7303    return SDValue();
7304
7305  SDValue Chain = ST->getChain();
7306  SDValue Value = ST->getValue();
7307  SDValue Ptr   = ST->getBasePtr();
7308  EVT VT = Value.getValueType();
7309
7310  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7311    return SDValue();
7312
7313  unsigned Opc = Value.getOpcode();
7314
7315  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7316  // is a byte mask indicating a consecutive number of bytes, check to see if
7317  // Y is known to provide just those bytes.  If so, we try to replace the
7318  // load + replace + store sequence with a single (narrower) store, which makes
7319  // the load dead.
7320  if (Opc == ISD::OR) {
7321    std::pair<unsigned, unsigned> MaskedLoad;
7322    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7323    if (MaskedLoad.first)
7324      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7325                                                  Value.getOperand(1), ST,this))
7326        return SDValue(NewST, 0);
7327
7328    // Or is commutative, so try swapping X and Y.
7329    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7330    if (MaskedLoad.first)
7331      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7332                                                  Value.getOperand(0), ST,this))
7333        return SDValue(NewST, 0);
7334  }
7335
7336  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7337      Value.getOperand(1).getOpcode() != ISD::Constant)
7338    return SDValue();
7339
7340  SDValue N0 = Value.getOperand(0);
7341  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7342      Chain == SDValue(N0.getNode(), 1)) {
7343    LoadSDNode *LD = cast<LoadSDNode>(N0);
7344    if (LD->getBasePtr() != Ptr ||
7345        LD->getPointerInfo().getAddrSpace() !=
7346        ST->getPointerInfo().getAddrSpace())
7347      return SDValue();
7348
7349    // Find the type to narrow it the load / op / store to.
7350    SDValue N1 = Value.getOperand(1);
7351    unsigned BitWidth = N1.getValueSizeInBits();
7352    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7353    if (Opc == ISD::AND)
7354      Imm ^= APInt::getAllOnesValue(BitWidth);
7355    if (Imm == 0 || Imm.isAllOnesValue())
7356      return SDValue();
7357    unsigned ShAmt = Imm.countTrailingZeros();
7358    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7359    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7360    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7361    while (NewBW < BitWidth &&
7362           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7363             TLI.isNarrowingProfitable(VT, NewVT))) {
7364      NewBW = NextPowerOf2(NewBW);
7365      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7366    }
7367    if (NewBW >= BitWidth)
7368      return SDValue();
7369
7370    // If the lsb changed does not start at the type bitwidth boundary,
7371    // start at the previous one.
7372    if (ShAmt % NewBW)
7373      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7374    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, ShAmt + NewBW);
7375    if ((Imm & Mask) == Imm) {
7376      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7377      if (Opc == ISD::AND)
7378        NewImm ^= APInt::getAllOnesValue(NewBW);
7379      uint64_t PtrOff = ShAmt / 8;
7380      // For big endian targets, we need to adjust the offset to the pointer to
7381      // load the correct bytes.
7382      if (TLI.isBigEndian())
7383        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7384
7385      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7386      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7387      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7388        return SDValue();
7389
7390      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7391                                   Ptr.getValueType(), Ptr,
7392                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7393      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7394                                  LD->getChain(), NewPtr,
7395                                  LD->getPointerInfo().getWithOffset(PtrOff),
7396                                  LD->isVolatile(), LD->isNonTemporal(),
7397                                  LD->isInvariant(), NewAlign);
7398      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7399                                   DAG.getConstant(NewImm, NewVT));
7400      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7401                                   NewVal, NewPtr,
7402                                   ST->getPointerInfo().getWithOffset(PtrOff),
7403                                   false, false, NewAlign);
7404
7405      AddToWorkList(NewPtr.getNode());
7406      AddToWorkList(NewLD.getNode());
7407      AddToWorkList(NewVal.getNode());
7408      WorkListRemover DeadNodes(*this);
7409      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7410      ++OpsNarrowed;
7411      return NewST;
7412    }
7413  }
7414
7415  return SDValue();
7416}
7417
7418/// TransformFPLoadStorePair - For a given floating point load / store pair,
7419/// if the load value isn't used by any other operations, then consider
7420/// transforming the pair to integer load / store operations if the target
7421/// deems the transformation profitable.
7422SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7423  StoreSDNode *ST  = cast<StoreSDNode>(N);
7424  SDValue Chain = ST->getChain();
7425  SDValue Value = ST->getValue();
7426  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7427      Value.hasOneUse() &&
7428      Chain == SDValue(Value.getNode(), 1)) {
7429    LoadSDNode *LD = cast<LoadSDNode>(Value);
7430    EVT VT = LD->getMemoryVT();
7431    if (!VT.isFloatingPoint() ||
7432        VT != ST->getMemoryVT() ||
7433        LD->isNonTemporal() ||
7434        ST->isNonTemporal() ||
7435        LD->getPointerInfo().getAddrSpace() != 0 ||
7436        ST->getPointerInfo().getAddrSpace() != 0)
7437      return SDValue();
7438
7439    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7440    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7441        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7442        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7443        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7444      return SDValue();
7445
7446    unsigned LDAlign = LD->getAlignment();
7447    unsigned STAlign = ST->getAlignment();
7448    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7449    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7450    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7451      return SDValue();
7452
7453    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7454                                LD->getChain(), LD->getBasePtr(),
7455                                LD->getPointerInfo(),
7456                                false, false, false, LDAlign);
7457
7458    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7459                                 NewLD, ST->getBasePtr(),
7460                                 ST->getPointerInfo(),
7461                                 false, false, STAlign);
7462
7463    AddToWorkList(NewLD.getNode());
7464    AddToWorkList(NewST.getNode());
7465    WorkListRemover DeadNodes(*this);
7466    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7467    ++LdStFP2Int;
7468    return NewST;
7469  }
7470
7471  return SDValue();
7472}
7473
7474/// Returns the base pointer and an integer offset from that object.
7475static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7476  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7477    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7478    SDValue Base = Ptr->getOperand(0);
7479    return std::make_pair(Base, Offset);
7480  }
7481
7482  return std::make_pair(Ptr, 0);
7483}
7484
7485/// Holds a pointer to an LSBaseSDNode as well as information on where it
7486/// is located in a sequence of memory operations connected by a chain.
7487struct MemOpLink {
7488  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7489    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7490  // Ptr to the mem node.
7491  LSBaseSDNode *MemNode;
7492  // Offset from the base ptr.
7493  int64_t OffsetFromBase;
7494  // What is the sequence number of this mem node.
7495  // Lowest mem operand in the DAG starts at zero.
7496  unsigned SequenceNum;
7497};
7498
7499/// Sorts store nodes in a link according to their offset from a shared
7500// base ptr.
7501struct ConsecutiveMemoryChainSorter {
7502  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7503    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7504  }
7505};
7506
7507bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7508  EVT MemVT = St->getMemoryVT();
7509  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7510
7511  // Don't merge vectors into wider inputs.
7512  if (MemVT.isVector() || !MemVT.isSimple())
7513    return false;
7514
7515  // Perform an early exit check. Do not bother looking at stored values that
7516  // are not constants or loads.
7517  SDValue StoredVal = St->getValue();
7518  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7519  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7520      !IsLoadSrc)
7521    return false;
7522
7523  // Only look at ends of store sequences.
7524  SDValue Chain = SDValue(St, 1);
7525  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7526    return false;
7527
7528  // This holds the base pointer and the offset in bytes from the base pointer.
7529  std::pair<SDValue, int64_t> BasePtr =
7530      GetPointerBaseAndOffset(St->getBasePtr());
7531
7532  // We must have a base and an offset.
7533  if (!BasePtr.first.getNode())
7534    return false;
7535
7536  // Do not handle stores to undef base pointers.
7537  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7538    return false;
7539
7540  SmallVector<MemOpLink, 8> StoreNodes;
7541  // Walk up the chain and look for nodes with offsets from the same
7542  // base pointer. Stop when reaching an instruction with a different kind
7543  // or instruction which has a different base pointer.
7544  unsigned Seq = 0;
7545  StoreSDNode *Index = St;
7546  while (Index) {
7547    // If the chain has more than one use, then we can't reorder the mem ops.
7548    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7549      break;
7550
7551    // Find the base pointer and offset for this memory node.
7552    std::pair<SDValue, int64_t> Ptr =
7553      GetPointerBaseAndOffset(Index->getBasePtr());
7554
7555    // Check that the base pointer is the same as the original one.
7556    if (Ptr.first.getNode() != BasePtr.first.getNode())
7557      break;
7558
7559    // Check that the alignment is the same.
7560    if (Index->getAlignment() != St->getAlignment())
7561      break;
7562
7563    // The memory operands must not be volatile.
7564    if (Index->isVolatile() || Index->isIndexed())
7565      break;
7566
7567    // No truncation.
7568    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7569      if (St->isTruncatingStore())
7570        break;
7571
7572    // The stored memory type must be the same.
7573    if (Index->getMemoryVT() != MemVT)
7574      break;
7575
7576    // We do not allow unaligned stores because we want to prevent overriding
7577    // stores.
7578    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7579      break;
7580
7581    // We found a potential memory operand to merge.
7582    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7583
7584    // Move up the chain to the next memory operation.
7585    Index = dyn_cast<StoreSDNode>(Index->getChain().getNode());
7586  }
7587
7588  // Check if there is anything to merge.
7589  if (StoreNodes.size() < 2)
7590    return false;
7591
7592  // Sort the memory operands according to their distance from the base pointer.
7593  std::sort(StoreNodes.begin(), StoreNodes.end(),
7594            ConsecutiveMemoryChainSorter());
7595
7596  // Scan the memory operations on the chain and find the first non-consecutive
7597  // store memory address.
7598  unsigned LastConsecutiveStore = 0;
7599  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7600  for (unsigned i=1; i<StoreNodes.size(); ++i) {
7601    int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7602    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7603      break;
7604
7605    // Mark this node as useful.
7606    LastConsecutiveStore = i;
7607  }
7608
7609  // The node with the lowest store address.
7610  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7611
7612  // Store the constants into memory as one consecutive store.
7613  if (!IsLoadSrc) {
7614    unsigned LastLegalType = 0;
7615    unsigned LastLegalVectorType = 0;
7616    bool NonZero = false;
7617    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7618      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7619      SDValue StoredVal = St->getValue();
7620
7621      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7622        NonZero |= !C->isNullValue();
7623      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7624        NonZero |= !C->getConstantFPValue()->isNullValue();
7625      } else {
7626        // Non constant.
7627        break;
7628      }
7629
7630      // Find a legal type for the constant store.
7631      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7632      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7633      if (TLI.isTypeLegal(StoreTy))
7634        LastLegalType = i+1;
7635
7636      // Find a legal type for the vector store.
7637      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7638      if (TLI.isTypeLegal(Ty))
7639        LastLegalVectorType = i + 1;
7640    }
7641
7642    // We only use vectors if the constant is known to be zero.
7643    if (NonZero)
7644      LastLegalVectorType = 0;
7645
7646    // Check if we found a legal integer type to store.
7647    if (LastLegalType == 0 && LastLegalVectorType == 0)
7648      return false;
7649
7650    bool UseVector = LastLegalVectorType > LastLegalType;
7651    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7652
7653    // Make sure we have something to merge.
7654    if (NumElem < 2)
7655      return false;
7656
7657    unsigned EarliestNodeUsed = 0;
7658    for (unsigned i=0; i < NumElem; ++i) {
7659      // Find a chain for the new wide-store operand. Notice that some
7660      // of the store nodes that we found may not be selected for inclusion
7661      // in the wide store. The chain we use needs to be the chain of the
7662      // earliest store node which is *used* and replaced by the wide store.
7663      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7664        EarliestNodeUsed = i;
7665    }
7666
7667    // The earliest Node in the DAG.
7668    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7669    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7670
7671    SDValue StoredVal;
7672    if (UseVector) {
7673      // Find a legal type for the vector store.
7674      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7675      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7676      StoredVal = DAG.getConstant(0, Ty);
7677    } else {
7678      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7679      APInt StoreInt(StoreBW, 0);
7680
7681      // Construct a single integer constant which is made of the smaller
7682      // constant inputs.
7683      bool IsLE = TLI.isLittleEndian();
7684      for (unsigned i = 0; i < NumElem ; ++i) {
7685        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7686        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7687        SDValue Val = St->getValue();
7688        StoreInt<<=ElementSizeBytes*8;
7689        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7690          StoreInt|=C->getAPIntValue().zext(StoreBW);
7691        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7692          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7693        } else {
7694          assert(false && "Invalid constant element type");
7695        }
7696      }
7697
7698      // Create the new Load and Store operations.
7699      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7700      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7701    }
7702
7703    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7704                                    FirstInChain->getBasePtr(),
7705                                    FirstInChain->getPointerInfo(),
7706                                    false, false,
7707                                    FirstInChain->getAlignment());
7708
7709    // Replace the first store with the new store
7710    CombineTo(EarliestOp, NewStore);
7711    // Erase all other stores.
7712    for (unsigned i = 0; i < NumElem ; ++i) {
7713      if (StoreNodes[i].MemNode == EarliestOp)
7714        continue;
7715      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7716      DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7717      removeFromWorkList(St);
7718      DAG.DeleteNode(St);
7719    }
7720
7721    return true;
7722  }
7723
7724  // Below we handle the case of multiple consecutive stores that
7725  // come from multiple consecutive loads. We merge them into a single
7726  // wide load and a single wide store.
7727
7728  // Look for load nodes which are used by the stored values.
7729  SmallVector<MemOpLink, 8> LoadNodes;
7730
7731  // Find acceptable loads. Loads need to have the same chain (token factor),
7732  // must not be zext, volatile, indexed, and they must be consecutive.
7733  SDValue LdBasePtr;
7734  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7735    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7736    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
7737    if (!Ld) break;
7738
7739    // Loads must only have one use.
7740    if (!Ld->hasNUsesOfValue(1, 0))
7741      break;
7742
7743    // Check that the alignment is the same as the stores.
7744    if (Ld->getAlignment() != St->getAlignment())
7745      break;
7746
7747    // The memory operands must not be volatile.
7748    if (Ld->isVolatile() || Ld->isIndexed())
7749      break;
7750
7751    // We do not accept ext loads.
7752    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
7753      break;
7754
7755    // The stored memory type must be the same.
7756    if (Ld->getMemoryVT() != MemVT)
7757      break;
7758
7759    std::pair<SDValue, int64_t> LdPtr =
7760    GetPointerBaseAndOffset(Ld->getBasePtr());
7761
7762    // If this is not the first ptr that we check.
7763    if (LdBasePtr.getNode()) {
7764      // The base ptr must be the same.
7765      if (LdPtr.first != LdBasePtr)
7766        break;
7767    } else {
7768      // Check that all other base pointers are the same as this one.
7769      LdBasePtr = LdPtr.first;
7770    }
7771
7772    // We found a potential memory operand to merge.
7773    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
7774  }
7775
7776  if (LoadNodes.size() < 2)
7777    return false;
7778
7779  // Scan the memory operations on the chain and find the first non-consecutive
7780  // load memory address. These variables hold the index in the store node
7781  // array.
7782  unsigned LastConsecutiveLoad = 0;
7783  // This variable refers to the size and not index in the array.
7784  unsigned LastLegalVectorType = 0;
7785  unsigned LastLegalIntegerType = 0;
7786  StartAddress = LoadNodes[0].OffsetFromBase;
7787  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
7788  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
7789    // All loads much share the same chain.
7790    if (LoadNodes[i].MemNode->getChain() != FirstChain)
7791      break;
7792
7793    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
7794    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7795      break;
7796    LastConsecutiveLoad = i;
7797
7798    // Find a legal type for the vector store.
7799    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7800    if (TLI.isTypeLegal(StoreTy))
7801      LastLegalVectorType = i + 1;
7802
7803    // Find a legal type for the integer store.
7804    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7805    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7806    if (TLI.isTypeLegal(StoreTy))
7807      LastLegalIntegerType = i + 1;
7808  }
7809
7810  // Only use vector types if the vector type is larger than the integer type.
7811  // If they are the same, use integers.
7812  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType;
7813  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
7814
7815  // We add +1 here because the LastXXX variables refer to location while
7816  // the NumElem refers to array/index size.
7817  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
7818  NumElem = std::min(LastLegalType, NumElem);
7819
7820  if (NumElem < 2)
7821    return false;
7822
7823  // The earliest Node in the DAG.
7824  unsigned EarliestNodeUsed = 0;
7825  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7826  for (unsigned i=1; i<NumElem; ++i) {
7827    // Find a chain for the new wide-store operand. Notice that some
7828    // of the store nodes that we found may not be selected for inclusion
7829    // in the wide store. The chain we use needs to be the chain of the
7830    // earliest store node which is *used* and replaced by the wide store.
7831    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7832      EarliestNodeUsed = i;
7833  }
7834
7835  // Find if it is better to use vectors or integers to load and store
7836  // to memory.
7837  EVT JointMemOpVT;
7838  if (UseVectorTy) {
7839    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7840  } else {
7841    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7842    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7843  }
7844
7845  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
7846  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
7847
7848  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
7849  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
7850                                FirstLoad->getChain(),
7851                                FirstLoad->getBasePtr(),
7852                                FirstLoad->getPointerInfo(),
7853                                false, false, false,
7854                                FirstLoad->getAlignment());
7855
7856  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
7857                                  FirstInChain->getBasePtr(),
7858                                  FirstInChain->getPointerInfo(), false, false,
7859                                  FirstInChain->getAlignment());
7860
7861  // Replace one of the loads with the new load.
7862  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
7863  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
7864                                SDValue(NewLoad.getNode(), 1));
7865
7866  // Remove the rest of the load chains.
7867  for (unsigned i = 1; i < NumElem ; ++i) {
7868    // Replace all chain users of the old load nodes with the chain of the new
7869    // load node.
7870    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
7871    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
7872  }
7873
7874  // Replace the first store with the new store.
7875  CombineTo(EarliestOp, NewStore);
7876  // Erase all other stores.
7877  for (unsigned i = 0; i < NumElem ; ++i) {
7878    // Remove all Store nodes.
7879    if (StoreNodes[i].MemNode == EarliestOp)
7880      continue;
7881    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7882    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
7883    removeFromWorkList(St);
7884    DAG.DeleteNode(St);
7885  }
7886
7887  return true;
7888}
7889
7890SDValue DAGCombiner::visitSTORE(SDNode *N) {
7891  StoreSDNode *ST  = cast<StoreSDNode>(N);
7892  SDValue Chain = ST->getChain();
7893  SDValue Value = ST->getValue();
7894  SDValue Ptr   = ST->getBasePtr();
7895
7896  // If this is a store of a bit convert, store the input value if the
7897  // resultant store does not need a higher alignment than the original.
7898  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
7899      ST->isUnindexed()) {
7900    unsigned OrigAlign = ST->getAlignment();
7901    EVT SVT = Value.getOperand(0).getValueType();
7902    unsigned Align = TLI.getDataLayout()->
7903      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
7904    if (Align <= OrigAlign &&
7905        ((!LegalOperations && !ST->isVolatile()) ||
7906         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
7907      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
7908                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
7909                          ST->isNonTemporal(), OrigAlign);
7910  }
7911
7912  // Turn 'store undef, Ptr' -> nothing.
7913  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
7914    return Chain;
7915
7916  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
7917  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
7918    // NOTE: If the original store is volatile, this transform must not increase
7919    // the number of stores.  For example, on x86-32 an f64 can be stored in one
7920    // processor operation but an i64 (which is not legal) requires two.  So the
7921    // transform should not be done in this case.
7922    if (Value.getOpcode() != ISD::TargetConstantFP) {
7923      SDValue Tmp;
7924      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
7925      default: llvm_unreachable("Unknown FP type");
7926      case MVT::f16:    // We don't do this for these yet.
7927      case MVT::f80:
7928      case MVT::f128:
7929      case MVT::ppcf128:
7930        break;
7931      case MVT::f32:
7932        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
7933            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7934          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
7935                              bitcastToAPInt().getZExtValue(), MVT::i32);
7936          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7937                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7938                              ST->isNonTemporal(), ST->getAlignment());
7939        }
7940        break;
7941      case MVT::f64:
7942        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
7943             !ST->isVolatile()) ||
7944            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
7945          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
7946                                getZExtValue(), MVT::i64);
7947          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
7948                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
7949                              ST->isNonTemporal(), ST->getAlignment());
7950        }
7951
7952        if (!ST->isVolatile() &&
7953            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
7954          // Many FP stores are not made apparent until after legalize, e.g. for
7955          // argument passing.  Since this is so common, custom legalize the
7956          // 64-bit integer store into two 32-bit stores.
7957          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
7958          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
7959          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
7960          if (TLI.isBigEndian()) std::swap(Lo, Hi);
7961
7962          unsigned Alignment = ST->getAlignment();
7963          bool isVolatile = ST->isVolatile();
7964          bool isNonTemporal = ST->isNonTemporal();
7965
7966          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
7967                                     Ptr, ST->getPointerInfo(),
7968                                     isVolatile, isNonTemporal,
7969                                     ST->getAlignment());
7970          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
7971                            DAG.getConstant(4, Ptr.getValueType()));
7972          Alignment = MinAlign(Alignment, 4U);
7973          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
7974                                     Ptr, ST->getPointerInfo().getWithOffset(4),
7975                                     isVolatile, isNonTemporal,
7976                                     Alignment);
7977          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
7978                             St0, St1);
7979        }
7980
7981        break;
7982      }
7983    }
7984  }
7985
7986  // Try to infer better alignment information than the store already has.
7987  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
7988    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7989      if (Align > ST->getAlignment())
7990        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
7991                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
7992                                 ST->isVolatile(), ST->isNonTemporal(), Align);
7993    }
7994  }
7995
7996  // Try transforming a pair floating point load / store ops to integer
7997  // load / store ops.
7998  SDValue NewST = TransformFPLoadStorePair(N);
7999  if (NewST.getNode())
8000    return NewST;
8001
8002  if (CombinerAA) {
8003    // Walk up chain skipping non-aliasing memory nodes.
8004    SDValue BetterChain = FindBetterChain(N, Chain);
8005
8006    // If there is a better chain.
8007    if (Chain != BetterChain) {
8008      SDValue ReplStore;
8009
8010      // Replace the chain to avoid dependency.
8011      if (ST->isTruncatingStore()) {
8012        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8013                                      ST->getPointerInfo(),
8014                                      ST->getMemoryVT(), ST->isVolatile(),
8015                                      ST->isNonTemporal(), ST->getAlignment());
8016      } else {
8017        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8018                                 ST->getPointerInfo(),
8019                                 ST->isVolatile(), ST->isNonTemporal(),
8020                                 ST->getAlignment());
8021      }
8022
8023      // Create token to keep both nodes around.
8024      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8025                                  MVT::Other, Chain, ReplStore);
8026
8027      // Make sure the new and old chains are cleaned up.
8028      AddToWorkList(Token.getNode());
8029
8030      // Don't add users to work list.
8031      return CombineTo(N, Token, false);
8032    }
8033  }
8034
8035  // Try transforming N to an indexed store.
8036  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8037    return SDValue(N, 0);
8038
8039  // FIXME: is there such a thing as a truncating indexed store?
8040  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8041      Value.getValueType().isInteger()) {
8042    // See if we can simplify the input to this truncstore with knowledge that
8043    // only the low bits are being used.  For example:
8044    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8045    SDValue Shorter =
8046      GetDemandedBits(Value,
8047                      APInt::getLowBitsSet(
8048                        Value.getValueType().getScalarType().getSizeInBits(),
8049                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8050    AddToWorkList(Value.getNode());
8051    if (Shorter.getNode())
8052      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8053                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8054                               ST->isVolatile(), ST->isNonTemporal(),
8055                               ST->getAlignment());
8056
8057    // Otherwise, see if we can simplify the operation with
8058    // SimplifyDemandedBits, which only works if the value has a single use.
8059    if (SimplifyDemandedBits(Value,
8060                        APInt::getLowBitsSet(
8061                          Value.getValueType().getScalarType().getSizeInBits(),
8062                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8063      return SDValue(N, 0);
8064  }
8065
8066  // If this is a load followed by a store to the same location, then the store
8067  // is dead/noop.
8068  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8069    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8070        ST->isUnindexed() && !ST->isVolatile() &&
8071        // There can't be any side effects between the load and store, such as
8072        // a call or store.
8073        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8074      // The store is dead, remove it.
8075      return Chain;
8076    }
8077  }
8078
8079  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8080  // truncating store.  We can do this even if this is already a truncstore.
8081  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8082      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8083      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8084                            ST->getMemoryVT())) {
8085    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8086                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8087                             ST->isVolatile(), ST->isNonTemporal(),
8088                             ST->getAlignment());
8089  }
8090
8091  // Only perform this optimization before the types are legal, because we
8092  // don't want to perform this optimization on every DAGCombine invocation.
8093  if (!LegalTypes && MergeConsecutiveStores(ST))
8094    return SDValue(N, 0);
8095
8096  return ReduceLoadOpStoreWidth(N);
8097}
8098
8099SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8100  SDValue InVec = N->getOperand(0);
8101  SDValue InVal = N->getOperand(1);
8102  SDValue EltNo = N->getOperand(2);
8103  DebugLoc dl = N->getDebugLoc();
8104
8105  // If the inserted element is an UNDEF, just use the input vector.
8106  if (InVal.getOpcode() == ISD::UNDEF)
8107    return InVec;
8108
8109  EVT VT = InVec.getValueType();
8110
8111  // If we can't generate a legal BUILD_VECTOR, exit
8112  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8113    return SDValue();
8114
8115  // Check that we know which element is being inserted
8116  if (!isa<ConstantSDNode>(EltNo))
8117    return SDValue();
8118  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8119
8120  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8121  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8122  // vector elements.
8123  SmallVector<SDValue, 8> Ops;
8124  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8125    Ops.append(InVec.getNode()->op_begin(),
8126               InVec.getNode()->op_end());
8127  } else if (InVec.getOpcode() == ISD::UNDEF) {
8128    unsigned NElts = VT.getVectorNumElements();
8129    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8130  } else {
8131    return SDValue();
8132  }
8133
8134  // Insert the element
8135  if (Elt < Ops.size()) {
8136    // All the operands of BUILD_VECTOR must have the same type;
8137    // we enforce that here.
8138    EVT OpVT = Ops[0].getValueType();
8139    if (InVal.getValueType() != OpVT)
8140      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8141                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8142                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8143    Ops[Elt] = InVal;
8144  }
8145
8146  // Return the new vector
8147  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8148                     VT, &Ops[0], Ops.size());
8149}
8150
8151SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8152  // (vextract (scalar_to_vector val, 0) -> val
8153  SDValue InVec = N->getOperand(0);
8154  EVT VT = InVec.getValueType();
8155  EVT NVT = N->getValueType(0);
8156
8157  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8158    // Check if the result type doesn't match the inserted element type. A
8159    // SCALAR_TO_VECTOR may truncate the inserted element and the
8160    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8161    SDValue InOp = InVec.getOperand(0);
8162    if (InOp.getValueType() != NVT) {
8163      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8164      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8165    }
8166    return InOp;
8167  }
8168
8169  SDValue EltNo = N->getOperand(1);
8170  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8171
8172  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8173  // We only perform this optimization before the op legalization phase because
8174  // we may introduce new vector instructions which are not backed by TD
8175  // patterns. For example on AVX, extracting elements from a wide vector
8176  // without using extract_subvector.
8177  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8178      && ConstEltNo && !LegalOperations) {
8179    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8180    int NumElem = VT.getVectorNumElements();
8181    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8182    // Find the new index to extract from.
8183    int OrigElt = SVOp->getMaskElt(Elt);
8184
8185    // Extracting an undef index is undef.
8186    if (OrigElt == -1)
8187      return DAG.getUNDEF(NVT);
8188
8189    // Select the right vector half to extract from.
8190    if (OrigElt < NumElem) {
8191      InVec = InVec->getOperand(0);
8192    } else {
8193      InVec = InVec->getOperand(1);
8194      OrigElt -= NumElem;
8195    }
8196
8197    EVT IndexTy = N->getOperand(1).getValueType();
8198    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8199                       InVec, DAG.getConstant(OrigElt, IndexTy));
8200  }
8201
8202  // Perform only after legalization to ensure build_vector / vector_shuffle
8203  // optimizations have already been done.
8204  if (!LegalOperations) return SDValue();
8205
8206  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8207  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8208  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8209
8210  if (ConstEltNo) {
8211    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8212    bool NewLoad = false;
8213    bool BCNumEltsChanged = false;
8214    EVT ExtVT = VT.getVectorElementType();
8215    EVT LVT = ExtVT;
8216
8217    // If the result of load has to be truncated, then it's not necessarily
8218    // profitable.
8219    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8220      return SDValue();
8221
8222    if (InVec.getOpcode() == ISD::BITCAST) {
8223      // Don't duplicate a load with other uses.
8224      if (!InVec.hasOneUse())
8225        return SDValue();
8226
8227      EVT BCVT = InVec.getOperand(0).getValueType();
8228      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8229        return SDValue();
8230      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8231        BCNumEltsChanged = true;
8232      InVec = InVec.getOperand(0);
8233      ExtVT = BCVT.getVectorElementType();
8234      NewLoad = true;
8235    }
8236
8237    LoadSDNode *LN0 = NULL;
8238    const ShuffleVectorSDNode *SVN = NULL;
8239    if (ISD::isNormalLoad(InVec.getNode())) {
8240      LN0 = cast<LoadSDNode>(InVec);
8241    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8242               InVec.getOperand(0).getValueType() == ExtVT &&
8243               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8244      // Don't duplicate a load with other uses.
8245      if (!InVec.hasOneUse())
8246        return SDValue();
8247
8248      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8249    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8250      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8251      // =>
8252      // (load $addr+1*size)
8253
8254      // Don't duplicate a load with other uses.
8255      if (!InVec.hasOneUse())
8256        return SDValue();
8257
8258      // If the bit convert changed the number of elements, it is unsafe
8259      // to examine the mask.
8260      if (BCNumEltsChanged)
8261        return SDValue();
8262
8263      // Select the input vector, guarding against out of range extract vector.
8264      unsigned NumElems = VT.getVectorNumElements();
8265      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8266      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8267
8268      if (InVec.getOpcode() == ISD::BITCAST) {
8269        // Don't duplicate a load with other uses.
8270        if (!InVec.hasOneUse())
8271          return SDValue();
8272
8273        InVec = InVec.getOperand(0);
8274      }
8275      if (ISD::isNormalLoad(InVec.getNode())) {
8276        LN0 = cast<LoadSDNode>(InVec);
8277        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8278      }
8279    }
8280
8281    // Make sure we found a non-volatile load and the extractelement is
8282    // the only use.
8283    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8284      return SDValue();
8285
8286    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8287    if (Elt == -1)
8288      return DAG.getUNDEF(LVT);
8289
8290    unsigned Align = LN0->getAlignment();
8291    if (NewLoad) {
8292      // Check the resultant load doesn't need a higher alignment than the
8293      // original load.
8294      unsigned NewAlign =
8295        TLI.getDataLayout()
8296            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8297
8298      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8299        return SDValue();
8300
8301      Align = NewAlign;
8302    }
8303
8304    SDValue NewPtr = LN0->getBasePtr();
8305    unsigned PtrOff = 0;
8306
8307    if (Elt) {
8308      PtrOff = LVT.getSizeInBits() * Elt / 8;
8309      EVT PtrType = NewPtr.getValueType();
8310      if (TLI.isBigEndian())
8311        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8312      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8313                           DAG.getConstant(PtrOff, PtrType));
8314    }
8315
8316    // The replacement we need to do here is a little tricky: we need to
8317    // replace an extractelement of a load with a load.
8318    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8319    // Note that this replacement assumes that the extractvalue is the only
8320    // use of the load; that's okay because we don't want to perform this
8321    // transformation in other cases anyway.
8322    SDValue Load;
8323    SDValue Chain;
8324    if (NVT.bitsGT(LVT)) {
8325      // If the result type of vextract is wider than the load, then issue an
8326      // extending load instead.
8327      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8328        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8329      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8330                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8331                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8332      Chain = Load.getValue(1);
8333    } else {
8334      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8335                         LN0->getPointerInfo().getWithOffset(PtrOff),
8336                         LN0->isVolatile(), LN0->isNonTemporal(),
8337                         LN0->isInvariant(), Align);
8338      Chain = Load.getValue(1);
8339      if (NVT.bitsLT(LVT))
8340        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8341      else
8342        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8343    }
8344    WorkListRemover DeadNodes(*this);
8345    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8346    SDValue To[] = { Load, Chain };
8347    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8348    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8349    // worklist explicitly as well.
8350    AddToWorkList(Load.getNode());
8351    AddUsersToWorkList(Load.getNode()); // Add users too
8352    // Make sure to revisit this node to clean it up; it will usually be dead.
8353    AddToWorkList(N);
8354    return SDValue(N, 0);
8355  }
8356
8357  return SDValue();
8358}
8359
8360// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8361SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8362  // We perform this optimization post type-legalization because
8363  // the type-legalizer often scalarizes integer-promoted vectors.
8364  // Performing this optimization before may create bit-casts which
8365  // will be type-legalized to complex code sequences.
8366  // We perform this optimization only before the operation legalizer because we
8367  // may introduce illegal operations.
8368  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8369    return SDValue();
8370
8371  unsigned NumInScalars = N->getNumOperands();
8372  DebugLoc dl = N->getDebugLoc();
8373  EVT VT = N->getValueType(0);
8374
8375  // Check to see if this is a BUILD_VECTOR of a bunch of values
8376  // which come from any_extend or zero_extend nodes. If so, we can create
8377  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8378  // optimizations. We do not handle sign-extend because we can't fill the sign
8379  // using shuffles.
8380  EVT SourceType = MVT::Other;
8381  bool AllAnyExt = true;
8382
8383  for (unsigned i = 0; i != NumInScalars; ++i) {
8384    SDValue In = N->getOperand(i);
8385    // Ignore undef inputs.
8386    if (In.getOpcode() == ISD::UNDEF) continue;
8387
8388    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8389    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8390
8391    // Abort if the element is not an extension.
8392    if (!ZeroExt && !AnyExt) {
8393      SourceType = MVT::Other;
8394      break;
8395    }
8396
8397    // The input is a ZeroExt or AnyExt. Check the original type.
8398    EVT InTy = In.getOperand(0).getValueType();
8399
8400    // Check that all of the widened source types are the same.
8401    if (SourceType == MVT::Other)
8402      // First time.
8403      SourceType = InTy;
8404    else if (InTy != SourceType) {
8405      // Multiple income types. Abort.
8406      SourceType = MVT::Other;
8407      break;
8408    }
8409
8410    // Check if all of the extends are ANY_EXTENDs.
8411    AllAnyExt &= AnyExt;
8412  }
8413
8414  // In order to have valid types, all of the inputs must be extended from the
8415  // same source type and all of the inputs must be any or zero extend.
8416  // Scalar sizes must be a power of two.
8417  EVT OutScalarTy = VT.getScalarType();
8418  bool ValidTypes = SourceType != MVT::Other &&
8419                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8420                 isPowerOf2_32(SourceType.getSizeInBits());
8421
8422  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8423  // turn into a single shuffle instruction.
8424  if (!ValidTypes)
8425    return SDValue();
8426
8427  bool isLE = TLI.isLittleEndian();
8428  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8429  assert(ElemRatio > 1 && "Invalid element size ratio");
8430  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8431                               DAG.getConstant(0, SourceType);
8432
8433  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8434  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8435
8436  // Populate the new build_vector
8437  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8438    SDValue Cast = N->getOperand(i);
8439    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8440            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8441            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8442    SDValue In;
8443    if (Cast.getOpcode() == ISD::UNDEF)
8444      In = DAG.getUNDEF(SourceType);
8445    else
8446      In = Cast->getOperand(0);
8447    unsigned Index = isLE ? (i * ElemRatio) :
8448                            (i * ElemRatio + (ElemRatio - 1));
8449
8450    assert(Index < Ops.size() && "Invalid index");
8451    Ops[Index] = In;
8452  }
8453
8454  // The type of the new BUILD_VECTOR node.
8455  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8456  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8457         "Invalid vector size");
8458  // Check if the new vector type is legal.
8459  if (!isTypeLegal(VecVT)) return SDValue();
8460
8461  // Make the new BUILD_VECTOR.
8462  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8463
8464  // The new BUILD_VECTOR node has the potential to be further optimized.
8465  AddToWorkList(BV.getNode());
8466  // Bitcast to the desired type.
8467  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8468}
8469
8470SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8471  unsigned NumInScalars = N->getNumOperands();
8472  DebugLoc dl = N->getDebugLoc();
8473  EVT VT = N->getValueType(0);
8474
8475  // A vector built entirely of undefs is undef.
8476  if (ISD::allOperandsUndef(N))
8477    return DAG.getUNDEF(VT);
8478
8479  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8480  if (V.getNode())
8481    return V;
8482
8483  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8484  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8485  // at most two distinct vectors, turn this into a shuffle node.
8486
8487  // May only combine to shuffle after legalize if shuffle is legal.
8488  if (LegalOperations &&
8489      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8490    return SDValue();
8491
8492  SDValue VecIn1, VecIn2;
8493  for (unsigned i = 0; i != NumInScalars; ++i) {
8494    // Ignore undef inputs.
8495    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8496
8497    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8498    // constant index, bail out.
8499    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8500        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8501      VecIn1 = VecIn2 = SDValue(0, 0);
8502      break;
8503    }
8504
8505    // We allow up to two distinct input vectors.
8506    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8507    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8508      continue;
8509
8510    if (VecIn1.getNode() == 0) {
8511      VecIn1 = ExtractedFromVec;
8512    } else if (VecIn2.getNode() == 0) {
8513      VecIn2 = ExtractedFromVec;
8514    } else {
8515      // Too many inputs.
8516      VecIn1 = VecIn2 = SDValue(0, 0);
8517      break;
8518    }
8519  }
8520
8521    // If everything is good, we can make a shuffle operation.
8522  if (VecIn1.getNode()) {
8523    SmallVector<int, 8> Mask;
8524    for (unsigned i = 0; i != NumInScalars; ++i) {
8525      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8526        Mask.push_back(-1);
8527        continue;
8528      }
8529
8530      // If extracting from the first vector, just use the index directly.
8531      SDValue Extract = N->getOperand(i);
8532      SDValue ExtVal = Extract.getOperand(1);
8533      if (Extract.getOperand(0) == VecIn1) {
8534        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8535        if (ExtIndex > VT.getVectorNumElements())
8536          return SDValue();
8537
8538        Mask.push_back(ExtIndex);
8539        continue;
8540      }
8541
8542      // Otherwise, use InIdx + VecSize
8543      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8544      Mask.push_back(Idx+NumInScalars);
8545    }
8546
8547    // We can't generate a shuffle node with mismatched input and output types.
8548    // Attempt to transform a single input vector to the correct type.
8549    if ((VT != VecIn1.getValueType())) {
8550      // We don't support shuffeling between TWO values of different types.
8551      if (VecIn2.getNode() != 0)
8552        return SDValue();
8553
8554      // We only support widening of vectors which are half the size of the
8555      // output registers. For example XMM->YMM widening on X86 with AVX.
8556      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8557        return SDValue();
8558
8559      // If the input vector type has a different base type to the output
8560      // vector type, bail out.
8561      if (VecIn1.getValueType().getVectorElementType() !=
8562          VT.getVectorElementType())
8563        return SDValue();
8564
8565      // Widen the input vector by adding undef values.
8566      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8567                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8568    }
8569
8570    // If VecIn2 is unused then change it to undef.
8571    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8572
8573    // Check that we were able to transform all incoming values to the same
8574    // type.
8575    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8576        VecIn1.getValueType() != VT)
8577          return SDValue();
8578
8579    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8580    if (!isTypeLegal(VT))
8581      return SDValue();
8582
8583    // Return the new VECTOR_SHUFFLE node.
8584    SDValue Ops[2];
8585    Ops[0] = VecIn1;
8586    Ops[1] = VecIn2;
8587    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8588  }
8589
8590  return SDValue();
8591}
8592
8593SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8594  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8595  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8596  // inputs come from at most two distinct vectors, turn this into a shuffle
8597  // node.
8598
8599  // If we only have one input vector, we don't need to do any concatenation.
8600  if (N->getNumOperands() == 1)
8601    return N->getOperand(0);
8602
8603  // Check if all of the operands are undefs.
8604  if (ISD::allOperandsUndef(N))
8605    return DAG.getUNDEF(N->getValueType(0));
8606
8607  return SDValue();
8608}
8609
8610SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8611  EVT NVT = N->getValueType(0);
8612  SDValue V = N->getOperand(0);
8613
8614  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8615    // Handle only simple case where vector being inserted and vector
8616    // being extracted are of same type, and are half size of larger vectors.
8617    EVT BigVT = V->getOperand(0).getValueType();
8618    EVT SmallVT = V->getOperand(1).getValueType();
8619    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8620      return SDValue();
8621
8622    // Only handle cases where both indexes are constants with the same type.
8623    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8624    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8625
8626    if (InsIdx && ExtIdx &&
8627        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8628        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8629      // Combine:
8630      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8631      // Into:
8632      //    indices are equal => V1
8633      //    otherwise => (extract_subvec V1, ExtIdx)
8634      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
8635        return V->getOperand(1);
8636      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
8637                         V->getOperand(0), N->getOperand(1));
8638    }
8639  }
8640
8641  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
8642    // Combine:
8643    //    (extract_subvec (concat V1, V2, ...), i)
8644    // Into:
8645    //    Vi if possible
8646    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
8647    if (V->getOperand(0).getValueType() != NVT)
8648      return SDValue();
8649    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8650    unsigned NumElems = NVT.getVectorNumElements();
8651    assert((Idx % NumElems) == 0 &&
8652           "IDX in concat is not a multiple of the result vector length.");
8653    return V->getOperand(Idx / NumElems);
8654  }
8655
8656  return SDValue();
8657}
8658
8659SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
8660  EVT VT = N->getValueType(0);
8661  unsigned NumElts = VT.getVectorNumElements();
8662
8663  SDValue N0 = N->getOperand(0);
8664  SDValue N1 = N->getOperand(1);
8665
8666  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
8667
8668  // Canonicalize shuffle undef, undef -> undef
8669  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
8670    return DAG.getUNDEF(VT);
8671
8672  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8673
8674  // Canonicalize shuffle v, v -> v, undef
8675  if (N0 == N1) {
8676    SmallVector<int, 8> NewMask;
8677    for (unsigned i = 0; i != NumElts; ++i) {
8678      int Idx = SVN->getMaskElt(i);
8679      if (Idx >= (int)NumElts) Idx -= NumElts;
8680      NewMask.push_back(Idx);
8681    }
8682    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
8683                                &NewMask[0]);
8684  }
8685
8686  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
8687  if (N0.getOpcode() == ISD::UNDEF) {
8688    SmallVector<int, 8> NewMask;
8689    for (unsigned i = 0; i != NumElts; ++i) {
8690      int Idx = SVN->getMaskElt(i);
8691      if (Idx >= 0) {
8692        if (Idx < (int)NumElts)
8693          Idx += NumElts;
8694        else
8695          Idx -= NumElts;
8696      }
8697      NewMask.push_back(Idx);
8698    }
8699    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
8700                                &NewMask[0]);
8701  }
8702
8703  // Remove references to rhs if it is undef
8704  if (N1.getOpcode() == ISD::UNDEF) {
8705    bool Changed = false;
8706    SmallVector<int, 8> NewMask;
8707    for (unsigned i = 0; i != NumElts; ++i) {
8708      int Idx = SVN->getMaskElt(i);
8709      if (Idx >= (int)NumElts) {
8710        Idx = -1;
8711        Changed = true;
8712      }
8713      NewMask.push_back(Idx);
8714    }
8715    if (Changed)
8716      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
8717  }
8718
8719  // If it is a splat, check if the argument vector is another splat or a
8720  // build_vector with all scalar elements the same.
8721  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
8722    SDNode *V = N0.getNode();
8723
8724    // If this is a bit convert that changes the element type of the vector but
8725    // not the number of vector elements, look through it.  Be careful not to
8726    // look though conversions that change things like v4f32 to v2f64.
8727    if (V->getOpcode() == ISD::BITCAST) {
8728      SDValue ConvInput = V->getOperand(0);
8729      if (ConvInput.getValueType().isVector() &&
8730          ConvInput.getValueType().getVectorNumElements() == NumElts)
8731        V = ConvInput.getNode();
8732    }
8733
8734    if (V->getOpcode() == ISD::BUILD_VECTOR) {
8735      assert(V->getNumOperands() == NumElts &&
8736             "BUILD_VECTOR has wrong number of operands");
8737      SDValue Base;
8738      bool AllSame = true;
8739      for (unsigned i = 0; i != NumElts; ++i) {
8740        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
8741          Base = V->getOperand(i);
8742          break;
8743        }
8744      }
8745      // Splat of <u, u, u, u>, return <u, u, u, u>
8746      if (!Base.getNode())
8747        return N0;
8748      for (unsigned i = 0; i != NumElts; ++i) {
8749        if (V->getOperand(i) != Base) {
8750          AllSame = false;
8751          break;
8752        }
8753      }
8754      // Splat of <x, x, x, x>, return <x, x, x, x>
8755      if (AllSame)
8756        return N0;
8757    }
8758  }
8759
8760  // If this shuffle node is simply a swizzle of another shuffle node,
8761  // and it reverses the swizzle of the previous shuffle then we can
8762  // optimize shuffle(shuffle(x, undef), undef) -> x.
8763  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
8764      N1.getOpcode() == ISD::UNDEF) {
8765
8766    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
8767
8768    // Shuffle nodes can only reverse shuffles with a single non-undef value.
8769    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
8770      return SDValue();
8771
8772    // The incoming shuffle must be of the same type as the result of the
8773    // current shuffle.
8774    assert(OtherSV->getOperand(0).getValueType() == VT &&
8775           "Shuffle types don't match");
8776
8777    for (unsigned i = 0; i != NumElts; ++i) {
8778      int Idx = SVN->getMaskElt(i);
8779      assert(Idx < (int)NumElts && "Index references undef operand");
8780      // Next, this index comes from the first value, which is the incoming
8781      // shuffle. Adopt the incoming index.
8782      if (Idx >= 0)
8783        Idx = OtherSV->getMaskElt(Idx);
8784
8785      // The combined shuffle must map each index to itself.
8786      if (Idx >= 0 && (unsigned)Idx != i)
8787        return SDValue();
8788    }
8789
8790    return OtherSV->getOperand(0);
8791  }
8792
8793  return SDValue();
8794}
8795
8796SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
8797  if (!TLI.getShouldFoldAtomicFences())
8798    return SDValue();
8799
8800  SDValue atomic = N->getOperand(0);
8801  switch (atomic.getOpcode()) {
8802    case ISD::ATOMIC_CMP_SWAP:
8803    case ISD::ATOMIC_SWAP:
8804    case ISD::ATOMIC_LOAD_ADD:
8805    case ISD::ATOMIC_LOAD_SUB:
8806    case ISD::ATOMIC_LOAD_AND:
8807    case ISD::ATOMIC_LOAD_OR:
8808    case ISD::ATOMIC_LOAD_XOR:
8809    case ISD::ATOMIC_LOAD_NAND:
8810    case ISD::ATOMIC_LOAD_MIN:
8811    case ISD::ATOMIC_LOAD_MAX:
8812    case ISD::ATOMIC_LOAD_UMIN:
8813    case ISD::ATOMIC_LOAD_UMAX:
8814      break;
8815    default:
8816      return SDValue();
8817  }
8818
8819  SDValue fence = atomic.getOperand(0);
8820  if (fence.getOpcode() != ISD::MEMBARRIER)
8821    return SDValue();
8822
8823  switch (atomic.getOpcode()) {
8824    case ISD::ATOMIC_CMP_SWAP:
8825      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8826                                    fence.getOperand(0),
8827                                    atomic.getOperand(1), atomic.getOperand(2),
8828                                    atomic.getOperand(3)), atomic.getResNo());
8829    case ISD::ATOMIC_SWAP:
8830    case ISD::ATOMIC_LOAD_ADD:
8831    case ISD::ATOMIC_LOAD_SUB:
8832    case ISD::ATOMIC_LOAD_AND:
8833    case ISD::ATOMIC_LOAD_OR:
8834    case ISD::ATOMIC_LOAD_XOR:
8835    case ISD::ATOMIC_LOAD_NAND:
8836    case ISD::ATOMIC_LOAD_MIN:
8837    case ISD::ATOMIC_LOAD_MAX:
8838    case ISD::ATOMIC_LOAD_UMIN:
8839    case ISD::ATOMIC_LOAD_UMAX:
8840      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
8841                                    fence.getOperand(0),
8842                                    atomic.getOperand(1), atomic.getOperand(2)),
8843                     atomic.getResNo());
8844    default:
8845      return SDValue();
8846  }
8847}
8848
8849/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
8850/// an AND to a vector_shuffle with the destination vector and a zero vector.
8851/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
8852///      vector_shuffle V, Zero, <0, 4, 2, 4>
8853SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
8854  EVT VT = N->getValueType(0);
8855  DebugLoc dl = N->getDebugLoc();
8856  SDValue LHS = N->getOperand(0);
8857  SDValue RHS = N->getOperand(1);
8858  if (N->getOpcode() == ISD::AND) {
8859    if (RHS.getOpcode() == ISD::BITCAST)
8860      RHS = RHS.getOperand(0);
8861    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
8862      SmallVector<int, 8> Indices;
8863      unsigned NumElts = RHS.getNumOperands();
8864      for (unsigned i = 0; i != NumElts; ++i) {
8865        SDValue Elt = RHS.getOperand(i);
8866        if (!isa<ConstantSDNode>(Elt))
8867          return SDValue();
8868
8869        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
8870          Indices.push_back(i);
8871        else if (cast<ConstantSDNode>(Elt)->isNullValue())
8872          Indices.push_back(NumElts);
8873        else
8874          return SDValue();
8875      }
8876
8877      // Let's see if the target supports this vector_shuffle.
8878      EVT RVT = RHS.getValueType();
8879      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
8880        return SDValue();
8881
8882      // Return the new VECTOR_SHUFFLE node.
8883      EVT EltVT = RVT.getVectorElementType();
8884      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
8885                                     DAG.getConstant(0, EltVT));
8886      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8887                                 RVT, &ZeroOps[0], ZeroOps.size());
8888      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
8889      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
8890      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
8891    }
8892  }
8893
8894  return SDValue();
8895}
8896
8897/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
8898SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
8899  // After legalize, the target may be depending on adds and other
8900  // binary ops to provide legal ways to construct constants or other
8901  // things. Simplifying them may result in a loss of legality.
8902  if (LegalOperations) return SDValue();
8903
8904  assert(N->getValueType(0).isVector() &&
8905         "SimplifyVBinOp only works on vectors!");
8906
8907  SDValue LHS = N->getOperand(0);
8908  SDValue RHS = N->getOperand(1);
8909  SDValue Shuffle = XformToShuffleWithZero(N);
8910  if (Shuffle.getNode()) return Shuffle;
8911
8912  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
8913  // this operation.
8914  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
8915      RHS.getOpcode() == ISD::BUILD_VECTOR) {
8916    SmallVector<SDValue, 8> Ops;
8917    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
8918      SDValue LHSOp = LHS.getOperand(i);
8919      SDValue RHSOp = RHS.getOperand(i);
8920      // If these two elements can't be folded, bail out.
8921      if ((LHSOp.getOpcode() != ISD::UNDEF &&
8922           LHSOp.getOpcode() != ISD::Constant &&
8923           LHSOp.getOpcode() != ISD::ConstantFP) ||
8924          (RHSOp.getOpcode() != ISD::UNDEF &&
8925           RHSOp.getOpcode() != ISD::Constant &&
8926           RHSOp.getOpcode() != ISD::ConstantFP))
8927        break;
8928
8929      // Can't fold divide by zero.
8930      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
8931          N->getOpcode() == ISD::FDIV) {
8932        if ((RHSOp.getOpcode() == ISD::Constant &&
8933             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
8934            (RHSOp.getOpcode() == ISD::ConstantFP &&
8935             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
8936          break;
8937      }
8938
8939      EVT VT = LHSOp.getValueType();
8940      EVT RVT = RHSOp.getValueType();
8941      if (RVT != VT) {
8942        // Integer BUILD_VECTOR operands may have types larger than the element
8943        // size (e.g., when the element type is not legal).  Prior to type
8944        // legalization, the types may not match between the two BUILD_VECTORS.
8945        // Truncate one of the operands to make them match.
8946        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
8947          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
8948        } else {
8949          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
8950          VT = RVT;
8951        }
8952      }
8953      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
8954                                   LHSOp, RHSOp);
8955      if (FoldOp.getOpcode() != ISD::UNDEF &&
8956          FoldOp.getOpcode() != ISD::Constant &&
8957          FoldOp.getOpcode() != ISD::ConstantFP)
8958        break;
8959      Ops.push_back(FoldOp);
8960      AddToWorkList(FoldOp.getNode());
8961    }
8962
8963    if (Ops.size() == LHS.getNumOperands())
8964      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
8965                         LHS.getValueType(), &Ops[0], Ops.size());
8966  }
8967
8968  return SDValue();
8969}
8970
8971/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
8972SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
8973  // After legalize, the target may be depending on adds and other
8974  // binary ops to provide legal ways to construct constants or other
8975  // things. Simplifying them may result in a loss of legality.
8976  if (LegalOperations) return SDValue();
8977
8978  assert(N->getValueType(0).isVector() &&
8979         "SimplifyVUnaryOp only works on vectors!");
8980
8981  SDValue N0 = N->getOperand(0);
8982
8983  if (N0.getOpcode() != ISD::BUILD_VECTOR)
8984    return SDValue();
8985
8986  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
8987  SmallVector<SDValue, 8> Ops;
8988  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
8989    SDValue Op = N0.getOperand(i);
8990    if (Op.getOpcode() != ISD::UNDEF &&
8991        Op.getOpcode() != ISD::ConstantFP)
8992      break;
8993    EVT EltVT = Op.getValueType();
8994    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
8995    if (FoldOp.getOpcode() != ISD::UNDEF &&
8996        FoldOp.getOpcode() != ISD::ConstantFP)
8997      break;
8998    Ops.push_back(FoldOp);
8999    AddToWorkList(FoldOp.getNode());
9000  }
9001
9002  if (Ops.size() != N0.getNumOperands())
9003    return SDValue();
9004
9005  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9006                     N0.getValueType(), &Ops[0], Ops.size());
9007}
9008
9009SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9010                                    SDValue N1, SDValue N2){
9011  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9012
9013  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9014                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9015
9016  // If we got a simplified select_cc node back from SimplifySelectCC, then
9017  // break it down into a new SETCC node, and a new SELECT node, and then return
9018  // the SELECT node, since we were called with a SELECT node.
9019  if (SCC.getNode()) {
9020    // Check to see if we got a select_cc back (to turn into setcc/select).
9021    // Otherwise, just return whatever node we got back, like fabs.
9022    if (SCC.getOpcode() == ISD::SELECT_CC) {
9023      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9024                                  N0.getValueType(),
9025                                  SCC.getOperand(0), SCC.getOperand(1),
9026                                  SCC.getOperand(4));
9027      AddToWorkList(SETCC.getNode());
9028      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9029                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9030    }
9031
9032    return SCC;
9033  }
9034  return SDValue();
9035}
9036
9037/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9038/// are the two values being selected between, see if we can simplify the
9039/// select.  Callers of this should assume that TheSelect is deleted if this
9040/// returns true.  As such, they should return the appropriate thing (e.g. the
9041/// node) back to the top-level of the DAG combiner loop to avoid it being
9042/// looked at.
9043bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9044                                    SDValue RHS) {
9045
9046  // Cannot simplify select with vector condition
9047  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9048
9049  // If this is a select from two identical things, try to pull the operation
9050  // through the select.
9051  if (LHS.getOpcode() != RHS.getOpcode() ||
9052      !LHS.hasOneUse() || !RHS.hasOneUse())
9053    return false;
9054
9055  // If this is a load and the token chain is identical, replace the select
9056  // of two loads with a load through a select of the address to load from.
9057  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9058  // constants have been dropped into the constant pool.
9059  if (LHS.getOpcode() == ISD::LOAD) {
9060    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9061    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9062
9063    // Token chains must be identical.
9064    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9065        // Do not let this transformation reduce the number of volatile loads.
9066        LLD->isVolatile() || RLD->isVolatile() ||
9067        // If this is an EXTLOAD, the VT's must match.
9068        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9069        // If this is an EXTLOAD, the kind of extension must match.
9070        (LLD->getExtensionType() != RLD->getExtensionType() &&
9071         // The only exception is if one of the extensions is anyext.
9072         LLD->getExtensionType() != ISD::EXTLOAD &&
9073         RLD->getExtensionType() != ISD::EXTLOAD) ||
9074        // FIXME: this discards src value information.  This is
9075        // over-conservative. It would be beneficial to be able to remember
9076        // both potential memory locations.  Since we are discarding
9077        // src value info, don't do the transformation if the memory
9078        // locations are not in the default address space.
9079        LLD->getPointerInfo().getAddrSpace() != 0 ||
9080        RLD->getPointerInfo().getAddrSpace() != 0)
9081      return false;
9082
9083    // Check that the select condition doesn't reach either load.  If so,
9084    // folding this will induce a cycle into the DAG.  If not, this is safe to
9085    // xform, so create a select of the addresses.
9086    SDValue Addr;
9087    if (TheSelect->getOpcode() == ISD::SELECT) {
9088      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9089      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9090          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9091        return false;
9092      // The loads must not depend on one another.
9093      if (LLD->isPredecessorOf(RLD) ||
9094          RLD->isPredecessorOf(LLD))
9095        return false;
9096      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9097                         LLD->getBasePtr().getValueType(),
9098                         TheSelect->getOperand(0), LLD->getBasePtr(),
9099                         RLD->getBasePtr());
9100    } else {  // Otherwise SELECT_CC
9101      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9102      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9103
9104      if ((LLD->hasAnyUseOfValue(1) &&
9105           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9106          (RLD->hasAnyUseOfValue(1) &&
9107           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9108        return false;
9109
9110      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9111                         LLD->getBasePtr().getValueType(),
9112                         TheSelect->getOperand(0),
9113                         TheSelect->getOperand(1),
9114                         LLD->getBasePtr(), RLD->getBasePtr(),
9115                         TheSelect->getOperand(4));
9116    }
9117
9118    SDValue Load;
9119    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9120      Load = DAG.getLoad(TheSelect->getValueType(0),
9121                         TheSelect->getDebugLoc(),
9122                         // FIXME: Discards pointer info.
9123                         LLD->getChain(), Addr, MachinePointerInfo(),
9124                         LLD->isVolatile(), LLD->isNonTemporal(),
9125                         LLD->isInvariant(), LLD->getAlignment());
9126    } else {
9127      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9128                            RLD->getExtensionType() : LLD->getExtensionType(),
9129                            TheSelect->getDebugLoc(),
9130                            TheSelect->getValueType(0),
9131                            // FIXME: Discards pointer info.
9132                            LLD->getChain(), Addr, MachinePointerInfo(),
9133                            LLD->getMemoryVT(), LLD->isVolatile(),
9134                            LLD->isNonTemporal(), LLD->getAlignment());
9135    }
9136
9137    // Users of the select now use the result of the load.
9138    CombineTo(TheSelect, Load);
9139
9140    // Users of the old loads now use the new load's chain.  We know the
9141    // old-load value is dead now.
9142    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9143    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9144    return true;
9145  }
9146
9147  return false;
9148}
9149
9150/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9151/// where 'cond' is the comparison specified by CC.
9152SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9153                                      SDValue N2, SDValue N3,
9154                                      ISD::CondCode CC, bool NotExtCompare) {
9155  // (x ? y : y) -> y.
9156  if (N2 == N3) return N2;
9157
9158  EVT VT = N2.getValueType();
9159  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9160  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9161  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9162
9163  // Determine if the condition we're dealing with is constant
9164  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9165                              N0, N1, CC, DL, false);
9166  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9167  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9168
9169  // fold select_cc true, x, y -> x
9170  if (SCCC && !SCCC->isNullValue())
9171    return N2;
9172  // fold select_cc false, x, y -> y
9173  if (SCCC && SCCC->isNullValue())
9174    return N3;
9175
9176  // Check to see if we can simplify the select into an fabs node
9177  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9178    // Allow either -0.0 or 0.0
9179    if (CFP->getValueAPF().isZero()) {
9180      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9181      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9182          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9183          N2 == N3.getOperand(0))
9184        return DAG.getNode(ISD::FABS, DL, VT, N0);
9185
9186      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9187      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9188          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9189          N2.getOperand(0) == N3)
9190        return DAG.getNode(ISD::FABS, DL, VT, N3);
9191    }
9192  }
9193
9194  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9195  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9196  // in it.  This is a win when the constant is not otherwise available because
9197  // it replaces two constant pool loads with one.  We only do this if the FP
9198  // type is known to be legal, because if it isn't, then we are before legalize
9199  // types an we want the other legalization to happen first (e.g. to avoid
9200  // messing with soft float) and if the ConstantFP is not legal, because if
9201  // it is legal, we may not need to store the FP constant in a constant pool.
9202  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9203    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9204      if (TLI.isTypeLegal(N2.getValueType()) &&
9205          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9206           TargetLowering::Legal) &&
9207          // If both constants have multiple uses, then we won't need to do an
9208          // extra load, they are likely around in registers for other users.
9209          (TV->hasOneUse() || FV->hasOneUse())) {
9210        Constant *Elts[] = {
9211          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9212          const_cast<ConstantFP*>(TV->getConstantFPValue())
9213        };
9214        Type *FPTy = Elts[0]->getType();
9215        const DataLayout &TD = *TLI.getDataLayout();
9216
9217        // Create a ConstantArray of the two constants.
9218        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9219        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9220                                            TD.getPrefTypeAlignment(FPTy));
9221        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9222
9223        // Get the offsets to the 0 and 1 element of the array so that we can
9224        // select between them.
9225        SDValue Zero = DAG.getIntPtrConstant(0);
9226        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9227        SDValue One = DAG.getIntPtrConstant(EltSize);
9228
9229        SDValue Cond = DAG.getSetCC(DL,
9230                                    TLI.getSetCCResultType(N0.getValueType()),
9231                                    N0, N1, CC);
9232        AddToWorkList(Cond.getNode());
9233        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9234                                        Cond, One, Zero);
9235        AddToWorkList(CstOffset.getNode());
9236        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9237                            CstOffset);
9238        AddToWorkList(CPIdx.getNode());
9239        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9240                           MachinePointerInfo::getConstantPool(), false,
9241                           false, false, Alignment);
9242
9243      }
9244    }
9245
9246  // Check to see if we can perform the "gzip trick", transforming
9247  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9248  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9249      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9250       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9251    EVT XType = N0.getValueType();
9252    EVT AType = N2.getValueType();
9253    if (XType.bitsGE(AType)) {
9254      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9255      // single-bit constant.
9256      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9257        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9258        ShCtV = XType.getSizeInBits()-ShCtV-1;
9259        SDValue ShCt = DAG.getConstant(ShCtV,
9260                                       getShiftAmountTy(N0.getValueType()));
9261        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9262                                    XType, N0, ShCt);
9263        AddToWorkList(Shift.getNode());
9264
9265        if (XType.bitsGT(AType)) {
9266          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9267          AddToWorkList(Shift.getNode());
9268        }
9269
9270        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9271      }
9272
9273      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9274                                  XType, N0,
9275                                  DAG.getConstant(XType.getSizeInBits()-1,
9276                                         getShiftAmountTy(N0.getValueType())));
9277      AddToWorkList(Shift.getNode());
9278
9279      if (XType.bitsGT(AType)) {
9280        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9281        AddToWorkList(Shift.getNode());
9282      }
9283
9284      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9285    }
9286  }
9287
9288  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9289  // where y is has a single bit set.
9290  // A plaintext description would be, we can turn the SELECT_CC into an AND
9291  // when the condition can be materialized as an all-ones register.  Any
9292  // single bit-test can be materialized as an all-ones register with
9293  // shift-left and shift-right-arith.
9294  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9295      N0->getValueType(0) == VT &&
9296      N1C && N1C->isNullValue() &&
9297      N2C && N2C->isNullValue()) {
9298    SDValue AndLHS = N0->getOperand(0);
9299    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9300    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9301      // Shift the tested bit over the sign bit.
9302      APInt AndMask = ConstAndRHS->getAPIntValue();
9303      SDValue ShlAmt =
9304        DAG.getConstant(AndMask.countLeadingZeros(),
9305                        getShiftAmountTy(AndLHS.getValueType()));
9306      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9307
9308      // Now arithmetic right shift it all the way over, so the result is either
9309      // all-ones, or zero.
9310      SDValue ShrAmt =
9311        DAG.getConstant(AndMask.getBitWidth()-1,
9312                        getShiftAmountTy(Shl.getValueType()));
9313      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9314
9315      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9316    }
9317  }
9318
9319  // fold select C, 16, 0 -> shl C, 4
9320  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9321    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9322      TargetLowering::ZeroOrOneBooleanContent) {
9323
9324    // If the caller doesn't want us to simplify this into a zext of a compare,
9325    // don't do it.
9326    if (NotExtCompare && N2C->getAPIntValue() == 1)
9327      return SDValue();
9328
9329    // Get a SetCC of the condition
9330    // FIXME: Should probably make sure that setcc is legal if we ever have a
9331    // target where it isn't.
9332    SDValue Temp, SCC;
9333    // cast from setcc result type to select result type
9334    if (LegalTypes) {
9335      SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9336                          N0, N1, CC);
9337      if (N2.getValueType().bitsLT(SCC.getValueType()))
9338        Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(), N2.getValueType());
9339      else
9340        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9341                           N2.getValueType(), SCC);
9342    } else {
9343      SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9344      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9345                         N2.getValueType(), SCC);
9346    }
9347
9348    AddToWorkList(SCC.getNode());
9349    AddToWorkList(Temp.getNode());
9350
9351    if (N2C->getAPIntValue() == 1)
9352      return Temp;
9353
9354    // shl setcc result by log2 n2c
9355    return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9356                       DAG.getConstant(N2C->getAPIntValue().logBase2(),
9357                                       getShiftAmountTy(Temp.getValueType())));
9358  }
9359
9360  // Check to see if this is the equivalent of setcc
9361  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9362  // otherwise, go ahead with the folds.
9363  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9364    EVT XType = N0.getValueType();
9365    if (!LegalOperations ||
9366        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9367      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9368      if (Res.getValueType() != VT)
9369        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9370      return Res;
9371    }
9372
9373    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9374    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9375        (!LegalOperations ||
9376         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9377      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9378      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9379                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9380                                       getShiftAmountTy(Ctlz.getValueType())));
9381    }
9382    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9383    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9384      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9385                                  XType, DAG.getConstant(0, XType), N0);
9386      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9387      return DAG.getNode(ISD::SRL, DL, XType,
9388                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9389                         DAG.getConstant(XType.getSizeInBits()-1,
9390                                         getShiftAmountTy(XType)));
9391    }
9392    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9393    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9394      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9395                                 DAG.getConstant(XType.getSizeInBits()-1,
9396                                         getShiftAmountTy(N0.getValueType())));
9397      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9398    }
9399  }
9400
9401  // Check to see if this is an integer abs.
9402  // select_cc setg[te] X,  0,  X, -X ->
9403  // select_cc setgt    X, -1,  X, -X ->
9404  // select_cc setl[te] X,  0, -X,  X ->
9405  // select_cc setlt    X,  1, -X,  X ->
9406  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9407  if (N1C) {
9408    ConstantSDNode *SubC = NULL;
9409    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9410         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9411        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9412      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9413    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9414              (N1C->isOne() && CC == ISD::SETLT)) &&
9415             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9416      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9417
9418    EVT XType = N0.getValueType();
9419    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9420      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9421                                  N0,
9422                                  DAG.getConstant(XType.getSizeInBits()-1,
9423                                         getShiftAmountTy(N0.getValueType())));
9424      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9425                                XType, N0, Shift);
9426      AddToWorkList(Shift.getNode());
9427      AddToWorkList(Add.getNode());
9428      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9429    }
9430  }
9431
9432  return SDValue();
9433}
9434
9435/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9436SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9437                                   SDValue N1, ISD::CondCode Cond,
9438                                   DebugLoc DL, bool foldBooleans) {
9439  TargetLowering::DAGCombinerInfo
9440    DagCombineInfo(DAG, !LegalTypes, !LegalOperations, false, this);
9441  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9442}
9443
9444/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9445/// return a DAG expression to select that will generate the same value by
9446/// multiplying by a magic number.  See:
9447/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9448SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9449  std::vector<SDNode*> Built;
9450  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9451
9452  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9453       ii != ee; ++ii)
9454    AddToWorkList(*ii);
9455  return S;
9456}
9457
9458/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9459/// return a DAG expression to select that will generate the same value by
9460/// multiplying by a magic number.  See:
9461/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9462SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9463  std::vector<SDNode*> Built;
9464  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9465
9466  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9467       ii != ee; ++ii)
9468    AddToWorkList(*ii);
9469  return S;
9470}
9471
9472/// FindBaseOffset - Return true if base is a frame index, which is known not
9473// to alias with anything but itself.  Provides base object and offset as
9474// results.
9475static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9476                           const GlobalValue *&GV, const void *&CV) {
9477  // Assume it is a primitive operation.
9478  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9479
9480  // If it's an adding a simple constant then integrate the offset.
9481  if (Base.getOpcode() == ISD::ADD) {
9482    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9483      Base = Base.getOperand(0);
9484      Offset += C->getZExtValue();
9485    }
9486  }
9487
9488  // Return the underlying GlobalValue, and update the Offset.  Return false
9489  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9490  // by multiple nodes with different offsets.
9491  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9492    GV = G->getGlobal();
9493    Offset += G->getOffset();
9494    return false;
9495  }
9496
9497  // Return the underlying Constant value, and update the Offset.  Return false
9498  // for ConstantSDNodes since the same constant pool entry may be represented
9499  // by multiple nodes with different offsets.
9500  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9501    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9502                                         : (const void *)C->getConstVal();
9503    Offset += C->getOffset();
9504    return false;
9505  }
9506  // If it's any of the following then it can't alias with anything but itself.
9507  return isa<FrameIndexSDNode>(Base);
9508}
9509
9510/// isAlias - Return true if there is any possibility that the two addresses
9511/// overlap.
9512bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9513                          const Value *SrcValue1, int SrcValueOffset1,
9514                          unsigned SrcValueAlign1,
9515                          const MDNode *TBAAInfo1,
9516                          SDValue Ptr2, int64_t Size2,
9517                          const Value *SrcValue2, int SrcValueOffset2,
9518                          unsigned SrcValueAlign2,
9519                          const MDNode *TBAAInfo2) const {
9520  // If they are the same then they must be aliases.
9521  if (Ptr1 == Ptr2) return true;
9522
9523  // Gather base node and offset information.
9524  SDValue Base1, Base2;
9525  int64_t Offset1, Offset2;
9526  const GlobalValue *GV1, *GV2;
9527  const void *CV1, *CV2;
9528  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9529  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9530
9531  // If they have a same base address then check to see if they overlap.
9532  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9533    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9534
9535  // It is possible for different frame indices to alias each other, mostly
9536  // when tail call optimization reuses return address slots for arguments.
9537  // To catch this case, look up the actual index of frame indices to compute
9538  // the real alias relationship.
9539  if (isFrameIndex1 && isFrameIndex2) {
9540    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9541    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9542    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9543    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9544  }
9545
9546  // Otherwise, if we know what the bases are, and they aren't identical, then
9547  // we know they cannot alias.
9548  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9549    return false;
9550
9551  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9552  // compared to the size and offset of the access, we may be able to prove they
9553  // do not alias.  This check is conservative for now to catch cases created by
9554  // splitting vector types.
9555  if ((SrcValueAlign1 == SrcValueAlign2) &&
9556      (SrcValueOffset1 != SrcValueOffset2) &&
9557      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9558    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9559    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9560
9561    // There is no overlap between these relatively aligned accesses of similar
9562    // size, return no alias.
9563    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9564      return false;
9565  }
9566
9567  if (CombinerGlobalAA) {
9568    // Use alias analysis information.
9569    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9570    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9571    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9572    AliasAnalysis::AliasResult AAResult =
9573      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9574               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9575    if (AAResult == AliasAnalysis::NoAlias)
9576      return false;
9577  }
9578
9579  // Otherwise we have to assume they alias.
9580  return true;
9581}
9582
9583/// FindAliasInfo - Extracts the relevant alias information from the memory
9584/// node.  Returns true if the operand was a load.
9585bool DAGCombiner::FindAliasInfo(SDNode *N,
9586                                SDValue &Ptr, int64_t &Size,
9587                                const Value *&SrcValue,
9588                                int &SrcValueOffset,
9589                                unsigned &SrcValueAlign,
9590                                const MDNode *&TBAAInfo) const {
9591  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9592
9593  Ptr = LS->getBasePtr();
9594  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9595  SrcValue = LS->getSrcValue();
9596  SrcValueOffset = LS->getSrcValueOffset();
9597  SrcValueAlign = LS->getOriginalAlignment();
9598  TBAAInfo = LS->getTBAAInfo();
9599  return isa<LoadSDNode>(LS);
9600}
9601
9602/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9603/// looking for aliasing nodes and adding them to the Aliases vector.
9604void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9605                                   SmallVector<SDValue, 8> &Aliases) {
9606  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9607  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9608
9609  // Get alias information for node.
9610  SDValue Ptr;
9611  int64_t Size;
9612  const Value *SrcValue;
9613  int SrcValueOffset;
9614  unsigned SrcValueAlign;
9615  const MDNode *SrcTBAAInfo;
9616  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
9617                              SrcValueAlign, SrcTBAAInfo);
9618
9619  // Starting off.
9620  Chains.push_back(OriginalChain);
9621  unsigned Depth = 0;
9622
9623  // Look at each chain and determine if it is an alias.  If so, add it to the
9624  // aliases list.  If not, then continue up the chain looking for the next
9625  // candidate.
9626  while (!Chains.empty()) {
9627    SDValue Chain = Chains.back();
9628    Chains.pop_back();
9629
9630    // For TokenFactor nodes, look at each operand and only continue up the
9631    // chain until we find two aliases.  If we've seen two aliases, assume we'll
9632    // find more and revert to original chain since the xform is unlikely to be
9633    // profitable.
9634    //
9635    // FIXME: The depth check could be made to return the last non-aliasing
9636    // chain we found before we hit a tokenfactor rather than the original
9637    // chain.
9638    if (Depth > 6 || Aliases.size() == 2) {
9639      Aliases.clear();
9640      Aliases.push_back(OriginalChain);
9641      break;
9642    }
9643
9644    // Don't bother if we've been before.
9645    if (!Visited.insert(Chain.getNode()))
9646      continue;
9647
9648    switch (Chain.getOpcode()) {
9649    case ISD::EntryToken:
9650      // Entry token is ideal chain operand, but handled in FindBetterChain.
9651      break;
9652
9653    case ISD::LOAD:
9654    case ISD::STORE: {
9655      // Get alias information for Chain.
9656      SDValue OpPtr;
9657      int64_t OpSize;
9658      const Value *OpSrcValue;
9659      int OpSrcValueOffset;
9660      unsigned OpSrcValueAlign;
9661      const MDNode *OpSrcTBAAInfo;
9662      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
9663                                    OpSrcValue, OpSrcValueOffset,
9664                                    OpSrcValueAlign,
9665                                    OpSrcTBAAInfo);
9666
9667      // If chain is alias then stop here.
9668      if (!(IsLoad && IsOpLoad) &&
9669          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
9670                  SrcTBAAInfo,
9671                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
9672                  OpSrcValueAlign, OpSrcTBAAInfo)) {
9673        Aliases.push_back(Chain);
9674      } else {
9675        // Look further up the chain.
9676        Chains.push_back(Chain.getOperand(0));
9677        ++Depth;
9678      }
9679      break;
9680    }
9681
9682    case ISD::TokenFactor:
9683      // We have to check each of the operands of the token factor for "small"
9684      // token factors, so we queue them up.  Adding the operands to the queue
9685      // (stack) in reverse order maintains the original order and increases the
9686      // likelihood that getNode will find a matching token factor (CSE.)
9687      if (Chain.getNumOperands() > 16) {
9688        Aliases.push_back(Chain);
9689        break;
9690      }
9691      for (unsigned n = Chain.getNumOperands(); n;)
9692        Chains.push_back(Chain.getOperand(--n));
9693      ++Depth;
9694      break;
9695
9696    default:
9697      // For all other instructions we will just have to take what we can get.
9698      Aliases.push_back(Chain);
9699      break;
9700    }
9701  }
9702}
9703
9704/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
9705/// for a better chain (aliasing node.)
9706SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
9707  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
9708
9709  // Accumulate all the aliases to this node.
9710  GatherAllAliases(N, OldChain, Aliases);
9711
9712  // If no operands then chain to entry token.
9713  if (Aliases.size() == 0)
9714    return DAG.getEntryNode();
9715
9716  // If a single operand then chain to it.  We don't need to revisit it.
9717  if (Aliases.size() == 1)
9718    return Aliases[0];
9719
9720  // Construct a custom tailored token factor.
9721  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
9722                     &Aliases[0], Aliases.size());
9723}
9724
9725// SelectionDAG::Combine - This is the entry point for the file.
9726//
9727void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
9728                           CodeGenOpt::Level OptLevel) {
9729  /// run - This is the main entry point to this class.
9730  ///
9731  DAGCombiner(*this, AA, OptLevel).Run(Level);
9732}
9733