DAGCombiner.cpp revision b2ed5fac0693e949ffdbf45266f5d53839211b63
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitVSELECT(SDNode *N);
209    SDValue visitSELECT_CC(SDNode *N);
210    SDValue visitSETCC(SDNode *N);
211    SDValue visitSIGN_EXTEND(SDNode *N);
212    SDValue visitZERO_EXTEND(SDNode *N);
213    SDValue visitANY_EXTEND(SDNode *N);
214    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
215    SDValue visitTRUNCATE(SDNode *N);
216    SDValue visitBITCAST(SDNode *N);
217    SDValue visitBUILD_PAIR(SDNode *N);
218    SDValue visitFADD(SDNode *N);
219    SDValue visitFSUB(SDNode *N);
220    SDValue visitFMUL(SDNode *N);
221    SDValue visitFMA(SDNode *N);
222    SDValue visitFDIV(SDNode *N);
223    SDValue visitFREM(SDNode *N);
224    SDValue visitFCOPYSIGN(SDNode *N);
225    SDValue visitSINT_TO_FP(SDNode *N);
226    SDValue visitUINT_TO_FP(SDNode *N);
227    SDValue visitFP_TO_SINT(SDNode *N);
228    SDValue visitFP_TO_UINT(SDNode *N);
229    SDValue visitFP_ROUND(SDNode *N);
230    SDValue visitFP_ROUND_INREG(SDNode *N);
231    SDValue visitFP_EXTEND(SDNode *N);
232    SDValue visitFNEG(SDNode *N);
233    SDValue visitFABS(SDNode *N);
234    SDValue visitFCEIL(SDNode *N);
235    SDValue visitFTRUNC(SDNode *N);
236    SDValue visitFFLOOR(SDNode *N);
237    SDValue visitBRCOND(SDNode *N);
238    SDValue visitBR_CC(SDNode *N);
239    SDValue visitLOAD(SDNode *N);
240    SDValue visitSTORE(SDNode *N);
241    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
242    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
243    SDValue visitBUILD_VECTOR(SDNode *N);
244    SDValue visitCONCAT_VECTORS(SDNode *N);
245    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
246    SDValue visitVECTOR_SHUFFLE(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          DebugLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVector<SDValue, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
330    }
331
332    /// isTypeLegal - This method returns true if we are running before type
333    /// legalization or if the specified VT is legal.
334    bool isTypeLegal(const EVT &VT) {
335      if (!LegalTypes) return true;
336      return TLI.isTypeLegal(VT);
337    }
338  };
339}
340
341
342namespace {
343/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
344/// nodes from the worklist.
345class WorkListRemover : public SelectionDAG::DAGUpdateListener {
346  DAGCombiner &DC;
347public:
348  explicit WorkListRemover(DAGCombiner &dc)
349    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
350
351  virtual void NodeDeleted(SDNode *N, SDNode *E) {
352    DC.removeFromWorkList(N);
353  }
354};
355}
356
357//===----------------------------------------------------------------------===//
358//  TargetLowering::DAGCombinerInfo implementation
359//===----------------------------------------------------------------------===//
360
361void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
362  ((DAGCombiner*)DC)->AddToWorkList(N);
363}
364
365void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
366  ((DAGCombiner*)DC)->removeFromWorkList(N);
367}
368
369SDValue TargetLowering::DAGCombinerInfo::
370CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
371  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
372}
373
374SDValue TargetLowering::DAGCombinerInfo::
375CombineTo(SDNode *N, SDValue Res, bool AddTo) {
376  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
377}
378
379
380SDValue TargetLowering::DAGCombinerInfo::
381CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
382  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
383}
384
385void TargetLowering::DAGCombinerInfo::
386CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
387  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
388}
389
390//===----------------------------------------------------------------------===//
391// Helper Functions
392//===----------------------------------------------------------------------===//
393
394/// isNegatibleForFree - Return 1 if we can compute the negated form of the
395/// specified expression for the same cost as the expression itself, or 2 if we
396/// can compute the negated form more cheaply than the expression itself.
397static char isNegatibleForFree(SDValue Op, bool LegalOperations,
398                               const TargetLowering &TLI,
399                               const TargetOptions *Options,
400                               unsigned Depth = 0) {
401  // fneg is removable even if it has multiple uses.
402  if (Op.getOpcode() == ISD::FNEG) return 2;
403
404  // Don't allow anything with multiple uses.
405  if (!Op.hasOneUse()) return 0;
406
407  // Don't recurse exponentially.
408  if (Depth > 6) return 0;
409
410  switch (Op.getOpcode()) {
411  default: return false;
412  case ISD::ConstantFP:
413    // Don't invert constant FP values after legalize.  The negated constant
414    // isn't necessarily legal.
415    return LegalOperations ? 0 : 1;
416  case ISD::FADD:
417    // FIXME: determine better conditions for this xform.
418    if (!Options->UnsafeFPMath) return 0;
419
420    // After operation legalization, it might not be legal to create new FSUBs.
421    if (LegalOperations &&
422        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
423      return 0;
424
425    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
426    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
427                                    Options, Depth + 1))
428      return V;
429    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
430    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
431                              Depth + 1);
432  case ISD::FSUB:
433    // We can't turn -(A-B) into B-A when we honor signed zeros.
434    if (!Options->UnsafeFPMath) return 0;
435
436    // fold (fneg (fsub A, B)) -> (fsub B, A)
437    return 1;
438
439  case ISD::FMUL:
440  case ISD::FDIV:
441    if (Options->HonorSignDependentRoundingFPMath()) return 0;
442
443    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
444    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
445                                    Options, Depth + 1))
446      return V;
447
448    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
449                              Depth + 1);
450
451  case ISD::FP_EXTEND:
452  case ISD::FP_ROUND:
453  case ISD::FSIN:
454    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
455                              Depth + 1);
456  }
457}
458
459/// GetNegatedExpression - If isNegatibleForFree returns true, this function
460/// returns the newly negated expression.
461static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
462                                    bool LegalOperations, unsigned Depth = 0) {
463  // fneg is removable even if it has multiple uses.
464  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
465
466  // Don't allow anything with multiple uses.
467  assert(Op.hasOneUse() && "Unknown reuse!");
468
469  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
470  switch (Op.getOpcode()) {
471  default: llvm_unreachable("Unknown code");
472  case ISD::ConstantFP: {
473    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
474    V.changeSign();
475    return DAG.getConstantFP(V, Op.getValueType());
476  }
477  case ISD::FADD:
478    // FIXME: determine better conditions for this xform.
479    assert(DAG.getTarget().Options.UnsafeFPMath);
480
481    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
482    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
483                           DAG.getTargetLoweringInfo(),
484                           &DAG.getTarget().Options, Depth+1))
485      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
486                         GetNegatedExpression(Op.getOperand(0), DAG,
487                                              LegalOperations, Depth+1),
488                         Op.getOperand(1));
489    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
490    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
491                       GetNegatedExpression(Op.getOperand(1), DAG,
492                                            LegalOperations, Depth+1),
493                       Op.getOperand(0));
494  case ISD::FSUB:
495    // We can't turn -(A-B) into B-A when we honor signed zeros.
496    assert(DAG.getTarget().Options.UnsafeFPMath);
497
498    // fold (fneg (fsub 0, B)) -> B
499    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
500      if (N0CFP->getValueAPF().isZero())
501        return Op.getOperand(1);
502
503    // fold (fneg (fsub A, B)) -> (fsub B, A)
504    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
505                       Op.getOperand(1), Op.getOperand(0));
506
507  case ISD::FMUL:
508  case ISD::FDIV:
509    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
510
511    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519
520    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
521    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
522                       Op.getOperand(0),
523                       GetNegatedExpression(Op.getOperand(1), DAG,
524                                            LegalOperations, Depth+1));
525
526  case ISD::FP_EXTEND:
527  case ISD::FSIN:
528    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
529                       GetNegatedExpression(Op.getOperand(0), DAG,
530                                            LegalOperations, Depth+1));
531  case ISD::FP_ROUND:
532      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
533                         GetNegatedExpression(Op.getOperand(0), DAG,
534                                              LegalOperations, Depth+1),
535                         Op.getOperand(1));
536  }
537}
538
539
540// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
541// that selects between the values 1 and 0, making it equivalent to a setcc.
542// Also, set the incoming LHS, RHS, and CC references to the appropriate
543// nodes based on the type of node we are checking.  This simplifies life a
544// bit for the callers.
545static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
546                              SDValue &CC) {
547  if (N.getOpcode() == ISD::SETCC) {
548    LHS = N.getOperand(0);
549    RHS = N.getOperand(1);
550    CC  = N.getOperand(2);
551    return true;
552  }
553  if (N.getOpcode() == ISD::SELECT_CC &&
554      N.getOperand(2).getOpcode() == ISD::Constant &&
555      N.getOperand(3).getOpcode() == ISD::Constant &&
556      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
557      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
558    LHS = N.getOperand(0);
559    RHS = N.getOperand(1);
560    CC  = N.getOperand(4);
561    return true;
562  }
563  return false;
564}
565
566// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
567// one use.  If this is true, it allows the users to invert the operation for
568// free when it is profitable to do so.
569static bool isOneUseSetCC(SDValue N) {
570  SDValue N0, N1, N2;
571  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
572    return true;
573  return false;
574}
575
576SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
577                                    SDValue N0, SDValue N1) {
578  EVT VT = N0.getValueType();
579  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
580    if (isa<ConstantSDNode>(N1)) {
581      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
582      SDValue OpNode =
583        DAG.FoldConstantArithmetic(Opc, VT,
584                                   cast<ConstantSDNode>(N0.getOperand(1)),
585                                   cast<ConstantSDNode>(N1));
586      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
587    }
588    if (N0.hasOneUse()) {
589      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
590      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
591                                   N0.getOperand(0), N1);
592      AddToWorkList(OpNode.getNode());
593      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
594    }
595  }
596
597  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
598    if (isa<ConstantSDNode>(N0)) {
599      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
600      SDValue OpNode =
601        DAG.FoldConstantArithmetic(Opc, VT,
602                                   cast<ConstantSDNode>(N1.getOperand(1)),
603                                   cast<ConstantSDNode>(N0));
604      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
605    }
606    if (N1.hasOneUse()) {
607      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
608      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
609                                   N1.getOperand(0), N0);
610      AddToWorkList(OpNode.getNode());
611      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
612    }
613  }
614
615  return SDValue();
616}
617
618SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
619                               bool AddTo) {
620  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
621  ++NodesCombined;
622  DEBUG(dbgs() << "\nReplacing.1 ";
623        N->dump(&DAG);
624        dbgs() << "\nWith: ";
625        To[0].getNode()->dump(&DAG);
626        dbgs() << " and " << NumTo-1 << " other values\n";
627        for (unsigned i = 0, e = NumTo; i != e; ++i)
628          assert((!To[i].getNode() ||
629                  N->getValueType(i) == To[i].getValueType()) &&
630                 "Cannot combine value to value of different type!"));
631  WorkListRemover DeadNodes(*this);
632  DAG.ReplaceAllUsesWith(N, To);
633  if (AddTo) {
634    // Push the new nodes and any users onto the worklist
635    for (unsigned i = 0, e = NumTo; i != e; ++i) {
636      if (To[i].getNode()) {
637        AddToWorkList(To[i].getNode());
638        AddUsersToWorkList(To[i].getNode());
639      }
640    }
641  }
642
643  // Finally, if the node is now dead, remove it from the graph.  The node
644  // may not be dead if the replacement process recursively simplified to
645  // something else needing this node.
646  if (N->use_empty()) {
647    // Nodes can be reintroduced into the worklist.  Make sure we do not
648    // process a node that has been replaced.
649    removeFromWorkList(N);
650
651    // Finally, since the node is now dead, remove it from the graph.
652    DAG.DeleteNode(N);
653  }
654  return SDValue(N, 0);
655}
656
657void DAGCombiner::
658CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
659  // Replace all uses.  If any nodes become isomorphic to other nodes and
660  // are deleted, make sure to remove them from our worklist.
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
663
664  // Push the new node and any (possibly new) users onto the worklist.
665  AddToWorkList(TLO.New.getNode());
666  AddUsersToWorkList(TLO.New.getNode());
667
668  // Finally, if the node is now dead, remove it from the graph.  The node
669  // may not be dead if the replacement process recursively simplified to
670  // something else needing this node.
671  if (TLO.Old.getNode()->use_empty()) {
672    removeFromWorkList(TLO.Old.getNode());
673
674    // If the operands of this node are only used by the node, they will now
675    // be dead.  Make sure to visit them first to delete dead nodes early.
676    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
677      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
678        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
679
680    DAG.DeleteNode(TLO.Old.getNode());
681  }
682}
683
684/// SimplifyDemandedBits - Check the specified integer node value to see if
685/// it can be simplified or if things it uses can be simplified by bit
686/// propagation.  If so, return true.
687bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
688  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
689  APInt KnownZero, KnownOne;
690  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
691    return false;
692
693  // Revisit the node.
694  AddToWorkList(Op.getNode());
695
696  // Replace the old value with the new one.
697  ++NodesCombined;
698  DEBUG(dbgs() << "\nReplacing.2 ";
699        TLO.Old.getNode()->dump(&DAG);
700        dbgs() << "\nWith: ";
701        TLO.New.getNode()->dump(&DAG);
702        dbgs() << '\n');
703
704  CommitTargetLoweringOpt(TLO);
705  return true;
706}
707
708void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
709  DebugLoc dl = Load->getDebugLoc();
710  EVT VT = Load->getValueType(0);
711  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
712
713  DEBUG(dbgs() << "\nReplacing.9 ";
714        Load->dump(&DAG);
715        dbgs() << "\nWith: ";
716        Trunc.getNode()->dump(&DAG);
717        dbgs() << '\n');
718  WorkListRemover DeadNodes(*this);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
720  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
721  removeFromWorkList(Load);
722  DAG.DeleteNode(Load);
723  AddToWorkList(Trunc.getNode());
724}
725
726SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
727  Replace = false;
728  DebugLoc dl = Op.getDebugLoc();
729  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
730    EVT MemVT = LD->getMemoryVT();
731    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
732      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
733                                                  : ISD::EXTLOAD)
734      : LD->getExtensionType();
735    Replace = true;
736    return DAG.getExtLoad(ExtType, dl, PVT,
737                          LD->getChain(), LD->getBasePtr(),
738                          LD->getPointerInfo(),
739                          MemVT, LD->isVolatile(),
740                          LD->isNonTemporal(), LD->getAlignment());
741  }
742
743  unsigned Opc = Op.getOpcode();
744  switch (Opc) {
745  default: break;
746  case ISD::AssertSext:
747    return DAG.getNode(ISD::AssertSext, dl, PVT,
748                       SExtPromoteOperand(Op.getOperand(0), PVT),
749                       Op.getOperand(1));
750  case ISD::AssertZext:
751    return DAG.getNode(ISD::AssertZext, dl, PVT,
752                       ZExtPromoteOperand(Op.getOperand(0), PVT),
753                       Op.getOperand(1));
754  case ISD::Constant: {
755    unsigned ExtOpc =
756      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
757    return DAG.getNode(ExtOpc, dl, PVT, Op);
758  }
759  }
760
761  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
762    return SDValue();
763  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
764}
765
766SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
767  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
768    return SDValue();
769  EVT OldVT = Op.getValueType();
770  DebugLoc dl = Op.getDebugLoc();
771  bool Replace = false;
772  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
773  if (NewOp.getNode() == 0)
774    return SDValue();
775  AddToWorkList(NewOp.getNode());
776
777  if (Replace)
778    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
779  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
780                     DAG.getValueType(OldVT));
781}
782
783SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
784  EVT OldVT = Op.getValueType();
785  DebugLoc dl = Op.getDebugLoc();
786  bool Replace = false;
787  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
788  if (NewOp.getNode() == 0)
789    return SDValue();
790  AddToWorkList(NewOp.getNode());
791
792  if (Replace)
793    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
794  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
795}
796
797/// PromoteIntBinOp - Promote the specified integer binary operation if the
798/// target indicates it is beneficial. e.g. On x86, it's usually better to
799/// promote i16 operations to i32 since i16 instructions are longer.
800SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
801  if (!LegalOperations)
802    return SDValue();
803
804  EVT VT = Op.getValueType();
805  if (VT.isVector() || !VT.isInteger())
806    return SDValue();
807
808  // If operation type is 'undesirable', e.g. i16 on x86, consider
809  // promoting it.
810  unsigned Opc = Op.getOpcode();
811  if (TLI.isTypeDesirableForOp(Opc, VT))
812    return SDValue();
813
814  EVT PVT = VT;
815  // Consult target whether it is a good idea to promote this operation and
816  // what's the right type to promote it to.
817  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
818    assert(PVT != VT && "Don't know what type to promote to!");
819
820    bool Replace0 = false;
821    SDValue N0 = Op.getOperand(0);
822    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
823    if (NN0.getNode() == 0)
824      return SDValue();
825
826    bool Replace1 = false;
827    SDValue N1 = Op.getOperand(1);
828    SDValue NN1;
829    if (N0 == N1)
830      NN1 = NN0;
831    else {
832      NN1 = PromoteOperand(N1, PVT, Replace1);
833      if (NN1.getNode() == 0)
834        return SDValue();
835    }
836
837    AddToWorkList(NN0.getNode());
838    if (NN1.getNode())
839      AddToWorkList(NN1.getNode());
840
841    if (Replace0)
842      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
843    if (Replace1)
844      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
845
846    DEBUG(dbgs() << "\nPromoting ";
847          Op.getNode()->dump(&DAG));
848    DebugLoc dl = Op.getDebugLoc();
849    return DAG.getNode(ISD::TRUNCATE, dl, VT,
850                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
851  }
852  return SDValue();
853}
854
855/// PromoteIntShiftOp - Promote the specified integer shift operation if the
856/// target indicates it is beneficial. e.g. On x86, it's usually better to
857/// promote i16 operations to i32 since i16 instructions are longer.
858SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
859  if (!LegalOperations)
860    return SDValue();
861
862  EVT VT = Op.getValueType();
863  if (VT.isVector() || !VT.isInteger())
864    return SDValue();
865
866  // If operation type is 'undesirable', e.g. i16 on x86, consider
867  // promoting it.
868  unsigned Opc = Op.getOpcode();
869  if (TLI.isTypeDesirableForOp(Opc, VT))
870    return SDValue();
871
872  EVT PVT = VT;
873  // Consult target whether it is a good idea to promote this operation and
874  // what's the right type to promote it to.
875  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
876    assert(PVT != VT && "Don't know what type to promote to!");
877
878    bool Replace = false;
879    SDValue N0 = Op.getOperand(0);
880    if (Opc == ISD::SRA)
881      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
882    else if (Opc == ISD::SRL)
883      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
884    else
885      N0 = PromoteOperand(N0, PVT, Replace);
886    if (N0.getNode() == 0)
887      return SDValue();
888
889    AddToWorkList(N0.getNode());
890    if (Replace)
891      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
892
893    DEBUG(dbgs() << "\nPromoting ";
894          Op.getNode()->dump(&DAG));
895    DebugLoc dl = Op.getDebugLoc();
896    return DAG.getNode(ISD::TRUNCATE, dl, VT,
897                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
898  }
899  return SDValue();
900}
901
902SDValue DAGCombiner::PromoteExtend(SDValue Op) {
903  if (!LegalOperations)
904    return SDValue();
905
906  EVT VT = Op.getValueType();
907  if (VT.isVector() || !VT.isInteger())
908    return SDValue();
909
910  // If operation type is 'undesirable', e.g. i16 on x86, consider
911  // promoting it.
912  unsigned Opc = Op.getOpcode();
913  if (TLI.isTypeDesirableForOp(Opc, VT))
914    return SDValue();
915
916  EVT PVT = VT;
917  // Consult target whether it is a good idea to promote this operation and
918  // what's the right type to promote it to.
919  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
920    assert(PVT != VT && "Don't know what type to promote to!");
921    // fold (aext (aext x)) -> (aext x)
922    // fold (aext (zext x)) -> (zext x)
923    // fold (aext (sext x)) -> (sext x)
924    DEBUG(dbgs() << "\nPromoting ";
925          Op.getNode()->dump(&DAG));
926    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
927  }
928  return SDValue();
929}
930
931bool DAGCombiner::PromoteLoad(SDValue Op) {
932  if (!LegalOperations)
933    return false;
934
935  EVT VT = Op.getValueType();
936  if (VT.isVector() || !VT.isInteger())
937    return false;
938
939  // If operation type is 'undesirable', e.g. i16 on x86, consider
940  // promoting it.
941  unsigned Opc = Op.getOpcode();
942  if (TLI.isTypeDesirableForOp(Opc, VT))
943    return false;
944
945  EVT PVT = VT;
946  // Consult target whether it is a good idea to promote this operation and
947  // what's the right type to promote it to.
948  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
949    assert(PVT != VT && "Don't know what type to promote to!");
950
951    DebugLoc dl = Op.getDebugLoc();
952    SDNode *N = Op.getNode();
953    LoadSDNode *LD = cast<LoadSDNode>(N);
954    EVT MemVT = LD->getMemoryVT();
955    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
956      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
957                                                  : ISD::EXTLOAD)
958      : LD->getExtensionType();
959    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
960                                   LD->getChain(), LD->getBasePtr(),
961                                   LD->getPointerInfo(),
962                                   MemVT, LD->isVolatile(),
963                                   LD->isNonTemporal(), LD->getAlignment());
964    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
965
966    DEBUG(dbgs() << "\nPromoting ";
967          N->dump(&DAG);
968          dbgs() << "\nTo: ";
969          Result.getNode()->dump(&DAG);
970          dbgs() << '\n');
971    WorkListRemover DeadNodes(*this);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
973    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
974    removeFromWorkList(N);
975    DAG.DeleteNode(N);
976    AddToWorkList(Result.getNode());
977    return true;
978  }
979  return false;
980}
981
982
983//===----------------------------------------------------------------------===//
984//  Main DAG Combiner implementation
985//===----------------------------------------------------------------------===//
986
987void DAGCombiner::Run(CombineLevel AtLevel) {
988  // set the instance variables, so that the various visit routines may use it.
989  Level = AtLevel;
990  LegalOperations = Level >= AfterLegalizeVectorOps;
991  LegalTypes = Level >= AfterLegalizeTypes;
992
993  // Add all the dag nodes to the worklist.
994  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
995       E = DAG.allnodes_end(); I != E; ++I)
996    AddToWorkList(I);
997
998  // Create a dummy node (which is not added to allnodes), that adds a reference
999  // to the root node, preventing it from being deleted, and tracking any
1000  // changes of the root.
1001  HandleSDNode Dummy(DAG.getRoot());
1002
1003  // The root of the dag may dangle to deleted nodes until the dag combiner is
1004  // done.  Set it to null to avoid confusion.
1005  DAG.setRoot(SDValue());
1006
1007  // while the worklist isn't empty, find a node and
1008  // try and combine it.
1009  while (!WorkListContents.empty()) {
1010    SDNode *N;
1011    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1012    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1013    // worklist *should* contain, and check the node we want to visit is should
1014    // actually be visited.
1015    do {
1016      N = WorkListOrder.pop_back_val();
1017    } while (!WorkListContents.erase(N));
1018
1019    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1020    // N is deleted from the DAG, since they too may now be dead or may have a
1021    // reduced number of uses, allowing other xforms.
1022    if (N->use_empty() && N != &Dummy) {
1023      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1024        AddToWorkList(N->getOperand(i).getNode());
1025
1026      DAG.DeleteNode(N);
1027      continue;
1028    }
1029
1030    SDValue RV = combine(N);
1031
1032    if (RV.getNode() == 0)
1033      continue;
1034
1035    ++NodesCombined;
1036
1037    // If we get back the same node we passed in, rather than a new node or
1038    // zero, we know that the node must have defined multiple values and
1039    // CombineTo was used.  Since CombineTo takes care of the worklist
1040    // mechanics for us, we have no work to do in this case.
1041    if (RV.getNode() == N)
1042      continue;
1043
1044    assert(N->getOpcode() != ISD::DELETED_NODE &&
1045           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1046           "Node was deleted but visit returned new node!");
1047
1048    DEBUG(dbgs() << "\nReplacing.3 ";
1049          N->dump(&DAG);
1050          dbgs() << "\nWith: ";
1051          RV.getNode()->dump(&DAG);
1052          dbgs() << '\n');
1053
1054    // Transfer debug value.
1055    DAG.TransferDbgValues(SDValue(N, 0), RV);
1056    WorkListRemover DeadNodes(*this);
1057    if (N->getNumValues() == RV.getNode()->getNumValues())
1058      DAG.ReplaceAllUsesWith(N, RV.getNode());
1059    else {
1060      assert(N->getValueType(0) == RV.getValueType() &&
1061             N->getNumValues() == 1 && "Type mismatch");
1062      SDValue OpV = RV;
1063      DAG.ReplaceAllUsesWith(N, &OpV);
1064    }
1065
1066    // Push the new node and any users onto the worklist
1067    AddToWorkList(RV.getNode());
1068    AddUsersToWorkList(RV.getNode());
1069
1070    // Add any uses of the old node to the worklist in case this node is the
1071    // last one that uses them.  They may become dead after this node is
1072    // deleted.
1073    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1074      AddToWorkList(N->getOperand(i).getNode());
1075
1076    // Finally, if the node is now dead, remove it from the graph.  The node
1077    // may not be dead if the replacement process recursively simplified to
1078    // something else needing this node.
1079    if (N->use_empty()) {
1080      // Nodes can be reintroduced into the worklist.  Make sure we do not
1081      // process a node that has been replaced.
1082      removeFromWorkList(N);
1083
1084      // Finally, since the node is now dead, remove it from the graph.
1085      DAG.DeleteNode(N);
1086    }
1087  }
1088
1089  // If the root changed (e.g. it was a dead load, update the root).
1090  DAG.setRoot(Dummy.getValue());
1091  DAG.RemoveDeadNodes();
1092}
1093
1094SDValue DAGCombiner::visit(SDNode *N) {
1095  switch (N->getOpcode()) {
1096  default: break;
1097  case ISD::TokenFactor:        return visitTokenFactor(N);
1098  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1099  case ISD::ADD:                return visitADD(N);
1100  case ISD::SUB:                return visitSUB(N);
1101  case ISD::ADDC:               return visitADDC(N);
1102  case ISD::SUBC:               return visitSUBC(N);
1103  case ISD::ADDE:               return visitADDE(N);
1104  case ISD::SUBE:               return visitSUBE(N);
1105  case ISD::MUL:                return visitMUL(N);
1106  case ISD::SDIV:               return visitSDIV(N);
1107  case ISD::UDIV:               return visitUDIV(N);
1108  case ISD::SREM:               return visitSREM(N);
1109  case ISD::UREM:               return visitUREM(N);
1110  case ISD::MULHU:              return visitMULHU(N);
1111  case ISD::MULHS:              return visitMULHS(N);
1112  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1113  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1114  case ISD::SMULO:              return visitSMULO(N);
1115  case ISD::UMULO:              return visitUMULO(N);
1116  case ISD::SDIVREM:            return visitSDIVREM(N);
1117  case ISD::UDIVREM:            return visitUDIVREM(N);
1118  case ISD::AND:                return visitAND(N);
1119  case ISD::OR:                 return visitOR(N);
1120  case ISD::XOR:                return visitXOR(N);
1121  case ISD::SHL:                return visitSHL(N);
1122  case ISD::SRA:                return visitSRA(N);
1123  case ISD::SRL:                return visitSRL(N);
1124  case ISD::CTLZ:               return visitCTLZ(N);
1125  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1126  case ISD::CTTZ:               return visitCTTZ(N);
1127  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1128  case ISD::CTPOP:              return visitCTPOP(N);
1129  case ISD::SELECT:             return visitSELECT(N);
1130  case ISD::VSELECT:            return visitVSELECT(N);
1131  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1132  case ISD::SETCC:              return visitSETCC(N);
1133  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1134  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1135  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1136  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1137  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1138  case ISD::BITCAST:            return visitBITCAST(N);
1139  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1140  case ISD::FADD:               return visitFADD(N);
1141  case ISD::FSUB:               return visitFSUB(N);
1142  case ISD::FMUL:               return visitFMUL(N);
1143  case ISD::FMA:                return visitFMA(N);
1144  case ISD::FDIV:               return visitFDIV(N);
1145  case ISD::FREM:               return visitFREM(N);
1146  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1147  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1148  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1149  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1150  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1151  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1152  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1153  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1154  case ISD::FNEG:               return visitFNEG(N);
1155  case ISD::FABS:               return visitFABS(N);
1156  case ISD::FFLOOR:             return visitFFLOOR(N);
1157  case ISD::FCEIL:              return visitFCEIL(N);
1158  case ISD::FTRUNC:             return visitFTRUNC(N);
1159  case ISD::BRCOND:             return visitBRCOND(N);
1160  case ISD::BR_CC:              return visitBR_CC(N);
1161  case ISD::LOAD:               return visitLOAD(N);
1162  case ISD::STORE:              return visitSTORE(N);
1163  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1164  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1165  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1166  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1167  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1168  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1169  }
1170  return SDValue();
1171}
1172
1173SDValue DAGCombiner::combine(SDNode *N) {
1174  SDValue RV = visit(N);
1175
1176  // If nothing happened, try a target-specific DAG combine.
1177  if (RV.getNode() == 0) {
1178    assert(N->getOpcode() != ISD::DELETED_NODE &&
1179           "Node was deleted but visit returned NULL!");
1180
1181    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1182        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1183
1184      // Expose the DAG combiner to the target combiner impls.
1185      TargetLowering::DAGCombinerInfo
1186        DagCombineInfo(DAG, Level, false, this);
1187
1188      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1189    }
1190  }
1191
1192  // If nothing happened still, try promoting the operation.
1193  if (RV.getNode() == 0) {
1194    switch (N->getOpcode()) {
1195    default: break;
1196    case ISD::ADD:
1197    case ISD::SUB:
1198    case ISD::MUL:
1199    case ISD::AND:
1200    case ISD::OR:
1201    case ISD::XOR:
1202      RV = PromoteIntBinOp(SDValue(N, 0));
1203      break;
1204    case ISD::SHL:
1205    case ISD::SRA:
1206    case ISD::SRL:
1207      RV = PromoteIntShiftOp(SDValue(N, 0));
1208      break;
1209    case ISD::SIGN_EXTEND:
1210    case ISD::ZERO_EXTEND:
1211    case ISD::ANY_EXTEND:
1212      RV = PromoteExtend(SDValue(N, 0));
1213      break;
1214    case ISD::LOAD:
1215      if (PromoteLoad(SDValue(N, 0)))
1216        RV = SDValue(N, 0);
1217      break;
1218    }
1219  }
1220
1221  // If N is a commutative binary node, try commuting it to enable more
1222  // sdisel CSE.
1223  if (RV.getNode() == 0 &&
1224      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1225      N->getNumValues() == 1) {
1226    SDValue N0 = N->getOperand(0);
1227    SDValue N1 = N->getOperand(1);
1228
1229    // Constant operands are canonicalized to RHS.
1230    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1231      SDValue Ops[] = { N1, N0 };
1232      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1233                                            Ops, 2);
1234      if (CSENode)
1235        return SDValue(CSENode, 0);
1236    }
1237  }
1238
1239  return RV;
1240}
1241
1242/// getInputChainForNode - Given a node, return its input chain if it has one,
1243/// otherwise return a null sd operand.
1244static SDValue getInputChainForNode(SDNode *N) {
1245  if (unsigned NumOps = N->getNumOperands()) {
1246    if (N->getOperand(0).getValueType() == MVT::Other)
1247      return N->getOperand(0);
1248    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1249      return N->getOperand(NumOps-1);
1250    for (unsigned i = 1; i < NumOps-1; ++i)
1251      if (N->getOperand(i).getValueType() == MVT::Other)
1252        return N->getOperand(i);
1253  }
1254  return SDValue();
1255}
1256
1257SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1258  // If N has two operands, where one has an input chain equal to the other,
1259  // the 'other' chain is redundant.
1260  if (N->getNumOperands() == 2) {
1261    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1262      return N->getOperand(0);
1263    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1264      return N->getOperand(1);
1265  }
1266
1267  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1268  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1269  SmallPtrSet<SDNode*, 16> SeenOps;
1270  bool Changed = false;             // If we should replace this token factor.
1271
1272  // Start out with this token factor.
1273  TFs.push_back(N);
1274
1275  // Iterate through token factors.  The TFs grows when new token factors are
1276  // encountered.
1277  for (unsigned i = 0; i < TFs.size(); ++i) {
1278    SDNode *TF = TFs[i];
1279
1280    // Check each of the operands.
1281    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1282      SDValue Op = TF->getOperand(i);
1283
1284      switch (Op.getOpcode()) {
1285      case ISD::EntryToken:
1286        // Entry tokens don't need to be added to the list. They are
1287        // rededundant.
1288        Changed = true;
1289        break;
1290
1291      case ISD::TokenFactor:
1292        if (Op.hasOneUse() &&
1293            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1294          // Queue up for processing.
1295          TFs.push_back(Op.getNode());
1296          // Clean up in case the token factor is removed.
1297          AddToWorkList(Op.getNode());
1298          Changed = true;
1299          break;
1300        }
1301        // Fall thru
1302
1303      default:
1304        // Only add if it isn't already in the list.
1305        if (SeenOps.insert(Op.getNode()))
1306          Ops.push_back(Op);
1307        else
1308          Changed = true;
1309        break;
1310      }
1311    }
1312  }
1313
1314  SDValue Result;
1315
1316  // If we've change things around then replace token factor.
1317  if (Changed) {
1318    if (Ops.empty()) {
1319      // The entry token is the only possible outcome.
1320      Result = DAG.getEntryNode();
1321    } else {
1322      // New and improved token factor.
1323      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1324                           MVT::Other, &Ops[0], Ops.size());
1325    }
1326
1327    // Don't add users to work list.
1328    return CombineTo(N, Result, false);
1329  }
1330
1331  return Result;
1332}
1333
1334/// MERGE_VALUES can always be eliminated.
1335SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1336  WorkListRemover DeadNodes(*this);
1337  // Replacing results may cause a different MERGE_VALUES to suddenly
1338  // be CSE'd with N, and carry its uses with it. Iterate until no
1339  // uses remain, to ensure that the node can be safely deleted.
1340  // First add the users of this node to the work list so that they
1341  // can be tried again once they have new operands.
1342  AddUsersToWorkList(N);
1343  do {
1344    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1345      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1346  } while (!N->use_empty());
1347  removeFromWorkList(N);
1348  DAG.DeleteNode(N);
1349  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1350}
1351
1352static
1353SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1354                              SelectionDAG &DAG) {
1355  EVT VT = N0.getValueType();
1356  SDValue N00 = N0.getOperand(0);
1357  SDValue N01 = N0.getOperand(1);
1358  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1359
1360  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1361      isa<ConstantSDNode>(N00.getOperand(1))) {
1362    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1363    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1364                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1365                                 N00.getOperand(0), N01),
1366                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1367                                 N00.getOperand(1), N01));
1368    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1369  }
1370
1371  return SDValue();
1372}
1373
1374SDValue DAGCombiner::visitADD(SDNode *N) {
1375  SDValue N0 = N->getOperand(0);
1376  SDValue N1 = N->getOperand(1);
1377  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1378  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1379  EVT VT = N0.getValueType();
1380
1381  // fold vector ops
1382  if (VT.isVector()) {
1383    SDValue FoldedVOp = SimplifyVBinOp(N);
1384    if (FoldedVOp.getNode()) return FoldedVOp;
1385
1386    // fold (add x, 0) -> x, vector edition
1387    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1388      return N0;
1389    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1390      return N1;
1391  }
1392
1393  // fold (add x, undef) -> undef
1394  if (N0.getOpcode() == ISD::UNDEF)
1395    return N0;
1396  if (N1.getOpcode() == ISD::UNDEF)
1397    return N1;
1398  // fold (add c1, c2) -> c1+c2
1399  if (N0C && N1C)
1400    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1401  // canonicalize constant to RHS
1402  if (N0C && !N1C)
1403    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1404  // fold (add x, 0) -> x
1405  if (N1C && N1C->isNullValue())
1406    return N0;
1407  // fold (add Sym, c) -> Sym+c
1408  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1409    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1410        GA->getOpcode() == ISD::GlobalAddress)
1411      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1412                                  GA->getOffset() +
1413                                    (uint64_t)N1C->getSExtValue());
1414  // fold ((c1-A)+c2) -> (c1+c2)-A
1415  if (N1C && N0.getOpcode() == ISD::SUB)
1416    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1417      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1418                         DAG.getConstant(N1C->getAPIntValue()+
1419                                         N0C->getAPIntValue(), VT),
1420                         N0.getOperand(1));
1421  // reassociate add
1422  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1423  if (RADD.getNode() != 0)
1424    return RADD;
1425  // fold ((0-A) + B) -> B-A
1426  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1427      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1428    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1429  // fold (A + (0-B)) -> A-B
1430  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1431      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1432    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1433  // fold (A+(B-A)) -> B
1434  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1435    return N1.getOperand(0);
1436  // fold ((B-A)+A) -> B
1437  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1438    return N0.getOperand(0);
1439  // fold (A+(B-(A+C))) to (B-C)
1440  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1441      N0 == N1.getOperand(1).getOperand(0))
1442    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1443                       N1.getOperand(1).getOperand(1));
1444  // fold (A+(B-(C+A))) to (B-C)
1445  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1446      N0 == N1.getOperand(1).getOperand(1))
1447    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1448                       N1.getOperand(1).getOperand(0));
1449  // fold (A+((B-A)+or-C)) to (B+or-C)
1450  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1451      N1.getOperand(0).getOpcode() == ISD::SUB &&
1452      N0 == N1.getOperand(0).getOperand(1))
1453    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1454                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1455
1456  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1457  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1458    SDValue N00 = N0.getOperand(0);
1459    SDValue N01 = N0.getOperand(1);
1460    SDValue N10 = N1.getOperand(0);
1461    SDValue N11 = N1.getOperand(1);
1462
1463    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1464      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1465                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1466                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1467  }
1468
1469  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1470    return SDValue(N, 0);
1471
1472  // fold (a+b) -> (a|b) iff a and b share no bits.
1473  if (VT.isInteger() && !VT.isVector()) {
1474    APInt LHSZero, LHSOne;
1475    APInt RHSZero, RHSOne;
1476    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1477
1478    if (LHSZero.getBoolValue()) {
1479      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1480
1481      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1482      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1483      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1484        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1485    }
1486  }
1487
1488  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1489  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1490    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1491    if (Result.getNode()) return Result;
1492  }
1493  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1494    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1495    if (Result.getNode()) return Result;
1496  }
1497
1498  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1499  if (N1.getOpcode() == ISD::SHL &&
1500      N1.getOperand(0).getOpcode() == ISD::SUB)
1501    if (ConstantSDNode *C =
1502          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1503      if (C->getAPIntValue() == 0)
1504        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1505                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1506                                       N1.getOperand(0).getOperand(1),
1507                                       N1.getOperand(1)));
1508  if (N0.getOpcode() == ISD::SHL &&
1509      N0.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1514                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1515                                       N0.getOperand(0).getOperand(1),
1516                                       N0.getOperand(1)));
1517
1518  if (N1.getOpcode() == ISD::AND) {
1519    SDValue AndOp0 = N1.getOperand(0);
1520    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1521    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1522    unsigned DestBits = VT.getScalarType().getSizeInBits();
1523
1524    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1525    // and similar xforms where the inner op is either ~0 or 0.
1526    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1527      DebugLoc DL = N->getDebugLoc();
1528      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1529    }
1530  }
1531
1532  // add (sext i1), X -> sub X, (zext i1)
1533  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1534      N0.getOperand(0).getValueType() == MVT::i1 &&
1535      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1536    DebugLoc DL = N->getDebugLoc();
1537    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1538    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1539  }
1540
1541  return SDValue();
1542}
1543
1544SDValue DAGCombiner::visitADDC(SDNode *N) {
1545  SDValue N0 = N->getOperand(0);
1546  SDValue N1 = N->getOperand(1);
1547  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1548  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1549  EVT VT = N0.getValueType();
1550
1551  // If the flag result is dead, turn this into an ADD.
1552  if (!N->hasAnyUseOfValue(1))
1553    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1554                     DAG.getNode(ISD::CARRY_FALSE,
1555                                 N->getDebugLoc(), MVT::Glue));
1556
1557  // canonicalize constant to RHS.
1558  if (N0C && !N1C)
1559    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1560
1561  // fold (addc x, 0) -> x + no carry out
1562  if (N1C && N1C->isNullValue())
1563    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1564                                        N->getDebugLoc(), MVT::Glue));
1565
1566  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1567  APInt LHSZero, LHSOne;
1568  APInt RHSZero, RHSOne;
1569  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1570
1571  if (LHSZero.getBoolValue()) {
1572    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1573
1574    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1575    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1576    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1577      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1578                       DAG.getNode(ISD::CARRY_FALSE,
1579                                   N->getDebugLoc(), MVT::Glue));
1580  }
1581
1582  return SDValue();
1583}
1584
1585SDValue DAGCombiner::visitADDE(SDNode *N) {
1586  SDValue N0 = N->getOperand(0);
1587  SDValue N1 = N->getOperand(1);
1588  SDValue CarryIn = N->getOperand(2);
1589  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1590  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1591
1592  // canonicalize constant to RHS
1593  if (N0C && !N1C)
1594    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1595                       N1, N0, CarryIn);
1596
1597  // fold (adde x, y, false) -> (addc x, y)
1598  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1599    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1600
1601  return SDValue();
1602}
1603
1604// Since it may not be valid to emit a fold to zero for vector initializers
1605// check if we can before folding.
1606static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1607                             SelectionDAG &DAG, bool LegalOperations) {
1608  if (!VT.isVector()) {
1609    return DAG.getConstant(0, VT);
1610  }
1611  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1612    // Produce a vector of zeros.
1613    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1614    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1615    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1616      &Ops[0], Ops.size());
1617  }
1618  return SDValue();
1619}
1620
1621SDValue DAGCombiner::visitSUB(SDNode *N) {
1622  SDValue N0 = N->getOperand(0);
1623  SDValue N1 = N->getOperand(1);
1624  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1626  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1627    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1628  EVT VT = N0.getValueType();
1629
1630  // fold vector ops
1631  if (VT.isVector()) {
1632    SDValue FoldedVOp = SimplifyVBinOp(N);
1633    if (FoldedVOp.getNode()) return FoldedVOp;
1634
1635    // fold (sub x, 0) -> x, vector edition
1636    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1637      return N0;
1638  }
1639
1640  // fold (sub x, x) -> 0
1641  // FIXME: Refactor this and xor and other similar operations together.
1642  if (N0 == N1)
1643    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1644  // fold (sub c1, c2) -> c1-c2
1645  if (N0C && N1C)
1646    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1647  // fold (sub x, c) -> (add x, -c)
1648  if (N1C)
1649    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1650                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1651  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1652  if (N0C && N0C->isAllOnesValue())
1653    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1654  // fold A-(A-B) -> B
1655  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1656    return N1.getOperand(1);
1657  // fold (A+B)-A -> B
1658  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1659    return N0.getOperand(1);
1660  // fold (A+B)-B -> A
1661  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1662    return N0.getOperand(0);
1663  // fold C2-(A+C1) -> (C2-C1)-A
1664  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1665    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1666                                   VT);
1667    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1668                       N1.getOperand(0));
1669  }
1670  // fold ((A+(B+or-C))-B) -> A+or-C
1671  if (N0.getOpcode() == ISD::ADD &&
1672      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1673       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1674      N0.getOperand(1).getOperand(0) == N1)
1675    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1676                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1677  // fold ((A+(C+B))-B) -> A+C
1678  if (N0.getOpcode() == ISD::ADD &&
1679      N0.getOperand(1).getOpcode() == ISD::ADD &&
1680      N0.getOperand(1).getOperand(1) == N1)
1681    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1682                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1683  // fold ((A-(B-C))-C) -> A-B
1684  if (N0.getOpcode() == ISD::SUB &&
1685      N0.getOperand(1).getOpcode() == ISD::SUB &&
1686      N0.getOperand(1).getOperand(1) == N1)
1687    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1688                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1689
1690  // If either operand of a sub is undef, the result is undef
1691  if (N0.getOpcode() == ISD::UNDEF)
1692    return N0;
1693  if (N1.getOpcode() == ISD::UNDEF)
1694    return N1;
1695
1696  // If the relocation model supports it, consider symbol offsets.
1697  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1698    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1699      // fold (sub Sym, c) -> Sym-c
1700      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1701        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1702                                    GA->getOffset() -
1703                                      (uint64_t)N1C->getSExtValue());
1704      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1705      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1706        if (GA->getGlobal() == GB->getGlobal())
1707          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1708                                 VT);
1709    }
1710
1711  return SDValue();
1712}
1713
1714SDValue DAGCombiner::visitSUBC(SDNode *N) {
1715  SDValue N0 = N->getOperand(0);
1716  SDValue N1 = N->getOperand(1);
1717  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1719  EVT VT = N0.getValueType();
1720
1721  // If the flag result is dead, turn this into an SUB.
1722  if (!N->hasAnyUseOfValue(1))
1723    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1724                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1725                                 MVT::Glue));
1726
1727  // fold (subc x, x) -> 0 + no borrow
1728  if (N0 == N1)
1729    return CombineTo(N, DAG.getConstant(0, VT),
1730                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1731                                 MVT::Glue));
1732
1733  // fold (subc x, 0) -> x + no borrow
1734  if (N1C && N1C->isNullValue())
1735    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1736                                        MVT::Glue));
1737
1738  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1739  if (N0C && N0C->isAllOnesValue())
1740    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1741                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1742                                 MVT::Glue));
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBE(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  SDValue CarryIn = N->getOperand(2);
1751
1752  // fold (sube x, y, false) -> (subc x, y)
1753  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1754    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1755
1756  return SDValue();
1757}
1758
1759SDValue DAGCombiner::visitMUL(SDNode *N) {
1760  SDValue N0 = N->getOperand(0);
1761  SDValue N1 = N->getOperand(1);
1762  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1763  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1764  EVT VT = N0.getValueType();
1765
1766  // fold vector ops
1767  if (VT.isVector()) {
1768    SDValue FoldedVOp = SimplifyVBinOp(N);
1769    if (FoldedVOp.getNode()) return FoldedVOp;
1770  }
1771
1772  // fold (mul x, undef) -> 0
1773  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1774    return DAG.getConstant(0, VT);
1775  // fold (mul c1, c2) -> c1*c2
1776  if (N0C && N1C)
1777    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1778  // canonicalize constant to RHS
1779  if (N0C && !N1C)
1780    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1781  // fold (mul x, 0) -> 0
1782  if (N1C && N1C->isNullValue())
1783    return N1;
1784  // fold (mul x, -1) -> 0-x
1785  if (N1C && N1C->isAllOnesValue())
1786    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1787                       DAG.getConstant(0, VT), N0);
1788  // fold (mul x, (1 << c)) -> x << c
1789  if (N1C && N1C->getAPIntValue().isPowerOf2())
1790    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1791                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1792                                       getShiftAmountTy(N0.getValueType())));
1793  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1794  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1795    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1796    // FIXME: If the input is something that is easily negated (e.g. a
1797    // single-use add), we should put the negate there.
1798    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1799                       DAG.getConstant(0, VT),
1800                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1801                            DAG.getConstant(Log2Val,
1802                                      getShiftAmountTy(N0.getValueType()))));
1803  }
1804  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1805  if (N1C && N0.getOpcode() == ISD::SHL &&
1806      isa<ConstantSDNode>(N0.getOperand(1))) {
1807    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1808                             N1, N0.getOperand(1));
1809    AddToWorkList(C3.getNode());
1810    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1811                       N0.getOperand(0), C3);
1812  }
1813
1814  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1815  // use.
1816  {
1817    SDValue Sh(0,0), Y(0,0);
1818    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1819    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1820        N0.getNode()->hasOneUse()) {
1821      Sh = N0; Y = N1;
1822    } else if (N1.getOpcode() == ISD::SHL &&
1823               isa<ConstantSDNode>(N1.getOperand(1)) &&
1824               N1.getNode()->hasOneUse()) {
1825      Sh = N1; Y = N0;
1826    }
1827
1828    if (Sh.getNode()) {
1829      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1830                                Sh.getOperand(0), Y);
1831      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1832                         Mul, Sh.getOperand(1));
1833    }
1834  }
1835
1836  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1837  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1838      isa<ConstantSDNode>(N0.getOperand(1)))
1839    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1840                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1841                                   N0.getOperand(0), N1),
1842                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1843                                   N0.getOperand(1), N1));
1844
1845  // reassociate mul
1846  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1847  if (RMUL.getNode() != 0)
1848    return RMUL;
1849
1850  return SDValue();
1851}
1852
1853SDValue DAGCombiner::visitSDIV(SDNode *N) {
1854  SDValue N0 = N->getOperand(0);
1855  SDValue N1 = N->getOperand(1);
1856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1857  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1858  EVT VT = N->getValueType(0);
1859
1860  // fold vector ops
1861  if (VT.isVector()) {
1862    SDValue FoldedVOp = SimplifyVBinOp(N);
1863    if (FoldedVOp.getNode()) return FoldedVOp;
1864  }
1865
1866  // fold (sdiv c1, c2) -> c1/c2
1867  if (N0C && N1C && !N1C->isNullValue())
1868    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1869  // fold (sdiv X, 1) -> X
1870  if (N1C && N1C->getAPIntValue() == 1LL)
1871    return N0;
1872  // fold (sdiv X, -1) -> 0-X
1873  if (N1C && N1C->isAllOnesValue())
1874    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1875                       DAG.getConstant(0, VT), N0);
1876  // If we know the sign bits of both operands are zero, strength reduce to a
1877  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1878  if (!VT.isVector()) {
1879    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1880      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1881                         N0, N1);
1882  }
1883  // fold (sdiv X, pow2) -> simple ops after legalize
1884  if (N1C && !N1C->isNullValue() &&
1885      (N1C->getAPIntValue().isPowerOf2() ||
1886       (-N1C->getAPIntValue()).isPowerOf2())) {
1887    // If dividing by powers of two is cheap, then don't perform the following
1888    // fold.
1889    if (TLI.isPow2DivCheap())
1890      return SDValue();
1891
1892    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1893
1894    // Splat the sign bit into the register
1895    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1896                              DAG.getConstant(VT.getSizeInBits()-1,
1897                                       getShiftAmountTy(N0.getValueType())));
1898    AddToWorkList(SGN.getNode());
1899
1900    // Add (N0 < 0) ? abs2 - 1 : 0;
1901    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1902                              DAG.getConstant(VT.getSizeInBits() - lg2,
1903                                       getShiftAmountTy(SGN.getValueType())));
1904    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1905    AddToWorkList(SRL.getNode());
1906    AddToWorkList(ADD.getNode());    // Divide by pow2
1907    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1908                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1909
1910    // If we're dividing by a positive value, we're done.  Otherwise, we must
1911    // negate the result.
1912    if (N1C->getAPIntValue().isNonNegative())
1913      return SRA;
1914
1915    AddToWorkList(SRA.getNode());
1916    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1917                       DAG.getConstant(0, VT), SRA);
1918  }
1919
1920  // if integer divide is expensive and we satisfy the requirements, emit an
1921  // alternate sequence.
1922  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1923    SDValue Op = BuildSDIV(N);
1924    if (Op.getNode()) return Op;
1925  }
1926
1927  // undef / X -> 0
1928  if (N0.getOpcode() == ISD::UNDEF)
1929    return DAG.getConstant(0, VT);
1930  // X / undef -> undef
1931  if (N1.getOpcode() == ISD::UNDEF)
1932    return N1;
1933
1934  return SDValue();
1935}
1936
1937SDValue DAGCombiner::visitUDIV(SDNode *N) {
1938  SDValue N0 = N->getOperand(0);
1939  SDValue N1 = N->getOperand(1);
1940  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1942  EVT VT = N->getValueType(0);
1943
1944  // fold vector ops
1945  if (VT.isVector()) {
1946    SDValue FoldedVOp = SimplifyVBinOp(N);
1947    if (FoldedVOp.getNode()) return FoldedVOp;
1948  }
1949
1950  // fold (udiv c1, c2) -> c1/c2
1951  if (N0C && N1C && !N1C->isNullValue())
1952    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1953  // fold (udiv x, (1 << c)) -> x >>u c
1954  if (N1C && N1C->getAPIntValue().isPowerOf2())
1955    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1956                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1957                                       getShiftAmountTy(N0.getValueType())));
1958  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1959  if (N1.getOpcode() == ISD::SHL) {
1960    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1961      if (SHC->getAPIntValue().isPowerOf2()) {
1962        EVT ADDVT = N1.getOperand(1).getValueType();
1963        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1964                                  N1.getOperand(1),
1965                                  DAG.getConstant(SHC->getAPIntValue()
1966                                                                  .logBase2(),
1967                                                  ADDVT));
1968        AddToWorkList(Add.getNode());
1969        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1970      }
1971    }
1972  }
1973  // fold (udiv x, c) -> alternate
1974  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1975    SDValue Op = BuildUDIV(N);
1976    if (Op.getNode()) return Op;
1977  }
1978
1979  // undef / X -> 0
1980  if (N0.getOpcode() == ISD::UNDEF)
1981    return DAG.getConstant(0, VT);
1982  // X / undef -> undef
1983  if (N1.getOpcode() == ISD::UNDEF)
1984    return N1;
1985
1986  return SDValue();
1987}
1988
1989SDValue DAGCombiner::visitSREM(SDNode *N) {
1990  SDValue N0 = N->getOperand(0);
1991  SDValue N1 = N->getOperand(1);
1992  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1994  EVT VT = N->getValueType(0);
1995
1996  // fold (srem c1, c2) -> c1%c2
1997  if (N0C && N1C && !N1C->isNullValue())
1998    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1999  // If we know the sign bits of both operands are zero, strength reduce to a
2000  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2001  if (!VT.isVector()) {
2002    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2003      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
2004  }
2005
2006  // If X/C can be simplified by the division-by-constant logic, lower
2007  // X%C to the equivalent of X-X/C*C.
2008  if (N1C && !N1C->isNullValue()) {
2009    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
2010    AddToWorkList(Div.getNode());
2011    SDValue OptimizedDiv = combine(Div.getNode());
2012    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2013      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2014                                OptimizedDiv, N1);
2015      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2016      AddToWorkList(Mul.getNode());
2017      return Sub;
2018    }
2019  }
2020
2021  // undef % X -> 0
2022  if (N0.getOpcode() == ISD::UNDEF)
2023    return DAG.getConstant(0, VT);
2024  // X % undef -> undef
2025  if (N1.getOpcode() == ISD::UNDEF)
2026    return N1;
2027
2028  return SDValue();
2029}
2030
2031SDValue DAGCombiner::visitUREM(SDNode *N) {
2032  SDValue N0 = N->getOperand(0);
2033  SDValue N1 = N->getOperand(1);
2034  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2035  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2036  EVT VT = N->getValueType(0);
2037
2038  // fold (urem c1, c2) -> c1%c2
2039  if (N0C && N1C && !N1C->isNullValue())
2040    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2041  // fold (urem x, pow2) -> (and x, pow2-1)
2042  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2043    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2044                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2045  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2046  if (N1.getOpcode() == ISD::SHL) {
2047    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2048      if (SHC->getAPIntValue().isPowerOf2()) {
2049        SDValue Add =
2050          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2051                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2052                                 VT));
2053        AddToWorkList(Add.getNode());
2054        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2055      }
2056    }
2057  }
2058
2059  // If X/C can be simplified by the division-by-constant logic, lower
2060  // X%C to the equivalent of X-X/C*C.
2061  if (N1C && !N1C->isNullValue()) {
2062    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2063    AddToWorkList(Div.getNode());
2064    SDValue OptimizedDiv = combine(Div.getNode());
2065    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2066      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2067                                OptimizedDiv, N1);
2068      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2069      AddToWorkList(Mul.getNode());
2070      return Sub;
2071    }
2072  }
2073
2074  // undef % X -> 0
2075  if (N0.getOpcode() == ISD::UNDEF)
2076    return DAG.getConstant(0, VT);
2077  // X % undef -> undef
2078  if (N1.getOpcode() == ISD::UNDEF)
2079    return N1;
2080
2081  return SDValue();
2082}
2083
2084SDValue DAGCombiner::visitMULHS(SDNode *N) {
2085  SDValue N0 = N->getOperand(0);
2086  SDValue N1 = N->getOperand(1);
2087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2088  EVT VT = N->getValueType(0);
2089  DebugLoc DL = N->getDebugLoc();
2090
2091  // fold (mulhs x, 0) -> 0
2092  if (N1C && N1C->isNullValue())
2093    return N1;
2094  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2095  if (N1C && N1C->getAPIntValue() == 1)
2096    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2097                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2098                                       getShiftAmountTy(N0.getValueType())));
2099  // fold (mulhs x, undef) -> 0
2100  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2101    return DAG.getConstant(0, VT);
2102
2103  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2104  // plus a shift.
2105  if (VT.isSimple() && !VT.isVector()) {
2106    MVT Simple = VT.getSimpleVT();
2107    unsigned SimpleSize = Simple.getSizeInBits();
2108    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2109    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2110      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2111      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2112      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2113      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2114            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2115      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2116    }
2117  }
2118
2119  return SDValue();
2120}
2121
2122SDValue DAGCombiner::visitMULHU(SDNode *N) {
2123  SDValue N0 = N->getOperand(0);
2124  SDValue N1 = N->getOperand(1);
2125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2126  EVT VT = N->getValueType(0);
2127  DebugLoc DL = N->getDebugLoc();
2128
2129  // fold (mulhu x, 0) -> 0
2130  if (N1C && N1C->isNullValue())
2131    return N1;
2132  // fold (mulhu x, 1) -> 0
2133  if (N1C && N1C->getAPIntValue() == 1)
2134    return DAG.getConstant(0, N0.getValueType());
2135  // fold (mulhu x, undef) -> 0
2136  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2137    return DAG.getConstant(0, VT);
2138
2139  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2140  // plus a shift.
2141  if (VT.isSimple() && !VT.isVector()) {
2142    MVT Simple = VT.getSimpleVT();
2143    unsigned SimpleSize = Simple.getSizeInBits();
2144    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2145    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2146      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2147      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2148      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2149      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2150            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2151      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2152    }
2153  }
2154
2155  return SDValue();
2156}
2157
2158/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2159/// compute two values. LoOp and HiOp give the opcodes for the two computations
2160/// that are being performed. Return true if a simplification was made.
2161///
2162SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2163                                                unsigned HiOp) {
2164  // If the high half is not needed, just compute the low half.
2165  bool HiExists = N->hasAnyUseOfValue(1);
2166  if (!HiExists &&
2167      (!LegalOperations ||
2168       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2169    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2170                              N->op_begin(), N->getNumOperands());
2171    return CombineTo(N, Res, Res);
2172  }
2173
2174  // If the low half is not needed, just compute the high half.
2175  bool LoExists = N->hasAnyUseOfValue(0);
2176  if (!LoExists &&
2177      (!LegalOperations ||
2178       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2179    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2180                              N->op_begin(), N->getNumOperands());
2181    return CombineTo(N, Res, Res);
2182  }
2183
2184  // If both halves are used, return as it is.
2185  if (LoExists && HiExists)
2186    return SDValue();
2187
2188  // If the two computed results can be simplified separately, separate them.
2189  if (LoExists) {
2190    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2191                             N->op_begin(), N->getNumOperands());
2192    AddToWorkList(Lo.getNode());
2193    SDValue LoOpt = combine(Lo.getNode());
2194    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2195        (!LegalOperations ||
2196         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2197      return CombineTo(N, LoOpt, LoOpt);
2198  }
2199
2200  if (HiExists) {
2201    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2202                             N->op_begin(), N->getNumOperands());
2203    AddToWorkList(Hi.getNode());
2204    SDValue HiOpt = combine(Hi.getNode());
2205    if (HiOpt.getNode() && HiOpt != Hi &&
2206        (!LegalOperations ||
2207         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2208      return CombineTo(N, HiOpt, HiOpt);
2209  }
2210
2211  return SDValue();
2212}
2213
2214SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2215  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2216  if (Res.getNode()) return Res;
2217
2218  EVT VT = N->getValueType(0);
2219  DebugLoc DL = N->getDebugLoc();
2220
2221  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2222  // plus a shift.
2223  if (VT.isSimple() && !VT.isVector()) {
2224    MVT Simple = VT.getSimpleVT();
2225    unsigned SimpleSize = Simple.getSizeInBits();
2226    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2227    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2228      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2229      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2230      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2231      // Compute the high part as N1.
2232      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2233            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2234      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2235      // Compute the low part as N0.
2236      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2237      return CombineTo(N, Lo, Hi);
2238    }
2239  }
2240
2241  return SDValue();
2242}
2243
2244SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2245  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2246  if (Res.getNode()) return Res;
2247
2248  EVT VT = N->getValueType(0);
2249  DebugLoc DL = N->getDebugLoc();
2250
2251  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2252  // plus a shift.
2253  if (VT.isSimple() && !VT.isVector()) {
2254    MVT Simple = VT.getSimpleVT();
2255    unsigned SimpleSize = Simple.getSizeInBits();
2256    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2257    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2258      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2259      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2260      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2261      // Compute the high part as N1.
2262      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2263            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2264      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2265      // Compute the low part as N0.
2266      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2267      return CombineTo(N, Lo, Hi);
2268    }
2269  }
2270
2271  return SDValue();
2272}
2273
2274SDValue DAGCombiner::visitSMULO(SDNode *N) {
2275  // (smulo x, 2) -> (saddo x, x)
2276  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2277    if (C2->getAPIntValue() == 2)
2278      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2279                         N->getOperand(0), N->getOperand(0));
2280
2281  return SDValue();
2282}
2283
2284SDValue DAGCombiner::visitUMULO(SDNode *N) {
2285  // (umulo x, 2) -> (uaddo x, x)
2286  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2287    if (C2->getAPIntValue() == 2)
2288      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2289                         N->getOperand(0), N->getOperand(0));
2290
2291  return SDValue();
2292}
2293
2294SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2295  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2296  if (Res.getNode()) return Res;
2297
2298  return SDValue();
2299}
2300
2301SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2302  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2303  if (Res.getNode()) return Res;
2304
2305  return SDValue();
2306}
2307
2308/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2309/// two operands of the same opcode, try to simplify it.
2310SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2311  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2312  EVT VT = N0.getValueType();
2313  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2314
2315  // Bail early if none of these transforms apply.
2316  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2317
2318  // For each of OP in AND/OR/XOR:
2319  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2320  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2321  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2322  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2323  //
2324  // do not sink logical op inside of a vector extend, since it may combine
2325  // into a vsetcc.
2326  EVT Op0VT = N0.getOperand(0).getValueType();
2327  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2328       N0.getOpcode() == ISD::SIGN_EXTEND ||
2329       // Avoid infinite looping with PromoteIntBinOp.
2330       (N0.getOpcode() == ISD::ANY_EXTEND &&
2331        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2332       (N0.getOpcode() == ISD::TRUNCATE &&
2333        (!TLI.isZExtFree(VT, Op0VT) ||
2334         !TLI.isTruncateFree(Op0VT, VT)) &&
2335        TLI.isTypeLegal(Op0VT))) &&
2336      !VT.isVector() &&
2337      Op0VT == N1.getOperand(0).getValueType() &&
2338      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2339    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2340                                 N0.getOperand(0).getValueType(),
2341                                 N0.getOperand(0), N1.getOperand(0));
2342    AddToWorkList(ORNode.getNode());
2343    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2344  }
2345
2346  // For each of OP in SHL/SRL/SRA/AND...
2347  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2348  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2349  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2350  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2351       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2352      N0.getOperand(1) == N1.getOperand(1)) {
2353    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2354                                 N0.getOperand(0).getValueType(),
2355                                 N0.getOperand(0), N1.getOperand(0));
2356    AddToWorkList(ORNode.getNode());
2357    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2358                       ORNode, N0.getOperand(1));
2359  }
2360
2361  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2362  // Only perform this optimization after type legalization and before
2363  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2364  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2365  // we don't want to undo this promotion.
2366  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2367  // on scalars.
2368  if ((N0.getOpcode() == ISD::BITCAST ||
2369       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2370      Level == AfterLegalizeTypes) {
2371    SDValue In0 = N0.getOperand(0);
2372    SDValue In1 = N1.getOperand(0);
2373    EVT In0Ty = In0.getValueType();
2374    EVT In1Ty = In1.getValueType();
2375    DebugLoc DL = N->getDebugLoc();
2376    // If both incoming values are integers, and the original types are the
2377    // same.
2378    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2379      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2380      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2381      AddToWorkList(Op.getNode());
2382      return BC;
2383    }
2384  }
2385
2386  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2387  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2388  // If both shuffles use the same mask, and both shuffle within a single
2389  // vector, then it is worthwhile to move the swizzle after the operation.
2390  // The type-legalizer generates this pattern when loading illegal
2391  // vector types from memory. In many cases this allows additional shuffle
2392  // optimizations.
2393  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2394      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2395      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2396    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2397    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2398
2399    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2400           "Inputs to shuffles are not the same type");
2401
2402    unsigned NumElts = VT.getVectorNumElements();
2403
2404    // Check that both shuffles use the same mask. The masks are known to be of
2405    // the same length because the result vector type is the same.
2406    bool SameMask = true;
2407    for (unsigned i = 0; i != NumElts; ++i) {
2408      int Idx0 = SVN0->getMaskElt(i);
2409      int Idx1 = SVN1->getMaskElt(i);
2410      if (Idx0 != Idx1) {
2411        SameMask = false;
2412        break;
2413      }
2414    }
2415
2416    if (SameMask) {
2417      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2418                               N0.getOperand(0), N1.getOperand(0));
2419      AddToWorkList(Op.getNode());
2420      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2421                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2422    }
2423  }
2424
2425  return SDValue();
2426}
2427
2428SDValue DAGCombiner::visitAND(SDNode *N) {
2429  SDValue N0 = N->getOperand(0);
2430  SDValue N1 = N->getOperand(1);
2431  SDValue LL, LR, RL, RR, CC0, CC1;
2432  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2433  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2434  EVT VT = N1.getValueType();
2435  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2436
2437  // fold vector ops
2438  if (VT.isVector()) {
2439    SDValue FoldedVOp = SimplifyVBinOp(N);
2440    if (FoldedVOp.getNode()) return FoldedVOp;
2441
2442    // fold (and x, 0) -> 0, vector edition
2443    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2444      return N0;
2445    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2446      return N1;
2447
2448    // fold (and x, -1) -> x, vector edition
2449    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2450      return N1;
2451    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2452      return N0;
2453  }
2454
2455  // fold (and x, undef) -> 0
2456  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2457    return DAG.getConstant(0, VT);
2458  // fold (and c1, c2) -> c1&c2
2459  if (N0C && N1C)
2460    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2461  // canonicalize constant to RHS
2462  if (N0C && !N1C)
2463    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2464  // fold (and x, -1) -> x
2465  if (N1C && N1C->isAllOnesValue())
2466    return N0;
2467  // if (and x, c) is known to be zero, return 0
2468  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2469                                   APInt::getAllOnesValue(BitWidth)))
2470    return DAG.getConstant(0, VT);
2471  // reassociate and
2472  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2473  if (RAND.getNode() != 0)
2474    return RAND;
2475  // fold (and (or x, C), D) -> D if (C & D) == D
2476  if (N1C && N0.getOpcode() == ISD::OR)
2477    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2478      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2479        return N1;
2480  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2481  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2482    SDValue N0Op0 = N0.getOperand(0);
2483    APInt Mask = ~N1C->getAPIntValue();
2484    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2485    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2486      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2487                                 N0.getValueType(), N0Op0);
2488
2489      // Replace uses of the AND with uses of the Zero extend node.
2490      CombineTo(N, Zext);
2491
2492      // We actually want to replace all uses of the any_extend with the
2493      // zero_extend, to avoid duplicating things.  This will later cause this
2494      // AND to be folded.
2495      CombineTo(N0.getNode(), Zext);
2496      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2497    }
2498  }
2499  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2500  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2501  // already be zero by virtue of the width of the base type of the load.
2502  //
2503  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2504  // more cases.
2505  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2506       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2507      N0.getOpcode() == ISD::LOAD) {
2508    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2509                                         N0 : N0.getOperand(0) );
2510
2511    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2512    // This can be a pure constant or a vector splat, in which case we treat the
2513    // vector as a scalar and use the splat value.
2514    APInt Constant = APInt::getNullValue(1);
2515    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2516      Constant = C->getAPIntValue();
2517    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2518      APInt SplatValue, SplatUndef;
2519      unsigned SplatBitSize;
2520      bool HasAnyUndefs;
2521      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2522                                             SplatBitSize, HasAnyUndefs);
2523      if (IsSplat) {
2524        // Undef bits can contribute to a possible optimisation if set, so
2525        // set them.
2526        SplatValue |= SplatUndef;
2527
2528        // The splat value may be something like "0x00FFFFFF", which means 0 for
2529        // the first vector value and FF for the rest, repeating. We need a mask
2530        // that will apply equally to all members of the vector, so AND all the
2531        // lanes of the constant together.
2532        EVT VT = Vector->getValueType(0);
2533        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2534
2535        // If the splat value has been compressed to a bitlength lower
2536        // than the size of the vector lane, we need to re-expand it to
2537        // the lane size.
2538        if (BitWidth > SplatBitSize)
2539          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2540               SplatBitSize < BitWidth;
2541               SplatBitSize = SplatBitSize * 2)
2542            SplatValue |= SplatValue.shl(SplatBitSize);
2543
2544        Constant = APInt::getAllOnesValue(BitWidth);
2545        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2546          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2547      }
2548    }
2549
2550    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2551    // actually legal and isn't going to get expanded, else this is a false
2552    // optimisation.
2553    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2554                                                    Load->getMemoryVT());
2555
2556    // Resize the constant to the same size as the original memory access before
2557    // extension. If it is still the AllOnesValue then this AND is completely
2558    // unneeded.
2559    Constant =
2560      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2561
2562    bool B;
2563    switch (Load->getExtensionType()) {
2564    default: B = false; break;
2565    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2566    case ISD::ZEXTLOAD:
2567    case ISD::NON_EXTLOAD: B = true; break;
2568    }
2569
2570    if (B && Constant.isAllOnesValue()) {
2571      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2572      // preserve semantics once we get rid of the AND.
2573      SDValue NewLoad(Load, 0);
2574      if (Load->getExtensionType() == ISD::EXTLOAD) {
2575        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2576                              Load->getValueType(0), Load->getDebugLoc(),
2577                              Load->getChain(), Load->getBasePtr(),
2578                              Load->getOffset(), Load->getMemoryVT(),
2579                              Load->getMemOperand());
2580        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2581        if (Load->getNumValues() == 3) {
2582          // PRE/POST_INC loads have 3 values.
2583          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2584                           NewLoad.getValue(2) };
2585          CombineTo(Load, To, 3, true);
2586        } else {
2587          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2588        }
2589      }
2590
2591      // Fold the AND away, taking care not to fold to the old load node if we
2592      // replaced it.
2593      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2594
2595      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2596    }
2597  }
2598  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2599  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2600    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2601    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2602
2603    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2604        LL.getValueType().isInteger()) {
2605      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2606      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2607        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2608                                     LR.getValueType(), LL, RL);
2609        AddToWorkList(ORNode.getNode());
2610        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2611      }
2612      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2613      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2614        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2615                                      LR.getValueType(), LL, RL);
2616        AddToWorkList(ANDNode.getNode());
2617        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2618      }
2619      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2620      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2621        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2622                                     LR.getValueType(), LL, RL);
2623        AddToWorkList(ORNode.getNode());
2624        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2625      }
2626    }
2627    // canonicalize equivalent to ll == rl
2628    if (LL == RR && LR == RL) {
2629      Op1 = ISD::getSetCCSwappedOperands(Op1);
2630      std::swap(RL, RR);
2631    }
2632    if (LL == RL && LR == RR) {
2633      bool isInteger = LL.getValueType().isInteger();
2634      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2635      if (Result != ISD::SETCC_INVALID &&
2636          (!LegalOperations ||
2637           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2638            TLI.isOperationLegal(ISD::SETCC,
2639                            TLI.getSetCCResultType(N0.getSimpleValueType())))))
2640        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2641                            LL, LR, Result);
2642    }
2643  }
2644
2645  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2646  if (N0.getOpcode() == N1.getOpcode()) {
2647    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2648    if (Tmp.getNode()) return Tmp;
2649  }
2650
2651  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2652  // fold (and (sra)) -> (and (srl)) when possible.
2653  if (!VT.isVector() &&
2654      SimplifyDemandedBits(SDValue(N, 0)))
2655    return SDValue(N, 0);
2656
2657  // fold (zext_inreg (extload x)) -> (zextload x)
2658  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2659    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2660    EVT MemVT = LN0->getMemoryVT();
2661    // If we zero all the possible extended bits, then we can turn this into
2662    // a zextload if we are running before legalize or the operation is legal.
2663    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2664    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2665                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2666        ((!LegalOperations && !LN0->isVolatile()) ||
2667         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2668      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2669                                       LN0->getChain(), LN0->getBasePtr(),
2670                                       LN0->getPointerInfo(), MemVT,
2671                                       LN0->isVolatile(), LN0->isNonTemporal(),
2672                                       LN0->getAlignment());
2673      AddToWorkList(N);
2674      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2675      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2676    }
2677  }
2678  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2679  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2680      N0.hasOneUse()) {
2681    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2682    EVT MemVT = LN0->getMemoryVT();
2683    // If we zero all the possible extended bits, then we can turn this into
2684    // a zextload if we are running before legalize or the operation is legal.
2685    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2686    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2687                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2688        ((!LegalOperations && !LN0->isVolatile()) ||
2689         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2690      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2691                                       LN0->getChain(),
2692                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2693                                       MemVT,
2694                                       LN0->isVolatile(), LN0->isNonTemporal(),
2695                                       LN0->getAlignment());
2696      AddToWorkList(N);
2697      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2698      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2699    }
2700  }
2701
2702  // fold (and (load x), 255) -> (zextload x, i8)
2703  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2704  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2705  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2706              (N0.getOpcode() == ISD::ANY_EXTEND &&
2707               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2708    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2709    LoadSDNode *LN0 = HasAnyExt
2710      ? cast<LoadSDNode>(N0.getOperand(0))
2711      : cast<LoadSDNode>(N0);
2712    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2713        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2714      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2715      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2716        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2717        EVT LoadedVT = LN0->getMemoryVT();
2718
2719        if (ExtVT == LoadedVT &&
2720            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2721          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2722
2723          SDValue NewLoad =
2724            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2725                           LN0->getChain(), LN0->getBasePtr(),
2726                           LN0->getPointerInfo(),
2727                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2728                           LN0->getAlignment());
2729          AddToWorkList(N);
2730          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2731          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2732        }
2733
2734        // Do not change the width of a volatile load.
2735        // Do not generate loads of non-round integer types since these can
2736        // be expensive (and would be wrong if the type is not byte sized).
2737        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2738            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2739          EVT PtrType = LN0->getOperand(1).getValueType();
2740
2741          unsigned Alignment = LN0->getAlignment();
2742          SDValue NewPtr = LN0->getBasePtr();
2743
2744          // For big endian targets, we need to add an offset to the pointer
2745          // to load the correct bytes.  For little endian systems, we merely
2746          // need to read fewer bytes from the same pointer.
2747          if (TLI.isBigEndian()) {
2748            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2749            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2750            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2751            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2752                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2753            Alignment = MinAlign(Alignment, PtrOff);
2754          }
2755
2756          AddToWorkList(NewPtr.getNode());
2757
2758          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2759          SDValue Load =
2760            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2761                           LN0->getChain(), NewPtr,
2762                           LN0->getPointerInfo(),
2763                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2764                           Alignment);
2765          AddToWorkList(N);
2766          CombineTo(LN0, Load, Load.getValue(1));
2767          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2768        }
2769      }
2770    }
2771  }
2772
2773  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2774      VT.getSizeInBits() <= 64) {
2775    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2776      APInt ADDC = ADDI->getAPIntValue();
2777      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2778        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2779        // immediate for an add, but it is legal if its top c2 bits are set,
2780        // transform the ADD so the immediate doesn't need to be materialized
2781        // in a register.
2782        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2783          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2784                                             SRLI->getZExtValue());
2785          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2786            ADDC |= Mask;
2787            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2788              SDValue NewAdd =
2789                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2790                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2791              CombineTo(N0.getNode(), NewAdd);
2792              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2793            }
2794          }
2795        }
2796      }
2797    }
2798  }
2799
2800  return SDValue();
2801}
2802
2803/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2804///
2805SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2806                                        bool DemandHighBits) {
2807  if (!LegalOperations)
2808    return SDValue();
2809
2810  EVT VT = N->getValueType(0);
2811  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2812    return SDValue();
2813  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2814    return SDValue();
2815
2816  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2817  bool LookPassAnd0 = false;
2818  bool LookPassAnd1 = false;
2819  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2820      std::swap(N0, N1);
2821  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2822      std::swap(N0, N1);
2823  if (N0.getOpcode() == ISD::AND) {
2824    if (!N0.getNode()->hasOneUse())
2825      return SDValue();
2826    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2827    if (!N01C || N01C->getZExtValue() != 0xFF00)
2828      return SDValue();
2829    N0 = N0.getOperand(0);
2830    LookPassAnd0 = true;
2831  }
2832
2833  if (N1.getOpcode() == ISD::AND) {
2834    if (!N1.getNode()->hasOneUse())
2835      return SDValue();
2836    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2837    if (!N11C || N11C->getZExtValue() != 0xFF)
2838      return SDValue();
2839    N1 = N1.getOperand(0);
2840    LookPassAnd1 = true;
2841  }
2842
2843  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2844    std::swap(N0, N1);
2845  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2846    return SDValue();
2847  if (!N0.getNode()->hasOneUse() ||
2848      !N1.getNode()->hasOneUse())
2849    return SDValue();
2850
2851  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2852  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2853  if (!N01C || !N11C)
2854    return SDValue();
2855  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2856    return SDValue();
2857
2858  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2859  SDValue N00 = N0->getOperand(0);
2860  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2861    if (!N00.getNode()->hasOneUse())
2862      return SDValue();
2863    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2864    if (!N001C || N001C->getZExtValue() != 0xFF)
2865      return SDValue();
2866    N00 = N00.getOperand(0);
2867    LookPassAnd0 = true;
2868  }
2869
2870  SDValue N10 = N1->getOperand(0);
2871  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2872    if (!N10.getNode()->hasOneUse())
2873      return SDValue();
2874    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2875    if (!N101C || N101C->getZExtValue() != 0xFF00)
2876      return SDValue();
2877    N10 = N10.getOperand(0);
2878    LookPassAnd1 = true;
2879  }
2880
2881  if (N00 != N10)
2882    return SDValue();
2883
2884  // Make sure everything beyond the low halfword is zero since the SRL 16
2885  // will clear the top bits.
2886  unsigned OpSizeInBits = VT.getSizeInBits();
2887  if (DemandHighBits && OpSizeInBits > 16 &&
2888      (!LookPassAnd0 || !LookPassAnd1) &&
2889      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2890    return SDValue();
2891
2892  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2893  if (OpSizeInBits > 16)
2894    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2895                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2896  return Res;
2897}
2898
2899/// isBSwapHWordElement - Return true if the specified node is an element
2900/// that makes up a 32-bit packed halfword byteswap. i.e.
2901/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2902static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2903  if (!N.getNode()->hasOneUse())
2904    return false;
2905
2906  unsigned Opc = N.getOpcode();
2907  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2908    return false;
2909
2910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2911  if (!N1C)
2912    return false;
2913
2914  unsigned Num;
2915  switch (N1C->getZExtValue()) {
2916  default:
2917    return false;
2918  case 0xFF:       Num = 0; break;
2919  case 0xFF00:     Num = 1; break;
2920  case 0xFF0000:   Num = 2; break;
2921  case 0xFF000000: Num = 3; break;
2922  }
2923
2924  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2925  SDValue N0 = N.getOperand(0);
2926  if (Opc == ISD::AND) {
2927    if (Num == 0 || Num == 2) {
2928      // (x >> 8) & 0xff
2929      // (x >> 8) & 0xff0000
2930      if (N0.getOpcode() != ISD::SRL)
2931        return false;
2932      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2933      if (!C || C->getZExtValue() != 8)
2934        return false;
2935    } else {
2936      // (x << 8) & 0xff00
2937      // (x << 8) & 0xff000000
2938      if (N0.getOpcode() != ISD::SHL)
2939        return false;
2940      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2941      if (!C || C->getZExtValue() != 8)
2942        return false;
2943    }
2944  } else if (Opc == ISD::SHL) {
2945    // (x & 0xff) << 8
2946    // (x & 0xff0000) << 8
2947    if (Num != 0 && Num != 2)
2948      return false;
2949    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2950    if (!C || C->getZExtValue() != 8)
2951      return false;
2952  } else { // Opc == ISD::SRL
2953    // (x & 0xff00) >> 8
2954    // (x & 0xff000000) >> 8
2955    if (Num != 1 && Num != 3)
2956      return false;
2957    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2958    if (!C || C->getZExtValue() != 8)
2959      return false;
2960  }
2961
2962  if (Parts[Num])
2963    return false;
2964
2965  Parts[Num] = N0.getOperand(0).getNode();
2966  return true;
2967}
2968
2969/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2970/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2971/// => (rotl (bswap x), 16)
2972SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2973  if (!LegalOperations)
2974    return SDValue();
2975
2976  EVT VT = N->getValueType(0);
2977  if (VT != MVT::i32)
2978    return SDValue();
2979  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2980    return SDValue();
2981
2982  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2983  // Look for either
2984  // (or (or (and), (and)), (or (and), (and)))
2985  // (or (or (or (and), (and)), (and)), (and))
2986  if (N0.getOpcode() != ISD::OR)
2987    return SDValue();
2988  SDValue N00 = N0.getOperand(0);
2989  SDValue N01 = N0.getOperand(1);
2990
2991  if (N1.getOpcode() == ISD::OR &&
2992      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
2993    // (or (or (and), (and)), (or (and), (and)))
2994    SDValue N000 = N00.getOperand(0);
2995    if (!isBSwapHWordElement(N000, Parts))
2996      return SDValue();
2997
2998    SDValue N001 = N00.getOperand(1);
2999    if (!isBSwapHWordElement(N001, Parts))
3000      return SDValue();
3001    SDValue N010 = N01.getOperand(0);
3002    if (!isBSwapHWordElement(N010, Parts))
3003      return SDValue();
3004    SDValue N011 = N01.getOperand(1);
3005    if (!isBSwapHWordElement(N011, Parts))
3006      return SDValue();
3007  } else {
3008    // (or (or (or (and), (and)), (and)), (and))
3009    if (!isBSwapHWordElement(N1, Parts))
3010      return SDValue();
3011    if (!isBSwapHWordElement(N01, Parts))
3012      return SDValue();
3013    if (N00.getOpcode() != ISD::OR)
3014      return SDValue();
3015    SDValue N000 = N00.getOperand(0);
3016    if (!isBSwapHWordElement(N000, Parts))
3017      return SDValue();
3018    SDValue N001 = N00.getOperand(1);
3019    if (!isBSwapHWordElement(N001, Parts))
3020      return SDValue();
3021  }
3022
3023  // Make sure the parts are all coming from the same node.
3024  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3025    return SDValue();
3026
3027  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3028                              SDValue(Parts[0],0));
3029
3030  // Result of the bswap should be rotated by 16. If it's not legal, than
3031  // do  (x << 16) | (x >> 16).
3032  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3033  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3034    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3035  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3036    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3037  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3038                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3039                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3040}
3041
3042SDValue DAGCombiner::visitOR(SDNode *N) {
3043  SDValue N0 = N->getOperand(0);
3044  SDValue N1 = N->getOperand(1);
3045  SDValue LL, LR, RL, RR, CC0, CC1;
3046  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3047  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3048  EVT VT = N1.getValueType();
3049
3050  // fold vector ops
3051  if (VT.isVector()) {
3052    SDValue FoldedVOp = SimplifyVBinOp(N);
3053    if (FoldedVOp.getNode()) return FoldedVOp;
3054
3055    // fold (or x, 0) -> x, vector edition
3056    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3057      return N1;
3058    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3059      return N0;
3060
3061    // fold (or x, -1) -> -1, vector edition
3062    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3063      return N0;
3064    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3065      return N1;
3066  }
3067
3068  // fold (or x, undef) -> -1
3069  if (!LegalOperations &&
3070      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3071    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3072    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3073  }
3074  // fold (or c1, c2) -> c1|c2
3075  if (N0C && N1C)
3076    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3077  // canonicalize constant to RHS
3078  if (N0C && !N1C)
3079    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3080  // fold (or x, 0) -> x
3081  if (N1C && N1C->isNullValue())
3082    return N0;
3083  // fold (or x, -1) -> -1
3084  if (N1C && N1C->isAllOnesValue())
3085    return N1;
3086  // fold (or x, c) -> c iff (x & ~c) == 0
3087  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3088    return N1;
3089
3090  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3091  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3092  if (BSwap.getNode() != 0)
3093    return BSwap;
3094  BSwap = MatchBSwapHWordLow(N, N0, N1);
3095  if (BSwap.getNode() != 0)
3096    return BSwap;
3097
3098  // reassociate or
3099  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3100  if (ROR.getNode() != 0)
3101    return ROR;
3102  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3103  // iff (c1 & c2) == 0.
3104  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3105             isa<ConstantSDNode>(N0.getOperand(1))) {
3106    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3107    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3108      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3109                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3110                                     N0.getOperand(0), N1),
3111                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3112  }
3113  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3114  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3115    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3116    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3117
3118    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3119        LL.getValueType().isInteger()) {
3120      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3121      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3122      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3123          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3124        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3125                                     LR.getValueType(), LL, RL);
3126        AddToWorkList(ORNode.getNode());
3127        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3128      }
3129      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3130      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3131      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3132          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3133        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3134                                      LR.getValueType(), LL, RL);
3135        AddToWorkList(ANDNode.getNode());
3136        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3137      }
3138    }
3139    // canonicalize equivalent to ll == rl
3140    if (LL == RR && LR == RL) {
3141      Op1 = ISD::getSetCCSwappedOperands(Op1);
3142      std::swap(RL, RR);
3143    }
3144    if (LL == RL && LR == RR) {
3145      bool isInteger = LL.getValueType().isInteger();
3146      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3147      if (Result != ISD::SETCC_INVALID &&
3148          (!LegalOperations ||
3149           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3150            TLI.isOperationLegal(ISD::SETCC,
3151              TLI.getSetCCResultType(N0.getValueType())))))
3152        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3153                            LL, LR, Result);
3154    }
3155  }
3156
3157  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3158  if (N0.getOpcode() == N1.getOpcode()) {
3159    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3160    if (Tmp.getNode()) return Tmp;
3161  }
3162
3163  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3164  if (N0.getOpcode() == ISD::AND &&
3165      N1.getOpcode() == ISD::AND &&
3166      N0.getOperand(1).getOpcode() == ISD::Constant &&
3167      N1.getOperand(1).getOpcode() == ISD::Constant &&
3168      // Don't increase # computations.
3169      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3170    // We can only do this xform if we know that bits from X that are set in C2
3171    // but not in C1 are already zero.  Likewise for Y.
3172    const APInt &LHSMask =
3173      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3174    const APInt &RHSMask =
3175      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3176
3177    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3178        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3179      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3180                              N0.getOperand(0), N1.getOperand(0));
3181      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3182                         DAG.getConstant(LHSMask | RHSMask, VT));
3183    }
3184  }
3185
3186  // See if this is some rotate idiom.
3187  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3188    return SDValue(Rot, 0);
3189
3190  // Simplify the operands using demanded-bits information.
3191  if (!VT.isVector() &&
3192      SimplifyDemandedBits(SDValue(N, 0)))
3193    return SDValue(N, 0);
3194
3195  return SDValue();
3196}
3197
3198/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3199static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3200  if (Op.getOpcode() == ISD::AND) {
3201    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3202      Mask = Op.getOperand(1);
3203      Op = Op.getOperand(0);
3204    } else {
3205      return false;
3206    }
3207  }
3208
3209  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3210    Shift = Op;
3211    return true;
3212  }
3213
3214  return false;
3215}
3216
3217// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3218// idioms for rotate, and if the target supports rotation instructions, generate
3219// a rot[lr].
3220SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3221  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3222  EVT VT = LHS.getValueType();
3223  if (!TLI.isTypeLegal(VT)) return 0;
3224
3225  // The target must have at least one rotate flavor.
3226  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3227  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3228  if (!HasROTL && !HasROTR) return 0;
3229
3230  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3231  SDValue LHSShift;   // The shift.
3232  SDValue LHSMask;    // AND value if any.
3233  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3234    return 0; // Not part of a rotate.
3235
3236  SDValue RHSShift;   // The shift.
3237  SDValue RHSMask;    // AND value if any.
3238  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3239    return 0; // Not part of a rotate.
3240
3241  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3242    return 0;   // Not shifting the same value.
3243
3244  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3245    return 0;   // Shifts must disagree.
3246
3247  // Canonicalize shl to left side in a shl/srl pair.
3248  if (RHSShift.getOpcode() == ISD::SHL) {
3249    std::swap(LHS, RHS);
3250    std::swap(LHSShift, RHSShift);
3251    std::swap(LHSMask , RHSMask );
3252  }
3253
3254  unsigned OpSizeInBits = VT.getSizeInBits();
3255  SDValue LHSShiftArg = LHSShift.getOperand(0);
3256  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3257  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3258
3259  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3260  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3261  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3262      RHSShiftAmt.getOpcode() == ISD::Constant) {
3263    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3264    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3265    if ((LShVal + RShVal) != OpSizeInBits)
3266      return 0;
3267
3268    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3269                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3270
3271    // If there is an AND of either shifted operand, apply it to the result.
3272    if (LHSMask.getNode() || RHSMask.getNode()) {
3273      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3274
3275      if (LHSMask.getNode()) {
3276        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3277        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3278      }
3279      if (RHSMask.getNode()) {
3280        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3281        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3282      }
3283
3284      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3285    }
3286
3287    return Rot.getNode();
3288  }
3289
3290  // If there is a mask here, and we have a variable shift, we can't be sure
3291  // that we're masking out the right stuff.
3292  if (LHSMask.getNode() || RHSMask.getNode())
3293    return 0;
3294
3295  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3296  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3297  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3298      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3299    if (ConstantSDNode *SUBC =
3300          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3301      if (SUBC->getAPIntValue() == OpSizeInBits) {
3302        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3303                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3304      }
3305    }
3306  }
3307
3308  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3309  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3310  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3311      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3312    if (ConstantSDNode *SUBC =
3313          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3314      if (SUBC->getAPIntValue() == OpSizeInBits) {
3315        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3316                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3317      }
3318    }
3319  }
3320
3321  // Look for sign/zext/any-extended or truncate cases:
3322  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3323       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3324       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3325       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3326      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3327       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3328       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3329       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3330    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3331    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3332    if (RExtOp0.getOpcode() == ISD::SUB &&
3333        RExtOp0.getOperand(1) == LExtOp0) {
3334      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3335      //   (rotl x, y)
3336      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3337      //   (rotr x, (sub 32, y))
3338      if (ConstantSDNode *SUBC =
3339            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3340        if (SUBC->getAPIntValue() == OpSizeInBits) {
3341          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3342                             LHSShiftArg,
3343                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3344        }
3345      }
3346    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3347               RExtOp0 == LExtOp0.getOperand(1)) {
3348      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3349      //   (rotr x, y)
3350      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3351      //   (rotl x, (sub 32, y))
3352      if (ConstantSDNode *SUBC =
3353            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3354        if (SUBC->getAPIntValue() == OpSizeInBits) {
3355          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3356                             LHSShiftArg,
3357                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3358        }
3359      }
3360    }
3361  }
3362
3363  return 0;
3364}
3365
3366SDValue DAGCombiner::visitXOR(SDNode *N) {
3367  SDValue N0 = N->getOperand(0);
3368  SDValue N1 = N->getOperand(1);
3369  SDValue LHS, RHS, CC;
3370  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3371  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3372  EVT VT = N0.getValueType();
3373
3374  // fold vector ops
3375  if (VT.isVector()) {
3376    SDValue FoldedVOp = SimplifyVBinOp(N);
3377    if (FoldedVOp.getNode()) return FoldedVOp;
3378
3379    // fold (xor x, 0) -> x, vector edition
3380    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3381      return N1;
3382    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3383      return N0;
3384  }
3385
3386  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3387  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3388    return DAG.getConstant(0, VT);
3389  // fold (xor x, undef) -> undef
3390  if (N0.getOpcode() == ISD::UNDEF)
3391    return N0;
3392  if (N1.getOpcode() == ISD::UNDEF)
3393    return N1;
3394  // fold (xor c1, c2) -> c1^c2
3395  if (N0C && N1C)
3396    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3397  // canonicalize constant to RHS
3398  if (N0C && !N1C)
3399    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3400  // fold (xor x, 0) -> x
3401  if (N1C && N1C->isNullValue())
3402    return N0;
3403  // reassociate xor
3404  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3405  if (RXOR.getNode() != 0)
3406    return RXOR;
3407
3408  // fold !(x cc y) -> (x !cc y)
3409  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3410    bool isInt = LHS.getValueType().isInteger();
3411    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3412                                               isInt);
3413
3414    if (!LegalOperations ||
3415        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3416      switch (N0.getOpcode()) {
3417      default:
3418        llvm_unreachable("Unhandled SetCC Equivalent!");
3419      case ISD::SETCC:
3420        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3421      case ISD::SELECT_CC:
3422        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3423                               N0.getOperand(3), NotCC);
3424      }
3425    }
3426  }
3427
3428  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3429  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3430      N0.getNode()->hasOneUse() &&
3431      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3432    SDValue V = N0.getOperand(0);
3433    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3434                    DAG.getConstant(1, V.getValueType()));
3435    AddToWorkList(V.getNode());
3436    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3437  }
3438
3439  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3440  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3441      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3442    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3443    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3444      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3445      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3446      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3447      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3448      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3449    }
3450  }
3451  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3452  if (N1C && N1C->isAllOnesValue() &&
3453      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3454    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3455    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3456      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3457      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3458      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3459      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3460      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3461    }
3462  }
3463  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3464  if (N1C && N0.getOpcode() == ISD::XOR) {
3465    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3466    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3467    if (N00C)
3468      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3469                         DAG.getConstant(N1C->getAPIntValue() ^
3470                                         N00C->getAPIntValue(), VT));
3471    if (N01C)
3472      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3473                         DAG.getConstant(N1C->getAPIntValue() ^
3474                                         N01C->getAPIntValue(), VT));
3475  }
3476  // fold (xor x, x) -> 0
3477  if (N0 == N1)
3478    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3479
3480  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3481  if (N0.getOpcode() == N1.getOpcode()) {
3482    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3483    if (Tmp.getNode()) return Tmp;
3484  }
3485
3486  // Simplify the expression using non-local knowledge.
3487  if (!VT.isVector() &&
3488      SimplifyDemandedBits(SDValue(N, 0)))
3489    return SDValue(N, 0);
3490
3491  return SDValue();
3492}
3493
3494/// visitShiftByConstant - Handle transforms common to the three shifts, when
3495/// the shift amount is a constant.
3496SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3497  SDNode *LHS = N->getOperand(0).getNode();
3498  if (!LHS->hasOneUse()) return SDValue();
3499
3500  // We want to pull some binops through shifts, so that we have (and (shift))
3501  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3502  // thing happens with address calculations, so it's important to canonicalize
3503  // it.
3504  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3505
3506  switch (LHS->getOpcode()) {
3507  default: return SDValue();
3508  case ISD::OR:
3509  case ISD::XOR:
3510    HighBitSet = false; // We can only transform sra if the high bit is clear.
3511    break;
3512  case ISD::AND:
3513    HighBitSet = true;  // We can only transform sra if the high bit is set.
3514    break;
3515  case ISD::ADD:
3516    if (N->getOpcode() != ISD::SHL)
3517      return SDValue(); // only shl(add) not sr[al](add).
3518    HighBitSet = false; // We can only transform sra if the high bit is clear.
3519    break;
3520  }
3521
3522  // We require the RHS of the binop to be a constant as well.
3523  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3524  if (!BinOpCst) return SDValue();
3525
3526  // FIXME: disable this unless the input to the binop is a shift by a constant.
3527  // If it is not a shift, it pessimizes some common cases like:
3528  //
3529  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3530  //    int bar(int *X, int i) { return X[i & 255]; }
3531  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3532  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3533       BinOpLHSVal->getOpcode() != ISD::SRA &&
3534       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3535      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3536    return SDValue();
3537
3538  EVT VT = N->getValueType(0);
3539
3540  // If this is a signed shift right, and the high bit is modified by the
3541  // logical operation, do not perform the transformation. The highBitSet
3542  // boolean indicates the value of the high bit of the constant which would
3543  // cause it to be modified for this operation.
3544  if (N->getOpcode() == ISD::SRA) {
3545    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3546    if (BinOpRHSSignSet != HighBitSet)
3547      return SDValue();
3548  }
3549
3550  // Fold the constants, shifting the binop RHS by the shift amount.
3551  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3552                               N->getValueType(0),
3553                               LHS->getOperand(1), N->getOperand(1));
3554
3555  // Create the new shift.
3556  SDValue NewShift = DAG.getNode(N->getOpcode(),
3557                                 LHS->getOperand(0).getDebugLoc(),
3558                                 VT, LHS->getOperand(0), N->getOperand(1));
3559
3560  // Create the new binop.
3561  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3562}
3563
3564SDValue DAGCombiner::visitSHL(SDNode *N) {
3565  SDValue N0 = N->getOperand(0);
3566  SDValue N1 = N->getOperand(1);
3567  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3568  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3569  EVT VT = N0.getValueType();
3570  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3571
3572  // fold (shl c1, c2) -> c1<<c2
3573  if (N0C && N1C)
3574    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3575  // fold (shl 0, x) -> 0
3576  if (N0C && N0C->isNullValue())
3577    return N0;
3578  // fold (shl x, c >= size(x)) -> undef
3579  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3580    return DAG.getUNDEF(VT);
3581  // fold (shl x, 0) -> x
3582  if (N1C && N1C->isNullValue())
3583    return N0;
3584  // fold (shl undef, x) -> 0
3585  if (N0.getOpcode() == ISD::UNDEF)
3586    return DAG.getConstant(0, VT);
3587  // if (shl x, c) is known to be zero, return 0
3588  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3589                            APInt::getAllOnesValue(OpSizeInBits)))
3590    return DAG.getConstant(0, VT);
3591  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3592  if (N1.getOpcode() == ISD::TRUNCATE &&
3593      N1.getOperand(0).getOpcode() == ISD::AND &&
3594      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3595    SDValue N101 = N1.getOperand(0).getOperand(1);
3596    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3597      EVT TruncVT = N1.getValueType();
3598      SDValue N100 = N1.getOperand(0).getOperand(0);
3599      APInt TruncC = N101C->getAPIntValue();
3600      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3601      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3602                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3603                                     DAG.getNode(ISD::TRUNCATE,
3604                                                 N->getDebugLoc(),
3605                                                 TruncVT, N100),
3606                                     DAG.getConstant(TruncC, TruncVT)));
3607    }
3608  }
3609
3610  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3611    return SDValue(N, 0);
3612
3613  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3614  if (N1C && N0.getOpcode() == ISD::SHL &&
3615      N0.getOperand(1).getOpcode() == ISD::Constant) {
3616    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3617    uint64_t c2 = N1C->getZExtValue();
3618    if (c1 + c2 >= OpSizeInBits)
3619      return DAG.getConstant(0, VT);
3620    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3621                       DAG.getConstant(c1 + c2, N1.getValueType()));
3622  }
3623
3624  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3625  // For this to be valid, the second form must not preserve any of the bits
3626  // that are shifted out by the inner shift in the first form.  This means
3627  // the outer shift size must be >= the number of bits added by the ext.
3628  // As a corollary, we don't care what kind of ext it is.
3629  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3630              N0.getOpcode() == ISD::ANY_EXTEND ||
3631              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3632      N0.getOperand(0).getOpcode() == ISD::SHL &&
3633      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3634    uint64_t c1 =
3635      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3636    uint64_t c2 = N1C->getZExtValue();
3637    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3638    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3639    if (c2 >= OpSizeInBits - InnerShiftSize) {
3640      if (c1 + c2 >= OpSizeInBits)
3641        return DAG.getConstant(0, VT);
3642      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3643                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3644                                     N0.getOperand(0)->getOperand(0)),
3645                         DAG.getConstant(c1 + c2, N1.getValueType()));
3646    }
3647  }
3648
3649  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3650  //                               (and (srl x, (sub c1, c2), MASK)
3651  // Only fold this if the inner shift has no other uses -- if it does, folding
3652  // this will increase the total number of instructions.
3653  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3654      N0.getOperand(1).getOpcode() == ISD::Constant) {
3655    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3656    if (c1 < VT.getSizeInBits()) {
3657      uint64_t c2 = N1C->getZExtValue();
3658      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3659                                         VT.getSizeInBits() - c1);
3660      SDValue Shift;
3661      if (c2 > c1) {
3662        Mask = Mask.shl(c2-c1);
3663        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3664                            DAG.getConstant(c2-c1, N1.getValueType()));
3665      } else {
3666        Mask = Mask.lshr(c1-c2);
3667        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3668                            DAG.getConstant(c1-c2, N1.getValueType()));
3669      }
3670      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3671                         DAG.getConstant(Mask, VT));
3672    }
3673  }
3674  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3675  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3676    SDValue HiBitsMask =
3677      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3678                                            VT.getSizeInBits() -
3679                                              N1C->getZExtValue()),
3680                      VT);
3681    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3682                       HiBitsMask);
3683  }
3684
3685  if (N1C) {
3686    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3687    if (NewSHL.getNode())
3688      return NewSHL;
3689  }
3690
3691  return SDValue();
3692}
3693
3694SDValue DAGCombiner::visitSRA(SDNode *N) {
3695  SDValue N0 = N->getOperand(0);
3696  SDValue N1 = N->getOperand(1);
3697  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3698  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3699  EVT VT = N0.getValueType();
3700  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3701
3702  // fold (sra c1, c2) -> (sra c1, c2)
3703  if (N0C && N1C)
3704    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3705  // fold (sra 0, x) -> 0
3706  if (N0C && N0C->isNullValue())
3707    return N0;
3708  // fold (sra -1, x) -> -1
3709  if (N0C && N0C->isAllOnesValue())
3710    return N0;
3711  // fold (sra x, (setge c, size(x))) -> undef
3712  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3713    return DAG.getUNDEF(VT);
3714  // fold (sra x, 0) -> x
3715  if (N1C && N1C->isNullValue())
3716    return N0;
3717  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3718  // sext_inreg.
3719  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3720    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3721    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3722    if (VT.isVector())
3723      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3724                               ExtVT, VT.getVectorNumElements());
3725    if ((!LegalOperations ||
3726         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3727      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3728                         N0.getOperand(0), DAG.getValueType(ExtVT));
3729  }
3730
3731  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3732  if (N1C && N0.getOpcode() == ISD::SRA) {
3733    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3734      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3735      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3736      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3737                         DAG.getConstant(Sum, N1C->getValueType(0)));
3738    }
3739  }
3740
3741  // fold (sra (shl X, m), (sub result_size, n))
3742  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3743  // result_size - n != m.
3744  // If truncate is free for the target sext(shl) is likely to result in better
3745  // code.
3746  if (N0.getOpcode() == ISD::SHL) {
3747    // Get the two constanst of the shifts, CN0 = m, CN = n.
3748    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3749    if (N01C && N1C) {
3750      // Determine what the truncate's result bitsize and type would be.
3751      EVT TruncVT =
3752        EVT::getIntegerVT(*DAG.getContext(),
3753                          OpSizeInBits - N1C->getZExtValue());
3754      // Determine the residual right-shift amount.
3755      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3756
3757      // If the shift is not a no-op (in which case this should be just a sign
3758      // extend already), the truncated to type is legal, sign_extend is legal
3759      // on that type, and the truncate to that type is both legal and free,
3760      // perform the transform.
3761      if ((ShiftAmt > 0) &&
3762          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3763          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3764          TLI.isTruncateFree(VT, TruncVT)) {
3765
3766          SDValue Amt = DAG.getConstant(ShiftAmt,
3767              getShiftAmountTy(N0.getOperand(0).getValueType()));
3768          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3769                                      N0.getOperand(0), Amt);
3770          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3771                                      Shift);
3772          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3773                             N->getValueType(0), Trunc);
3774      }
3775    }
3776  }
3777
3778  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3779  if (N1.getOpcode() == ISD::TRUNCATE &&
3780      N1.getOperand(0).getOpcode() == ISD::AND &&
3781      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3782    SDValue N101 = N1.getOperand(0).getOperand(1);
3783    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3784      EVT TruncVT = N1.getValueType();
3785      SDValue N100 = N1.getOperand(0).getOperand(0);
3786      APInt TruncC = N101C->getAPIntValue();
3787      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3788      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3789                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3790                                     TruncVT,
3791                                     DAG.getNode(ISD::TRUNCATE,
3792                                                 N->getDebugLoc(),
3793                                                 TruncVT, N100),
3794                                     DAG.getConstant(TruncC, TruncVT)));
3795    }
3796  }
3797
3798  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3799  //      if c1 is equal to the number of bits the trunc removes
3800  if (N0.getOpcode() == ISD::TRUNCATE &&
3801      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3802       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3803      N0.getOperand(0).hasOneUse() &&
3804      N0.getOperand(0).getOperand(1).hasOneUse() &&
3805      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3806    EVT LargeVT = N0.getOperand(0).getValueType();
3807    ConstantSDNode *LargeShiftAmt =
3808      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3809
3810    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3811        LargeShiftAmt->getZExtValue()) {
3812      SDValue Amt =
3813        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3814              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3815      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3816                                N0.getOperand(0).getOperand(0), Amt);
3817      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3818    }
3819  }
3820
3821  // Simplify, based on bits shifted out of the LHS.
3822  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3823    return SDValue(N, 0);
3824
3825
3826  // If the sign bit is known to be zero, switch this to a SRL.
3827  if (DAG.SignBitIsZero(N0))
3828    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3829
3830  if (N1C) {
3831    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3832    if (NewSRA.getNode())
3833      return NewSRA;
3834  }
3835
3836  return SDValue();
3837}
3838
3839SDValue DAGCombiner::visitSRL(SDNode *N) {
3840  SDValue N0 = N->getOperand(0);
3841  SDValue N1 = N->getOperand(1);
3842  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3843  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3844  EVT VT = N0.getValueType();
3845  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3846
3847  // fold (srl c1, c2) -> c1 >>u c2
3848  if (N0C && N1C)
3849    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3850  // fold (srl 0, x) -> 0
3851  if (N0C && N0C->isNullValue())
3852    return N0;
3853  // fold (srl x, c >= size(x)) -> undef
3854  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3855    return DAG.getUNDEF(VT);
3856  // fold (srl x, 0) -> x
3857  if (N1C && N1C->isNullValue())
3858    return N0;
3859  // if (srl x, c) is known to be zero, return 0
3860  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3861                                   APInt::getAllOnesValue(OpSizeInBits)))
3862    return DAG.getConstant(0, VT);
3863
3864  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3865  if (N1C && N0.getOpcode() == ISD::SRL &&
3866      N0.getOperand(1).getOpcode() == ISD::Constant) {
3867    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3868    uint64_t c2 = N1C->getZExtValue();
3869    if (c1 + c2 >= OpSizeInBits)
3870      return DAG.getConstant(0, VT);
3871    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3872                       DAG.getConstant(c1 + c2, N1.getValueType()));
3873  }
3874
3875  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3876  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3877      N0.getOperand(0).getOpcode() == ISD::SRL &&
3878      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3879    uint64_t c1 =
3880      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3881    uint64_t c2 = N1C->getZExtValue();
3882    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3883    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3884    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3885    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3886    if (c1 + OpSizeInBits == InnerShiftSize) {
3887      if (c1 + c2 >= InnerShiftSize)
3888        return DAG.getConstant(0, VT);
3889      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3890                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3891                                     N0.getOperand(0)->getOperand(0),
3892                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3893    }
3894  }
3895
3896  // fold (srl (shl x, c), c) -> (and x, cst2)
3897  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3898      N0.getValueSizeInBits() <= 64) {
3899    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3900    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3901                       DAG.getConstant(~0ULL >> ShAmt, VT));
3902  }
3903
3904
3905  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3906  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3907    // Shifting in all undef bits?
3908    EVT SmallVT = N0.getOperand(0).getValueType();
3909    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3910      return DAG.getUNDEF(VT);
3911
3912    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3913      uint64_t ShiftAmt = N1C->getZExtValue();
3914      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3915                                       N0.getOperand(0),
3916                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3917      AddToWorkList(SmallShift.getNode());
3918      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3919    }
3920  }
3921
3922  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3923  // bit, which is unmodified by sra.
3924  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3925    if (N0.getOpcode() == ISD::SRA)
3926      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3927  }
3928
3929  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3930  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3931      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3932    APInt KnownZero, KnownOne;
3933    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3934
3935    // If any of the input bits are KnownOne, then the input couldn't be all
3936    // zeros, thus the result of the srl will always be zero.
3937    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3938
3939    // If all of the bits input the to ctlz node are known to be zero, then
3940    // the result of the ctlz is "32" and the result of the shift is one.
3941    APInt UnknownBits = ~KnownZero;
3942    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3943
3944    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3945    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3946      // Okay, we know that only that the single bit specified by UnknownBits
3947      // could be set on input to the CTLZ node. If this bit is set, the SRL
3948      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3949      // to an SRL/XOR pair, which is likely to simplify more.
3950      unsigned ShAmt = UnknownBits.countTrailingZeros();
3951      SDValue Op = N0.getOperand(0);
3952
3953      if (ShAmt) {
3954        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3955                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3956        AddToWorkList(Op.getNode());
3957      }
3958
3959      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3960                         Op, DAG.getConstant(1, VT));
3961    }
3962  }
3963
3964  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3965  if (N1.getOpcode() == ISD::TRUNCATE &&
3966      N1.getOperand(0).getOpcode() == ISD::AND &&
3967      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3968    SDValue N101 = N1.getOperand(0).getOperand(1);
3969    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3970      EVT TruncVT = N1.getValueType();
3971      SDValue N100 = N1.getOperand(0).getOperand(0);
3972      APInt TruncC = N101C->getAPIntValue();
3973      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3974      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3975                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3976                                     TruncVT,
3977                                     DAG.getNode(ISD::TRUNCATE,
3978                                                 N->getDebugLoc(),
3979                                                 TruncVT, N100),
3980                                     DAG.getConstant(TruncC, TruncVT)));
3981    }
3982  }
3983
3984  // fold operands of srl based on knowledge that the low bits are not
3985  // demanded.
3986  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3987    return SDValue(N, 0);
3988
3989  if (N1C) {
3990    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3991    if (NewSRL.getNode())
3992      return NewSRL;
3993  }
3994
3995  // Attempt to convert a srl of a load into a narrower zero-extending load.
3996  SDValue NarrowLoad = ReduceLoadWidth(N);
3997  if (NarrowLoad.getNode())
3998    return NarrowLoad;
3999
4000  // Here is a common situation. We want to optimize:
4001  //
4002  //   %a = ...
4003  //   %b = and i32 %a, 2
4004  //   %c = srl i32 %b, 1
4005  //   brcond i32 %c ...
4006  //
4007  // into
4008  //
4009  //   %a = ...
4010  //   %b = and %a, 2
4011  //   %c = setcc eq %b, 0
4012  //   brcond %c ...
4013  //
4014  // However when after the source operand of SRL is optimized into AND, the SRL
4015  // itself may not be optimized further. Look for it and add the BRCOND into
4016  // the worklist.
4017  if (N->hasOneUse()) {
4018    SDNode *Use = *N->use_begin();
4019    if (Use->getOpcode() == ISD::BRCOND)
4020      AddToWorkList(Use);
4021    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4022      // Also look pass the truncate.
4023      Use = *Use->use_begin();
4024      if (Use->getOpcode() == ISD::BRCOND)
4025        AddToWorkList(Use);
4026    }
4027  }
4028
4029  return SDValue();
4030}
4031
4032SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4033  SDValue N0 = N->getOperand(0);
4034  EVT VT = N->getValueType(0);
4035
4036  // fold (ctlz c1) -> c2
4037  if (isa<ConstantSDNode>(N0))
4038    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
4039  return SDValue();
4040}
4041
4042SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4043  SDValue N0 = N->getOperand(0);
4044  EVT VT = N->getValueType(0);
4045
4046  // fold (ctlz_zero_undef c1) -> c2
4047  if (isa<ConstantSDNode>(N0))
4048    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4049  return SDValue();
4050}
4051
4052SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4053  SDValue N0 = N->getOperand(0);
4054  EVT VT = N->getValueType(0);
4055
4056  // fold (cttz c1) -> c2
4057  if (isa<ConstantSDNode>(N0))
4058    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4059  return SDValue();
4060}
4061
4062SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4063  SDValue N0 = N->getOperand(0);
4064  EVT VT = N->getValueType(0);
4065
4066  // fold (cttz_zero_undef c1) -> c2
4067  if (isa<ConstantSDNode>(N0))
4068    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4069  return SDValue();
4070}
4071
4072SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4073  SDValue N0 = N->getOperand(0);
4074  EVT VT = N->getValueType(0);
4075
4076  // fold (ctpop c1) -> c2
4077  if (isa<ConstantSDNode>(N0))
4078    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4079  return SDValue();
4080}
4081
4082SDValue DAGCombiner::visitSELECT(SDNode *N) {
4083  SDValue N0 = N->getOperand(0);
4084  SDValue N1 = N->getOperand(1);
4085  SDValue N2 = N->getOperand(2);
4086  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4088  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4089  EVT VT = N->getValueType(0);
4090  EVT VT0 = N0.getValueType();
4091
4092  // fold (select C, X, X) -> X
4093  if (N1 == N2)
4094    return N1;
4095  // fold (select true, X, Y) -> X
4096  if (N0C && !N0C->isNullValue())
4097    return N1;
4098  // fold (select false, X, Y) -> Y
4099  if (N0C && N0C->isNullValue())
4100    return N2;
4101  // fold (select C, 1, X) -> (or C, X)
4102  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4103    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4104  // fold (select C, 0, 1) -> (xor C, 1)
4105  if (VT.isInteger() &&
4106      (VT0 == MVT::i1 ||
4107       (VT0.isInteger() &&
4108        TLI.getBooleanContents(false) ==
4109        TargetLowering::ZeroOrOneBooleanContent)) &&
4110      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4111    SDValue XORNode;
4112    if (VT == VT0)
4113      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4114                         N0, DAG.getConstant(1, VT0));
4115    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4116                          N0, DAG.getConstant(1, VT0));
4117    AddToWorkList(XORNode.getNode());
4118    if (VT.bitsGT(VT0))
4119      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4120    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4121  }
4122  // fold (select C, 0, X) -> (and (not C), X)
4123  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4124    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4125    AddToWorkList(NOTNode.getNode());
4126    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4127  }
4128  // fold (select C, X, 1) -> (or (not C), X)
4129  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4130    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4131    AddToWorkList(NOTNode.getNode());
4132    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4133  }
4134  // fold (select C, X, 0) -> (and C, X)
4135  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4136    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4137  // fold (select X, X, Y) -> (or X, Y)
4138  // fold (select X, 1, Y) -> (or X, Y)
4139  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4140    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4141  // fold (select X, Y, X) -> (and X, Y)
4142  // fold (select X, Y, 0) -> (and X, Y)
4143  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4144    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4145
4146  // If we can fold this based on the true/false value, do so.
4147  if (SimplifySelectOps(N, N1, N2))
4148    return SDValue(N, 0);  // Don't revisit N.
4149
4150  // fold selects based on a setcc into other things, such as min/max/abs
4151  if (N0.getOpcode() == ISD::SETCC) {
4152    // FIXME:
4153    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4154    // having to say they don't support SELECT_CC on every type the DAG knows
4155    // about, since there is no way to mark an opcode illegal at all value types
4156    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4157        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4158      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4159                         N0.getOperand(0), N0.getOperand(1),
4160                         N1, N2, N0.getOperand(2));
4161    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4162  }
4163
4164  return SDValue();
4165}
4166
4167SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4168  SDValue N0 = N->getOperand(0);
4169  SDValue N1 = N->getOperand(1);
4170  SDValue N2 = N->getOperand(2);
4171  DebugLoc DL = N->getDebugLoc();
4172
4173  // Canonicalize integer abs.
4174  // vselect (setg[te] X,  0),  X, -X ->
4175  // vselect (setgt    X, -1),  X, -X ->
4176  // vselect (setl[te] X,  0), -X,  X ->
4177  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4178  if (N0.getOpcode() == ISD::SETCC) {
4179    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4180    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4181    bool isAbs = false;
4182    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4183
4184    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4185         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4186        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4187      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4188    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4189             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4190      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4191
4192    if (isAbs) {
4193      EVT VT = LHS.getValueType();
4194      SDValue Shift = DAG.getNode(
4195          ISD::SRA, DL, VT, LHS,
4196          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4197      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4198      AddToWorkList(Shift.getNode());
4199      AddToWorkList(Add.getNode());
4200      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4201    }
4202  }
4203
4204  return SDValue();
4205}
4206
4207SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4208  SDValue N0 = N->getOperand(0);
4209  SDValue N1 = N->getOperand(1);
4210  SDValue N2 = N->getOperand(2);
4211  SDValue N3 = N->getOperand(3);
4212  SDValue N4 = N->getOperand(4);
4213  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4214
4215  // fold select_cc lhs, rhs, x, x, cc -> x
4216  if (N2 == N3)
4217    return N2;
4218
4219  // Determine if the condition we're dealing with is constant
4220  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4221                              N0, N1, CC, N->getDebugLoc(), false);
4222  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4223
4224  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4225    if (!SCCC->isNullValue())
4226      return N2;    // cond always true -> true val
4227    else
4228      return N3;    // cond always false -> false val
4229  }
4230
4231  // Fold to a simpler select_cc
4232  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4233    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4234                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4235                       SCC.getOperand(2));
4236
4237  // If we can fold this based on the true/false value, do so.
4238  if (SimplifySelectOps(N, N2, N3))
4239    return SDValue(N, 0);  // Don't revisit N.
4240
4241  // fold select_cc into other things, such as min/max/abs
4242  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4243}
4244
4245SDValue DAGCombiner::visitSETCC(SDNode *N) {
4246  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4247                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4248                       N->getDebugLoc());
4249}
4250
4251// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4252// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4253// transformation. Returns true if extension are possible and the above
4254// mentioned transformation is profitable.
4255static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4256                                    unsigned ExtOpc,
4257                                    SmallVector<SDNode*, 4> &ExtendNodes,
4258                                    const TargetLowering &TLI) {
4259  bool HasCopyToRegUses = false;
4260  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4261  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4262                            UE = N0.getNode()->use_end();
4263       UI != UE; ++UI) {
4264    SDNode *User = *UI;
4265    if (User == N)
4266      continue;
4267    if (UI.getUse().getResNo() != N0.getResNo())
4268      continue;
4269    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4270    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4271      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4272      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4273        // Sign bits will be lost after a zext.
4274        return false;
4275      bool Add = false;
4276      for (unsigned i = 0; i != 2; ++i) {
4277        SDValue UseOp = User->getOperand(i);
4278        if (UseOp == N0)
4279          continue;
4280        if (!isa<ConstantSDNode>(UseOp))
4281          return false;
4282        Add = true;
4283      }
4284      if (Add)
4285        ExtendNodes.push_back(User);
4286      continue;
4287    }
4288    // If truncates aren't free and there are users we can't
4289    // extend, it isn't worthwhile.
4290    if (!isTruncFree)
4291      return false;
4292    // Remember if this value is live-out.
4293    if (User->getOpcode() == ISD::CopyToReg)
4294      HasCopyToRegUses = true;
4295  }
4296
4297  if (HasCopyToRegUses) {
4298    bool BothLiveOut = false;
4299    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4300         UI != UE; ++UI) {
4301      SDUse &Use = UI.getUse();
4302      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4303        BothLiveOut = true;
4304        break;
4305      }
4306    }
4307    if (BothLiveOut)
4308      // Both unextended and extended values are live out. There had better be
4309      // a good reason for the transformation.
4310      return ExtendNodes.size();
4311  }
4312  return true;
4313}
4314
4315void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4316                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4317                                  ISD::NodeType ExtType) {
4318  // Extend SetCC uses if necessary.
4319  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4320    SDNode *SetCC = SetCCs[i];
4321    SmallVector<SDValue, 4> Ops;
4322
4323    for (unsigned j = 0; j != 2; ++j) {
4324      SDValue SOp = SetCC->getOperand(j);
4325      if (SOp == Trunc)
4326        Ops.push_back(ExtLoad);
4327      else
4328        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4329    }
4330
4331    Ops.push_back(SetCC->getOperand(2));
4332    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4333                                 &Ops[0], Ops.size()));
4334  }
4335}
4336
4337SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4338  SDValue N0 = N->getOperand(0);
4339  EVT VT = N->getValueType(0);
4340
4341  // fold (sext c1) -> c1
4342  if (isa<ConstantSDNode>(N0))
4343    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4344
4345  // fold (sext (sext x)) -> (sext x)
4346  // fold (sext (aext x)) -> (sext x)
4347  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4348    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4349                       N0.getOperand(0));
4350
4351  if (N0.getOpcode() == ISD::TRUNCATE) {
4352    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4353    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4354    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4355    if (NarrowLoad.getNode()) {
4356      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4357      if (NarrowLoad.getNode() != N0.getNode()) {
4358        CombineTo(N0.getNode(), NarrowLoad);
4359        // CombineTo deleted the truncate, if needed, but not what's under it.
4360        AddToWorkList(oye);
4361      }
4362      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4363    }
4364
4365    // See if the value being truncated is already sign extended.  If so, just
4366    // eliminate the trunc/sext pair.
4367    SDValue Op = N0.getOperand(0);
4368    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4369    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4370    unsigned DestBits = VT.getScalarType().getSizeInBits();
4371    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4372
4373    if (OpBits == DestBits) {
4374      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4375      // bits, it is already ready.
4376      if (NumSignBits > DestBits-MidBits)
4377        return Op;
4378    } else if (OpBits < DestBits) {
4379      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4380      // bits, just sext from i32.
4381      if (NumSignBits > OpBits-MidBits)
4382        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4383    } else {
4384      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4385      // bits, just truncate to i32.
4386      if (NumSignBits > OpBits-MidBits)
4387        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4388    }
4389
4390    // fold (sext (truncate x)) -> (sextinreg x).
4391    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4392                                                 N0.getValueType())) {
4393      if (OpBits < DestBits)
4394        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4395      else if (OpBits > DestBits)
4396        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4397      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4398                         DAG.getValueType(N0.getValueType()));
4399    }
4400  }
4401
4402  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4403  // None of the supported targets knows how to perform load and sign extend
4404  // on vectors in one instruction.  We only perform this transformation on
4405  // scalars.
4406  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4407      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4408       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4409    bool DoXform = true;
4410    SmallVector<SDNode*, 4> SetCCs;
4411    if (!N0.hasOneUse())
4412      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4413    if (DoXform) {
4414      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4415      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4416                                       LN0->getChain(),
4417                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4418                                       N0.getValueType(),
4419                                       LN0->isVolatile(), LN0->isNonTemporal(),
4420                                       LN0->getAlignment());
4421      CombineTo(N, ExtLoad);
4422      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4423                                  N0.getValueType(), ExtLoad);
4424      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4425      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4426                      ISD::SIGN_EXTEND);
4427      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4428    }
4429  }
4430
4431  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4432  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4433  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4434      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4435    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4436    EVT MemVT = LN0->getMemoryVT();
4437    if ((!LegalOperations && !LN0->isVolatile()) ||
4438        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4439      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4440                                       LN0->getChain(),
4441                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4442                                       MemVT,
4443                                       LN0->isVolatile(), LN0->isNonTemporal(),
4444                                       LN0->getAlignment());
4445      CombineTo(N, ExtLoad);
4446      CombineTo(N0.getNode(),
4447                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4448                            N0.getValueType(), ExtLoad),
4449                ExtLoad.getValue(1));
4450      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4451    }
4452  }
4453
4454  // fold (sext (and/or/xor (load x), cst)) ->
4455  //      (and/or/xor (sextload x), (sext cst))
4456  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4457       N0.getOpcode() == ISD::XOR) &&
4458      isa<LoadSDNode>(N0.getOperand(0)) &&
4459      N0.getOperand(1).getOpcode() == ISD::Constant &&
4460      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4461      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4462    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4463    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4464      bool DoXform = true;
4465      SmallVector<SDNode*, 4> SetCCs;
4466      if (!N0.hasOneUse())
4467        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4468                                          SetCCs, TLI);
4469      if (DoXform) {
4470        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4471                                         LN0->getChain(), LN0->getBasePtr(),
4472                                         LN0->getPointerInfo(),
4473                                         LN0->getMemoryVT(),
4474                                         LN0->isVolatile(),
4475                                         LN0->isNonTemporal(),
4476                                         LN0->getAlignment());
4477        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4478        Mask = Mask.sext(VT.getSizeInBits());
4479        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4480                                  ExtLoad, DAG.getConstant(Mask, VT));
4481        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4482                                    N0.getOperand(0).getDebugLoc(),
4483                                    N0.getOperand(0).getValueType(), ExtLoad);
4484        CombineTo(N, And);
4485        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4486        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4487                        ISD::SIGN_EXTEND);
4488        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4489      }
4490    }
4491  }
4492
4493  if (N0.getOpcode() == ISD::SETCC) {
4494    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4495    // Only do this before legalize for now.
4496    if (VT.isVector() && !LegalOperations &&
4497        TLI.getBooleanContents(true) ==
4498          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4499      EVT N0VT = N0.getOperand(0).getValueType();
4500      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4501      // of the same size as the compared operands. Only optimize sext(setcc())
4502      // if this is the case.
4503      EVT SVT = TLI.getSetCCResultType(N0VT);
4504
4505      // We know that the # elements of the results is the same as the
4506      // # elements of the compare (and the # elements of the compare result
4507      // for that matter).  Check to see that they are the same size.  If so,
4508      // we know that the element size of the sext'd result matches the
4509      // element size of the compare operands.
4510      if (VT.getSizeInBits() == SVT.getSizeInBits())
4511        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4512                             N0.getOperand(1),
4513                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4514      // If the desired elements are smaller or larger than the source
4515      // elements we can use a matching integer vector type and then
4516      // truncate/sign extend
4517      EVT MatchingElementType =
4518        EVT::getIntegerVT(*DAG.getContext(),
4519                          N0VT.getScalarType().getSizeInBits());
4520      EVT MatchingVectorType =
4521        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4522                         N0VT.getVectorNumElements());
4523
4524      if (SVT == MatchingVectorType) {
4525        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4526                               N0.getOperand(0), N0.getOperand(1),
4527                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4528        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4529      }
4530    }
4531
4532    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4533    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4534    SDValue NegOne =
4535      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4536    SDValue SCC =
4537      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4538                       NegOne, DAG.getConstant(0, VT),
4539                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4540    if (SCC.getNode()) return SCC;
4541    if (!VT.isVector() && (!LegalOperations ||
4542        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT))))
4543      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4544                         DAG.getSetCC(N->getDebugLoc(),
4545                                      TLI.getSetCCResultType(VT),
4546                                      N0.getOperand(0), N0.getOperand(1),
4547                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4548                         NegOne, DAG.getConstant(0, VT));
4549  }
4550
4551  // fold (sext x) -> (zext x) if the sign bit is known zero.
4552  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4553      DAG.SignBitIsZero(N0))
4554    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4555
4556  return SDValue();
4557}
4558
4559// isTruncateOf - If N is a truncate of some other value, return true, record
4560// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4561// This function computes KnownZero to avoid a duplicated call to
4562// ComputeMaskedBits in the caller.
4563static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4564                         APInt &KnownZero) {
4565  APInt KnownOne;
4566  if (N->getOpcode() == ISD::TRUNCATE) {
4567    Op = N->getOperand(0);
4568    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4569    return true;
4570  }
4571
4572  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4573      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4574    return false;
4575
4576  SDValue Op0 = N->getOperand(0);
4577  SDValue Op1 = N->getOperand(1);
4578  assert(Op0.getValueType() == Op1.getValueType());
4579
4580  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4581  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4582  if (COp0 && COp0->isNullValue())
4583    Op = Op1;
4584  else if (COp1 && COp1->isNullValue())
4585    Op = Op0;
4586  else
4587    return false;
4588
4589  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4590
4591  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4592    return false;
4593
4594  return true;
4595}
4596
4597SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4598  SDValue N0 = N->getOperand(0);
4599  EVT VT = N->getValueType(0);
4600
4601  // fold (zext c1) -> c1
4602  if (isa<ConstantSDNode>(N0))
4603    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4604  // fold (zext (zext x)) -> (zext x)
4605  // fold (zext (aext x)) -> (zext x)
4606  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4607    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4608                       N0.getOperand(0));
4609
4610  // fold (zext (truncate x)) -> (zext x) or
4611  //      (zext (truncate x)) -> (truncate x)
4612  // This is valid when the truncated bits of x are already zero.
4613  // FIXME: We should extend this to work for vectors too.
4614  SDValue Op;
4615  APInt KnownZero;
4616  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4617    APInt TruncatedBits =
4618      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4619      APInt(Op.getValueSizeInBits(), 0) :
4620      APInt::getBitsSet(Op.getValueSizeInBits(),
4621                        N0.getValueSizeInBits(),
4622                        std::min(Op.getValueSizeInBits(),
4623                                 VT.getSizeInBits()));
4624    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4625      if (VT.bitsGT(Op.getValueType()))
4626        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4627      if (VT.bitsLT(Op.getValueType()))
4628        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4629
4630      return Op;
4631    }
4632  }
4633
4634  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4635  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4636  if (N0.getOpcode() == ISD::TRUNCATE) {
4637    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4638    if (NarrowLoad.getNode()) {
4639      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4640      if (NarrowLoad.getNode() != N0.getNode()) {
4641        CombineTo(N0.getNode(), NarrowLoad);
4642        // CombineTo deleted the truncate, if needed, but not what's under it.
4643        AddToWorkList(oye);
4644      }
4645      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4646    }
4647  }
4648
4649  // fold (zext (truncate x)) -> (and x, mask)
4650  if (N0.getOpcode() == ISD::TRUNCATE &&
4651      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4652
4653    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4654    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4655    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4656    if (NarrowLoad.getNode()) {
4657      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4658      if (NarrowLoad.getNode() != N0.getNode()) {
4659        CombineTo(N0.getNode(), NarrowLoad);
4660        // CombineTo deleted the truncate, if needed, but not what's under it.
4661        AddToWorkList(oye);
4662      }
4663      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4664    }
4665
4666    SDValue Op = N0.getOperand(0);
4667    if (Op.getValueType().bitsLT(VT)) {
4668      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4669      AddToWorkList(Op.getNode());
4670    } else if (Op.getValueType().bitsGT(VT)) {
4671      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4672      AddToWorkList(Op.getNode());
4673    }
4674    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4675                                  N0.getValueType().getScalarType());
4676  }
4677
4678  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4679  // if either of the casts is not free.
4680  if (N0.getOpcode() == ISD::AND &&
4681      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4682      N0.getOperand(1).getOpcode() == ISD::Constant &&
4683      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4684                           N0.getValueType()) ||
4685       !TLI.isZExtFree(N0.getValueType(), VT))) {
4686    SDValue X = N0.getOperand(0).getOperand(0);
4687    if (X.getValueType().bitsLT(VT)) {
4688      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4689    } else if (X.getValueType().bitsGT(VT)) {
4690      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4691    }
4692    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4693    Mask = Mask.zext(VT.getSizeInBits());
4694    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4695                       X, DAG.getConstant(Mask, VT));
4696  }
4697
4698  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4699  // None of the supported targets knows how to perform load and vector_zext
4700  // on vectors in one instruction.  We only perform this transformation on
4701  // scalars.
4702  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4703      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4704       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4705    bool DoXform = true;
4706    SmallVector<SDNode*, 4> SetCCs;
4707    if (!N0.hasOneUse())
4708      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4709    if (DoXform) {
4710      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4711      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4712                                       LN0->getChain(),
4713                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4714                                       N0.getValueType(),
4715                                       LN0->isVolatile(), LN0->isNonTemporal(),
4716                                       LN0->getAlignment());
4717      CombineTo(N, ExtLoad);
4718      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4719                                  N0.getValueType(), ExtLoad);
4720      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4721
4722      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4723                      ISD::ZERO_EXTEND);
4724      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4725    }
4726  }
4727
4728  // fold (zext (and/or/xor (load x), cst)) ->
4729  //      (and/or/xor (zextload x), (zext cst))
4730  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4731       N0.getOpcode() == ISD::XOR) &&
4732      isa<LoadSDNode>(N0.getOperand(0)) &&
4733      N0.getOperand(1).getOpcode() == ISD::Constant &&
4734      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4735      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4736    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4737    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4738      bool DoXform = true;
4739      SmallVector<SDNode*, 4> SetCCs;
4740      if (!N0.hasOneUse())
4741        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4742                                          SetCCs, TLI);
4743      if (DoXform) {
4744        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4745                                         LN0->getChain(), LN0->getBasePtr(),
4746                                         LN0->getPointerInfo(),
4747                                         LN0->getMemoryVT(),
4748                                         LN0->isVolatile(),
4749                                         LN0->isNonTemporal(),
4750                                         LN0->getAlignment());
4751        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4752        Mask = Mask.zext(VT.getSizeInBits());
4753        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4754                                  ExtLoad, DAG.getConstant(Mask, VT));
4755        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4756                                    N0.getOperand(0).getDebugLoc(),
4757                                    N0.getOperand(0).getValueType(), ExtLoad);
4758        CombineTo(N, And);
4759        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4760        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4761                        ISD::ZERO_EXTEND);
4762        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4763      }
4764    }
4765  }
4766
4767  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4768  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4769  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4770      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4771    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4772    EVT MemVT = LN0->getMemoryVT();
4773    if ((!LegalOperations && !LN0->isVolatile()) ||
4774        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4775      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4776                                       LN0->getChain(),
4777                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4778                                       MemVT,
4779                                       LN0->isVolatile(), LN0->isNonTemporal(),
4780                                       LN0->getAlignment());
4781      CombineTo(N, ExtLoad);
4782      CombineTo(N0.getNode(),
4783                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4784                            ExtLoad),
4785                ExtLoad.getValue(1));
4786      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4787    }
4788  }
4789
4790  if (N0.getOpcode() == ISD::SETCC) {
4791    if (!LegalOperations && VT.isVector()) {
4792      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4793      // Only do this before legalize for now.
4794      EVT N0VT = N0.getOperand(0).getValueType();
4795      EVT EltVT = VT.getVectorElementType();
4796      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4797                                    DAG.getConstant(1, EltVT));
4798      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4799        // We know that the # elements of the results is the same as the
4800        // # elements of the compare (and the # elements of the compare result
4801        // for that matter).  Check to see that they are the same size.  If so,
4802        // we know that the element size of the sext'd result matches the
4803        // element size of the compare operands.
4804        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4805                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4806                                         N0.getOperand(1),
4807                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4808                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4809                                       &OneOps[0], OneOps.size()));
4810
4811      // If the desired elements are smaller or larger than the source
4812      // elements we can use a matching integer vector type and then
4813      // truncate/sign extend
4814      EVT MatchingElementType =
4815        EVT::getIntegerVT(*DAG.getContext(),
4816                          N0VT.getScalarType().getSizeInBits());
4817      EVT MatchingVectorType =
4818        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4819                         N0VT.getVectorNumElements());
4820      SDValue VsetCC =
4821        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4822                      N0.getOperand(1),
4823                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4824      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4825                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4826                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4827                                     &OneOps[0], OneOps.size()));
4828    }
4829
4830    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4831    SDValue SCC =
4832      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4833                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4834                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4835    if (SCC.getNode()) return SCC;
4836  }
4837
4838  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4839  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4840      isa<ConstantSDNode>(N0.getOperand(1)) &&
4841      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4842      N0.hasOneUse()) {
4843    SDValue ShAmt = N0.getOperand(1);
4844    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4845    if (N0.getOpcode() == ISD::SHL) {
4846      SDValue InnerZExt = N0.getOperand(0);
4847      // If the original shl may be shifting out bits, do not perform this
4848      // transformation.
4849      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4850        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4851      if (ShAmtVal > KnownZeroBits)
4852        return SDValue();
4853    }
4854
4855    DebugLoc DL = N->getDebugLoc();
4856
4857    // Ensure that the shift amount is wide enough for the shifted value.
4858    if (VT.getSizeInBits() >= 256)
4859      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4860
4861    return DAG.getNode(N0.getOpcode(), DL, VT,
4862                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4863                       ShAmt);
4864  }
4865
4866  return SDValue();
4867}
4868
4869SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4870  SDValue N0 = N->getOperand(0);
4871  EVT VT = N->getValueType(0);
4872
4873  // fold (aext c1) -> c1
4874  if (isa<ConstantSDNode>(N0))
4875    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4876  // fold (aext (aext x)) -> (aext x)
4877  // fold (aext (zext x)) -> (zext x)
4878  // fold (aext (sext x)) -> (sext x)
4879  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4880      N0.getOpcode() == ISD::ZERO_EXTEND ||
4881      N0.getOpcode() == ISD::SIGN_EXTEND)
4882    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4883
4884  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4885  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4886  if (N0.getOpcode() == ISD::TRUNCATE) {
4887    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4888    if (NarrowLoad.getNode()) {
4889      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4890      if (NarrowLoad.getNode() != N0.getNode()) {
4891        CombineTo(N0.getNode(), NarrowLoad);
4892        // CombineTo deleted the truncate, if needed, but not what's under it.
4893        AddToWorkList(oye);
4894      }
4895      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4896    }
4897  }
4898
4899  // fold (aext (truncate x))
4900  if (N0.getOpcode() == ISD::TRUNCATE) {
4901    SDValue TruncOp = N0.getOperand(0);
4902    if (TruncOp.getValueType() == VT)
4903      return TruncOp; // x iff x size == zext size.
4904    if (TruncOp.getValueType().bitsGT(VT))
4905      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4906    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4907  }
4908
4909  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4910  // if the trunc is not free.
4911  if (N0.getOpcode() == ISD::AND &&
4912      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4913      N0.getOperand(1).getOpcode() == ISD::Constant &&
4914      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4915                          N0.getValueType())) {
4916    SDValue X = N0.getOperand(0).getOperand(0);
4917    if (X.getValueType().bitsLT(VT)) {
4918      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4919    } else if (X.getValueType().bitsGT(VT)) {
4920      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4921    }
4922    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4923    Mask = Mask.zext(VT.getSizeInBits());
4924    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4925                       X, DAG.getConstant(Mask, VT));
4926  }
4927
4928  // fold (aext (load x)) -> (aext (truncate (extload x)))
4929  // None of the supported targets knows how to perform load and any_ext
4930  // on vectors in one instruction.  We only perform this transformation on
4931  // scalars.
4932  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4933      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4934       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4935    bool DoXform = true;
4936    SmallVector<SDNode*, 4> SetCCs;
4937    if (!N0.hasOneUse())
4938      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4939    if (DoXform) {
4940      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4941      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4942                                       LN0->getChain(),
4943                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4944                                       N0.getValueType(),
4945                                       LN0->isVolatile(), LN0->isNonTemporal(),
4946                                       LN0->getAlignment());
4947      CombineTo(N, ExtLoad);
4948      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4949                                  N0.getValueType(), ExtLoad);
4950      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4951      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4952                      ISD::ANY_EXTEND);
4953      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4954    }
4955  }
4956
4957  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4958  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4959  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4960  if (N0.getOpcode() == ISD::LOAD &&
4961      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4962      N0.hasOneUse()) {
4963    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4964    EVT MemVT = LN0->getMemoryVT();
4965    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4966                                     VT, LN0->getChain(), LN0->getBasePtr(),
4967                                     LN0->getPointerInfo(), MemVT,
4968                                     LN0->isVolatile(), LN0->isNonTemporal(),
4969                                     LN0->getAlignment());
4970    CombineTo(N, ExtLoad);
4971    CombineTo(N0.getNode(),
4972              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4973                          N0.getValueType(), ExtLoad),
4974              ExtLoad.getValue(1));
4975    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4976  }
4977
4978  if (N0.getOpcode() == ISD::SETCC) {
4979    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4980    // Only do this before legalize for now.
4981    if (VT.isVector() && !LegalOperations) {
4982      EVT N0VT = N0.getOperand(0).getValueType();
4983        // We know that the # elements of the results is the same as the
4984        // # elements of the compare (and the # elements of the compare result
4985        // for that matter).  Check to see that they are the same size.  If so,
4986        // we know that the element size of the sext'd result matches the
4987        // element size of the compare operands.
4988      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4989        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4990                             N0.getOperand(1),
4991                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4992      // If the desired elements are smaller or larger than the source
4993      // elements we can use a matching integer vector type and then
4994      // truncate/sign extend
4995      else {
4996        EVT MatchingElementType =
4997          EVT::getIntegerVT(*DAG.getContext(),
4998                            N0VT.getScalarType().getSizeInBits());
4999        EVT MatchingVectorType =
5000          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5001                           N0VT.getVectorNumElements());
5002        SDValue VsetCC =
5003          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
5004                        N0.getOperand(1),
5005                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5006        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
5007      }
5008    }
5009
5010    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5011    SDValue SCC =
5012      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
5013                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5014                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5015    if (SCC.getNode())
5016      return SCC;
5017  }
5018
5019  return SDValue();
5020}
5021
5022/// GetDemandedBits - See if the specified operand can be simplified with the
5023/// knowledge that only the bits specified by Mask are used.  If so, return the
5024/// simpler operand, otherwise return a null SDValue.
5025SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5026  switch (V.getOpcode()) {
5027  default: break;
5028  case ISD::Constant: {
5029    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5030    assert(CV != 0 && "Const value should be ConstSDNode.");
5031    const APInt &CVal = CV->getAPIntValue();
5032    APInt NewVal = CVal & Mask;
5033    if (NewVal != CVal) {
5034      return DAG.getConstant(NewVal, V.getValueType());
5035    }
5036    break;
5037  }
5038  case ISD::OR:
5039  case ISD::XOR:
5040    // If the LHS or RHS don't contribute bits to the or, drop them.
5041    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5042      return V.getOperand(1);
5043    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5044      return V.getOperand(0);
5045    break;
5046  case ISD::SRL:
5047    // Only look at single-use SRLs.
5048    if (!V.getNode()->hasOneUse())
5049      break;
5050    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5051      // See if we can recursively simplify the LHS.
5052      unsigned Amt = RHSC->getZExtValue();
5053
5054      // Watch out for shift count overflow though.
5055      if (Amt >= Mask.getBitWidth()) break;
5056      APInt NewMask = Mask << Amt;
5057      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5058      if (SimplifyLHS.getNode())
5059        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
5060                           SimplifyLHS, V.getOperand(1));
5061    }
5062  }
5063  return SDValue();
5064}
5065
5066/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5067/// bits and then truncated to a narrower type and where N is a multiple
5068/// of number of bits of the narrower type, transform it to a narrower load
5069/// from address + N / num of bits of new type. If the result is to be
5070/// extended, also fold the extension to form a extending load.
5071SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5072  unsigned Opc = N->getOpcode();
5073
5074  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5075  SDValue N0 = N->getOperand(0);
5076  EVT VT = N->getValueType(0);
5077  EVT ExtVT = VT;
5078
5079  // This transformation isn't valid for vector loads.
5080  if (VT.isVector())
5081    return SDValue();
5082
5083  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5084  // extended to VT.
5085  if (Opc == ISD::SIGN_EXTEND_INREG) {
5086    ExtType = ISD::SEXTLOAD;
5087    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5088  } else if (Opc == ISD::SRL) {
5089    // Another special-case: SRL is basically zero-extending a narrower value.
5090    ExtType = ISD::ZEXTLOAD;
5091    N0 = SDValue(N, 0);
5092    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5093    if (!N01) return SDValue();
5094    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5095                              VT.getSizeInBits() - N01->getZExtValue());
5096  }
5097  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5098    return SDValue();
5099
5100  unsigned EVTBits = ExtVT.getSizeInBits();
5101
5102  // Do not generate loads of non-round integer types since these can
5103  // be expensive (and would be wrong if the type is not byte sized).
5104  if (!ExtVT.isRound())
5105    return SDValue();
5106
5107  unsigned ShAmt = 0;
5108  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5109    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5110      ShAmt = N01->getZExtValue();
5111      // Is the shift amount a multiple of size of VT?
5112      if ((ShAmt & (EVTBits-1)) == 0) {
5113        N0 = N0.getOperand(0);
5114        // Is the load width a multiple of size of VT?
5115        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5116          return SDValue();
5117      }
5118
5119      // At this point, we must have a load or else we can't do the transform.
5120      if (!isa<LoadSDNode>(N0)) return SDValue();
5121
5122      // Because a SRL must be assumed to *need* to zero-extend the high bits
5123      // (as opposed to anyext the high bits), we can't combine the zextload
5124      // lowering of SRL and an sextload.
5125      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5126        return SDValue();
5127
5128      // If the shift amount is larger than the input type then we're not
5129      // accessing any of the loaded bytes.  If the load was a zextload/extload
5130      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5131      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5132        return SDValue();
5133    }
5134  }
5135
5136  // If the load is shifted left (and the result isn't shifted back right),
5137  // we can fold the truncate through the shift.
5138  unsigned ShLeftAmt = 0;
5139  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5140      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5141    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5142      ShLeftAmt = N01->getZExtValue();
5143      N0 = N0.getOperand(0);
5144    }
5145  }
5146
5147  // If we haven't found a load, we can't narrow it.  Don't transform one with
5148  // multiple uses, this would require adding a new load.
5149  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5150    return SDValue();
5151
5152  // Don't change the width of a volatile load.
5153  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5154  if (LN0->isVolatile())
5155    return SDValue();
5156
5157  // Verify that we are actually reducing a load width here.
5158  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5159    return SDValue();
5160
5161  // For the transform to be legal, the load must produce only two values
5162  // (the value loaded and the chain).  Don't transform a pre-increment
5163  // load, for example, which produces an extra value.  Otherwise the
5164  // transformation is not equivalent, and the downstream logic to replace
5165  // uses gets things wrong.
5166  if (LN0->getNumValues() > 2)
5167    return SDValue();
5168
5169  EVT PtrType = N0.getOperand(1).getValueType();
5170
5171  if (PtrType == MVT::Untyped || PtrType.isExtended())
5172    // It's not possible to generate a constant of extended or untyped type.
5173    return SDValue();
5174
5175  // For big endian targets, we need to adjust the offset to the pointer to
5176  // load the correct bytes.
5177  if (TLI.isBigEndian()) {
5178    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5179    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5180    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5181  }
5182
5183  uint64_t PtrOff = ShAmt / 8;
5184  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5185  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5186                               PtrType, LN0->getBasePtr(),
5187                               DAG.getConstant(PtrOff, PtrType));
5188  AddToWorkList(NewPtr.getNode());
5189
5190  SDValue Load;
5191  if (ExtType == ISD::NON_EXTLOAD)
5192    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5193                        LN0->getPointerInfo().getWithOffset(PtrOff),
5194                        LN0->isVolatile(), LN0->isNonTemporal(),
5195                        LN0->isInvariant(), NewAlign);
5196  else
5197    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5198                          LN0->getPointerInfo().getWithOffset(PtrOff),
5199                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5200                          NewAlign);
5201
5202  // Replace the old load's chain with the new load's chain.
5203  WorkListRemover DeadNodes(*this);
5204  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5205
5206  // Shift the result left, if we've swallowed a left shift.
5207  SDValue Result = Load;
5208  if (ShLeftAmt != 0) {
5209    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5210    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5211      ShImmTy = VT;
5212    // If the shift amount is as large as the result size (but, presumably,
5213    // no larger than the source) then the useful bits of the result are
5214    // zero; we can't simply return the shortened shift, because the result
5215    // of that operation is undefined.
5216    if (ShLeftAmt >= VT.getSizeInBits())
5217      Result = DAG.getConstant(0, VT);
5218    else
5219      Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5220                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5221  }
5222
5223  // Return the new loaded value.
5224  return Result;
5225}
5226
5227SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5228  SDValue N0 = N->getOperand(0);
5229  SDValue N1 = N->getOperand(1);
5230  EVT VT = N->getValueType(0);
5231  EVT EVT = cast<VTSDNode>(N1)->getVT();
5232  unsigned VTBits = VT.getScalarType().getSizeInBits();
5233  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5234
5235  // fold (sext_in_reg c1) -> c1
5236  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5237    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5238
5239  // If the input is already sign extended, just drop the extension.
5240  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5241    return N0;
5242
5243  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5244  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5245      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5246    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5247                       N0.getOperand(0), N1);
5248  }
5249
5250  // fold (sext_in_reg (sext x)) -> (sext x)
5251  // fold (sext_in_reg (aext x)) -> (sext x)
5252  // if x is small enough.
5253  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5254    SDValue N00 = N0.getOperand(0);
5255    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5256        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5257      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5258  }
5259
5260  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5261  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5262    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5263
5264  // fold operands of sext_in_reg based on knowledge that the top bits are not
5265  // demanded.
5266  if (SimplifyDemandedBits(SDValue(N, 0)))
5267    return SDValue(N, 0);
5268
5269  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5270  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5271  SDValue NarrowLoad = ReduceLoadWidth(N);
5272  if (NarrowLoad.getNode())
5273    return NarrowLoad;
5274
5275  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5276  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5277  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5278  if (N0.getOpcode() == ISD::SRL) {
5279    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5280      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5281        // We can turn this into an SRA iff the input to the SRL is already sign
5282        // extended enough.
5283        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5284        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5285          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5286                             N0.getOperand(0), N0.getOperand(1));
5287      }
5288  }
5289
5290  // fold (sext_inreg (extload x)) -> (sextload x)
5291  if (ISD::isEXTLoad(N0.getNode()) &&
5292      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5293      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5294      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5295       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5296    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5297    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5298                                     LN0->getChain(),
5299                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5300                                     EVT,
5301                                     LN0->isVolatile(), LN0->isNonTemporal(),
5302                                     LN0->getAlignment());
5303    CombineTo(N, ExtLoad);
5304    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5305    AddToWorkList(ExtLoad.getNode());
5306    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5307  }
5308  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5309  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5310      N0.hasOneUse() &&
5311      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5312      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5313       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5314    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5315    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5316                                     LN0->getChain(),
5317                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5318                                     EVT,
5319                                     LN0->isVolatile(), LN0->isNonTemporal(),
5320                                     LN0->getAlignment());
5321    CombineTo(N, ExtLoad);
5322    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5323    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5324  }
5325
5326  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5327  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5328    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5329                                       N0.getOperand(1), false);
5330    if (BSwap.getNode() != 0)
5331      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5332                         BSwap, N1);
5333  }
5334
5335  return SDValue();
5336}
5337
5338SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5339  SDValue N0 = N->getOperand(0);
5340  EVT VT = N->getValueType(0);
5341  bool isLE = TLI.isLittleEndian();
5342
5343  // noop truncate
5344  if (N0.getValueType() == N->getValueType(0))
5345    return N0;
5346  // fold (truncate c1) -> c1
5347  if (isa<ConstantSDNode>(N0))
5348    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5349  // fold (truncate (truncate x)) -> (truncate x)
5350  if (N0.getOpcode() == ISD::TRUNCATE)
5351    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5352  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5353  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5354      N0.getOpcode() == ISD::SIGN_EXTEND ||
5355      N0.getOpcode() == ISD::ANY_EXTEND) {
5356    if (N0.getOperand(0).getValueType().bitsLT(VT))
5357      // if the source is smaller than the dest, we still need an extend
5358      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5359                         N0.getOperand(0));
5360    if (N0.getOperand(0).getValueType().bitsGT(VT))
5361      // if the source is larger than the dest, than we just need the truncate
5362      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5363    // if the source and dest are the same type, we can drop both the extend
5364    // and the truncate.
5365    return N0.getOperand(0);
5366  }
5367
5368  // Fold extract-and-trunc into a narrow extract. For example:
5369  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5370  //   i32 y = TRUNCATE(i64 x)
5371  //        -- becomes --
5372  //   v16i8 b = BITCAST (v2i64 val)
5373  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5374  //
5375  // Note: We only run this optimization after type legalization (which often
5376  // creates this pattern) and before operation legalization after which
5377  // we need to be more careful about the vector instructions that we generate.
5378  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5379      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5380
5381    EVT VecTy = N0.getOperand(0).getValueType();
5382    EVT ExTy = N0.getValueType();
5383    EVT TrTy = N->getValueType(0);
5384
5385    unsigned NumElem = VecTy.getVectorNumElements();
5386    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5387
5388    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5389    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5390
5391    SDValue EltNo = N0->getOperand(1);
5392    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5393      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5394      EVT IndexTy = N0->getOperand(1).getValueType();
5395      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5396
5397      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5398                              NVT, N0.getOperand(0));
5399
5400      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5401                         N->getDebugLoc(), TrTy, V,
5402                         DAG.getConstant(Index, IndexTy));
5403    }
5404  }
5405
5406  // Fold a series of buildvector, bitcast, and truncate if possible.
5407  // For example fold
5408  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5409  //   (2xi32 (buildvector x, y)).
5410  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5411      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5412      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5413      N0.getOperand(0).hasOneUse()) {
5414
5415    SDValue BuildVect = N0.getOperand(0);
5416    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5417    EVT TruncVecEltTy = VT.getVectorElementType();
5418
5419    // Check that the element types match.
5420    if (BuildVectEltTy == TruncVecEltTy) {
5421      // Now we only need to compute the offset of the truncated elements.
5422      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5423      unsigned TruncVecNumElts = VT.getVectorNumElements();
5424      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5425
5426      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5427             "Invalid number of elements");
5428
5429      SmallVector<SDValue, 8> Opnds;
5430      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5431        Opnds.push_back(BuildVect.getOperand(i));
5432
5433      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, &Opnds[0],
5434                         Opnds.size());
5435    }
5436  }
5437
5438  // See if we can simplify the input to this truncate through knowledge that
5439  // only the low bits are being used.
5440  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5441  // Currently we only perform this optimization on scalars because vectors
5442  // may have different active low bits.
5443  if (!VT.isVector()) {
5444    SDValue Shorter =
5445      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5446                                               VT.getSizeInBits()));
5447    if (Shorter.getNode())
5448      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5449  }
5450  // fold (truncate (load x)) -> (smaller load x)
5451  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5452  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5453    SDValue Reduced = ReduceLoadWidth(N);
5454    if (Reduced.getNode())
5455      return Reduced;
5456  }
5457  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5458  // where ... are all 'undef'.
5459  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5460    SmallVector<EVT, 8> VTs;
5461    SDValue V;
5462    unsigned Idx = 0;
5463    unsigned NumDefs = 0;
5464
5465    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5466      SDValue X = N0.getOperand(i);
5467      if (X.getOpcode() != ISD::UNDEF) {
5468        V = X;
5469        Idx = i;
5470        NumDefs++;
5471      }
5472      // Stop if more than one members are non-undef.
5473      if (NumDefs > 1)
5474        break;
5475      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5476                                     VT.getVectorElementType(),
5477                                     X.getValueType().getVectorNumElements()));
5478    }
5479
5480    if (NumDefs == 0)
5481      return DAG.getUNDEF(VT);
5482
5483    if (NumDefs == 1) {
5484      assert(V.getNode() && "The single defined operand is empty!");
5485      SmallVector<SDValue, 8> Opnds;
5486      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5487        if (i != Idx) {
5488          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5489          continue;
5490        }
5491        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5492        AddToWorkList(NV.getNode());
5493        Opnds.push_back(NV);
5494      }
5495      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5496                         &Opnds[0], Opnds.size());
5497    }
5498  }
5499
5500  // Simplify the operands using demanded-bits information.
5501  if (!VT.isVector() &&
5502      SimplifyDemandedBits(SDValue(N, 0)))
5503    return SDValue(N, 0);
5504
5505  return SDValue();
5506}
5507
5508static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5509  SDValue Elt = N->getOperand(i);
5510  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5511    return Elt.getNode();
5512  return Elt.getOperand(Elt.getResNo()).getNode();
5513}
5514
5515/// CombineConsecutiveLoads - build_pair (load, load) -> load
5516/// if load locations are consecutive.
5517SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5518  assert(N->getOpcode() == ISD::BUILD_PAIR);
5519
5520  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5521  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5522  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5523      LD1->getPointerInfo().getAddrSpace() !=
5524         LD2->getPointerInfo().getAddrSpace())
5525    return SDValue();
5526  EVT LD1VT = LD1->getValueType(0);
5527
5528  if (ISD::isNON_EXTLoad(LD2) &&
5529      LD2->hasOneUse() &&
5530      // If both are volatile this would reduce the number of volatile loads.
5531      // If one is volatile it might be ok, but play conservative and bail out.
5532      !LD1->isVolatile() &&
5533      !LD2->isVolatile() &&
5534      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5535    unsigned Align = LD1->getAlignment();
5536    unsigned NewAlign = TLI.getDataLayout()->
5537      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5538
5539    if (NewAlign <= Align &&
5540        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5541      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5542                         LD1->getBasePtr(), LD1->getPointerInfo(),
5543                         false, false, false, Align);
5544  }
5545
5546  return SDValue();
5547}
5548
5549SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5550  SDValue N0 = N->getOperand(0);
5551  EVT VT = N->getValueType(0);
5552
5553  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5554  // Only do this before legalize, since afterward the target may be depending
5555  // on the bitconvert.
5556  // First check to see if this is all constant.
5557  if (!LegalTypes &&
5558      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5559      VT.isVector()) {
5560    bool isSimple = true;
5561    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5562      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5563          N0.getOperand(i).getOpcode() != ISD::Constant &&
5564          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5565        isSimple = false;
5566        break;
5567      }
5568
5569    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5570    assert(!DestEltVT.isVector() &&
5571           "Element type of vector ValueType must not be vector!");
5572    if (isSimple)
5573      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5574  }
5575
5576  // If the input is a constant, let getNode fold it.
5577  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5578    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5579    if (Res.getNode() != N) {
5580      if (!LegalOperations ||
5581          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5582        return Res;
5583
5584      // Folding it resulted in an illegal node, and it's too late to
5585      // do that. Clean up the old node and forego the transformation.
5586      // Ideally this won't happen very often, because instcombine
5587      // and the earlier dagcombine runs (where illegal nodes are
5588      // permitted) should have folded most of them already.
5589      DAG.DeleteNode(Res.getNode());
5590    }
5591  }
5592
5593  // (conv (conv x, t1), t2) -> (conv x, t2)
5594  if (N0.getOpcode() == ISD::BITCAST)
5595    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5596                       N0.getOperand(0));
5597
5598  // fold (conv (load x)) -> (load (conv*)x)
5599  // If the resultant load doesn't need a higher alignment than the original!
5600  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5601      // Do not change the width of a volatile load.
5602      !cast<LoadSDNode>(N0)->isVolatile() &&
5603      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5604    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5605    unsigned Align = TLI.getDataLayout()->
5606      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5607    unsigned OrigAlign = LN0->getAlignment();
5608
5609    if (Align <= OrigAlign) {
5610      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5611                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5612                                 LN0->isVolatile(), LN0->isNonTemporal(),
5613                                 LN0->isInvariant(), OrigAlign);
5614      AddToWorkList(N);
5615      CombineTo(N0.getNode(),
5616                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5617                            N0.getValueType(), Load),
5618                Load.getValue(1));
5619      return Load;
5620    }
5621  }
5622
5623  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5624  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5625  // This often reduces constant pool loads.
5626  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5627       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5628      N0.getNode()->hasOneUse() && VT.isInteger() &&
5629      !VT.isVector() && !N0.getValueType().isVector()) {
5630    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5631                                  N0.getOperand(0));
5632    AddToWorkList(NewConv.getNode());
5633
5634    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5635    if (N0.getOpcode() == ISD::FNEG)
5636      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5637                         NewConv, DAG.getConstant(SignBit, VT));
5638    assert(N0.getOpcode() == ISD::FABS);
5639    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5640                       NewConv, DAG.getConstant(~SignBit, VT));
5641  }
5642
5643  // fold (bitconvert (fcopysign cst, x)) ->
5644  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5645  // Note that we don't handle (copysign x, cst) because this can always be
5646  // folded to an fneg or fabs.
5647  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5648      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5649      VT.isInteger() && !VT.isVector()) {
5650    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5651    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5652    if (isTypeLegal(IntXVT)) {
5653      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5654                              IntXVT, N0.getOperand(1));
5655      AddToWorkList(X.getNode());
5656
5657      // If X has a different width than the result/lhs, sext it or truncate it.
5658      unsigned VTWidth = VT.getSizeInBits();
5659      if (OrigXWidth < VTWidth) {
5660        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5661        AddToWorkList(X.getNode());
5662      } else if (OrigXWidth > VTWidth) {
5663        // To get the sign bit in the right place, we have to shift it right
5664        // before truncating.
5665        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5666                        X.getValueType(), X,
5667                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5668        AddToWorkList(X.getNode());
5669        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5670        AddToWorkList(X.getNode());
5671      }
5672
5673      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5674      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5675                      X, DAG.getConstant(SignBit, VT));
5676      AddToWorkList(X.getNode());
5677
5678      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5679                                VT, N0.getOperand(0));
5680      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5681                        Cst, DAG.getConstant(~SignBit, VT));
5682      AddToWorkList(Cst.getNode());
5683
5684      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5685    }
5686  }
5687
5688  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5689  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5690    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5691    if (CombineLD.getNode())
5692      return CombineLD;
5693  }
5694
5695  return SDValue();
5696}
5697
5698SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5699  EVT VT = N->getValueType(0);
5700  return CombineConsecutiveLoads(N, VT);
5701}
5702
5703/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5704/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5705/// destination element value type.
5706SDValue DAGCombiner::
5707ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5708  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5709
5710  // If this is already the right type, we're done.
5711  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5712
5713  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5714  unsigned DstBitSize = DstEltVT.getSizeInBits();
5715
5716  // If this is a conversion of N elements of one type to N elements of another
5717  // type, convert each element.  This handles FP<->INT cases.
5718  if (SrcBitSize == DstBitSize) {
5719    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5720                              BV->getValueType(0).getVectorNumElements());
5721
5722    // Due to the FP element handling below calling this routine recursively,
5723    // we can end up with a scalar-to-vector node here.
5724    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5725      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5726                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5727                                     DstEltVT, BV->getOperand(0)));
5728
5729    SmallVector<SDValue, 8> Ops;
5730    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5731      SDValue Op = BV->getOperand(i);
5732      // If the vector element type is not legal, the BUILD_VECTOR operands
5733      // are promoted and implicitly truncated.  Make that explicit here.
5734      if (Op.getValueType() != SrcEltVT)
5735        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5736      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5737                                DstEltVT, Op));
5738      AddToWorkList(Ops.back().getNode());
5739    }
5740    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5741                       &Ops[0], Ops.size());
5742  }
5743
5744  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5745  // handle annoying details of growing/shrinking FP values, we convert them to
5746  // int first.
5747  if (SrcEltVT.isFloatingPoint()) {
5748    // Convert the input float vector to a int vector where the elements are the
5749    // same sizes.
5750    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5751    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5752    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5753    SrcEltVT = IntVT;
5754  }
5755
5756  // Now we know the input is an integer vector.  If the output is a FP type,
5757  // convert to integer first, then to FP of the right size.
5758  if (DstEltVT.isFloatingPoint()) {
5759    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5760    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5761    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5762
5763    // Next, convert to FP elements of the same size.
5764    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5765  }
5766
5767  // Okay, we know the src/dst types are both integers of differing types.
5768  // Handling growing first.
5769  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5770  if (SrcBitSize < DstBitSize) {
5771    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5772
5773    SmallVector<SDValue, 8> Ops;
5774    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5775         i += NumInputsPerOutput) {
5776      bool isLE = TLI.isLittleEndian();
5777      APInt NewBits = APInt(DstBitSize, 0);
5778      bool EltIsUndef = true;
5779      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5780        // Shift the previously computed bits over.
5781        NewBits <<= SrcBitSize;
5782        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5783        if (Op.getOpcode() == ISD::UNDEF) continue;
5784        EltIsUndef = false;
5785
5786        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5787                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5788      }
5789
5790      if (EltIsUndef)
5791        Ops.push_back(DAG.getUNDEF(DstEltVT));
5792      else
5793        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5794    }
5795
5796    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5797    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5798                       &Ops[0], Ops.size());
5799  }
5800
5801  // Finally, this must be the case where we are shrinking elements: each input
5802  // turns into multiple outputs.
5803  bool isS2V = ISD::isScalarToVector(BV);
5804  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5805  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5806                            NumOutputsPerInput*BV->getNumOperands());
5807  SmallVector<SDValue, 8> Ops;
5808
5809  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5810    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5811      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5812        Ops.push_back(DAG.getUNDEF(DstEltVT));
5813      continue;
5814    }
5815
5816    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5817                  getAPIntValue().zextOrTrunc(SrcBitSize);
5818
5819    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5820      APInt ThisVal = OpVal.trunc(DstBitSize);
5821      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5822      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5823        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5824        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5825                           Ops[0]);
5826      OpVal = OpVal.lshr(DstBitSize);
5827    }
5828
5829    // For big endian targets, swap the order of the pieces of each element.
5830    if (TLI.isBigEndian())
5831      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5832  }
5833
5834  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5835                     &Ops[0], Ops.size());
5836}
5837
5838SDValue DAGCombiner::visitFADD(SDNode *N) {
5839  SDValue N0 = N->getOperand(0);
5840  SDValue N1 = N->getOperand(1);
5841  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5842  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5843  EVT VT = N->getValueType(0);
5844
5845  // fold vector ops
5846  if (VT.isVector()) {
5847    SDValue FoldedVOp = SimplifyVBinOp(N);
5848    if (FoldedVOp.getNode()) return FoldedVOp;
5849  }
5850
5851  // fold (fadd c1, c2) -> c1 + c2
5852  if (N0CFP && N1CFP)
5853    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5854  // canonicalize constant to RHS
5855  if (N0CFP && !N1CFP)
5856    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5857  // fold (fadd A, 0) -> A
5858  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5859      N1CFP->getValueAPF().isZero())
5860    return N0;
5861  // fold (fadd A, (fneg B)) -> (fsub A, B)
5862  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5863    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5864    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5865                       GetNegatedExpression(N1, DAG, LegalOperations));
5866  // fold (fadd (fneg A), B) -> (fsub B, A)
5867  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5868    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5869    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5870                       GetNegatedExpression(N0, DAG, LegalOperations));
5871
5872  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5873  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5874      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5875      isa<ConstantFPSDNode>(N0.getOperand(1)))
5876    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5877                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5878                                   N0.getOperand(1), N1));
5879
5880  // No FP constant should be created after legalization as Instruction
5881  // Selection pass has hard time in dealing with FP constant.
5882  //
5883  // We don't need test this condition for transformation like following, as
5884  // the DAG being transformed implies it is legal to take FP constant as
5885  // operand.
5886  //
5887  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
5888  //
5889  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
5890
5891  // If allow, fold (fadd (fneg x), x) -> 0.0
5892  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5893      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5894    return DAG.getConstantFP(0.0, VT);
5895  }
5896
5897    // If allow, fold (fadd x, (fneg x)) -> 0.0
5898  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
5899      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5900    return DAG.getConstantFP(0.0, VT);
5901  }
5902
5903  // In unsafe math mode, we can fold chains of FADD's of the same value
5904  // into multiplications.  This transform is not safe in general because
5905  // we are reducing the number of rounding steps.
5906  if (DAG.getTarget().Options.UnsafeFPMath &&
5907      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5908      !N0CFP && !N1CFP) {
5909    if (N0.getOpcode() == ISD::FMUL) {
5910      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5911      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5912
5913      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5914      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5915        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5916                                     SDValue(CFP00, 0),
5917                                     DAG.getConstantFP(1.0, VT));
5918        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5919                           N1, NewCFP);
5920      }
5921
5922      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5923      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5924        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5925                                     SDValue(CFP01, 0),
5926                                     DAG.getConstantFP(1.0, VT));
5927        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5928                           N1, NewCFP);
5929      }
5930
5931      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5932      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5933          N1.getOperand(0) == N1.getOperand(1) &&
5934          N0.getOperand(1) == N1.getOperand(0)) {
5935        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5936                                     SDValue(CFP00, 0),
5937                                     DAG.getConstantFP(2.0, VT));
5938        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5939                           N0.getOperand(1), NewCFP);
5940      }
5941
5942      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5943      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5944          N1.getOperand(0) == N1.getOperand(1) &&
5945          N0.getOperand(0) == N1.getOperand(0)) {
5946        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5947                                     SDValue(CFP01, 0),
5948                                     DAG.getConstantFP(2.0, VT));
5949        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5950                           N0.getOperand(0), NewCFP);
5951      }
5952    }
5953
5954    if (N1.getOpcode() == ISD::FMUL) {
5955      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5956      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5957
5958      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5959      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5960        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5961                                     SDValue(CFP10, 0),
5962                                     DAG.getConstantFP(1.0, VT));
5963        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5964                           N0, NewCFP);
5965      }
5966
5967      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5968      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5969        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5970                                     SDValue(CFP11, 0),
5971                                     DAG.getConstantFP(1.0, VT));
5972        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5973                           N0, NewCFP);
5974      }
5975
5976
5977      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5978      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5979          N1.getOperand(0) == N1.getOperand(1) &&
5980          N0.getOperand(1) == N1.getOperand(0)) {
5981        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5982                                     SDValue(CFP10, 0),
5983                                     DAG.getConstantFP(2.0, VT));
5984        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5985                           N0.getOperand(1), NewCFP);
5986      }
5987
5988      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5989      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5990          N1.getOperand(0) == N1.getOperand(1) &&
5991          N0.getOperand(0) == N1.getOperand(0)) {
5992        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5993                                     SDValue(CFP11, 0),
5994                                     DAG.getConstantFP(2.0, VT));
5995        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5996                           N0.getOperand(0), NewCFP);
5997      }
5998    }
5999
6000    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6001      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6002      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
6003      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6004          (N0.getOperand(0) == N1)) {
6005        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6006                           N1, DAG.getConstantFP(3.0, VT));
6007      }
6008    }
6009
6010    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6011      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6012      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
6013      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6014          N1.getOperand(0) == N0) {
6015        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6016                           N0, DAG.getConstantFP(3.0, VT));
6017      }
6018    }
6019
6020    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
6021    if (AllowNewFpConst &&
6022        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6023        N0.getOperand(0) == N0.getOperand(1) &&
6024        N1.getOperand(0) == N1.getOperand(1) &&
6025        N0.getOperand(0) == N1.getOperand(0)) {
6026      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6027                         N0.getOperand(0),
6028                         DAG.getConstantFP(4.0, VT));
6029    }
6030  }
6031
6032  // FADD -> FMA combines:
6033  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6034       DAG.getTarget().Options.UnsafeFPMath) &&
6035      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6036      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6037
6038    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6039    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6040      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
6041                         N0.getOperand(0), N0.getOperand(1), N1);
6042    }
6043
6044    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6045    // Note: Commutes FADD operands.
6046    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6047      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
6048                         N1.getOperand(0), N1.getOperand(1), N0);
6049    }
6050  }
6051
6052  return SDValue();
6053}
6054
6055SDValue DAGCombiner::visitFSUB(SDNode *N) {
6056  SDValue N0 = N->getOperand(0);
6057  SDValue N1 = N->getOperand(1);
6058  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6059  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6060  EVT VT = N->getValueType(0);
6061  DebugLoc dl = N->getDebugLoc();
6062
6063  // fold vector ops
6064  if (VT.isVector()) {
6065    SDValue FoldedVOp = SimplifyVBinOp(N);
6066    if (FoldedVOp.getNode()) return FoldedVOp;
6067  }
6068
6069  // fold (fsub c1, c2) -> c1-c2
6070  if (N0CFP && N1CFP)
6071    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
6072  // fold (fsub A, 0) -> A
6073  if (DAG.getTarget().Options.UnsafeFPMath &&
6074      N1CFP && N1CFP->getValueAPF().isZero())
6075    return N0;
6076  // fold (fsub 0, B) -> -B
6077  if (DAG.getTarget().Options.UnsafeFPMath &&
6078      N0CFP && N0CFP->getValueAPF().isZero()) {
6079    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6080      return GetNegatedExpression(N1, DAG, LegalOperations);
6081    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6082      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6083  }
6084  // fold (fsub A, (fneg B)) -> (fadd A, B)
6085  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6086    return DAG.getNode(ISD::FADD, dl, VT, N0,
6087                       GetNegatedExpression(N1, DAG, LegalOperations));
6088
6089  // If 'unsafe math' is enabled, fold
6090  //    (fsub x, x) -> 0.0 &
6091  //    (fsub x, (fadd x, y)) -> (fneg y) &
6092  //    (fsub x, (fadd y, x)) -> (fneg y)
6093  if (DAG.getTarget().Options.UnsafeFPMath) {
6094    if (N0 == N1)
6095      return DAG.getConstantFP(0.0f, VT);
6096
6097    if (N1.getOpcode() == ISD::FADD) {
6098      SDValue N10 = N1->getOperand(0);
6099      SDValue N11 = N1->getOperand(1);
6100
6101      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6102                                          &DAG.getTarget().Options))
6103        return GetNegatedExpression(N11, DAG, LegalOperations);
6104      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6105                                               &DAG.getTarget().Options))
6106        return GetNegatedExpression(N10, DAG, LegalOperations);
6107    }
6108  }
6109
6110  // FSUB -> FMA combines:
6111  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6112       DAG.getTarget().Options.UnsafeFPMath) &&
6113      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6114      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6115
6116    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6117    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6118      return DAG.getNode(ISD::FMA, dl, VT,
6119                         N0.getOperand(0), N0.getOperand(1),
6120                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6121    }
6122
6123    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6124    // Note: Commutes FSUB operands.
6125    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6126      return DAG.getNode(ISD::FMA, dl, VT,
6127                         DAG.getNode(ISD::FNEG, dl, VT,
6128                         N1.getOperand(0)),
6129                         N1.getOperand(1), N0);
6130    }
6131
6132    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6133    if (N0.getOpcode() == ISD::FNEG &&
6134        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6135        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6136      SDValue N00 = N0.getOperand(0).getOperand(0);
6137      SDValue N01 = N0.getOperand(0).getOperand(1);
6138      return DAG.getNode(ISD::FMA, dl, VT,
6139                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6140                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6141    }
6142  }
6143
6144  return SDValue();
6145}
6146
6147SDValue DAGCombiner::visitFMUL(SDNode *N) {
6148  SDValue N0 = N->getOperand(0);
6149  SDValue N1 = N->getOperand(1);
6150  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6151  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6152  EVT VT = N->getValueType(0);
6153  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6154
6155  // fold vector ops
6156  if (VT.isVector()) {
6157    SDValue FoldedVOp = SimplifyVBinOp(N);
6158    if (FoldedVOp.getNode()) return FoldedVOp;
6159  }
6160
6161  // fold (fmul c1, c2) -> c1*c2
6162  if (N0CFP && N1CFP)
6163    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6164  // canonicalize constant to RHS
6165  if (N0CFP && !N1CFP)
6166    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6167  // fold (fmul A, 0) -> 0
6168  if (DAG.getTarget().Options.UnsafeFPMath &&
6169      N1CFP && N1CFP->getValueAPF().isZero())
6170    return N1;
6171  // fold (fmul A, 0) -> 0, vector edition.
6172  if (DAG.getTarget().Options.UnsafeFPMath &&
6173      ISD::isBuildVectorAllZeros(N1.getNode()))
6174    return N1;
6175  // fold (fmul A, 1.0) -> A
6176  if (N1CFP && N1CFP->isExactlyValue(1.0))
6177    return N0;
6178  // fold (fmul X, 2.0) -> (fadd X, X)
6179  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6180    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6181  // fold (fmul X, -1.0) -> (fneg X)
6182  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6183    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6184      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6185
6186  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6187  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6188                                       &DAG.getTarget().Options)) {
6189    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6190                                         &DAG.getTarget().Options)) {
6191      // Both can be negated for free, check to see if at least one is cheaper
6192      // negated.
6193      if (LHSNeg == 2 || RHSNeg == 2)
6194        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6195                           GetNegatedExpression(N0, DAG, LegalOperations),
6196                           GetNegatedExpression(N1, DAG, LegalOperations));
6197    }
6198  }
6199
6200  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6201  if (DAG.getTarget().Options.UnsafeFPMath &&
6202      N1CFP && N0.getOpcode() == ISD::FMUL &&
6203      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6204    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6205                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6206                                   N0.getOperand(1), N1));
6207
6208  return SDValue();
6209}
6210
6211SDValue DAGCombiner::visitFMA(SDNode *N) {
6212  SDValue N0 = N->getOperand(0);
6213  SDValue N1 = N->getOperand(1);
6214  SDValue N2 = N->getOperand(2);
6215  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6216  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6217  EVT VT = N->getValueType(0);
6218  DebugLoc dl = N->getDebugLoc();
6219
6220  if (DAG.getTarget().Options.UnsafeFPMath) {
6221    if (N0CFP && N0CFP->isZero())
6222      return N2;
6223    if (N1CFP && N1CFP->isZero())
6224      return N2;
6225  }
6226  if (N0CFP && N0CFP->isExactlyValue(1.0))
6227    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6228  if (N1CFP && N1CFP->isExactlyValue(1.0))
6229    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6230
6231  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6232  if (N0CFP && !N1CFP)
6233    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6234
6235  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6236  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6237      N2.getOpcode() == ISD::FMUL &&
6238      N0 == N2.getOperand(0) &&
6239      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6240    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6241                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6242  }
6243
6244
6245  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6246  if (DAG.getTarget().Options.UnsafeFPMath &&
6247      N0.getOpcode() == ISD::FMUL && N1CFP &&
6248      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6249    return DAG.getNode(ISD::FMA, dl, VT,
6250                       N0.getOperand(0),
6251                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6252                       N2);
6253  }
6254
6255  // (fma x, 1, y) -> (fadd x, y)
6256  // (fma x, -1, y) -> (fadd (fneg x), y)
6257  if (N1CFP) {
6258    if (N1CFP->isExactlyValue(1.0))
6259      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6260
6261    if (N1CFP->isExactlyValue(-1.0) &&
6262        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6263      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6264      AddToWorkList(RHSNeg.getNode());
6265      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6266    }
6267  }
6268
6269  // (fma x, c, x) -> (fmul x, (c+1))
6270  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6271    return DAG.getNode(ISD::FMUL, dl, VT,
6272                       N0,
6273                       DAG.getNode(ISD::FADD, dl, VT,
6274                                   N1, DAG.getConstantFP(1.0, VT)));
6275  }
6276
6277  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6278  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6279      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6280    return DAG.getNode(ISD::FMUL, dl, VT,
6281                       N0,
6282                       DAG.getNode(ISD::FADD, dl, VT,
6283                                   N1, DAG.getConstantFP(-1.0, VT)));
6284  }
6285
6286
6287  return SDValue();
6288}
6289
6290SDValue DAGCombiner::visitFDIV(SDNode *N) {
6291  SDValue N0 = N->getOperand(0);
6292  SDValue N1 = N->getOperand(1);
6293  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6294  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6295  EVT VT = N->getValueType(0);
6296  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6297
6298  // fold vector ops
6299  if (VT.isVector()) {
6300    SDValue FoldedVOp = SimplifyVBinOp(N);
6301    if (FoldedVOp.getNode()) return FoldedVOp;
6302  }
6303
6304  // fold (fdiv c1, c2) -> c1/c2
6305  if (N0CFP && N1CFP)
6306    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6307
6308  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6309  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6310    // Compute the reciprocal 1.0 / c2.
6311    APFloat N1APF = N1CFP->getValueAPF();
6312    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6313    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6314    // Only do the transform if the reciprocal is a legal fp immediate that
6315    // isn't too nasty (eg NaN, denormal, ...).
6316    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6317        (!LegalOperations ||
6318         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6319         // backend)... we should handle this gracefully after Legalize.
6320         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6321         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6322         TLI.isFPImmLegal(Recip, VT)))
6323      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6324                         DAG.getConstantFP(Recip, VT));
6325  }
6326
6327  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6328  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6329                                       &DAG.getTarget().Options)) {
6330    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6331                                         &DAG.getTarget().Options)) {
6332      // Both can be negated for free, check to see if at least one is cheaper
6333      // negated.
6334      if (LHSNeg == 2 || RHSNeg == 2)
6335        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6336                           GetNegatedExpression(N0, DAG, LegalOperations),
6337                           GetNegatedExpression(N1, DAG, LegalOperations));
6338    }
6339  }
6340
6341  return SDValue();
6342}
6343
6344SDValue DAGCombiner::visitFREM(SDNode *N) {
6345  SDValue N0 = N->getOperand(0);
6346  SDValue N1 = N->getOperand(1);
6347  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6348  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6349  EVT VT = N->getValueType(0);
6350
6351  // fold (frem c1, c2) -> fmod(c1,c2)
6352  if (N0CFP && N1CFP)
6353    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6354
6355  return SDValue();
6356}
6357
6358SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6359  SDValue N0 = N->getOperand(0);
6360  SDValue N1 = N->getOperand(1);
6361  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6362  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6363  EVT VT = N->getValueType(0);
6364
6365  if (N0CFP && N1CFP)  // Constant fold
6366    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6367
6368  if (N1CFP) {
6369    const APFloat& V = N1CFP->getValueAPF();
6370    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6371    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6372    if (!V.isNegative()) {
6373      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6374        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6375    } else {
6376      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6377        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6378                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6379    }
6380  }
6381
6382  // copysign(fabs(x), y) -> copysign(x, y)
6383  // copysign(fneg(x), y) -> copysign(x, y)
6384  // copysign(copysign(x,z), y) -> copysign(x, y)
6385  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6386      N0.getOpcode() == ISD::FCOPYSIGN)
6387    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6388                       N0.getOperand(0), N1);
6389
6390  // copysign(x, abs(y)) -> abs(x)
6391  if (N1.getOpcode() == ISD::FABS)
6392    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6393
6394  // copysign(x, copysign(y,z)) -> copysign(x, z)
6395  if (N1.getOpcode() == ISD::FCOPYSIGN)
6396    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6397                       N0, N1.getOperand(1));
6398
6399  // copysign(x, fp_extend(y)) -> copysign(x, y)
6400  // copysign(x, fp_round(y)) -> copysign(x, y)
6401  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6402    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6403                       N0, N1.getOperand(0));
6404
6405  return SDValue();
6406}
6407
6408SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6409  SDValue N0 = N->getOperand(0);
6410  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6411  EVT VT = N->getValueType(0);
6412  EVT OpVT = N0.getValueType();
6413
6414  // fold (sint_to_fp c1) -> c1fp
6415  if (N0C &&
6416      // ...but only if the target supports immediate floating-point values
6417      (!LegalOperations ||
6418       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6419    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6420
6421  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6422  // but UINT_TO_FP is legal on this target, try to convert.
6423  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6424      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6425    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6426    if (DAG.SignBitIsZero(N0))
6427      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6428  }
6429
6430  // The next optimizations are desireable only if SELECT_CC can be lowered.
6431  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6432  // having to say they don't support SELECT_CC on every type the DAG knows
6433  // about, since there is no way to mark an opcode illegal at all value types
6434  // (See also visitSELECT)
6435  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6436    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6437    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6438        !VT.isVector() &&
6439        (!LegalOperations ||
6440         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6441      SDValue Ops[] =
6442        { N0.getOperand(0), N0.getOperand(1),
6443          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6444          N0.getOperand(2) };
6445      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6446    }
6447
6448    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6449    //      (select_cc x, y, 1.0, 0.0,, cc)
6450    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6451        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6452        (!LegalOperations ||
6453         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6454      SDValue Ops[] =
6455        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6456          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6457          N0.getOperand(0).getOperand(2) };
6458      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6459    }
6460  }
6461
6462  return SDValue();
6463}
6464
6465SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6466  SDValue N0 = N->getOperand(0);
6467  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6468  EVT VT = N->getValueType(0);
6469  EVT OpVT = N0.getValueType();
6470
6471  // fold (uint_to_fp c1) -> c1fp
6472  if (N0C &&
6473      // ...but only if the target supports immediate floating-point values
6474      (!LegalOperations ||
6475       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6476    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6477
6478  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6479  // but SINT_TO_FP is legal on this target, try to convert.
6480  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6481      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6482    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6483    if (DAG.SignBitIsZero(N0))
6484      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6485  }
6486
6487  // The next optimizations are desireable only if SELECT_CC can be lowered.
6488  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6489  // having to say they don't support SELECT_CC on every type the DAG knows
6490  // about, since there is no way to mark an opcode illegal at all value types
6491  // (See also visitSELECT)
6492  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6493    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6494
6495    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6496        (!LegalOperations ||
6497         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6498      SDValue Ops[] =
6499        { N0.getOperand(0), N0.getOperand(1),
6500          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6501          N0.getOperand(2) };
6502      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6503    }
6504  }
6505
6506  return SDValue();
6507}
6508
6509SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6510  SDValue N0 = N->getOperand(0);
6511  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6512  EVT VT = N->getValueType(0);
6513
6514  // fold (fp_to_sint c1fp) -> c1
6515  if (N0CFP)
6516    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6517
6518  return SDValue();
6519}
6520
6521SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6522  SDValue N0 = N->getOperand(0);
6523  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6524  EVT VT = N->getValueType(0);
6525
6526  // fold (fp_to_uint c1fp) -> c1
6527  if (N0CFP)
6528    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6529
6530  return SDValue();
6531}
6532
6533SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6534  SDValue N0 = N->getOperand(0);
6535  SDValue N1 = N->getOperand(1);
6536  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6537  EVT VT = N->getValueType(0);
6538
6539  // fold (fp_round c1fp) -> c1fp
6540  if (N0CFP)
6541    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6542
6543  // fold (fp_round (fp_extend x)) -> x
6544  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6545    return N0.getOperand(0);
6546
6547  // fold (fp_round (fp_round x)) -> (fp_round x)
6548  if (N0.getOpcode() == ISD::FP_ROUND) {
6549    // This is a value preserving truncation if both round's are.
6550    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6551                   N0.getNode()->getConstantOperandVal(1) == 1;
6552    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6553                       DAG.getIntPtrConstant(IsTrunc));
6554  }
6555
6556  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6557  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6558    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6559                              N0.getOperand(0), N1);
6560    AddToWorkList(Tmp.getNode());
6561    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6562                       Tmp, N0.getOperand(1));
6563  }
6564
6565  return SDValue();
6566}
6567
6568SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6569  SDValue N0 = N->getOperand(0);
6570  EVT VT = N->getValueType(0);
6571  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6572  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6573
6574  // fold (fp_round_inreg c1fp) -> c1fp
6575  if (N0CFP && isTypeLegal(EVT)) {
6576    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6577    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6578  }
6579
6580  return SDValue();
6581}
6582
6583SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6584  SDValue N0 = N->getOperand(0);
6585  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6586  EVT VT = N->getValueType(0);
6587
6588  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6589  if (N->hasOneUse() &&
6590      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6591    return SDValue();
6592
6593  // fold (fp_extend c1fp) -> c1fp
6594  if (N0CFP)
6595    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6596
6597  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6598  // value of X.
6599  if (N0.getOpcode() == ISD::FP_ROUND
6600      && N0.getNode()->getConstantOperandVal(1) == 1) {
6601    SDValue In = N0.getOperand(0);
6602    if (In.getValueType() == VT) return In;
6603    if (VT.bitsLT(In.getValueType()))
6604      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6605                         In, N0.getOperand(1));
6606    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6607  }
6608
6609  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6610  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6611      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6612       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6613    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6614    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6615                                     LN0->getChain(),
6616                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6617                                     N0.getValueType(),
6618                                     LN0->isVolatile(), LN0->isNonTemporal(),
6619                                     LN0->getAlignment());
6620    CombineTo(N, ExtLoad);
6621    CombineTo(N0.getNode(),
6622              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6623                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6624              ExtLoad.getValue(1));
6625    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6626  }
6627
6628  return SDValue();
6629}
6630
6631SDValue DAGCombiner::visitFNEG(SDNode *N) {
6632  SDValue N0 = N->getOperand(0);
6633  EVT VT = N->getValueType(0);
6634
6635  if (VT.isVector()) {
6636    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6637    if (FoldedVOp.getNode()) return FoldedVOp;
6638  }
6639
6640  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6641                         &DAG.getTarget().Options))
6642    return GetNegatedExpression(N0, DAG, LegalOperations);
6643
6644  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6645  // constant pool values.
6646  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6647      !VT.isVector() &&
6648      N0.getNode()->hasOneUse() &&
6649      N0.getOperand(0).getValueType().isInteger()) {
6650    SDValue Int = N0.getOperand(0);
6651    EVT IntVT = Int.getValueType();
6652    if (IntVT.isInteger() && !IntVT.isVector()) {
6653      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6654              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6655      AddToWorkList(Int.getNode());
6656      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6657                         VT, Int);
6658    }
6659  }
6660
6661  // (fneg (fmul c, x)) -> (fmul -c, x)
6662  if (N0.getOpcode() == ISD::FMUL) {
6663    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6664    if (CFP1) {
6665      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6666                         N0.getOperand(0),
6667                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6668                                     N0.getOperand(1)));
6669    }
6670  }
6671
6672  return SDValue();
6673}
6674
6675SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6676  SDValue N0 = N->getOperand(0);
6677  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6678  EVT VT = N->getValueType(0);
6679
6680  // fold (fceil c1) -> fceil(c1)
6681  if (N0CFP)
6682    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6683
6684  return SDValue();
6685}
6686
6687SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6688  SDValue N0 = N->getOperand(0);
6689  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6690  EVT VT = N->getValueType(0);
6691
6692  // fold (ftrunc c1) -> ftrunc(c1)
6693  if (N0CFP)
6694    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6695
6696  return SDValue();
6697}
6698
6699SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6700  SDValue N0 = N->getOperand(0);
6701  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6702  EVT VT = N->getValueType(0);
6703
6704  // fold (ffloor c1) -> ffloor(c1)
6705  if (N0CFP)
6706    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6707
6708  return SDValue();
6709}
6710
6711SDValue DAGCombiner::visitFABS(SDNode *N) {
6712  SDValue N0 = N->getOperand(0);
6713  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6714  EVT VT = N->getValueType(0);
6715
6716  if (VT.isVector()) {
6717    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6718    if (FoldedVOp.getNode()) return FoldedVOp;
6719  }
6720
6721  // fold (fabs c1) -> fabs(c1)
6722  if (N0CFP)
6723    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6724  // fold (fabs (fabs x)) -> (fabs x)
6725  if (N0.getOpcode() == ISD::FABS)
6726    return N->getOperand(0);
6727  // fold (fabs (fneg x)) -> (fabs x)
6728  // fold (fabs (fcopysign x, y)) -> (fabs x)
6729  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6730    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6731
6732  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6733  // constant pool values.
6734  if (!TLI.isFAbsFree(VT) &&
6735      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6736      N0.getOperand(0).getValueType().isInteger() &&
6737      !N0.getOperand(0).getValueType().isVector()) {
6738    SDValue Int = N0.getOperand(0);
6739    EVT IntVT = Int.getValueType();
6740    if (IntVT.isInteger() && !IntVT.isVector()) {
6741      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6742             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6743      AddToWorkList(Int.getNode());
6744      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6745                         N->getValueType(0), Int);
6746    }
6747  }
6748
6749  return SDValue();
6750}
6751
6752SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6753  SDValue Chain = N->getOperand(0);
6754  SDValue N1 = N->getOperand(1);
6755  SDValue N2 = N->getOperand(2);
6756
6757  // If N is a constant we could fold this into a fallthrough or unconditional
6758  // branch. However that doesn't happen very often in normal code, because
6759  // Instcombine/SimplifyCFG should have handled the available opportunities.
6760  // If we did this folding here, it would be necessary to update the
6761  // MachineBasicBlock CFG, which is awkward.
6762
6763  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6764  // on the target.
6765  if (N1.getOpcode() == ISD::SETCC &&
6766      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6767                                   N1.getOperand(0).getValueType())) {
6768    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6769                       Chain, N1.getOperand(2),
6770                       N1.getOperand(0), N1.getOperand(1), N2);
6771  }
6772
6773  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6774      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6775       (N1.getOperand(0).hasOneUse() &&
6776        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6777    SDNode *Trunc = 0;
6778    if (N1.getOpcode() == ISD::TRUNCATE) {
6779      // Look pass the truncate.
6780      Trunc = N1.getNode();
6781      N1 = N1.getOperand(0);
6782    }
6783
6784    // Match this pattern so that we can generate simpler code:
6785    //
6786    //   %a = ...
6787    //   %b = and i32 %a, 2
6788    //   %c = srl i32 %b, 1
6789    //   brcond i32 %c ...
6790    //
6791    // into
6792    //
6793    //   %a = ...
6794    //   %b = and i32 %a, 2
6795    //   %c = setcc eq %b, 0
6796    //   brcond %c ...
6797    //
6798    // This applies only when the AND constant value has one bit set and the
6799    // SRL constant is equal to the log2 of the AND constant. The back-end is
6800    // smart enough to convert the result into a TEST/JMP sequence.
6801    SDValue Op0 = N1.getOperand(0);
6802    SDValue Op1 = N1.getOperand(1);
6803
6804    if (Op0.getOpcode() == ISD::AND &&
6805        Op1.getOpcode() == ISD::Constant) {
6806      SDValue AndOp1 = Op0.getOperand(1);
6807
6808      if (AndOp1.getOpcode() == ISD::Constant) {
6809        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6810
6811        if (AndConst.isPowerOf2() &&
6812            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6813          SDValue SetCC =
6814            DAG.getSetCC(N->getDebugLoc(),
6815                         TLI.getSetCCResultType(Op0.getValueType()),
6816                         Op0, DAG.getConstant(0, Op0.getValueType()),
6817                         ISD::SETNE);
6818
6819          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6820                                          MVT::Other, Chain, SetCC, N2);
6821          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6822          // will convert it back to (X & C1) >> C2.
6823          CombineTo(N, NewBRCond, false);
6824          // Truncate is dead.
6825          if (Trunc) {
6826            removeFromWorkList(Trunc);
6827            DAG.DeleteNode(Trunc);
6828          }
6829          // Replace the uses of SRL with SETCC
6830          WorkListRemover DeadNodes(*this);
6831          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6832          removeFromWorkList(N1.getNode());
6833          DAG.DeleteNode(N1.getNode());
6834          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6835        }
6836      }
6837    }
6838
6839    if (Trunc)
6840      // Restore N1 if the above transformation doesn't match.
6841      N1 = N->getOperand(1);
6842  }
6843
6844  // Transform br(xor(x, y)) -> br(x != y)
6845  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6846  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6847    SDNode *TheXor = N1.getNode();
6848    SDValue Op0 = TheXor->getOperand(0);
6849    SDValue Op1 = TheXor->getOperand(1);
6850    if (Op0.getOpcode() == Op1.getOpcode()) {
6851      // Avoid missing important xor optimizations.
6852      SDValue Tmp = visitXOR(TheXor);
6853      if (Tmp.getNode()) {
6854        if (Tmp.getNode() != TheXor) {
6855          DEBUG(dbgs() << "\nReplacing.8 ";
6856                TheXor->dump(&DAG);
6857                dbgs() << "\nWith: ";
6858                Tmp.getNode()->dump(&DAG);
6859                dbgs() << '\n');
6860          WorkListRemover DeadNodes(*this);
6861          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6862          removeFromWorkList(TheXor);
6863          DAG.DeleteNode(TheXor);
6864          return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6865                             MVT::Other, Chain, Tmp, N2);
6866        }
6867
6868        // visitXOR has changed XOR's operands or replaced the XOR completely,
6869        // bail out.
6870        return SDValue(N, 0);
6871      }
6872    }
6873
6874    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6875      bool Equal = false;
6876      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6877        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6878            Op0.getOpcode() == ISD::XOR) {
6879          TheXor = Op0.getNode();
6880          Equal = true;
6881        }
6882
6883      EVT SetCCVT = N1.getValueType();
6884      if (LegalTypes)
6885        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6886      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6887                                   SetCCVT,
6888                                   Op0, Op1,
6889                                   Equal ? ISD::SETEQ : ISD::SETNE);
6890      // Replace the uses of XOR with SETCC
6891      WorkListRemover DeadNodes(*this);
6892      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6893      removeFromWorkList(N1.getNode());
6894      DAG.DeleteNode(N1.getNode());
6895      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6896                         MVT::Other, Chain, SetCC, N2);
6897    }
6898  }
6899
6900  return SDValue();
6901}
6902
6903// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6904//
6905SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6906  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6907  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6908
6909  // If N is a constant we could fold this into a fallthrough or unconditional
6910  // branch. However that doesn't happen very often in normal code, because
6911  // Instcombine/SimplifyCFG should have handled the available opportunities.
6912  // If we did this folding here, it would be necessary to update the
6913  // MachineBasicBlock CFG, which is awkward.
6914
6915  // Use SimplifySetCC to simplify SETCC's.
6916  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6917                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6918                               false);
6919  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6920
6921  // fold to a simpler setcc
6922  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6923    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6924                       N->getOperand(0), Simp.getOperand(2),
6925                       Simp.getOperand(0), Simp.getOperand(1),
6926                       N->getOperand(4));
6927
6928  return SDValue();
6929}
6930
6931/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6932/// uses N as its base pointer and that N may be folded in the load / store
6933/// addressing mode.
6934static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6935                                    SelectionDAG &DAG,
6936                                    const TargetLowering &TLI) {
6937  EVT VT;
6938  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6939    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6940      return false;
6941    VT = Use->getValueType(0);
6942  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6943    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6944      return false;
6945    VT = ST->getValue().getValueType();
6946  } else
6947    return false;
6948
6949  TargetLowering::AddrMode AM;
6950  if (N->getOpcode() == ISD::ADD) {
6951    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6952    if (Offset)
6953      // [reg +/- imm]
6954      AM.BaseOffs = Offset->getSExtValue();
6955    else
6956      // [reg +/- reg]
6957      AM.Scale = 1;
6958  } else if (N->getOpcode() == ISD::SUB) {
6959    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6960    if (Offset)
6961      // [reg +/- imm]
6962      AM.BaseOffs = -Offset->getSExtValue();
6963    else
6964      // [reg +/- reg]
6965      AM.Scale = 1;
6966  } else
6967    return false;
6968
6969  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6970}
6971
6972/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6973/// pre-indexed load / store when the base pointer is an add or subtract
6974/// and it has other uses besides the load / store. After the
6975/// transformation, the new indexed load / store has effectively folded
6976/// the add / subtract in and all of its other uses are redirected to the
6977/// new load / store.
6978bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6979  if (Level < AfterLegalizeDAG)
6980    return false;
6981
6982  bool isLoad = true;
6983  SDValue Ptr;
6984  EVT VT;
6985  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6986    if (LD->isIndexed())
6987      return false;
6988    VT = LD->getMemoryVT();
6989    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6990        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6991      return false;
6992    Ptr = LD->getBasePtr();
6993  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6994    if (ST->isIndexed())
6995      return false;
6996    VT = ST->getMemoryVT();
6997    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6998        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6999      return false;
7000    Ptr = ST->getBasePtr();
7001    isLoad = false;
7002  } else {
7003    return false;
7004  }
7005
7006  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7007  // out.  There is no reason to make this a preinc/predec.
7008  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7009      Ptr.getNode()->hasOneUse())
7010    return false;
7011
7012  // Ask the target to do addressing mode selection.
7013  SDValue BasePtr;
7014  SDValue Offset;
7015  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7016  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7017    return false;
7018
7019  // Backends without true r+i pre-indexed forms may need to pass a
7020  // constant base with a variable offset so that constant coercion
7021  // will work with the patterns in canonical form.
7022  bool Swapped = false;
7023  if (isa<ConstantSDNode>(BasePtr)) {
7024    std::swap(BasePtr, Offset);
7025    Swapped = true;
7026  }
7027
7028  // Don't create a indexed load / store with zero offset.
7029  if (isa<ConstantSDNode>(Offset) &&
7030      cast<ConstantSDNode>(Offset)->isNullValue())
7031    return false;
7032
7033  // Try turning it into a pre-indexed load / store except when:
7034  // 1) The new base ptr is a frame index.
7035  // 2) If N is a store and the new base ptr is either the same as or is a
7036  //    predecessor of the value being stored.
7037  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7038  //    that would create a cycle.
7039  // 4) All uses are load / store ops that use it as old base ptr.
7040
7041  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7042  // (plus the implicit offset) to a register to preinc anyway.
7043  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7044    return false;
7045
7046  // Check #2.
7047  if (!isLoad) {
7048    SDValue Val = cast<StoreSDNode>(N)->getValue();
7049    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7050      return false;
7051  }
7052
7053  // If the offset is a constant, there may be other adds of constants that
7054  // can be folded with this one. We should do this to avoid having to keep
7055  // a copy of the original base pointer.
7056  SmallVector<SDNode *, 16> OtherUses;
7057  if (isa<ConstantSDNode>(Offset))
7058    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7059         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7060      SDNode *Use = *I;
7061      if (Use == Ptr.getNode())
7062        continue;
7063
7064      if (Use->isPredecessorOf(N))
7065        continue;
7066
7067      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7068        OtherUses.clear();
7069        break;
7070      }
7071
7072      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7073      if (Op1.getNode() == BasePtr.getNode())
7074        std::swap(Op0, Op1);
7075      assert(Op0.getNode() == BasePtr.getNode() &&
7076             "Use of ADD/SUB but not an operand");
7077
7078      if (!isa<ConstantSDNode>(Op1)) {
7079        OtherUses.clear();
7080        break;
7081      }
7082
7083      // FIXME: In some cases, we can be smarter about this.
7084      if (Op1.getValueType() != Offset.getValueType()) {
7085        OtherUses.clear();
7086        break;
7087      }
7088
7089      OtherUses.push_back(Use);
7090    }
7091
7092  if (Swapped)
7093    std::swap(BasePtr, Offset);
7094
7095  // Now check for #3 and #4.
7096  bool RealUse = false;
7097
7098  // Caches for hasPredecessorHelper
7099  SmallPtrSet<const SDNode *, 32> Visited;
7100  SmallVector<const SDNode *, 16> Worklist;
7101
7102  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7103         E = Ptr.getNode()->use_end(); I != E; ++I) {
7104    SDNode *Use = *I;
7105    if (Use == N)
7106      continue;
7107    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7108      return false;
7109
7110    // If Ptr may be folded in addressing mode of other use, then it's
7111    // not profitable to do this transformation.
7112    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7113      RealUse = true;
7114  }
7115
7116  if (!RealUse)
7117    return false;
7118
7119  SDValue Result;
7120  if (isLoad)
7121    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7122                                BasePtr, Offset, AM);
7123  else
7124    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7125                                 BasePtr, Offset, AM);
7126  ++PreIndexedNodes;
7127  ++NodesCombined;
7128  DEBUG(dbgs() << "\nReplacing.4 ";
7129        N->dump(&DAG);
7130        dbgs() << "\nWith: ";
7131        Result.getNode()->dump(&DAG);
7132        dbgs() << '\n');
7133  WorkListRemover DeadNodes(*this);
7134  if (isLoad) {
7135    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7136    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7137  } else {
7138    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7139  }
7140
7141  // Finally, since the node is now dead, remove it from the graph.
7142  DAG.DeleteNode(N);
7143
7144  if (Swapped)
7145    std::swap(BasePtr, Offset);
7146
7147  // Replace other uses of BasePtr that can be updated to use Ptr
7148  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7149    unsigned OffsetIdx = 1;
7150    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7151      OffsetIdx = 0;
7152    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7153           BasePtr.getNode() && "Expected BasePtr operand");
7154
7155    // We need to replace ptr0 in the following expression:
7156    //   x0 * offset0 + y0 * ptr0 = t0
7157    // knowing that
7158    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7159    //
7160    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7161    // indexed load/store and the expresion that needs to be re-written.
7162    //
7163    // Therefore, we have:
7164    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7165
7166    ConstantSDNode *CN =
7167      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7168    int X0, X1, Y0, Y1;
7169    APInt Offset0 = CN->getAPIntValue();
7170    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7171
7172    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7173    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7174    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7175    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7176
7177    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7178
7179    APInt CNV = Offset0;
7180    if (X0 < 0) CNV = -CNV;
7181    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7182    else CNV = CNV - Offset1;
7183
7184    // We can now generate the new expression.
7185    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7186    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7187
7188    SDValue NewUse = DAG.getNode(Opcode,
7189                                 OtherUses[i]->getDebugLoc(),
7190                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7191    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7192    removeFromWorkList(OtherUses[i]);
7193    DAG.DeleteNode(OtherUses[i]);
7194  }
7195
7196  // Replace the uses of Ptr with uses of the updated base value.
7197  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7198  removeFromWorkList(Ptr.getNode());
7199  DAG.DeleteNode(Ptr.getNode());
7200
7201  return true;
7202}
7203
7204/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7205/// add / sub of the base pointer node into a post-indexed load / store.
7206/// The transformation folded the add / subtract into the new indexed
7207/// load / store effectively and all of its uses are redirected to the
7208/// new load / store.
7209bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7210  if (Level < AfterLegalizeDAG)
7211    return false;
7212
7213  bool isLoad = true;
7214  SDValue Ptr;
7215  EVT VT;
7216  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7217    if (LD->isIndexed())
7218      return false;
7219    VT = LD->getMemoryVT();
7220    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7221        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7222      return false;
7223    Ptr = LD->getBasePtr();
7224  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7225    if (ST->isIndexed())
7226      return false;
7227    VT = ST->getMemoryVT();
7228    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7229        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7230      return false;
7231    Ptr = ST->getBasePtr();
7232    isLoad = false;
7233  } else {
7234    return false;
7235  }
7236
7237  if (Ptr.getNode()->hasOneUse())
7238    return false;
7239
7240  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7241         E = Ptr.getNode()->use_end(); I != E; ++I) {
7242    SDNode *Op = *I;
7243    if (Op == N ||
7244        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7245      continue;
7246
7247    SDValue BasePtr;
7248    SDValue Offset;
7249    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7250    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7251      // Don't create a indexed load / store with zero offset.
7252      if (isa<ConstantSDNode>(Offset) &&
7253          cast<ConstantSDNode>(Offset)->isNullValue())
7254        continue;
7255
7256      // Try turning it into a post-indexed load / store except when
7257      // 1) All uses are load / store ops that use it as base ptr (and
7258      //    it may be folded as addressing mmode).
7259      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7260      //    nor a successor of N. Otherwise, if Op is folded that would
7261      //    create a cycle.
7262
7263      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7264        continue;
7265
7266      // Check for #1.
7267      bool TryNext = false;
7268      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7269             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7270        SDNode *Use = *II;
7271        if (Use == Ptr.getNode())
7272          continue;
7273
7274        // If all the uses are load / store addresses, then don't do the
7275        // transformation.
7276        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7277          bool RealUse = false;
7278          for (SDNode::use_iterator III = Use->use_begin(),
7279                 EEE = Use->use_end(); III != EEE; ++III) {
7280            SDNode *UseUse = *III;
7281            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7282              RealUse = true;
7283          }
7284
7285          if (!RealUse) {
7286            TryNext = true;
7287            break;
7288          }
7289        }
7290      }
7291
7292      if (TryNext)
7293        continue;
7294
7295      // Check for #2
7296      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7297        SDValue Result = isLoad
7298          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7299                               BasePtr, Offset, AM)
7300          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7301                                BasePtr, Offset, AM);
7302        ++PostIndexedNodes;
7303        ++NodesCombined;
7304        DEBUG(dbgs() << "\nReplacing.5 ";
7305              N->dump(&DAG);
7306              dbgs() << "\nWith: ";
7307              Result.getNode()->dump(&DAG);
7308              dbgs() << '\n');
7309        WorkListRemover DeadNodes(*this);
7310        if (isLoad) {
7311          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7312          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7313        } else {
7314          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7315        }
7316
7317        // Finally, since the node is now dead, remove it from the graph.
7318        DAG.DeleteNode(N);
7319
7320        // Replace the uses of Use with uses of the updated base value.
7321        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7322                                      Result.getValue(isLoad ? 1 : 0));
7323        removeFromWorkList(Op);
7324        DAG.DeleteNode(Op);
7325        return true;
7326      }
7327    }
7328  }
7329
7330  return false;
7331}
7332
7333SDValue DAGCombiner::visitLOAD(SDNode *N) {
7334  LoadSDNode *LD  = cast<LoadSDNode>(N);
7335  SDValue Chain = LD->getChain();
7336  SDValue Ptr   = LD->getBasePtr();
7337
7338  // If load is not volatile and there are no uses of the loaded value (and
7339  // the updated indexed value in case of indexed loads), change uses of the
7340  // chain value into uses of the chain input (i.e. delete the dead load).
7341  if (!LD->isVolatile()) {
7342    if (N->getValueType(1) == MVT::Other) {
7343      // Unindexed loads.
7344      if (!N->hasAnyUseOfValue(0)) {
7345        // It's not safe to use the two value CombineTo variant here. e.g.
7346        // v1, chain2 = load chain1, loc
7347        // v2, chain3 = load chain2, loc
7348        // v3         = add v2, c
7349        // Now we replace use of chain2 with chain1.  This makes the second load
7350        // isomorphic to the one we are deleting, and thus makes this load live.
7351        DEBUG(dbgs() << "\nReplacing.6 ";
7352              N->dump(&DAG);
7353              dbgs() << "\nWith chain: ";
7354              Chain.getNode()->dump(&DAG);
7355              dbgs() << "\n");
7356        WorkListRemover DeadNodes(*this);
7357        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7358
7359        if (N->use_empty()) {
7360          removeFromWorkList(N);
7361          DAG.DeleteNode(N);
7362        }
7363
7364        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7365      }
7366    } else {
7367      // Indexed loads.
7368      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7369      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7370        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7371        DEBUG(dbgs() << "\nReplacing.7 ";
7372              N->dump(&DAG);
7373              dbgs() << "\nWith: ";
7374              Undef.getNode()->dump(&DAG);
7375              dbgs() << " and 2 other values\n");
7376        WorkListRemover DeadNodes(*this);
7377        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7378        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7379                                      DAG.getUNDEF(N->getValueType(1)));
7380        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7381        removeFromWorkList(N);
7382        DAG.DeleteNode(N);
7383        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7384      }
7385    }
7386  }
7387
7388  // If this load is directly stored, replace the load value with the stored
7389  // value.
7390  // TODO: Handle store large -> read small portion.
7391  // TODO: Handle TRUNCSTORE/LOADEXT
7392  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7393    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7394      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7395      if (PrevST->getBasePtr() == Ptr &&
7396          PrevST->getValue().getValueType() == N->getValueType(0))
7397      return CombineTo(N, Chain.getOperand(1), Chain);
7398    }
7399  }
7400
7401  // Try to infer better alignment information than the load already has.
7402  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7403    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7404      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7405        SDValue NewLoad =
7406               DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7407                              LD->getValueType(0),
7408                              Chain, Ptr, LD->getPointerInfo(),
7409                              LD->getMemoryVT(),
7410                              LD->isVolatile(), LD->isNonTemporal(), Align);
7411        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7412      }
7413    }
7414  }
7415
7416  if (CombinerAA) {
7417    // Walk up chain skipping non-aliasing memory nodes.
7418    SDValue BetterChain = FindBetterChain(N, Chain);
7419
7420    // If there is a better chain.
7421    if (Chain != BetterChain) {
7422      SDValue ReplLoad;
7423
7424      // Replace the chain to void dependency.
7425      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7426        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7427                               BetterChain, Ptr, LD->getPointerInfo(),
7428                               LD->isVolatile(), LD->isNonTemporal(),
7429                               LD->isInvariant(), LD->getAlignment());
7430      } else {
7431        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7432                                  LD->getValueType(0),
7433                                  BetterChain, Ptr, LD->getPointerInfo(),
7434                                  LD->getMemoryVT(),
7435                                  LD->isVolatile(),
7436                                  LD->isNonTemporal(),
7437                                  LD->getAlignment());
7438      }
7439
7440      // Create token factor to keep old chain connected.
7441      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7442                                  MVT::Other, Chain, ReplLoad.getValue(1));
7443
7444      // Make sure the new and old chains are cleaned up.
7445      AddToWorkList(Token.getNode());
7446
7447      // Replace uses with load result and token factor. Don't add users
7448      // to work list.
7449      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7450    }
7451  }
7452
7453  // Try transforming N to an indexed load.
7454  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7455    return SDValue(N, 0);
7456
7457  return SDValue();
7458}
7459
7460/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7461/// load is having specific bytes cleared out.  If so, return the byte size
7462/// being masked out and the shift amount.
7463static std::pair<unsigned, unsigned>
7464CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7465  std::pair<unsigned, unsigned> Result(0, 0);
7466
7467  // Check for the structure we're looking for.
7468  if (V->getOpcode() != ISD::AND ||
7469      !isa<ConstantSDNode>(V->getOperand(1)) ||
7470      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7471    return Result;
7472
7473  // Check the chain and pointer.
7474  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7475  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7476
7477  // The store should be chained directly to the load or be an operand of a
7478  // tokenfactor.
7479  if (LD == Chain.getNode())
7480    ; // ok.
7481  else if (Chain->getOpcode() != ISD::TokenFactor)
7482    return Result; // Fail.
7483  else {
7484    bool isOk = false;
7485    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7486      if (Chain->getOperand(i).getNode() == LD) {
7487        isOk = true;
7488        break;
7489      }
7490    if (!isOk) return Result;
7491  }
7492
7493  // This only handles simple types.
7494  if (V.getValueType() != MVT::i16 &&
7495      V.getValueType() != MVT::i32 &&
7496      V.getValueType() != MVT::i64)
7497    return Result;
7498
7499  // Check the constant mask.  Invert it so that the bits being masked out are
7500  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7501  // follow the sign bit for uniformity.
7502  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7503  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7504  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7505  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7506  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7507  if (NotMaskLZ == 64) return Result;  // All zero mask.
7508
7509  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7510  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7511    return Result;
7512
7513  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7514  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7515    NotMaskLZ -= 64-V.getValueSizeInBits();
7516
7517  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7518  switch (MaskedBytes) {
7519  case 1:
7520  case 2:
7521  case 4: break;
7522  default: return Result; // All one mask, or 5-byte mask.
7523  }
7524
7525  // Verify that the first bit starts at a multiple of mask so that the access
7526  // is aligned the same as the access width.
7527  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7528
7529  Result.first = MaskedBytes;
7530  Result.second = NotMaskTZ/8;
7531  return Result;
7532}
7533
7534
7535/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7536/// provides a value as specified by MaskInfo.  If so, replace the specified
7537/// store with a narrower store of truncated IVal.
7538static SDNode *
7539ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7540                                SDValue IVal, StoreSDNode *St,
7541                                DAGCombiner *DC) {
7542  unsigned NumBytes = MaskInfo.first;
7543  unsigned ByteShift = MaskInfo.second;
7544  SelectionDAG &DAG = DC->getDAG();
7545
7546  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7547  // that uses this.  If not, this is not a replacement.
7548  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7549                                  ByteShift*8, (ByteShift+NumBytes)*8);
7550  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7551
7552  // Check that it is legal on the target to do this.  It is legal if the new
7553  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7554  // legalization.
7555  MVT VT = MVT::getIntegerVT(NumBytes*8);
7556  if (!DC->isTypeLegal(VT))
7557    return 0;
7558
7559  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7560  // shifted by ByteShift and truncated down to NumBytes.
7561  if (ByteShift)
7562    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7563                       DAG.getConstant(ByteShift*8,
7564                                    DC->getShiftAmountTy(IVal.getValueType())));
7565
7566  // Figure out the offset for the store and the alignment of the access.
7567  unsigned StOffset;
7568  unsigned NewAlign = St->getAlignment();
7569
7570  if (DAG.getTargetLoweringInfo().isLittleEndian())
7571    StOffset = ByteShift;
7572  else
7573    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7574
7575  SDValue Ptr = St->getBasePtr();
7576  if (StOffset) {
7577    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7578                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7579    NewAlign = MinAlign(NewAlign, StOffset);
7580  }
7581
7582  // Truncate down to the new size.
7583  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7584
7585  ++OpsNarrowed;
7586  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7587                      St->getPointerInfo().getWithOffset(StOffset),
7588                      false, false, NewAlign).getNode();
7589}
7590
7591
7592/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7593/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7594/// of the loaded bits, try narrowing the load and store if it would end up
7595/// being a win for performance or code size.
7596SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7597  StoreSDNode *ST  = cast<StoreSDNode>(N);
7598  if (ST->isVolatile())
7599    return SDValue();
7600
7601  SDValue Chain = ST->getChain();
7602  SDValue Value = ST->getValue();
7603  SDValue Ptr   = ST->getBasePtr();
7604  EVT VT = Value.getValueType();
7605
7606  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7607    return SDValue();
7608
7609  unsigned Opc = Value.getOpcode();
7610
7611  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7612  // is a byte mask indicating a consecutive number of bytes, check to see if
7613  // Y is known to provide just those bytes.  If so, we try to replace the
7614  // load + replace + store sequence with a single (narrower) store, which makes
7615  // the load dead.
7616  if (Opc == ISD::OR) {
7617    std::pair<unsigned, unsigned> MaskedLoad;
7618    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7619    if (MaskedLoad.first)
7620      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7621                                                  Value.getOperand(1), ST,this))
7622        return SDValue(NewST, 0);
7623
7624    // Or is commutative, so try swapping X and Y.
7625    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7626    if (MaskedLoad.first)
7627      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7628                                                  Value.getOperand(0), ST,this))
7629        return SDValue(NewST, 0);
7630  }
7631
7632  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7633      Value.getOperand(1).getOpcode() != ISD::Constant)
7634    return SDValue();
7635
7636  SDValue N0 = Value.getOperand(0);
7637  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7638      Chain == SDValue(N0.getNode(), 1)) {
7639    LoadSDNode *LD = cast<LoadSDNode>(N0);
7640    if (LD->getBasePtr() != Ptr ||
7641        LD->getPointerInfo().getAddrSpace() !=
7642        ST->getPointerInfo().getAddrSpace())
7643      return SDValue();
7644
7645    // Find the type to narrow it the load / op / store to.
7646    SDValue N1 = Value.getOperand(1);
7647    unsigned BitWidth = N1.getValueSizeInBits();
7648    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7649    if (Opc == ISD::AND)
7650      Imm ^= APInt::getAllOnesValue(BitWidth);
7651    if (Imm == 0 || Imm.isAllOnesValue())
7652      return SDValue();
7653    unsigned ShAmt = Imm.countTrailingZeros();
7654    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7655    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7656    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7657    while (NewBW < BitWidth &&
7658           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7659             TLI.isNarrowingProfitable(VT, NewVT))) {
7660      NewBW = NextPowerOf2(NewBW);
7661      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7662    }
7663    if (NewBW >= BitWidth)
7664      return SDValue();
7665
7666    // If the lsb changed does not start at the type bitwidth boundary,
7667    // start at the previous one.
7668    if (ShAmt % NewBW)
7669      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7670    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7671                                   std::min(BitWidth, ShAmt + NewBW));
7672    if ((Imm & Mask) == Imm) {
7673      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7674      if (Opc == ISD::AND)
7675        NewImm ^= APInt::getAllOnesValue(NewBW);
7676      uint64_t PtrOff = ShAmt / 8;
7677      // For big endian targets, we need to adjust the offset to the pointer to
7678      // load the correct bytes.
7679      if (TLI.isBigEndian())
7680        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7681
7682      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7683      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7684      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7685        return SDValue();
7686
7687      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7688                                   Ptr.getValueType(), Ptr,
7689                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7690      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7691                                  LD->getChain(), NewPtr,
7692                                  LD->getPointerInfo().getWithOffset(PtrOff),
7693                                  LD->isVolatile(), LD->isNonTemporal(),
7694                                  LD->isInvariant(), NewAlign);
7695      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7696                                   DAG.getConstant(NewImm, NewVT));
7697      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7698                                   NewVal, NewPtr,
7699                                   ST->getPointerInfo().getWithOffset(PtrOff),
7700                                   false, false, NewAlign);
7701
7702      AddToWorkList(NewPtr.getNode());
7703      AddToWorkList(NewLD.getNode());
7704      AddToWorkList(NewVal.getNode());
7705      WorkListRemover DeadNodes(*this);
7706      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7707      ++OpsNarrowed;
7708      return NewST;
7709    }
7710  }
7711
7712  return SDValue();
7713}
7714
7715/// TransformFPLoadStorePair - For a given floating point load / store pair,
7716/// if the load value isn't used by any other operations, then consider
7717/// transforming the pair to integer load / store operations if the target
7718/// deems the transformation profitable.
7719SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7720  StoreSDNode *ST  = cast<StoreSDNode>(N);
7721  SDValue Chain = ST->getChain();
7722  SDValue Value = ST->getValue();
7723  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7724      Value.hasOneUse() &&
7725      Chain == SDValue(Value.getNode(), 1)) {
7726    LoadSDNode *LD = cast<LoadSDNode>(Value);
7727    EVT VT = LD->getMemoryVT();
7728    if (!VT.isFloatingPoint() ||
7729        VT != ST->getMemoryVT() ||
7730        LD->isNonTemporal() ||
7731        ST->isNonTemporal() ||
7732        LD->getPointerInfo().getAddrSpace() != 0 ||
7733        ST->getPointerInfo().getAddrSpace() != 0)
7734      return SDValue();
7735
7736    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7737    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7738        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7739        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7740        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7741      return SDValue();
7742
7743    unsigned LDAlign = LD->getAlignment();
7744    unsigned STAlign = ST->getAlignment();
7745    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7746    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7747    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7748      return SDValue();
7749
7750    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7751                                LD->getChain(), LD->getBasePtr(),
7752                                LD->getPointerInfo(),
7753                                false, false, false, LDAlign);
7754
7755    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7756                                 NewLD, ST->getBasePtr(),
7757                                 ST->getPointerInfo(),
7758                                 false, false, STAlign);
7759
7760    AddToWorkList(NewLD.getNode());
7761    AddToWorkList(NewST.getNode());
7762    WorkListRemover DeadNodes(*this);
7763    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7764    ++LdStFP2Int;
7765    return NewST;
7766  }
7767
7768  return SDValue();
7769}
7770
7771/// Helper struct to parse and store a memory address as base + index + offset.
7772/// We ignore sign extensions when it is safe to do so.
7773/// The following two expressions are not equivalent. To differentiate we need
7774/// to store whether there was a sign extension involved in the index
7775/// computation.
7776///  (load (i64 add (i64 copyfromreg %c)
7777///                 (i64 signextend (add (i8 load %index)
7778///                                      (i8 1))))
7779/// vs
7780///
7781/// (load (i64 add (i64 copyfromreg %c)
7782///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
7783///                                         (i32 1)))))
7784struct BaseIndexOffset {
7785  SDValue Base;
7786  SDValue Index;
7787  int64_t Offset;
7788  bool IsIndexSignExt;
7789
7790  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
7791
7792  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
7793                  bool IsIndexSignExt) :
7794    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
7795
7796  bool equalBaseIndex(const BaseIndexOffset &Other) {
7797    return Other.Base == Base && Other.Index == Index &&
7798      Other.IsIndexSignExt == IsIndexSignExt;
7799  }
7800
7801  /// Parses tree in Ptr for base, index, offset addresses.
7802  static BaseIndexOffset match(SDValue Ptr) {
7803    bool IsIndexSignExt = false;
7804
7805    // Just Base or possibly anything else.
7806    if (Ptr->getOpcode() != ISD::ADD)
7807      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7808
7809    // Base + offset.
7810    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
7811      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7812      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
7813                              IsIndexSignExt);
7814    }
7815
7816    // Look at Base + Index + Offset cases.
7817    SDValue Base = Ptr->getOperand(0);
7818    SDValue IndexOffset = Ptr->getOperand(1);
7819
7820    // Skip signextends.
7821    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
7822      IndexOffset = IndexOffset->getOperand(0);
7823      IsIndexSignExt = true;
7824    }
7825
7826    // Either the case of Base + Index (no offset) or something else.
7827    if (IndexOffset->getOpcode() != ISD::ADD)
7828      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
7829
7830    // Now we have the case of Base + Index + offset.
7831    SDValue Index = IndexOffset->getOperand(0);
7832    SDValue Offset = IndexOffset->getOperand(1);
7833
7834    if (!isa<ConstantSDNode>(Offset))
7835      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
7836
7837    // Ignore signextends.
7838    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
7839      Index = Index->getOperand(0);
7840      IsIndexSignExt = true;
7841    } else IsIndexSignExt = false;
7842
7843    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
7844    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
7845  }
7846};
7847
7848/// Holds a pointer to an LSBaseSDNode as well as information on where it
7849/// is located in a sequence of memory operations connected by a chain.
7850struct MemOpLink {
7851  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7852    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7853  // Ptr to the mem node.
7854  LSBaseSDNode *MemNode;
7855  // Offset from the base ptr.
7856  int64_t OffsetFromBase;
7857  // What is the sequence number of this mem node.
7858  // Lowest mem operand in the DAG starts at zero.
7859  unsigned SequenceNum;
7860};
7861
7862/// Sorts store nodes in a link according to their offset from a shared
7863// base ptr.
7864struct ConsecutiveMemoryChainSorter {
7865  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7866    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7867  }
7868};
7869
7870bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7871  EVT MemVT = St->getMemoryVT();
7872  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7873  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7874    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7875
7876  // Don't merge vectors into wider inputs.
7877  if (MemVT.isVector() || !MemVT.isSimple())
7878    return false;
7879
7880  // Perform an early exit check. Do not bother looking at stored values that
7881  // are not constants or loads.
7882  SDValue StoredVal = St->getValue();
7883  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7884  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7885      !IsLoadSrc)
7886    return false;
7887
7888  // Only look at ends of store sequences.
7889  SDValue Chain = SDValue(St, 1);
7890  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7891    return false;
7892
7893  // This holds the base pointer, index, and the offset in bytes from the base
7894  // pointer.
7895  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
7896
7897  // We must have a base and an offset.
7898  if (!BasePtr.Base.getNode())
7899    return false;
7900
7901  // Do not handle stores to undef base pointers.
7902  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
7903    return false;
7904
7905  // Save the LoadSDNodes that we find in the chain.
7906  // We need to make sure that these nodes do not interfere with
7907  // any of the store nodes.
7908  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7909
7910  // Save the StoreSDNodes that we find in the chain.
7911  SmallVector<MemOpLink, 8> StoreNodes;
7912
7913  // Walk up the chain and look for nodes with offsets from the same
7914  // base pointer. Stop when reaching an instruction with a different kind
7915  // or instruction which has a different base pointer.
7916  unsigned Seq = 0;
7917  StoreSDNode *Index = St;
7918  while (Index) {
7919    // If the chain has more than one use, then we can't reorder the mem ops.
7920    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7921      break;
7922
7923    // Find the base pointer and offset for this memory node.
7924    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
7925
7926    // Check that the base pointer is the same as the original one.
7927    if (!Ptr.equalBaseIndex(BasePtr))
7928      break;
7929
7930    // Check that the alignment is the same.
7931    if (Index->getAlignment() != St->getAlignment())
7932      break;
7933
7934    // The memory operands must not be volatile.
7935    if (Index->isVolatile() || Index->isIndexed())
7936      break;
7937
7938    // No truncation.
7939    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7940      if (St->isTruncatingStore())
7941        break;
7942
7943    // The stored memory type must be the same.
7944    if (Index->getMemoryVT() != MemVT)
7945      break;
7946
7947    // We do not allow unaligned stores because we want to prevent overriding
7948    // stores.
7949    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7950      break;
7951
7952    // We found a potential memory operand to merge.
7953    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
7954
7955    // Find the next memory operand in the chain. If the next operand in the
7956    // chain is a store then move up and continue the scan with the next
7957    // memory operand. If the next operand is a load save it and use alias
7958    // information to check if it interferes with anything.
7959    SDNode *NextInChain = Index->getChain().getNode();
7960    while (1) {
7961      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7962        // We found a store node. Use it for the next iteration.
7963        Index = STn;
7964        break;
7965      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7966        // Save the load node for later. Continue the scan.
7967        AliasLoadNodes.push_back(Ldn);
7968        NextInChain = Ldn->getChain().getNode();
7969        continue;
7970      } else {
7971        Index = NULL;
7972        break;
7973      }
7974    }
7975  }
7976
7977  // Check if there is anything to merge.
7978  if (StoreNodes.size() < 2)
7979    return false;
7980
7981  // Sort the memory operands according to their distance from the base pointer.
7982  std::sort(StoreNodes.begin(), StoreNodes.end(),
7983            ConsecutiveMemoryChainSorter());
7984
7985  // Scan the memory operations on the chain and find the first non-consecutive
7986  // store memory address.
7987  unsigned LastConsecutiveStore = 0;
7988  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7989  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
7990
7991    // Check that the addresses are consecutive starting from the second
7992    // element in the list of stores.
7993    if (i > 0) {
7994      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7995      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7996        break;
7997    }
7998
7999    bool Alias = false;
8000    // Check if this store interferes with any of the loads that we found.
8001    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8002      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8003        Alias = true;
8004        break;
8005      }
8006    // We found a load that alias with this store. Stop the sequence.
8007    if (Alias)
8008      break;
8009
8010    // Mark this node as useful.
8011    LastConsecutiveStore = i;
8012  }
8013
8014  // The node with the lowest store address.
8015  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8016
8017  // Store the constants into memory as one consecutive store.
8018  if (!IsLoadSrc) {
8019    unsigned LastLegalType = 0;
8020    unsigned LastLegalVectorType = 0;
8021    bool NonZero = false;
8022    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8023      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8024      SDValue StoredVal = St->getValue();
8025
8026      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8027        NonZero |= !C->isNullValue();
8028      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8029        NonZero |= !C->getConstantFPValue()->isNullValue();
8030      } else {
8031        // Non constant.
8032        break;
8033      }
8034
8035      // Find a legal type for the constant store.
8036      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8037      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8038      if (TLI.isTypeLegal(StoreTy))
8039        LastLegalType = i+1;
8040      // Or check whether a truncstore is legal.
8041      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8042               TargetLowering::TypePromoteInteger) {
8043        EVT LegalizedStoredValueTy =
8044          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8045        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8046          LastLegalType = i+1;
8047      }
8048
8049      // Find a legal type for the vector store.
8050      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8051      if (TLI.isTypeLegal(Ty))
8052        LastLegalVectorType = i + 1;
8053    }
8054
8055    // We only use vectors if the constant is known to be zero and the
8056    // function is not marked with the noimplicitfloat attribute.
8057    if (NonZero || NoVectors)
8058      LastLegalVectorType = 0;
8059
8060    // Check if we found a legal integer type to store.
8061    if (LastLegalType == 0 && LastLegalVectorType == 0)
8062      return false;
8063
8064    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8065    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8066
8067    // Make sure we have something to merge.
8068    if (NumElem < 2)
8069      return false;
8070
8071    unsigned EarliestNodeUsed = 0;
8072    for (unsigned i=0; i < NumElem; ++i) {
8073      // Find a chain for the new wide-store operand. Notice that some
8074      // of the store nodes that we found may not be selected for inclusion
8075      // in the wide store. The chain we use needs to be the chain of the
8076      // earliest store node which is *used* and replaced by the wide store.
8077      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8078        EarliestNodeUsed = i;
8079    }
8080
8081    // The earliest Node in the DAG.
8082    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8083    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
8084
8085    SDValue StoredVal;
8086    if (UseVector) {
8087      // Find a legal type for the vector store.
8088      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8089      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8090      StoredVal = DAG.getConstant(0, Ty);
8091    } else {
8092      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8093      APInt StoreInt(StoreBW, 0);
8094
8095      // Construct a single integer constant which is made of the smaller
8096      // constant inputs.
8097      bool IsLE = TLI.isLittleEndian();
8098      for (unsigned i = 0; i < NumElem ; ++i) {
8099        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8100        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8101        SDValue Val = St->getValue();
8102        StoreInt<<=ElementSizeBytes*8;
8103        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8104          StoreInt|=C->getAPIntValue().zext(StoreBW);
8105        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8106          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8107        } else {
8108          assert(false && "Invalid constant element type");
8109        }
8110      }
8111
8112      // Create the new Load and Store operations.
8113      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8114      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8115    }
8116
8117    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8118                                    FirstInChain->getBasePtr(),
8119                                    FirstInChain->getPointerInfo(),
8120                                    false, false,
8121                                    FirstInChain->getAlignment());
8122
8123    // Replace the first store with the new store
8124    CombineTo(EarliestOp, NewStore);
8125    // Erase all other stores.
8126    for (unsigned i = 0; i < NumElem ; ++i) {
8127      if (StoreNodes[i].MemNode == EarliestOp)
8128        continue;
8129      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8130      // ReplaceAllUsesWith will replace all uses that existed when it was
8131      // called, but graph optimizations may cause new ones to appear. For
8132      // example, the case in pr14333 looks like
8133      //
8134      //  St's chain -> St -> another store -> X
8135      //
8136      // And the only difference from St to the other store is the chain.
8137      // When we change it's chain to be St's chain they become identical,
8138      // get CSEed and the net result is that X is now a use of St.
8139      // Since we know that St is redundant, just iterate.
8140      while (!St->use_empty())
8141        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8142      removeFromWorkList(St);
8143      DAG.DeleteNode(St);
8144    }
8145
8146    return true;
8147  }
8148
8149  // Below we handle the case of multiple consecutive stores that
8150  // come from multiple consecutive loads. We merge them into a single
8151  // wide load and a single wide store.
8152
8153  // Look for load nodes which are used by the stored values.
8154  SmallVector<MemOpLink, 8> LoadNodes;
8155
8156  // Find acceptable loads. Loads need to have the same chain (token factor),
8157  // must not be zext, volatile, indexed, and they must be consecutive.
8158  BaseIndexOffset LdBasePtr;
8159  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8160    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8161    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8162    if (!Ld) break;
8163
8164    // Loads must only have one use.
8165    if (!Ld->hasNUsesOfValue(1, 0))
8166      break;
8167
8168    // Check that the alignment is the same as the stores.
8169    if (Ld->getAlignment() != St->getAlignment())
8170      break;
8171
8172    // The memory operands must not be volatile.
8173    if (Ld->isVolatile() || Ld->isIndexed())
8174      break;
8175
8176    // We do not accept ext loads.
8177    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8178      break;
8179
8180    // The stored memory type must be the same.
8181    if (Ld->getMemoryVT() != MemVT)
8182      break;
8183
8184    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8185    // If this is not the first ptr that we check.
8186    if (LdBasePtr.Base.getNode()) {
8187      // The base ptr must be the same.
8188      if (!LdPtr.equalBaseIndex(LdBasePtr))
8189        break;
8190    } else {
8191      // Check that all other base pointers are the same as this one.
8192      LdBasePtr = LdPtr;
8193    }
8194
8195    // We found a potential memory operand to merge.
8196    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8197  }
8198
8199  if (LoadNodes.size() < 2)
8200    return false;
8201
8202  // Scan the memory operations on the chain and find the first non-consecutive
8203  // load memory address. These variables hold the index in the store node
8204  // array.
8205  unsigned LastConsecutiveLoad = 0;
8206  // This variable refers to the size and not index in the array.
8207  unsigned LastLegalVectorType = 0;
8208  unsigned LastLegalIntegerType = 0;
8209  StartAddress = LoadNodes[0].OffsetFromBase;
8210  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8211  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8212    // All loads much share the same chain.
8213    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8214      break;
8215
8216    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8217    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8218      break;
8219    LastConsecutiveLoad = i;
8220
8221    // Find a legal type for the vector store.
8222    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8223    if (TLI.isTypeLegal(StoreTy))
8224      LastLegalVectorType = i + 1;
8225
8226    // Find a legal type for the integer store.
8227    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8228    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8229    if (TLI.isTypeLegal(StoreTy))
8230      LastLegalIntegerType = i + 1;
8231    // Or check whether a truncstore and extload is legal.
8232    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8233             TargetLowering::TypePromoteInteger) {
8234      EVT LegalizedStoredValueTy =
8235        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8236      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8237          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8238          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8239          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8240        LastLegalIntegerType = i+1;
8241    }
8242  }
8243
8244  // Only use vector types if the vector type is larger than the integer type.
8245  // If they are the same, use integers.
8246  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8247  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8248
8249  // We add +1 here because the LastXXX variables refer to location while
8250  // the NumElem refers to array/index size.
8251  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8252  NumElem = std::min(LastLegalType, NumElem);
8253
8254  if (NumElem < 2)
8255    return false;
8256
8257  // The earliest Node in the DAG.
8258  unsigned EarliestNodeUsed = 0;
8259  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8260  for (unsigned i=1; i<NumElem; ++i) {
8261    // Find a chain for the new wide-store operand. Notice that some
8262    // of the store nodes that we found may not be selected for inclusion
8263    // in the wide store. The chain we use needs to be the chain of the
8264    // earliest store node which is *used* and replaced by the wide store.
8265    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8266      EarliestNodeUsed = i;
8267  }
8268
8269  // Find if it is better to use vectors or integers to load and store
8270  // to memory.
8271  EVT JointMemOpVT;
8272  if (UseVectorTy) {
8273    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8274  } else {
8275    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8276    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8277  }
8278
8279  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
8280  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
8281
8282  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8283  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8284                                FirstLoad->getChain(),
8285                                FirstLoad->getBasePtr(),
8286                                FirstLoad->getPointerInfo(),
8287                                false, false, false,
8288                                FirstLoad->getAlignment());
8289
8290  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8291                                  FirstInChain->getBasePtr(),
8292                                  FirstInChain->getPointerInfo(), false, false,
8293                                  FirstInChain->getAlignment());
8294
8295  // Replace one of the loads with the new load.
8296  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8297  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8298                                SDValue(NewLoad.getNode(), 1));
8299
8300  // Remove the rest of the load chains.
8301  for (unsigned i = 1; i < NumElem ; ++i) {
8302    // Replace all chain users of the old load nodes with the chain of the new
8303    // load node.
8304    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8305    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8306  }
8307
8308  // Replace the first store with the new store.
8309  CombineTo(EarliestOp, NewStore);
8310  // Erase all other stores.
8311  for (unsigned i = 0; i < NumElem ; ++i) {
8312    // Remove all Store nodes.
8313    if (StoreNodes[i].MemNode == EarliestOp)
8314      continue;
8315    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8316    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8317    removeFromWorkList(St);
8318    DAG.DeleteNode(St);
8319  }
8320
8321  return true;
8322}
8323
8324SDValue DAGCombiner::visitSTORE(SDNode *N) {
8325  StoreSDNode *ST  = cast<StoreSDNode>(N);
8326  SDValue Chain = ST->getChain();
8327  SDValue Value = ST->getValue();
8328  SDValue Ptr   = ST->getBasePtr();
8329
8330  // If this is a store of a bit convert, store the input value if the
8331  // resultant store does not need a higher alignment than the original.
8332  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8333      ST->isUnindexed()) {
8334    unsigned OrigAlign = ST->getAlignment();
8335    EVT SVT = Value.getOperand(0).getValueType();
8336    unsigned Align = TLI.getDataLayout()->
8337      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8338    if (Align <= OrigAlign &&
8339        ((!LegalOperations && !ST->isVolatile()) ||
8340         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8341      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8342                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8343                          ST->isNonTemporal(), OrigAlign);
8344  }
8345
8346  // Turn 'store undef, Ptr' -> nothing.
8347  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8348    return Chain;
8349
8350  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8351  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8352    // NOTE: If the original store is volatile, this transform must not increase
8353    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8354    // processor operation but an i64 (which is not legal) requires two.  So the
8355    // transform should not be done in this case.
8356    if (Value.getOpcode() != ISD::TargetConstantFP) {
8357      SDValue Tmp;
8358      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8359      default: llvm_unreachable("Unknown FP type");
8360      case MVT::f16:    // We don't do this for these yet.
8361      case MVT::f80:
8362      case MVT::f128:
8363      case MVT::ppcf128:
8364        break;
8365      case MVT::f32:
8366        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8367            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8368          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8369                              bitcastToAPInt().getZExtValue(), MVT::i32);
8370          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8371                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8372                              ST->isNonTemporal(), ST->getAlignment());
8373        }
8374        break;
8375      case MVT::f64:
8376        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8377             !ST->isVolatile()) ||
8378            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8379          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8380                                getZExtValue(), MVT::i64);
8381          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8382                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8383                              ST->isNonTemporal(), ST->getAlignment());
8384        }
8385
8386        if (!ST->isVolatile() &&
8387            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8388          // Many FP stores are not made apparent until after legalize, e.g. for
8389          // argument passing.  Since this is so common, custom legalize the
8390          // 64-bit integer store into two 32-bit stores.
8391          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8392          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8393          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8394          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8395
8396          unsigned Alignment = ST->getAlignment();
8397          bool isVolatile = ST->isVolatile();
8398          bool isNonTemporal = ST->isNonTemporal();
8399
8400          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8401                                     Ptr, ST->getPointerInfo(),
8402                                     isVolatile, isNonTemporal,
8403                                     ST->getAlignment());
8404          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8405                            DAG.getConstant(4, Ptr.getValueType()));
8406          Alignment = MinAlign(Alignment, 4U);
8407          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8408                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8409                                     isVolatile, isNonTemporal,
8410                                     Alignment);
8411          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8412                             St0, St1);
8413        }
8414
8415        break;
8416      }
8417    }
8418  }
8419
8420  // Try to infer better alignment information than the store already has.
8421  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8422    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8423      if (Align > ST->getAlignment())
8424        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8425                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8426                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8427    }
8428  }
8429
8430  // Try transforming a pair floating point load / store ops to integer
8431  // load / store ops.
8432  SDValue NewST = TransformFPLoadStorePair(N);
8433  if (NewST.getNode())
8434    return NewST;
8435
8436  if (CombinerAA) {
8437    // Walk up chain skipping non-aliasing memory nodes.
8438    SDValue BetterChain = FindBetterChain(N, Chain);
8439
8440    // If there is a better chain.
8441    if (Chain != BetterChain) {
8442      SDValue ReplStore;
8443
8444      // Replace the chain to avoid dependency.
8445      if (ST->isTruncatingStore()) {
8446        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8447                                      ST->getPointerInfo(),
8448                                      ST->getMemoryVT(), ST->isVolatile(),
8449                                      ST->isNonTemporal(), ST->getAlignment());
8450      } else {
8451        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8452                                 ST->getPointerInfo(),
8453                                 ST->isVolatile(), ST->isNonTemporal(),
8454                                 ST->getAlignment());
8455      }
8456
8457      // Create token to keep both nodes around.
8458      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8459                                  MVT::Other, Chain, ReplStore);
8460
8461      // Make sure the new and old chains are cleaned up.
8462      AddToWorkList(Token.getNode());
8463
8464      // Don't add users to work list.
8465      return CombineTo(N, Token, false);
8466    }
8467  }
8468
8469  // Try transforming N to an indexed store.
8470  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8471    return SDValue(N, 0);
8472
8473  // FIXME: is there such a thing as a truncating indexed store?
8474  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8475      Value.getValueType().isInteger()) {
8476    // See if we can simplify the input to this truncstore with knowledge that
8477    // only the low bits are being used.  For example:
8478    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8479    SDValue Shorter =
8480      GetDemandedBits(Value,
8481                      APInt::getLowBitsSet(
8482                        Value.getValueType().getScalarType().getSizeInBits(),
8483                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8484    AddToWorkList(Value.getNode());
8485    if (Shorter.getNode())
8486      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8487                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8488                               ST->isVolatile(), ST->isNonTemporal(),
8489                               ST->getAlignment());
8490
8491    // Otherwise, see if we can simplify the operation with
8492    // SimplifyDemandedBits, which only works if the value has a single use.
8493    if (SimplifyDemandedBits(Value,
8494                        APInt::getLowBitsSet(
8495                          Value.getValueType().getScalarType().getSizeInBits(),
8496                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8497      return SDValue(N, 0);
8498  }
8499
8500  // If this is a load followed by a store to the same location, then the store
8501  // is dead/noop.
8502  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8503    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8504        ST->isUnindexed() && !ST->isVolatile() &&
8505        // There can't be any side effects between the load and store, such as
8506        // a call or store.
8507        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8508      // The store is dead, remove it.
8509      return Chain;
8510    }
8511  }
8512
8513  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8514  // truncating store.  We can do this even if this is already a truncstore.
8515  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8516      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8517      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8518                            ST->getMemoryVT())) {
8519    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8520                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8521                             ST->isVolatile(), ST->isNonTemporal(),
8522                             ST->getAlignment());
8523  }
8524
8525  // Only perform this optimization before the types are legal, because we
8526  // don't want to perform this optimization on every DAGCombine invocation.
8527  if (!LegalTypes) {
8528    bool EverChanged = false;
8529
8530    do {
8531      // There can be multiple store sequences on the same chain.
8532      // Keep trying to merge store sequences until we are unable to do so
8533      // or until we merge the last store on the chain.
8534      bool Changed = MergeConsecutiveStores(ST);
8535      EverChanged |= Changed;
8536      if (!Changed) break;
8537    } while (ST->getOpcode() != ISD::DELETED_NODE);
8538
8539    if (EverChanged)
8540      return SDValue(N, 0);
8541  }
8542
8543  return ReduceLoadOpStoreWidth(N);
8544}
8545
8546SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8547  SDValue InVec = N->getOperand(0);
8548  SDValue InVal = N->getOperand(1);
8549  SDValue EltNo = N->getOperand(2);
8550  DebugLoc dl = N->getDebugLoc();
8551
8552  // If the inserted element is an UNDEF, just use the input vector.
8553  if (InVal.getOpcode() == ISD::UNDEF)
8554    return InVec;
8555
8556  EVT VT = InVec.getValueType();
8557
8558  // If we can't generate a legal BUILD_VECTOR, exit
8559  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8560    return SDValue();
8561
8562  // Check that we know which element is being inserted
8563  if (!isa<ConstantSDNode>(EltNo))
8564    return SDValue();
8565  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8566
8567  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8568  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8569  // vector elements.
8570  SmallVector<SDValue, 8> Ops;
8571  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8572    Ops.append(InVec.getNode()->op_begin(),
8573               InVec.getNode()->op_end());
8574  } else if (InVec.getOpcode() == ISD::UNDEF) {
8575    unsigned NElts = VT.getVectorNumElements();
8576    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8577  } else {
8578    return SDValue();
8579  }
8580
8581  // Insert the element
8582  if (Elt < Ops.size()) {
8583    // All the operands of BUILD_VECTOR must have the same type;
8584    // we enforce that here.
8585    EVT OpVT = Ops[0].getValueType();
8586    if (InVal.getValueType() != OpVT)
8587      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8588                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8589                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8590    Ops[Elt] = InVal;
8591  }
8592
8593  // Return the new vector
8594  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8595                     VT, &Ops[0], Ops.size());
8596}
8597
8598SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8599  // (vextract (scalar_to_vector val, 0) -> val
8600  SDValue InVec = N->getOperand(0);
8601  EVT VT = InVec.getValueType();
8602  EVT NVT = N->getValueType(0);
8603
8604  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8605    // Check if the result type doesn't match the inserted element type. A
8606    // SCALAR_TO_VECTOR may truncate the inserted element and the
8607    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8608    SDValue InOp = InVec.getOperand(0);
8609    if (InOp.getValueType() != NVT) {
8610      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8611      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8612    }
8613    return InOp;
8614  }
8615
8616  SDValue EltNo = N->getOperand(1);
8617  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8618
8619  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8620  // We only perform this optimization before the op legalization phase because
8621  // we may introduce new vector instructions which are not backed by TD
8622  // patterns. For example on AVX, extracting elements from a wide vector
8623  // without using extract_subvector.
8624  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8625      && ConstEltNo && !LegalOperations) {
8626    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8627    int NumElem = VT.getVectorNumElements();
8628    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8629    // Find the new index to extract from.
8630    int OrigElt = SVOp->getMaskElt(Elt);
8631
8632    // Extracting an undef index is undef.
8633    if (OrigElt == -1)
8634      return DAG.getUNDEF(NVT);
8635
8636    // Select the right vector half to extract from.
8637    if (OrigElt < NumElem) {
8638      InVec = InVec->getOperand(0);
8639    } else {
8640      InVec = InVec->getOperand(1);
8641      OrigElt -= NumElem;
8642    }
8643
8644    EVT IndexTy = N->getOperand(1).getValueType();
8645    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8646                       InVec, DAG.getConstant(OrigElt, IndexTy));
8647  }
8648
8649  // Perform only after legalization to ensure build_vector / vector_shuffle
8650  // optimizations have already been done.
8651  if (!LegalOperations) return SDValue();
8652
8653  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8654  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8655  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8656
8657  if (ConstEltNo) {
8658    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8659    bool NewLoad = false;
8660    bool BCNumEltsChanged = false;
8661    EVT ExtVT = VT.getVectorElementType();
8662    EVT LVT = ExtVT;
8663
8664    // If the result of load has to be truncated, then it's not necessarily
8665    // profitable.
8666    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8667      return SDValue();
8668
8669    if (InVec.getOpcode() == ISD::BITCAST) {
8670      // Don't duplicate a load with other uses.
8671      if (!InVec.hasOneUse())
8672        return SDValue();
8673
8674      EVT BCVT = InVec.getOperand(0).getValueType();
8675      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8676        return SDValue();
8677      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8678        BCNumEltsChanged = true;
8679      InVec = InVec.getOperand(0);
8680      ExtVT = BCVT.getVectorElementType();
8681      NewLoad = true;
8682    }
8683
8684    LoadSDNode *LN0 = NULL;
8685    const ShuffleVectorSDNode *SVN = NULL;
8686    if (ISD::isNormalLoad(InVec.getNode())) {
8687      LN0 = cast<LoadSDNode>(InVec);
8688    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8689               InVec.getOperand(0).getValueType() == ExtVT &&
8690               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8691      // Don't duplicate a load with other uses.
8692      if (!InVec.hasOneUse())
8693        return SDValue();
8694
8695      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8696    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8697      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8698      // =>
8699      // (load $addr+1*size)
8700
8701      // Don't duplicate a load with other uses.
8702      if (!InVec.hasOneUse())
8703        return SDValue();
8704
8705      // If the bit convert changed the number of elements, it is unsafe
8706      // to examine the mask.
8707      if (BCNumEltsChanged)
8708        return SDValue();
8709
8710      // Select the input vector, guarding against out of range extract vector.
8711      unsigned NumElems = VT.getVectorNumElements();
8712      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8713      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8714
8715      if (InVec.getOpcode() == ISD::BITCAST) {
8716        // Don't duplicate a load with other uses.
8717        if (!InVec.hasOneUse())
8718          return SDValue();
8719
8720        InVec = InVec.getOperand(0);
8721      }
8722      if (ISD::isNormalLoad(InVec.getNode())) {
8723        LN0 = cast<LoadSDNode>(InVec);
8724        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8725      }
8726    }
8727
8728    // Make sure we found a non-volatile load and the extractelement is
8729    // the only use.
8730    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8731      return SDValue();
8732
8733    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8734    if (Elt == -1)
8735      return DAG.getUNDEF(LVT);
8736
8737    unsigned Align = LN0->getAlignment();
8738    if (NewLoad) {
8739      // Check the resultant load doesn't need a higher alignment than the
8740      // original load.
8741      unsigned NewAlign =
8742        TLI.getDataLayout()
8743            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8744
8745      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8746        return SDValue();
8747
8748      Align = NewAlign;
8749    }
8750
8751    SDValue NewPtr = LN0->getBasePtr();
8752    unsigned PtrOff = 0;
8753
8754    if (Elt) {
8755      PtrOff = LVT.getSizeInBits() * Elt / 8;
8756      EVT PtrType = NewPtr.getValueType();
8757      if (TLI.isBigEndian())
8758        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8759      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8760                           DAG.getConstant(PtrOff, PtrType));
8761    }
8762
8763    // The replacement we need to do here is a little tricky: we need to
8764    // replace an extractelement of a load with a load.
8765    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8766    // Note that this replacement assumes that the extractvalue is the only
8767    // use of the load; that's okay because we don't want to perform this
8768    // transformation in other cases anyway.
8769    SDValue Load;
8770    SDValue Chain;
8771    if (NVT.bitsGT(LVT)) {
8772      // If the result type of vextract is wider than the load, then issue an
8773      // extending load instead.
8774      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8775        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8776      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8777                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8778                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8779      Chain = Load.getValue(1);
8780    } else {
8781      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8782                         LN0->getPointerInfo().getWithOffset(PtrOff),
8783                         LN0->isVolatile(), LN0->isNonTemporal(),
8784                         LN0->isInvariant(), Align);
8785      Chain = Load.getValue(1);
8786      if (NVT.bitsLT(LVT))
8787        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8788      else
8789        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8790    }
8791    WorkListRemover DeadNodes(*this);
8792    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8793    SDValue To[] = { Load, Chain };
8794    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8795    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8796    // worklist explicitly as well.
8797    AddToWorkList(Load.getNode());
8798    AddUsersToWorkList(Load.getNode()); // Add users too
8799    // Make sure to revisit this node to clean it up; it will usually be dead.
8800    AddToWorkList(N);
8801    return SDValue(N, 0);
8802  }
8803
8804  return SDValue();
8805}
8806
8807// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8808SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8809  // We perform this optimization post type-legalization because
8810  // the type-legalizer often scalarizes integer-promoted vectors.
8811  // Performing this optimization before may create bit-casts which
8812  // will be type-legalized to complex code sequences.
8813  // We perform this optimization only before the operation legalizer because we
8814  // may introduce illegal operations.
8815  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8816    return SDValue();
8817
8818  unsigned NumInScalars = N->getNumOperands();
8819  DebugLoc dl = N->getDebugLoc();
8820  EVT VT = N->getValueType(0);
8821
8822  // Check to see if this is a BUILD_VECTOR of a bunch of values
8823  // which come from any_extend or zero_extend nodes. If so, we can create
8824  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8825  // optimizations. We do not handle sign-extend because we can't fill the sign
8826  // using shuffles.
8827  EVT SourceType = MVT::Other;
8828  bool AllAnyExt = true;
8829
8830  for (unsigned i = 0; i != NumInScalars; ++i) {
8831    SDValue In = N->getOperand(i);
8832    // Ignore undef inputs.
8833    if (In.getOpcode() == ISD::UNDEF) continue;
8834
8835    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8836    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8837
8838    // Abort if the element is not an extension.
8839    if (!ZeroExt && !AnyExt) {
8840      SourceType = MVT::Other;
8841      break;
8842    }
8843
8844    // The input is a ZeroExt or AnyExt. Check the original type.
8845    EVT InTy = In.getOperand(0).getValueType();
8846
8847    // Check that all of the widened source types are the same.
8848    if (SourceType == MVT::Other)
8849      // First time.
8850      SourceType = InTy;
8851    else if (InTy != SourceType) {
8852      // Multiple income types. Abort.
8853      SourceType = MVT::Other;
8854      break;
8855    }
8856
8857    // Check if all of the extends are ANY_EXTENDs.
8858    AllAnyExt &= AnyExt;
8859  }
8860
8861  // In order to have valid types, all of the inputs must be extended from the
8862  // same source type and all of the inputs must be any or zero extend.
8863  // Scalar sizes must be a power of two.
8864  EVT OutScalarTy = VT.getScalarType();
8865  bool ValidTypes = SourceType != MVT::Other &&
8866                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8867                 isPowerOf2_32(SourceType.getSizeInBits());
8868
8869  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8870  // turn into a single shuffle instruction.
8871  if (!ValidTypes)
8872    return SDValue();
8873
8874  bool isLE = TLI.isLittleEndian();
8875  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8876  assert(ElemRatio > 1 && "Invalid element size ratio");
8877  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8878                               DAG.getConstant(0, SourceType);
8879
8880  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8881  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8882
8883  // Populate the new build_vector
8884  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8885    SDValue Cast = N->getOperand(i);
8886    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8887            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8888            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8889    SDValue In;
8890    if (Cast.getOpcode() == ISD::UNDEF)
8891      In = DAG.getUNDEF(SourceType);
8892    else
8893      In = Cast->getOperand(0);
8894    unsigned Index = isLE ? (i * ElemRatio) :
8895                            (i * ElemRatio + (ElemRatio - 1));
8896
8897    assert(Index < Ops.size() && "Invalid index");
8898    Ops[Index] = In;
8899  }
8900
8901  // The type of the new BUILD_VECTOR node.
8902  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8903  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8904         "Invalid vector size");
8905  // Check if the new vector type is legal.
8906  if (!isTypeLegal(VecVT)) return SDValue();
8907
8908  // Make the new BUILD_VECTOR.
8909  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8910
8911  // The new BUILD_VECTOR node has the potential to be further optimized.
8912  AddToWorkList(BV.getNode());
8913  // Bitcast to the desired type.
8914  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8915}
8916
8917SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8918  EVT VT = N->getValueType(0);
8919
8920  unsigned NumInScalars = N->getNumOperands();
8921  DebugLoc dl = N->getDebugLoc();
8922
8923  EVT SrcVT = MVT::Other;
8924  unsigned Opcode = ISD::DELETED_NODE;
8925  unsigned NumDefs = 0;
8926
8927  for (unsigned i = 0; i != NumInScalars; ++i) {
8928    SDValue In = N->getOperand(i);
8929    unsigned Opc = In.getOpcode();
8930
8931    if (Opc == ISD::UNDEF)
8932      continue;
8933
8934    // If all scalar values are floats and converted from integers.
8935    if (Opcode == ISD::DELETED_NODE &&
8936        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8937      Opcode = Opc;
8938    }
8939
8940    if (Opc != Opcode)
8941      return SDValue();
8942
8943    EVT InVT = In.getOperand(0).getValueType();
8944
8945    // If all scalar values are typed differently, bail out. It's chosen to
8946    // simplify BUILD_VECTOR of integer types.
8947    if (SrcVT == MVT::Other)
8948      SrcVT = InVT;
8949    if (SrcVT != InVT)
8950      return SDValue();
8951    NumDefs++;
8952  }
8953
8954  // If the vector has just one element defined, it's not worth to fold it into
8955  // a vectorized one.
8956  if (NumDefs < 2)
8957    return SDValue();
8958
8959  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8960         && "Should only handle conversion from integer to float.");
8961  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8962
8963  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8964
8965  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
8966    return SDValue();
8967
8968  SmallVector<SDValue, 8> Opnds;
8969  for (unsigned i = 0; i != NumInScalars; ++i) {
8970    SDValue In = N->getOperand(i);
8971
8972    if (In.getOpcode() == ISD::UNDEF)
8973      Opnds.push_back(DAG.getUNDEF(SrcVT));
8974    else
8975      Opnds.push_back(In.getOperand(0));
8976  }
8977  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8978                           &Opnds[0], Opnds.size());
8979  AddToWorkList(BV.getNode());
8980
8981  return DAG.getNode(Opcode, dl, VT, BV);
8982}
8983
8984SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8985  unsigned NumInScalars = N->getNumOperands();
8986  DebugLoc dl = N->getDebugLoc();
8987  EVT VT = N->getValueType(0);
8988
8989  // A vector built entirely of undefs is undef.
8990  if (ISD::allOperandsUndef(N))
8991    return DAG.getUNDEF(VT);
8992
8993  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8994  if (V.getNode())
8995    return V;
8996
8997  V = reduceBuildVecConvertToConvertBuildVec(N);
8998  if (V.getNode())
8999    return V;
9000
9001  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9002  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9003  // at most two distinct vectors, turn this into a shuffle node.
9004
9005  // May only combine to shuffle after legalize if shuffle is legal.
9006  if (LegalOperations &&
9007      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9008    return SDValue();
9009
9010  SDValue VecIn1, VecIn2;
9011  for (unsigned i = 0; i != NumInScalars; ++i) {
9012    // Ignore undef inputs.
9013    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9014
9015    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9016    // constant index, bail out.
9017    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9018        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9019      VecIn1 = VecIn2 = SDValue(0, 0);
9020      break;
9021    }
9022
9023    // We allow up to two distinct input vectors.
9024    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9025    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9026      continue;
9027
9028    if (VecIn1.getNode() == 0) {
9029      VecIn1 = ExtractedFromVec;
9030    } else if (VecIn2.getNode() == 0) {
9031      VecIn2 = ExtractedFromVec;
9032    } else {
9033      // Too many inputs.
9034      VecIn1 = VecIn2 = SDValue(0, 0);
9035      break;
9036    }
9037  }
9038
9039    // If everything is good, we can make a shuffle operation.
9040  if (VecIn1.getNode()) {
9041    SmallVector<int, 8> Mask;
9042    for (unsigned i = 0; i != NumInScalars; ++i) {
9043      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9044        Mask.push_back(-1);
9045        continue;
9046      }
9047
9048      // If extracting from the first vector, just use the index directly.
9049      SDValue Extract = N->getOperand(i);
9050      SDValue ExtVal = Extract.getOperand(1);
9051      if (Extract.getOperand(0) == VecIn1) {
9052        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9053        if (ExtIndex > VT.getVectorNumElements())
9054          return SDValue();
9055
9056        Mask.push_back(ExtIndex);
9057        continue;
9058      }
9059
9060      // Otherwise, use InIdx + VecSize
9061      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9062      Mask.push_back(Idx+NumInScalars);
9063    }
9064
9065    // We can't generate a shuffle node with mismatched input and output types.
9066    // Attempt to transform a single input vector to the correct type.
9067    if ((VT != VecIn1.getValueType())) {
9068      // We don't support shuffeling between TWO values of different types.
9069      if (VecIn2.getNode() != 0)
9070        return SDValue();
9071
9072      // We only support widening of vectors which are half the size of the
9073      // output registers. For example XMM->YMM widening on X86 with AVX.
9074      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9075        return SDValue();
9076
9077      // If the input vector type has a different base type to the output
9078      // vector type, bail out.
9079      if (VecIn1.getValueType().getVectorElementType() !=
9080          VT.getVectorElementType())
9081        return SDValue();
9082
9083      // Widen the input vector by adding undef values.
9084      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9085                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9086    }
9087
9088    // If VecIn2 is unused then change it to undef.
9089    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9090
9091    // Check that we were able to transform all incoming values to the same
9092    // type.
9093    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9094        VecIn1.getValueType() != VT)
9095          return SDValue();
9096
9097    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9098    if (!isTypeLegal(VT))
9099      return SDValue();
9100
9101    // Return the new VECTOR_SHUFFLE node.
9102    SDValue Ops[2];
9103    Ops[0] = VecIn1;
9104    Ops[1] = VecIn2;
9105    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9106  }
9107
9108  return SDValue();
9109}
9110
9111SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9112  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9113  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9114  // inputs come from at most two distinct vectors, turn this into a shuffle
9115  // node.
9116
9117  // If we only have one input vector, we don't need to do any concatenation.
9118  if (N->getNumOperands() == 1)
9119    return N->getOperand(0);
9120
9121  // Check if all of the operands are undefs.
9122  if (ISD::allOperandsUndef(N))
9123    return DAG.getUNDEF(N->getValueType(0));
9124
9125  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9126  // nodes often generate nop CONCAT_VECTOR nodes.
9127  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9128  // place the incoming vectors at the exact same location.
9129  SDValue SingleSource = SDValue();
9130  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9131
9132  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9133    SDValue Op = N->getOperand(i);
9134
9135    if (Op.getOpcode() == ISD::UNDEF)
9136      continue;
9137
9138    // Check if this is the identity extract:
9139    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9140      return SDValue();
9141
9142    // Find the single incoming vector for the extract_subvector.
9143    if (SingleSource.getNode()) {
9144      if (Op.getOperand(0) != SingleSource)
9145        return SDValue();
9146    } else {
9147      SingleSource = Op.getOperand(0);
9148    }
9149
9150    unsigned IdentityIndex = i * PartNumElem;
9151    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9152    // The extract index must be constant.
9153    if (!CS)
9154      return SDValue();
9155
9156    // Check that we are reading from the identity index.
9157    if (CS->getZExtValue() != IdentityIndex)
9158      return SDValue();
9159  }
9160
9161  if (SingleSource.getNode())
9162    return SingleSource;
9163
9164  return SDValue();
9165}
9166
9167SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9168  EVT NVT = N->getValueType(0);
9169  SDValue V = N->getOperand(0);
9170
9171  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9172    // Combine:
9173    //    (extract_subvec (concat V1, V2, ...), i)
9174    // Into:
9175    //    Vi if possible
9176    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9177    if (V->getOperand(0).getValueType() != NVT)
9178      return SDValue();
9179    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9180    unsigned NumElems = NVT.getVectorNumElements();
9181    assert((Idx % NumElems) == 0 &&
9182           "IDX in concat is not a multiple of the result vector length.");
9183    return V->getOperand(Idx / NumElems);
9184  }
9185
9186  // Skip bitcasting
9187  if (V->getOpcode() == ISD::BITCAST)
9188    V = V.getOperand(0);
9189
9190  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9191    DebugLoc dl = N->getDebugLoc();
9192    // Handle only simple case where vector being inserted and vector
9193    // being extracted are of same type, and are half size of larger vectors.
9194    EVT BigVT = V->getOperand(0).getValueType();
9195    EVT SmallVT = V->getOperand(1).getValueType();
9196    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9197      return SDValue();
9198
9199    // Only handle cases where both indexes are constants with the same type.
9200    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9201    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9202
9203    if (InsIdx && ExtIdx &&
9204        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9205        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9206      // Combine:
9207      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9208      // Into:
9209      //    indices are equal or bit offsets are equal => V1
9210      //    otherwise => (extract_subvec V1, ExtIdx)
9211      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9212          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9213        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9214      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9215                         DAG.getNode(ISD::BITCAST, dl,
9216                                     N->getOperand(0).getValueType(),
9217                                     V->getOperand(0)), N->getOperand(1));
9218    }
9219  }
9220
9221  return SDValue();
9222}
9223
9224// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9225static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9226  EVT VT = N->getValueType(0);
9227  unsigned NumElts = VT.getVectorNumElements();
9228
9229  SDValue N0 = N->getOperand(0);
9230  SDValue N1 = N->getOperand(1);
9231  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9232
9233  SmallVector<SDValue, 4> Ops;
9234  EVT ConcatVT = N0.getOperand(0).getValueType();
9235  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9236  unsigned NumConcats = NumElts / NumElemsPerConcat;
9237
9238  // Look at every vector that's inserted. We're looking for exact
9239  // subvector-sized copies from a concatenated vector
9240  for (unsigned I = 0; I != NumConcats; ++I) {
9241    // Make sure we're dealing with a copy.
9242    unsigned Begin = I * NumElemsPerConcat;
9243    if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
9244      return SDValue();
9245
9246    for (unsigned J = 1; J != NumElemsPerConcat; ++J) {
9247      if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
9248        return SDValue();
9249    }
9250
9251    unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
9252    if (FirstElt < N0.getNumOperands())
9253      Ops.push_back(N0.getOperand(FirstElt));
9254    else
9255      Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
9256  }
9257
9258  return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT, Ops.data(),
9259                     Ops.size());
9260}
9261
9262SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9263  EVT VT = N->getValueType(0);
9264  unsigned NumElts = VT.getVectorNumElements();
9265
9266  SDValue N0 = N->getOperand(0);
9267  SDValue N1 = N->getOperand(1);
9268
9269  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9270
9271  // Canonicalize shuffle undef, undef -> undef
9272  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9273    return DAG.getUNDEF(VT);
9274
9275  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9276
9277  // Canonicalize shuffle v, v -> v, undef
9278  if (N0 == N1) {
9279    SmallVector<int, 8> NewMask;
9280    for (unsigned i = 0; i != NumElts; ++i) {
9281      int Idx = SVN->getMaskElt(i);
9282      if (Idx >= (int)NumElts) Idx -= NumElts;
9283      NewMask.push_back(Idx);
9284    }
9285    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
9286                                &NewMask[0]);
9287  }
9288
9289  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9290  if (N0.getOpcode() == ISD::UNDEF) {
9291    SmallVector<int, 8> NewMask;
9292    for (unsigned i = 0; i != NumElts; ++i) {
9293      int Idx = SVN->getMaskElt(i);
9294      if (Idx >= 0) {
9295        if (Idx < (int)NumElts)
9296          Idx += NumElts;
9297        else
9298          Idx -= NumElts;
9299      }
9300      NewMask.push_back(Idx);
9301    }
9302    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
9303                                &NewMask[0]);
9304  }
9305
9306  // Remove references to rhs if it is undef
9307  if (N1.getOpcode() == ISD::UNDEF) {
9308    bool Changed = false;
9309    SmallVector<int, 8> NewMask;
9310    for (unsigned i = 0; i != NumElts; ++i) {
9311      int Idx = SVN->getMaskElt(i);
9312      if (Idx >= (int)NumElts) {
9313        Idx = -1;
9314        Changed = true;
9315      }
9316      NewMask.push_back(Idx);
9317    }
9318    if (Changed)
9319      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
9320  }
9321
9322  // If it is a splat, check if the argument vector is another splat or a
9323  // build_vector with all scalar elements the same.
9324  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9325    SDNode *V = N0.getNode();
9326
9327    // If this is a bit convert that changes the element type of the vector but
9328    // not the number of vector elements, look through it.  Be careful not to
9329    // look though conversions that change things like v4f32 to v2f64.
9330    if (V->getOpcode() == ISD::BITCAST) {
9331      SDValue ConvInput = V->getOperand(0);
9332      if (ConvInput.getValueType().isVector() &&
9333          ConvInput.getValueType().getVectorNumElements() == NumElts)
9334        V = ConvInput.getNode();
9335    }
9336
9337    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9338      assert(V->getNumOperands() == NumElts &&
9339             "BUILD_VECTOR has wrong number of operands");
9340      SDValue Base;
9341      bool AllSame = true;
9342      for (unsigned i = 0; i != NumElts; ++i) {
9343        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9344          Base = V->getOperand(i);
9345          break;
9346        }
9347      }
9348      // Splat of <u, u, u, u>, return <u, u, u, u>
9349      if (!Base.getNode())
9350        return N0;
9351      for (unsigned i = 0; i != NumElts; ++i) {
9352        if (V->getOperand(i) != Base) {
9353          AllSame = false;
9354          break;
9355        }
9356      }
9357      // Splat of <x, x, x, x>, return <x, x, x, x>
9358      if (AllSame)
9359        return N0;
9360    }
9361  }
9362
9363  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
9364      Level < AfterLegalizeVectorOps &&
9365      (N1.getOpcode() == ISD::UNDEF ||
9366      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
9367       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
9368    SDValue V = partitionShuffleOfConcats(N, DAG);
9369
9370    if (V.getNode())
9371      return V;
9372  }
9373
9374  // If this shuffle node is simply a swizzle of another shuffle node,
9375  // and it reverses the swizzle of the previous shuffle then we can
9376  // optimize shuffle(shuffle(x, undef), undef) -> x.
9377  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9378      N1.getOpcode() == ISD::UNDEF) {
9379
9380    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9381
9382    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9383    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9384      return SDValue();
9385
9386    // The incoming shuffle must be of the same type as the result of the
9387    // current shuffle.
9388    assert(OtherSV->getOperand(0).getValueType() == VT &&
9389           "Shuffle types don't match");
9390
9391    for (unsigned i = 0; i != NumElts; ++i) {
9392      int Idx = SVN->getMaskElt(i);
9393      assert(Idx < (int)NumElts && "Index references undef operand");
9394      // Next, this index comes from the first value, which is the incoming
9395      // shuffle. Adopt the incoming index.
9396      if (Idx >= 0)
9397        Idx = OtherSV->getMaskElt(Idx);
9398
9399      // The combined shuffle must map each index to itself.
9400      if (Idx >= 0 && (unsigned)Idx != i)
9401        return SDValue();
9402    }
9403
9404    return OtherSV->getOperand(0);
9405  }
9406
9407  return SDValue();
9408}
9409
9410/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9411/// an AND to a vector_shuffle with the destination vector and a zero vector.
9412/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9413///      vector_shuffle V, Zero, <0, 4, 2, 4>
9414SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9415  EVT VT = N->getValueType(0);
9416  DebugLoc dl = N->getDebugLoc();
9417  SDValue LHS = N->getOperand(0);
9418  SDValue RHS = N->getOperand(1);
9419  if (N->getOpcode() == ISD::AND) {
9420    if (RHS.getOpcode() == ISD::BITCAST)
9421      RHS = RHS.getOperand(0);
9422    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9423      SmallVector<int, 8> Indices;
9424      unsigned NumElts = RHS.getNumOperands();
9425      for (unsigned i = 0; i != NumElts; ++i) {
9426        SDValue Elt = RHS.getOperand(i);
9427        if (!isa<ConstantSDNode>(Elt))
9428          return SDValue();
9429
9430        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9431          Indices.push_back(i);
9432        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9433          Indices.push_back(NumElts);
9434        else
9435          return SDValue();
9436      }
9437
9438      // Let's see if the target supports this vector_shuffle.
9439      EVT RVT = RHS.getValueType();
9440      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9441        return SDValue();
9442
9443      // Return the new VECTOR_SHUFFLE node.
9444      EVT EltVT = RVT.getVectorElementType();
9445      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9446                                     DAG.getConstant(0, EltVT));
9447      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9448                                 RVT, &ZeroOps[0], ZeroOps.size());
9449      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9450      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9451      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9452    }
9453  }
9454
9455  return SDValue();
9456}
9457
9458/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9459SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9460  assert(N->getValueType(0).isVector() &&
9461         "SimplifyVBinOp only works on vectors!");
9462
9463  SDValue LHS = N->getOperand(0);
9464  SDValue RHS = N->getOperand(1);
9465  SDValue Shuffle = XformToShuffleWithZero(N);
9466  if (Shuffle.getNode()) return Shuffle;
9467
9468  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9469  // this operation.
9470  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9471      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9472    SmallVector<SDValue, 8> Ops;
9473    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9474      SDValue LHSOp = LHS.getOperand(i);
9475      SDValue RHSOp = RHS.getOperand(i);
9476      // If these two elements can't be folded, bail out.
9477      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9478           LHSOp.getOpcode() != ISD::Constant &&
9479           LHSOp.getOpcode() != ISD::ConstantFP) ||
9480          (RHSOp.getOpcode() != ISD::UNDEF &&
9481           RHSOp.getOpcode() != ISD::Constant &&
9482           RHSOp.getOpcode() != ISD::ConstantFP))
9483        break;
9484
9485      // Can't fold divide by zero.
9486      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9487          N->getOpcode() == ISD::FDIV) {
9488        if ((RHSOp.getOpcode() == ISD::Constant &&
9489             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9490            (RHSOp.getOpcode() == ISD::ConstantFP &&
9491             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9492          break;
9493      }
9494
9495      EVT VT = LHSOp.getValueType();
9496      EVT RVT = RHSOp.getValueType();
9497      if (RVT != VT) {
9498        // Integer BUILD_VECTOR operands may have types larger than the element
9499        // size (e.g., when the element type is not legal).  Prior to type
9500        // legalization, the types may not match between the two BUILD_VECTORS.
9501        // Truncate one of the operands to make them match.
9502        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9503          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9504        } else {
9505          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9506          VT = RVT;
9507        }
9508      }
9509      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9510                                   LHSOp, RHSOp);
9511      if (FoldOp.getOpcode() != ISD::UNDEF &&
9512          FoldOp.getOpcode() != ISD::Constant &&
9513          FoldOp.getOpcode() != ISD::ConstantFP)
9514        break;
9515      Ops.push_back(FoldOp);
9516      AddToWorkList(FoldOp.getNode());
9517    }
9518
9519    if (Ops.size() == LHS.getNumOperands())
9520      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9521                         LHS.getValueType(), &Ops[0], Ops.size());
9522  }
9523
9524  return SDValue();
9525}
9526
9527/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9528SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9529  assert(N->getValueType(0).isVector() &&
9530         "SimplifyVUnaryOp only works on vectors!");
9531
9532  SDValue N0 = N->getOperand(0);
9533
9534  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9535    return SDValue();
9536
9537  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9538  SmallVector<SDValue, 8> Ops;
9539  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9540    SDValue Op = N0.getOperand(i);
9541    if (Op.getOpcode() != ISD::UNDEF &&
9542        Op.getOpcode() != ISD::ConstantFP)
9543      break;
9544    EVT EltVT = Op.getValueType();
9545    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9546    if (FoldOp.getOpcode() != ISD::UNDEF &&
9547        FoldOp.getOpcode() != ISD::ConstantFP)
9548      break;
9549    Ops.push_back(FoldOp);
9550    AddToWorkList(FoldOp.getNode());
9551  }
9552
9553  if (Ops.size() != N0.getNumOperands())
9554    return SDValue();
9555
9556  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9557                     N0.getValueType(), &Ops[0], Ops.size());
9558}
9559
9560SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9561                                    SDValue N1, SDValue N2){
9562  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9563
9564  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9565                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9566
9567  // If we got a simplified select_cc node back from SimplifySelectCC, then
9568  // break it down into a new SETCC node, and a new SELECT node, and then return
9569  // the SELECT node, since we were called with a SELECT node.
9570  if (SCC.getNode()) {
9571    // Check to see if we got a select_cc back (to turn into setcc/select).
9572    // Otherwise, just return whatever node we got back, like fabs.
9573    if (SCC.getOpcode() == ISD::SELECT_CC) {
9574      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9575                                  N0.getValueType(),
9576                                  SCC.getOperand(0), SCC.getOperand(1),
9577                                  SCC.getOperand(4));
9578      AddToWorkList(SETCC.getNode());
9579      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9580                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9581    }
9582
9583    return SCC;
9584  }
9585  return SDValue();
9586}
9587
9588/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9589/// are the two values being selected between, see if we can simplify the
9590/// select.  Callers of this should assume that TheSelect is deleted if this
9591/// returns true.  As such, they should return the appropriate thing (e.g. the
9592/// node) back to the top-level of the DAG combiner loop to avoid it being
9593/// looked at.
9594bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9595                                    SDValue RHS) {
9596
9597  // Cannot simplify select with vector condition
9598  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9599
9600  // If this is a select from two identical things, try to pull the operation
9601  // through the select.
9602  if (LHS.getOpcode() != RHS.getOpcode() ||
9603      !LHS.hasOneUse() || !RHS.hasOneUse())
9604    return false;
9605
9606  // If this is a load and the token chain is identical, replace the select
9607  // of two loads with a load through a select of the address to load from.
9608  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9609  // constants have been dropped into the constant pool.
9610  if (LHS.getOpcode() == ISD::LOAD) {
9611    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9612    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9613
9614    // Token chains must be identical.
9615    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9616        // Do not let this transformation reduce the number of volatile loads.
9617        LLD->isVolatile() || RLD->isVolatile() ||
9618        // If this is an EXTLOAD, the VT's must match.
9619        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9620        // If this is an EXTLOAD, the kind of extension must match.
9621        (LLD->getExtensionType() != RLD->getExtensionType() &&
9622         // The only exception is if one of the extensions is anyext.
9623         LLD->getExtensionType() != ISD::EXTLOAD &&
9624         RLD->getExtensionType() != ISD::EXTLOAD) ||
9625        // FIXME: this discards src value information.  This is
9626        // over-conservative. It would be beneficial to be able to remember
9627        // both potential memory locations.  Since we are discarding
9628        // src value info, don't do the transformation if the memory
9629        // locations are not in the default address space.
9630        LLD->getPointerInfo().getAddrSpace() != 0 ||
9631        RLD->getPointerInfo().getAddrSpace() != 0 ||
9632        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9633                                      LLD->getBasePtr().getValueType()))
9634      return false;
9635
9636    // Check that the select condition doesn't reach either load.  If so,
9637    // folding this will induce a cycle into the DAG.  If not, this is safe to
9638    // xform, so create a select of the addresses.
9639    SDValue Addr;
9640    if (TheSelect->getOpcode() == ISD::SELECT) {
9641      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9642      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9643          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9644        return false;
9645      // The loads must not depend on one another.
9646      if (LLD->isPredecessorOf(RLD) ||
9647          RLD->isPredecessorOf(LLD))
9648        return false;
9649      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9650                         LLD->getBasePtr().getValueType(),
9651                         TheSelect->getOperand(0), LLD->getBasePtr(),
9652                         RLD->getBasePtr());
9653    } else {  // Otherwise SELECT_CC
9654      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9655      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9656
9657      if ((LLD->hasAnyUseOfValue(1) &&
9658           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9659          (RLD->hasAnyUseOfValue(1) &&
9660           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9661        return false;
9662
9663      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9664                         LLD->getBasePtr().getValueType(),
9665                         TheSelect->getOperand(0),
9666                         TheSelect->getOperand(1),
9667                         LLD->getBasePtr(), RLD->getBasePtr(),
9668                         TheSelect->getOperand(4));
9669    }
9670
9671    SDValue Load;
9672    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9673      Load = DAG.getLoad(TheSelect->getValueType(0),
9674                         TheSelect->getDebugLoc(),
9675                         // FIXME: Discards pointer info.
9676                         LLD->getChain(), Addr, MachinePointerInfo(),
9677                         LLD->isVolatile(), LLD->isNonTemporal(),
9678                         LLD->isInvariant(), LLD->getAlignment());
9679    } else {
9680      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9681                            RLD->getExtensionType() : LLD->getExtensionType(),
9682                            TheSelect->getDebugLoc(),
9683                            TheSelect->getValueType(0),
9684                            // FIXME: Discards pointer info.
9685                            LLD->getChain(), Addr, MachinePointerInfo(),
9686                            LLD->getMemoryVT(), LLD->isVolatile(),
9687                            LLD->isNonTemporal(), LLD->getAlignment());
9688    }
9689
9690    // Users of the select now use the result of the load.
9691    CombineTo(TheSelect, Load);
9692
9693    // Users of the old loads now use the new load's chain.  We know the
9694    // old-load value is dead now.
9695    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9696    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9697    return true;
9698  }
9699
9700  return false;
9701}
9702
9703/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9704/// where 'cond' is the comparison specified by CC.
9705SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9706                                      SDValue N2, SDValue N3,
9707                                      ISD::CondCode CC, bool NotExtCompare) {
9708  // (x ? y : y) -> y.
9709  if (N2 == N3) return N2;
9710
9711  EVT VT = N2.getValueType();
9712  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9713  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9714  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9715
9716  // Determine if the condition we're dealing with is constant
9717  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9718                              N0, N1, CC, DL, false);
9719  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9720  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9721
9722  // fold select_cc true, x, y -> x
9723  if (SCCC && !SCCC->isNullValue())
9724    return N2;
9725  // fold select_cc false, x, y -> y
9726  if (SCCC && SCCC->isNullValue())
9727    return N3;
9728
9729  // Check to see if we can simplify the select into an fabs node
9730  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9731    // Allow either -0.0 or 0.0
9732    if (CFP->getValueAPF().isZero()) {
9733      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9734      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9735          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9736          N2 == N3.getOperand(0))
9737        return DAG.getNode(ISD::FABS, DL, VT, N0);
9738
9739      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9740      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9741          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9742          N2.getOperand(0) == N3)
9743        return DAG.getNode(ISD::FABS, DL, VT, N3);
9744    }
9745  }
9746
9747  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9748  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9749  // in it.  This is a win when the constant is not otherwise available because
9750  // it replaces two constant pool loads with one.  We only do this if the FP
9751  // type is known to be legal, because if it isn't, then we are before legalize
9752  // types an we want the other legalization to happen first (e.g. to avoid
9753  // messing with soft float) and if the ConstantFP is not legal, because if
9754  // it is legal, we may not need to store the FP constant in a constant pool.
9755  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9756    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9757      if (TLI.isTypeLegal(N2.getValueType()) &&
9758          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9759           TargetLowering::Legal) &&
9760          // If both constants have multiple uses, then we won't need to do an
9761          // extra load, they are likely around in registers for other users.
9762          (TV->hasOneUse() || FV->hasOneUse())) {
9763        Constant *Elts[] = {
9764          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9765          const_cast<ConstantFP*>(TV->getConstantFPValue())
9766        };
9767        Type *FPTy = Elts[0]->getType();
9768        const DataLayout &TD = *TLI.getDataLayout();
9769
9770        // Create a ConstantArray of the two constants.
9771        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9772        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9773                                            TD.getPrefTypeAlignment(FPTy));
9774        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9775
9776        // Get the offsets to the 0 and 1 element of the array so that we can
9777        // select between them.
9778        SDValue Zero = DAG.getIntPtrConstant(0);
9779        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9780        SDValue One = DAG.getIntPtrConstant(EltSize);
9781
9782        SDValue Cond = DAG.getSetCC(DL,
9783                                    TLI.getSetCCResultType(N0.getValueType()),
9784                                    N0, N1, CC);
9785        AddToWorkList(Cond.getNode());
9786        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9787                                        Cond, One, Zero);
9788        AddToWorkList(CstOffset.getNode());
9789        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9790                            CstOffset);
9791        AddToWorkList(CPIdx.getNode());
9792        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9793                           MachinePointerInfo::getConstantPool(), false,
9794                           false, false, Alignment);
9795
9796      }
9797    }
9798
9799  // Check to see if we can perform the "gzip trick", transforming
9800  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9801  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9802      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9803       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9804    EVT XType = N0.getValueType();
9805    EVT AType = N2.getValueType();
9806    if (XType.bitsGE(AType)) {
9807      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9808      // single-bit constant.
9809      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9810        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9811        ShCtV = XType.getSizeInBits()-ShCtV-1;
9812        SDValue ShCt = DAG.getConstant(ShCtV,
9813                                       getShiftAmountTy(N0.getValueType()));
9814        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9815                                    XType, N0, ShCt);
9816        AddToWorkList(Shift.getNode());
9817
9818        if (XType.bitsGT(AType)) {
9819          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9820          AddToWorkList(Shift.getNode());
9821        }
9822
9823        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9824      }
9825
9826      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9827                                  XType, N0,
9828                                  DAG.getConstant(XType.getSizeInBits()-1,
9829                                         getShiftAmountTy(N0.getValueType())));
9830      AddToWorkList(Shift.getNode());
9831
9832      if (XType.bitsGT(AType)) {
9833        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9834        AddToWorkList(Shift.getNode());
9835      }
9836
9837      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9838    }
9839  }
9840
9841  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9842  // where y is has a single bit set.
9843  // A plaintext description would be, we can turn the SELECT_CC into an AND
9844  // when the condition can be materialized as an all-ones register.  Any
9845  // single bit-test can be materialized as an all-ones register with
9846  // shift-left and shift-right-arith.
9847  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9848      N0->getValueType(0) == VT &&
9849      N1C && N1C->isNullValue() &&
9850      N2C && N2C->isNullValue()) {
9851    SDValue AndLHS = N0->getOperand(0);
9852    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9853    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9854      // Shift the tested bit over the sign bit.
9855      APInt AndMask = ConstAndRHS->getAPIntValue();
9856      SDValue ShlAmt =
9857        DAG.getConstant(AndMask.countLeadingZeros(),
9858                        getShiftAmountTy(AndLHS.getValueType()));
9859      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9860
9861      // Now arithmetic right shift it all the way over, so the result is either
9862      // all-ones, or zero.
9863      SDValue ShrAmt =
9864        DAG.getConstant(AndMask.getBitWidth()-1,
9865                        getShiftAmountTy(Shl.getValueType()));
9866      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9867
9868      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9869    }
9870  }
9871
9872  // fold select C, 16, 0 -> shl C, 4
9873  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9874    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9875      TargetLowering::ZeroOrOneBooleanContent) {
9876
9877    // If the caller doesn't want us to simplify this into a zext of a compare,
9878    // don't do it.
9879    if (NotExtCompare && N2C->getAPIntValue() == 1)
9880      return SDValue();
9881
9882    // Get a SetCC of the condition
9883    // NOTE: Don't create a SETCC if it's not legal on this target.
9884    if (!LegalOperations ||
9885        TLI.isOperationLegal(ISD::SETCC,
9886          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9887      SDValue Temp, SCC;
9888      // cast from setcc result type to select result type
9889      if (LegalTypes) {
9890        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9891                            N0, N1, CC);
9892        if (N2.getValueType().bitsLT(SCC.getValueType()))
9893          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9894                                        N2.getValueType());
9895        else
9896          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9897                             N2.getValueType(), SCC);
9898      } else {
9899        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9900        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9901                           N2.getValueType(), SCC);
9902      }
9903
9904      AddToWorkList(SCC.getNode());
9905      AddToWorkList(Temp.getNode());
9906
9907      if (N2C->getAPIntValue() == 1)
9908        return Temp;
9909
9910      // shl setcc result by log2 n2c
9911      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9912                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9913                                         getShiftAmountTy(Temp.getValueType())));
9914    }
9915  }
9916
9917  // Check to see if this is the equivalent of setcc
9918  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9919  // otherwise, go ahead with the folds.
9920  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9921    EVT XType = N0.getValueType();
9922    if (!LegalOperations ||
9923        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9924      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9925      if (Res.getValueType() != VT)
9926        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9927      return Res;
9928    }
9929
9930    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9931    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9932        (!LegalOperations ||
9933         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9934      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9935      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9936                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9937                                       getShiftAmountTy(Ctlz.getValueType())));
9938    }
9939    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9940    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9941      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9942                                  XType, DAG.getConstant(0, XType), N0);
9943      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9944      return DAG.getNode(ISD::SRL, DL, XType,
9945                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9946                         DAG.getConstant(XType.getSizeInBits()-1,
9947                                         getShiftAmountTy(XType)));
9948    }
9949    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9950    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9951      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9952                                 DAG.getConstant(XType.getSizeInBits()-1,
9953                                         getShiftAmountTy(N0.getValueType())));
9954      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9955    }
9956  }
9957
9958  // Check to see if this is an integer abs.
9959  // select_cc setg[te] X,  0,  X, -X ->
9960  // select_cc setgt    X, -1,  X, -X ->
9961  // select_cc setl[te] X,  0, -X,  X ->
9962  // select_cc setlt    X,  1, -X,  X ->
9963  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9964  if (N1C) {
9965    ConstantSDNode *SubC = NULL;
9966    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9967         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9968        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9969      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9970    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9971              (N1C->isOne() && CC == ISD::SETLT)) &&
9972             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9973      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9974
9975    EVT XType = N0.getValueType();
9976    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9977      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9978                                  N0,
9979                                  DAG.getConstant(XType.getSizeInBits()-1,
9980                                         getShiftAmountTy(N0.getValueType())));
9981      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9982                                XType, N0, Shift);
9983      AddToWorkList(Shift.getNode());
9984      AddToWorkList(Add.getNode());
9985      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9986    }
9987  }
9988
9989  return SDValue();
9990}
9991
9992/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9993SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9994                                   SDValue N1, ISD::CondCode Cond,
9995                                   DebugLoc DL, bool foldBooleans) {
9996  TargetLowering::DAGCombinerInfo
9997    DagCombineInfo(DAG, Level, false, this);
9998  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9999}
10000
10001/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10002/// return a DAG expression to select that will generate the same value by
10003/// multiplying by a magic number.  See:
10004/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10005SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10006  std::vector<SDNode*> Built;
10007  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10008
10009  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10010       ii != ee; ++ii)
10011    AddToWorkList(*ii);
10012  return S;
10013}
10014
10015/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10016/// return a DAG expression to select that will generate the same value by
10017/// multiplying by a magic number.  See:
10018/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10019SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10020  std::vector<SDNode*> Built;
10021  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10022
10023  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10024       ii != ee; ++ii)
10025    AddToWorkList(*ii);
10026  return S;
10027}
10028
10029/// FindBaseOffset - Return true if base is a frame index, which is known not
10030// to alias with anything but itself.  Provides base object and offset as
10031// results.
10032static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10033                           const GlobalValue *&GV, const void *&CV) {
10034  // Assume it is a primitive operation.
10035  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10036
10037  // If it's an adding a simple constant then integrate the offset.
10038  if (Base.getOpcode() == ISD::ADD) {
10039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10040      Base = Base.getOperand(0);
10041      Offset += C->getZExtValue();
10042    }
10043  }
10044
10045  // Return the underlying GlobalValue, and update the Offset.  Return false
10046  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10047  // by multiple nodes with different offsets.
10048  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10049    GV = G->getGlobal();
10050    Offset += G->getOffset();
10051    return false;
10052  }
10053
10054  // Return the underlying Constant value, and update the Offset.  Return false
10055  // for ConstantSDNodes since the same constant pool entry may be represented
10056  // by multiple nodes with different offsets.
10057  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10058    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10059                                         : (const void *)C->getConstVal();
10060    Offset += C->getOffset();
10061    return false;
10062  }
10063  // If it's any of the following then it can't alias with anything but itself.
10064  return isa<FrameIndexSDNode>(Base);
10065}
10066
10067/// isAlias - Return true if there is any possibility that the two addresses
10068/// overlap.
10069bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
10070                          const Value *SrcValue1, int SrcValueOffset1,
10071                          unsigned SrcValueAlign1,
10072                          const MDNode *TBAAInfo1,
10073                          SDValue Ptr2, int64_t Size2,
10074                          const Value *SrcValue2, int SrcValueOffset2,
10075                          unsigned SrcValueAlign2,
10076                          const MDNode *TBAAInfo2) const {
10077  // If they are the same then they must be aliases.
10078  if (Ptr1 == Ptr2) return true;
10079
10080  // Gather base node and offset information.
10081  SDValue Base1, Base2;
10082  int64_t Offset1, Offset2;
10083  const GlobalValue *GV1, *GV2;
10084  const void *CV1, *CV2;
10085  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10086  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10087
10088  // If they have a same base address then check to see if they overlap.
10089  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10090    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10091
10092  // It is possible for different frame indices to alias each other, mostly
10093  // when tail call optimization reuses return address slots for arguments.
10094  // To catch this case, look up the actual index of frame indices to compute
10095  // the real alias relationship.
10096  if (isFrameIndex1 && isFrameIndex2) {
10097    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10098    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10099    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10100    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10101  }
10102
10103  // Otherwise, if we know what the bases are, and they aren't identical, then
10104  // we know they cannot alias.
10105  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10106    return false;
10107
10108  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10109  // compared to the size and offset of the access, we may be able to prove they
10110  // do not alias.  This check is conservative for now to catch cases created by
10111  // splitting vector types.
10112  if ((SrcValueAlign1 == SrcValueAlign2) &&
10113      (SrcValueOffset1 != SrcValueOffset2) &&
10114      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10115    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10116    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10117
10118    // There is no overlap between these relatively aligned accesses of similar
10119    // size, return no alias.
10120    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10121      return false;
10122  }
10123
10124  if (CombinerGlobalAA) {
10125    // Use alias analysis information.
10126    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10127    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10128    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10129    AliasAnalysis::AliasResult AAResult =
10130      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10131               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10132    if (AAResult == AliasAnalysis::NoAlias)
10133      return false;
10134  }
10135
10136  // Otherwise we have to assume they alias.
10137  return true;
10138}
10139
10140bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10141  SDValue Ptr0, Ptr1;
10142  int64_t Size0, Size1;
10143  const Value *SrcValue0, *SrcValue1;
10144  int SrcValueOffset0, SrcValueOffset1;
10145  unsigned SrcValueAlign0, SrcValueAlign1;
10146  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10147  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
10148                SrcValueAlign0, SrcTBAAInfo0);
10149  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
10150                SrcValueAlign1, SrcTBAAInfo1);
10151  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
10152                 SrcValueAlign0, SrcTBAAInfo0,
10153                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
10154                 SrcValueAlign1, SrcTBAAInfo1);
10155}
10156
10157/// FindAliasInfo - Extracts the relevant alias information from the memory
10158/// node.  Returns true if the operand was a load.
10159bool DAGCombiner::FindAliasInfo(SDNode *N,
10160                                SDValue &Ptr, int64_t &Size,
10161                                const Value *&SrcValue,
10162                                int &SrcValueOffset,
10163                                unsigned &SrcValueAlign,
10164                                const MDNode *&TBAAInfo) const {
10165  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10166
10167  Ptr = LS->getBasePtr();
10168  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10169  SrcValue = LS->getSrcValue();
10170  SrcValueOffset = LS->getSrcValueOffset();
10171  SrcValueAlign = LS->getOriginalAlignment();
10172  TBAAInfo = LS->getTBAAInfo();
10173  return isa<LoadSDNode>(LS);
10174}
10175
10176/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10177/// looking for aliasing nodes and adding them to the Aliases vector.
10178void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10179                                   SmallVector<SDValue, 8> &Aliases) {
10180  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10181  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10182
10183  // Get alias information for node.
10184  SDValue Ptr;
10185  int64_t Size;
10186  const Value *SrcValue;
10187  int SrcValueOffset;
10188  unsigned SrcValueAlign;
10189  const MDNode *SrcTBAAInfo;
10190  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10191                              SrcValueAlign, SrcTBAAInfo);
10192
10193  // Starting off.
10194  Chains.push_back(OriginalChain);
10195  unsigned Depth = 0;
10196
10197  // Look at each chain and determine if it is an alias.  If so, add it to the
10198  // aliases list.  If not, then continue up the chain looking for the next
10199  // candidate.
10200  while (!Chains.empty()) {
10201    SDValue Chain = Chains.back();
10202    Chains.pop_back();
10203
10204    // For TokenFactor nodes, look at each operand and only continue up the
10205    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10206    // find more and revert to original chain since the xform is unlikely to be
10207    // profitable.
10208    //
10209    // FIXME: The depth check could be made to return the last non-aliasing
10210    // chain we found before we hit a tokenfactor rather than the original
10211    // chain.
10212    if (Depth > 6 || Aliases.size() == 2) {
10213      Aliases.clear();
10214      Aliases.push_back(OriginalChain);
10215      break;
10216    }
10217
10218    // Don't bother if we've been before.
10219    if (!Visited.insert(Chain.getNode()))
10220      continue;
10221
10222    switch (Chain.getOpcode()) {
10223    case ISD::EntryToken:
10224      // Entry token is ideal chain operand, but handled in FindBetterChain.
10225      break;
10226
10227    case ISD::LOAD:
10228    case ISD::STORE: {
10229      // Get alias information for Chain.
10230      SDValue OpPtr;
10231      int64_t OpSize;
10232      const Value *OpSrcValue;
10233      int OpSrcValueOffset;
10234      unsigned OpSrcValueAlign;
10235      const MDNode *OpSrcTBAAInfo;
10236      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10237                                    OpSrcValue, OpSrcValueOffset,
10238                                    OpSrcValueAlign,
10239                                    OpSrcTBAAInfo);
10240
10241      // If chain is alias then stop here.
10242      if (!(IsLoad && IsOpLoad) &&
10243          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10244                  SrcTBAAInfo,
10245                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10246                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10247        Aliases.push_back(Chain);
10248      } else {
10249        // Look further up the chain.
10250        Chains.push_back(Chain.getOperand(0));
10251        ++Depth;
10252      }
10253      break;
10254    }
10255
10256    case ISD::TokenFactor:
10257      // We have to check each of the operands of the token factor for "small"
10258      // token factors, so we queue them up.  Adding the operands to the queue
10259      // (stack) in reverse order maintains the original order and increases the
10260      // likelihood that getNode will find a matching token factor (CSE.)
10261      if (Chain.getNumOperands() > 16) {
10262        Aliases.push_back(Chain);
10263        break;
10264      }
10265      for (unsigned n = Chain.getNumOperands(); n;)
10266        Chains.push_back(Chain.getOperand(--n));
10267      ++Depth;
10268      break;
10269
10270    default:
10271      // For all other instructions we will just have to take what we can get.
10272      Aliases.push_back(Chain);
10273      break;
10274    }
10275  }
10276}
10277
10278/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10279/// for a better chain (aliasing node.)
10280SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10281  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10282
10283  // Accumulate all the aliases to this node.
10284  GatherAllAliases(N, OldChain, Aliases);
10285
10286  // If no operands then chain to entry token.
10287  if (Aliases.size() == 0)
10288    return DAG.getEntryNode();
10289
10290  // If a single operand then chain to it.  We don't need to revisit it.
10291  if (Aliases.size() == 1)
10292    return Aliases[0];
10293
10294  // Construct a custom tailored token factor.
10295  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
10296                     &Aliases[0], Aliases.size());
10297}
10298
10299// SelectionDAG::Combine - This is the entry point for the file.
10300//
10301void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10302                           CodeGenOpt::Level OptLevel) {
10303  /// run - This is the main entry point to this class.
10304  ///
10305  DAGCombiner(*this, AA, OptLevel).Run(Level);
10306}
10307