DAGCombiner.cpp revision b5660dc8223bd5eb3d21d9855692617fcdec5663
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL);
122
123    bool CombineToPreIndexedLoadStore(SDNode *N);
124    bool CombineToPostIndexedLoadStore(SDNode *N);
125
126
127    /// combine - call the node-specific routine that knows how to fold each
128    /// particular type of node. If that doesn't do anything, try the
129    /// target-specific DAG combines.
130    SDOperand combine(SDNode *N);
131
132    // Visitation implementation - Implement dag node combining for different
133    // node types.  The semantics are as follows:
134    // Return Value:
135    //   SDOperand.Val == 0   - No change was made
136    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
137    //   otherwise            - N should be replaced by the returned Operand.
138    //
139    SDOperand visitTokenFactor(SDNode *N);
140    SDOperand visitMERGE_VALUES(SDNode *N);
141    SDOperand visitADD(SDNode *N);
142    SDOperand visitSUB(SDNode *N);
143    SDOperand visitADDC(SDNode *N);
144    SDOperand visitADDE(SDNode *N);
145    SDOperand visitMUL(SDNode *N);
146    SDOperand visitSDIV(SDNode *N);
147    SDOperand visitUDIV(SDNode *N);
148    SDOperand visitSREM(SDNode *N);
149    SDOperand visitUREM(SDNode *N);
150    SDOperand visitMULHU(SDNode *N);
151    SDOperand visitMULHS(SDNode *N);
152    SDOperand visitSMUL_LOHI(SDNode *N);
153    SDOperand visitUMUL_LOHI(SDNode *N);
154    SDOperand visitSDIVREM(SDNode *N);
155    SDOperand visitUDIVREM(SDNode *N);
156    SDOperand visitAND(SDNode *N);
157    SDOperand visitOR(SDNode *N);
158    SDOperand visitXOR(SDNode *N);
159    SDOperand SimplifyVBinOp(SDNode *N);
160    SDOperand visitSHL(SDNode *N);
161    SDOperand visitSRA(SDNode *N);
162    SDOperand visitSRL(SDNode *N);
163    SDOperand visitCTLZ(SDNode *N);
164    SDOperand visitCTTZ(SDNode *N);
165    SDOperand visitCTPOP(SDNode *N);
166    SDOperand visitSELECT(SDNode *N);
167    SDOperand visitSELECT_CC(SDNode *N);
168    SDOperand visitSETCC(SDNode *N);
169    SDOperand visitSIGN_EXTEND(SDNode *N);
170    SDOperand visitZERO_EXTEND(SDNode *N);
171    SDOperand visitANY_EXTEND(SDNode *N);
172    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
173    SDOperand visitTRUNCATE(SDNode *N);
174    SDOperand visitBIT_CONVERT(SDNode *N);
175    SDOperand visitFADD(SDNode *N);
176    SDOperand visitFSUB(SDNode *N);
177    SDOperand visitFMUL(SDNode *N);
178    SDOperand visitFDIV(SDNode *N);
179    SDOperand visitFREM(SDNode *N);
180    SDOperand visitFCOPYSIGN(SDNode *N);
181    SDOperand visitSINT_TO_FP(SDNode *N);
182    SDOperand visitUINT_TO_FP(SDNode *N);
183    SDOperand visitFP_TO_SINT(SDNode *N);
184    SDOperand visitFP_TO_UINT(SDNode *N);
185    SDOperand visitFP_ROUND(SDNode *N);
186    SDOperand visitFP_ROUND_INREG(SDNode *N);
187    SDOperand visitFP_EXTEND(SDNode *N);
188    SDOperand visitFNEG(SDNode *N);
189    SDOperand visitFABS(SDNode *N);
190    SDOperand visitBRCOND(SDNode *N);
191    SDOperand visitBR_CC(SDNode *N);
192    SDOperand visitLOAD(SDNode *N);
193    SDOperand visitSTORE(SDNode *N);
194    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
195    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
196    SDOperand visitBUILD_VECTOR(SDNode *N);
197    SDOperand visitCONCAT_VECTORS(SDNode *N);
198    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
199
200    SDOperand XformToShuffleWithZero(SDNode *N);
201    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
202
203    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
204
205    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
206    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
207    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
208    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
209                               SDOperand N3, ISD::CondCode CC,
210                               bool NotExtCompare = false);
211    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
212                            ISD::CondCode Cond, bool foldBooleans = true);
213    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
214                                         unsigned HiOp);
215    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
216    SDOperand BuildSDIV(SDNode *N);
217    SDOperand BuildUDIV(SDNode *N);
218    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
219    SDOperand ReduceLoadWidth(SDNode *N);
220
221    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
222
223    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
224    /// looking for aliasing nodes and adding them to the Aliases vector.
225    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
226                          SmallVector<SDOperand, 8> &Aliases);
227
228    /// isAlias - Return true if there is any possibility that the two addresses
229    /// overlap.
230    bool isAlias(SDOperand Ptr1, int64_t Size1,
231                 const Value *SrcValue1, int SrcValueOffset1,
232                 SDOperand Ptr2, int64_t Size2,
233                 const Value *SrcValue2, int SrcValueOffset2);
234
235    /// FindAliasInfo - Extracts the relevant alias information from the memory
236    /// node.  Returns true if the operand was a load.
237    bool FindAliasInfo(SDNode *N,
238                       SDOperand &Ptr, int64_t &Size,
239                       const Value *&SrcValue, int &SrcValueOffset);
240
241    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
242    /// looking for a better chain (aliasing node.)
243    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
244
245public:
246    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
247      : DAG(D),
248        TLI(D.getTargetLoweringInfo()),
249        AfterLegalize(false),
250        AA(A) {}
251
252    /// Run - runs the dag combiner on all nodes in the work list
253    void Run(bool RunningAfterLegalize);
254  };
255}
256
257
258namespace {
259/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
260/// nodes from the worklist.
261class VISIBILITY_HIDDEN WorkListRemover :
262  public SelectionDAG::DAGUpdateListener {
263  DAGCombiner &DC;
264public:
265  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
266
267  virtual void NodeDeleted(SDNode *N) {
268    DC.removeFromWorkList(N);
269  }
270
271  virtual void NodeUpdated(SDNode *N) {
272    // Ignore updates.
273  }
274};
275}
276
277//===----------------------------------------------------------------------===//
278//  TargetLowering::DAGCombinerInfo implementation
279//===----------------------------------------------------------------------===//
280
281void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
282  ((DAGCombiner*)DC)->AddToWorkList(N);
283}
284
285SDOperand TargetLowering::DAGCombinerInfo::
286CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
287  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, SDOperand Res) {
292  return ((DAGCombiner*)DC)->CombineTo(N, Res);
293}
294
295
296SDOperand TargetLowering::DAGCombinerInfo::
297CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
298  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
299}
300
301
302//===----------------------------------------------------------------------===//
303// Helper Functions
304//===----------------------------------------------------------------------===//
305
306/// isNegatibleForFree - Return 1 if we can compute the negated form of the
307/// specified expression for the same cost as the expression itself, or 2 if we
308/// can compute the negated form more cheaply than the expression itself.
309static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
310  // No compile time optimizations on this type.
311  if (Op.getValueType() == MVT::ppcf128)
312    return 0;
313
314  // fneg is removable even if it has multiple uses.
315  if (Op.getOpcode() == ISD::FNEG) return 2;
316
317  // Don't allow anything with multiple uses.
318  if (!Op.hasOneUse()) return 0;
319
320  // Don't recurse exponentially.
321  if (Depth > 6) return 0;
322
323  switch (Op.getOpcode()) {
324  default: return false;
325  case ISD::ConstantFP:
326    return 1;
327  case ISD::FADD:
328    // FIXME: determine better conditions for this xform.
329    if (!UnsafeFPMath) return 0;
330
331    // -(A+B) -> -A - B
332    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
333      return V;
334    // -(A+B) -> -B - A
335    return isNegatibleForFree(Op.getOperand(1), Depth+1);
336  case ISD::FSUB:
337    // We can't turn -(A-B) into B-A when we honor signed zeros.
338    if (!UnsafeFPMath) return 0;
339
340    // -(A-B) -> B-A
341    return 1;
342
343  case ISD::FMUL:
344  case ISD::FDIV:
345    if (HonorSignDependentRoundingFPMath()) return 0;
346
347    // -(X*Y) -> (-X * Y) or (X*-Y)
348    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
349      return V;
350
351    return isNegatibleForFree(Op.getOperand(1), Depth+1);
352
353  case ISD::FP_EXTEND:
354  case ISD::FP_ROUND:
355  case ISD::FSIN:
356    return isNegatibleForFree(Op.getOperand(0), Depth+1);
357  }
358}
359
360/// GetNegatedExpression - If isNegatibleForFree returns true, this function
361/// returns the newly negated expression.
362static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
363                                      unsigned Depth = 0) {
364  // fneg is removable even if it has multiple uses.
365  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
366
367  // Don't allow anything with multiple uses.
368  assert(Op.hasOneUse() && "Unknown reuse!");
369
370  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
371  switch (Op.getOpcode()) {
372  default: assert(0 && "Unknown code");
373  case ISD::ConstantFP: {
374    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
375    V.changeSign();
376    return DAG.getConstantFP(V, Op.getValueType());
377  }
378  case ISD::FADD:
379    // FIXME: determine better conditions for this xform.
380    assert(UnsafeFPMath);
381
382    // -(A+B) -> -A - B
383    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
384      return DAG.getNode(ISD::FSUB, Op.getValueType(),
385                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
386                         Op.getOperand(1));
387    // -(A+B) -> -B - A
388    return DAG.getNode(ISD::FSUB, Op.getValueType(),
389                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
390                       Op.getOperand(0));
391  case ISD::FSUB:
392    // We can't turn -(A-B) into B-A when we honor signed zeros.
393    assert(UnsafeFPMath);
394
395    // -(0-B) -> B
396    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
397      if (N0CFP->getValueAPF().isZero())
398        return Op.getOperand(1);
399
400    // -(A-B) -> B-A
401    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
402                       Op.getOperand(0));
403
404  case ISD::FMUL:
405  case ISD::FDIV:
406    assert(!HonorSignDependentRoundingFPMath());
407
408    // -(X*Y) -> -X * Y
409    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
410      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
411                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
412                         Op.getOperand(1));
413
414    // -(X*Y) -> X * -Y
415    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
416                       Op.getOperand(0),
417                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
418
419  case ISD::FP_EXTEND:
420  case ISD::FSIN:
421    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
422                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
423  case ISD::FP_ROUND:
424      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
425                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
426                         Op.getOperand(1));
427  }
428}
429
430
431// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
432// that selects between the values 1 and 0, making it equivalent to a setcc.
433// Also, set the incoming LHS, RHS, and CC references to the appropriate
434// nodes based on the type of node we are checking.  This simplifies life a
435// bit for the callers.
436static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
437                              SDOperand &CC) {
438  if (N.getOpcode() == ISD::SETCC) {
439    LHS = N.getOperand(0);
440    RHS = N.getOperand(1);
441    CC  = N.getOperand(2);
442    return true;
443  }
444  if (N.getOpcode() == ISD::SELECT_CC &&
445      N.getOperand(2).getOpcode() == ISD::Constant &&
446      N.getOperand(3).getOpcode() == ISD::Constant &&
447      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
448      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
449    LHS = N.getOperand(0);
450    RHS = N.getOperand(1);
451    CC  = N.getOperand(4);
452    return true;
453  }
454  return false;
455}
456
457// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
458// one use.  If this is true, it allows the users to invert the operation for
459// free when it is profitable to do so.
460static bool isOneUseSetCC(SDOperand N) {
461  SDOperand N0, N1, N2;
462  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
463    return true;
464  return false;
465}
466
467SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
468  MVT::ValueType VT = N0.getValueType();
469  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
470  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
471  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
472    if (isa<ConstantSDNode>(N1)) {
473      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
474      AddToWorkList(OpNode.Val);
475      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
476    } else if (N0.hasOneUse()) {
477      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
478      AddToWorkList(OpNode.Val);
479      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
480    }
481  }
482  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
483  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
484  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
485    if (isa<ConstantSDNode>(N0)) {
486      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
487      AddToWorkList(OpNode.Val);
488      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
489    } else if (N1.hasOneUse()) {
490      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
491      AddToWorkList(OpNode.Val);
492      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
493    }
494  }
495  return SDOperand();
496}
497
498SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
499                                 bool AddTo) {
500  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
501  ++NodesCombined;
502  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
503  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
504  DOUT << " and " << NumTo-1 << " other values\n";
505  WorkListRemover DeadNodes(*this);
506  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
507
508  if (AddTo) {
509    // Push the new nodes and any users onto the worklist
510    for (unsigned i = 0, e = NumTo; i != e; ++i) {
511      AddToWorkList(To[i].Val);
512      AddUsersToWorkList(To[i].Val);
513    }
514  }
515
516  // Nodes can be reintroduced into the worklist.  Make sure we do not
517  // process a node that has been replaced.
518  removeFromWorkList(N);
519
520  // Finally, since the node is now dead, remove it from the graph.
521  DAG.DeleteNode(N);
522  return SDOperand(N, 0);
523}
524
525/// SimplifyDemandedBits - Check the specified integer node value to see if
526/// it can be simplified or if things it uses can be simplified by bit
527/// propagation.  If so, return true.
528bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, uint64_t Demanded) {
529  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
530  uint64_t KnownZero, KnownOne;
531  Demanded &= MVT::getIntVTBitMask(Op.getValueType());
532  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
533    return false;
534
535  // Revisit the node.
536  AddToWorkList(Op.Val);
537
538  // Replace the old value with the new one.
539  ++NodesCombined;
540  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
541  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
542  DOUT << '\n';
543
544  // Replace all uses.  If any nodes become isomorphic to other nodes and
545  // are deleted, make sure to remove them from our worklist.
546  WorkListRemover DeadNodes(*this);
547  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
548
549  // Push the new node and any (possibly new) users onto the worklist.
550  AddToWorkList(TLO.New.Val);
551  AddUsersToWorkList(TLO.New.Val);
552
553  // Finally, if the node is now dead, remove it from the graph.  The node
554  // may not be dead if the replacement process recursively simplified to
555  // something else needing this node.
556  if (TLO.Old.Val->use_empty()) {
557    removeFromWorkList(TLO.Old.Val);
558
559    // If the operands of this node are only used by the node, they will now
560    // be dead.  Make sure to visit them first to delete dead nodes early.
561    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
562      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
563        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
564
565    DAG.DeleteNode(TLO.Old.Val);
566  }
567  return true;
568}
569
570//===----------------------------------------------------------------------===//
571//  Main DAG Combiner implementation
572//===----------------------------------------------------------------------===//
573
574void DAGCombiner::Run(bool RunningAfterLegalize) {
575  // set the instance variable, so that the various visit routines may use it.
576  AfterLegalize = RunningAfterLegalize;
577
578  // Add all the dag nodes to the worklist.
579  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
580       E = DAG.allnodes_end(); I != E; ++I)
581    WorkList.push_back(I);
582
583  // Create a dummy node (which is not added to allnodes), that adds a reference
584  // to the root node, preventing it from being deleted, and tracking any
585  // changes of the root.
586  HandleSDNode Dummy(DAG.getRoot());
587
588  // The root of the dag may dangle to deleted nodes until the dag combiner is
589  // done.  Set it to null to avoid confusion.
590  DAG.setRoot(SDOperand());
591
592  // while the worklist isn't empty, inspect the node on the end of it and
593  // try and combine it.
594  while (!WorkList.empty()) {
595    SDNode *N = WorkList.back();
596    WorkList.pop_back();
597
598    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
599    // N is deleted from the DAG, since they too may now be dead or may have a
600    // reduced number of uses, allowing other xforms.
601    if (N->use_empty() && N != &Dummy) {
602      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
603        AddToWorkList(N->getOperand(i).Val);
604
605      DAG.DeleteNode(N);
606      continue;
607    }
608
609    SDOperand RV = combine(N);
610
611    if (RV.Val == 0)
612      continue;
613
614    ++NodesCombined;
615
616    // If we get back the same node we passed in, rather than a new node or
617    // zero, we know that the node must have defined multiple values and
618    // CombineTo was used.  Since CombineTo takes care of the worklist
619    // mechanics for us, we have no work to do in this case.
620    if (RV.Val == N)
621      continue;
622
623    assert(N->getOpcode() != ISD::DELETED_NODE &&
624           RV.Val->getOpcode() != ISD::DELETED_NODE &&
625           "Node was deleted but visit returned new node!");
626
627    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
628    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
629    DOUT << '\n';
630    WorkListRemover DeadNodes(*this);
631    if (N->getNumValues() == RV.Val->getNumValues())
632      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
633    else {
634      assert(N->getValueType(0) == RV.getValueType() &&
635             N->getNumValues() == 1 && "Type mismatch");
636      SDOperand OpV = RV;
637      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
638    }
639
640    // Push the new node and any users onto the worklist
641    AddToWorkList(RV.Val);
642    AddUsersToWorkList(RV.Val);
643
644    // Add any uses of the old node to the worklist in case this node is the
645    // last one that uses them.  They may become dead after this node is
646    // deleted.
647    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
648      AddToWorkList(N->getOperand(i).Val);
649
650    // Nodes can be reintroduced into the worklist.  Make sure we do not
651    // process a node that has been replaced.
652    removeFromWorkList(N);
653
654    // Finally, since the node is now dead, remove it from the graph.
655    DAG.DeleteNode(N);
656  }
657
658  // If the root changed (e.g. it was a dead load, update the root).
659  DAG.setRoot(Dummy.getValue());
660}
661
662SDOperand DAGCombiner::visit(SDNode *N) {
663  switch(N->getOpcode()) {
664  default: break;
665  case ISD::TokenFactor:        return visitTokenFactor(N);
666  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
667  case ISD::ADD:                return visitADD(N);
668  case ISD::SUB:                return visitSUB(N);
669  case ISD::ADDC:               return visitADDC(N);
670  case ISD::ADDE:               return visitADDE(N);
671  case ISD::MUL:                return visitMUL(N);
672  case ISD::SDIV:               return visitSDIV(N);
673  case ISD::UDIV:               return visitUDIV(N);
674  case ISD::SREM:               return visitSREM(N);
675  case ISD::UREM:               return visitUREM(N);
676  case ISD::MULHU:              return visitMULHU(N);
677  case ISD::MULHS:              return visitMULHS(N);
678  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
679  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
680  case ISD::SDIVREM:            return visitSDIVREM(N);
681  case ISD::UDIVREM:            return visitUDIVREM(N);
682  case ISD::AND:                return visitAND(N);
683  case ISD::OR:                 return visitOR(N);
684  case ISD::XOR:                return visitXOR(N);
685  case ISD::SHL:                return visitSHL(N);
686  case ISD::SRA:                return visitSRA(N);
687  case ISD::SRL:                return visitSRL(N);
688  case ISD::CTLZ:               return visitCTLZ(N);
689  case ISD::CTTZ:               return visitCTTZ(N);
690  case ISD::CTPOP:              return visitCTPOP(N);
691  case ISD::SELECT:             return visitSELECT(N);
692  case ISD::SELECT_CC:          return visitSELECT_CC(N);
693  case ISD::SETCC:              return visitSETCC(N);
694  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
695  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
696  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
697  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
698  case ISD::TRUNCATE:           return visitTRUNCATE(N);
699  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
700  case ISD::FADD:               return visitFADD(N);
701  case ISD::FSUB:               return visitFSUB(N);
702  case ISD::FMUL:               return visitFMUL(N);
703  case ISD::FDIV:               return visitFDIV(N);
704  case ISD::FREM:               return visitFREM(N);
705  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
706  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
707  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
708  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
709  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
710  case ISD::FP_ROUND:           return visitFP_ROUND(N);
711  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
712  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
713  case ISD::FNEG:               return visitFNEG(N);
714  case ISD::FABS:               return visitFABS(N);
715  case ISD::BRCOND:             return visitBRCOND(N);
716  case ISD::BR_CC:              return visitBR_CC(N);
717  case ISD::LOAD:               return visitLOAD(N);
718  case ISD::STORE:              return visitSTORE(N);
719  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
720  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
721  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
722  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
723  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
724  }
725  return SDOperand();
726}
727
728SDOperand DAGCombiner::combine(SDNode *N) {
729
730  SDOperand RV = visit(N);
731
732  // If nothing happened, try a target-specific DAG combine.
733  if (RV.Val == 0) {
734    assert(N->getOpcode() != ISD::DELETED_NODE &&
735           "Node was deleted but visit returned NULL!");
736
737    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
738        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
739
740      // Expose the DAG combiner to the target combiner impls.
741      TargetLowering::DAGCombinerInfo
742        DagCombineInfo(DAG, !AfterLegalize, false, this);
743
744      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
745    }
746  }
747
748  return RV;
749}
750
751/// getInputChainForNode - Given a node, return its input chain if it has one,
752/// otherwise return a null sd operand.
753static SDOperand getInputChainForNode(SDNode *N) {
754  if (unsigned NumOps = N->getNumOperands()) {
755    if (N->getOperand(0).getValueType() == MVT::Other)
756      return N->getOperand(0);
757    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
758      return N->getOperand(NumOps-1);
759    for (unsigned i = 1; i < NumOps-1; ++i)
760      if (N->getOperand(i).getValueType() == MVT::Other)
761        return N->getOperand(i);
762  }
763  return SDOperand(0, 0);
764}
765
766SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
767  // If N has two operands, where one has an input chain equal to the other,
768  // the 'other' chain is redundant.
769  if (N->getNumOperands() == 2) {
770    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
771      return N->getOperand(0);
772    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
773      return N->getOperand(1);
774  }
775
776  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
777  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
778  SmallPtrSet<SDNode*, 16> SeenOps;
779  bool Changed = false;             // If we should replace this token factor.
780
781  // Start out with this token factor.
782  TFs.push_back(N);
783
784  // Iterate through token factors.  The TFs grows when new token factors are
785  // encountered.
786  for (unsigned i = 0; i < TFs.size(); ++i) {
787    SDNode *TF = TFs[i];
788
789    // Check each of the operands.
790    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
791      SDOperand Op = TF->getOperand(i);
792
793      switch (Op.getOpcode()) {
794      case ISD::EntryToken:
795        // Entry tokens don't need to be added to the list. They are
796        // rededundant.
797        Changed = true;
798        break;
799
800      case ISD::TokenFactor:
801        if ((CombinerAA || Op.hasOneUse()) &&
802            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
803          // Queue up for processing.
804          TFs.push_back(Op.Val);
805          // Clean up in case the token factor is removed.
806          AddToWorkList(Op.Val);
807          Changed = true;
808          break;
809        }
810        // Fall thru
811
812      default:
813        // Only add if it isn't already in the list.
814        if (SeenOps.insert(Op.Val))
815          Ops.push_back(Op);
816        else
817          Changed = true;
818        break;
819      }
820    }
821  }
822
823  SDOperand Result;
824
825  // If we've change things around then replace token factor.
826  if (Changed) {
827    if (Ops.empty()) {
828      // The entry token is the only possible outcome.
829      Result = DAG.getEntryNode();
830    } else {
831      // New and improved token factor.
832      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
833    }
834
835    // Don't add users to work list.
836    return CombineTo(N, Result, false);
837  }
838
839  return Result;
840}
841
842/// MERGE_VALUES can always be eliminated.
843SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
844  WorkListRemover DeadNodes(*this);
845  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
846    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
847                                  &DeadNodes);
848  removeFromWorkList(N);
849  DAG.DeleteNode(N);
850  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
851}
852
853
854static
855SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
856  MVT::ValueType VT = N0.getValueType();
857  SDOperand N00 = N0.getOperand(0);
858  SDOperand N01 = N0.getOperand(1);
859  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
860  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
861      isa<ConstantSDNode>(N00.getOperand(1))) {
862    N0 = DAG.getNode(ISD::ADD, VT,
863                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
864                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
865    return DAG.getNode(ISD::ADD, VT, N0, N1);
866  }
867  return SDOperand();
868}
869
870static
871SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
872                              SelectionDAG &DAG) {
873  MVT::ValueType VT = N->getValueType(0);
874  unsigned Opc = N->getOpcode();
875  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
876  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
877  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
878  ISD::CondCode CC = ISD::SETCC_INVALID;
879  if (isSlctCC)
880    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
881  else {
882    SDOperand CCOp = Slct.getOperand(0);
883    if (CCOp.getOpcode() == ISD::SETCC)
884      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
885  }
886
887  bool DoXform = false;
888  bool InvCC = false;
889  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
890          "Bad input!");
891  if (LHS.getOpcode() == ISD::Constant &&
892      cast<ConstantSDNode>(LHS)->isNullValue())
893    DoXform = true;
894  else if (CC != ISD::SETCC_INVALID &&
895           RHS.getOpcode() == ISD::Constant &&
896           cast<ConstantSDNode>(RHS)->isNullValue()) {
897    std::swap(LHS, RHS);
898    SDOperand Op0 = Slct.getOperand(0);
899    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
900                                : Op0.getOperand(0).getValueType());
901    CC = ISD::getSetCCInverse(CC, isInt);
902    DoXform = true;
903    InvCC = true;
904  }
905
906  if (DoXform) {
907    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
908    if (isSlctCC)
909      return DAG.getSelectCC(OtherOp, Result,
910                             Slct.getOperand(0), Slct.getOperand(1), CC);
911    SDOperand CCOp = Slct.getOperand(0);
912    if (InvCC)
913      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
914                          CCOp.getOperand(1), CC);
915    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
916  }
917  return SDOperand();
918}
919
920SDOperand DAGCombiner::visitADD(SDNode *N) {
921  SDOperand N0 = N->getOperand(0);
922  SDOperand N1 = N->getOperand(1);
923  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
924  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
925  MVT::ValueType VT = N0.getValueType();
926
927  // fold vector ops
928  if (MVT::isVector(VT)) {
929    SDOperand FoldedVOp = SimplifyVBinOp(N);
930    if (FoldedVOp.Val) return FoldedVOp;
931  }
932
933  // fold (add x, undef) -> undef
934  if (N0.getOpcode() == ISD::UNDEF)
935    return N0;
936  if (N1.getOpcode() == ISD::UNDEF)
937    return N1;
938  // fold (add c1, c2) -> c1+c2
939  if (N0C && N1C)
940    return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT);
941  // canonicalize constant to RHS
942  if (N0C && !N1C)
943    return DAG.getNode(ISD::ADD, VT, N1, N0);
944  // fold (add x, 0) -> x
945  if (N1C && N1C->isNullValue())
946    return N0;
947  // fold ((c1-A)+c2) -> (c1+c2)-A
948  if (N1C && N0.getOpcode() == ISD::SUB)
949    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
950      return DAG.getNode(ISD::SUB, VT,
951                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
952                         N0.getOperand(1));
953  // reassociate add
954  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
955  if (RADD.Val != 0)
956    return RADD;
957  // fold ((0-A) + B) -> B-A
958  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
959      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
960    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
961  // fold (A + (0-B)) -> A-B
962  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
963      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
964    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
965  // fold (A+(B-A)) -> B
966  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
967    return N1.getOperand(0);
968
969  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
970    return SDOperand(N, 0);
971
972  // fold (a+b) -> (a|b) iff a and b share no bits.
973  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
974    APInt LHSZero, LHSOne;
975    APInt RHSZero, RHSOne;
976    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
977    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
978    if (LHSZero.getBoolValue()) {
979      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
980
981      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
982      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
983      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
984          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
985        return DAG.getNode(ISD::OR, VT, N0, N1);
986    }
987  }
988
989  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
990  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
991    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
992    if (Result.Val) return Result;
993  }
994  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
995    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
996    if (Result.Val) return Result;
997  }
998
999  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1000  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1001    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1002    if (Result.Val) return Result;
1003  }
1004  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1005    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1006    if (Result.Val) return Result;
1007  }
1008
1009  return SDOperand();
1010}
1011
1012SDOperand DAGCombiner::visitADDC(SDNode *N) {
1013  SDOperand N0 = N->getOperand(0);
1014  SDOperand N1 = N->getOperand(1);
1015  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1017  MVT::ValueType VT = N0.getValueType();
1018
1019  // If the flag result is dead, turn this into an ADD.
1020  if (N->hasNUsesOfValue(0, 1))
1021    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1022                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1023
1024  // canonicalize constant to RHS.
1025  if (N0C && !N1C) {
1026    SDOperand Ops[] = { N1, N0 };
1027    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1028  }
1029
1030  // fold (addc x, 0) -> x + no carry out
1031  if (N1C && N1C->isNullValue())
1032    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1033
1034  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1035  APInt LHSZero, LHSOne;
1036  APInt RHSZero, RHSOne;
1037  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1038  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1039  if (LHSZero.getBoolValue()) {
1040    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1041
1042    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1043    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1044    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1045        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1046      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1047                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1048  }
1049
1050  return SDOperand();
1051}
1052
1053SDOperand DAGCombiner::visitADDE(SDNode *N) {
1054  SDOperand N0 = N->getOperand(0);
1055  SDOperand N1 = N->getOperand(1);
1056  SDOperand CarryIn = N->getOperand(2);
1057  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1058  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1059  //MVT::ValueType VT = N0.getValueType();
1060
1061  // canonicalize constant to RHS
1062  if (N0C && !N1C) {
1063    SDOperand Ops[] = { N1, N0, CarryIn };
1064    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1065  }
1066
1067  // fold (adde x, y, false) -> (addc x, y)
1068  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1069    SDOperand Ops[] = { N1, N0 };
1070    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1071  }
1072
1073  return SDOperand();
1074}
1075
1076
1077
1078SDOperand DAGCombiner::visitSUB(SDNode *N) {
1079  SDOperand N0 = N->getOperand(0);
1080  SDOperand N1 = N->getOperand(1);
1081  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1082  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1083  MVT::ValueType VT = N0.getValueType();
1084
1085  // fold vector ops
1086  if (MVT::isVector(VT)) {
1087    SDOperand FoldedVOp = SimplifyVBinOp(N);
1088    if (FoldedVOp.Val) return FoldedVOp;
1089  }
1090
1091  // fold (sub x, x) -> 0
1092  if (N0 == N1)
1093    return DAG.getConstant(0, N->getValueType(0));
1094  // fold (sub c1, c2) -> c1-c2
1095  if (N0C && N1C)
1096    return DAG.getNode(ISD::SUB, VT, N0, N1);
1097  // fold (sub x, c) -> (add x, -c)
1098  if (N1C)
1099    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1100  // fold (A+B)-A -> B
1101  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1102    return N0.getOperand(1);
1103  // fold (A+B)-B -> A
1104  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1105    return N0.getOperand(0);
1106  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1107  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1108    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1109    if (Result.Val) return Result;
1110  }
1111  // If either operand of a sub is undef, the result is undef
1112  if (N0.getOpcode() == ISD::UNDEF)
1113    return N0;
1114  if (N1.getOpcode() == ISD::UNDEF)
1115    return N1;
1116
1117  return SDOperand();
1118}
1119
1120SDOperand DAGCombiner::visitMUL(SDNode *N) {
1121  SDOperand N0 = N->getOperand(0);
1122  SDOperand N1 = N->getOperand(1);
1123  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1124  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1125  MVT::ValueType VT = N0.getValueType();
1126
1127  // fold vector ops
1128  if (MVT::isVector(VT)) {
1129    SDOperand FoldedVOp = SimplifyVBinOp(N);
1130    if (FoldedVOp.Val) return FoldedVOp;
1131  }
1132
1133  // fold (mul x, undef) -> 0
1134  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1135    return DAG.getConstant(0, VT);
1136  // fold (mul c1, c2) -> c1*c2
1137  if (N0C && N1C)
1138    return DAG.getNode(ISD::MUL, VT, N0, N1);
1139  // canonicalize constant to RHS
1140  if (N0C && !N1C)
1141    return DAG.getNode(ISD::MUL, VT, N1, N0);
1142  // fold (mul x, 0) -> 0
1143  if (N1C && N1C->isNullValue())
1144    return N1;
1145  // fold (mul x, -1) -> 0-x
1146  if (N1C && N1C->isAllOnesValue())
1147    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1148  // fold (mul x, (1 << c)) -> x << c
1149  if (N1C && isPowerOf2_64(N1C->getValue()))
1150    return DAG.getNode(ISD::SHL, VT, N0,
1151                       DAG.getConstant(Log2_64(N1C->getValue()),
1152                                       TLI.getShiftAmountTy()));
1153  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1154  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1155    // FIXME: If the input is something that is easily negated (e.g. a
1156    // single-use add), we should put the negate there.
1157    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1158                       DAG.getNode(ISD::SHL, VT, N0,
1159                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1160                                            TLI.getShiftAmountTy())));
1161  }
1162
1163  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1164  if (N1C && N0.getOpcode() == ISD::SHL &&
1165      isa<ConstantSDNode>(N0.getOperand(1))) {
1166    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1167    AddToWorkList(C3.Val);
1168    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1169  }
1170
1171  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1172  // use.
1173  {
1174    SDOperand Sh(0,0), Y(0,0);
1175    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1176    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1177        N0.Val->hasOneUse()) {
1178      Sh = N0; Y = N1;
1179    } else if (N1.getOpcode() == ISD::SHL &&
1180               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1181      Sh = N1; Y = N0;
1182    }
1183    if (Sh.Val) {
1184      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1185      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1186    }
1187  }
1188  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1189  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1190      isa<ConstantSDNode>(N0.getOperand(1))) {
1191    return DAG.getNode(ISD::ADD, VT,
1192                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1193                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1194  }
1195
1196  // reassociate mul
1197  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1198  if (RMUL.Val != 0)
1199    return RMUL;
1200
1201  return SDOperand();
1202}
1203
1204SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1205  SDOperand N0 = N->getOperand(0);
1206  SDOperand N1 = N->getOperand(1);
1207  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1208  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1209  MVT::ValueType VT = N->getValueType(0);
1210
1211  // fold vector ops
1212  if (MVT::isVector(VT)) {
1213    SDOperand FoldedVOp = SimplifyVBinOp(N);
1214    if (FoldedVOp.Val) return FoldedVOp;
1215  }
1216
1217  // fold (sdiv c1, c2) -> c1/c2
1218  if (N0C && N1C && !N1C->isNullValue())
1219    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1220  // fold (sdiv X, 1) -> X
1221  if (N1C && N1C->getSignExtended() == 1LL)
1222    return N0;
1223  // fold (sdiv X, -1) -> 0-X
1224  if (N1C && N1C->isAllOnesValue())
1225    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1226  // If we know the sign bits of both operands are zero, strength reduce to a
1227  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1228  if (!MVT::isVector(VT)) {
1229    uint64_t SignBit = MVT::getIntVTSignBit(VT);
1230    if (DAG.MaskedValueIsZero(N1, SignBit) &&
1231        DAG.MaskedValueIsZero(N0, SignBit))
1232      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1233  }
1234  // fold (sdiv X, pow2) -> simple ops after legalize
1235  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1236      (isPowerOf2_64(N1C->getSignExtended()) ||
1237       isPowerOf2_64(-N1C->getSignExtended()))) {
1238    // If dividing by powers of two is cheap, then don't perform the following
1239    // fold.
1240    if (TLI.isPow2DivCheap())
1241      return SDOperand();
1242    int64_t pow2 = N1C->getSignExtended();
1243    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1244    unsigned lg2 = Log2_64(abs2);
1245    // Splat the sign bit into the register
1246    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1247                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1248                                                TLI.getShiftAmountTy()));
1249    AddToWorkList(SGN.Val);
1250    // Add (N0 < 0) ? abs2 - 1 : 0;
1251    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1252                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1253                                                TLI.getShiftAmountTy()));
1254    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1255    AddToWorkList(SRL.Val);
1256    AddToWorkList(ADD.Val);    // Divide by pow2
1257    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1258                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1259    // If we're dividing by a positive value, we're done.  Otherwise, we must
1260    // negate the result.
1261    if (pow2 > 0)
1262      return SRA;
1263    AddToWorkList(SRA.Val);
1264    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1265  }
1266  // if integer divide is expensive and we satisfy the requirements, emit an
1267  // alternate sequence.
1268  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1269      !TLI.isIntDivCheap()) {
1270    SDOperand Op = BuildSDIV(N);
1271    if (Op.Val) return Op;
1272  }
1273
1274  // undef / X -> 0
1275  if (N0.getOpcode() == ISD::UNDEF)
1276    return DAG.getConstant(0, VT);
1277  // X / undef -> undef
1278  if (N1.getOpcode() == ISD::UNDEF)
1279    return N1;
1280
1281  return SDOperand();
1282}
1283
1284SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1285  SDOperand N0 = N->getOperand(0);
1286  SDOperand N1 = N->getOperand(1);
1287  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1288  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1289  MVT::ValueType VT = N->getValueType(0);
1290
1291  // fold vector ops
1292  if (MVT::isVector(VT)) {
1293    SDOperand FoldedVOp = SimplifyVBinOp(N);
1294    if (FoldedVOp.Val) return FoldedVOp;
1295  }
1296
1297  // fold (udiv c1, c2) -> c1/c2
1298  if (N0C && N1C && !N1C->isNullValue())
1299    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1300  // fold (udiv x, (1 << c)) -> x >>u c
1301  if (N1C && isPowerOf2_64(N1C->getValue()))
1302    return DAG.getNode(ISD::SRL, VT, N0,
1303                       DAG.getConstant(Log2_64(N1C->getValue()),
1304                                       TLI.getShiftAmountTy()));
1305  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1306  if (N1.getOpcode() == ISD::SHL) {
1307    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1308      if (isPowerOf2_64(SHC->getValue())) {
1309        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1310        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1311                                    DAG.getConstant(Log2_64(SHC->getValue()),
1312                                                    ADDVT));
1313        AddToWorkList(Add.Val);
1314        return DAG.getNode(ISD::SRL, VT, N0, Add);
1315      }
1316    }
1317  }
1318  // fold (udiv x, c) -> alternate
1319  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1320    SDOperand Op = BuildUDIV(N);
1321    if (Op.Val) return Op;
1322  }
1323
1324  // undef / X -> 0
1325  if (N0.getOpcode() == ISD::UNDEF)
1326    return DAG.getConstant(0, VT);
1327  // X / undef -> undef
1328  if (N1.getOpcode() == ISD::UNDEF)
1329    return N1;
1330
1331  return SDOperand();
1332}
1333
1334SDOperand DAGCombiner::visitSREM(SDNode *N) {
1335  SDOperand N0 = N->getOperand(0);
1336  SDOperand N1 = N->getOperand(1);
1337  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1338  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1339  MVT::ValueType VT = N->getValueType(0);
1340
1341  // fold (srem c1, c2) -> c1%c2
1342  if (N0C && N1C && !N1C->isNullValue())
1343    return DAG.getNode(ISD::SREM, VT, N0, N1);
1344  // If we know the sign bits of both operands are zero, strength reduce to a
1345  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1346  if (!MVT::isVector(VT)) {
1347    uint64_t SignBit = MVT::getIntVTSignBit(VT);
1348    if (DAG.MaskedValueIsZero(N1, SignBit) &&
1349        DAG.MaskedValueIsZero(N0, SignBit))
1350      return DAG.getNode(ISD::UREM, VT, N0, N1);
1351  }
1352
1353  // If X/C can be simplified by the division-by-constant logic, lower
1354  // X%C to the equivalent of X-X/C*C.
1355  if (N1C && !N1C->isNullValue()) {
1356    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1357    AddToWorkList(Div.Val);
1358    SDOperand OptimizedDiv = combine(Div.Val);
1359    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1360      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1361      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1362      AddToWorkList(Mul.Val);
1363      return Sub;
1364    }
1365  }
1366
1367  // undef % X -> 0
1368  if (N0.getOpcode() == ISD::UNDEF)
1369    return DAG.getConstant(0, VT);
1370  // X % undef -> undef
1371  if (N1.getOpcode() == ISD::UNDEF)
1372    return N1;
1373
1374  return SDOperand();
1375}
1376
1377SDOperand DAGCombiner::visitUREM(SDNode *N) {
1378  SDOperand N0 = N->getOperand(0);
1379  SDOperand N1 = N->getOperand(1);
1380  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1381  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1382  MVT::ValueType VT = N->getValueType(0);
1383
1384  // fold (urem c1, c2) -> c1%c2
1385  if (N0C && N1C && !N1C->isNullValue())
1386    return DAG.getNode(ISD::UREM, VT, N0, N1);
1387  // fold (urem x, pow2) -> (and x, pow2-1)
1388  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1389    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1390  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1391  if (N1.getOpcode() == ISD::SHL) {
1392    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1393      if (isPowerOf2_64(SHC->getValue())) {
1394        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1395        AddToWorkList(Add.Val);
1396        return DAG.getNode(ISD::AND, VT, N0, Add);
1397      }
1398    }
1399  }
1400
1401  // If X/C can be simplified by the division-by-constant logic, lower
1402  // X%C to the equivalent of X-X/C*C.
1403  if (N1C && !N1C->isNullValue()) {
1404    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1405    SDOperand OptimizedDiv = combine(Div.Val);
1406    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1407      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1408      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1409      AddToWorkList(Mul.Val);
1410      return Sub;
1411    }
1412  }
1413
1414  // undef % X -> 0
1415  if (N0.getOpcode() == ISD::UNDEF)
1416    return DAG.getConstant(0, VT);
1417  // X % undef -> undef
1418  if (N1.getOpcode() == ISD::UNDEF)
1419    return N1;
1420
1421  return SDOperand();
1422}
1423
1424SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1425  SDOperand N0 = N->getOperand(0);
1426  SDOperand N1 = N->getOperand(1);
1427  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1428  MVT::ValueType VT = N->getValueType(0);
1429
1430  // fold (mulhs x, 0) -> 0
1431  if (N1C && N1C->isNullValue())
1432    return N1;
1433  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1434  if (N1C && N1C->getValue() == 1)
1435    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1436                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1437                                       TLI.getShiftAmountTy()));
1438  // fold (mulhs x, undef) -> 0
1439  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1440    return DAG.getConstant(0, VT);
1441
1442  return SDOperand();
1443}
1444
1445SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1446  SDOperand N0 = N->getOperand(0);
1447  SDOperand N1 = N->getOperand(1);
1448  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1449  MVT::ValueType VT = N->getValueType(0);
1450
1451  // fold (mulhu x, 0) -> 0
1452  if (N1C && N1C->isNullValue())
1453    return N1;
1454  // fold (mulhu x, 1) -> 0
1455  if (N1C && N1C->getValue() == 1)
1456    return DAG.getConstant(0, N0.getValueType());
1457  // fold (mulhu x, undef) -> 0
1458  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1459    return DAG.getConstant(0, VT);
1460
1461  return SDOperand();
1462}
1463
1464/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1465/// compute two values. LoOp and HiOp give the opcodes for the two computations
1466/// that are being performed. Return true if a simplification was made.
1467///
1468SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1469                                                  unsigned HiOp) {
1470  // If the high half is not needed, just compute the low half.
1471  bool HiExists = N->hasAnyUseOfValue(1);
1472  if (!HiExists &&
1473      (!AfterLegalize ||
1474       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1475    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1476                                N->getNumOperands());
1477    return CombineTo(N, Res, Res);
1478  }
1479
1480  // If the low half is not needed, just compute the high half.
1481  bool LoExists = N->hasAnyUseOfValue(0);
1482  if (!LoExists &&
1483      (!AfterLegalize ||
1484       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1485    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1486                                N->getNumOperands());
1487    return CombineTo(N, Res, Res);
1488  }
1489
1490  // If both halves are used, return as it is.
1491  if (LoExists && HiExists)
1492    return SDOperand();
1493
1494  // If the two computed results can be simplified separately, separate them.
1495  if (LoExists) {
1496    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1497                               N->op_begin(), N->getNumOperands());
1498    AddToWorkList(Lo.Val);
1499    SDOperand LoOpt = combine(Lo.Val);
1500    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1501        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1502      return CombineTo(N, LoOpt, LoOpt);
1503  }
1504
1505  if (HiExists) {
1506    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1507                               N->op_begin(), N->getNumOperands());
1508    AddToWorkList(Hi.Val);
1509    SDOperand HiOpt = combine(Hi.Val);
1510    if (HiOpt.Val && HiOpt != Hi &&
1511        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1512      return CombineTo(N, HiOpt, HiOpt);
1513  }
1514  return SDOperand();
1515}
1516
1517SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1518  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1519  if (Res.Val) return Res;
1520
1521  return SDOperand();
1522}
1523
1524SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1525  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1526  if (Res.Val) return Res;
1527
1528  return SDOperand();
1529}
1530
1531SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1532  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1533  if (Res.Val) return Res;
1534
1535  return SDOperand();
1536}
1537
1538SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1539  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1540  if (Res.Val) return Res;
1541
1542  return SDOperand();
1543}
1544
1545/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1546/// two operands of the same opcode, try to simplify it.
1547SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1548  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1549  MVT::ValueType VT = N0.getValueType();
1550  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1551
1552  // For each of OP in AND/OR/XOR:
1553  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1554  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1555  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1556  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1557  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1558       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1559      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1560    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1561                                   N0.getOperand(0).getValueType(),
1562                                   N0.getOperand(0), N1.getOperand(0));
1563    AddToWorkList(ORNode.Val);
1564    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1565  }
1566
1567  // For each of OP in SHL/SRL/SRA/AND...
1568  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1569  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1570  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1571  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1572       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1573      N0.getOperand(1) == N1.getOperand(1)) {
1574    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1575                                   N0.getOperand(0).getValueType(),
1576                                   N0.getOperand(0), N1.getOperand(0));
1577    AddToWorkList(ORNode.Val);
1578    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1579  }
1580
1581  return SDOperand();
1582}
1583
1584SDOperand DAGCombiner::visitAND(SDNode *N) {
1585  SDOperand N0 = N->getOperand(0);
1586  SDOperand N1 = N->getOperand(1);
1587  SDOperand LL, LR, RL, RR, CC0, CC1;
1588  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1589  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1590  MVT::ValueType VT = N1.getValueType();
1591
1592  // fold vector ops
1593  if (MVT::isVector(VT)) {
1594    SDOperand FoldedVOp = SimplifyVBinOp(N);
1595    if (FoldedVOp.Val) return FoldedVOp;
1596  }
1597
1598  // fold (and x, undef) -> 0
1599  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1600    return DAG.getConstant(0, VT);
1601  // fold (and c1, c2) -> c1&c2
1602  if (N0C && N1C)
1603    return DAG.getNode(ISD::AND, VT, N0, N1);
1604  // canonicalize constant to RHS
1605  if (N0C && !N1C)
1606    return DAG.getNode(ISD::AND, VT, N1, N0);
1607  // fold (and x, -1) -> x
1608  if (N1C && N1C->isAllOnesValue())
1609    return N0;
1610  // if (and x, c) is known to be zero, return 0
1611  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1612    return DAG.getConstant(0, VT);
1613  // reassociate and
1614  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1615  if (RAND.Val != 0)
1616    return RAND;
1617  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1618  if (N1C && N0.getOpcode() == ISD::OR)
1619    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1620      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1621        return N1;
1622  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1623  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1624    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1625    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1626                              ~N1C->getValue() & InMask)) {
1627      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1628                                   N0.getOperand(0));
1629
1630      // Replace uses of the AND with uses of the Zero extend node.
1631      CombineTo(N, Zext);
1632
1633      // We actually want to replace all uses of the any_extend with the
1634      // zero_extend, to avoid duplicating things.  This will later cause this
1635      // AND to be folded.
1636      CombineTo(N0.Val, Zext);
1637      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1638    }
1639  }
1640  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1641  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1642    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1643    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1644
1645    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1646        MVT::isInteger(LL.getValueType())) {
1647      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1648      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1649        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1650        AddToWorkList(ORNode.Val);
1651        return DAG.getSetCC(VT, ORNode, LR, Op1);
1652      }
1653      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1654      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1655        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1656        AddToWorkList(ANDNode.Val);
1657        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1658      }
1659      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1660      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1661        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1662        AddToWorkList(ORNode.Val);
1663        return DAG.getSetCC(VT, ORNode, LR, Op1);
1664      }
1665    }
1666    // canonicalize equivalent to ll == rl
1667    if (LL == RR && LR == RL) {
1668      Op1 = ISD::getSetCCSwappedOperands(Op1);
1669      std::swap(RL, RR);
1670    }
1671    if (LL == RL && LR == RR) {
1672      bool isInteger = MVT::isInteger(LL.getValueType());
1673      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1674      if (Result != ISD::SETCC_INVALID)
1675        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1676    }
1677  }
1678
1679  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1680  if (N0.getOpcode() == N1.getOpcode()) {
1681    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1682    if (Tmp.Val) return Tmp;
1683  }
1684
1685  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1686  // fold (and (sra)) -> (and (srl)) when possible.
1687  if (!MVT::isVector(VT) &&
1688      SimplifyDemandedBits(SDOperand(N, 0)))
1689    return SDOperand(N, 0);
1690  // fold (zext_inreg (extload x)) -> (zextload x)
1691  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1692    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1693    MVT::ValueType EVT = LN0->getMemoryVT();
1694    // If we zero all the possible extended bits, then we can turn this into
1695    // a zextload if we are running before legalize or the operation is legal.
1696    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1697        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1698      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1699                                         LN0->getBasePtr(), LN0->getSrcValue(),
1700                                         LN0->getSrcValueOffset(), EVT,
1701                                         LN0->isVolatile(),
1702                                         LN0->getAlignment());
1703      AddToWorkList(N);
1704      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1705      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1706    }
1707  }
1708  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1709  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1710      N0.hasOneUse()) {
1711    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1712    MVT::ValueType EVT = LN0->getMemoryVT();
1713    // If we zero all the possible extended bits, then we can turn this into
1714    // a zextload if we are running before legalize or the operation is legal.
1715    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1716        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1717      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1718                                         LN0->getBasePtr(), LN0->getSrcValue(),
1719                                         LN0->getSrcValueOffset(), EVT,
1720                                         LN0->isVolatile(),
1721                                         LN0->getAlignment());
1722      AddToWorkList(N);
1723      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1724      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1725    }
1726  }
1727
1728  // fold (and (load x), 255) -> (zextload x, i8)
1729  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1730  if (N1C && N0.getOpcode() == ISD::LOAD) {
1731    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1732    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1733        LN0->isUnindexed() && N0.hasOneUse()) {
1734      MVT::ValueType EVT, LoadedVT;
1735      if (N1C->getValue() == 255)
1736        EVT = MVT::i8;
1737      else if (N1C->getValue() == 65535)
1738        EVT = MVT::i16;
1739      else if (N1C->getValue() == ~0U)
1740        EVT = MVT::i32;
1741      else
1742        EVT = MVT::Other;
1743
1744      LoadedVT = LN0->getMemoryVT();
1745      if (EVT != MVT::Other && LoadedVT > EVT &&
1746          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1747        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1748        // For big endian targets, we need to add an offset to the pointer to
1749        // load the correct bytes.  For little endian systems, we merely need to
1750        // read fewer bytes from the same pointer.
1751        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1752        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1753        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1754        unsigned Alignment = LN0->getAlignment();
1755        SDOperand NewPtr = LN0->getBasePtr();
1756        if (TLI.isBigEndian()) {
1757          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1758                               DAG.getConstant(PtrOff, PtrType));
1759          Alignment = MinAlign(Alignment, PtrOff);
1760        }
1761        AddToWorkList(NewPtr.Val);
1762        SDOperand Load =
1763          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1764                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1765                         LN0->isVolatile(), Alignment);
1766        AddToWorkList(N);
1767        CombineTo(N0.Val, Load, Load.getValue(1));
1768        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1769      }
1770    }
1771  }
1772
1773  return SDOperand();
1774}
1775
1776SDOperand DAGCombiner::visitOR(SDNode *N) {
1777  SDOperand N0 = N->getOperand(0);
1778  SDOperand N1 = N->getOperand(1);
1779  SDOperand LL, LR, RL, RR, CC0, CC1;
1780  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1781  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1782  MVT::ValueType VT = N1.getValueType();
1783  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1784
1785  // fold vector ops
1786  if (MVT::isVector(VT)) {
1787    SDOperand FoldedVOp = SimplifyVBinOp(N);
1788    if (FoldedVOp.Val) return FoldedVOp;
1789  }
1790
1791  // fold (or x, undef) -> -1
1792  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1793    return DAG.getConstant(~0ULL, VT);
1794  // fold (or c1, c2) -> c1|c2
1795  if (N0C && N1C)
1796    return DAG.getNode(ISD::OR, VT, N0, N1);
1797  // canonicalize constant to RHS
1798  if (N0C && !N1C)
1799    return DAG.getNode(ISD::OR, VT, N1, N0);
1800  // fold (or x, 0) -> x
1801  if (N1C && N1C->isNullValue())
1802    return N0;
1803  // fold (or x, -1) -> -1
1804  if (N1C && N1C->isAllOnesValue())
1805    return N1;
1806  // fold (or x, c) -> c iff (x & ~c) == 0
1807  if (N1C &&
1808      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1809    return N1;
1810  // reassociate or
1811  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1812  if (ROR.Val != 0)
1813    return ROR;
1814  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1815  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1816             isa<ConstantSDNode>(N0.getOperand(1))) {
1817    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1818    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1819                                                 N1),
1820                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1821  }
1822  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1823  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1824    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1825    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1826
1827    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1828        MVT::isInteger(LL.getValueType())) {
1829      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1830      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1831      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1832          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1833        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1834        AddToWorkList(ORNode.Val);
1835        return DAG.getSetCC(VT, ORNode, LR, Op1);
1836      }
1837      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1838      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1839      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1840          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1841        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1842        AddToWorkList(ANDNode.Val);
1843        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1844      }
1845    }
1846    // canonicalize equivalent to ll == rl
1847    if (LL == RR && LR == RL) {
1848      Op1 = ISD::getSetCCSwappedOperands(Op1);
1849      std::swap(RL, RR);
1850    }
1851    if (LL == RL && LR == RR) {
1852      bool isInteger = MVT::isInteger(LL.getValueType());
1853      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1854      if (Result != ISD::SETCC_INVALID)
1855        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1856    }
1857  }
1858
1859  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1860  if (N0.getOpcode() == N1.getOpcode()) {
1861    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1862    if (Tmp.Val) return Tmp;
1863  }
1864
1865  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1866  if (N0.getOpcode() == ISD::AND &&
1867      N1.getOpcode() == ISD::AND &&
1868      N0.getOperand(1).getOpcode() == ISD::Constant &&
1869      N1.getOperand(1).getOpcode() == ISD::Constant &&
1870      // Don't increase # computations.
1871      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1872    // We can only do this xform if we know that bits from X that are set in C2
1873    // but not in C1 are already zero.  Likewise for Y.
1874    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1875    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1876
1877    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1878        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1879      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1880      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1881    }
1882  }
1883
1884
1885  // See if this is some rotate idiom.
1886  if (SDNode *Rot = MatchRotate(N0, N1))
1887    return SDOperand(Rot, 0);
1888
1889  return SDOperand();
1890}
1891
1892
1893/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1894static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1895  if (Op.getOpcode() == ISD::AND) {
1896    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1897      Mask = Op.getOperand(1);
1898      Op = Op.getOperand(0);
1899    } else {
1900      return false;
1901    }
1902  }
1903
1904  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1905    Shift = Op;
1906    return true;
1907  }
1908  return false;
1909}
1910
1911
1912// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1913// idioms for rotate, and if the target supports rotation instructions, generate
1914// a rot[lr].
1915SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1916  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1917  MVT::ValueType VT = LHS.getValueType();
1918  if (!TLI.isTypeLegal(VT)) return 0;
1919
1920  // The target must have at least one rotate flavor.
1921  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1922  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1923  if (!HasROTL && !HasROTR) return 0;
1924
1925  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1926  SDOperand LHSShift;   // The shift.
1927  SDOperand LHSMask;    // AND value if any.
1928  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1929    return 0; // Not part of a rotate.
1930
1931  SDOperand RHSShift;   // The shift.
1932  SDOperand RHSMask;    // AND value if any.
1933  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1934    return 0; // Not part of a rotate.
1935
1936  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1937    return 0;   // Not shifting the same value.
1938
1939  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1940    return 0;   // Shifts must disagree.
1941
1942  // Canonicalize shl to left side in a shl/srl pair.
1943  if (RHSShift.getOpcode() == ISD::SHL) {
1944    std::swap(LHS, RHS);
1945    std::swap(LHSShift, RHSShift);
1946    std::swap(LHSMask , RHSMask );
1947  }
1948
1949  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1950  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1951  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1952  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1953
1954  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1955  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1956  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1957      RHSShiftAmt.getOpcode() == ISD::Constant) {
1958    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1959    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1960    if ((LShVal + RShVal) != OpSizeInBits)
1961      return 0;
1962
1963    SDOperand Rot;
1964    if (HasROTL)
1965      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1966    else
1967      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1968
1969    // If there is an AND of either shifted operand, apply it to the result.
1970    if (LHSMask.Val || RHSMask.Val) {
1971      uint64_t Mask = MVT::getIntVTBitMask(VT);
1972
1973      if (LHSMask.Val) {
1974        uint64_t RHSBits = (1ULL << LShVal)-1;
1975        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1976      }
1977      if (RHSMask.Val) {
1978        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1979        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1980      }
1981
1982      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1983    }
1984
1985    return Rot.Val;
1986  }
1987
1988  // If there is a mask here, and we have a variable shift, we can't be sure
1989  // that we're masking out the right stuff.
1990  if (LHSMask.Val || RHSMask.Val)
1991    return 0;
1992
1993  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1994  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1995  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1996      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1997    if (ConstantSDNode *SUBC =
1998          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1999      if (SUBC->getValue() == OpSizeInBits) {
2000        if (HasROTL)
2001          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2002        else
2003          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2004      }
2005    }
2006  }
2007
2008  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2009  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2010  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2011      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2012    if (ConstantSDNode *SUBC =
2013          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2014      if (SUBC->getValue() == OpSizeInBits) {
2015        if (HasROTL)
2016          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2017        else
2018          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2019      }
2020    }
2021  }
2022
2023  // Look for sign/zext/any-extended cases:
2024  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2025       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2026       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2027      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2028       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2029       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2030    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2031    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2032    if (RExtOp0.getOpcode() == ISD::SUB &&
2033        RExtOp0.getOperand(1) == LExtOp0) {
2034      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2035      //   (rotr x, y)
2036      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2037      //   (rotl x, (sub 32, y))
2038      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2039        if (SUBC->getValue() == OpSizeInBits) {
2040          if (HasROTL)
2041            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2042          else
2043            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2044        }
2045      }
2046    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2047               RExtOp0 == LExtOp0.getOperand(1)) {
2048      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2049      //   (rotl x, y)
2050      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2051      //   (rotr x, (sub 32, y))
2052      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2053        if (SUBC->getValue() == OpSizeInBits) {
2054          if (HasROTL)
2055            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2056          else
2057            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2058        }
2059      }
2060    }
2061  }
2062
2063  return 0;
2064}
2065
2066
2067SDOperand DAGCombiner::visitXOR(SDNode *N) {
2068  SDOperand N0 = N->getOperand(0);
2069  SDOperand N1 = N->getOperand(1);
2070  SDOperand LHS, RHS, CC;
2071  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2072  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2073  MVT::ValueType VT = N0.getValueType();
2074
2075  // fold vector ops
2076  if (MVT::isVector(VT)) {
2077    SDOperand FoldedVOp = SimplifyVBinOp(N);
2078    if (FoldedVOp.Val) return FoldedVOp;
2079  }
2080
2081  // fold (xor x, undef) -> undef
2082  if (N0.getOpcode() == ISD::UNDEF)
2083    return N0;
2084  if (N1.getOpcode() == ISD::UNDEF)
2085    return N1;
2086  // fold (xor c1, c2) -> c1^c2
2087  if (N0C && N1C)
2088    return DAG.getNode(ISD::XOR, VT, N0, N1);
2089  // canonicalize constant to RHS
2090  if (N0C && !N1C)
2091    return DAG.getNode(ISD::XOR, VT, N1, N0);
2092  // fold (xor x, 0) -> x
2093  if (N1C && N1C->isNullValue())
2094    return N0;
2095  // reassociate xor
2096  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2097  if (RXOR.Val != 0)
2098    return RXOR;
2099  // fold !(x cc y) -> (x !cc y)
2100  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2101    bool isInt = MVT::isInteger(LHS.getValueType());
2102    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2103                                               isInt);
2104    if (N0.getOpcode() == ISD::SETCC)
2105      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2106    if (N0.getOpcode() == ISD::SELECT_CC)
2107      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2108    assert(0 && "Unhandled SetCC Equivalent!");
2109    abort();
2110  }
2111  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2112  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2113      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2114    SDOperand V = N0.getOperand(0);
2115    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2116                    DAG.getConstant(1, V.getValueType()));
2117    AddToWorkList(V.Val);
2118    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2119  }
2120
2121  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2122  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2123      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2124    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2125    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2126      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2127      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2128      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2129      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2130      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2131    }
2132  }
2133  // fold !(x or y) -> (!x and !y) iff x or y are constants
2134  if (N1C && N1C->isAllOnesValue() &&
2135      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2136    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2137    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2138      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2139      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2140      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2141      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2142      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2143    }
2144  }
2145  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2146  if (N1C && N0.getOpcode() == ISD::XOR) {
2147    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2148    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2149    if (N00C)
2150      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2151                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2152    if (N01C)
2153      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2154                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2155  }
2156  // fold (xor x, x) -> 0
2157  if (N0 == N1) {
2158    if (!MVT::isVector(VT)) {
2159      return DAG.getConstant(0, VT);
2160    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2161      // Produce a vector of zeros.
2162      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2163      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2164      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2165    }
2166  }
2167
2168  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2169  if (N0.getOpcode() == N1.getOpcode()) {
2170    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2171    if (Tmp.Val) return Tmp;
2172  }
2173
2174  // Simplify the expression using non-local knowledge.
2175  if (!MVT::isVector(VT) &&
2176      SimplifyDemandedBits(SDOperand(N, 0)))
2177    return SDOperand(N, 0);
2178
2179  return SDOperand();
2180}
2181
2182/// visitShiftByConstant - Handle transforms common to the three shifts, when
2183/// the shift amount is a constant.
2184SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2185  SDNode *LHS = N->getOperand(0).Val;
2186  if (!LHS->hasOneUse()) return SDOperand();
2187
2188  // We want to pull some binops through shifts, so that we have (and (shift))
2189  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2190  // thing happens with address calculations, so it's important to canonicalize
2191  // it.
2192  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2193
2194  switch (LHS->getOpcode()) {
2195  default: return SDOperand();
2196  case ISD::OR:
2197  case ISD::XOR:
2198    HighBitSet = false; // We can only transform sra if the high bit is clear.
2199    break;
2200  case ISD::AND:
2201    HighBitSet = true;  // We can only transform sra if the high bit is set.
2202    break;
2203  case ISD::ADD:
2204    if (N->getOpcode() != ISD::SHL)
2205      return SDOperand(); // only shl(add) not sr[al](add).
2206    HighBitSet = false; // We can only transform sra if the high bit is clear.
2207    break;
2208  }
2209
2210  // We require the RHS of the binop to be a constant as well.
2211  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2212  if (!BinOpCst) return SDOperand();
2213
2214
2215  // FIXME: disable this for unless the input to the binop is a shift by a
2216  // constant.  If it is not a shift, it pessimizes some common cases like:
2217  //
2218  //void foo(int *X, int i) { X[i & 1235] = 1; }
2219  //int bar(int *X, int i) { return X[i & 255]; }
2220  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2221  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2222       BinOpLHSVal->getOpcode() != ISD::SRA &&
2223       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2224      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2225    return SDOperand();
2226
2227  MVT::ValueType VT = N->getValueType(0);
2228
2229  // If this is a signed shift right, and the high bit is modified
2230  // by the logical operation, do not perform the transformation.
2231  // The highBitSet boolean indicates the value of the high bit of
2232  // the constant which would cause it to be modified for this
2233  // operation.
2234  if (N->getOpcode() == ISD::SRA) {
2235    uint64_t BinOpRHSSign = BinOpCst->getValue() >> (MVT::getSizeInBits(VT)-1);
2236    if ((bool)BinOpRHSSign != HighBitSet)
2237      return SDOperand();
2238  }
2239
2240  // Fold the constants, shifting the binop RHS by the shift amount.
2241  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2242                                 LHS->getOperand(1), N->getOperand(1));
2243
2244  // Create the new shift.
2245  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2246                                   N->getOperand(1));
2247
2248  // Create the new binop.
2249  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2250}
2251
2252
2253SDOperand DAGCombiner::visitSHL(SDNode *N) {
2254  SDOperand N0 = N->getOperand(0);
2255  SDOperand N1 = N->getOperand(1);
2256  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2257  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2258  MVT::ValueType VT = N0.getValueType();
2259  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2260
2261  // fold (shl c1, c2) -> c1<<c2
2262  if (N0C && N1C)
2263    return DAG.getNode(ISD::SHL, VT, N0, N1);
2264  // fold (shl 0, x) -> 0
2265  if (N0C && N0C->isNullValue())
2266    return N0;
2267  // fold (shl x, c >= size(x)) -> undef
2268  if (N1C && N1C->getValue() >= OpSizeInBits)
2269    return DAG.getNode(ISD::UNDEF, VT);
2270  // fold (shl x, 0) -> x
2271  if (N1C && N1C->isNullValue())
2272    return N0;
2273  // if (shl x, c) is known to be zero, return 0
2274  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2275    return DAG.getConstant(0, VT);
2276  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2277    return SDOperand(N, 0);
2278  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2279  if (N1C && N0.getOpcode() == ISD::SHL &&
2280      N0.getOperand(1).getOpcode() == ISD::Constant) {
2281    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2282    uint64_t c2 = N1C->getValue();
2283    if (c1 + c2 > OpSizeInBits)
2284      return DAG.getConstant(0, VT);
2285    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2286                       DAG.getConstant(c1 + c2, N1.getValueType()));
2287  }
2288  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2289  //                               (srl (and x, -1 << c1), c1-c2)
2290  if (N1C && N0.getOpcode() == ISD::SRL &&
2291      N0.getOperand(1).getOpcode() == ISD::Constant) {
2292    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2293    uint64_t c2 = N1C->getValue();
2294    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2295                                 DAG.getConstant(~0ULL << c1, VT));
2296    if (c2 > c1)
2297      return DAG.getNode(ISD::SHL, VT, Mask,
2298                         DAG.getConstant(c2-c1, N1.getValueType()));
2299    else
2300      return DAG.getNode(ISD::SRL, VT, Mask,
2301                         DAG.getConstant(c1-c2, N1.getValueType()));
2302  }
2303  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2304  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2305    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2306                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2307
2308  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2309}
2310
2311SDOperand DAGCombiner::visitSRA(SDNode *N) {
2312  SDOperand N0 = N->getOperand(0);
2313  SDOperand N1 = N->getOperand(1);
2314  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2315  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2316  MVT::ValueType VT = N0.getValueType();
2317
2318  // fold (sra c1, c2) -> c1>>c2
2319  if (N0C && N1C)
2320    return DAG.getNode(ISD::SRA, VT, N0, N1);
2321  // fold (sra 0, x) -> 0
2322  if (N0C && N0C->isNullValue())
2323    return N0;
2324  // fold (sra -1, x) -> -1
2325  if (N0C && N0C->isAllOnesValue())
2326    return N0;
2327  // fold (sra x, c >= size(x)) -> undef
2328  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2329    return DAG.getNode(ISD::UNDEF, VT);
2330  // fold (sra x, 0) -> x
2331  if (N1C && N1C->isNullValue())
2332    return N0;
2333  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2334  // sext_inreg.
2335  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2336    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2337    MVT::ValueType EVT;
2338    switch (LowBits) {
2339    default: EVT = MVT::Other; break;
2340    case  1: EVT = MVT::i1;    break;
2341    case  8: EVT = MVT::i8;    break;
2342    case 16: EVT = MVT::i16;   break;
2343    case 32: EVT = MVT::i32;   break;
2344    }
2345    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2346      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2347                         DAG.getValueType(EVT));
2348  }
2349
2350  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2351  if (N1C && N0.getOpcode() == ISD::SRA) {
2352    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2353      unsigned Sum = N1C->getValue() + C1->getValue();
2354      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2355      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2356                         DAG.getConstant(Sum, N1C->getValueType(0)));
2357    }
2358  }
2359
2360  // Simplify, based on bits shifted out of the LHS.
2361  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2362    return SDOperand(N, 0);
2363
2364
2365  // If the sign bit is known to be zero, switch this to a SRL.
2366  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2367    return DAG.getNode(ISD::SRL, VT, N0, N1);
2368
2369  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2370}
2371
2372SDOperand DAGCombiner::visitSRL(SDNode *N) {
2373  SDOperand N0 = N->getOperand(0);
2374  SDOperand N1 = N->getOperand(1);
2375  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2376  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2377  MVT::ValueType VT = N0.getValueType();
2378  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2379
2380  // fold (srl c1, c2) -> c1 >>u c2
2381  if (N0C && N1C)
2382    return DAG.getNode(ISD::SRL, VT, N0, N1);
2383  // fold (srl 0, x) -> 0
2384  if (N0C && N0C->isNullValue())
2385    return N0;
2386  // fold (srl x, c >= size(x)) -> undef
2387  if (N1C && N1C->getValue() >= OpSizeInBits)
2388    return DAG.getNode(ISD::UNDEF, VT);
2389  // fold (srl x, 0) -> x
2390  if (N1C && N1C->isNullValue())
2391    return N0;
2392  // if (srl x, c) is known to be zero, return 0
2393  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2394    return DAG.getConstant(0, VT);
2395
2396  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2397  if (N1C && N0.getOpcode() == ISD::SRL &&
2398      N0.getOperand(1).getOpcode() == ISD::Constant) {
2399    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2400    uint64_t c2 = N1C->getValue();
2401    if (c1 + c2 > OpSizeInBits)
2402      return DAG.getConstant(0, VT);
2403    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2404                       DAG.getConstant(c1 + c2, N1.getValueType()));
2405  }
2406
2407  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2408  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2409    // Shifting in all undef bits?
2410    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2411    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2412      return DAG.getNode(ISD::UNDEF, VT);
2413
2414    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2415    AddToWorkList(SmallShift.Val);
2416    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2417  }
2418
2419  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2420  // bit, which is unmodified by sra.
2421  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2422    if (N0.getOpcode() == ISD::SRA)
2423      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2424  }
2425
2426  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2427  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2428      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2429    APInt KnownZero, KnownOne;
2430    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2431    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2432
2433    // If any of the input bits are KnownOne, then the input couldn't be all
2434    // zeros, thus the result of the srl will always be zero.
2435    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2436
2437    // If all of the bits input the to ctlz node are known to be zero, then
2438    // the result of the ctlz is "32" and the result of the shift is one.
2439    APInt UnknownBits = ~KnownZero & Mask;
2440    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2441
2442    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2443    if ((UnknownBits & (UnknownBits-1)) == 0) {
2444      // Okay, we know that only that the single bit specified by UnknownBits
2445      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2446      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2447      // to an SRL,XOR pair, which is likely to simplify more.
2448      unsigned ShAmt = UnknownBits.countTrailingZeros();
2449      SDOperand Op = N0.getOperand(0);
2450      if (ShAmt) {
2451        Op = DAG.getNode(ISD::SRL, VT, Op,
2452                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2453        AddToWorkList(Op.Val);
2454      }
2455      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2456    }
2457  }
2458
2459  // fold operands of srl based on knowledge that the low bits are not
2460  // demanded.
2461  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2462    return SDOperand(N, 0);
2463
2464  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2465}
2466
2467SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2468  SDOperand N0 = N->getOperand(0);
2469  MVT::ValueType VT = N->getValueType(0);
2470
2471  // fold (ctlz c1) -> c2
2472  if (isa<ConstantSDNode>(N0))
2473    return DAG.getNode(ISD::CTLZ, VT, N0);
2474  return SDOperand();
2475}
2476
2477SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2478  SDOperand N0 = N->getOperand(0);
2479  MVT::ValueType VT = N->getValueType(0);
2480
2481  // fold (cttz c1) -> c2
2482  if (isa<ConstantSDNode>(N0))
2483    return DAG.getNode(ISD::CTTZ, VT, N0);
2484  return SDOperand();
2485}
2486
2487SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2488  SDOperand N0 = N->getOperand(0);
2489  MVT::ValueType VT = N->getValueType(0);
2490
2491  // fold (ctpop c1) -> c2
2492  if (isa<ConstantSDNode>(N0))
2493    return DAG.getNode(ISD::CTPOP, VT, N0);
2494  return SDOperand();
2495}
2496
2497SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2498  SDOperand N0 = N->getOperand(0);
2499  SDOperand N1 = N->getOperand(1);
2500  SDOperand N2 = N->getOperand(2);
2501  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2502  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2503  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2504  MVT::ValueType VT = N->getValueType(0);
2505  MVT::ValueType VT0 = N0.getValueType();
2506
2507  // fold select C, X, X -> X
2508  if (N1 == N2)
2509    return N1;
2510  // fold select true, X, Y -> X
2511  if (N0C && !N0C->isNullValue())
2512    return N1;
2513  // fold select false, X, Y -> Y
2514  if (N0C && N0C->isNullValue())
2515    return N2;
2516  // fold select C, 1, X -> C | X
2517  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2518    return DAG.getNode(ISD::OR, VT, N0, N2);
2519  // fold select C, 0, 1 -> ~C
2520  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2521      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2522    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2523    if (VT == VT0)
2524      return XORNode;
2525    AddToWorkList(XORNode.Val);
2526    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2527      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2528    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2529  }
2530  // fold select C, 0, X -> ~C & X
2531  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2532    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2533    AddToWorkList(XORNode.Val);
2534    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2535  }
2536  // fold select C, X, 1 -> ~C | X
2537  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2538    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2539    AddToWorkList(XORNode.Val);
2540    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2541  }
2542  // fold select C, X, 0 -> C & X
2543  // FIXME: this should check for C type == X type, not i1?
2544  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2545    return DAG.getNode(ISD::AND, VT, N0, N1);
2546  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2547  if (MVT::i1 == VT && N0 == N1)
2548    return DAG.getNode(ISD::OR, VT, N0, N2);
2549  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2550  if (MVT::i1 == VT && N0 == N2)
2551    return DAG.getNode(ISD::AND, VT, N0, N1);
2552
2553  // If we can fold this based on the true/false value, do so.
2554  if (SimplifySelectOps(N, N1, N2))
2555    return SDOperand(N, 0);  // Don't revisit N.
2556
2557  // fold selects based on a setcc into other things, such as min/max/abs
2558  if (N0.getOpcode() == ISD::SETCC) {
2559    // FIXME:
2560    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2561    // having to say they don't support SELECT_CC on every type the DAG knows
2562    // about, since there is no way to mark an opcode illegal at all value types
2563    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2564      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2565                         N1, N2, N0.getOperand(2));
2566    else
2567      return SimplifySelect(N0, N1, N2);
2568  }
2569  return SDOperand();
2570}
2571
2572SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2573  SDOperand N0 = N->getOperand(0);
2574  SDOperand N1 = N->getOperand(1);
2575  SDOperand N2 = N->getOperand(2);
2576  SDOperand N3 = N->getOperand(3);
2577  SDOperand N4 = N->getOperand(4);
2578  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2579
2580  // fold select_cc lhs, rhs, x, x, cc -> x
2581  if (N2 == N3)
2582    return N2;
2583
2584  // Determine if the condition we're dealing with is constant
2585  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2586  if (SCC.Val) AddToWorkList(SCC.Val);
2587
2588  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2589    if (SCCC->getValue())
2590      return N2;    // cond always true -> true val
2591    else
2592      return N3;    // cond always false -> false val
2593  }
2594
2595  // Fold to a simpler select_cc
2596  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2597    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2598                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2599                       SCC.getOperand(2));
2600
2601  // If we can fold this based on the true/false value, do so.
2602  if (SimplifySelectOps(N, N2, N3))
2603    return SDOperand(N, 0);  // Don't revisit N.
2604
2605  // fold select_cc into other things, such as min/max/abs
2606  return SimplifySelectCC(N0, N1, N2, N3, CC);
2607}
2608
2609SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2610  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2611                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2612}
2613
2614// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2615// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2616// transformation. Returns true if extension are possible and the above
2617// mentioned transformation is profitable.
2618static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2619                                    unsigned ExtOpc,
2620                                    SmallVector<SDNode*, 4> &ExtendNodes,
2621                                    TargetLowering &TLI) {
2622  bool HasCopyToRegUses = false;
2623  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2624  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2625       UI != UE; ++UI) {
2626    SDNode *User = *UI;
2627    if (User == N)
2628      continue;
2629    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2630    if (User->getOpcode() == ISD::SETCC) {
2631      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2632      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2633        // Sign bits will be lost after a zext.
2634        return false;
2635      bool Add = false;
2636      for (unsigned i = 0; i != 2; ++i) {
2637        SDOperand UseOp = User->getOperand(i);
2638        if (UseOp == N0)
2639          continue;
2640        if (!isa<ConstantSDNode>(UseOp))
2641          return false;
2642        Add = true;
2643      }
2644      if (Add)
2645        ExtendNodes.push_back(User);
2646    } else {
2647      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2648        SDOperand UseOp = User->getOperand(i);
2649        if (UseOp == N0) {
2650          // If truncate from extended type to original load type is free
2651          // on this target, then it's ok to extend a CopyToReg.
2652          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2653            HasCopyToRegUses = true;
2654          else
2655            return false;
2656        }
2657      }
2658    }
2659  }
2660
2661  if (HasCopyToRegUses) {
2662    bool BothLiveOut = false;
2663    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2664         UI != UE; ++UI) {
2665      SDNode *User = *UI;
2666      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2667        SDOperand UseOp = User->getOperand(i);
2668        if (UseOp.Val == N && UseOp.ResNo == 0) {
2669          BothLiveOut = true;
2670          break;
2671        }
2672      }
2673    }
2674    if (BothLiveOut)
2675      // Both unextended and extended values are live out. There had better be
2676      // good a reason for the transformation.
2677      return ExtendNodes.size();
2678  }
2679  return true;
2680}
2681
2682SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2683  SDOperand N0 = N->getOperand(0);
2684  MVT::ValueType VT = N->getValueType(0);
2685
2686  // fold (sext c1) -> c1
2687  if (isa<ConstantSDNode>(N0))
2688    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2689
2690  // fold (sext (sext x)) -> (sext x)
2691  // fold (sext (aext x)) -> (sext x)
2692  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2693    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2694
2695  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2696  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2697  if (N0.getOpcode() == ISD::TRUNCATE) {
2698    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2699    if (NarrowLoad.Val) {
2700      if (NarrowLoad.Val != N0.Val)
2701        CombineTo(N0.Val, NarrowLoad);
2702      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2703    }
2704  }
2705
2706  // See if the value being truncated is already sign extended.  If so, just
2707  // eliminate the trunc/sext pair.
2708  if (N0.getOpcode() == ISD::TRUNCATE) {
2709    SDOperand Op = N0.getOperand(0);
2710    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2711    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2712    unsigned DestBits = MVT::getSizeInBits(VT);
2713    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2714
2715    if (OpBits == DestBits) {
2716      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2717      // bits, it is already ready.
2718      if (NumSignBits > DestBits-MidBits)
2719        return Op;
2720    } else if (OpBits < DestBits) {
2721      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2722      // bits, just sext from i32.
2723      if (NumSignBits > OpBits-MidBits)
2724        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2725    } else {
2726      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2727      // bits, just truncate to i32.
2728      if (NumSignBits > OpBits-MidBits)
2729        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2730    }
2731
2732    // fold (sext (truncate x)) -> (sextinreg x).
2733    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2734                                               N0.getValueType())) {
2735      if (Op.getValueType() < VT)
2736        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2737      else if (Op.getValueType() > VT)
2738        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2739      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2740                         DAG.getValueType(N0.getValueType()));
2741    }
2742  }
2743
2744  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2745  if (ISD::isNON_EXTLoad(N0.Val) &&
2746      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2747    bool DoXform = true;
2748    SmallVector<SDNode*, 4> SetCCs;
2749    if (!N0.hasOneUse())
2750      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2751    if (DoXform) {
2752      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2753      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2754                                         LN0->getBasePtr(), LN0->getSrcValue(),
2755                                         LN0->getSrcValueOffset(),
2756                                         N0.getValueType(),
2757                                         LN0->isVolatile(),
2758                                         LN0->getAlignment());
2759      CombineTo(N, ExtLoad);
2760      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2761      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2762      // Extend SetCC uses if necessary.
2763      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2764        SDNode *SetCC = SetCCs[i];
2765        SmallVector<SDOperand, 4> Ops;
2766        for (unsigned j = 0; j != 2; ++j) {
2767          SDOperand SOp = SetCC->getOperand(j);
2768          if (SOp == Trunc)
2769            Ops.push_back(ExtLoad);
2770          else
2771            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2772          }
2773        Ops.push_back(SetCC->getOperand(2));
2774        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2775                                     &Ops[0], Ops.size()));
2776      }
2777      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2778    }
2779  }
2780
2781  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2782  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2783  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2784      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2785    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2786    MVT::ValueType EVT = LN0->getMemoryVT();
2787    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2788      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2789                                         LN0->getBasePtr(), LN0->getSrcValue(),
2790                                         LN0->getSrcValueOffset(), EVT,
2791                                         LN0->isVolatile(),
2792                                         LN0->getAlignment());
2793      CombineTo(N, ExtLoad);
2794      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2795                ExtLoad.getValue(1));
2796      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2797    }
2798  }
2799
2800  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2801  if (N0.getOpcode() == ISD::SETCC) {
2802    SDOperand SCC =
2803      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2804                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2805                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2806    if (SCC.Val) return SCC;
2807  }
2808
2809  return SDOperand();
2810}
2811
2812SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2813  SDOperand N0 = N->getOperand(0);
2814  MVT::ValueType VT = N->getValueType(0);
2815
2816  // fold (zext c1) -> c1
2817  if (isa<ConstantSDNode>(N0))
2818    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2819  // fold (zext (zext x)) -> (zext x)
2820  // fold (zext (aext x)) -> (zext x)
2821  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2822    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2823
2824  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2825  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2826  if (N0.getOpcode() == ISD::TRUNCATE) {
2827    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2828    if (NarrowLoad.Val) {
2829      if (NarrowLoad.Val != N0.Val)
2830        CombineTo(N0.Val, NarrowLoad);
2831      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2832    }
2833  }
2834
2835  // fold (zext (truncate x)) -> (and x, mask)
2836  if (N0.getOpcode() == ISD::TRUNCATE &&
2837      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2838    SDOperand Op = N0.getOperand(0);
2839    if (Op.getValueType() < VT) {
2840      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2841    } else if (Op.getValueType() > VT) {
2842      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2843    }
2844    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2845  }
2846
2847  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2848  if (N0.getOpcode() == ISD::AND &&
2849      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2850      N0.getOperand(1).getOpcode() == ISD::Constant) {
2851    SDOperand X = N0.getOperand(0).getOperand(0);
2852    if (X.getValueType() < VT) {
2853      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2854    } else if (X.getValueType() > VT) {
2855      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2856    }
2857    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2858    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2859  }
2860
2861  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2862  if (ISD::isNON_EXTLoad(N0.Val) &&
2863      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2864    bool DoXform = true;
2865    SmallVector<SDNode*, 4> SetCCs;
2866    if (!N0.hasOneUse())
2867      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2868    if (DoXform) {
2869      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2870      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2871                                         LN0->getBasePtr(), LN0->getSrcValue(),
2872                                         LN0->getSrcValueOffset(),
2873                                         N0.getValueType(),
2874                                         LN0->isVolatile(),
2875                                         LN0->getAlignment());
2876      CombineTo(N, ExtLoad);
2877      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2878      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2879      // Extend SetCC uses if necessary.
2880      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2881        SDNode *SetCC = SetCCs[i];
2882        SmallVector<SDOperand, 4> Ops;
2883        for (unsigned j = 0; j != 2; ++j) {
2884          SDOperand SOp = SetCC->getOperand(j);
2885          if (SOp == Trunc)
2886            Ops.push_back(ExtLoad);
2887          else
2888            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2889          }
2890        Ops.push_back(SetCC->getOperand(2));
2891        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2892                                     &Ops[0], Ops.size()));
2893      }
2894      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2895    }
2896  }
2897
2898  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2899  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2900  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2901      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2902    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2903    MVT::ValueType EVT = LN0->getMemoryVT();
2904    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2905                                       LN0->getBasePtr(), LN0->getSrcValue(),
2906                                       LN0->getSrcValueOffset(), EVT,
2907                                       LN0->isVolatile(),
2908                                       LN0->getAlignment());
2909    CombineTo(N, ExtLoad);
2910    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2911              ExtLoad.getValue(1));
2912    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2913  }
2914
2915  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2916  if (N0.getOpcode() == ISD::SETCC) {
2917    SDOperand SCC =
2918      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2919                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2920                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2921    if (SCC.Val) return SCC;
2922  }
2923
2924  return SDOperand();
2925}
2926
2927SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2928  SDOperand N0 = N->getOperand(0);
2929  MVT::ValueType VT = N->getValueType(0);
2930
2931  // fold (aext c1) -> c1
2932  if (isa<ConstantSDNode>(N0))
2933    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2934  // fold (aext (aext x)) -> (aext x)
2935  // fold (aext (zext x)) -> (zext x)
2936  // fold (aext (sext x)) -> (sext x)
2937  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2938      N0.getOpcode() == ISD::ZERO_EXTEND ||
2939      N0.getOpcode() == ISD::SIGN_EXTEND)
2940    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2941
2942  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2943  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2944  if (N0.getOpcode() == ISD::TRUNCATE) {
2945    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2946    if (NarrowLoad.Val) {
2947      if (NarrowLoad.Val != N0.Val)
2948        CombineTo(N0.Val, NarrowLoad);
2949      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2950    }
2951  }
2952
2953  // fold (aext (truncate x))
2954  if (N0.getOpcode() == ISD::TRUNCATE) {
2955    SDOperand TruncOp = N0.getOperand(0);
2956    if (TruncOp.getValueType() == VT)
2957      return TruncOp; // x iff x size == zext size.
2958    if (TruncOp.getValueType() > VT)
2959      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2960    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2961  }
2962
2963  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2964  if (N0.getOpcode() == ISD::AND &&
2965      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2966      N0.getOperand(1).getOpcode() == ISD::Constant) {
2967    SDOperand X = N0.getOperand(0).getOperand(0);
2968    if (X.getValueType() < VT) {
2969      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2970    } else if (X.getValueType() > VT) {
2971      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2972    }
2973    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2974    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2975  }
2976
2977  // fold (aext (load x)) -> (aext (truncate (extload x)))
2978  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2979      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2980    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2981    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2982                                       LN0->getBasePtr(), LN0->getSrcValue(),
2983                                       LN0->getSrcValueOffset(),
2984                                       N0.getValueType(),
2985                                       LN0->isVolatile(),
2986                                       LN0->getAlignment());
2987    CombineTo(N, ExtLoad);
2988    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2989              ExtLoad.getValue(1));
2990    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2991  }
2992
2993  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2994  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2995  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2996  if (N0.getOpcode() == ISD::LOAD &&
2997      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2998      N0.hasOneUse()) {
2999    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3000    MVT::ValueType EVT = LN0->getMemoryVT();
3001    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3002                                       LN0->getChain(), LN0->getBasePtr(),
3003                                       LN0->getSrcValue(),
3004                                       LN0->getSrcValueOffset(), EVT,
3005                                       LN0->isVolatile(),
3006                                       LN0->getAlignment());
3007    CombineTo(N, ExtLoad);
3008    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3009              ExtLoad.getValue(1));
3010    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3011  }
3012
3013  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3014  if (N0.getOpcode() == ISD::SETCC) {
3015    SDOperand SCC =
3016      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3017                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3018                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3019    if (SCC.Val)
3020      return SCC;
3021  }
3022
3023  return SDOperand();
3024}
3025
3026/// GetDemandedBits - See if the specified operand can be simplified with the
3027/// knowledge that only the bits specified by Mask are used.  If so, return the
3028/// simpler operand, otherwise return a null SDOperand.
3029SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
3030  switch (V.getOpcode()) {
3031  default: break;
3032  case ISD::OR:
3033  case ISD::XOR:
3034    // If the LHS or RHS don't contribute bits to the or, drop them.
3035    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3036      return V.getOperand(1);
3037    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3038      return V.getOperand(0);
3039    break;
3040  case ISD::SRL:
3041    // Only look at single-use SRLs.
3042    if (!V.Val->hasOneUse())
3043      break;
3044    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3045      // See if we can recursively simplify the LHS.
3046      unsigned Amt = RHSC->getValue();
3047      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
3048      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
3049      if (SimplifyLHS.Val) {
3050        return DAG.getNode(ISD::SRL, V.getValueType(),
3051                           SimplifyLHS, V.getOperand(1));
3052      }
3053    }
3054  }
3055  return SDOperand();
3056}
3057
3058/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3059/// bits and then truncated to a narrower type and where N is a multiple
3060/// of number of bits of the narrower type, transform it to a narrower load
3061/// from address + N / num of bits of new type. If the result is to be
3062/// extended, also fold the extension to form a extending load.
3063SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3064  unsigned Opc = N->getOpcode();
3065  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3066  SDOperand N0 = N->getOperand(0);
3067  MVT::ValueType VT = N->getValueType(0);
3068  MVT::ValueType EVT = N->getValueType(0);
3069
3070  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3071  // extended to VT.
3072  if (Opc == ISD::SIGN_EXTEND_INREG) {
3073    ExtType = ISD::SEXTLOAD;
3074    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3075    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3076      return SDOperand();
3077  }
3078
3079  unsigned EVTBits = MVT::getSizeInBits(EVT);
3080  unsigned ShAmt = 0;
3081  bool CombineSRL =  false;
3082  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3083    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3084      ShAmt = N01->getValue();
3085      // Is the shift amount a multiple of size of VT?
3086      if ((ShAmt & (EVTBits-1)) == 0) {
3087        N0 = N0.getOperand(0);
3088        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3089          return SDOperand();
3090        CombineSRL = true;
3091      }
3092    }
3093  }
3094
3095  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3096      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3097      // zero extended form: by shrinking the load, we lose track of the fact
3098      // that it is already zero extended.
3099      // FIXME: This should be reevaluated.
3100      VT != MVT::i1) {
3101    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3102           "Cannot truncate to larger type!");
3103    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3104    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3105    // For big endian targets, we need to adjust the offset to the pointer to
3106    // load the correct bytes.
3107    if (TLI.isBigEndian()) {
3108      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3109      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3110      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3111    }
3112    uint64_t PtrOff =  ShAmt / 8;
3113    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3114    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3115                                   DAG.getConstant(PtrOff, PtrType));
3116    AddToWorkList(NewPtr.Val);
3117    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3118      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3119                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3120                    LN0->isVolatile(), NewAlign)
3121      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3122                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3123                       LN0->isVolatile(), NewAlign);
3124    AddToWorkList(N);
3125    if (CombineSRL) {
3126      WorkListRemover DeadNodes(*this);
3127      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3128                                    &DeadNodes);
3129      CombineTo(N->getOperand(0).Val, Load);
3130    } else
3131      CombineTo(N0.Val, Load, Load.getValue(1));
3132    if (ShAmt) {
3133      if (Opc == ISD::SIGN_EXTEND_INREG)
3134        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3135      else
3136        return DAG.getNode(Opc, VT, Load);
3137    }
3138    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3139  }
3140
3141  return SDOperand();
3142}
3143
3144
3145SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3146  SDOperand N0 = N->getOperand(0);
3147  SDOperand N1 = N->getOperand(1);
3148  MVT::ValueType VT = N->getValueType(0);
3149  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3150  unsigned EVTBits = MVT::getSizeInBits(EVT);
3151
3152  // fold (sext_in_reg c1) -> c1
3153  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3154    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3155
3156  // If the input is already sign extended, just drop the extension.
3157  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3158    return N0;
3159
3160  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3161  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3162      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3163    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3164  }
3165
3166  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3167  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
3168    return DAG.getZeroExtendInReg(N0, EVT);
3169
3170  // fold operands of sext_in_reg based on knowledge that the top bits are not
3171  // demanded.
3172  if (SimplifyDemandedBits(SDOperand(N, 0)))
3173    return SDOperand(N, 0);
3174
3175  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3176  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3177  SDOperand NarrowLoad = ReduceLoadWidth(N);
3178  if (NarrowLoad.Val)
3179    return NarrowLoad;
3180
3181  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3182  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3183  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3184  if (N0.getOpcode() == ISD::SRL) {
3185    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3186      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3187        // We can turn this into an SRA iff the input to the SRL is already sign
3188        // extended enough.
3189        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3190        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3191          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3192      }
3193  }
3194
3195  // fold (sext_inreg (extload x)) -> (sextload x)
3196  if (ISD::isEXTLoad(N0.Val) &&
3197      ISD::isUNINDEXEDLoad(N0.Val) &&
3198      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3199      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3200    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3201    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3202                                       LN0->getBasePtr(), LN0->getSrcValue(),
3203                                       LN0->getSrcValueOffset(), EVT,
3204                                       LN0->isVolatile(),
3205                                       LN0->getAlignment());
3206    CombineTo(N, ExtLoad);
3207    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3208    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3209  }
3210  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3211  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3212      N0.hasOneUse() &&
3213      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3214      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3215    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3216    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3217                                       LN0->getBasePtr(), LN0->getSrcValue(),
3218                                       LN0->getSrcValueOffset(), EVT,
3219                                       LN0->isVolatile(),
3220                                       LN0->getAlignment());
3221    CombineTo(N, ExtLoad);
3222    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3223    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3224  }
3225  return SDOperand();
3226}
3227
3228SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3229  SDOperand N0 = N->getOperand(0);
3230  MVT::ValueType VT = N->getValueType(0);
3231
3232  // noop truncate
3233  if (N0.getValueType() == N->getValueType(0))
3234    return N0;
3235  // fold (truncate c1) -> c1
3236  if (isa<ConstantSDNode>(N0))
3237    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3238  // fold (truncate (truncate x)) -> (truncate x)
3239  if (N0.getOpcode() == ISD::TRUNCATE)
3240    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3241  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3242  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3243      N0.getOpcode() == ISD::ANY_EXTEND) {
3244    if (N0.getOperand(0).getValueType() < VT)
3245      // if the source is smaller than the dest, we still need an extend
3246      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3247    else if (N0.getOperand(0).getValueType() > VT)
3248      // if the source is larger than the dest, than we just need the truncate
3249      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3250    else
3251      // if the source and dest are the same type, we can drop both the extend
3252      // and the truncate
3253      return N0.getOperand(0);
3254  }
3255
3256  // See if we can simplify the input to this truncate through knowledge that
3257  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3258  // -> trunc y
3259  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3260  if (Shorter.Val)
3261    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3262
3263  // fold (truncate (load x)) -> (smaller load x)
3264  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3265  return ReduceLoadWidth(N);
3266}
3267
3268SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3269  SDOperand N0 = N->getOperand(0);
3270  MVT::ValueType VT = N->getValueType(0);
3271
3272  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3273  // Only do this before legalize, since afterward the target may be depending
3274  // on the bitconvert.
3275  // First check to see if this is all constant.
3276  if (!AfterLegalize &&
3277      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3278      MVT::isVector(VT)) {
3279    bool isSimple = true;
3280    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3281      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3282          N0.getOperand(i).getOpcode() != ISD::Constant &&
3283          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3284        isSimple = false;
3285        break;
3286      }
3287
3288    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3289    assert(!MVT::isVector(DestEltVT) &&
3290           "Element type of vector ValueType must not be vector!");
3291    if (isSimple) {
3292      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3293    }
3294  }
3295
3296  // If the input is a constant, let getNode() fold it.
3297  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3298    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3299    if (Res.Val != N) return Res;
3300  }
3301
3302  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3303    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3304
3305  // fold (conv (load x)) -> (load (conv*)x)
3306  // If the resultant load doesn't need a higher alignment than the original!
3307  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3308      TLI.isOperationLegal(ISD::LOAD, VT)) {
3309    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3310    unsigned Align = TLI.getTargetMachine().getTargetData()->
3311      getABITypeAlignment(MVT::getTypeForValueType(VT));
3312    unsigned OrigAlign = LN0->getAlignment();
3313    if (Align <= OrigAlign) {
3314      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3315                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3316                                   LN0->isVolatile(), Align);
3317      AddToWorkList(N);
3318      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3319                Load.getValue(1));
3320      return Load;
3321    }
3322  }
3323
3324  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3325  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3326  // This often reduces constant pool loads.
3327  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3328      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3329    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3330    AddToWorkList(NewConv.Val);
3331
3332    uint64_t SignBit = MVT::getIntVTSignBit(VT);
3333    if (N0.getOpcode() == ISD::FNEG)
3334      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3335    assert(N0.getOpcode() == ISD::FABS);
3336    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3337  }
3338
3339  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3340  // Note that we don't handle copysign(x,cst) because this can always be folded
3341  // to an fneg or fabs.
3342  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3343      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3344      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3345    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3346    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3347                              N0.getOperand(1));
3348    AddToWorkList(X.Val);
3349
3350    // If X has a different width than the result/lhs, sext it or truncate it.
3351    unsigned VTWidth = MVT::getSizeInBits(VT);
3352    if (OrigXWidth < VTWidth) {
3353      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3354      AddToWorkList(X.Val);
3355    } else if (OrigXWidth > VTWidth) {
3356      // To get the sign bit in the right place, we have to shift it right
3357      // before truncating.
3358      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3359                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3360      AddToWorkList(X.Val);
3361      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3362      AddToWorkList(X.Val);
3363    }
3364
3365    uint64_t SignBit = MVT::getIntVTSignBit(VT);
3366    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3367    AddToWorkList(X.Val);
3368
3369    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3370    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3371    AddToWorkList(Cst.Val);
3372
3373    return DAG.getNode(ISD::OR, VT, X, Cst);
3374  }
3375
3376  return SDOperand();
3377}
3378
3379/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3380/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3381/// destination element value type.
3382SDOperand DAGCombiner::
3383ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3384  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3385
3386  // If this is already the right type, we're done.
3387  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3388
3389  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3390  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3391
3392  // If this is a conversion of N elements of one type to N elements of another
3393  // type, convert each element.  This handles FP<->INT cases.
3394  if (SrcBitSize == DstBitSize) {
3395    SmallVector<SDOperand, 8> Ops;
3396    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3397      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3398      AddToWorkList(Ops.back().Val);
3399    }
3400    MVT::ValueType VT =
3401      MVT::getVectorType(DstEltVT,
3402                         MVT::getVectorNumElements(BV->getValueType(0)));
3403    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3404  }
3405
3406  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3407  // handle annoying details of growing/shrinking FP values, we convert them to
3408  // int first.
3409  if (MVT::isFloatingPoint(SrcEltVT)) {
3410    // Convert the input float vector to a int vector where the elements are the
3411    // same sizes.
3412    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3413    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3414    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3415    SrcEltVT = IntVT;
3416  }
3417
3418  // Now we know the input is an integer vector.  If the output is a FP type,
3419  // convert to integer first, then to FP of the right size.
3420  if (MVT::isFloatingPoint(DstEltVT)) {
3421    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3422    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3423    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3424
3425    // Next, convert to FP elements of the same size.
3426    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3427  }
3428
3429  // Okay, we know the src/dst types are both integers of differing types.
3430  // Handling growing first.
3431  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3432  if (SrcBitSize < DstBitSize) {
3433    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3434
3435    SmallVector<SDOperand, 8> Ops;
3436    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3437         i += NumInputsPerOutput) {
3438      bool isLE = TLI.isLittleEndian();
3439      uint64_t NewBits = 0;
3440      bool EltIsUndef = true;
3441      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3442        // Shift the previously computed bits over.
3443        NewBits <<= SrcBitSize;
3444        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3445        if (Op.getOpcode() == ISD::UNDEF) continue;
3446        EltIsUndef = false;
3447
3448        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3449      }
3450
3451      if (EltIsUndef)
3452        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3453      else
3454        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3455    }
3456
3457    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3458    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3459  }
3460
3461  // Finally, this must be the case where we are shrinking elements: each input
3462  // turns into multiple outputs.
3463  bool isS2V = ISD::isScalarToVector(BV);
3464  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3465  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3466                                     NumOutputsPerInput * BV->getNumOperands());
3467  SmallVector<SDOperand, 8> Ops;
3468  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3469    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3470      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3471        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3472      continue;
3473    }
3474    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3475    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3476      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3477      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3478      if (isS2V && i == 0 && j == 0 && ThisVal == OpVal)
3479        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3480        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3481      OpVal >>= DstBitSize;
3482    }
3483
3484    // For big endian targets, swap the order of the pieces of each element.
3485    if (TLI.isBigEndian())
3486      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3487  }
3488  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3489}
3490
3491
3492
3493SDOperand DAGCombiner::visitFADD(SDNode *N) {
3494  SDOperand N0 = N->getOperand(0);
3495  SDOperand N1 = N->getOperand(1);
3496  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3497  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3498  MVT::ValueType VT = N->getValueType(0);
3499
3500  // fold vector ops
3501  if (MVT::isVector(VT)) {
3502    SDOperand FoldedVOp = SimplifyVBinOp(N);
3503    if (FoldedVOp.Val) return FoldedVOp;
3504  }
3505
3506  // fold (fadd c1, c2) -> c1+c2
3507  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3508    return DAG.getNode(ISD::FADD, VT, N0, N1);
3509  // canonicalize constant to RHS
3510  if (N0CFP && !N1CFP)
3511    return DAG.getNode(ISD::FADD, VT, N1, N0);
3512  // fold (A + (-B)) -> A-B
3513  if (isNegatibleForFree(N1) == 2)
3514    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3515  // fold ((-A) + B) -> B-A
3516  if (isNegatibleForFree(N0) == 2)
3517    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3518
3519  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3520  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3521      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3522    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3523                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3524
3525  return SDOperand();
3526}
3527
3528SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3529  SDOperand N0 = N->getOperand(0);
3530  SDOperand N1 = N->getOperand(1);
3531  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3532  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3533  MVT::ValueType VT = N->getValueType(0);
3534
3535  // fold vector ops
3536  if (MVT::isVector(VT)) {
3537    SDOperand FoldedVOp = SimplifyVBinOp(N);
3538    if (FoldedVOp.Val) return FoldedVOp;
3539  }
3540
3541  // fold (fsub c1, c2) -> c1-c2
3542  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3543    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3544  // fold (0-B) -> -B
3545  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3546    if (isNegatibleForFree(N1))
3547      return GetNegatedExpression(N1, DAG);
3548    return DAG.getNode(ISD::FNEG, VT, N1);
3549  }
3550  // fold (A-(-B)) -> A+B
3551  if (isNegatibleForFree(N1))
3552    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3553
3554  return SDOperand();
3555}
3556
3557SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3558  SDOperand N0 = N->getOperand(0);
3559  SDOperand N1 = N->getOperand(1);
3560  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3561  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3562  MVT::ValueType VT = N->getValueType(0);
3563
3564  // fold vector ops
3565  if (MVT::isVector(VT)) {
3566    SDOperand FoldedVOp = SimplifyVBinOp(N);
3567    if (FoldedVOp.Val) return FoldedVOp;
3568  }
3569
3570  // fold (fmul c1, c2) -> c1*c2
3571  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3572    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3573  // canonicalize constant to RHS
3574  if (N0CFP && !N1CFP)
3575    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3576  // fold (fmul X, 2.0) -> (fadd X, X)
3577  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3578    return DAG.getNode(ISD::FADD, VT, N0, N0);
3579  // fold (fmul X, -1.0) -> (fneg X)
3580  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3581    return DAG.getNode(ISD::FNEG, VT, N0);
3582
3583  // -X * -Y -> X*Y
3584  if (char LHSNeg = isNegatibleForFree(N0)) {
3585    if (char RHSNeg = isNegatibleForFree(N1)) {
3586      // Both can be negated for free, check to see if at least one is cheaper
3587      // negated.
3588      if (LHSNeg == 2 || RHSNeg == 2)
3589        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3590                           GetNegatedExpression(N1, DAG));
3591    }
3592  }
3593
3594  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3595  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3596      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3597    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3598                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3599
3600  return SDOperand();
3601}
3602
3603SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3604  SDOperand N0 = N->getOperand(0);
3605  SDOperand N1 = N->getOperand(1);
3606  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3607  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3608  MVT::ValueType VT = N->getValueType(0);
3609
3610  // fold vector ops
3611  if (MVT::isVector(VT)) {
3612    SDOperand FoldedVOp = SimplifyVBinOp(N);
3613    if (FoldedVOp.Val) return FoldedVOp;
3614  }
3615
3616  // fold (fdiv c1, c2) -> c1/c2
3617  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3618    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3619
3620
3621  // -X / -Y -> X*Y
3622  if (char LHSNeg = isNegatibleForFree(N0)) {
3623    if (char RHSNeg = isNegatibleForFree(N1)) {
3624      // Both can be negated for free, check to see if at least one is cheaper
3625      // negated.
3626      if (LHSNeg == 2 || RHSNeg == 2)
3627        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3628                           GetNegatedExpression(N1, DAG));
3629    }
3630  }
3631
3632  return SDOperand();
3633}
3634
3635SDOperand DAGCombiner::visitFREM(SDNode *N) {
3636  SDOperand N0 = N->getOperand(0);
3637  SDOperand N1 = N->getOperand(1);
3638  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3639  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3640  MVT::ValueType VT = N->getValueType(0);
3641
3642  // fold (frem c1, c2) -> fmod(c1,c2)
3643  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3644    return DAG.getNode(ISD::FREM, VT, N0, N1);
3645
3646  return SDOperand();
3647}
3648
3649SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3650  SDOperand N0 = N->getOperand(0);
3651  SDOperand N1 = N->getOperand(1);
3652  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3653  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3654  MVT::ValueType VT = N->getValueType(0);
3655
3656  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3657    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3658
3659  if (N1CFP) {
3660    const APFloat& V = N1CFP->getValueAPF();
3661    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3662    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3663    if (!V.isNegative())
3664      return DAG.getNode(ISD::FABS, VT, N0);
3665    else
3666      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3667  }
3668
3669  // copysign(fabs(x), y) -> copysign(x, y)
3670  // copysign(fneg(x), y) -> copysign(x, y)
3671  // copysign(copysign(x,z), y) -> copysign(x, y)
3672  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3673      N0.getOpcode() == ISD::FCOPYSIGN)
3674    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3675
3676  // copysign(x, abs(y)) -> abs(x)
3677  if (N1.getOpcode() == ISD::FABS)
3678    return DAG.getNode(ISD::FABS, VT, N0);
3679
3680  // copysign(x, copysign(y,z)) -> copysign(x, z)
3681  if (N1.getOpcode() == ISD::FCOPYSIGN)
3682    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3683
3684  // copysign(x, fp_extend(y)) -> copysign(x, y)
3685  // copysign(x, fp_round(y)) -> copysign(x, y)
3686  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3687    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3688
3689  return SDOperand();
3690}
3691
3692
3693
3694SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3695  SDOperand N0 = N->getOperand(0);
3696  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3697  MVT::ValueType VT = N->getValueType(0);
3698
3699  // fold (sint_to_fp c1) -> c1fp
3700  if (N0C && N0.getValueType() != MVT::ppcf128)
3701    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3702  return SDOperand();
3703}
3704
3705SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3706  SDOperand N0 = N->getOperand(0);
3707  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3708  MVT::ValueType VT = N->getValueType(0);
3709
3710  // fold (uint_to_fp c1) -> c1fp
3711  if (N0C && N0.getValueType() != MVT::ppcf128)
3712    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3713  return SDOperand();
3714}
3715
3716SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3717  SDOperand N0 = N->getOperand(0);
3718  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3719  MVT::ValueType VT = N->getValueType(0);
3720
3721  // fold (fp_to_sint c1fp) -> c1
3722  if (N0CFP)
3723    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3724  return SDOperand();
3725}
3726
3727SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3728  SDOperand N0 = N->getOperand(0);
3729  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3730  MVT::ValueType VT = N->getValueType(0);
3731
3732  // fold (fp_to_uint c1fp) -> c1
3733  if (N0CFP && VT != MVT::ppcf128)
3734    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3735  return SDOperand();
3736}
3737
3738SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3739  SDOperand N0 = N->getOperand(0);
3740  SDOperand N1 = N->getOperand(1);
3741  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3742  MVT::ValueType VT = N->getValueType(0);
3743
3744  // fold (fp_round c1fp) -> c1fp
3745  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3746    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3747
3748  // fold (fp_round (fp_extend x)) -> x
3749  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3750    return N0.getOperand(0);
3751
3752  // fold (fp_round (fp_round x)) -> (fp_round x)
3753  if (N0.getOpcode() == ISD::FP_ROUND) {
3754    // This is a value preserving truncation if both round's are.
3755    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3756                   N0.Val->getConstantOperandVal(1) == 1;
3757    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3758                       DAG.getIntPtrConstant(IsTrunc));
3759  }
3760
3761  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3762  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3763    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3764    AddToWorkList(Tmp.Val);
3765    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3766  }
3767
3768  return SDOperand();
3769}
3770
3771SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3772  SDOperand N0 = N->getOperand(0);
3773  MVT::ValueType VT = N->getValueType(0);
3774  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3775  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3776
3777  // fold (fp_round_inreg c1fp) -> c1fp
3778  if (N0CFP) {
3779    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3780    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3781  }
3782  return SDOperand();
3783}
3784
3785SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3786  SDOperand N0 = N->getOperand(0);
3787  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3788  MVT::ValueType VT = N->getValueType(0);
3789
3790  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3791  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3792    return SDOperand();
3793
3794  // fold (fp_extend c1fp) -> c1fp
3795  if (N0CFP && VT != MVT::ppcf128)
3796    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3797
3798  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3799  // value of X.
3800  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3801    SDOperand In = N0.getOperand(0);
3802    if (In.getValueType() == VT) return In;
3803    if (VT < In.getValueType())
3804      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3805    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3806  }
3807
3808  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3809  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3810      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3811    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3812    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3813                                       LN0->getBasePtr(), LN0->getSrcValue(),
3814                                       LN0->getSrcValueOffset(),
3815                                       N0.getValueType(),
3816                                       LN0->isVolatile(),
3817                                       LN0->getAlignment());
3818    CombineTo(N, ExtLoad);
3819    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3820                                  DAG.getIntPtrConstant(1)),
3821              ExtLoad.getValue(1));
3822    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3823  }
3824
3825
3826  return SDOperand();
3827}
3828
3829SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3830  SDOperand N0 = N->getOperand(0);
3831
3832  if (isNegatibleForFree(N0))
3833    return GetNegatedExpression(N0, DAG);
3834
3835  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3836  // constant pool values.
3837  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3838      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3839      !MVT::isVector(N0.getOperand(0).getValueType())) {
3840    SDOperand Int = N0.getOperand(0);
3841    MVT::ValueType IntVT = Int.getValueType();
3842    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3843      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3844                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3845      AddToWorkList(Int.Val);
3846      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3847    }
3848  }
3849
3850  return SDOperand();
3851}
3852
3853SDOperand DAGCombiner::visitFABS(SDNode *N) {
3854  SDOperand N0 = N->getOperand(0);
3855  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3856  MVT::ValueType VT = N->getValueType(0);
3857
3858  // fold (fabs c1) -> fabs(c1)
3859  if (N0CFP && VT != MVT::ppcf128)
3860    return DAG.getNode(ISD::FABS, VT, N0);
3861  // fold (fabs (fabs x)) -> (fabs x)
3862  if (N0.getOpcode() == ISD::FABS)
3863    return N->getOperand(0);
3864  // fold (fabs (fneg x)) -> (fabs x)
3865  // fold (fabs (fcopysign x, y)) -> (fabs x)
3866  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3867    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3868
3869  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3870  // constant pool values.
3871  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3872      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3873      !MVT::isVector(N0.getOperand(0).getValueType())) {
3874    SDOperand Int = N0.getOperand(0);
3875    MVT::ValueType IntVT = Int.getValueType();
3876    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3877      Int = DAG.getNode(ISD::AND, IntVT, Int,
3878                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3879      AddToWorkList(Int.Val);
3880      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3881    }
3882  }
3883
3884  return SDOperand();
3885}
3886
3887SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3888  SDOperand Chain = N->getOperand(0);
3889  SDOperand N1 = N->getOperand(1);
3890  SDOperand N2 = N->getOperand(2);
3891  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3892
3893  // never taken branch, fold to chain
3894  if (N1C && N1C->isNullValue())
3895    return Chain;
3896  // unconditional branch
3897  if (N1C && N1C->getValue() == 1)
3898    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3899  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3900  // on the target.
3901  if (N1.getOpcode() == ISD::SETCC &&
3902      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3903    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3904                       N1.getOperand(0), N1.getOperand(1), N2);
3905  }
3906  return SDOperand();
3907}
3908
3909// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3910//
3911SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3912  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3913  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3914
3915  // Use SimplifySetCC  to simplify SETCC's.
3916  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3917  if (Simp.Val) AddToWorkList(Simp.Val);
3918
3919  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3920
3921  // fold br_cc true, dest -> br dest (unconditional branch)
3922  if (SCCC && SCCC->getValue())
3923    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3924                       N->getOperand(4));
3925  // fold br_cc false, dest -> unconditional fall through
3926  if (SCCC && SCCC->isNullValue())
3927    return N->getOperand(0);
3928
3929  // fold to a simpler setcc
3930  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3931    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3932                       Simp.getOperand(2), Simp.getOperand(0),
3933                       Simp.getOperand(1), N->getOperand(4));
3934  return SDOperand();
3935}
3936
3937
3938/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3939/// pre-indexed load / store when the base pointer is a add or subtract
3940/// and it has other uses besides the load / store. After the
3941/// transformation, the new indexed load / store has effectively folded
3942/// the add / subtract in and all of its other uses are redirected to the
3943/// new load / store.
3944bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3945  if (!AfterLegalize)
3946    return false;
3947
3948  bool isLoad = true;
3949  SDOperand Ptr;
3950  MVT::ValueType VT;
3951  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3952    if (LD->isIndexed())
3953      return false;
3954    VT = LD->getMemoryVT();
3955    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3956        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3957      return false;
3958    Ptr = LD->getBasePtr();
3959  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3960    if (ST->isIndexed())
3961      return false;
3962    VT = ST->getMemoryVT();
3963    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3964        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3965      return false;
3966    Ptr = ST->getBasePtr();
3967    isLoad = false;
3968  } else
3969    return false;
3970
3971  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3972  // out.  There is no reason to make this a preinc/predec.
3973  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3974      Ptr.Val->hasOneUse())
3975    return false;
3976
3977  // Ask the target to do addressing mode selection.
3978  SDOperand BasePtr;
3979  SDOperand Offset;
3980  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3981  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3982    return false;
3983  // Don't create a indexed load / store with zero offset.
3984  if (isa<ConstantSDNode>(Offset) &&
3985      cast<ConstantSDNode>(Offset)->getValue() == 0)
3986    return false;
3987
3988  // Try turning it into a pre-indexed load / store except when:
3989  // 1) The new base ptr is a frame index.
3990  // 2) If N is a store and the new base ptr is either the same as or is a
3991  //    predecessor of the value being stored.
3992  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3993  //    that would create a cycle.
3994  // 4) All uses are load / store ops that use it as old base ptr.
3995
3996  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3997  // (plus the implicit offset) to a register to preinc anyway.
3998  if (isa<FrameIndexSDNode>(BasePtr))
3999    return false;
4000
4001  // Check #2.
4002  if (!isLoad) {
4003    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4004    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
4005      return false;
4006  }
4007
4008  // Now check for #3 and #4.
4009  bool RealUse = false;
4010  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4011         E = Ptr.Val->use_end(); I != E; ++I) {
4012    SDNode *Use = *I;
4013    if (Use == N)
4014      continue;
4015    if (Use->isPredecessor(N))
4016      return false;
4017
4018    if (!((Use->getOpcode() == ISD::LOAD &&
4019           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4020          (Use->getOpcode() == ISD::STORE &&
4021           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4022      RealUse = true;
4023  }
4024  if (!RealUse)
4025    return false;
4026
4027  SDOperand Result;
4028  if (isLoad)
4029    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4030  else
4031    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4032  ++PreIndexedNodes;
4033  ++NodesCombined;
4034  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4035  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4036  DOUT << '\n';
4037  WorkListRemover DeadNodes(*this);
4038  if (isLoad) {
4039    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4040                                  &DeadNodes);
4041    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4042                                  &DeadNodes);
4043  } else {
4044    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4045                                  &DeadNodes);
4046  }
4047
4048  // Finally, since the node is now dead, remove it from the graph.
4049  DAG.DeleteNode(N);
4050
4051  // Replace the uses of Ptr with uses of the updated base value.
4052  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4053                                &DeadNodes);
4054  removeFromWorkList(Ptr.Val);
4055  DAG.DeleteNode(Ptr.Val);
4056
4057  return true;
4058}
4059
4060/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4061/// add / sub of the base pointer node into a post-indexed load / store.
4062/// The transformation folded the add / subtract into the new indexed
4063/// load / store effectively and all of its uses are redirected to the
4064/// new load / store.
4065bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4066  if (!AfterLegalize)
4067    return false;
4068
4069  bool isLoad = true;
4070  SDOperand Ptr;
4071  MVT::ValueType VT;
4072  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4073    if (LD->isIndexed())
4074      return false;
4075    VT = LD->getMemoryVT();
4076    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4077        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4078      return false;
4079    Ptr = LD->getBasePtr();
4080  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4081    if (ST->isIndexed())
4082      return false;
4083    VT = ST->getMemoryVT();
4084    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4085        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4086      return false;
4087    Ptr = ST->getBasePtr();
4088    isLoad = false;
4089  } else
4090    return false;
4091
4092  if (Ptr.Val->hasOneUse())
4093    return false;
4094
4095  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4096         E = Ptr.Val->use_end(); I != E; ++I) {
4097    SDNode *Op = *I;
4098    if (Op == N ||
4099        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4100      continue;
4101
4102    SDOperand BasePtr;
4103    SDOperand Offset;
4104    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4105    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4106      if (Ptr == Offset)
4107        std::swap(BasePtr, Offset);
4108      if (Ptr != BasePtr)
4109        continue;
4110      // Don't create a indexed load / store with zero offset.
4111      if (isa<ConstantSDNode>(Offset) &&
4112          cast<ConstantSDNode>(Offset)->getValue() == 0)
4113        continue;
4114
4115      // Try turning it into a post-indexed load / store except when
4116      // 1) All uses are load / store ops that use it as base ptr.
4117      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4118      //    nor a successor of N. Otherwise, if Op is folded that would
4119      //    create a cycle.
4120
4121      // Check for #1.
4122      bool TryNext = false;
4123      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4124             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4125        SDNode *Use = *II;
4126        if (Use == Ptr.Val)
4127          continue;
4128
4129        // If all the uses are load / store addresses, then don't do the
4130        // transformation.
4131        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4132          bool RealUse = false;
4133          for (SDNode::use_iterator III = Use->use_begin(),
4134                 EEE = Use->use_end(); III != EEE; ++III) {
4135            SDNode *UseUse = *III;
4136            if (!((UseUse->getOpcode() == ISD::LOAD &&
4137                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4138                  (UseUse->getOpcode() == ISD::STORE &&
4139                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4140              RealUse = true;
4141          }
4142
4143          if (!RealUse) {
4144            TryNext = true;
4145            break;
4146          }
4147        }
4148      }
4149      if (TryNext)
4150        continue;
4151
4152      // Check for #2
4153      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
4154        SDOperand Result = isLoad
4155          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4156          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4157        ++PostIndexedNodes;
4158        ++NodesCombined;
4159        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4160        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4161        DOUT << '\n';
4162        WorkListRemover DeadNodes(*this);
4163        if (isLoad) {
4164          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4165                                        &DeadNodes);
4166          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4167                                        &DeadNodes);
4168        } else {
4169          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4170                                        &DeadNodes);
4171        }
4172
4173        // Finally, since the node is now dead, remove it from the graph.
4174        DAG.DeleteNode(N);
4175
4176        // Replace the uses of Use with uses of the updated base value.
4177        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4178                                      Result.getValue(isLoad ? 1 : 0),
4179                                      &DeadNodes);
4180        removeFromWorkList(Op);
4181        DAG.DeleteNode(Op);
4182        return true;
4183      }
4184    }
4185  }
4186  return false;
4187}
4188
4189/// InferAlignment - If we can infer some alignment information from this
4190/// pointer, return it.
4191static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4192  // If this is a direct reference to a stack slot, use information about the
4193  // stack slot's alignment.
4194  int FrameIdx = 1 << 31;
4195  int64_t FrameOffset = 0;
4196  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4197    FrameIdx = FI->getIndex();
4198  } else if (Ptr.getOpcode() == ISD::ADD &&
4199             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4200             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4201    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4202    FrameOffset = Ptr.getConstantOperandVal(1);
4203  }
4204
4205  if (FrameIdx != (1 << 31)) {
4206    // FIXME: Handle FI+CST.
4207    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4208    if (MFI.isFixedObjectIndex(FrameIdx)) {
4209      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4210
4211      // The alignment of the frame index can be determined from its offset from
4212      // the incoming frame position.  If the frame object is at offset 32 and
4213      // the stack is guaranteed to be 16-byte aligned, then we know that the
4214      // object is 16-byte aligned.
4215      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4216      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4217
4218      // Finally, the frame object itself may have a known alignment.  Factor
4219      // the alignment + offset into a new alignment.  For example, if we know
4220      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4221      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4222      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4223      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4224                                      FrameOffset);
4225      return std::max(Align, FIInfoAlign);
4226    }
4227  }
4228
4229  return 0;
4230}
4231
4232SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4233  LoadSDNode *LD  = cast<LoadSDNode>(N);
4234  SDOperand Chain = LD->getChain();
4235  SDOperand Ptr   = LD->getBasePtr();
4236
4237  // Try to infer better alignment information than the load already has.
4238  if (LD->isUnindexed()) {
4239    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4240      if (Align > LD->getAlignment())
4241        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4242                              Chain, Ptr, LD->getSrcValue(),
4243                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4244                              LD->isVolatile(), Align);
4245    }
4246  }
4247
4248
4249  // If load is not volatile and there are no uses of the loaded value (and
4250  // the updated indexed value in case of indexed loads), change uses of the
4251  // chain value into uses of the chain input (i.e. delete the dead load).
4252  if (!LD->isVolatile()) {
4253    if (N->getValueType(1) == MVT::Other) {
4254      // Unindexed loads.
4255      if (N->hasNUsesOfValue(0, 0)) {
4256        // It's not safe to use the two value CombineTo variant here. e.g.
4257        // v1, chain2 = load chain1, loc
4258        // v2, chain3 = load chain2, loc
4259        // v3         = add v2, c
4260        // Now we replace use of chain2 with chain1.  This makes the second load
4261        // isomorphic to the one we are deleting, and thus makes this load live.
4262        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4263        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4264        DOUT << "\n";
4265        WorkListRemover DeadNodes(*this);
4266        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4267        if (N->use_empty()) {
4268          removeFromWorkList(N);
4269          DAG.DeleteNode(N);
4270        }
4271        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4272      }
4273    } else {
4274      // Indexed loads.
4275      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4276      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4277        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4278        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4279        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4280        DOUT << " and 2 other values\n";
4281        WorkListRemover DeadNodes(*this);
4282        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4283        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4284                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4285                                      &DeadNodes);
4286        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4287        removeFromWorkList(N);
4288        DAG.DeleteNode(N);
4289        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4290      }
4291    }
4292  }
4293
4294  // If this load is directly stored, replace the load value with the stored
4295  // value.
4296  // TODO: Handle store large -> read small portion.
4297  // TODO: Handle TRUNCSTORE/LOADEXT
4298  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4299    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4300      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4301      if (PrevST->getBasePtr() == Ptr &&
4302          PrevST->getValue().getValueType() == N->getValueType(0))
4303      return CombineTo(N, Chain.getOperand(1), Chain);
4304    }
4305  }
4306
4307  if (CombinerAA) {
4308    // Walk up chain skipping non-aliasing memory nodes.
4309    SDOperand BetterChain = FindBetterChain(N, Chain);
4310
4311    // If there is a better chain.
4312    if (Chain != BetterChain) {
4313      SDOperand ReplLoad;
4314
4315      // Replace the chain to void dependency.
4316      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4317        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4318                               LD->getSrcValue(), LD->getSrcValueOffset(),
4319                               LD->isVolatile(), LD->getAlignment());
4320      } else {
4321        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4322                                  LD->getValueType(0),
4323                                  BetterChain, Ptr, LD->getSrcValue(),
4324                                  LD->getSrcValueOffset(),
4325                                  LD->getMemoryVT(),
4326                                  LD->isVolatile(),
4327                                  LD->getAlignment());
4328      }
4329
4330      // Create token factor to keep old chain connected.
4331      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4332                                    Chain, ReplLoad.getValue(1));
4333
4334      // Replace uses with load result and token factor. Don't add users
4335      // to work list.
4336      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4337    }
4338  }
4339
4340  // Try transforming N to an indexed load.
4341  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4342    return SDOperand(N, 0);
4343
4344  return SDOperand();
4345}
4346
4347
4348SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4349  StoreSDNode *ST  = cast<StoreSDNode>(N);
4350  SDOperand Chain = ST->getChain();
4351  SDOperand Value = ST->getValue();
4352  SDOperand Ptr   = ST->getBasePtr();
4353
4354  // Try to infer better alignment information than the store already has.
4355  if (ST->isUnindexed()) {
4356    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4357      if (Align > ST->getAlignment())
4358        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4359                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4360                                 ST->isVolatile(), Align);
4361    }
4362  }
4363
4364  // If this is a store of a bit convert, store the input value if the
4365  // resultant store does not need a higher alignment than the original.
4366  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4367      ST->isUnindexed()) {
4368    unsigned Align = ST->getAlignment();
4369    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4370    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4371      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4372    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4373      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4374                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4375  }
4376
4377  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4378  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4379    if (Value.getOpcode() != ISD::TargetConstantFP) {
4380      SDOperand Tmp;
4381      switch (CFP->getValueType(0)) {
4382      default: assert(0 && "Unknown FP type");
4383      case MVT::f80:    // We don't do this for these yet.
4384      case MVT::f128:
4385      case MVT::ppcf128:
4386        break;
4387      case MVT::f32:
4388        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4389          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4390                              convertToAPInt().getZExtValue(), MVT::i32);
4391          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4392                              ST->getSrcValueOffset(), ST->isVolatile(),
4393                              ST->getAlignment());
4394        }
4395        break;
4396      case MVT::f64:
4397        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4398          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4399                                  getZExtValue(), MVT::i64);
4400          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4401                              ST->getSrcValueOffset(), ST->isVolatile(),
4402                              ST->getAlignment());
4403        } else if (TLI.isTypeLegal(MVT::i32)) {
4404          // Many FP stores are not made apparent until after legalize, e.g. for
4405          // argument passing.  Since this is so common, custom legalize the
4406          // 64-bit integer store into two 32-bit stores.
4407          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4408          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4409          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4410          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4411
4412          int SVOffset = ST->getSrcValueOffset();
4413          unsigned Alignment = ST->getAlignment();
4414          bool isVolatile = ST->isVolatile();
4415
4416          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4417                                       ST->getSrcValueOffset(),
4418                                       isVolatile, ST->getAlignment());
4419          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4420                            DAG.getConstant(4, Ptr.getValueType()));
4421          SVOffset += 4;
4422          Alignment = MinAlign(Alignment, 4U);
4423          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4424                                       SVOffset, isVolatile, Alignment);
4425          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4426        }
4427        break;
4428      }
4429    }
4430  }
4431
4432  if (CombinerAA) {
4433    // Walk up chain skipping non-aliasing memory nodes.
4434    SDOperand BetterChain = FindBetterChain(N, Chain);
4435
4436    // If there is a better chain.
4437    if (Chain != BetterChain) {
4438      // Replace the chain to avoid dependency.
4439      SDOperand ReplStore;
4440      if (ST->isTruncatingStore()) {
4441        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4442                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4443                                      ST->getMemoryVT(),
4444                                      ST->isVolatile(), ST->getAlignment());
4445      } else {
4446        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4447                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4448                                 ST->isVolatile(), ST->getAlignment());
4449      }
4450
4451      // Create token to keep both nodes around.
4452      SDOperand Token =
4453        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4454
4455      // Don't add users to work list.
4456      return CombineTo(N, Token, false);
4457    }
4458  }
4459
4460  // Try transforming N to an indexed store.
4461  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4462    return SDOperand(N, 0);
4463
4464  // FIXME: is there such a thing as a truncating indexed store?
4465  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4466      MVT::isInteger(Value.getValueType())) {
4467    // See if we can simplify the input to this truncstore with knowledge that
4468    // only the low bits are being used.  For example:
4469    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4470    SDOperand Shorter =
4471      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT()));
4472    AddToWorkList(Value.Val);
4473    if (Shorter.Val)
4474      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4475                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4476                               ST->isVolatile(), ST->getAlignment());
4477
4478    // Otherwise, see if we can simplify the operation with
4479    // SimplifyDemandedBits, which only works if the value has a single use.
4480    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getMemoryVT())))
4481      return SDOperand(N, 0);
4482  }
4483
4484  // If this is a load followed by a store to the same location, then the store
4485  // is dead/noop.
4486  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4487    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4488        ST->isUnindexed() && !ST->isVolatile() &&
4489        // There can't be any side effects between the load and store, such as
4490        // a call or store.
4491        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4492      // The store is dead, remove it.
4493      return Chain;
4494    }
4495  }
4496
4497  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4498  // truncating store.  We can do this even if this is already a truncstore.
4499  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4500      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4501      Value.Val->hasOneUse() && ST->isUnindexed() &&
4502      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4503                            ST->getMemoryVT())) {
4504    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4505                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4506                             ST->isVolatile(), ST->getAlignment());
4507  }
4508
4509  return SDOperand();
4510}
4511
4512SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4513  SDOperand InVec = N->getOperand(0);
4514  SDOperand InVal = N->getOperand(1);
4515  SDOperand EltNo = N->getOperand(2);
4516
4517  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4518  // vector with the inserted element.
4519  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4520    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4521    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4522    if (Elt < Ops.size())
4523      Ops[Elt] = InVal;
4524    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4525                       &Ops[0], Ops.size());
4526  }
4527
4528  return SDOperand();
4529}
4530
4531SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4532  SDOperand InVec = N->getOperand(0);
4533  SDOperand EltNo = N->getOperand(1);
4534
4535  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4536  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4537  if (isa<ConstantSDNode>(EltNo)) {
4538    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4539    bool NewLoad = false;
4540    if (Elt == 0) {
4541      MVT::ValueType VT = InVec.getValueType();
4542      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4543      MVT::ValueType LVT = EVT;
4544      unsigned NumElts = MVT::getVectorNumElements(VT);
4545      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4546        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4547        if (!MVT::isVector(BCVT) ||
4548            NumElts != MVT::getVectorNumElements(BCVT))
4549          return SDOperand();
4550        InVec = InVec.getOperand(0);
4551        EVT = MVT::getVectorElementType(BCVT);
4552        NewLoad = true;
4553      }
4554      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4555          InVec.getOperand(0).getValueType() == EVT &&
4556          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4557          InVec.getOperand(0).hasOneUse()) {
4558        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4559        unsigned Align = LN0->getAlignment();
4560        if (NewLoad) {
4561          // Check the resultant load doesn't need a higher alignment than the
4562          // original load.
4563          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4564            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4565          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4566            return SDOperand();
4567          Align = NewAlign;
4568        }
4569
4570        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4571                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4572                           LN0->isVolatile(), Align);
4573      }
4574    }
4575  }
4576  return SDOperand();
4577}
4578
4579
4580SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4581  unsigned NumInScalars = N->getNumOperands();
4582  MVT::ValueType VT = N->getValueType(0);
4583  unsigned NumElts = MVT::getVectorNumElements(VT);
4584  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4585
4586  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4587  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4588  // at most two distinct vectors, turn this into a shuffle node.
4589  SDOperand VecIn1, VecIn2;
4590  for (unsigned i = 0; i != NumInScalars; ++i) {
4591    // Ignore undef inputs.
4592    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4593
4594    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4595    // constant index, bail out.
4596    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4597        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4598      VecIn1 = VecIn2 = SDOperand(0, 0);
4599      break;
4600    }
4601
4602    // If the input vector type disagrees with the result of the build_vector,
4603    // we can't make a shuffle.
4604    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4605    if (ExtractedFromVec.getValueType() != VT) {
4606      VecIn1 = VecIn2 = SDOperand(0, 0);
4607      break;
4608    }
4609
4610    // Otherwise, remember this.  We allow up to two distinct input vectors.
4611    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4612      continue;
4613
4614    if (VecIn1.Val == 0) {
4615      VecIn1 = ExtractedFromVec;
4616    } else if (VecIn2.Val == 0) {
4617      VecIn2 = ExtractedFromVec;
4618    } else {
4619      // Too many inputs.
4620      VecIn1 = VecIn2 = SDOperand(0, 0);
4621      break;
4622    }
4623  }
4624
4625  // If everything is good, we can make a shuffle operation.
4626  if (VecIn1.Val) {
4627    SmallVector<SDOperand, 8> BuildVecIndices;
4628    for (unsigned i = 0; i != NumInScalars; ++i) {
4629      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4630        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4631        continue;
4632      }
4633
4634      SDOperand Extract = N->getOperand(i);
4635
4636      // If extracting from the first vector, just use the index directly.
4637      if (Extract.getOperand(0) == VecIn1) {
4638        BuildVecIndices.push_back(Extract.getOperand(1));
4639        continue;
4640      }
4641
4642      // Otherwise, use InIdx + VecSize
4643      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4644      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4645    }
4646
4647    // Add count and size info.
4648    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4649
4650    // Return the new VECTOR_SHUFFLE node.
4651    SDOperand Ops[5];
4652    Ops[0] = VecIn1;
4653    if (VecIn2.Val) {
4654      Ops[1] = VecIn2;
4655    } else {
4656      // Use an undef build_vector as input for the second operand.
4657      std::vector<SDOperand> UnOps(NumInScalars,
4658                                   DAG.getNode(ISD::UNDEF,
4659                                               EltType));
4660      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4661                           &UnOps[0], UnOps.size());
4662      AddToWorkList(Ops[1].Val);
4663    }
4664    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4665                         &BuildVecIndices[0], BuildVecIndices.size());
4666    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4667  }
4668
4669  return SDOperand();
4670}
4671
4672SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4673  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4674  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4675  // inputs come from at most two distinct vectors, turn this into a shuffle
4676  // node.
4677
4678  // If we only have one input vector, we don't need to do any concatenation.
4679  if (N->getNumOperands() == 1) {
4680    return N->getOperand(0);
4681  }
4682
4683  return SDOperand();
4684}
4685
4686SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4687  SDOperand ShufMask = N->getOperand(2);
4688  unsigned NumElts = ShufMask.getNumOperands();
4689
4690  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4691  bool isIdentity = true;
4692  for (unsigned i = 0; i != NumElts; ++i) {
4693    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4694        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4695      isIdentity = false;
4696      break;
4697    }
4698  }
4699  if (isIdentity) return N->getOperand(0);
4700
4701  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4702  isIdentity = true;
4703  for (unsigned i = 0; i != NumElts; ++i) {
4704    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4705        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4706      isIdentity = false;
4707      break;
4708    }
4709  }
4710  if (isIdentity) return N->getOperand(1);
4711
4712  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4713  // needed at all.
4714  bool isUnary = true;
4715  bool isSplat = true;
4716  int VecNum = -1;
4717  unsigned BaseIdx = 0;
4718  for (unsigned i = 0; i != NumElts; ++i)
4719    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4720      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4721      int V = (Idx < NumElts) ? 0 : 1;
4722      if (VecNum == -1) {
4723        VecNum = V;
4724        BaseIdx = Idx;
4725      } else {
4726        if (BaseIdx != Idx)
4727          isSplat = false;
4728        if (VecNum != V) {
4729          isUnary = false;
4730          break;
4731        }
4732      }
4733    }
4734
4735  SDOperand N0 = N->getOperand(0);
4736  SDOperand N1 = N->getOperand(1);
4737  // Normalize unary shuffle so the RHS is undef.
4738  if (isUnary && VecNum == 1)
4739    std::swap(N0, N1);
4740
4741  // If it is a splat, check if the argument vector is a build_vector with
4742  // all scalar elements the same.
4743  if (isSplat) {
4744    SDNode *V = N0.Val;
4745
4746    // If this is a bit convert that changes the element type of the vector but
4747    // not the number of vector elements, look through it.  Be careful not to
4748    // look though conversions that change things like v4f32 to v2f64.
4749    if (V->getOpcode() == ISD::BIT_CONVERT) {
4750      SDOperand ConvInput = V->getOperand(0);
4751      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4752        V = ConvInput.Val;
4753    }
4754
4755    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4756      unsigned NumElems = V->getNumOperands();
4757      if (NumElems > BaseIdx) {
4758        SDOperand Base;
4759        bool AllSame = true;
4760        for (unsigned i = 0; i != NumElems; ++i) {
4761          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4762            Base = V->getOperand(i);
4763            break;
4764          }
4765        }
4766        // Splat of <u, u, u, u>, return <u, u, u, u>
4767        if (!Base.Val)
4768          return N0;
4769        for (unsigned i = 0; i != NumElems; ++i) {
4770          if (V->getOperand(i) != Base) {
4771            AllSame = false;
4772            break;
4773          }
4774        }
4775        // Splat of <x, x, x, x>, return <x, x, x, x>
4776        if (AllSame)
4777          return N0;
4778      }
4779    }
4780  }
4781
4782  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4783  // into an undef.
4784  if (isUnary || N0 == N1) {
4785    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4786    // first operand.
4787    SmallVector<SDOperand, 8> MappedOps;
4788    for (unsigned i = 0; i != NumElts; ++i) {
4789      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4790          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4791        MappedOps.push_back(ShufMask.getOperand(i));
4792      } else {
4793        unsigned NewIdx =
4794          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4795        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4796      }
4797    }
4798    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4799                           &MappedOps[0], MappedOps.size());
4800    AddToWorkList(ShufMask.Val);
4801    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4802                       N0,
4803                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4804                       ShufMask);
4805  }
4806
4807  return SDOperand();
4808}
4809
4810/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4811/// an AND to a vector_shuffle with the destination vector and a zero vector.
4812/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4813///      vector_shuffle V, Zero, <0, 4, 2, 4>
4814SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4815  SDOperand LHS = N->getOperand(0);
4816  SDOperand RHS = N->getOperand(1);
4817  if (N->getOpcode() == ISD::AND) {
4818    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4819      RHS = RHS.getOperand(0);
4820    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4821      std::vector<SDOperand> IdxOps;
4822      unsigned NumOps = RHS.getNumOperands();
4823      unsigned NumElts = NumOps;
4824      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4825      for (unsigned i = 0; i != NumElts; ++i) {
4826        SDOperand Elt = RHS.getOperand(i);
4827        if (!isa<ConstantSDNode>(Elt))
4828          return SDOperand();
4829        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4830          IdxOps.push_back(DAG.getConstant(i, EVT));
4831        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4832          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4833        else
4834          return SDOperand();
4835      }
4836
4837      // Let's see if the target supports this vector_shuffle.
4838      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4839        return SDOperand();
4840
4841      // Return the new VECTOR_SHUFFLE node.
4842      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4843      std::vector<SDOperand> Ops;
4844      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4845      Ops.push_back(LHS);
4846      AddToWorkList(LHS.Val);
4847      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4848      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4849                                &ZeroOps[0], ZeroOps.size()));
4850      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4851                                &IdxOps[0], IdxOps.size()));
4852      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4853                                     &Ops[0], Ops.size());
4854      if (VT != LHS.getValueType()) {
4855        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4856      }
4857      return Result;
4858    }
4859  }
4860  return SDOperand();
4861}
4862
4863/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4864SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4865  // After legalize, the target may be depending on adds and other
4866  // binary ops to provide legal ways to construct constants or other
4867  // things. Simplifying them may result in a loss of legality.
4868  if (AfterLegalize) return SDOperand();
4869
4870  MVT::ValueType VT = N->getValueType(0);
4871  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4872
4873  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4874  SDOperand LHS = N->getOperand(0);
4875  SDOperand RHS = N->getOperand(1);
4876  SDOperand Shuffle = XformToShuffleWithZero(N);
4877  if (Shuffle.Val) return Shuffle;
4878
4879  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4880  // this operation.
4881  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4882      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4883    SmallVector<SDOperand, 8> Ops;
4884    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4885      SDOperand LHSOp = LHS.getOperand(i);
4886      SDOperand RHSOp = RHS.getOperand(i);
4887      // If these two elements can't be folded, bail out.
4888      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4889           LHSOp.getOpcode() != ISD::Constant &&
4890           LHSOp.getOpcode() != ISD::ConstantFP) ||
4891          (RHSOp.getOpcode() != ISD::UNDEF &&
4892           RHSOp.getOpcode() != ISD::Constant &&
4893           RHSOp.getOpcode() != ISD::ConstantFP))
4894        break;
4895      // Can't fold divide by zero.
4896      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4897          N->getOpcode() == ISD::FDIV) {
4898        if ((RHSOp.getOpcode() == ISD::Constant &&
4899             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4900            (RHSOp.getOpcode() == ISD::ConstantFP &&
4901             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4902          break;
4903      }
4904      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4905      AddToWorkList(Ops.back().Val);
4906      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4907              Ops.back().getOpcode() == ISD::Constant ||
4908              Ops.back().getOpcode() == ISD::ConstantFP) &&
4909             "Scalar binop didn't fold!");
4910    }
4911
4912    if (Ops.size() == LHS.getNumOperands()) {
4913      MVT::ValueType VT = LHS.getValueType();
4914      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4915    }
4916  }
4917
4918  return SDOperand();
4919}
4920
4921SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4922  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4923
4924  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4925                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4926  // If we got a simplified select_cc node back from SimplifySelectCC, then
4927  // break it down into a new SETCC node, and a new SELECT node, and then return
4928  // the SELECT node, since we were called with a SELECT node.
4929  if (SCC.Val) {
4930    // Check to see if we got a select_cc back (to turn into setcc/select).
4931    // Otherwise, just return whatever node we got back, like fabs.
4932    if (SCC.getOpcode() == ISD::SELECT_CC) {
4933      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4934                                    SCC.getOperand(0), SCC.getOperand(1),
4935                                    SCC.getOperand(4));
4936      AddToWorkList(SETCC.Val);
4937      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4938                         SCC.getOperand(3), SETCC);
4939    }
4940    return SCC;
4941  }
4942  return SDOperand();
4943}
4944
4945/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4946/// are the two values being selected between, see if we can simplify the
4947/// select.  Callers of this should assume that TheSelect is deleted if this
4948/// returns true.  As such, they should return the appropriate thing (e.g. the
4949/// node) back to the top-level of the DAG combiner loop to avoid it being
4950/// looked at.
4951///
4952bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4953                                    SDOperand RHS) {
4954
4955  // If this is a select from two identical things, try to pull the operation
4956  // through the select.
4957  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4958    // If this is a load and the token chain is identical, replace the select
4959    // of two loads with a load through a select of the address to load from.
4960    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4961    // constants have been dropped into the constant pool.
4962    if (LHS.getOpcode() == ISD::LOAD &&
4963        // Token chains must be identical.
4964        LHS.getOperand(0) == RHS.getOperand(0)) {
4965      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4966      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4967
4968      // If this is an EXTLOAD, the VT's must match.
4969      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
4970        // FIXME: this conflates two src values, discarding one.  This is not
4971        // the right thing to do, but nothing uses srcvalues now.  When they do,
4972        // turn SrcValue into a list of locations.
4973        SDOperand Addr;
4974        if (TheSelect->getOpcode() == ISD::SELECT) {
4975          // Check that the condition doesn't reach either load.  If so, folding
4976          // this will induce a cycle into the DAG.
4977          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4978              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4979            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4980                               TheSelect->getOperand(0), LLD->getBasePtr(),
4981                               RLD->getBasePtr());
4982          }
4983        } else {
4984          // Check that the condition doesn't reach either load.  If so, folding
4985          // this will induce a cycle into the DAG.
4986          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4987              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4988              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4989              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4990            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4991                             TheSelect->getOperand(0),
4992                             TheSelect->getOperand(1),
4993                             LLD->getBasePtr(), RLD->getBasePtr(),
4994                             TheSelect->getOperand(4));
4995          }
4996        }
4997
4998        if (Addr.Val) {
4999          SDOperand Load;
5000          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5001            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5002                               Addr,LLD->getSrcValue(),
5003                               LLD->getSrcValueOffset(),
5004                               LLD->isVolatile(),
5005                               LLD->getAlignment());
5006          else {
5007            Load = DAG.getExtLoad(LLD->getExtensionType(),
5008                                  TheSelect->getValueType(0),
5009                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5010                                  LLD->getSrcValueOffset(),
5011                                  LLD->getMemoryVT(),
5012                                  LLD->isVolatile(),
5013                                  LLD->getAlignment());
5014          }
5015          // Users of the select now use the result of the load.
5016          CombineTo(TheSelect, Load);
5017
5018          // Users of the old loads now use the new load's chain.  We know the
5019          // old-load value is dead now.
5020          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5021          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5022          return true;
5023        }
5024      }
5025    }
5026  }
5027
5028  return false;
5029}
5030
5031SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5032                                        SDOperand N2, SDOperand N3,
5033                                        ISD::CondCode CC, bool NotExtCompare) {
5034
5035  MVT::ValueType VT = N2.getValueType();
5036  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5037  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5038  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5039
5040  // Determine if the condition we're dealing with is constant
5041  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
5042  if (SCC.Val) AddToWorkList(SCC.Val);
5043  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5044
5045  // fold select_cc true, x, y -> x
5046  if (SCCC && SCCC->getValue())
5047    return N2;
5048  // fold select_cc false, x, y -> y
5049  if (SCCC && SCCC->getValue() == 0)
5050    return N3;
5051
5052  // Check to see if we can simplify the select into an fabs node
5053  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5054    // Allow either -0.0 or 0.0
5055    if (CFP->getValueAPF().isZero()) {
5056      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5057      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5058          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5059          N2 == N3.getOperand(0))
5060        return DAG.getNode(ISD::FABS, VT, N0);
5061
5062      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5063      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5064          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5065          N2.getOperand(0) == N3)
5066        return DAG.getNode(ISD::FABS, VT, N3);
5067    }
5068  }
5069
5070  // Check to see if we can perform the "gzip trick", transforming
5071  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5072  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5073      MVT::isInteger(N0.getValueType()) &&
5074      MVT::isInteger(N2.getValueType()) &&
5075      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5076       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5077    MVT::ValueType XType = N0.getValueType();
5078    MVT::ValueType AType = N2.getValueType();
5079    if (XType >= AType) {
5080      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5081      // single-bit constant.
5082      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5083        unsigned ShCtV = Log2_64(N2C->getValue());
5084        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5085        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5086        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5087        AddToWorkList(Shift.Val);
5088        if (XType > AType) {
5089          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5090          AddToWorkList(Shift.Val);
5091        }
5092        return DAG.getNode(ISD::AND, AType, Shift, N2);
5093      }
5094      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5095                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5096                                                    TLI.getShiftAmountTy()));
5097      AddToWorkList(Shift.Val);
5098      if (XType > AType) {
5099        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5100        AddToWorkList(Shift.Val);
5101      }
5102      return DAG.getNode(ISD::AND, AType, Shift, N2);
5103    }
5104  }
5105
5106  // fold select C, 16, 0 -> shl C, 4
5107  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5108      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5109
5110    // If the caller doesn't want us to simplify this into a zext of a compare,
5111    // don't do it.
5112    if (NotExtCompare && N2C->getValue() == 1)
5113      return SDOperand();
5114
5115    // Get a SetCC of the condition
5116    // FIXME: Should probably make sure that setcc is legal if we ever have a
5117    // target where it isn't.
5118    SDOperand Temp, SCC;
5119    // cast from setcc result type to select result type
5120    if (AfterLegalize) {
5121      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5122      if (N2.getValueType() < SCC.getValueType())
5123        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5124      else
5125        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5126    } else {
5127      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5128      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5129    }
5130    AddToWorkList(SCC.Val);
5131    AddToWorkList(Temp.Val);
5132
5133    if (N2C->getValue() == 1)
5134      return Temp;
5135    // shl setcc result by log2 n2c
5136    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5137                       DAG.getConstant(Log2_64(N2C->getValue()),
5138                                       TLI.getShiftAmountTy()));
5139  }
5140
5141  // Check to see if this is the equivalent of setcc
5142  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5143  // otherwise, go ahead with the folds.
5144  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5145    MVT::ValueType XType = N0.getValueType();
5146    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
5147      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5148      if (Res.getValueType() != VT)
5149        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5150      return Res;
5151    }
5152
5153    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5154    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5155        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5156      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5157      return DAG.getNode(ISD::SRL, XType, Ctlz,
5158                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5159                                         TLI.getShiftAmountTy()));
5160    }
5161    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5162    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5163      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5164                                    N0);
5165      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5166                                    DAG.getConstant(~0ULL, XType));
5167      return DAG.getNode(ISD::SRL, XType,
5168                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5169                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5170                                         TLI.getShiftAmountTy()));
5171    }
5172    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5173    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5174      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5175                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5176                                                   TLI.getShiftAmountTy()));
5177      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5178    }
5179  }
5180
5181  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5182  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5183  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5184      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5185      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5186    MVT::ValueType XType = N0.getValueType();
5187    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5188                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5189                                                  TLI.getShiftAmountTy()));
5190    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5191    AddToWorkList(Shift.Val);
5192    AddToWorkList(Add.Val);
5193    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5194  }
5195  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5196  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5197  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5198      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5199    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5200      MVT::ValueType XType = N0.getValueType();
5201      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5202        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5203                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5204                                                      TLI.getShiftAmountTy()));
5205        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5206        AddToWorkList(Shift.Val);
5207        AddToWorkList(Add.Val);
5208        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5209      }
5210    }
5211  }
5212
5213  return SDOperand();
5214}
5215
5216/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5217SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5218                                     SDOperand N1, ISD::CondCode Cond,
5219                                     bool foldBooleans) {
5220  TargetLowering::DAGCombinerInfo
5221    DagCombineInfo(DAG, !AfterLegalize, false, this);
5222  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5223}
5224
5225/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5226/// return a DAG expression to select that will generate the same value by
5227/// multiplying by a magic number.  See:
5228/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5229SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5230  std::vector<SDNode*> Built;
5231  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5232
5233  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5234       ii != ee; ++ii)
5235    AddToWorkList(*ii);
5236  return S;
5237}
5238
5239/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5240/// return a DAG expression to select that will generate the same value by
5241/// multiplying by a magic number.  See:
5242/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5243SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5244  std::vector<SDNode*> Built;
5245  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5246
5247  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5248       ii != ee; ++ii)
5249    AddToWorkList(*ii);
5250  return S;
5251}
5252
5253/// FindBaseOffset - Return true if base is known not to alias with anything
5254/// but itself.  Provides base object and offset as results.
5255static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5256  // Assume it is a primitive operation.
5257  Base = Ptr; Offset = 0;
5258
5259  // If it's an adding a simple constant then integrate the offset.
5260  if (Base.getOpcode() == ISD::ADD) {
5261    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5262      Base = Base.getOperand(0);
5263      Offset += C->getValue();
5264    }
5265  }
5266
5267  // If it's any of the following then it can't alias with anything but itself.
5268  return isa<FrameIndexSDNode>(Base) ||
5269         isa<ConstantPoolSDNode>(Base) ||
5270         isa<GlobalAddressSDNode>(Base);
5271}
5272
5273/// isAlias - Return true if there is any possibility that the two addresses
5274/// overlap.
5275bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5276                          const Value *SrcValue1, int SrcValueOffset1,
5277                          SDOperand Ptr2, int64_t Size2,
5278                          const Value *SrcValue2, int SrcValueOffset2)
5279{
5280  // If they are the same then they must be aliases.
5281  if (Ptr1 == Ptr2) return true;
5282
5283  // Gather base node and offset information.
5284  SDOperand Base1, Base2;
5285  int64_t Offset1, Offset2;
5286  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5287  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5288
5289  // If they have a same base address then...
5290  if (Base1 == Base2) {
5291    // Check to see if the addresses overlap.
5292    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5293  }
5294
5295  // If we know both bases then they can't alias.
5296  if (KnownBase1 && KnownBase2) return false;
5297
5298  if (CombinerGlobalAA) {
5299    // Use alias analysis information.
5300    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5301    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5302    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5303    AliasAnalysis::AliasResult AAResult =
5304                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5305    if (AAResult == AliasAnalysis::NoAlias)
5306      return false;
5307  }
5308
5309  // Otherwise we have to assume they alias.
5310  return true;
5311}
5312
5313/// FindAliasInfo - Extracts the relevant alias information from the memory
5314/// node.  Returns true if the operand was a load.
5315bool DAGCombiner::FindAliasInfo(SDNode *N,
5316                        SDOperand &Ptr, int64_t &Size,
5317                        const Value *&SrcValue, int &SrcValueOffset) {
5318  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5319    Ptr = LD->getBasePtr();
5320    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5321    SrcValue = LD->getSrcValue();
5322    SrcValueOffset = LD->getSrcValueOffset();
5323    return true;
5324  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5325    Ptr = ST->getBasePtr();
5326    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5327    SrcValue = ST->getSrcValue();
5328    SrcValueOffset = ST->getSrcValueOffset();
5329  } else {
5330    assert(0 && "FindAliasInfo expected a memory operand");
5331  }
5332
5333  return false;
5334}
5335
5336/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5337/// looking for aliasing nodes and adding them to the Aliases vector.
5338void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5339                                   SmallVector<SDOperand, 8> &Aliases) {
5340  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5341  std::set<SDNode *> Visited;           // Visited node set.
5342
5343  // Get alias information for node.
5344  SDOperand Ptr;
5345  int64_t Size;
5346  const Value *SrcValue;
5347  int SrcValueOffset;
5348  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5349
5350  // Starting off.
5351  Chains.push_back(OriginalChain);
5352
5353  // Look at each chain and determine if it is an alias.  If so, add it to the
5354  // aliases list.  If not, then continue up the chain looking for the next
5355  // candidate.
5356  while (!Chains.empty()) {
5357    SDOperand Chain = Chains.back();
5358    Chains.pop_back();
5359
5360     // Don't bother if we've been before.
5361    if (Visited.find(Chain.Val) != Visited.end()) continue;
5362    Visited.insert(Chain.Val);
5363
5364    switch (Chain.getOpcode()) {
5365    case ISD::EntryToken:
5366      // Entry token is ideal chain operand, but handled in FindBetterChain.
5367      break;
5368
5369    case ISD::LOAD:
5370    case ISD::STORE: {
5371      // Get alias information for Chain.
5372      SDOperand OpPtr;
5373      int64_t OpSize;
5374      const Value *OpSrcValue;
5375      int OpSrcValueOffset;
5376      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5377                                    OpSrcValue, OpSrcValueOffset);
5378
5379      // If chain is alias then stop here.
5380      if (!(IsLoad && IsOpLoad) &&
5381          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5382                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5383        Aliases.push_back(Chain);
5384      } else {
5385        // Look further up the chain.
5386        Chains.push_back(Chain.getOperand(0));
5387        // Clean up old chain.
5388        AddToWorkList(Chain.Val);
5389      }
5390      break;
5391    }
5392
5393    case ISD::TokenFactor:
5394      // We have to check each of the operands of the token factor, so we queue
5395      // then up.  Adding the  operands to the queue (stack) in reverse order
5396      // maintains the original order and increases the likelihood that getNode
5397      // will find a matching token factor (CSE.)
5398      for (unsigned n = Chain.getNumOperands(); n;)
5399        Chains.push_back(Chain.getOperand(--n));
5400      // Eliminate the token factor if we can.
5401      AddToWorkList(Chain.Val);
5402      break;
5403
5404    default:
5405      // For all other instructions we will just have to take what we can get.
5406      Aliases.push_back(Chain);
5407      break;
5408    }
5409  }
5410}
5411
5412/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5413/// for a better chain (aliasing node.)
5414SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5415  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5416
5417  // Accumulate all the aliases to this node.
5418  GatherAllAliases(N, OldChain, Aliases);
5419
5420  if (Aliases.size() == 0) {
5421    // If no operands then chain to entry token.
5422    return DAG.getEntryNode();
5423  } else if (Aliases.size() == 1) {
5424    // If a single operand then chain to it.  We don't need to revisit it.
5425    return Aliases[0];
5426  }
5427
5428  // Construct a custom tailored token factor.
5429  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5430                                   &Aliases[0], Aliases.size());
5431
5432  // Make sure the old chain gets cleaned up.
5433  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5434
5435  return NewChain;
5436}
5437
5438// SelectionDAG::Combine - This is the entry point for the file.
5439//
5440void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5441  if (!RunningAfterLegalize && ViewDAGCombine1)
5442    viewGraph();
5443  if (RunningAfterLegalize && ViewDAGCombine2)
5444    viewGraph();
5445  /// run - This is the main entry point to this class.
5446  ///
5447  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5448}
5449