DAGCombiner.cpp revision b77ea550467091e8840d06886dc068f62e9e1c99
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: divide by zero is currently left unfolded.  do we want to turn this
26//        into an undef?
27// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "dagcombine"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/MathExtras.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NodesCombined   , "Number of dag nodes combined");
48STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
49STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
50
51namespace {
52#ifndef NDEBUG
53  static cl::opt<bool>
54    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
55                    cl::desc("Pop up a window to show dags before the first "
56                             "dag combine pass"));
57  static cl::opt<bool>
58    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
59                    cl::desc("Pop up a window to show dags before the second "
60                             "dag combine pass"));
61#else
62  static const bool ViewDAGCombine1 = false;
63  static const bool ViewDAGCombine2 = false;
64#endif
65
66  static cl::opt<bool>
67    CombinerAA("combiner-alias-analysis", cl::Hidden,
68               cl::desc("Turn on alias analysis during testing"));
69
70  static cl::opt<bool>
71    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
72               cl::desc("Include global information in alias analysis"));
73
74//------------------------------ DAGCombiner ---------------------------------//
75
76  class VISIBILITY_HIDDEN DAGCombiner {
77    SelectionDAG &DAG;
78    TargetLowering &TLI;
79    bool AfterLegalize;
80
81    // Worklist of all of the nodes that need to be simplified.
82    std::vector<SDNode*> WorkList;
83
84    // AA - Used for DAG load/store alias analysis.
85    AliasAnalysis &AA;
86
87    /// AddUsersToWorkList - When an instruction is simplified, add all users of
88    /// the instruction to the work lists because they might get more simplified
89    /// now.
90    ///
91    void AddUsersToWorkList(SDNode *N) {
92      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
93           UI != UE; ++UI)
94        AddToWorkList(*UI);
95    }
96
97    /// removeFromWorkList - remove all instances of N from the worklist.
98    ///
99    void removeFromWorkList(SDNode *N) {
100      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
101                     WorkList.end());
102    }
103
104    /// visit - call the node-specific routine that knows how to fold each
105    /// particular type of node.
106    SDOperand visit(SDNode *N);
107
108  public:
109    /// AddToWorkList - Add to the work list making sure it's instance is at the
110    /// the back (next to be processed.)
111    void AddToWorkList(SDNode *N) {
112      removeFromWorkList(N);
113      WorkList.push_back(N);
114    }
115
116    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
117                        bool AddTo = true) {
118      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
119      ++NodesCombined;
120      DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
121      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
122      DOUT << " and " << NumTo-1 << " other values\n";
123      std::vector<SDNode*> NowDead;
124      DAG.ReplaceAllUsesWith(N, To, &NowDead);
125
126      if (AddTo) {
127        // Push the new nodes and any users onto the worklist
128        for (unsigned i = 0, e = NumTo; i != e; ++i) {
129          AddToWorkList(To[i].Val);
130          AddUsersToWorkList(To[i].Val);
131        }
132      }
133
134      // Nodes can be reintroduced into the worklist.  Make sure we do not
135      // process a node that has been replaced.
136      removeFromWorkList(N);
137      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
138        removeFromWorkList(NowDead[i]);
139
140      // Finally, since the node is now dead, remove it from the graph.
141      DAG.DeleteNode(N);
142      return SDOperand(N, 0);
143    }
144
145    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
146      return CombineTo(N, &Res, 1, AddTo);
147    }
148
149    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
150                        bool AddTo = true) {
151      SDOperand To[] = { Res0, Res1 };
152      return CombineTo(N, To, 2, AddTo);
153    }
154  private:
155
156    /// SimplifyDemandedBits - Check the specified integer node value to see if
157    /// it can be simplified or if things it uses can be simplified by bit
158    /// propagation.  If so, return true.
159    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL) {
160      TargetLowering::TargetLoweringOpt TLO(DAG);
161      uint64_t KnownZero, KnownOne;
162      Demanded &= MVT::getIntVTBitMask(Op.getValueType());
163      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
164        return false;
165
166      // Revisit the node.
167      AddToWorkList(Op.Val);
168
169      // Replace the old value with the new one.
170      ++NodesCombined;
171      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
172      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
173      DOUT << '\n';
174
175      std::vector<SDNode*> NowDead;
176      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
177
178      // Push the new node and any (possibly new) users onto the worklist.
179      AddToWorkList(TLO.New.Val);
180      AddUsersToWorkList(TLO.New.Val);
181
182      // Nodes can end up on the worklist more than once.  Make sure we do
183      // not process a node that has been replaced.
184      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
185        removeFromWorkList(NowDead[i]);
186
187      // Finally, if the node is now dead, remove it from the graph.  The node
188      // may not be dead if the replacement process recursively simplified to
189      // something else needing this node.
190      if (TLO.Old.Val->use_empty()) {
191        removeFromWorkList(TLO.Old.Val);
192
193        // If the operands of this node are only used by the node, they will now
194        // be dead.  Make sure to visit them first to delete dead nodes early.
195        for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
196          if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
197            AddToWorkList(TLO.Old.Val->getOperand(i).Val);
198
199        DAG.DeleteNode(TLO.Old.Val);
200      }
201      return true;
202    }
203
204    bool CombineToPreIndexedLoadStore(SDNode *N);
205    bool CombineToPostIndexedLoadStore(SDNode *N);
206
207
208    /// combine - call the node-specific routine that knows how to fold each
209    /// particular type of node. If that doesn't do anything, try the
210    /// target-specific DAG combines.
211    SDOperand combine(SDNode *N);
212
213    // Visitation implementation - Implement dag node combining for different
214    // node types.  The semantics are as follows:
215    // Return Value:
216    //   SDOperand.Val == 0   - No change was made
217    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
218    //   otherwise            - N should be replaced by the returned Operand.
219    //
220    SDOperand visitTokenFactor(SDNode *N);
221    SDOperand visitADD(SDNode *N);
222    SDOperand visitSUB(SDNode *N);
223    SDOperand visitADDC(SDNode *N);
224    SDOperand visitADDE(SDNode *N);
225    SDOperand visitMUL(SDNode *N);
226    SDOperand visitSDIV(SDNode *N);
227    SDOperand visitUDIV(SDNode *N);
228    SDOperand visitSREM(SDNode *N);
229    SDOperand visitUREM(SDNode *N);
230    SDOperand visitMULHU(SDNode *N);
231    SDOperand visitMULHS(SDNode *N);
232    SDOperand visitSMUL_LOHI(SDNode *N);
233    SDOperand visitUMUL_LOHI(SDNode *N);
234    SDOperand visitSDIVREM(SDNode *N);
235    SDOperand visitUDIVREM(SDNode *N);
236    SDOperand visitAND(SDNode *N);
237    SDOperand visitOR(SDNode *N);
238    SDOperand visitXOR(SDNode *N);
239    SDOperand SimplifyVBinOp(SDNode *N);
240    SDOperand visitSHL(SDNode *N);
241    SDOperand visitSRA(SDNode *N);
242    SDOperand visitSRL(SDNode *N);
243    SDOperand visitCTLZ(SDNode *N);
244    SDOperand visitCTTZ(SDNode *N);
245    SDOperand visitCTPOP(SDNode *N);
246    SDOperand visitSELECT(SDNode *N);
247    SDOperand visitSELECT_CC(SDNode *N);
248    SDOperand visitSETCC(SDNode *N);
249    SDOperand visitSIGN_EXTEND(SDNode *N);
250    SDOperand visitZERO_EXTEND(SDNode *N);
251    SDOperand visitANY_EXTEND(SDNode *N);
252    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
253    SDOperand visitTRUNCATE(SDNode *N);
254    SDOperand visitBIT_CONVERT(SDNode *N);
255    SDOperand visitFADD(SDNode *N);
256    SDOperand visitFSUB(SDNode *N);
257    SDOperand visitFMUL(SDNode *N);
258    SDOperand visitFDIV(SDNode *N);
259    SDOperand visitFREM(SDNode *N);
260    SDOperand visitFCOPYSIGN(SDNode *N);
261    SDOperand visitSINT_TO_FP(SDNode *N);
262    SDOperand visitUINT_TO_FP(SDNode *N);
263    SDOperand visitFP_TO_SINT(SDNode *N);
264    SDOperand visitFP_TO_UINT(SDNode *N);
265    SDOperand visitFP_ROUND(SDNode *N);
266    SDOperand visitFP_ROUND_INREG(SDNode *N);
267    SDOperand visitFP_EXTEND(SDNode *N);
268    SDOperand visitFNEG(SDNode *N);
269    SDOperand visitFABS(SDNode *N);
270    SDOperand visitBRCOND(SDNode *N);
271    SDOperand visitBR_CC(SDNode *N);
272    SDOperand visitLOAD(SDNode *N);
273    SDOperand visitSTORE(SDNode *N);
274    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
275    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
276    SDOperand visitBUILD_VECTOR(SDNode *N);
277    SDOperand visitCONCAT_VECTORS(SDNode *N);
278    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
279
280    SDOperand XformToShuffleWithZero(SDNode *N);
281    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
282
283    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
284    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
285    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
286    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
287                               SDOperand N3, ISD::CondCode CC,
288                               bool NotExtCompare = false);
289    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
290                            ISD::CondCode Cond, bool foldBooleans = true);
291    bool SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp);
292    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
293    SDOperand BuildSDIV(SDNode *N);
294    SDOperand BuildUDIV(SDNode *N);
295    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
296    SDOperand ReduceLoadWidth(SDNode *N);
297
298    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
299
300    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
301    /// looking for aliasing nodes and adding them to the Aliases vector.
302    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
303                          SmallVector<SDOperand, 8> &Aliases);
304
305    /// isAlias - Return true if there is any possibility that the two addresses
306    /// overlap.
307    bool isAlias(SDOperand Ptr1, int64_t Size1,
308                 const Value *SrcValue1, int SrcValueOffset1,
309                 SDOperand Ptr2, int64_t Size2,
310                 const Value *SrcValue2, int SrcValueOffset2);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDOperand &Ptr, int64_t &Size,
316                       const Value *&SrcValue, int &SrcValueOffset);
317
318    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
319    /// looking for a better chain (aliasing node.)
320    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
321
322public:
323    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
324      : DAG(D),
325        TLI(D.getTargetLoweringInfo()),
326        AfterLegalize(false),
327        AA(A) {}
328
329    /// Run - runs the dag combiner on all nodes in the work list
330    void Run(bool RunningAfterLegalize);
331  };
332}
333
334//===----------------------------------------------------------------------===//
335//  TargetLowering::DAGCombinerInfo implementation
336//===----------------------------------------------------------------------===//
337
338void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
339  ((DAGCombiner*)DC)->AddToWorkList(N);
340}
341
342SDOperand TargetLowering::DAGCombinerInfo::
343CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
344  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
345}
346
347SDOperand TargetLowering::DAGCombinerInfo::
348CombineTo(SDNode *N, SDOperand Res) {
349  return ((DAGCombiner*)DC)->CombineTo(N, Res);
350}
351
352
353SDOperand TargetLowering::DAGCombinerInfo::
354CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
355  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
356}
357
358
359//===----------------------------------------------------------------------===//
360// Helper Functions
361//===----------------------------------------------------------------------===//
362
363/// isNegatibleForFree - Return 1 if we can compute the negated form of the
364/// specified expression for the same cost as the expression itself, or 2 if we
365/// can compute the negated form more cheaply than the expression itself.
366static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
367  // fneg is removable even if it has multiple uses.
368  if (Op.getOpcode() == ISD::FNEG) return 2;
369
370  // Don't allow anything with multiple uses.
371  if (!Op.hasOneUse()) return 0;
372
373  // Don't recurse exponentially.
374  if (Depth > 6) return 0;
375
376  switch (Op.getOpcode()) {
377  default: return false;
378  case ISD::ConstantFP:
379    return 1;
380  case ISD::FADD:
381    // FIXME: determine better conditions for this xform.
382    if (!UnsafeFPMath) return 0;
383
384    // -(A+B) -> -A - B
385    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
386      return V;
387    // -(A+B) -> -B - A
388    return isNegatibleForFree(Op.getOperand(1), Depth+1);
389  case ISD::FSUB:
390    // We can't turn -(A-B) into B-A when we honor signed zeros.
391    if (!UnsafeFPMath) return 0;
392
393    // -(A-B) -> B-A
394    return 1;
395
396  case ISD::FMUL:
397  case ISD::FDIV:
398    if (HonorSignDependentRoundingFPMath()) return 0;
399
400    // -(X*Y) -> (-X * Y) or (X*-Y)
401    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
402      return V;
403
404    return isNegatibleForFree(Op.getOperand(1), Depth+1);
405
406  case ISD::FP_EXTEND:
407  case ISD::FP_ROUND:
408  case ISD::FSIN:
409    return isNegatibleForFree(Op.getOperand(0), Depth+1);
410  }
411}
412
413/// GetNegatedExpression - If isNegatibleForFree returns true, this function
414/// returns the newly negated expression.
415static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
416                                      unsigned Depth = 0) {
417  // fneg is removable even if it has multiple uses.
418  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
419
420  // Don't allow anything with multiple uses.
421  assert(Op.hasOneUse() && "Unknown reuse!");
422
423  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
424  switch (Op.getOpcode()) {
425  default: assert(0 && "Unknown code");
426  case ISD::ConstantFP: {
427    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
428    V.changeSign();
429    return DAG.getConstantFP(V, Op.getValueType());
430  }
431  case ISD::FADD:
432    // FIXME: determine better conditions for this xform.
433    assert(UnsafeFPMath);
434
435    // -(A+B) -> -A - B
436    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
437      return DAG.getNode(ISD::FSUB, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
439                         Op.getOperand(1));
440    // -(A+B) -> -B - A
441    return DAG.getNode(ISD::FSUB, Op.getValueType(),
442                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
443                       Op.getOperand(0));
444  case ISD::FSUB:
445    // We can't turn -(A-B) into B-A when we honor signed zeros.
446    assert(UnsafeFPMath);
447
448    // -(0-B) -> B
449    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
450      if (N0CFP->getValueAPF().isZero())
451        return Op.getOperand(1);
452
453    // -(A-B) -> B-A
454    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
455                       Op.getOperand(0));
456
457  case ISD::FMUL:
458  case ISD::FDIV:
459    assert(!HonorSignDependentRoundingFPMath());
460
461    // -(X*Y) -> -X * Y
462    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
463      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
464                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
465                         Op.getOperand(1));
466
467    // -(X*Y) -> X * -Y
468    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
469                       Op.getOperand(0),
470                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
471
472  case ISD::FP_EXTEND:
473  case ISD::FP_ROUND:
474  case ISD::FSIN:
475    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
476                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
477  }
478}
479
480
481// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
482// that selects between the values 1 and 0, making it equivalent to a setcc.
483// Also, set the incoming LHS, RHS, and CC references to the appropriate
484// nodes based on the type of node we are checking.  This simplifies life a
485// bit for the callers.
486static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
487                              SDOperand &CC) {
488  if (N.getOpcode() == ISD::SETCC) {
489    LHS = N.getOperand(0);
490    RHS = N.getOperand(1);
491    CC  = N.getOperand(2);
492    return true;
493  }
494  if (N.getOpcode() == ISD::SELECT_CC &&
495      N.getOperand(2).getOpcode() == ISD::Constant &&
496      N.getOperand(3).getOpcode() == ISD::Constant &&
497      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
498      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
499    LHS = N.getOperand(0);
500    RHS = N.getOperand(1);
501    CC  = N.getOperand(4);
502    return true;
503  }
504  return false;
505}
506
507// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
508// one use.  If this is true, it allows the users to invert the operation for
509// free when it is profitable to do so.
510static bool isOneUseSetCC(SDOperand N) {
511  SDOperand N0, N1, N2;
512  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
513    return true;
514  return false;
515}
516
517SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
518  MVT::ValueType VT = N0.getValueType();
519  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
520  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
521  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
522    if (isa<ConstantSDNode>(N1)) {
523      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
524      AddToWorkList(OpNode.Val);
525      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
526    } else if (N0.hasOneUse()) {
527      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
528      AddToWorkList(OpNode.Val);
529      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
530    }
531  }
532  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
533  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
534  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
535    if (isa<ConstantSDNode>(N0)) {
536      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
537      AddToWorkList(OpNode.Val);
538      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
539    } else if (N1.hasOneUse()) {
540      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
541      AddToWorkList(OpNode.Val);
542      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
543    }
544  }
545  return SDOperand();
546}
547
548//===----------------------------------------------------------------------===//
549//  Main DAG Combiner implementation
550//===----------------------------------------------------------------------===//
551
552void DAGCombiner::Run(bool RunningAfterLegalize) {
553  // set the instance variable, so that the various visit routines may use it.
554  AfterLegalize = RunningAfterLegalize;
555
556  // Add all the dag nodes to the worklist.
557  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
558       E = DAG.allnodes_end(); I != E; ++I)
559    WorkList.push_back(I);
560
561  // Create a dummy node (which is not added to allnodes), that adds a reference
562  // to the root node, preventing it from being deleted, and tracking any
563  // changes of the root.
564  HandleSDNode Dummy(DAG.getRoot());
565
566  // The root of the dag may dangle to deleted nodes until the dag combiner is
567  // done.  Set it to null to avoid confusion.
568  DAG.setRoot(SDOperand());
569
570  // while the worklist isn't empty, inspect the node on the end of it and
571  // try and combine it.
572  while (!WorkList.empty()) {
573    SDNode *N = WorkList.back();
574    WorkList.pop_back();
575
576    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
577    // N is deleted from the DAG, since they too may now be dead or may have a
578    // reduced number of uses, allowing other xforms.
579    if (N->use_empty() && N != &Dummy) {
580      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
581        AddToWorkList(N->getOperand(i).Val);
582
583      DAG.DeleteNode(N);
584      continue;
585    }
586
587    SDOperand RV = combine(N);
588
589    if (RV.Val) {
590      ++NodesCombined;
591      // If we get back the same node we passed in, rather than a new node or
592      // zero, we know that the node must have defined multiple values and
593      // CombineTo was used.  Since CombineTo takes care of the worklist
594      // mechanics for us, we have no work to do in this case.
595      if (RV.Val != N) {
596        assert(N->getOpcode() != ISD::DELETED_NODE &&
597               RV.Val->getOpcode() != ISD::DELETED_NODE &&
598               "Node was deleted but visit returned new node!");
599
600        DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
601        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
602        DOUT << '\n';
603        std::vector<SDNode*> NowDead;
604        if (N->getNumValues() == RV.Val->getNumValues())
605          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
606        else {
607          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
608          SDOperand OpV = RV;
609          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
610        }
611
612        // Push the new node and any users onto the worklist
613        AddToWorkList(RV.Val);
614        AddUsersToWorkList(RV.Val);
615
616        // Nodes can be reintroduced into the worklist.  Make sure we do not
617        // process a node that has been replaced.
618        removeFromWorkList(N);
619        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
620          removeFromWorkList(NowDead[i]);
621
622        // Finally, since the node is now dead, remove it from the graph.
623        DAG.DeleteNode(N);
624      }
625    }
626  }
627
628  // If the root changed (e.g. it was a dead load, update the root).
629  DAG.setRoot(Dummy.getValue());
630}
631
632SDOperand DAGCombiner::visit(SDNode *N) {
633  switch(N->getOpcode()) {
634  default: break;
635  case ISD::TokenFactor:        return visitTokenFactor(N);
636  case ISD::ADD:                return visitADD(N);
637  case ISD::SUB:                return visitSUB(N);
638  case ISD::ADDC:               return visitADDC(N);
639  case ISD::ADDE:               return visitADDE(N);
640  case ISD::MUL:                return visitMUL(N);
641  case ISD::SDIV:               return visitSDIV(N);
642  case ISD::UDIV:               return visitUDIV(N);
643  case ISD::SREM:               return visitSREM(N);
644  case ISD::UREM:               return visitUREM(N);
645  case ISD::MULHU:              return visitMULHU(N);
646  case ISD::MULHS:              return visitMULHS(N);
647  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
648  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
649  case ISD::SDIVREM:            return visitSDIVREM(N);
650  case ISD::UDIVREM:            return visitUDIVREM(N);
651  case ISD::AND:                return visitAND(N);
652  case ISD::OR:                 return visitOR(N);
653  case ISD::XOR:                return visitXOR(N);
654  case ISD::SHL:                return visitSHL(N);
655  case ISD::SRA:                return visitSRA(N);
656  case ISD::SRL:                return visitSRL(N);
657  case ISD::CTLZ:               return visitCTLZ(N);
658  case ISD::CTTZ:               return visitCTTZ(N);
659  case ISD::CTPOP:              return visitCTPOP(N);
660  case ISD::SELECT:             return visitSELECT(N);
661  case ISD::SELECT_CC:          return visitSELECT_CC(N);
662  case ISD::SETCC:              return visitSETCC(N);
663  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
664  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
665  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
666  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
667  case ISD::TRUNCATE:           return visitTRUNCATE(N);
668  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
669  case ISD::FADD:               return visitFADD(N);
670  case ISD::FSUB:               return visitFSUB(N);
671  case ISD::FMUL:               return visitFMUL(N);
672  case ISD::FDIV:               return visitFDIV(N);
673  case ISD::FREM:               return visitFREM(N);
674  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
675  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
676  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
677  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
678  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
679  case ISD::FP_ROUND:           return visitFP_ROUND(N);
680  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
681  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
682  case ISD::FNEG:               return visitFNEG(N);
683  case ISD::FABS:               return visitFABS(N);
684  case ISD::BRCOND:             return visitBRCOND(N);
685  case ISD::BR_CC:              return visitBR_CC(N);
686  case ISD::LOAD:               return visitLOAD(N);
687  case ISD::STORE:              return visitSTORE(N);
688  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
689  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
690  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
691  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
692  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
693  }
694  return SDOperand();
695}
696
697SDOperand DAGCombiner::combine(SDNode *N) {
698
699  SDOperand RV = visit(N);
700
701  // If nothing happened, try a target-specific DAG combine.
702  if (RV.Val == 0) {
703    assert(N->getOpcode() != ISD::DELETED_NODE &&
704           "Node was deleted but visit returned NULL!");
705
706    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
707        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
708
709      // Expose the DAG combiner to the target combiner impls.
710      TargetLowering::DAGCombinerInfo
711        DagCombineInfo(DAG, !AfterLegalize, false, this);
712
713      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
714    }
715  }
716
717  return RV;
718}
719
720/// getInputChainForNode - Given a node, return its input chain if it has one,
721/// otherwise return a null sd operand.
722static SDOperand getInputChainForNode(SDNode *N) {
723  if (unsigned NumOps = N->getNumOperands()) {
724    if (N->getOperand(0).getValueType() == MVT::Other)
725      return N->getOperand(0);
726    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
727      return N->getOperand(NumOps-1);
728    for (unsigned i = 1; i < NumOps-1; ++i)
729      if (N->getOperand(i).getValueType() == MVT::Other)
730        return N->getOperand(i);
731  }
732  return SDOperand(0, 0);
733}
734
735SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
736  // If N has two operands, where one has an input chain equal to the other,
737  // the 'other' chain is redundant.
738  if (N->getNumOperands() == 2) {
739    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
740      return N->getOperand(0);
741    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
742      return N->getOperand(1);
743  }
744
745  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
746  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
747  SmallPtrSet<SDNode*, 16> SeenOps;
748  bool Changed = false;             // If we should replace this token factor.
749
750  // Start out with this token factor.
751  TFs.push_back(N);
752
753  // Iterate through token factors.  The TFs grows when new token factors are
754  // encountered.
755  for (unsigned i = 0; i < TFs.size(); ++i) {
756    SDNode *TF = TFs[i];
757
758    // Check each of the operands.
759    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
760      SDOperand Op = TF->getOperand(i);
761
762      switch (Op.getOpcode()) {
763      case ISD::EntryToken:
764        // Entry tokens don't need to be added to the list. They are
765        // rededundant.
766        Changed = true;
767        break;
768
769      case ISD::TokenFactor:
770        if ((CombinerAA || Op.hasOneUse()) &&
771            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
772          // Queue up for processing.
773          TFs.push_back(Op.Val);
774          // Clean up in case the token factor is removed.
775          AddToWorkList(Op.Val);
776          Changed = true;
777          break;
778        }
779        // Fall thru
780
781      default:
782        // Only add if it isn't already in the list.
783        if (SeenOps.insert(Op.Val))
784          Ops.push_back(Op);
785        else
786          Changed = true;
787        break;
788      }
789    }
790  }
791
792  SDOperand Result;
793
794  // If we've change things around then replace token factor.
795  if (Changed) {
796    if (Ops.size() == 0) {
797      // The entry token is the only possible outcome.
798      Result = DAG.getEntryNode();
799    } else {
800      // New and improved token factor.
801      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
802    }
803
804    // Don't add users to work list.
805    return CombineTo(N, Result, false);
806  }
807
808  return Result;
809}
810
811static
812SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
813  MVT::ValueType VT = N0.getValueType();
814  SDOperand N00 = N0.getOperand(0);
815  SDOperand N01 = N0.getOperand(1);
816  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
817  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
818      isa<ConstantSDNode>(N00.getOperand(1))) {
819    N0 = DAG.getNode(ISD::ADD, VT,
820                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
821                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
822    return DAG.getNode(ISD::ADD, VT, N0, N1);
823  }
824  return SDOperand();
825}
826
827static
828SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
829                              SelectionDAG &DAG) {
830  MVT::ValueType VT = N->getValueType(0);
831  unsigned Opc = N->getOpcode();
832  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
833  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
834  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
835  ISD::CondCode CC = ISD::SETCC_INVALID;
836  if (isSlctCC)
837    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
838  else {
839    SDOperand CCOp = Slct.getOperand(0);
840    if (CCOp.getOpcode() == ISD::SETCC)
841      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
842  }
843
844  bool DoXform = false;
845  bool InvCC = false;
846  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
847          "Bad input!");
848  if (LHS.getOpcode() == ISD::Constant &&
849      cast<ConstantSDNode>(LHS)->isNullValue())
850    DoXform = true;
851  else if (CC != ISD::SETCC_INVALID &&
852           RHS.getOpcode() == ISD::Constant &&
853           cast<ConstantSDNode>(RHS)->isNullValue()) {
854    std::swap(LHS, RHS);
855    bool isInt = MVT::isInteger(isSlctCC ? Slct.getOperand(0).getValueType()
856                                : Slct.getOperand(0).getOperand(0).getValueType());
857    CC = ISD::getSetCCInverse(CC, isInt);
858    DoXform = true;
859    InvCC = true;
860  }
861
862  if (DoXform) {
863    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
864    if (isSlctCC)
865      return DAG.getSelectCC(OtherOp, Result,
866                             Slct.getOperand(0), Slct.getOperand(1), CC);
867    SDOperand CCOp = Slct.getOperand(0);
868    if (InvCC)
869      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
870                          CCOp.getOperand(1), CC);
871    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
872  }
873  return SDOperand();
874}
875
876SDOperand DAGCombiner::visitADD(SDNode *N) {
877  SDOperand N0 = N->getOperand(0);
878  SDOperand N1 = N->getOperand(1);
879  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
880  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
881  MVT::ValueType VT = N0.getValueType();
882
883  // fold vector ops
884  if (MVT::isVector(VT)) {
885    SDOperand FoldedVOp = SimplifyVBinOp(N);
886    if (FoldedVOp.Val) return FoldedVOp;
887  }
888
889  // fold (add x, undef) -> undef
890  if (N0.getOpcode() == ISD::UNDEF)
891    return N0;
892  if (N1.getOpcode() == ISD::UNDEF)
893    return N1;
894  // fold (add c1, c2) -> c1+c2
895  if (N0C && N1C)
896    return DAG.getNode(ISD::ADD, VT, N0, N1);
897  // canonicalize constant to RHS
898  if (N0C && !N1C)
899    return DAG.getNode(ISD::ADD, VT, N1, N0);
900  // fold (add x, 0) -> x
901  if (N1C && N1C->isNullValue())
902    return N0;
903  // fold ((c1-A)+c2) -> (c1+c2)-A
904  if (N1C && N0.getOpcode() == ISD::SUB)
905    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
906      return DAG.getNode(ISD::SUB, VT,
907                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
908                         N0.getOperand(1));
909  // reassociate add
910  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
911  if (RADD.Val != 0)
912    return RADD;
913  // fold ((0-A) + B) -> B-A
914  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
915      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
916    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
917  // fold (A + (0-B)) -> A-B
918  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
919      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
920    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
921  // fold (A+(B-A)) -> B
922  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
923    return N1.getOperand(0);
924
925  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
926    return SDOperand(N, 0);
927
928  // fold (a+b) -> (a|b) iff a and b share no bits.
929  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
930    uint64_t LHSZero, LHSOne;
931    uint64_t RHSZero, RHSOne;
932    uint64_t Mask = MVT::getIntVTBitMask(VT);
933    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
934    if (LHSZero) {
935      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
936
937      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
938      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
939      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
940          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
941        return DAG.getNode(ISD::OR, VT, N0, N1);
942    }
943  }
944
945  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
946  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
947    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
948    if (Result.Val) return Result;
949  }
950  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
951    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
952    if (Result.Val) return Result;
953  }
954
955  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
956  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
957    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
958    if (Result.Val) return Result;
959  }
960  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
961    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
962    if (Result.Val) return Result;
963  }
964
965  return SDOperand();
966}
967
968SDOperand DAGCombiner::visitADDC(SDNode *N) {
969  SDOperand N0 = N->getOperand(0);
970  SDOperand N1 = N->getOperand(1);
971  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
972  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
973  MVT::ValueType VT = N0.getValueType();
974
975  // If the flag result is dead, turn this into an ADD.
976  if (N->hasNUsesOfValue(0, 1))
977    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
978                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
979
980  // canonicalize constant to RHS.
981  if (N0C && !N1C) {
982    SDOperand Ops[] = { N1, N0 };
983    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
984  }
985
986  // fold (addc x, 0) -> x + no carry out
987  if (N1C && N1C->isNullValue())
988    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
989
990  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
991  uint64_t LHSZero, LHSOne;
992  uint64_t RHSZero, RHSOne;
993  uint64_t Mask = MVT::getIntVTBitMask(VT);
994  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
995  if (LHSZero) {
996    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
997
998    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
999    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1000    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1001        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1002      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1003                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1004  }
1005
1006  return SDOperand();
1007}
1008
1009SDOperand DAGCombiner::visitADDE(SDNode *N) {
1010  SDOperand N0 = N->getOperand(0);
1011  SDOperand N1 = N->getOperand(1);
1012  SDOperand CarryIn = N->getOperand(2);
1013  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1014  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1015  //MVT::ValueType VT = N0.getValueType();
1016
1017  // canonicalize constant to RHS
1018  if (N0C && !N1C) {
1019    SDOperand Ops[] = { N1, N0, CarryIn };
1020    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1021  }
1022
1023  // fold (adde x, y, false) -> (addc x, y)
1024  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1025    SDOperand Ops[] = { N1, N0 };
1026    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1027  }
1028
1029  return SDOperand();
1030}
1031
1032
1033
1034SDOperand DAGCombiner::visitSUB(SDNode *N) {
1035  SDOperand N0 = N->getOperand(0);
1036  SDOperand N1 = N->getOperand(1);
1037  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1038  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1039  MVT::ValueType VT = N0.getValueType();
1040
1041  // fold vector ops
1042  if (MVT::isVector(VT)) {
1043    SDOperand FoldedVOp = SimplifyVBinOp(N);
1044    if (FoldedVOp.Val) return FoldedVOp;
1045  }
1046
1047  // fold (sub x, x) -> 0
1048  if (N0 == N1)
1049    return DAG.getConstant(0, N->getValueType(0));
1050  // fold (sub c1, c2) -> c1-c2
1051  if (N0C && N1C)
1052    return DAG.getNode(ISD::SUB, VT, N0, N1);
1053  // fold (sub x, c) -> (add x, -c)
1054  if (N1C)
1055    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1056  // fold (A+B)-A -> B
1057  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1058    return N0.getOperand(1);
1059  // fold (A+B)-B -> A
1060  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1061    return N0.getOperand(0);
1062  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1063  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1064    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1065    if (Result.Val) return Result;
1066  }
1067  // If either operand of a sub is undef, the result is undef
1068  if (N0.getOpcode() == ISD::UNDEF)
1069    return N0;
1070  if (N1.getOpcode() == ISD::UNDEF)
1071    return N1;
1072
1073  return SDOperand();
1074}
1075
1076SDOperand DAGCombiner::visitMUL(SDNode *N) {
1077  SDOperand N0 = N->getOperand(0);
1078  SDOperand N1 = N->getOperand(1);
1079  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1080  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1081  MVT::ValueType VT = N0.getValueType();
1082
1083  // fold vector ops
1084  if (MVT::isVector(VT)) {
1085    SDOperand FoldedVOp = SimplifyVBinOp(N);
1086    if (FoldedVOp.Val) return FoldedVOp;
1087  }
1088
1089  // fold (mul x, undef) -> 0
1090  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1091    return DAG.getConstant(0, VT);
1092  // fold (mul c1, c2) -> c1*c2
1093  if (N0C && N1C)
1094    return DAG.getNode(ISD::MUL, VT, N0, N1);
1095  // canonicalize constant to RHS
1096  if (N0C && !N1C)
1097    return DAG.getNode(ISD::MUL, VT, N1, N0);
1098  // fold (mul x, 0) -> 0
1099  if (N1C && N1C->isNullValue())
1100    return N1;
1101  // fold (mul x, -1) -> 0-x
1102  if (N1C && N1C->isAllOnesValue())
1103    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1104  // fold (mul x, (1 << c)) -> x << c
1105  if (N1C && isPowerOf2_64(N1C->getValue()))
1106    return DAG.getNode(ISD::SHL, VT, N0,
1107                       DAG.getConstant(Log2_64(N1C->getValue()),
1108                                       TLI.getShiftAmountTy()));
1109  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1110  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1111    // FIXME: If the input is something that is easily negated (e.g. a
1112    // single-use add), we should put the negate there.
1113    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1114                       DAG.getNode(ISD::SHL, VT, N0,
1115                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1116                                            TLI.getShiftAmountTy())));
1117  }
1118
1119  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1120  if (N1C && N0.getOpcode() == ISD::SHL &&
1121      isa<ConstantSDNode>(N0.getOperand(1))) {
1122    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1123    AddToWorkList(C3.Val);
1124    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1125  }
1126
1127  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1128  // use.
1129  {
1130    SDOperand Sh(0,0), Y(0,0);
1131    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1132    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1133        N0.Val->hasOneUse()) {
1134      Sh = N0; Y = N1;
1135    } else if (N1.getOpcode() == ISD::SHL &&
1136               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1137      Sh = N1; Y = N0;
1138    }
1139    if (Sh.Val) {
1140      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1141      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1142    }
1143  }
1144  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1145  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1146      isa<ConstantSDNode>(N0.getOperand(1))) {
1147    return DAG.getNode(ISD::ADD, VT,
1148                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1149                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1150  }
1151
1152  // reassociate mul
1153  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1154  if (RMUL.Val != 0)
1155    return RMUL;
1156
1157  return SDOperand();
1158}
1159
1160SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1161  SDOperand N0 = N->getOperand(0);
1162  SDOperand N1 = N->getOperand(1);
1163  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1164  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1165  MVT::ValueType VT = N->getValueType(0);
1166
1167  // fold vector ops
1168  if (MVT::isVector(VT)) {
1169    SDOperand FoldedVOp = SimplifyVBinOp(N);
1170    if (FoldedVOp.Val) return FoldedVOp;
1171  }
1172
1173  // fold (sdiv c1, c2) -> c1/c2
1174  if (N0C && N1C && !N1C->isNullValue())
1175    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1176  // fold (sdiv X, 1) -> X
1177  if (N1C && N1C->getSignExtended() == 1LL)
1178    return N0;
1179  // fold (sdiv X, -1) -> 0-X
1180  if (N1C && N1C->isAllOnesValue())
1181    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1182  // If we know the sign bits of both operands are zero, strength reduce to a
1183  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1184  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1185  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1186      DAG.MaskedValueIsZero(N0, SignBit))
1187    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1188  // fold (sdiv X, pow2) -> simple ops after legalize
1189  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1190      (isPowerOf2_64(N1C->getSignExtended()) ||
1191       isPowerOf2_64(-N1C->getSignExtended()))) {
1192    // If dividing by powers of two is cheap, then don't perform the following
1193    // fold.
1194    if (TLI.isPow2DivCheap())
1195      return SDOperand();
1196    int64_t pow2 = N1C->getSignExtended();
1197    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1198    unsigned lg2 = Log2_64(abs2);
1199    // Splat the sign bit into the register
1200    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1201                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1202                                                TLI.getShiftAmountTy()));
1203    AddToWorkList(SGN.Val);
1204    // Add (N0 < 0) ? abs2 - 1 : 0;
1205    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1206                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1207                                                TLI.getShiftAmountTy()));
1208    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1209    AddToWorkList(SRL.Val);
1210    AddToWorkList(ADD.Val);    // Divide by pow2
1211    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1212                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1213    // If we're dividing by a positive value, we're done.  Otherwise, we must
1214    // negate the result.
1215    if (pow2 > 0)
1216      return SRA;
1217    AddToWorkList(SRA.Val);
1218    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1219  }
1220  // if integer divide is expensive and we satisfy the requirements, emit an
1221  // alternate sequence.
1222  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1223      !TLI.isIntDivCheap()) {
1224    SDOperand Op = BuildSDIV(N);
1225    if (Op.Val) return Op;
1226  }
1227
1228  // undef / X -> 0
1229  if (N0.getOpcode() == ISD::UNDEF)
1230    return DAG.getConstant(0, VT);
1231  // X / undef -> undef
1232  if (N1.getOpcode() == ISD::UNDEF)
1233    return N1;
1234
1235  return SDOperand();
1236}
1237
1238SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1239  SDOperand N0 = N->getOperand(0);
1240  SDOperand N1 = N->getOperand(1);
1241  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1242  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1243  MVT::ValueType VT = N->getValueType(0);
1244
1245  // fold vector ops
1246  if (MVT::isVector(VT)) {
1247    SDOperand FoldedVOp = SimplifyVBinOp(N);
1248    if (FoldedVOp.Val) return FoldedVOp;
1249  }
1250
1251  // fold (udiv c1, c2) -> c1/c2
1252  if (N0C && N1C && !N1C->isNullValue())
1253    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1254  // fold (udiv x, (1 << c)) -> x >>u c
1255  if (N1C && isPowerOf2_64(N1C->getValue()))
1256    return DAG.getNode(ISD::SRL, VT, N0,
1257                       DAG.getConstant(Log2_64(N1C->getValue()),
1258                                       TLI.getShiftAmountTy()));
1259  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1260  if (N1.getOpcode() == ISD::SHL) {
1261    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1262      if (isPowerOf2_64(SHC->getValue())) {
1263        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1264        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1265                                    DAG.getConstant(Log2_64(SHC->getValue()),
1266                                                    ADDVT));
1267        AddToWorkList(Add.Val);
1268        return DAG.getNode(ISD::SRL, VT, N0, Add);
1269      }
1270    }
1271  }
1272  // fold (udiv x, c) -> alternate
1273  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1274    SDOperand Op = BuildUDIV(N);
1275    if (Op.Val) return Op;
1276  }
1277
1278  // undef / X -> 0
1279  if (N0.getOpcode() == ISD::UNDEF)
1280    return DAG.getConstant(0, VT);
1281  // X / undef -> undef
1282  if (N1.getOpcode() == ISD::UNDEF)
1283    return N1;
1284
1285  return SDOperand();
1286}
1287
1288SDOperand DAGCombiner::visitSREM(SDNode *N) {
1289  SDOperand N0 = N->getOperand(0);
1290  SDOperand N1 = N->getOperand(1);
1291  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1292  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1293  MVT::ValueType VT = N->getValueType(0);
1294
1295  // fold (srem c1, c2) -> c1%c2
1296  if (N0C && N1C && !N1C->isNullValue())
1297    return DAG.getNode(ISD::SREM, VT, N0, N1);
1298  // If we know the sign bits of both operands are zero, strength reduce to a
1299  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1300  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1301  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1302      DAG.MaskedValueIsZero(N0, SignBit))
1303    return DAG.getNode(ISD::UREM, VT, N0, N1);
1304
1305  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1306  // the remainder operation.
1307  if (N1C && !N1C->isNullValue()) {
1308    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1309    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1310    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1311    AddToWorkList(Div.Val);
1312    AddToWorkList(Mul.Val);
1313    return Sub;
1314  }
1315
1316  // undef % X -> 0
1317  if (N0.getOpcode() == ISD::UNDEF)
1318    return DAG.getConstant(0, VT);
1319  // X % undef -> undef
1320  if (N1.getOpcode() == ISD::UNDEF)
1321    return N1;
1322
1323  return SDOperand();
1324}
1325
1326SDOperand DAGCombiner::visitUREM(SDNode *N) {
1327  SDOperand N0 = N->getOperand(0);
1328  SDOperand N1 = N->getOperand(1);
1329  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1330  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1331  MVT::ValueType VT = N->getValueType(0);
1332
1333  // fold (urem c1, c2) -> c1%c2
1334  if (N0C && N1C && !N1C->isNullValue())
1335    return DAG.getNode(ISD::UREM, VT, N0, N1);
1336  // fold (urem x, pow2) -> (and x, pow2-1)
1337  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1338    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1339  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1340  if (N1.getOpcode() == ISD::SHL) {
1341    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1342      if (isPowerOf2_64(SHC->getValue())) {
1343        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1344        AddToWorkList(Add.Val);
1345        return DAG.getNode(ISD::AND, VT, N0, Add);
1346      }
1347    }
1348  }
1349
1350  // Unconditionally lower X%C -> X-X/C*C.  This allows the X/C logic to hack on
1351  // the remainder operation.
1352  if (N1C && !N1C->isNullValue()) {
1353    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1354    SDOperand Mul = DAG.getNode(ISD::MUL, VT, Div, N1);
1355    SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1356    AddToWorkList(Div.Val);
1357    AddToWorkList(Mul.Val);
1358    return Sub;
1359  }
1360
1361  // undef % X -> 0
1362  if (N0.getOpcode() == ISD::UNDEF)
1363    return DAG.getConstant(0, VT);
1364  // X % undef -> undef
1365  if (N1.getOpcode() == ISD::UNDEF)
1366    return N1;
1367
1368  return SDOperand();
1369}
1370
1371SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1372  SDOperand N0 = N->getOperand(0);
1373  SDOperand N1 = N->getOperand(1);
1374  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1375  MVT::ValueType VT = N->getValueType(0);
1376
1377  // fold (mulhs x, 0) -> 0
1378  if (N1C && N1C->isNullValue())
1379    return N1;
1380  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1381  if (N1C && N1C->getValue() == 1)
1382    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1383                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1384                                       TLI.getShiftAmountTy()));
1385  // fold (mulhs x, undef) -> 0
1386  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1387    return DAG.getConstant(0, VT);
1388
1389  return SDOperand();
1390}
1391
1392SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1393  SDOperand N0 = N->getOperand(0);
1394  SDOperand N1 = N->getOperand(1);
1395  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1396  MVT::ValueType VT = N->getValueType(0);
1397
1398  // fold (mulhu x, 0) -> 0
1399  if (N1C && N1C->isNullValue())
1400    return N1;
1401  // fold (mulhu x, 1) -> 0
1402  if (N1C && N1C->getValue() == 1)
1403    return DAG.getConstant(0, N0.getValueType());
1404  // fold (mulhu x, undef) -> 0
1405  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1406    return DAG.getConstant(0, VT);
1407
1408  return SDOperand();
1409}
1410
1411/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1412/// compute two values. LoOp and HiOp give the opcodes for the two computations
1413/// that are being performed. Return true if a simplification was made.
1414///
1415bool DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N,
1416                                             unsigned LoOp, unsigned HiOp) {
1417  std::vector<SDNode*> NowDead;
1418
1419  // If the high half is not needed, just compute the low half.
1420  if (!N->hasAnyUseOfValue(1) &&
1421      (!AfterLegalize ||
1422       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1423    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0),
1424                                  DAG.getNode(LoOp, N->getValueType(0),
1425                                              N->op_begin(),
1426                                              N->getNumOperands()),
1427                                  NowDead);
1428    return true;
1429  }
1430
1431  // If the low half is not needed, just compute the high half.
1432  if (!N->hasAnyUseOfValue(0) &&
1433      (!AfterLegalize ||
1434       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1435    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
1436                                  DAG.getNode(HiOp, N->getValueType(1),
1437                                              N->op_begin(),
1438                                              N->getNumOperands()),
1439                                  NowDead);
1440    return true;
1441  }
1442
1443  // If the two computed results can be siplified separately, separate them.
1444  SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1445                             N->op_begin(), N->getNumOperands());
1446  SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1447                             N->op_begin(), N->getNumOperands());
1448  unsigned LoExists = !Lo.use_empty();
1449  unsigned HiExists = !Hi.use_empty();
1450  SDOperand LoOpt = Lo;
1451  SDOperand HiOpt = Hi;
1452  if (!LoExists || !HiExists) {
1453    SDOperand Pair = DAG.getNode(ISD::BUILD_PAIR, MVT::Other, Lo, Hi);
1454    assert(Pair.use_empty() && "Pair with type MVT::Other already exists!");
1455    LoOpt = combine(Lo.Val);
1456    HiOpt = combine(Hi.Val);
1457    if (!LoOpt.Val)
1458      LoOpt = Pair.getOperand(0);
1459    if (!HiOpt.Val)
1460      HiOpt = Pair.getOperand(1);
1461    DAG.DeleteNode(Pair.Val);
1462  }
1463  if ((LoExists || LoOpt != Lo) &&
1464      (HiExists || HiOpt != Hi) &&
1465      TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()) &&
1466      TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())) {
1467    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), LoOpt, NowDead);
1468    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), HiOpt, NowDead);
1469    return true;
1470  }
1471
1472  return false;
1473}
1474
1475SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1476
1477  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
1478    return SDOperand();
1479
1480  return SDOperand();
1481}
1482
1483SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1484
1485  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
1486    return SDOperand();
1487
1488  return SDOperand();
1489}
1490
1491SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1492
1493  if (SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM))
1494    return SDOperand();
1495
1496  return SDOperand();
1497}
1498
1499SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1500
1501  if (SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM))
1502    return SDOperand();
1503
1504  return SDOperand();
1505}
1506
1507/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1508/// two operands of the same opcode, try to simplify it.
1509SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1510  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1511  MVT::ValueType VT = N0.getValueType();
1512  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1513
1514  // For each of OP in AND/OR/XOR:
1515  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1516  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1517  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1518  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1519  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1520       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1521      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1522    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1523                                   N0.getOperand(0).getValueType(),
1524                                   N0.getOperand(0), N1.getOperand(0));
1525    AddToWorkList(ORNode.Val);
1526    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1527  }
1528
1529  // For each of OP in SHL/SRL/SRA/AND...
1530  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1531  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1532  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1533  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1534       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1535      N0.getOperand(1) == N1.getOperand(1)) {
1536    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1537                                   N0.getOperand(0).getValueType(),
1538                                   N0.getOperand(0), N1.getOperand(0));
1539    AddToWorkList(ORNode.Val);
1540    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1541  }
1542
1543  return SDOperand();
1544}
1545
1546SDOperand DAGCombiner::visitAND(SDNode *N) {
1547  SDOperand N0 = N->getOperand(0);
1548  SDOperand N1 = N->getOperand(1);
1549  SDOperand LL, LR, RL, RR, CC0, CC1;
1550  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1551  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1552  MVT::ValueType VT = N1.getValueType();
1553
1554  // fold vector ops
1555  if (MVT::isVector(VT)) {
1556    SDOperand FoldedVOp = SimplifyVBinOp(N);
1557    if (FoldedVOp.Val) return FoldedVOp;
1558  }
1559
1560  // fold (and x, undef) -> 0
1561  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1562    return DAG.getConstant(0, VT);
1563  // fold (and c1, c2) -> c1&c2
1564  if (N0C && N1C)
1565    return DAG.getNode(ISD::AND, VT, N0, N1);
1566  // canonicalize constant to RHS
1567  if (N0C && !N1C)
1568    return DAG.getNode(ISD::AND, VT, N1, N0);
1569  // fold (and x, -1) -> x
1570  if (N1C && N1C->isAllOnesValue())
1571    return N0;
1572  // if (and x, c) is known to be zero, return 0
1573  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1574    return DAG.getConstant(0, VT);
1575  // reassociate and
1576  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1577  if (RAND.Val != 0)
1578    return RAND;
1579  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1580  if (N1C && N0.getOpcode() == ISD::OR)
1581    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1582      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1583        return N1;
1584  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1585  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1586    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1587    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1588                              ~N1C->getValue() & InMask)) {
1589      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1590                                   N0.getOperand(0));
1591
1592      // Replace uses of the AND with uses of the Zero extend node.
1593      CombineTo(N, Zext);
1594
1595      // We actually want to replace all uses of the any_extend with the
1596      // zero_extend, to avoid duplicating things.  This will later cause this
1597      // AND to be folded.
1598      CombineTo(N0.Val, Zext);
1599      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1600    }
1601  }
1602  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1603  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1604    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1605    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1606
1607    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1608        MVT::isInteger(LL.getValueType())) {
1609      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1610      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1611        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1612        AddToWorkList(ORNode.Val);
1613        return DAG.getSetCC(VT, ORNode, LR, Op1);
1614      }
1615      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1616      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1617        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1618        AddToWorkList(ANDNode.Val);
1619        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1620      }
1621      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1622      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1623        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1624        AddToWorkList(ORNode.Val);
1625        return DAG.getSetCC(VT, ORNode, LR, Op1);
1626      }
1627    }
1628    // canonicalize equivalent to ll == rl
1629    if (LL == RR && LR == RL) {
1630      Op1 = ISD::getSetCCSwappedOperands(Op1);
1631      std::swap(RL, RR);
1632    }
1633    if (LL == RL && LR == RR) {
1634      bool isInteger = MVT::isInteger(LL.getValueType());
1635      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1636      if (Result != ISD::SETCC_INVALID)
1637        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1638    }
1639  }
1640
1641  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1642  if (N0.getOpcode() == N1.getOpcode()) {
1643    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1644    if (Tmp.Val) return Tmp;
1645  }
1646
1647  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1648  // fold (and (sra)) -> (and (srl)) when possible.
1649  if (!MVT::isVector(VT) &&
1650      SimplifyDemandedBits(SDOperand(N, 0)))
1651    return SDOperand(N, 0);
1652  // fold (zext_inreg (extload x)) -> (zextload x)
1653  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1654    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1655    MVT::ValueType EVT = LN0->getLoadedVT();
1656    // If we zero all the possible extended bits, then we can turn this into
1657    // a zextload if we are running before legalize or the operation is legal.
1658    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1659        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1660      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1661                                         LN0->getBasePtr(), LN0->getSrcValue(),
1662                                         LN0->getSrcValueOffset(), EVT,
1663                                         LN0->isVolatile(),
1664                                         LN0->getAlignment());
1665      AddToWorkList(N);
1666      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1667      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1668    }
1669  }
1670  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1671  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1672      N0.hasOneUse()) {
1673    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1674    MVT::ValueType EVT = LN0->getLoadedVT();
1675    // If we zero all the possible extended bits, then we can turn this into
1676    // a zextload if we are running before legalize or the operation is legal.
1677    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1678        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1679      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1680                                         LN0->getBasePtr(), LN0->getSrcValue(),
1681                                         LN0->getSrcValueOffset(), EVT,
1682                                         LN0->isVolatile(),
1683                                         LN0->getAlignment());
1684      AddToWorkList(N);
1685      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1686      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1687    }
1688  }
1689
1690  // fold (and (load x), 255) -> (zextload x, i8)
1691  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1692  if (N1C && N0.getOpcode() == ISD::LOAD) {
1693    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1694    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1695        LN0->getAddressingMode() == ISD::UNINDEXED &&
1696        N0.hasOneUse()) {
1697      MVT::ValueType EVT, LoadedVT;
1698      if (N1C->getValue() == 255)
1699        EVT = MVT::i8;
1700      else if (N1C->getValue() == 65535)
1701        EVT = MVT::i16;
1702      else if (N1C->getValue() == ~0U)
1703        EVT = MVT::i32;
1704      else
1705        EVT = MVT::Other;
1706
1707      LoadedVT = LN0->getLoadedVT();
1708      if (EVT != MVT::Other && LoadedVT > EVT &&
1709          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1710        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1711        // For big endian targets, we need to add an offset to the pointer to
1712        // load the correct bytes.  For little endian systems, we merely need to
1713        // read fewer bytes from the same pointer.
1714        unsigned PtrOff =
1715          (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1716        SDOperand NewPtr = LN0->getBasePtr();
1717        if (!TLI.isLittleEndian())
1718          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1719                               DAG.getConstant(PtrOff, PtrType));
1720        AddToWorkList(NewPtr.Val);
1721        SDOperand Load =
1722          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1723                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1724                         LN0->isVolatile(), LN0->getAlignment());
1725        AddToWorkList(N);
1726        CombineTo(N0.Val, Load, Load.getValue(1));
1727        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1728      }
1729    }
1730  }
1731
1732  return SDOperand();
1733}
1734
1735SDOperand DAGCombiner::visitOR(SDNode *N) {
1736  SDOperand N0 = N->getOperand(0);
1737  SDOperand N1 = N->getOperand(1);
1738  SDOperand LL, LR, RL, RR, CC0, CC1;
1739  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1741  MVT::ValueType VT = N1.getValueType();
1742  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1743
1744  // fold vector ops
1745  if (MVT::isVector(VT)) {
1746    SDOperand FoldedVOp = SimplifyVBinOp(N);
1747    if (FoldedVOp.Val) return FoldedVOp;
1748  }
1749
1750  // fold (or x, undef) -> -1
1751  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1752    return DAG.getConstant(~0ULL, VT);
1753  // fold (or c1, c2) -> c1|c2
1754  if (N0C && N1C)
1755    return DAG.getNode(ISD::OR, VT, N0, N1);
1756  // canonicalize constant to RHS
1757  if (N0C && !N1C)
1758    return DAG.getNode(ISD::OR, VT, N1, N0);
1759  // fold (or x, 0) -> x
1760  if (N1C && N1C->isNullValue())
1761    return N0;
1762  // fold (or x, -1) -> -1
1763  if (N1C && N1C->isAllOnesValue())
1764    return N1;
1765  // fold (or x, c) -> c iff (x & ~c) == 0
1766  if (N1C &&
1767      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1768    return N1;
1769  // reassociate or
1770  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1771  if (ROR.Val != 0)
1772    return ROR;
1773  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1774  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1775             isa<ConstantSDNode>(N0.getOperand(1))) {
1776    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1777    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1778                                                 N1),
1779                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1780  }
1781  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1782  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1783    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1784    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1785
1786    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1787        MVT::isInteger(LL.getValueType())) {
1788      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1789      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1790      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1791          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1792        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1793        AddToWorkList(ORNode.Val);
1794        return DAG.getSetCC(VT, ORNode, LR, Op1);
1795      }
1796      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1797      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1798      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1799          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1800        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1801        AddToWorkList(ANDNode.Val);
1802        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1803      }
1804    }
1805    // canonicalize equivalent to ll == rl
1806    if (LL == RR && LR == RL) {
1807      Op1 = ISD::getSetCCSwappedOperands(Op1);
1808      std::swap(RL, RR);
1809    }
1810    if (LL == RL && LR == RR) {
1811      bool isInteger = MVT::isInteger(LL.getValueType());
1812      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1813      if (Result != ISD::SETCC_INVALID)
1814        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1815    }
1816  }
1817
1818  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1819  if (N0.getOpcode() == N1.getOpcode()) {
1820    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1821    if (Tmp.Val) return Tmp;
1822  }
1823
1824  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1825  if (N0.getOpcode() == ISD::AND &&
1826      N1.getOpcode() == ISD::AND &&
1827      N0.getOperand(1).getOpcode() == ISD::Constant &&
1828      N1.getOperand(1).getOpcode() == ISD::Constant &&
1829      // Don't increase # computations.
1830      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1831    // We can only do this xform if we know that bits from X that are set in C2
1832    // but not in C1 are already zero.  Likewise for Y.
1833    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1834    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1835
1836    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1837        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1838      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1839      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1840    }
1841  }
1842
1843
1844  // See if this is some rotate idiom.
1845  if (SDNode *Rot = MatchRotate(N0, N1))
1846    return SDOperand(Rot, 0);
1847
1848  return SDOperand();
1849}
1850
1851
1852/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1853static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1854  if (Op.getOpcode() == ISD::AND) {
1855    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1856      Mask = Op.getOperand(1);
1857      Op = Op.getOperand(0);
1858    } else {
1859      return false;
1860    }
1861  }
1862
1863  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1864    Shift = Op;
1865    return true;
1866  }
1867  return false;
1868}
1869
1870
1871// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1872// idioms for rotate, and if the target supports rotation instructions, generate
1873// a rot[lr].
1874SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1875  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1876  MVT::ValueType VT = LHS.getValueType();
1877  if (!TLI.isTypeLegal(VT)) return 0;
1878
1879  // The target must have at least one rotate flavor.
1880  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1881  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1882  if (!HasROTL && !HasROTR) return 0;
1883
1884  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1885  SDOperand LHSShift;   // The shift.
1886  SDOperand LHSMask;    // AND value if any.
1887  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1888    return 0; // Not part of a rotate.
1889
1890  SDOperand RHSShift;   // The shift.
1891  SDOperand RHSMask;    // AND value if any.
1892  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1893    return 0; // Not part of a rotate.
1894
1895  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1896    return 0;   // Not shifting the same value.
1897
1898  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1899    return 0;   // Shifts must disagree.
1900
1901  // Canonicalize shl to left side in a shl/srl pair.
1902  if (RHSShift.getOpcode() == ISD::SHL) {
1903    std::swap(LHS, RHS);
1904    std::swap(LHSShift, RHSShift);
1905    std::swap(LHSMask , RHSMask );
1906  }
1907
1908  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1909  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1910  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1911  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1912
1913  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1914  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1915  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1916      RHSShiftAmt.getOpcode() == ISD::Constant) {
1917    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1918    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1919    if ((LShVal + RShVal) != OpSizeInBits)
1920      return 0;
1921
1922    SDOperand Rot;
1923    if (HasROTL)
1924      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1925    else
1926      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1927
1928    // If there is an AND of either shifted operand, apply it to the result.
1929    if (LHSMask.Val || RHSMask.Val) {
1930      uint64_t Mask = MVT::getIntVTBitMask(VT);
1931
1932      if (LHSMask.Val) {
1933        uint64_t RHSBits = (1ULL << LShVal)-1;
1934        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1935      }
1936      if (RHSMask.Val) {
1937        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1938        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1939      }
1940
1941      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1942    }
1943
1944    return Rot.Val;
1945  }
1946
1947  // If there is a mask here, and we have a variable shift, we can't be sure
1948  // that we're masking out the right stuff.
1949  if (LHSMask.Val || RHSMask.Val)
1950    return 0;
1951
1952  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1953  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1954  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1955      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1956    if (ConstantSDNode *SUBC =
1957          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1958      if (SUBC->getValue() == OpSizeInBits)
1959        if (HasROTL)
1960          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1961        else
1962          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1963    }
1964  }
1965
1966  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1967  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1968  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1969      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1970    if (ConstantSDNode *SUBC =
1971          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1972      if (SUBC->getValue() == OpSizeInBits)
1973        if (HasROTL)
1974          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1975        else
1976          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1977    }
1978  }
1979
1980  // Look for sign/zext/any-extended cases:
1981  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1982       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1983       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1984      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1985       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1986       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1987    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1988    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1989    if (RExtOp0.getOpcode() == ISD::SUB &&
1990        RExtOp0.getOperand(1) == LExtOp0) {
1991      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1992      //   (rotr x, y)
1993      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1994      //   (rotl x, (sub 32, y))
1995      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
1996        if (SUBC->getValue() == OpSizeInBits) {
1997          if (HasROTL)
1998            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1999          else
2000            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2001        }
2002      }
2003    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2004               RExtOp0 == LExtOp0.getOperand(1)) {
2005      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2006      //   (rotl x, y)
2007      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2008      //   (rotr x, (sub 32, y))
2009      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2010        if (SUBC->getValue() == OpSizeInBits) {
2011          if (HasROTL)
2012            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2013          else
2014            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2015        }
2016      }
2017    }
2018  }
2019
2020  return 0;
2021}
2022
2023
2024SDOperand DAGCombiner::visitXOR(SDNode *N) {
2025  SDOperand N0 = N->getOperand(0);
2026  SDOperand N1 = N->getOperand(1);
2027  SDOperand LHS, RHS, CC;
2028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2030  MVT::ValueType VT = N0.getValueType();
2031
2032  // fold vector ops
2033  if (MVT::isVector(VT)) {
2034    SDOperand FoldedVOp = SimplifyVBinOp(N);
2035    if (FoldedVOp.Val) return FoldedVOp;
2036  }
2037
2038  // fold (xor x, undef) -> undef
2039  if (N0.getOpcode() == ISD::UNDEF)
2040    return N0;
2041  if (N1.getOpcode() == ISD::UNDEF)
2042    return N1;
2043  // fold (xor c1, c2) -> c1^c2
2044  if (N0C && N1C)
2045    return DAG.getNode(ISD::XOR, VT, N0, N1);
2046  // canonicalize constant to RHS
2047  if (N0C && !N1C)
2048    return DAG.getNode(ISD::XOR, VT, N1, N0);
2049  // fold (xor x, 0) -> x
2050  if (N1C && N1C->isNullValue())
2051    return N0;
2052  // reassociate xor
2053  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2054  if (RXOR.Val != 0)
2055    return RXOR;
2056  // fold !(x cc y) -> (x !cc y)
2057  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2058    bool isInt = MVT::isInteger(LHS.getValueType());
2059    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2060                                               isInt);
2061    if (N0.getOpcode() == ISD::SETCC)
2062      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2063    if (N0.getOpcode() == ISD::SELECT_CC)
2064      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2065    assert(0 && "Unhandled SetCC Equivalent!");
2066    abort();
2067  }
2068  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2069  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2070      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2071    SDOperand V = N0.getOperand(0);
2072    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2073                    DAG.getConstant(1, V.getValueType()));
2074    AddToWorkList(V.Val);
2075    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2076  }
2077
2078  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2079  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2080      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2081    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2082    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2083      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2084      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2085      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2086      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2087      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2088    }
2089  }
2090  // fold !(x or y) -> (!x and !y) iff x or y are constants
2091  if (N1C && N1C->isAllOnesValue() &&
2092      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2093    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2094    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2095      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2096      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2097      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2098      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2099      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2100    }
2101  }
2102  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2103  if (N1C && N0.getOpcode() == ISD::XOR) {
2104    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2105    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2106    if (N00C)
2107      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2108                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2109    if (N01C)
2110      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2111                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2112  }
2113  // fold (xor x, x) -> 0
2114  if (N0 == N1) {
2115    if (!MVT::isVector(VT)) {
2116      return DAG.getConstant(0, VT);
2117    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2118      // Produce a vector of zeros.
2119      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2120      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2121      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2122    }
2123  }
2124
2125  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2126  if (N0.getOpcode() == N1.getOpcode()) {
2127    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2128    if (Tmp.Val) return Tmp;
2129  }
2130
2131  // Simplify the expression using non-local knowledge.
2132  if (!MVT::isVector(VT) &&
2133      SimplifyDemandedBits(SDOperand(N, 0)))
2134    return SDOperand(N, 0);
2135
2136  return SDOperand();
2137}
2138
2139SDOperand DAGCombiner::visitSHL(SDNode *N) {
2140  SDOperand N0 = N->getOperand(0);
2141  SDOperand N1 = N->getOperand(1);
2142  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2143  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2144  MVT::ValueType VT = N0.getValueType();
2145  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2146
2147  // fold (shl c1, c2) -> c1<<c2
2148  if (N0C && N1C)
2149    return DAG.getNode(ISD::SHL, VT, N0, N1);
2150  // fold (shl 0, x) -> 0
2151  if (N0C && N0C->isNullValue())
2152    return N0;
2153  // fold (shl x, c >= size(x)) -> undef
2154  if (N1C && N1C->getValue() >= OpSizeInBits)
2155    return DAG.getNode(ISD::UNDEF, VT);
2156  // fold (shl x, 0) -> x
2157  if (N1C && N1C->isNullValue())
2158    return N0;
2159  // if (shl x, c) is known to be zero, return 0
2160  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2161    return DAG.getConstant(0, VT);
2162  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2163    return SDOperand(N, 0);
2164  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2165  if (N1C && N0.getOpcode() == ISD::SHL &&
2166      N0.getOperand(1).getOpcode() == ISD::Constant) {
2167    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2168    uint64_t c2 = N1C->getValue();
2169    if (c1 + c2 > OpSizeInBits)
2170      return DAG.getConstant(0, VT);
2171    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2172                       DAG.getConstant(c1 + c2, N1.getValueType()));
2173  }
2174  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2175  //                               (srl (and x, -1 << c1), c1-c2)
2176  if (N1C && N0.getOpcode() == ISD::SRL &&
2177      N0.getOperand(1).getOpcode() == ISD::Constant) {
2178    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2179    uint64_t c2 = N1C->getValue();
2180    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2181                                 DAG.getConstant(~0ULL << c1, VT));
2182    if (c2 > c1)
2183      return DAG.getNode(ISD::SHL, VT, Mask,
2184                         DAG.getConstant(c2-c1, N1.getValueType()));
2185    else
2186      return DAG.getNode(ISD::SRL, VT, Mask,
2187                         DAG.getConstant(c1-c2, N1.getValueType()));
2188  }
2189  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2190  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2191    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2192                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2193  return SDOperand();
2194}
2195
2196SDOperand DAGCombiner::visitSRA(SDNode *N) {
2197  SDOperand N0 = N->getOperand(0);
2198  SDOperand N1 = N->getOperand(1);
2199  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2201  MVT::ValueType VT = N0.getValueType();
2202
2203  // fold (sra c1, c2) -> c1>>c2
2204  if (N0C && N1C)
2205    return DAG.getNode(ISD::SRA, VT, N0, N1);
2206  // fold (sra 0, x) -> 0
2207  if (N0C && N0C->isNullValue())
2208    return N0;
2209  // fold (sra -1, x) -> -1
2210  if (N0C && N0C->isAllOnesValue())
2211    return N0;
2212  // fold (sra x, c >= size(x)) -> undef
2213  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2214    return DAG.getNode(ISD::UNDEF, VT);
2215  // fold (sra x, 0) -> x
2216  if (N1C && N1C->isNullValue())
2217    return N0;
2218  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2219  // sext_inreg.
2220  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2221    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2222    MVT::ValueType EVT;
2223    switch (LowBits) {
2224    default: EVT = MVT::Other; break;
2225    case  1: EVT = MVT::i1;    break;
2226    case  8: EVT = MVT::i8;    break;
2227    case 16: EVT = MVT::i16;   break;
2228    case 32: EVT = MVT::i32;   break;
2229    }
2230    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2231      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2232                         DAG.getValueType(EVT));
2233  }
2234
2235  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2236  if (N1C && N0.getOpcode() == ISD::SRA) {
2237    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2238      unsigned Sum = N1C->getValue() + C1->getValue();
2239      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2240      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2241                         DAG.getConstant(Sum, N1C->getValueType(0)));
2242    }
2243  }
2244
2245  // Simplify, based on bits shifted out of the LHS.
2246  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2247    return SDOperand(N, 0);
2248
2249
2250  // If the sign bit is known to be zero, switch this to a SRL.
2251  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2252    return DAG.getNode(ISD::SRL, VT, N0, N1);
2253  return SDOperand();
2254}
2255
2256SDOperand DAGCombiner::visitSRL(SDNode *N) {
2257  SDOperand N0 = N->getOperand(0);
2258  SDOperand N1 = N->getOperand(1);
2259  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2260  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2261  MVT::ValueType VT = N0.getValueType();
2262  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2263
2264  // fold (srl c1, c2) -> c1 >>u c2
2265  if (N0C && N1C)
2266    return DAG.getNode(ISD::SRL, VT, N0, N1);
2267  // fold (srl 0, x) -> 0
2268  if (N0C && N0C->isNullValue())
2269    return N0;
2270  // fold (srl x, c >= size(x)) -> undef
2271  if (N1C && N1C->getValue() >= OpSizeInBits)
2272    return DAG.getNode(ISD::UNDEF, VT);
2273  // fold (srl x, 0) -> x
2274  if (N1C && N1C->isNullValue())
2275    return N0;
2276  // if (srl x, c) is known to be zero, return 0
2277  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2278    return DAG.getConstant(0, VT);
2279
2280  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2281  if (N1C && N0.getOpcode() == ISD::SRL &&
2282      N0.getOperand(1).getOpcode() == ISD::Constant) {
2283    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2284    uint64_t c2 = N1C->getValue();
2285    if (c1 + c2 > OpSizeInBits)
2286      return DAG.getConstant(0, VT);
2287    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2288                       DAG.getConstant(c1 + c2, N1.getValueType()));
2289  }
2290
2291  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2292  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2293    // Shifting in all undef bits?
2294    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2295    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2296      return DAG.getNode(ISD::UNDEF, VT);
2297
2298    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2299    AddToWorkList(SmallShift.Val);
2300    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2301  }
2302
2303  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2304  // bit, which is unmodified by sra.
2305  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2306    if (N0.getOpcode() == ISD::SRA)
2307      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2308  }
2309
2310  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2311  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2312      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2313    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2314    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2315
2316    // If any of the input bits are KnownOne, then the input couldn't be all
2317    // zeros, thus the result of the srl will always be zero.
2318    if (KnownOne) return DAG.getConstant(0, VT);
2319
2320    // If all of the bits input the to ctlz node are known to be zero, then
2321    // the result of the ctlz is "32" and the result of the shift is one.
2322    uint64_t UnknownBits = ~KnownZero & Mask;
2323    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2324
2325    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2326    if ((UnknownBits & (UnknownBits-1)) == 0) {
2327      // Okay, we know that only that the single bit specified by UnknownBits
2328      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2329      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2330      // to an SRL,XOR pair, which is likely to simplify more.
2331      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2332      SDOperand Op = N0.getOperand(0);
2333      if (ShAmt) {
2334        Op = DAG.getNode(ISD::SRL, VT, Op,
2335                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2336        AddToWorkList(Op.Val);
2337      }
2338      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2339    }
2340  }
2341
2342  // fold operands of srl based on knowledge that the low bits are not
2343  // demanded.
2344  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2345    return SDOperand(N, 0);
2346
2347  return SDOperand();
2348}
2349
2350SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2351  SDOperand N0 = N->getOperand(0);
2352  MVT::ValueType VT = N->getValueType(0);
2353
2354  // fold (ctlz c1) -> c2
2355  if (isa<ConstantSDNode>(N0))
2356    return DAG.getNode(ISD::CTLZ, VT, N0);
2357  return SDOperand();
2358}
2359
2360SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2361  SDOperand N0 = N->getOperand(0);
2362  MVT::ValueType VT = N->getValueType(0);
2363
2364  // fold (cttz c1) -> c2
2365  if (isa<ConstantSDNode>(N0))
2366    return DAG.getNode(ISD::CTTZ, VT, N0);
2367  return SDOperand();
2368}
2369
2370SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2371  SDOperand N0 = N->getOperand(0);
2372  MVT::ValueType VT = N->getValueType(0);
2373
2374  // fold (ctpop c1) -> c2
2375  if (isa<ConstantSDNode>(N0))
2376    return DAG.getNode(ISD::CTPOP, VT, N0);
2377  return SDOperand();
2378}
2379
2380SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2381  SDOperand N0 = N->getOperand(0);
2382  SDOperand N1 = N->getOperand(1);
2383  SDOperand N2 = N->getOperand(2);
2384  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2385  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2386  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2387  MVT::ValueType VT = N->getValueType(0);
2388  MVT::ValueType VT0 = N0.getValueType();
2389
2390  // fold select C, X, X -> X
2391  if (N1 == N2)
2392    return N1;
2393  // fold select true, X, Y -> X
2394  if (N0C && !N0C->isNullValue())
2395    return N1;
2396  // fold select false, X, Y -> Y
2397  if (N0C && N0C->isNullValue())
2398    return N2;
2399  // fold select C, 1, X -> C | X
2400  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2401    return DAG.getNode(ISD::OR, VT, N0, N2);
2402  // fold select C, 0, 1 -> ~C
2403  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2404      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2405    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2406    if (VT == VT0)
2407      return XORNode;
2408    AddToWorkList(XORNode.Val);
2409    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2410      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2411    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2412  }
2413  // fold select C, 0, X -> ~C & X
2414  if (VT == VT0 && N1C && N1C->isNullValue()) {
2415    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2416    AddToWorkList(XORNode.Val);
2417    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2418  }
2419  // fold select C, X, 1 -> ~C | X
2420  if (VT == VT0 && N2C && N2C->getValue() == 1) {
2421    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2422    AddToWorkList(XORNode.Val);
2423    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2424  }
2425  // fold select C, X, 0 -> C & X
2426  // FIXME: this should check for C type == X type, not i1?
2427  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2428    return DAG.getNode(ISD::AND, VT, N0, N1);
2429  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2430  if (MVT::i1 == VT && N0 == N1)
2431    return DAG.getNode(ISD::OR, VT, N0, N2);
2432  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2433  if (MVT::i1 == VT && N0 == N2)
2434    return DAG.getNode(ISD::AND, VT, N0, N1);
2435
2436  // If we can fold this based on the true/false value, do so.
2437  if (SimplifySelectOps(N, N1, N2))
2438    return SDOperand(N, 0);  // Don't revisit N.
2439
2440  // fold selects based on a setcc into other things, such as min/max/abs
2441  if (N0.getOpcode() == ISD::SETCC)
2442    // FIXME:
2443    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2444    // having to say they don't support SELECT_CC on every type the DAG knows
2445    // about, since there is no way to mark an opcode illegal at all value types
2446    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2447      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2448                         N1, N2, N0.getOperand(2));
2449    else
2450      return SimplifySelect(N0, N1, N2);
2451  return SDOperand();
2452}
2453
2454SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2455  SDOperand N0 = N->getOperand(0);
2456  SDOperand N1 = N->getOperand(1);
2457  SDOperand N2 = N->getOperand(2);
2458  SDOperand N3 = N->getOperand(3);
2459  SDOperand N4 = N->getOperand(4);
2460  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2461
2462  // fold select_cc lhs, rhs, x, x, cc -> x
2463  if (N2 == N3)
2464    return N2;
2465
2466  // Determine if the condition we're dealing with is constant
2467  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2468  if (SCC.Val) AddToWorkList(SCC.Val);
2469
2470  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2471    if (SCCC->getValue())
2472      return N2;    // cond always true -> true val
2473    else
2474      return N3;    // cond always false -> false val
2475  }
2476
2477  // Fold to a simpler select_cc
2478  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2479    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2480                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2481                       SCC.getOperand(2));
2482
2483  // If we can fold this based on the true/false value, do so.
2484  if (SimplifySelectOps(N, N2, N3))
2485    return SDOperand(N, 0);  // Don't revisit N.
2486
2487  // fold select_cc into other things, such as min/max/abs
2488  return SimplifySelectCC(N0, N1, N2, N3, CC);
2489}
2490
2491SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2492  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2493                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2494}
2495
2496SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2497  SDOperand N0 = N->getOperand(0);
2498  MVT::ValueType VT = N->getValueType(0);
2499
2500  // fold (sext c1) -> c1
2501  if (isa<ConstantSDNode>(N0))
2502    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2503
2504  // fold (sext (sext x)) -> (sext x)
2505  // fold (sext (aext x)) -> (sext x)
2506  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2507    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2508
2509  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2510  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2511  if (N0.getOpcode() == ISD::TRUNCATE) {
2512    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2513    if (NarrowLoad.Val) {
2514      if (NarrowLoad.Val != N0.Val)
2515        CombineTo(N0.Val, NarrowLoad);
2516      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2517    }
2518  }
2519
2520  // See if the value being truncated is already sign extended.  If so, just
2521  // eliminate the trunc/sext pair.
2522  if (N0.getOpcode() == ISD::TRUNCATE) {
2523    SDOperand Op = N0.getOperand(0);
2524    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2525    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2526    unsigned DestBits = MVT::getSizeInBits(VT);
2527    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2528
2529    if (OpBits == DestBits) {
2530      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2531      // bits, it is already ready.
2532      if (NumSignBits > DestBits-MidBits)
2533        return Op;
2534    } else if (OpBits < DestBits) {
2535      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2536      // bits, just sext from i32.
2537      if (NumSignBits > OpBits-MidBits)
2538        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2539    } else {
2540      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2541      // bits, just truncate to i32.
2542      if (NumSignBits > OpBits-MidBits)
2543        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2544    }
2545
2546    // fold (sext (truncate x)) -> (sextinreg x).
2547    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2548                                               N0.getValueType())) {
2549      if (Op.getValueType() < VT)
2550        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2551      else if (Op.getValueType() > VT)
2552        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2553      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2554                         DAG.getValueType(N0.getValueType()));
2555    }
2556  }
2557
2558  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2559  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2560      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2561    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2562    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2563                                       LN0->getBasePtr(), LN0->getSrcValue(),
2564                                       LN0->getSrcValueOffset(),
2565                                       N0.getValueType(),
2566                                       LN0->isVolatile(),
2567                                       LN0->getAlignment());
2568    CombineTo(N, ExtLoad);
2569    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2570              ExtLoad.getValue(1));
2571    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2572  }
2573
2574  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2575  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2576  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2577      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2578    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2579    MVT::ValueType EVT = LN0->getLoadedVT();
2580    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2581      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2582                                         LN0->getBasePtr(), LN0->getSrcValue(),
2583                                         LN0->getSrcValueOffset(), EVT,
2584                                         LN0->isVolatile(),
2585                                         LN0->getAlignment());
2586      CombineTo(N, ExtLoad);
2587      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2588                ExtLoad.getValue(1));
2589      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2590    }
2591  }
2592
2593  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2594  if (N0.getOpcode() == ISD::SETCC) {
2595    SDOperand SCC =
2596      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2597                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2598                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2599    if (SCC.Val) return SCC;
2600  }
2601
2602  return SDOperand();
2603}
2604
2605SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2606  SDOperand N0 = N->getOperand(0);
2607  MVT::ValueType VT = N->getValueType(0);
2608
2609  // fold (zext c1) -> c1
2610  if (isa<ConstantSDNode>(N0))
2611    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2612  // fold (zext (zext x)) -> (zext x)
2613  // fold (zext (aext x)) -> (zext x)
2614  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2615    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2616
2617  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2618  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2619  if (N0.getOpcode() == ISD::TRUNCATE) {
2620    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2621    if (NarrowLoad.Val) {
2622      if (NarrowLoad.Val != N0.Val)
2623        CombineTo(N0.Val, NarrowLoad);
2624      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2625    }
2626  }
2627
2628  // fold (zext (truncate x)) -> (and x, mask)
2629  if (N0.getOpcode() == ISD::TRUNCATE &&
2630      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2631    SDOperand Op = N0.getOperand(0);
2632    if (Op.getValueType() < VT) {
2633      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2634    } else if (Op.getValueType() > VT) {
2635      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2636    }
2637    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2638  }
2639
2640  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2641  if (N0.getOpcode() == ISD::AND &&
2642      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2643      N0.getOperand(1).getOpcode() == ISD::Constant) {
2644    SDOperand X = N0.getOperand(0).getOperand(0);
2645    if (X.getValueType() < VT) {
2646      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2647    } else if (X.getValueType() > VT) {
2648      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2649    }
2650    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2651    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2652  }
2653
2654  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2655  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2656      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2657    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2658    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2659                                       LN0->getBasePtr(), LN0->getSrcValue(),
2660                                       LN0->getSrcValueOffset(),
2661                                       N0.getValueType(),
2662                                       LN0->isVolatile(),
2663                                       LN0->getAlignment());
2664    CombineTo(N, ExtLoad);
2665    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2666              ExtLoad.getValue(1));
2667    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2668  }
2669
2670  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2671  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2672  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2673      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2674    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2675    MVT::ValueType EVT = LN0->getLoadedVT();
2676    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2677                                       LN0->getBasePtr(), LN0->getSrcValue(),
2678                                       LN0->getSrcValueOffset(), EVT,
2679                                       LN0->isVolatile(),
2680                                       LN0->getAlignment());
2681    CombineTo(N, ExtLoad);
2682    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2683              ExtLoad.getValue(1));
2684    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2685  }
2686
2687  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2688  if (N0.getOpcode() == ISD::SETCC) {
2689    SDOperand SCC =
2690      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2691                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2692                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2693    if (SCC.Val) return SCC;
2694  }
2695
2696  return SDOperand();
2697}
2698
2699SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2700  SDOperand N0 = N->getOperand(0);
2701  MVT::ValueType VT = N->getValueType(0);
2702
2703  // fold (aext c1) -> c1
2704  if (isa<ConstantSDNode>(N0))
2705    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2706  // fold (aext (aext x)) -> (aext x)
2707  // fold (aext (zext x)) -> (zext x)
2708  // fold (aext (sext x)) -> (sext x)
2709  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2710      N0.getOpcode() == ISD::ZERO_EXTEND ||
2711      N0.getOpcode() == ISD::SIGN_EXTEND)
2712    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2713
2714  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2715  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2716  if (N0.getOpcode() == ISD::TRUNCATE) {
2717    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2718    if (NarrowLoad.Val) {
2719      if (NarrowLoad.Val != N0.Val)
2720        CombineTo(N0.Val, NarrowLoad);
2721      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2722    }
2723  }
2724
2725  // fold (aext (truncate x))
2726  if (N0.getOpcode() == ISD::TRUNCATE) {
2727    SDOperand TruncOp = N0.getOperand(0);
2728    if (TruncOp.getValueType() == VT)
2729      return TruncOp; // x iff x size == zext size.
2730    if (TruncOp.getValueType() > VT)
2731      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2732    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2733  }
2734
2735  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2736  if (N0.getOpcode() == ISD::AND &&
2737      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2738      N0.getOperand(1).getOpcode() == ISD::Constant) {
2739    SDOperand X = N0.getOperand(0).getOperand(0);
2740    if (X.getValueType() < VT) {
2741      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2742    } else if (X.getValueType() > VT) {
2743      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2744    }
2745    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2746    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2747  }
2748
2749  // fold (aext (load x)) -> (aext (truncate (extload x)))
2750  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2751      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2752    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2753    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2754                                       LN0->getBasePtr(), LN0->getSrcValue(),
2755                                       LN0->getSrcValueOffset(),
2756                                       N0.getValueType(),
2757                                       LN0->isVolatile(),
2758                                       LN0->getAlignment());
2759    CombineTo(N, ExtLoad);
2760    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2761              ExtLoad.getValue(1));
2762    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2763  }
2764
2765  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2766  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2767  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2768  if (N0.getOpcode() == ISD::LOAD &&
2769      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2770      N0.hasOneUse()) {
2771    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2772    MVT::ValueType EVT = LN0->getLoadedVT();
2773    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2774                                       LN0->getChain(), LN0->getBasePtr(),
2775                                       LN0->getSrcValue(),
2776                                       LN0->getSrcValueOffset(), EVT,
2777                                       LN0->isVolatile(),
2778                                       LN0->getAlignment());
2779    CombineTo(N, ExtLoad);
2780    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2781              ExtLoad.getValue(1));
2782    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2783  }
2784
2785  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2786  if (N0.getOpcode() == ISD::SETCC) {
2787    SDOperand SCC =
2788      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2789                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2790                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2791    if (SCC.Val)
2792      return SCC;
2793  }
2794
2795  return SDOperand();
2796}
2797
2798/// GetDemandedBits - See if the specified operand can be simplified with the
2799/// knowledge that only the bits specified by Mask are used.  If so, return the
2800/// simpler operand, otherwise return a null SDOperand.
2801SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
2802  switch (V.getOpcode()) {
2803  default: break;
2804  case ISD::OR:
2805  case ISD::XOR:
2806    // If the LHS or RHS don't contribute bits to the or, drop them.
2807    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
2808      return V.getOperand(1);
2809    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
2810      return V.getOperand(0);
2811    break;
2812  case ISD::SRL:
2813    // Only look at single-use SRLs.
2814    if (!V.Val->hasOneUse())
2815      break;
2816    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2817      // See if we can recursively simplify the LHS.
2818      unsigned Amt = RHSC->getValue();
2819      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
2820      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
2821      if (SimplifyLHS.Val) {
2822        return DAG.getNode(ISD::SRL, V.getValueType(),
2823                           SimplifyLHS, V.getOperand(1));
2824      }
2825    }
2826  }
2827  return SDOperand();
2828}
2829
2830/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
2831/// bits and then truncated to a narrower type and where N is a multiple
2832/// of number of bits of the narrower type, transform it to a narrower load
2833/// from address + N / num of bits of new type. If the result is to be
2834/// extended, also fold the extension to form a extending load.
2835SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
2836  unsigned Opc = N->getOpcode();
2837  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2838  SDOperand N0 = N->getOperand(0);
2839  MVT::ValueType VT = N->getValueType(0);
2840  MVT::ValueType EVT = N->getValueType(0);
2841
2842  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
2843  // extended to VT.
2844  if (Opc == ISD::SIGN_EXTEND_INREG) {
2845    ExtType = ISD::SEXTLOAD;
2846    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2847    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
2848      return SDOperand();
2849  }
2850
2851  unsigned EVTBits = MVT::getSizeInBits(EVT);
2852  unsigned ShAmt = 0;
2853  bool CombineSRL =  false;
2854  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
2855    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2856      ShAmt = N01->getValue();
2857      // Is the shift amount a multiple of size of VT?
2858      if ((ShAmt & (EVTBits-1)) == 0) {
2859        N0 = N0.getOperand(0);
2860        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
2861          return SDOperand();
2862        CombineSRL = true;
2863      }
2864    }
2865  }
2866
2867  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2868      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
2869      // zero extended form: by shrinking the load, we lose track of the fact
2870      // that it is already zero extended.
2871      // FIXME: This should be reevaluated.
2872      VT != MVT::i1) {
2873    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
2874           "Cannot truncate to larger type!");
2875    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2876    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2877    // For big endian targets, we need to adjust the offset to the pointer to
2878    // load the correct bytes.
2879    if (!TLI.isLittleEndian())
2880      ShAmt = MVT::getSizeInBits(N0.getValueType()) - ShAmt - EVTBits;
2881    uint64_t PtrOff =  ShAmt / 8;
2882    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
2883                                   DAG.getConstant(PtrOff, PtrType));
2884    AddToWorkList(NewPtr.Val);
2885    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
2886      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
2887                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
2888                    LN0->isVolatile(), LN0->getAlignment())
2889      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
2890                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
2891                       LN0->isVolatile(), LN0->getAlignment());
2892    AddToWorkList(N);
2893    if (CombineSRL) {
2894      std::vector<SDNode*> NowDead;
2895      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1), NowDead);
2896      CombineTo(N->getOperand(0).Val, Load);
2897    } else
2898      CombineTo(N0.Val, Load, Load.getValue(1));
2899    if (ShAmt) {
2900      if (Opc == ISD::SIGN_EXTEND_INREG)
2901        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
2902      else
2903        return DAG.getNode(Opc, VT, Load);
2904    }
2905    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2906  }
2907
2908  return SDOperand();
2909}
2910
2911
2912SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
2913  SDOperand N0 = N->getOperand(0);
2914  SDOperand N1 = N->getOperand(1);
2915  MVT::ValueType VT = N->getValueType(0);
2916  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
2917  unsigned EVTBits = MVT::getSizeInBits(EVT);
2918
2919  // fold (sext_in_reg c1) -> c1
2920  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
2921    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
2922
2923  // If the input is already sign extended, just drop the extension.
2924  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
2925    return N0;
2926
2927  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
2928  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2929      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
2930    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
2931  }
2932
2933  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
2934  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
2935    return DAG.getZeroExtendInReg(N0, EVT);
2936
2937  // fold operands of sext_in_reg based on knowledge that the top bits are not
2938  // demanded.
2939  if (SimplifyDemandedBits(SDOperand(N, 0)))
2940    return SDOperand(N, 0);
2941
2942  // fold (sext_in_reg (load x)) -> (smaller sextload x)
2943  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
2944  SDOperand NarrowLoad = ReduceLoadWidth(N);
2945  if (NarrowLoad.Val)
2946    return NarrowLoad;
2947
2948  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
2949  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
2950  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
2951  if (N0.getOpcode() == ISD::SRL) {
2952    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2953      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
2954        // We can turn this into an SRA iff the input to the SRL is already sign
2955        // extended enough.
2956        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
2957        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
2958          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
2959      }
2960  }
2961
2962  // fold (sext_inreg (extload x)) -> (sextload x)
2963  if (ISD::isEXTLoad(N0.Val) &&
2964      ISD::isUNINDEXEDLoad(N0.Val) &&
2965      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2966      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2967    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2968    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2969                                       LN0->getBasePtr(), LN0->getSrcValue(),
2970                                       LN0->getSrcValueOffset(), EVT,
2971                                       LN0->isVolatile(),
2972                                       LN0->getAlignment());
2973    CombineTo(N, ExtLoad);
2974    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2975    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2976  }
2977  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
2978  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2979      N0.hasOneUse() &&
2980      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
2981      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
2982    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2983    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2984                                       LN0->getBasePtr(), LN0->getSrcValue(),
2985                                       LN0->getSrcValueOffset(), EVT,
2986                                       LN0->isVolatile(),
2987                                       LN0->getAlignment());
2988    CombineTo(N, ExtLoad);
2989    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
2990    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2991  }
2992  return SDOperand();
2993}
2994
2995SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2996  SDOperand N0 = N->getOperand(0);
2997  MVT::ValueType VT = N->getValueType(0);
2998
2999  // noop truncate
3000  if (N0.getValueType() == N->getValueType(0))
3001    return N0;
3002  // fold (truncate c1) -> c1
3003  if (isa<ConstantSDNode>(N0))
3004    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3005  // fold (truncate (truncate x)) -> (truncate x)
3006  if (N0.getOpcode() == ISD::TRUNCATE)
3007    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3008  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3009  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3010      N0.getOpcode() == ISD::ANY_EXTEND) {
3011    if (N0.getOperand(0).getValueType() < VT)
3012      // if the source is smaller than the dest, we still need an extend
3013      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3014    else if (N0.getOperand(0).getValueType() > VT)
3015      // if the source is larger than the dest, than we just need the truncate
3016      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3017    else
3018      // if the source and dest are the same type, we can drop both the extend
3019      // and the truncate
3020      return N0.getOperand(0);
3021  }
3022
3023  // See if we can simplify the input to this truncate through knowledge that
3024  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3025  // -> trunc y
3026  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3027  if (Shorter.Val)
3028    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3029
3030  // fold (truncate (load x)) -> (smaller load x)
3031  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3032  return ReduceLoadWidth(N);
3033}
3034
3035SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3036  SDOperand N0 = N->getOperand(0);
3037  MVT::ValueType VT = N->getValueType(0);
3038
3039  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3040  // Only do this before legalize, since afterward the target may be depending
3041  // on the bitconvert.
3042  // First check to see if this is all constant.
3043  if (!AfterLegalize &&
3044      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3045      MVT::isVector(VT)) {
3046    bool isSimple = true;
3047    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3048      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3049          N0.getOperand(i).getOpcode() != ISD::Constant &&
3050          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3051        isSimple = false;
3052        break;
3053      }
3054
3055    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3056    assert(!MVT::isVector(DestEltVT) &&
3057           "Element type of vector ValueType must not be vector!");
3058    if (isSimple) {
3059      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3060    }
3061  }
3062
3063  // If the input is a constant, let getNode() fold it.
3064  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3065    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3066    if (Res.Val != N) return Res;
3067  }
3068
3069  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3070    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3071
3072  // fold (conv (load x)) -> (load (conv*)x)
3073  // If the resultant load doesn't need a higher alignment than the original!
3074  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3075      TLI.isOperationLegal(ISD::LOAD, VT)) {
3076    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3077    unsigned Align = TLI.getTargetMachine().getTargetData()->
3078      getABITypeAlignment(MVT::getTypeForValueType(VT));
3079    unsigned OrigAlign = LN0->getAlignment();
3080    if (Align <= OrigAlign) {
3081      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3082                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3083                                   LN0->isVolatile(), Align);
3084      AddToWorkList(N);
3085      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3086                Load.getValue(1));
3087      return Load;
3088    }
3089  }
3090
3091  return SDOperand();
3092}
3093
3094/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3095/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3096/// destination element value type.
3097SDOperand DAGCombiner::
3098ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3099  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3100
3101  // If this is already the right type, we're done.
3102  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3103
3104  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3105  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3106
3107  // If this is a conversion of N elements of one type to N elements of another
3108  // type, convert each element.  This handles FP<->INT cases.
3109  if (SrcBitSize == DstBitSize) {
3110    SmallVector<SDOperand, 8> Ops;
3111    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3112      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3113      AddToWorkList(Ops.back().Val);
3114    }
3115    MVT::ValueType VT =
3116      MVT::getVectorType(DstEltVT,
3117                         MVT::getVectorNumElements(BV->getValueType(0)));
3118    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3119  }
3120
3121  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3122  // handle annoying details of growing/shrinking FP values, we convert them to
3123  // int first.
3124  if (MVT::isFloatingPoint(SrcEltVT)) {
3125    // Convert the input float vector to a int vector where the elements are the
3126    // same sizes.
3127    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3128    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3129    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3130    SrcEltVT = IntVT;
3131  }
3132
3133  // Now we know the input is an integer vector.  If the output is a FP type,
3134  // convert to integer first, then to FP of the right size.
3135  if (MVT::isFloatingPoint(DstEltVT)) {
3136    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3137    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3138    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3139
3140    // Next, convert to FP elements of the same size.
3141    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3142  }
3143
3144  // Okay, we know the src/dst types are both integers of differing types.
3145  // Handling growing first.
3146  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3147  if (SrcBitSize < DstBitSize) {
3148    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3149
3150    SmallVector<SDOperand, 8> Ops;
3151    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3152         i += NumInputsPerOutput) {
3153      bool isLE = TLI.isLittleEndian();
3154      uint64_t NewBits = 0;
3155      bool EltIsUndef = true;
3156      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3157        // Shift the previously computed bits over.
3158        NewBits <<= SrcBitSize;
3159        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3160        if (Op.getOpcode() == ISD::UNDEF) continue;
3161        EltIsUndef = false;
3162
3163        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3164      }
3165
3166      if (EltIsUndef)
3167        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3168      else
3169        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3170    }
3171
3172    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3173                                           Ops.size());
3174    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3175  }
3176
3177  // Finally, this must be the case where we are shrinking elements: each input
3178  // turns into multiple outputs.
3179  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3180  SmallVector<SDOperand, 8> Ops;
3181  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3182    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3183      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3184        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3185      continue;
3186    }
3187    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3188
3189    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3190      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3191      OpVal >>= DstBitSize;
3192      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3193    }
3194
3195    // For big endian targets, swap the order of the pieces of each element.
3196    if (!TLI.isLittleEndian())
3197      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3198  }
3199  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3200  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3201}
3202
3203
3204
3205SDOperand DAGCombiner::visitFADD(SDNode *N) {
3206  SDOperand N0 = N->getOperand(0);
3207  SDOperand N1 = N->getOperand(1);
3208  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3209  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3210  MVT::ValueType VT = N->getValueType(0);
3211
3212  // fold vector ops
3213  if (MVT::isVector(VT)) {
3214    SDOperand FoldedVOp = SimplifyVBinOp(N);
3215    if (FoldedVOp.Val) return FoldedVOp;
3216  }
3217
3218  // fold (fadd c1, c2) -> c1+c2
3219  if (N0CFP && N1CFP)
3220    return DAG.getNode(ISD::FADD, VT, N0, N1);
3221  // canonicalize constant to RHS
3222  if (N0CFP && !N1CFP)
3223    return DAG.getNode(ISD::FADD, VT, N1, N0);
3224  // fold (A + (-B)) -> A-B
3225  if (isNegatibleForFree(N1) == 2)
3226    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3227  // fold ((-A) + B) -> B-A
3228  if (isNegatibleForFree(N0) == 2)
3229    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3230
3231  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3232  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3233      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3234    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3235                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3236
3237  return SDOperand();
3238}
3239
3240SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3241  SDOperand N0 = N->getOperand(0);
3242  SDOperand N1 = N->getOperand(1);
3243  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3244  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3245  MVT::ValueType VT = N->getValueType(0);
3246
3247  // fold vector ops
3248  if (MVT::isVector(VT)) {
3249    SDOperand FoldedVOp = SimplifyVBinOp(N);
3250    if (FoldedVOp.Val) return FoldedVOp;
3251  }
3252
3253  // fold (fsub c1, c2) -> c1-c2
3254  if (N0CFP && N1CFP)
3255    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3256  // fold (0-B) -> -B
3257  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3258    if (isNegatibleForFree(N1))
3259      return GetNegatedExpression(N1, DAG);
3260    return DAG.getNode(ISD::FNEG, VT, N1);
3261  }
3262  // fold (A-(-B)) -> A+B
3263  if (isNegatibleForFree(N1))
3264    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3265
3266  return SDOperand();
3267}
3268
3269SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3270  SDOperand N0 = N->getOperand(0);
3271  SDOperand N1 = N->getOperand(1);
3272  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3273  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3274  MVT::ValueType VT = N->getValueType(0);
3275
3276  // fold vector ops
3277  if (MVT::isVector(VT)) {
3278    SDOperand FoldedVOp = SimplifyVBinOp(N);
3279    if (FoldedVOp.Val) return FoldedVOp;
3280  }
3281
3282  // fold (fmul c1, c2) -> c1*c2
3283  if (N0CFP && N1CFP)
3284    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3285  // canonicalize constant to RHS
3286  if (N0CFP && !N1CFP)
3287    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3288  // fold (fmul X, 2.0) -> (fadd X, X)
3289  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3290    return DAG.getNode(ISD::FADD, VT, N0, N0);
3291  // fold (fmul X, -1.0) -> (fneg X)
3292  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3293    return DAG.getNode(ISD::FNEG, VT, N0);
3294
3295  // -X * -Y -> X*Y
3296  if (char LHSNeg = isNegatibleForFree(N0)) {
3297    if (char RHSNeg = isNegatibleForFree(N1)) {
3298      // Both can be negated for free, check to see if at least one is cheaper
3299      // negated.
3300      if (LHSNeg == 2 || RHSNeg == 2)
3301        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3302                           GetNegatedExpression(N1, DAG));
3303    }
3304  }
3305
3306  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3307  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3308      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3309    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3310                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3311
3312  return SDOperand();
3313}
3314
3315SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3316  SDOperand N0 = N->getOperand(0);
3317  SDOperand N1 = N->getOperand(1);
3318  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3319  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3320  MVT::ValueType VT = N->getValueType(0);
3321
3322  // fold vector ops
3323  if (MVT::isVector(VT)) {
3324    SDOperand FoldedVOp = SimplifyVBinOp(N);
3325    if (FoldedVOp.Val) return FoldedVOp;
3326  }
3327
3328  // fold (fdiv c1, c2) -> c1/c2
3329  if (N0CFP && N1CFP)
3330    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3331
3332
3333  // -X / -Y -> X*Y
3334  if (char LHSNeg = isNegatibleForFree(N0)) {
3335    if (char RHSNeg = isNegatibleForFree(N1)) {
3336      // Both can be negated for free, check to see if at least one is cheaper
3337      // negated.
3338      if (LHSNeg == 2 || RHSNeg == 2)
3339        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3340                           GetNegatedExpression(N1, DAG));
3341    }
3342  }
3343
3344  return SDOperand();
3345}
3346
3347SDOperand DAGCombiner::visitFREM(SDNode *N) {
3348  SDOperand N0 = N->getOperand(0);
3349  SDOperand N1 = N->getOperand(1);
3350  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3351  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3352  MVT::ValueType VT = N->getValueType(0);
3353
3354  // fold (frem c1, c2) -> fmod(c1,c2)
3355  if (N0CFP && N1CFP)
3356    return DAG.getNode(ISD::FREM, VT, N0, N1);
3357
3358  return SDOperand();
3359}
3360
3361SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3362  SDOperand N0 = N->getOperand(0);
3363  SDOperand N1 = N->getOperand(1);
3364  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3365  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3366  MVT::ValueType VT = N->getValueType(0);
3367
3368  if (N0CFP && N1CFP)  // Constant fold
3369    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3370
3371  if (N1CFP) {
3372    const APFloat& V = N1CFP->getValueAPF();
3373    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3374    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3375    if (!V.isNegative())
3376      return DAG.getNode(ISD::FABS, VT, N0);
3377    else
3378      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3379  }
3380
3381  // copysign(fabs(x), y) -> copysign(x, y)
3382  // copysign(fneg(x), y) -> copysign(x, y)
3383  // copysign(copysign(x,z), y) -> copysign(x, y)
3384  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3385      N0.getOpcode() == ISD::FCOPYSIGN)
3386    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3387
3388  // copysign(x, abs(y)) -> abs(x)
3389  if (N1.getOpcode() == ISD::FABS)
3390    return DAG.getNode(ISD::FABS, VT, N0);
3391
3392  // copysign(x, copysign(y,z)) -> copysign(x, z)
3393  if (N1.getOpcode() == ISD::FCOPYSIGN)
3394    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3395
3396  // copysign(x, fp_extend(y)) -> copysign(x, y)
3397  // copysign(x, fp_round(y)) -> copysign(x, y)
3398  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3399    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3400
3401  return SDOperand();
3402}
3403
3404
3405
3406SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3407  SDOperand N0 = N->getOperand(0);
3408  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3409  MVT::ValueType VT = N->getValueType(0);
3410
3411  // fold (sint_to_fp c1) -> c1fp
3412  if (N0C)
3413    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3414  return SDOperand();
3415}
3416
3417SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3418  SDOperand N0 = N->getOperand(0);
3419  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3420  MVT::ValueType VT = N->getValueType(0);
3421
3422  // fold (uint_to_fp c1) -> c1fp
3423  if (N0C)
3424    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3425  return SDOperand();
3426}
3427
3428SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3429  SDOperand N0 = N->getOperand(0);
3430  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3431  MVT::ValueType VT = N->getValueType(0);
3432
3433  // fold (fp_to_sint c1fp) -> c1
3434  if (N0CFP)
3435    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3436  return SDOperand();
3437}
3438
3439SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3440  SDOperand N0 = N->getOperand(0);
3441  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3442  MVT::ValueType VT = N->getValueType(0);
3443
3444  // fold (fp_to_uint c1fp) -> c1
3445  if (N0CFP)
3446    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3447  return SDOperand();
3448}
3449
3450SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3451  SDOperand N0 = N->getOperand(0);
3452  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3453  MVT::ValueType VT = N->getValueType(0);
3454
3455  // fold (fp_round c1fp) -> c1fp
3456  if (N0CFP)
3457    return DAG.getNode(ISD::FP_ROUND, VT, N0);
3458
3459  // fold (fp_round (fp_extend x)) -> x
3460  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3461    return N0.getOperand(0);
3462
3463  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3464  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3465    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
3466    AddToWorkList(Tmp.Val);
3467    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3468  }
3469
3470  return SDOperand();
3471}
3472
3473SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3474  SDOperand N0 = N->getOperand(0);
3475  MVT::ValueType VT = N->getValueType(0);
3476  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3477  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3478
3479  // fold (fp_round_inreg c1fp) -> c1fp
3480  if (N0CFP) {
3481    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3482    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3483  }
3484  return SDOperand();
3485}
3486
3487SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3488  SDOperand N0 = N->getOperand(0);
3489  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3490  MVT::ValueType VT = N->getValueType(0);
3491
3492  // fold (fp_extend c1fp) -> c1fp
3493  if (N0CFP)
3494    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3495
3496  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
3497  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3498      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3499    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3500    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3501                                       LN0->getBasePtr(), LN0->getSrcValue(),
3502                                       LN0->getSrcValueOffset(),
3503                                       N0.getValueType(),
3504                                       LN0->isVolatile(),
3505                                       LN0->getAlignment());
3506    CombineTo(N, ExtLoad);
3507    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
3508              ExtLoad.getValue(1));
3509    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3510  }
3511
3512
3513  return SDOperand();
3514}
3515
3516SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3517  SDOperand N0 = N->getOperand(0);
3518
3519  if (isNegatibleForFree(N0))
3520    return GetNegatedExpression(N0, DAG);
3521
3522  return SDOperand();
3523}
3524
3525SDOperand DAGCombiner::visitFABS(SDNode *N) {
3526  SDOperand N0 = N->getOperand(0);
3527  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3528  MVT::ValueType VT = N->getValueType(0);
3529
3530  // fold (fabs c1) -> fabs(c1)
3531  if (N0CFP)
3532    return DAG.getNode(ISD::FABS, VT, N0);
3533  // fold (fabs (fabs x)) -> (fabs x)
3534  if (N0.getOpcode() == ISD::FABS)
3535    return N->getOperand(0);
3536  // fold (fabs (fneg x)) -> (fabs x)
3537  // fold (fabs (fcopysign x, y)) -> (fabs x)
3538  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3539    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3540
3541  return SDOperand();
3542}
3543
3544SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3545  SDOperand Chain = N->getOperand(0);
3546  SDOperand N1 = N->getOperand(1);
3547  SDOperand N2 = N->getOperand(2);
3548  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3549
3550  // never taken branch, fold to chain
3551  if (N1C && N1C->isNullValue())
3552    return Chain;
3553  // unconditional branch
3554  if (N1C && N1C->getValue() == 1)
3555    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3556  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3557  // on the target.
3558  if (N1.getOpcode() == ISD::SETCC &&
3559      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3560    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3561                       N1.getOperand(0), N1.getOperand(1), N2);
3562  }
3563  return SDOperand();
3564}
3565
3566// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3567//
3568SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3569  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3570  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3571
3572  // Use SimplifySetCC  to simplify SETCC's.
3573  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3574  if (Simp.Val) AddToWorkList(Simp.Val);
3575
3576  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3577
3578  // fold br_cc true, dest -> br dest (unconditional branch)
3579  if (SCCC && SCCC->getValue())
3580    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3581                       N->getOperand(4));
3582  // fold br_cc false, dest -> unconditional fall through
3583  if (SCCC && SCCC->isNullValue())
3584    return N->getOperand(0);
3585
3586  // fold to a simpler setcc
3587  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3588    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3589                       Simp.getOperand(2), Simp.getOperand(0),
3590                       Simp.getOperand(1), N->getOperand(4));
3591  return SDOperand();
3592}
3593
3594
3595/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3596/// pre-indexed load / store when the base pointer is a add or subtract
3597/// and it has other uses besides the load / store. After the
3598/// transformation, the new indexed load / store has effectively folded
3599/// the add / subtract in and all of its other uses are redirected to the
3600/// new load / store.
3601bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3602  if (!AfterLegalize)
3603    return false;
3604
3605  bool isLoad = true;
3606  SDOperand Ptr;
3607  MVT::ValueType VT;
3608  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3609    if (LD->getAddressingMode() != ISD::UNINDEXED)
3610      return false;
3611    VT = LD->getLoadedVT();
3612    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3613        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3614      return false;
3615    Ptr = LD->getBasePtr();
3616  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3617    if (ST->getAddressingMode() != ISD::UNINDEXED)
3618      return false;
3619    VT = ST->getStoredVT();
3620    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3621        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3622      return false;
3623    Ptr = ST->getBasePtr();
3624    isLoad = false;
3625  } else
3626    return false;
3627
3628  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3629  // out.  There is no reason to make this a preinc/predec.
3630  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3631      Ptr.Val->hasOneUse())
3632    return false;
3633
3634  // Ask the target to do addressing mode selection.
3635  SDOperand BasePtr;
3636  SDOperand Offset;
3637  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3638  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3639    return false;
3640  // Don't create a indexed load / store with zero offset.
3641  if (isa<ConstantSDNode>(Offset) &&
3642      cast<ConstantSDNode>(Offset)->getValue() == 0)
3643    return false;
3644
3645  // Try turning it into a pre-indexed load / store except when:
3646  // 1) The new base ptr is a frame index.
3647  // 2) If N is a store and the new base ptr is either the same as or is a
3648  //    predecessor of the value being stored.
3649  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3650  //    that would create a cycle.
3651  // 4) All uses are load / store ops that use it as old base ptr.
3652
3653  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3654  // (plus the implicit offset) to a register to preinc anyway.
3655  if (isa<FrameIndexSDNode>(BasePtr))
3656    return false;
3657
3658  // Check #2.
3659  if (!isLoad) {
3660    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3661    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3662      return false;
3663  }
3664
3665  // Now check for #3 and #4.
3666  bool RealUse = false;
3667  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3668         E = Ptr.Val->use_end(); I != E; ++I) {
3669    SDNode *Use = *I;
3670    if (Use == N)
3671      continue;
3672    if (Use->isPredecessor(N))
3673      return false;
3674
3675    if (!((Use->getOpcode() == ISD::LOAD &&
3676           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3677          (Use->getOpcode() == ISD::STORE) &&
3678          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3679      RealUse = true;
3680  }
3681  if (!RealUse)
3682    return false;
3683
3684  SDOperand Result;
3685  if (isLoad)
3686    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3687  else
3688    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3689  ++PreIndexedNodes;
3690  ++NodesCombined;
3691  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
3692  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3693  DOUT << '\n';
3694  std::vector<SDNode*> NowDead;
3695  if (isLoad) {
3696    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3697                                  NowDead);
3698    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3699                                  NowDead);
3700  } else {
3701    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3702                                  NowDead);
3703  }
3704
3705  // Nodes can end up on the worklist more than once.  Make sure we do
3706  // not process a node that has been replaced.
3707  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3708    removeFromWorkList(NowDead[i]);
3709  // Finally, since the node is now dead, remove it from the graph.
3710  DAG.DeleteNode(N);
3711
3712  // Replace the uses of Ptr with uses of the updated base value.
3713  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3714                                NowDead);
3715  removeFromWorkList(Ptr.Val);
3716  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3717    removeFromWorkList(NowDead[i]);
3718  DAG.DeleteNode(Ptr.Val);
3719
3720  return true;
3721}
3722
3723/// CombineToPostIndexedLoadStore - Try combine a load / store with a
3724/// add / sub of the base pointer node into a post-indexed load / store.
3725/// The transformation folded the add / subtract into the new indexed
3726/// load / store effectively and all of its uses are redirected to the
3727/// new load / store.
3728bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3729  if (!AfterLegalize)
3730    return false;
3731
3732  bool isLoad = true;
3733  SDOperand Ptr;
3734  MVT::ValueType VT;
3735  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3736    if (LD->getAddressingMode() != ISD::UNINDEXED)
3737      return false;
3738    VT = LD->getLoadedVT();
3739    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3740        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3741      return false;
3742    Ptr = LD->getBasePtr();
3743  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3744    if (ST->getAddressingMode() != ISD::UNINDEXED)
3745      return false;
3746    VT = ST->getStoredVT();
3747    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3748        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3749      return false;
3750    Ptr = ST->getBasePtr();
3751    isLoad = false;
3752  } else
3753    return false;
3754
3755  if (Ptr.Val->hasOneUse())
3756    return false;
3757
3758  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3759         E = Ptr.Val->use_end(); I != E; ++I) {
3760    SDNode *Op = *I;
3761    if (Op == N ||
3762        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3763      continue;
3764
3765    SDOperand BasePtr;
3766    SDOperand Offset;
3767    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3768    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3769      if (Ptr == Offset)
3770        std::swap(BasePtr, Offset);
3771      if (Ptr != BasePtr)
3772        continue;
3773      // Don't create a indexed load / store with zero offset.
3774      if (isa<ConstantSDNode>(Offset) &&
3775          cast<ConstantSDNode>(Offset)->getValue() == 0)
3776        continue;
3777
3778      // Try turning it into a post-indexed load / store except when
3779      // 1) All uses are load / store ops that use it as base ptr.
3780      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3781      //    nor a successor of N. Otherwise, if Op is folded that would
3782      //    create a cycle.
3783
3784      // Check for #1.
3785      bool TryNext = false;
3786      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3787             EE = BasePtr.Val->use_end(); II != EE; ++II) {
3788        SDNode *Use = *II;
3789        if (Use == Ptr.Val)
3790          continue;
3791
3792        // If all the uses are load / store addresses, then don't do the
3793        // transformation.
3794        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3795          bool RealUse = false;
3796          for (SDNode::use_iterator III = Use->use_begin(),
3797                 EEE = Use->use_end(); III != EEE; ++III) {
3798            SDNode *UseUse = *III;
3799            if (!((UseUse->getOpcode() == ISD::LOAD &&
3800                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3801                  (UseUse->getOpcode() == ISD::STORE) &&
3802                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3803              RealUse = true;
3804          }
3805
3806          if (!RealUse) {
3807            TryNext = true;
3808            break;
3809          }
3810        }
3811      }
3812      if (TryNext)
3813        continue;
3814
3815      // Check for #2
3816      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
3817        SDOperand Result = isLoad
3818          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
3819          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3820        ++PostIndexedNodes;
3821        ++NodesCombined;
3822        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
3823        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3824        DOUT << '\n';
3825        std::vector<SDNode*> NowDead;
3826        if (isLoad) {
3827          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3828                                        NowDead);
3829          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3830                                        NowDead);
3831        } else {
3832          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3833                                        NowDead);
3834        }
3835
3836        // Nodes can end up on the worklist more than once.  Make sure we do
3837        // not process a node that has been replaced.
3838        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3839          removeFromWorkList(NowDead[i]);
3840        // Finally, since the node is now dead, remove it from the graph.
3841        DAG.DeleteNode(N);
3842
3843        // Replace the uses of Use with uses of the updated base value.
3844        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
3845                                      Result.getValue(isLoad ? 1 : 0),
3846                                      NowDead);
3847        removeFromWorkList(Op);
3848        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3849          removeFromWorkList(NowDead[i]);
3850        DAG.DeleteNode(Op);
3851
3852        return true;
3853      }
3854    }
3855  }
3856  return false;
3857}
3858
3859
3860SDOperand DAGCombiner::visitLOAD(SDNode *N) {
3861  LoadSDNode *LD  = cast<LoadSDNode>(N);
3862  SDOperand Chain = LD->getChain();
3863  SDOperand Ptr   = LD->getBasePtr();
3864
3865  // If load is not volatile and there are no uses of the loaded value (and
3866  // the updated indexed value in case of indexed loads), change uses of the
3867  // chain value into uses of the chain input (i.e. delete the dead load).
3868  if (!LD->isVolatile()) {
3869    if (N->getValueType(1) == MVT::Other) {
3870      // Unindexed loads.
3871      if (N->hasNUsesOfValue(0, 0))
3872        return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
3873    } else {
3874      // Indexed loads.
3875      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
3876      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
3877        SDOperand Undef0 = DAG.getNode(ISD::UNDEF, N->getValueType(0));
3878        SDOperand Undef1 = DAG.getNode(ISD::UNDEF, N->getValueType(1));
3879        SDOperand To[] = { Undef0, Undef1, Chain };
3880        return CombineTo(N, To, 3);
3881      }
3882    }
3883  }
3884
3885  // If this load is directly stored, replace the load value with the stored
3886  // value.
3887  // TODO: Handle store large -> read small portion.
3888  // TODO: Handle TRUNCSTORE/LOADEXT
3889  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3890    if (ISD::isNON_TRUNCStore(Chain.Val)) {
3891      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
3892      if (PrevST->getBasePtr() == Ptr &&
3893          PrevST->getValue().getValueType() == N->getValueType(0))
3894      return CombineTo(N, Chain.getOperand(1), Chain);
3895    }
3896  }
3897
3898  if (CombinerAA) {
3899    // Walk up chain skipping non-aliasing memory nodes.
3900    SDOperand BetterChain = FindBetterChain(N, Chain);
3901
3902    // If there is a better chain.
3903    if (Chain != BetterChain) {
3904      SDOperand ReplLoad;
3905
3906      // Replace the chain to void dependency.
3907      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
3908        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
3909                              LD->getSrcValue(), LD->getSrcValueOffset(),
3910                              LD->isVolatile(), LD->getAlignment());
3911      } else {
3912        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
3913                                  LD->getValueType(0),
3914                                  BetterChain, Ptr, LD->getSrcValue(),
3915                                  LD->getSrcValueOffset(),
3916                                  LD->getLoadedVT(),
3917                                  LD->isVolatile(),
3918                                  LD->getAlignment());
3919      }
3920
3921      // Create token factor to keep old chain connected.
3922      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
3923                                    Chain, ReplLoad.getValue(1));
3924
3925      // Replace uses with load result and token factor. Don't add users
3926      // to work list.
3927      return CombineTo(N, ReplLoad.getValue(0), Token, false);
3928    }
3929  }
3930
3931  // Try transforming N to an indexed load.
3932  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
3933    return SDOperand(N, 0);
3934
3935  return SDOperand();
3936}
3937
3938SDOperand DAGCombiner::visitSTORE(SDNode *N) {
3939  StoreSDNode *ST  = cast<StoreSDNode>(N);
3940  SDOperand Chain = ST->getChain();
3941  SDOperand Value = ST->getValue();
3942  SDOperand Ptr   = ST->getBasePtr();
3943
3944  // If this is a store of a bit convert, store the input value if the
3945  // resultant store does not need a higher alignment than the original.
3946  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
3947      ST->getAddressingMode() == ISD::UNINDEXED) {
3948    unsigned Align = ST->getAlignment();
3949    MVT::ValueType SVT = Value.getOperand(0).getValueType();
3950    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
3951      getABITypeAlignment(MVT::getTypeForValueType(SVT));
3952    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
3953      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
3954                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
3955  }
3956
3957  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
3958  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
3959    if (Value.getOpcode() != ISD::TargetConstantFP) {
3960      SDOperand Tmp;
3961      switch (CFP->getValueType(0)) {
3962      default: assert(0 && "Unknown FP type");
3963      case MVT::f80:    // We don't do this for these yet.
3964      case MVT::f128:
3965      case MVT::ppcf128:
3966        break;
3967      case MVT::f32:
3968        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
3969          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
3970                              convertToAPInt().getZExtValue(), MVT::i32);
3971          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3972                              ST->getSrcValueOffset(), ST->isVolatile(),
3973                              ST->getAlignment());
3974        }
3975        break;
3976      case MVT::f64:
3977        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
3978          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
3979                                  getZExtValue(), MVT::i64);
3980          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
3981                              ST->getSrcValueOffset(), ST->isVolatile(),
3982                              ST->getAlignment());
3983        } else if (TLI.isTypeLegal(MVT::i32)) {
3984          // Many FP stores are not make apparent until after legalize, e.g. for
3985          // argument passing.  Since this is so common, custom legalize the
3986          // 64-bit integer store into two 32-bit stores.
3987          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
3988          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
3989          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
3990          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
3991
3992          int SVOffset = ST->getSrcValueOffset();
3993          unsigned Alignment = ST->getAlignment();
3994          bool isVolatile = ST->isVolatile();
3995
3996          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
3997                                       ST->getSrcValueOffset(),
3998                                       isVolatile, ST->getAlignment());
3999          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4000                            DAG.getConstant(4, Ptr.getValueType()));
4001          SVOffset += 4;
4002          if (Alignment > 4)
4003            Alignment = 4;
4004          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4005                                       SVOffset, isVolatile, Alignment);
4006          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4007        }
4008        break;
4009      }
4010    }
4011  }
4012
4013  if (CombinerAA) {
4014    // Walk up chain skipping non-aliasing memory nodes.
4015    SDOperand BetterChain = FindBetterChain(N, Chain);
4016
4017    // If there is a better chain.
4018    if (Chain != BetterChain) {
4019      // Replace the chain to avoid dependency.
4020      SDOperand ReplStore;
4021      if (ST->isTruncatingStore()) {
4022        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4023          ST->getSrcValue(), ST->getSrcValueOffset(), ST->getStoredVT(),
4024          ST->isVolatile(), ST->getAlignment());
4025      } else {
4026        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4027          ST->getSrcValue(), ST->getSrcValueOffset(),
4028          ST->isVolatile(), ST->getAlignment());
4029      }
4030
4031      // Create token to keep both nodes around.
4032      SDOperand Token =
4033        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4034
4035      // Don't add users to work list.
4036      return CombineTo(N, Token, false);
4037    }
4038  }
4039
4040  // Try transforming N to an indexed store.
4041  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4042    return SDOperand(N, 0);
4043
4044  // FIXME: is there such a think as a truncating indexed store?
4045  if (ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED &&
4046      MVT::isInteger(Value.getValueType())) {
4047    // See if we can simplify the input to this truncstore with knowledge that
4048    // only the low bits are being used.  For example:
4049    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4050    SDOperand Shorter =
4051      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT()));
4052    AddToWorkList(Value.Val);
4053    if (Shorter.Val)
4054      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4055                               ST->getSrcValueOffset(), ST->getStoredVT(),
4056                               ST->isVolatile(), ST->getAlignment());
4057
4058    // Otherwise, see if we can simplify the operation with
4059    // SimplifyDemandedBits, which only works if the value has a single use.
4060    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT())))
4061      return SDOperand(N, 0);
4062  }
4063
4064  return SDOperand();
4065}
4066
4067SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4068  SDOperand InVec = N->getOperand(0);
4069  SDOperand InVal = N->getOperand(1);
4070  SDOperand EltNo = N->getOperand(2);
4071
4072  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4073  // vector with the inserted element.
4074  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4075    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4076    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4077    if (Elt < Ops.size())
4078      Ops[Elt] = InVal;
4079    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4080                       &Ops[0], Ops.size());
4081  }
4082
4083  return SDOperand();
4084}
4085
4086SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4087  SDOperand InVec = N->getOperand(0);
4088  SDOperand EltNo = N->getOperand(1);
4089
4090  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4091  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4092  if (isa<ConstantSDNode>(EltNo)) {
4093    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4094    bool NewLoad = false;
4095    if (Elt == 0) {
4096      MVT::ValueType VT = InVec.getValueType();
4097      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4098      MVT::ValueType LVT = EVT;
4099      unsigned NumElts = MVT::getVectorNumElements(VT);
4100      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4101        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4102        if (NumElts != MVT::getVectorNumElements(BCVT))
4103          return SDOperand();
4104        InVec = InVec.getOperand(0);
4105        EVT = MVT::getVectorElementType(BCVT);
4106        NewLoad = true;
4107      }
4108      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4109          InVec.getOperand(0).getValueType() == EVT &&
4110          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4111          InVec.getOperand(0).hasOneUse()) {
4112        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4113        unsigned Align = LN0->getAlignment();
4114        if (NewLoad) {
4115          // Check the resultant load doesn't need a higher alignment than the
4116          // original load.
4117          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4118            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4119          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4120            return SDOperand();
4121          Align = NewAlign;
4122        }
4123
4124        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4125                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4126                           LN0->isVolatile(), Align);
4127      }
4128    }
4129  }
4130  return SDOperand();
4131}
4132
4133
4134SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4135  unsigned NumInScalars = N->getNumOperands();
4136  MVT::ValueType VT = N->getValueType(0);
4137  unsigned NumElts = MVT::getVectorNumElements(VT);
4138  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4139
4140  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4141  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4142  // at most two distinct vectors, turn this into a shuffle node.
4143  SDOperand VecIn1, VecIn2;
4144  for (unsigned i = 0; i != NumInScalars; ++i) {
4145    // Ignore undef inputs.
4146    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4147
4148    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4149    // constant index, bail out.
4150    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4151        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4152      VecIn1 = VecIn2 = SDOperand(0, 0);
4153      break;
4154    }
4155
4156    // If the input vector type disagrees with the result of the build_vector,
4157    // we can't make a shuffle.
4158    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4159    if (ExtractedFromVec.getValueType() != VT) {
4160      VecIn1 = VecIn2 = SDOperand(0, 0);
4161      break;
4162    }
4163
4164    // Otherwise, remember this.  We allow up to two distinct input vectors.
4165    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4166      continue;
4167
4168    if (VecIn1.Val == 0) {
4169      VecIn1 = ExtractedFromVec;
4170    } else if (VecIn2.Val == 0) {
4171      VecIn2 = ExtractedFromVec;
4172    } else {
4173      // Too many inputs.
4174      VecIn1 = VecIn2 = SDOperand(0, 0);
4175      break;
4176    }
4177  }
4178
4179  // If everything is good, we can make a shuffle operation.
4180  if (VecIn1.Val) {
4181    SmallVector<SDOperand, 8> BuildVecIndices;
4182    for (unsigned i = 0; i != NumInScalars; ++i) {
4183      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4184        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4185        continue;
4186      }
4187
4188      SDOperand Extract = N->getOperand(i);
4189
4190      // If extracting from the first vector, just use the index directly.
4191      if (Extract.getOperand(0) == VecIn1) {
4192        BuildVecIndices.push_back(Extract.getOperand(1));
4193        continue;
4194      }
4195
4196      // Otherwise, use InIdx + VecSize
4197      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4198      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
4199                                                TLI.getPointerTy()));
4200    }
4201
4202    // Add count and size info.
4203    MVT::ValueType BuildVecVT =
4204      MVT::getVectorType(TLI.getPointerTy(), NumElts);
4205
4206    // Return the new VECTOR_SHUFFLE node.
4207    SDOperand Ops[5];
4208    Ops[0] = VecIn1;
4209    if (VecIn2.Val) {
4210      Ops[1] = VecIn2;
4211    } else {
4212      // Use an undef build_vector as input for the second operand.
4213      std::vector<SDOperand> UnOps(NumInScalars,
4214                                   DAG.getNode(ISD::UNDEF,
4215                                               EltType));
4216      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4217                           &UnOps[0], UnOps.size());
4218      AddToWorkList(Ops[1].Val);
4219    }
4220    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4221                         &BuildVecIndices[0], BuildVecIndices.size());
4222    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4223  }
4224
4225  return SDOperand();
4226}
4227
4228SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4229  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4230  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4231  // inputs come from at most two distinct vectors, turn this into a shuffle
4232  // node.
4233
4234  // If we only have one input vector, we don't need to do any concatenation.
4235  if (N->getNumOperands() == 1) {
4236    return N->getOperand(0);
4237  }
4238
4239  return SDOperand();
4240}
4241
4242SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4243  SDOperand ShufMask = N->getOperand(2);
4244  unsigned NumElts = ShufMask.getNumOperands();
4245
4246  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4247  bool isIdentity = true;
4248  for (unsigned i = 0; i != NumElts; ++i) {
4249    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4250        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4251      isIdentity = false;
4252      break;
4253    }
4254  }
4255  if (isIdentity) return N->getOperand(0);
4256
4257  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4258  isIdentity = true;
4259  for (unsigned i = 0; i != NumElts; ++i) {
4260    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4261        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4262      isIdentity = false;
4263      break;
4264    }
4265  }
4266  if (isIdentity) return N->getOperand(1);
4267
4268  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4269  // needed at all.
4270  bool isUnary = true;
4271  bool isSplat = true;
4272  int VecNum = -1;
4273  unsigned BaseIdx = 0;
4274  for (unsigned i = 0; i != NumElts; ++i)
4275    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4276      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4277      int V = (Idx < NumElts) ? 0 : 1;
4278      if (VecNum == -1) {
4279        VecNum = V;
4280        BaseIdx = Idx;
4281      } else {
4282        if (BaseIdx != Idx)
4283          isSplat = false;
4284        if (VecNum != V) {
4285          isUnary = false;
4286          break;
4287        }
4288      }
4289    }
4290
4291  SDOperand N0 = N->getOperand(0);
4292  SDOperand N1 = N->getOperand(1);
4293  // Normalize unary shuffle so the RHS is undef.
4294  if (isUnary && VecNum == 1)
4295    std::swap(N0, N1);
4296
4297  // If it is a splat, check if the argument vector is a build_vector with
4298  // all scalar elements the same.
4299  if (isSplat) {
4300    SDNode *V = N0.Val;
4301
4302    // If this is a bit convert that changes the element type of the vector but
4303    // not the number of vector elements, look through it.  Be careful not to
4304    // look though conversions that change things like v4f32 to v2f64.
4305    if (V->getOpcode() == ISD::BIT_CONVERT) {
4306      SDOperand ConvInput = V->getOperand(0);
4307      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4308        V = ConvInput.Val;
4309    }
4310
4311    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4312      unsigned NumElems = V->getNumOperands();
4313      if (NumElems > BaseIdx) {
4314        SDOperand Base;
4315        bool AllSame = true;
4316        for (unsigned i = 0; i != NumElems; ++i) {
4317          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4318            Base = V->getOperand(i);
4319            break;
4320          }
4321        }
4322        // Splat of <u, u, u, u>, return <u, u, u, u>
4323        if (!Base.Val)
4324          return N0;
4325        for (unsigned i = 0; i != NumElems; ++i) {
4326          if (V->getOperand(i) != Base) {
4327            AllSame = false;
4328            break;
4329          }
4330        }
4331        // Splat of <x, x, x, x>, return <x, x, x, x>
4332        if (AllSame)
4333          return N0;
4334      }
4335    }
4336  }
4337
4338  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4339  // into an undef.
4340  if (isUnary || N0 == N1) {
4341    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4342    // first operand.
4343    SmallVector<SDOperand, 8> MappedOps;
4344    for (unsigned i = 0; i != NumElts; ++i) {
4345      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4346          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4347        MappedOps.push_back(ShufMask.getOperand(i));
4348      } else {
4349        unsigned NewIdx =
4350          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4351        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4352      }
4353    }
4354    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4355                           &MappedOps[0], MappedOps.size());
4356    AddToWorkList(ShufMask.Val);
4357    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4358                       N0,
4359                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4360                       ShufMask);
4361  }
4362
4363  return SDOperand();
4364}
4365
4366/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4367/// an AND to a vector_shuffle with the destination vector and a zero vector.
4368/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4369///      vector_shuffle V, Zero, <0, 4, 2, 4>
4370SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4371  SDOperand LHS = N->getOperand(0);
4372  SDOperand RHS = N->getOperand(1);
4373  if (N->getOpcode() == ISD::AND) {
4374    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4375      RHS = RHS.getOperand(0);
4376    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4377      std::vector<SDOperand> IdxOps;
4378      unsigned NumOps = RHS.getNumOperands();
4379      unsigned NumElts = NumOps;
4380      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4381      for (unsigned i = 0; i != NumElts; ++i) {
4382        SDOperand Elt = RHS.getOperand(i);
4383        if (!isa<ConstantSDNode>(Elt))
4384          return SDOperand();
4385        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4386          IdxOps.push_back(DAG.getConstant(i, EVT));
4387        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4388          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4389        else
4390          return SDOperand();
4391      }
4392
4393      // Let's see if the target supports this vector_shuffle.
4394      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4395        return SDOperand();
4396
4397      // Return the new VECTOR_SHUFFLE node.
4398      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4399      std::vector<SDOperand> Ops;
4400      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4401      Ops.push_back(LHS);
4402      AddToWorkList(LHS.Val);
4403      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4404      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4405                                &ZeroOps[0], ZeroOps.size()));
4406      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4407                                &IdxOps[0], IdxOps.size()));
4408      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4409                                     &Ops[0], Ops.size());
4410      if (VT != LHS.getValueType()) {
4411        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4412      }
4413      return Result;
4414    }
4415  }
4416  return SDOperand();
4417}
4418
4419/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4420SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4421  // After legalize, the target may be depending on adds and other
4422  // binary ops to provide legal ways to construct constants or other
4423  // things. Simplifying them may result in a loss of legality.
4424  if (AfterLegalize) return SDOperand();
4425
4426  MVT::ValueType VT = N->getValueType(0);
4427  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4428
4429  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4430  SDOperand LHS = N->getOperand(0);
4431  SDOperand RHS = N->getOperand(1);
4432  SDOperand Shuffle = XformToShuffleWithZero(N);
4433  if (Shuffle.Val) return Shuffle;
4434
4435  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4436  // this operation.
4437  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4438      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4439    SmallVector<SDOperand, 8> Ops;
4440    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4441      SDOperand LHSOp = LHS.getOperand(i);
4442      SDOperand RHSOp = RHS.getOperand(i);
4443      // If these two elements can't be folded, bail out.
4444      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4445           LHSOp.getOpcode() != ISD::Constant &&
4446           LHSOp.getOpcode() != ISD::ConstantFP) ||
4447          (RHSOp.getOpcode() != ISD::UNDEF &&
4448           RHSOp.getOpcode() != ISD::Constant &&
4449           RHSOp.getOpcode() != ISD::ConstantFP))
4450        break;
4451      // Can't fold divide by zero.
4452      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4453          N->getOpcode() == ISD::FDIV) {
4454        if ((RHSOp.getOpcode() == ISD::Constant &&
4455             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4456            (RHSOp.getOpcode() == ISD::ConstantFP &&
4457             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4458          break;
4459      }
4460      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4461      AddToWorkList(Ops.back().Val);
4462      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4463              Ops.back().getOpcode() == ISD::Constant ||
4464              Ops.back().getOpcode() == ISD::ConstantFP) &&
4465             "Scalar binop didn't fold!");
4466    }
4467
4468    if (Ops.size() == LHS.getNumOperands()) {
4469      MVT::ValueType VT = LHS.getValueType();
4470      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4471    }
4472  }
4473
4474  return SDOperand();
4475}
4476
4477SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4478  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4479
4480  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4481                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4482  // If we got a simplified select_cc node back from SimplifySelectCC, then
4483  // break it down into a new SETCC node, and a new SELECT node, and then return
4484  // the SELECT node, since we were called with a SELECT node.
4485  if (SCC.Val) {
4486    // Check to see if we got a select_cc back (to turn into setcc/select).
4487    // Otherwise, just return whatever node we got back, like fabs.
4488    if (SCC.getOpcode() == ISD::SELECT_CC) {
4489      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4490                                    SCC.getOperand(0), SCC.getOperand(1),
4491                                    SCC.getOperand(4));
4492      AddToWorkList(SETCC.Val);
4493      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4494                         SCC.getOperand(3), SETCC);
4495    }
4496    return SCC;
4497  }
4498  return SDOperand();
4499}
4500
4501/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4502/// are the two values being selected between, see if we can simplify the
4503/// select.  Callers of this should assume that TheSelect is deleted if this
4504/// returns true.  As such, they should return the appropriate thing (e.g. the
4505/// node) back to the top-level of the DAG combiner loop to avoid it being
4506/// looked at.
4507///
4508bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4509                                    SDOperand RHS) {
4510
4511  // If this is a select from two identical things, try to pull the operation
4512  // through the select.
4513  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4514    // If this is a load and the token chain is identical, replace the select
4515    // of two loads with a load through a select of the address to load from.
4516    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4517    // constants have been dropped into the constant pool.
4518    if (LHS.getOpcode() == ISD::LOAD &&
4519        // Token chains must be identical.
4520        LHS.getOperand(0) == RHS.getOperand(0)) {
4521      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4522      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4523
4524      // If this is an EXTLOAD, the VT's must match.
4525      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
4526        // FIXME: this conflates two src values, discarding one.  This is not
4527        // the right thing to do, but nothing uses srcvalues now.  When they do,
4528        // turn SrcValue into a list of locations.
4529        SDOperand Addr;
4530        if (TheSelect->getOpcode() == ISD::SELECT) {
4531          // Check that the condition doesn't reach either load.  If so, folding
4532          // this will induce a cycle into the DAG.
4533          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4534              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4535            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4536                               TheSelect->getOperand(0), LLD->getBasePtr(),
4537                               RLD->getBasePtr());
4538          }
4539        } else {
4540          // Check that the condition doesn't reach either load.  If so, folding
4541          // this will induce a cycle into the DAG.
4542          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4543              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4544              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4545              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4546            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4547                             TheSelect->getOperand(0),
4548                             TheSelect->getOperand(1),
4549                             LLD->getBasePtr(), RLD->getBasePtr(),
4550                             TheSelect->getOperand(4));
4551          }
4552        }
4553
4554        if (Addr.Val) {
4555          SDOperand Load;
4556          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4557            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4558                               Addr,LLD->getSrcValue(),
4559                               LLD->getSrcValueOffset(),
4560                               LLD->isVolatile(),
4561                               LLD->getAlignment());
4562          else {
4563            Load = DAG.getExtLoad(LLD->getExtensionType(),
4564                                  TheSelect->getValueType(0),
4565                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4566                                  LLD->getSrcValueOffset(),
4567                                  LLD->getLoadedVT(),
4568                                  LLD->isVolatile(),
4569                                  LLD->getAlignment());
4570          }
4571          // Users of the select now use the result of the load.
4572          CombineTo(TheSelect, Load);
4573
4574          // Users of the old loads now use the new load's chain.  We know the
4575          // old-load value is dead now.
4576          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4577          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4578          return true;
4579        }
4580      }
4581    }
4582  }
4583
4584  return false;
4585}
4586
4587SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4588                                        SDOperand N2, SDOperand N3,
4589                                        ISD::CondCode CC, bool NotExtCompare) {
4590
4591  MVT::ValueType VT = N2.getValueType();
4592  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4593  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4594  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4595
4596  // Determine if the condition we're dealing with is constant
4597  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4598  if (SCC.Val) AddToWorkList(SCC.Val);
4599  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4600
4601  // fold select_cc true, x, y -> x
4602  if (SCCC && SCCC->getValue())
4603    return N2;
4604  // fold select_cc false, x, y -> y
4605  if (SCCC && SCCC->getValue() == 0)
4606    return N3;
4607
4608  // Check to see if we can simplify the select into an fabs node
4609  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4610    // Allow either -0.0 or 0.0
4611    if (CFP->getValueAPF().isZero()) {
4612      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4613      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4614          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4615          N2 == N3.getOperand(0))
4616        return DAG.getNode(ISD::FABS, VT, N0);
4617
4618      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4619      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4620          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4621          N2.getOperand(0) == N3)
4622        return DAG.getNode(ISD::FABS, VT, N3);
4623    }
4624  }
4625
4626  // Check to see if we can perform the "gzip trick", transforming
4627  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4628  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4629      MVT::isInteger(N0.getValueType()) &&
4630      MVT::isInteger(N2.getValueType()) &&
4631      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
4632       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
4633    MVT::ValueType XType = N0.getValueType();
4634    MVT::ValueType AType = N2.getValueType();
4635    if (XType >= AType) {
4636      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4637      // single-bit constant.
4638      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4639        unsigned ShCtV = Log2_64(N2C->getValue());
4640        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4641        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4642        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4643        AddToWorkList(Shift.Val);
4644        if (XType > AType) {
4645          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4646          AddToWorkList(Shift.Val);
4647        }
4648        return DAG.getNode(ISD::AND, AType, Shift, N2);
4649      }
4650      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4651                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4652                                                    TLI.getShiftAmountTy()));
4653      AddToWorkList(Shift.Val);
4654      if (XType > AType) {
4655        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4656        AddToWorkList(Shift.Val);
4657      }
4658      return DAG.getNode(ISD::AND, AType, Shift, N2);
4659    }
4660  }
4661
4662  // fold select C, 16, 0 -> shl C, 4
4663  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4664      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4665
4666    // If the caller doesn't want us to simplify this into a zext of a compare,
4667    // don't do it.
4668    if (NotExtCompare && N2C->getValue() == 1)
4669      return SDOperand();
4670
4671    // Get a SetCC of the condition
4672    // FIXME: Should probably make sure that setcc is legal if we ever have a
4673    // target where it isn't.
4674    SDOperand Temp, SCC;
4675    // cast from setcc result type to select result type
4676    if (AfterLegalize) {
4677      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4678      if (N2.getValueType() < SCC.getValueType())
4679        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4680      else
4681        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4682    } else {
4683      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
4684      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4685    }
4686    AddToWorkList(SCC.Val);
4687    AddToWorkList(Temp.Val);
4688
4689    if (N2C->getValue() == 1)
4690      return Temp;
4691    // shl setcc result by log2 n2c
4692    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4693                       DAG.getConstant(Log2_64(N2C->getValue()),
4694                                       TLI.getShiftAmountTy()));
4695  }
4696
4697  // Check to see if this is the equivalent of setcc
4698  // FIXME: Turn all of these into setcc if setcc if setcc is legal
4699  // otherwise, go ahead with the folds.
4700  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4701    MVT::ValueType XType = N0.getValueType();
4702    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4703      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4704      if (Res.getValueType() != VT)
4705        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4706      return Res;
4707    }
4708
4709    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4710    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4711        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4712      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4713      return DAG.getNode(ISD::SRL, XType, Ctlz,
4714                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4715                                         TLI.getShiftAmountTy()));
4716    }
4717    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4718    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4719      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4720                                    N0);
4721      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4722                                    DAG.getConstant(~0ULL, XType));
4723      return DAG.getNode(ISD::SRL, XType,
4724                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4725                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4726                                         TLI.getShiftAmountTy()));
4727    }
4728    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4729    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4730      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4731                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
4732                                                   TLI.getShiftAmountTy()));
4733      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4734    }
4735  }
4736
4737  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4738  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4739  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4740      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
4741      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
4742    MVT::ValueType XType = N0.getValueType();
4743    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4744                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
4745                                                  TLI.getShiftAmountTy()));
4746    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4747    AddToWorkList(Shift.Val);
4748    AddToWorkList(Add.Val);
4749    return DAG.getNode(ISD::XOR, XType, Add, Shift);
4750  }
4751  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4752  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4753  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
4754      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
4755    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
4756      MVT::ValueType XType = N0.getValueType();
4757      if (SubC->isNullValue() && MVT::isInteger(XType)) {
4758        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4759                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4760                                                      TLI.getShiftAmountTy()));
4761        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4762        AddToWorkList(Shift.Val);
4763        AddToWorkList(Add.Val);
4764        return DAG.getNode(ISD::XOR, XType, Add, Shift);
4765      }
4766    }
4767  }
4768
4769  return SDOperand();
4770}
4771
4772/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
4773SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
4774                                     SDOperand N1, ISD::CondCode Cond,
4775                                     bool foldBooleans) {
4776  TargetLowering::DAGCombinerInfo
4777    DagCombineInfo(DAG, !AfterLegalize, false, this);
4778  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
4779}
4780
4781/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
4782/// return a DAG expression to select that will generate the same value by
4783/// multiplying by a magic number.  See:
4784/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4785SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
4786  std::vector<SDNode*> Built;
4787  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
4788
4789  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4790       ii != ee; ++ii)
4791    AddToWorkList(*ii);
4792  return S;
4793}
4794
4795/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
4796/// return a DAG expression to select that will generate the same value by
4797/// multiplying by a magic number.  See:
4798/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
4799SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
4800  std::vector<SDNode*> Built;
4801  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
4802
4803  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
4804       ii != ee; ++ii)
4805    AddToWorkList(*ii);
4806  return S;
4807}
4808
4809/// FindBaseOffset - Return true if base is known not to alias with anything
4810/// but itself.  Provides base object and offset as results.
4811static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
4812  // Assume it is a primitive operation.
4813  Base = Ptr; Offset = 0;
4814
4815  // If it's an adding a simple constant then integrate the offset.
4816  if (Base.getOpcode() == ISD::ADD) {
4817    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
4818      Base = Base.getOperand(0);
4819      Offset += C->getValue();
4820    }
4821  }
4822
4823  // If it's any of the following then it can't alias with anything but itself.
4824  return isa<FrameIndexSDNode>(Base) ||
4825         isa<ConstantPoolSDNode>(Base) ||
4826         isa<GlobalAddressSDNode>(Base);
4827}
4828
4829/// isAlias - Return true if there is any possibility that the two addresses
4830/// overlap.
4831bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
4832                          const Value *SrcValue1, int SrcValueOffset1,
4833                          SDOperand Ptr2, int64_t Size2,
4834                          const Value *SrcValue2, int SrcValueOffset2)
4835{
4836  // If they are the same then they must be aliases.
4837  if (Ptr1 == Ptr2) return true;
4838
4839  // Gather base node and offset information.
4840  SDOperand Base1, Base2;
4841  int64_t Offset1, Offset2;
4842  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
4843  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
4844
4845  // If they have a same base address then...
4846  if (Base1 == Base2) {
4847    // Check to see if the addresses overlap.
4848    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
4849  }
4850
4851  // If we know both bases then they can't alias.
4852  if (KnownBase1 && KnownBase2) return false;
4853
4854  if (CombinerGlobalAA) {
4855    // Use alias analysis information.
4856    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
4857    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
4858    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
4859    AliasAnalysis::AliasResult AAResult =
4860                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
4861    if (AAResult == AliasAnalysis::NoAlias)
4862      return false;
4863  }
4864
4865  // Otherwise we have to assume they alias.
4866  return true;
4867}
4868
4869/// FindAliasInfo - Extracts the relevant alias information from the memory
4870/// node.  Returns true if the operand was a load.
4871bool DAGCombiner::FindAliasInfo(SDNode *N,
4872                        SDOperand &Ptr, int64_t &Size,
4873                        const Value *&SrcValue, int &SrcValueOffset) {
4874  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
4875    Ptr = LD->getBasePtr();
4876    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
4877    SrcValue = LD->getSrcValue();
4878    SrcValueOffset = LD->getSrcValueOffset();
4879    return true;
4880  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
4881    Ptr = ST->getBasePtr();
4882    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
4883    SrcValue = ST->getSrcValue();
4884    SrcValueOffset = ST->getSrcValueOffset();
4885  } else {
4886    assert(0 && "FindAliasInfo expected a memory operand");
4887  }
4888
4889  return false;
4890}
4891
4892/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
4893/// looking for aliasing nodes and adding them to the Aliases vector.
4894void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
4895                                   SmallVector<SDOperand, 8> &Aliases) {
4896  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
4897  std::set<SDNode *> Visited;           // Visited node set.
4898
4899  // Get alias information for node.
4900  SDOperand Ptr;
4901  int64_t Size;
4902  const Value *SrcValue;
4903  int SrcValueOffset;
4904  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
4905
4906  // Starting off.
4907  Chains.push_back(OriginalChain);
4908
4909  // Look at each chain and determine if it is an alias.  If so, add it to the
4910  // aliases list.  If not, then continue up the chain looking for the next
4911  // candidate.
4912  while (!Chains.empty()) {
4913    SDOperand Chain = Chains.back();
4914    Chains.pop_back();
4915
4916     // Don't bother if we've been before.
4917    if (Visited.find(Chain.Val) != Visited.end()) continue;
4918    Visited.insert(Chain.Val);
4919
4920    switch (Chain.getOpcode()) {
4921    case ISD::EntryToken:
4922      // Entry token is ideal chain operand, but handled in FindBetterChain.
4923      break;
4924
4925    case ISD::LOAD:
4926    case ISD::STORE: {
4927      // Get alias information for Chain.
4928      SDOperand OpPtr;
4929      int64_t OpSize;
4930      const Value *OpSrcValue;
4931      int OpSrcValueOffset;
4932      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
4933                                    OpSrcValue, OpSrcValueOffset);
4934
4935      // If chain is alias then stop here.
4936      if (!(IsLoad && IsOpLoad) &&
4937          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
4938                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
4939        Aliases.push_back(Chain);
4940      } else {
4941        // Look further up the chain.
4942        Chains.push_back(Chain.getOperand(0));
4943        // Clean up old chain.
4944        AddToWorkList(Chain.Val);
4945      }
4946      break;
4947    }
4948
4949    case ISD::TokenFactor:
4950      // We have to check each of the operands of the token factor, so we queue
4951      // then up.  Adding the  operands to the queue (stack) in reverse order
4952      // maintains the original order and increases the likelihood that getNode
4953      // will find a matching token factor (CSE.)
4954      for (unsigned n = Chain.getNumOperands(); n;)
4955        Chains.push_back(Chain.getOperand(--n));
4956      // Eliminate the token factor if we can.
4957      AddToWorkList(Chain.Val);
4958      break;
4959
4960    default:
4961      // For all other instructions we will just have to take what we can get.
4962      Aliases.push_back(Chain);
4963      break;
4964    }
4965  }
4966}
4967
4968/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
4969/// for a better chain (aliasing node.)
4970SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
4971  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
4972
4973  // Accumulate all the aliases to this node.
4974  GatherAllAliases(N, OldChain, Aliases);
4975
4976  if (Aliases.size() == 0) {
4977    // If no operands then chain to entry token.
4978    return DAG.getEntryNode();
4979  } else if (Aliases.size() == 1) {
4980    // If a single operand then chain to it.  We don't need to revisit it.
4981    return Aliases[0];
4982  }
4983
4984  // Construct a custom tailored token factor.
4985  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4986                                   &Aliases[0], Aliases.size());
4987
4988  // Make sure the old chain gets cleaned up.
4989  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
4990
4991  return NewChain;
4992}
4993
4994// SelectionDAG::Combine - This is the entry point for the file.
4995//
4996void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
4997  if (!RunningAfterLegalize && ViewDAGCombine1)
4998    viewGraph();
4999  if (RunningAfterLegalize && ViewDAGCombine2)
5000    viewGraph();
5001  /// run - This is the main entry point to this class.
5002  ///
5003  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5004}
5005