DAGCombiner.cpp revision c46e2df74cf75a33742f57d2b4d6c6fcf73bced9
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NodesCombined   , "Number of dag nodes combined");
42STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
43STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
44STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
45STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
46
47namespace {
48  static cl::opt<bool>
49    CombinerAA("combiner-alias-analysis", cl::Hidden,
50               cl::desc("Turn on alias analysis during testing"));
51
52  static cl::opt<bool>
53    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
54               cl::desc("Include global information in alias analysis"));
55
56//------------------------------ DAGCombiner ---------------------------------//
57
58  class DAGCombiner {
59    SelectionDAG &DAG;
60    const TargetLowering &TLI;
61    CombineLevel Level;
62    CodeGenOpt::Level OptLevel;
63    bool LegalOperations;
64    bool LegalTypes;
65
66    // Worklist of all of the nodes that need to be simplified.
67    //
68    // This has the semantics that when adding to the worklist,
69    // the item added must be next to be processed. It should
70    // also only appear once. The naive approach to this takes
71    // linear time.
72    //
73    // To reduce the insert/remove time to logarithmic, we use
74    // a set and a vector to maintain our worklist.
75    //
76    // The set contains the items on the worklist, but does not
77    // maintain the order they should be visited.
78    //
79    // The vector maintains the order nodes should be visited, but may
80    // contain duplicate or removed nodes. When choosing a node to
81    // visit, we pop off the order stack until we find an item that is
82    // also in the contents set. All operations are O(log N).
83    SmallPtrSet<SDNode*, 64> WorkListContents;
84    SmallVector<SDNode*, 64> WorkListOrder;
85
86    // AA - Used for DAG load/store alias analysis.
87    AliasAnalysis &AA;
88
89    /// AddUsersToWorkList - When an instruction is simplified, add all users of
90    /// the instruction to the work lists because they might get more simplified
91    /// now.
92    ///
93    void AddUsersToWorkList(SDNode *N) {
94      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
95           UI != UE; ++UI)
96        AddToWorkList(*UI);
97    }
98
99    /// visit - call the node-specific routine that knows how to fold each
100    /// particular type of node.
101    SDValue visit(SDNode *N);
102
103  public:
104    /// AddToWorkList - Add to the work list making sure its instance is at the
105    /// back (next to be processed.)
106    void AddToWorkList(SDNode *N) {
107      WorkListContents.insert(N);
108      WorkListOrder.push_back(N);
109    }
110
111    /// removeFromWorkList - remove all instances of N from the worklist.
112    ///
113    void removeFromWorkList(SDNode *N) {
114      WorkListContents.erase(N);
115    }
116
117    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
118                      bool AddTo = true);
119
120    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
121      return CombineTo(N, &Res, 1, AddTo);
122    }
123
124    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
125                      bool AddTo = true) {
126      SDValue To[] = { Res0, Res1 };
127      return CombineTo(N, To, 2, AddTo);
128    }
129
130    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
131
132  private:
133
134    /// SimplifyDemandedBits - Check the specified integer node value to see if
135    /// it can be simplified or if things it uses can be simplified by bit
136    /// propagation.  If so, return true.
137    bool SimplifyDemandedBits(SDValue Op) {
138      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
139      APInt Demanded = APInt::getAllOnesValue(BitWidth);
140      return SimplifyDemandedBits(Op, Demanded);
141    }
142
143    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
144
145    bool CombineToPreIndexedLoadStore(SDNode *N);
146    bool CombineToPostIndexedLoadStore(SDNode *N);
147
148    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
149    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
150    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
151    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
152    SDValue PromoteIntBinOp(SDValue Op);
153    SDValue PromoteIntShiftOp(SDValue Op);
154    SDValue PromoteExtend(SDValue Op);
155    bool PromoteLoad(SDValue Op);
156
157    void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
158                         SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
159                         ISD::NodeType ExtType);
160
161    /// combine - call the node-specific routine that knows how to fold each
162    /// particular type of node. If that doesn't do anything, try the
163    /// target-specific DAG combines.
164    SDValue combine(SDNode *N);
165
166    // Visitation implementation - Implement dag node combining for different
167    // node types.  The semantics are as follows:
168    // Return Value:
169    //   SDValue.getNode() == 0 - No change was made
170    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
171    //   otherwise              - N should be replaced by the returned Operand.
172    //
173    SDValue visitTokenFactor(SDNode *N);
174    SDValue visitMERGE_VALUES(SDNode *N);
175    SDValue visitADD(SDNode *N);
176    SDValue visitSUB(SDNode *N);
177    SDValue visitADDC(SDNode *N);
178    SDValue visitSUBC(SDNode *N);
179    SDValue visitADDE(SDNode *N);
180    SDValue visitSUBE(SDNode *N);
181    SDValue visitMUL(SDNode *N);
182    SDValue visitSDIV(SDNode *N);
183    SDValue visitUDIV(SDNode *N);
184    SDValue visitSREM(SDNode *N);
185    SDValue visitUREM(SDNode *N);
186    SDValue visitMULHU(SDNode *N);
187    SDValue visitMULHS(SDNode *N);
188    SDValue visitSMUL_LOHI(SDNode *N);
189    SDValue visitUMUL_LOHI(SDNode *N);
190    SDValue visitSMULO(SDNode *N);
191    SDValue visitUMULO(SDNode *N);
192    SDValue visitSDIVREM(SDNode *N);
193    SDValue visitUDIVREM(SDNode *N);
194    SDValue visitAND(SDNode *N);
195    SDValue visitOR(SDNode *N);
196    SDValue visitXOR(SDNode *N);
197    SDValue SimplifyVBinOp(SDNode *N);
198    SDValue SimplifyVUnaryOp(SDNode *N);
199    SDValue visitSHL(SDNode *N);
200    SDValue visitSRA(SDNode *N);
201    SDValue visitSRL(SDNode *N);
202    SDValue visitCTLZ(SDNode *N);
203    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
204    SDValue visitCTTZ(SDNode *N);
205    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
206    SDValue visitCTPOP(SDNode *N);
207    SDValue visitSELECT(SDNode *N);
208    SDValue visitSELECT_CC(SDNode *N);
209    SDValue visitSETCC(SDNode *N);
210    SDValue visitSIGN_EXTEND(SDNode *N);
211    SDValue visitZERO_EXTEND(SDNode *N);
212    SDValue visitANY_EXTEND(SDNode *N);
213    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
214    SDValue visitTRUNCATE(SDNode *N);
215    SDValue visitBITCAST(SDNode *N);
216    SDValue visitBUILD_PAIR(SDNode *N);
217    SDValue visitFADD(SDNode *N);
218    SDValue visitFSUB(SDNode *N);
219    SDValue visitFMUL(SDNode *N);
220    SDValue visitFMA(SDNode *N);
221    SDValue visitFDIV(SDNode *N);
222    SDValue visitFREM(SDNode *N);
223    SDValue visitFCOPYSIGN(SDNode *N);
224    SDValue visitSINT_TO_FP(SDNode *N);
225    SDValue visitUINT_TO_FP(SDNode *N);
226    SDValue visitFP_TO_SINT(SDNode *N);
227    SDValue visitFP_TO_UINT(SDNode *N);
228    SDValue visitFP_ROUND(SDNode *N);
229    SDValue visitFP_ROUND_INREG(SDNode *N);
230    SDValue visitFP_EXTEND(SDNode *N);
231    SDValue visitFNEG(SDNode *N);
232    SDValue visitFABS(SDNode *N);
233    SDValue visitFCEIL(SDNode *N);
234    SDValue visitFTRUNC(SDNode *N);
235    SDValue visitFFLOOR(SDNode *N);
236    SDValue visitBRCOND(SDNode *N);
237    SDValue visitBR_CC(SDNode *N);
238    SDValue visitLOAD(SDNode *N);
239    SDValue visitSTORE(SDNode *N);
240    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
241    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
242    SDValue visitBUILD_VECTOR(SDNode *N);
243    SDValue visitCONCAT_VECTORS(SDNode *N);
244    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
245    SDValue visitVECTOR_SHUFFLE(SDNode *N);
246    SDValue visitMEMBARRIER(SDNode *N);
247
248    SDValue XformToShuffleWithZero(SDNode *N);
249    SDValue ReassociateOps(unsigned Opc, DebugLoc DL, SDValue LHS, SDValue RHS);
250
251    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
252
253    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
254    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
255    SDValue SimplifySelect(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2);
256    SDValue SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1, SDValue N2,
257                             SDValue N3, ISD::CondCode CC,
258                             bool NotExtCompare = false);
259    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
260                          DebugLoc DL, bool foldBooleans = true);
261    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
262                                         unsigned HiOp);
263    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
264    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
265    SDValue BuildSDIV(SDNode *N);
266    SDValue BuildUDIV(SDNode *N);
267    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
268                               bool DemandHighBits = true);
269    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
270    SDNode *MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL);
271    SDValue ReduceLoadWidth(SDNode *N);
272    SDValue ReduceLoadOpStoreWidth(SDNode *N);
273    SDValue TransformFPLoadStorePair(SDNode *N);
274    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
275    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
276
277    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
278
279    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
280    /// looking for aliasing nodes and adding them to the Aliases vector.
281    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
282                          SmallVector<SDValue, 8> &Aliases);
283
284    /// isAlias - Return true if there is any possibility that the two addresses
285    /// overlap.
286    bool isAlias(SDValue Ptr1, int64_t Size1,
287                 const Value *SrcValue1, int SrcValueOffset1,
288                 unsigned SrcValueAlign1,
289                 const MDNode *TBAAInfo1,
290                 SDValue Ptr2, int64_t Size2,
291                 const Value *SrcValue2, int SrcValueOffset2,
292                 unsigned SrcValueAlign2,
293                 const MDNode *TBAAInfo2) const;
294
295    /// isAlias - Return true if there is any possibility that the two addresses
296    /// overlap.
297    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
298
299    /// FindAliasInfo - Extracts the relevant alias information from the memory
300    /// node.  Returns true if the operand was a load.
301    bool FindAliasInfo(SDNode *N,
302                       SDValue &Ptr, int64_t &Size,
303                       const Value *&SrcValue, int &SrcValueOffset,
304                       unsigned &SrcValueAlignment,
305                       const MDNode *&TBAAInfo) const;
306
307    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
308    /// looking for a better chain (aliasing node.)
309    SDValue FindBetterChain(SDNode *N, SDValue Chain);
310
311    /// Merge consecutive store operations into a wide store.
312    /// This optimization uses wide integers or vectors when possible.
313    /// \return True if some memory operations were changed.
314    bool MergeConsecutiveStores(StoreSDNode *N);
315
316  public:
317    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
318      : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
319        OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {}
320
321    /// Run - runs the dag combiner on all nodes in the work list
322    void Run(CombineLevel AtLevel);
323
324    SelectionDAG &getDAG() const { return DAG; }
325
326    /// getShiftAmountTy - Returns a type large enough to hold any valid
327    /// shift amount - before type legalization these can be huge.
328    EVT getShiftAmountTy(EVT LHSTy) {
329      return LegalTypes ? TLI.getShiftAmountTy(LHSTy) : TLI.getPointerTy();
330    }
331
332    /// isTypeLegal - This method returns true if we are running before type
333    /// legalization or if the specified VT is legal.
334    bool isTypeLegal(const EVT &VT) {
335      if (!LegalTypes) return true;
336      return TLI.isTypeLegal(VT);
337    }
338  };
339}
340
341
342namespace {
343/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
344/// nodes from the worklist.
345class WorkListRemover : public SelectionDAG::DAGUpdateListener {
346  DAGCombiner &DC;
347public:
348  explicit WorkListRemover(DAGCombiner &dc)
349    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
350
351  virtual void NodeDeleted(SDNode *N, SDNode *E) {
352    DC.removeFromWorkList(N);
353  }
354};
355}
356
357//===----------------------------------------------------------------------===//
358//  TargetLowering::DAGCombinerInfo implementation
359//===----------------------------------------------------------------------===//
360
361void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
362  ((DAGCombiner*)DC)->AddToWorkList(N);
363}
364
365void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
366  ((DAGCombiner*)DC)->removeFromWorkList(N);
367}
368
369SDValue TargetLowering::DAGCombinerInfo::
370CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
371  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
372}
373
374SDValue TargetLowering::DAGCombinerInfo::
375CombineTo(SDNode *N, SDValue Res, bool AddTo) {
376  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
377}
378
379
380SDValue TargetLowering::DAGCombinerInfo::
381CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
382  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
383}
384
385void TargetLowering::DAGCombinerInfo::
386CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
387  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
388}
389
390//===----------------------------------------------------------------------===//
391// Helper Functions
392//===----------------------------------------------------------------------===//
393
394/// isNegatibleForFree - Return 1 if we can compute the negated form of the
395/// specified expression for the same cost as the expression itself, or 2 if we
396/// can compute the negated form more cheaply than the expression itself.
397static char isNegatibleForFree(SDValue Op, bool LegalOperations,
398                               const TargetLowering &TLI,
399                               const TargetOptions *Options,
400                               unsigned Depth = 0) {
401  // fneg is removable even if it has multiple uses.
402  if (Op.getOpcode() == ISD::FNEG) return 2;
403
404  // Don't allow anything with multiple uses.
405  if (!Op.hasOneUse()) return 0;
406
407  // Don't recurse exponentially.
408  if (Depth > 6) return 0;
409
410  switch (Op.getOpcode()) {
411  default: return false;
412  case ISD::ConstantFP:
413    // Don't invert constant FP values after legalize.  The negated constant
414    // isn't necessarily legal.
415    return LegalOperations ? 0 : 1;
416  case ISD::FADD:
417    // FIXME: determine better conditions for this xform.
418    if (!Options->UnsafeFPMath) return 0;
419
420    // After operation legalization, it might not be legal to create new FSUBs.
421    if (LegalOperations &&
422        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
423      return 0;
424
425    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
426    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
427                                    Options, Depth + 1))
428      return V;
429    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
430    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
431                              Depth + 1);
432  case ISD::FSUB:
433    // We can't turn -(A-B) into B-A when we honor signed zeros.
434    if (!Options->UnsafeFPMath) return 0;
435
436    // fold (fneg (fsub A, B)) -> (fsub B, A)
437    return 1;
438
439  case ISD::FMUL:
440  case ISD::FDIV:
441    if (Options->HonorSignDependentRoundingFPMath()) return 0;
442
443    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
444    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
445                                    Options, Depth + 1))
446      return V;
447
448    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
449                              Depth + 1);
450
451  case ISD::FP_EXTEND:
452  case ISD::FP_ROUND:
453  case ISD::FSIN:
454    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
455                              Depth + 1);
456  }
457}
458
459/// GetNegatedExpression - If isNegatibleForFree returns true, this function
460/// returns the newly negated expression.
461static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
462                                    bool LegalOperations, unsigned Depth = 0) {
463  // fneg is removable even if it has multiple uses.
464  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
465
466  // Don't allow anything with multiple uses.
467  assert(Op.hasOneUse() && "Unknown reuse!");
468
469  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
470  switch (Op.getOpcode()) {
471  default: llvm_unreachable("Unknown code");
472  case ISD::ConstantFP: {
473    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
474    V.changeSign();
475    return DAG.getConstantFP(V, Op.getValueType());
476  }
477  case ISD::FADD:
478    // FIXME: determine better conditions for this xform.
479    assert(DAG.getTarget().Options.UnsafeFPMath);
480
481    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
482    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
483                           DAG.getTargetLoweringInfo(),
484                           &DAG.getTarget().Options, Depth+1))
485      return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
486                         GetNegatedExpression(Op.getOperand(0), DAG,
487                                              LegalOperations, Depth+1),
488                         Op.getOperand(1));
489    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
490    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
491                       GetNegatedExpression(Op.getOperand(1), DAG,
492                                            LegalOperations, Depth+1),
493                       Op.getOperand(0));
494  case ISD::FSUB:
495    // We can't turn -(A-B) into B-A when we honor signed zeros.
496    assert(DAG.getTarget().Options.UnsafeFPMath);
497
498    // fold (fneg (fsub 0, B)) -> B
499    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
500      if (N0CFP->getValueAPF().isZero())
501        return Op.getOperand(1);
502
503    // fold (fneg (fsub A, B)) -> (fsub B, A)
504    return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(),
505                       Op.getOperand(1), Op.getOperand(0));
506
507  case ISD::FMUL:
508  case ISD::FDIV:
509    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
510
511    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519
520    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
521    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
522                       Op.getOperand(0),
523                       GetNegatedExpression(Op.getOperand(1), DAG,
524                                            LegalOperations, Depth+1));
525
526  case ISD::FP_EXTEND:
527  case ISD::FSIN:
528    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), Op.getValueType(),
529                       GetNegatedExpression(Op.getOperand(0), DAG,
530                                            LegalOperations, Depth+1));
531  case ISD::FP_ROUND:
532      return DAG.getNode(ISD::FP_ROUND, Op.getDebugLoc(), Op.getValueType(),
533                         GetNegatedExpression(Op.getOperand(0), DAG,
534                                              LegalOperations, Depth+1),
535                         Op.getOperand(1));
536  }
537}
538
539
540// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
541// that selects between the values 1 and 0, making it equivalent to a setcc.
542// Also, set the incoming LHS, RHS, and CC references to the appropriate
543// nodes based on the type of node we are checking.  This simplifies life a
544// bit for the callers.
545static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
546                              SDValue &CC) {
547  if (N.getOpcode() == ISD::SETCC) {
548    LHS = N.getOperand(0);
549    RHS = N.getOperand(1);
550    CC  = N.getOperand(2);
551    return true;
552  }
553  if (N.getOpcode() == ISD::SELECT_CC &&
554      N.getOperand(2).getOpcode() == ISD::Constant &&
555      N.getOperand(3).getOpcode() == ISD::Constant &&
556      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
557      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
558    LHS = N.getOperand(0);
559    RHS = N.getOperand(1);
560    CC  = N.getOperand(4);
561    return true;
562  }
563  return false;
564}
565
566// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
567// one use.  If this is true, it allows the users to invert the operation for
568// free when it is profitable to do so.
569static bool isOneUseSetCC(SDValue N) {
570  SDValue N0, N1, N2;
571  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
572    return true;
573  return false;
574}
575
576SDValue DAGCombiner::ReassociateOps(unsigned Opc, DebugLoc DL,
577                                    SDValue N0, SDValue N1) {
578  EVT VT = N0.getValueType();
579  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
580    if (isa<ConstantSDNode>(N1)) {
581      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
582      SDValue OpNode =
583        DAG.FoldConstantArithmetic(Opc, VT,
584                                   cast<ConstantSDNode>(N0.getOperand(1)),
585                                   cast<ConstantSDNode>(N1));
586      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
587    }
588    if (N0.hasOneUse()) {
589      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
590      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
591                                   N0.getOperand(0), N1);
592      AddToWorkList(OpNode.getNode());
593      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
594    }
595  }
596
597  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
598    if (isa<ConstantSDNode>(N0)) {
599      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
600      SDValue OpNode =
601        DAG.FoldConstantArithmetic(Opc, VT,
602                                   cast<ConstantSDNode>(N1.getOperand(1)),
603                                   cast<ConstantSDNode>(N0));
604      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
605    }
606    if (N1.hasOneUse()) {
607      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
608      SDValue OpNode = DAG.getNode(Opc, N0.getDebugLoc(), VT,
609                                   N1.getOperand(0), N0);
610      AddToWorkList(OpNode.getNode());
611      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
612    }
613  }
614
615  return SDValue();
616}
617
618SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
619                               bool AddTo) {
620  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
621  ++NodesCombined;
622  DEBUG(dbgs() << "\nReplacing.1 ";
623        N->dump(&DAG);
624        dbgs() << "\nWith: ";
625        To[0].getNode()->dump(&DAG);
626        dbgs() << " and " << NumTo-1 << " other values\n";
627        for (unsigned i = 0, e = NumTo; i != e; ++i)
628          assert((!To[i].getNode() ||
629                  N->getValueType(i) == To[i].getValueType()) &&
630                 "Cannot combine value to value of different type!"));
631  WorkListRemover DeadNodes(*this);
632  DAG.ReplaceAllUsesWith(N, To);
633  if (AddTo) {
634    // Push the new nodes and any users onto the worklist
635    for (unsigned i = 0, e = NumTo; i != e; ++i) {
636      if (To[i].getNode()) {
637        AddToWorkList(To[i].getNode());
638        AddUsersToWorkList(To[i].getNode());
639      }
640    }
641  }
642
643  // Finally, if the node is now dead, remove it from the graph.  The node
644  // may not be dead if the replacement process recursively simplified to
645  // something else needing this node.
646  if (N->use_empty()) {
647    // Nodes can be reintroduced into the worklist.  Make sure we do not
648    // process a node that has been replaced.
649    removeFromWorkList(N);
650
651    // Finally, since the node is now dead, remove it from the graph.
652    DAG.DeleteNode(N);
653  }
654  return SDValue(N, 0);
655}
656
657void DAGCombiner::
658CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
659  // Replace all uses.  If any nodes become isomorphic to other nodes and
660  // are deleted, make sure to remove them from our worklist.
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
663
664  // Push the new node and any (possibly new) users onto the worklist.
665  AddToWorkList(TLO.New.getNode());
666  AddUsersToWorkList(TLO.New.getNode());
667
668  // Finally, if the node is now dead, remove it from the graph.  The node
669  // may not be dead if the replacement process recursively simplified to
670  // something else needing this node.
671  if (TLO.Old.getNode()->use_empty()) {
672    removeFromWorkList(TLO.Old.getNode());
673
674    // If the operands of this node are only used by the node, they will now
675    // be dead.  Make sure to visit them first to delete dead nodes early.
676    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
677      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
678        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
679
680    DAG.DeleteNode(TLO.Old.getNode());
681  }
682}
683
684/// SimplifyDemandedBits - Check the specified integer node value to see if
685/// it can be simplified or if things it uses can be simplified by bit
686/// propagation.  If so, return true.
687bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
688  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
689  APInt KnownZero, KnownOne;
690  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
691    return false;
692
693  // Revisit the node.
694  AddToWorkList(Op.getNode());
695
696  // Replace the old value with the new one.
697  ++NodesCombined;
698  DEBUG(dbgs() << "\nReplacing.2 ";
699        TLO.Old.getNode()->dump(&DAG);
700        dbgs() << "\nWith: ";
701        TLO.New.getNode()->dump(&DAG);
702        dbgs() << '\n');
703
704  CommitTargetLoweringOpt(TLO);
705  return true;
706}
707
708void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
709  DebugLoc dl = Load->getDebugLoc();
710  EVT VT = Load->getValueType(0);
711  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
712
713  DEBUG(dbgs() << "\nReplacing.9 ";
714        Load->dump(&DAG);
715        dbgs() << "\nWith: ";
716        Trunc.getNode()->dump(&DAG);
717        dbgs() << '\n');
718  WorkListRemover DeadNodes(*this);
719  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
720  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
721  removeFromWorkList(Load);
722  DAG.DeleteNode(Load);
723  AddToWorkList(Trunc.getNode());
724}
725
726SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
727  Replace = false;
728  DebugLoc dl = Op.getDebugLoc();
729  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
730    EVT MemVT = LD->getMemoryVT();
731    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
732      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
733                                                  : ISD::EXTLOAD)
734      : LD->getExtensionType();
735    Replace = true;
736    return DAG.getExtLoad(ExtType, dl, PVT,
737                          LD->getChain(), LD->getBasePtr(),
738                          LD->getPointerInfo(),
739                          MemVT, LD->isVolatile(),
740                          LD->isNonTemporal(), LD->getAlignment());
741  }
742
743  unsigned Opc = Op.getOpcode();
744  switch (Opc) {
745  default: break;
746  case ISD::AssertSext:
747    return DAG.getNode(ISD::AssertSext, dl, PVT,
748                       SExtPromoteOperand(Op.getOperand(0), PVT),
749                       Op.getOperand(1));
750  case ISD::AssertZext:
751    return DAG.getNode(ISD::AssertZext, dl, PVT,
752                       ZExtPromoteOperand(Op.getOperand(0), PVT),
753                       Op.getOperand(1));
754  case ISD::Constant: {
755    unsigned ExtOpc =
756      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
757    return DAG.getNode(ExtOpc, dl, PVT, Op);
758  }
759  }
760
761  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
762    return SDValue();
763  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
764}
765
766SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
767  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
768    return SDValue();
769  EVT OldVT = Op.getValueType();
770  DebugLoc dl = Op.getDebugLoc();
771  bool Replace = false;
772  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
773  if (NewOp.getNode() == 0)
774    return SDValue();
775  AddToWorkList(NewOp.getNode());
776
777  if (Replace)
778    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
779  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
780                     DAG.getValueType(OldVT));
781}
782
783SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
784  EVT OldVT = Op.getValueType();
785  DebugLoc dl = Op.getDebugLoc();
786  bool Replace = false;
787  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
788  if (NewOp.getNode() == 0)
789    return SDValue();
790  AddToWorkList(NewOp.getNode());
791
792  if (Replace)
793    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
794  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
795}
796
797/// PromoteIntBinOp - Promote the specified integer binary operation if the
798/// target indicates it is beneficial. e.g. On x86, it's usually better to
799/// promote i16 operations to i32 since i16 instructions are longer.
800SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
801  if (!LegalOperations)
802    return SDValue();
803
804  EVT VT = Op.getValueType();
805  if (VT.isVector() || !VT.isInteger())
806    return SDValue();
807
808  // If operation type is 'undesirable', e.g. i16 on x86, consider
809  // promoting it.
810  unsigned Opc = Op.getOpcode();
811  if (TLI.isTypeDesirableForOp(Opc, VT))
812    return SDValue();
813
814  EVT PVT = VT;
815  // Consult target whether it is a good idea to promote this operation and
816  // what's the right type to promote it to.
817  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
818    assert(PVT != VT && "Don't know what type to promote to!");
819
820    bool Replace0 = false;
821    SDValue N0 = Op.getOperand(0);
822    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
823    if (NN0.getNode() == 0)
824      return SDValue();
825
826    bool Replace1 = false;
827    SDValue N1 = Op.getOperand(1);
828    SDValue NN1;
829    if (N0 == N1)
830      NN1 = NN0;
831    else {
832      NN1 = PromoteOperand(N1, PVT, Replace1);
833      if (NN1.getNode() == 0)
834        return SDValue();
835    }
836
837    AddToWorkList(NN0.getNode());
838    if (NN1.getNode())
839      AddToWorkList(NN1.getNode());
840
841    if (Replace0)
842      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
843    if (Replace1)
844      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
845
846    DEBUG(dbgs() << "\nPromoting ";
847          Op.getNode()->dump(&DAG));
848    DebugLoc dl = Op.getDebugLoc();
849    return DAG.getNode(ISD::TRUNCATE, dl, VT,
850                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
851  }
852  return SDValue();
853}
854
855/// PromoteIntShiftOp - Promote the specified integer shift operation if the
856/// target indicates it is beneficial. e.g. On x86, it's usually better to
857/// promote i16 operations to i32 since i16 instructions are longer.
858SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
859  if (!LegalOperations)
860    return SDValue();
861
862  EVT VT = Op.getValueType();
863  if (VT.isVector() || !VT.isInteger())
864    return SDValue();
865
866  // If operation type is 'undesirable', e.g. i16 on x86, consider
867  // promoting it.
868  unsigned Opc = Op.getOpcode();
869  if (TLI.isTypeDesirableForOp(Opc, VT))
870    return SDValue();
871
872  EVT PVT = VT;
873  // Consult target whether it is a good idea to promote this operation and
874  // what's the right type to promote it to.
875  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
876    assert(PVT != VT && "Don't know what type to promote to!");
877
878    bool Replace = false;
879    SDValue N0 = Op.getOperand(0);
880    if (Opc == ISD::SRA)
881      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
882    else if (Opc == ISD::SRL)
883      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
884    else
885      N0 = PromoteOperand(N0, PVT, Replace);
886    if (N0.getNode() == 0)
887      return SDValue();
888
889    AddToWorkList(N0.getNode());
890    if (Replace)
891      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
892
893    DEBUG(dbgs() << "\nPromoting ";
894          Op.getNode()->dump(&DAG));
895    DebugLoc dl = Op.getDebugLoc();
896    return DAG.getNode(ISD::TRUNCATE, dl, VT,
897                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
898  }
899  return SDValue();
900}
901
902SDValue DAGCombiner::PromoteExtend(SDValue Op) {
903  if (!LegalOperations)
904    return SDValue();
905
906  EVT VT = Op.getValueType();
907  if (VT.isVector() || !VT.isInteger())
908    return SDValue();
909
910  // If operation type is 'undesirable', e.g. i16 on x86, consider
911  // promoting it.
912  unsigned Opc = Op.getOpcode();
913  if (TLI.isTypeDesirableForOp(Opc, VT))
914    return SDValue();
915
916  EVT PVT = VT;
917  // Consult target whether it is a good idea to promote this operation and
918  // what's the right type to promote it to.
919  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
920    assert(PVT != VT && "Don't know what type to promote to!");
921    // fold (aext (aext x)) -> (aext x)
922    // fold (aext (zext x)) -> (zext x)
923    // fold (aext (sext x)) -> (sext x)
924    DEBUG(dbgs() << "\nPromoting ";
925          Op.getNode()->dump(&DAG));
926    return DAG.getNode(Op.getOpcode(), Op.getDebugLoc(), VT, Op.getOperand(0));
927  }
928  return SDValue();
929}
930
931bool DAGCombiner::PromoteLoad(SDValue Op) {
932  if (!LegalOperations)
933    return false;
934
935  EVT VT = Op.getValueType();
936  if (VT.isVector() || !VT.isInteger())
937    return false;
938
939  // If operation type is 'undesirable', e.g. i16 on x86, consider
940  // promoting it.
941  unsigned Opc = Op.getOpcode();
942  if (TLI.isTypeDesirableForOp(Opc, VT))
943    return false;
944
945  EVT PVT = VT;
946  // Consult target whether it is a good idea to promote this operation and
947  // what's the right type to promote it to.
948  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
949    assert(PVT != VT && "Don't know what type to promote to!");
950
951    DebugLoc dl = Op.getDebugLoc();
952    SDNode *N = Op.getNode();
953    LoadSDNode *LD = cast<LoadSDNode>(N);
954    EVT MemVT = LD->getMemoryVT();
955    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
956      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
957                                                  : ISD::EXTLOAD)
958      : LD->getExtensionType();
959    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
960                                   LD->getChain(), LD->getBasePtr(),
961                                   LD->getPointerInfo(),
962                                   MemVT, LD->isVolatile(),
963                                   LD->isNonTemporal(), LD->getAlignment());
964    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
965
966    DEBUG(dbgs() << "\nPromoting ";
967          N->dump(&DAG);
968          dbgs() << "\nTo: ";
969          Result.getNode()->dump(&DAG);
970          dbgs() << '\n');
971    WorkListRemover DeadNodes(*this);
972    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
973    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
974    removeFromWorkList(N);
975    DAG.DeleteNode(N);
976    AddToWorkList(Result.getNode());
977    return true;
978  }
979  return false;
980}
981
982
983//===----------------------------------------------------------------------===//
984//  Main DAG Combiner implementation
985//===----------------------------------------------------------------------===//
986
987void DAGCombiner::Run(CombineLevel AtLevel) {
988  // set the instance variables, so that the various visit routines may use it.
989  Level = AtLevel;
990  LegalOperations = Level >= AfterLegalizeVectorOps;
991  LegalTypes = Level >= AfterLegalizeTypes;
992
993  // Add all the dag nodes to the worklist.
994  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
995       E = DAG.allnodes_end(); I != E; ++I)
996    AddToWorkList(I);
997
998  // Create a dummy node (which is not added to allnodes), that adds a reference
999  // to the root node, preventing it from being deleted, and tracking any
1000  // changes of the root.
1001  HandleSDNode Dummy(DAG.getRoot());
1002
1003  // The root of the dag may dangle to deleted nodes until the dag combiner is
1004  // done.  Set it to null to avoid confusion.
1005  DAG.setRoot(SDValue());
1006
1007  // while the worklist isn't empty, find a node and
1008  // try and combine it.
1009  while (!WorkListContents.empty()) {
1010    SDNode *N;
1011    // The WorkListOrder holds the SDNodes in order, but it may contain duplicates.
1012    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1013    // worklist *should* contain, and check the node we want to visit is should
1014    // actually be visited.
1015    do {
1016      N = WorkListOrder.pop_back_val();
1017    } while (!WorkListContents.erase(N));
1018
1019    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1020    // N is deleted from the DAG, since they too may now be dead or may have a
1021    // reduced number of uses, allowing other xforms.
1022    if (N->use_empty() && N != &Dummy) {
1023      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1024        AddToWorkList(N->getOperand(i).getNode());
1025
1026      DAG.DeleteNode(N);
1027      continue;
1028    }
1029
1030    SDValue RV = combine(N);
1031
1032    if (RV.getNode() == 0)
1033      continue;
1034
1035    ++NodesCombined;
1036
1037    // If we get back the same node we passed in, rather than a new node or
1038    // zero, we know that the node must have defined multiple values and
1039    // CombineTo was used.  Since CombineTo takes care of the worklist
1040    // mechanics for us, we have no work to do in this case.
1041    if (RV.getNode() == N)
1042      continue;
1043
1044    assert(N->getOpcode() != ISD::DELETED_NODE &&
1045           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1046           "Node was deleted but visit returned new node!");
1047
1048    DEBUG(dbgs() << "\nReplacing.3 ";
1049          N->dump(&DAG);
1050          dbgs() << "\nWith: ";
1051          RV.getNode()->dump(&DAG);
1052          dbgs() << '\n');
1053
1054    // Transfer debug value.
1055    DAG.TransferDbgValues(SDValue(N, 0), RV);
1056    WorkListRemover DeadNodes(*this);
1057    if (N->getNumValues() == RV.getNode()->getNumValues())
1058      DAG.ReplaceAllUsesWith(N, RV.getNode());
1059    else {
1060      assert(N->getValueType(0) == RV.getValueType() &&
1061             N->getNumValues() == 1 && "Type mismatch");
1062      SDValue OpV = RV;
1063      DAG.ReplaceAllUsesWith(N, &OpV);
1064    }
1065
1066    // Push the new node and any users onto the worklist
1067    AddToWorkList(RV.getNode());
1068    AddUsersToWorkList(RV.getNode());
1069
1070    // Add any uses of the old node to the worklist in case this node is the
1071    // last one that uses them.  They may become dead after this node is
1072    // deleted.
1073    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1074      AddToWorkList(N->getOperand(i).getNode());
1075
1076    // Finally, if the node is now dead, remove it from the graph.  The node
1077    // may not be dead if the replacement process recursively simplified to
1078    // something else needing this node.
1079    if (N->use_empty()) {
1080      // Nodes can be reintroduced into the worklist.  Make sure we do not
1081      // process a node that has been replaced.
1082      removeFromWorkList(N);
1083
1084      // Finally, since the node is now dead, remove it from the graph.
1085      DAG.DeleteNode(N);
1086    }
1087  }
1088
1089  // If the root changed (e.g. it was a dead load, update the root).
1090  DAG.setRoot(Dummy.getValue());
1091  DAG.RemoveDeadNodes();
1092}
1093
1094SDValue DAGCombiner::visit(SDNode *N) {
1095  switch (N->getOpcode()) {
1096  default: break;
1097  case ISD::TokenFactor:        return visitTokenFactor(N);
1098  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1099  case ISD::ADD:                return visitADD(N);
1100  case ISD::SUB:                return visitSUB(N);
1101  case ISD::ADDC:               return visitADDC(N);
1102  case ISD::SUBC:               return visitSUBC(N);
1103  case ISD::ADDE:               return visitADDE(N);
1104  case ISD::SUBE:               return visitSUBE(N);
1105  case ISD::MUL:                return visitMUL(N);
1106  case ISD::SDIV:               return visitSDIV(N);
1107  case ISD::UDIV:               return visitUDIV(N);
1108  case ISD::SREM:               return visitSREM(N);
1109  case ISD::UREM:               return visitUREM(N);
1110  case ISD::MULHU:              return visitMULHU(N);
1111  case ISD::MULHS:              return visitMULHS(N);
1112  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1113  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1114  case ISD::SMULO:              return visitSMULO(N);
1115  case ISD::UMULO:              return visitUMULO(N);
1116  case ISD::SDIVREM:            return visitSDIVREM(N);
1117  case ISD::UDIVREM:            return visitUDIVREM(N);
1118  case ISD::AND:                return visitAND(N);
1119  case ISD::OR:                 return visitOR(N);
1120  case ISD::XOR:                return visitXOR(N);
1121  case ISD::SHL:                return visitSHL(N);
1122  case ISD::SRA:                return visitSRA(N);
1123  case ISD::SRL:                return visitSRL(N);
1124  case ISD::CTLZ:               return visitCTLZ(N);
1125  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1126  case ISD::CTTZ:               return visitCTTZ(N);
1127  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1128  case ISD::CTPOP:              return visitCTPOP(N);
1129  case ISD::SELECT:             return visitSELECT(N);
1130  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1131  case ISD::SETCC:              return visitSETCC(N);
1132  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1133  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1134  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1135  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1136  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1137  case ISD::BITCAST:            return visitBITCAST(N);
1138  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1139  case ISD::FADD:               return visitFADD(N);
1140  case ISD::FSUB:               return visitFSUB(N);
1141  case ISD::FMUL:               return visitFMUL(N);
1142  case ISD::FMA:                return visitFMA(N);
1143  case ISD::FDIV:               return visitFDIV(N);
1144  case ISD::FREM:               return visitFREM(N);
1145  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1146  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1147  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1148  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1149  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1150  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1151  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1152  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1153  case ISD::FNEG:               return visitFNEG(N);
1154  case ISD::FABS:               return visitFABS(N);
1155  case ISD::FFLOOR:             return visitFFLOOR(N);
1156  case ISD::FCEIL:              return visitFCEIL(N);
1157  case ISD::FTRUNC:             return visitFTRUNC(N);
1158  case ISD::BRCOND:             return visitBRCOND(N);
1159  case ISD::BR_CC:              return visitBR_CC(N);
1160  case ISD::LOAD:               return visitLOAD(N);
1161  case ISD::STORE:              return visitSTORE(N);
1162  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1163  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1164  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1165  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1166  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1167  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1168  case ISD::MEMBARRIER:         return visitMEMBARRIER(N);
1169  }
1170  return SDValue();
1171}
1172
1173SDValue DAGCombiner::combine(SDNode *N) {
1174  SDValue RV = visit(N);
1175
1176  // If nothing happened, try a target-specific DAG combine.
1177  if (RV.getNode() == 0) {
1178    assert(N->getOpcode() != ISD::DELETED_NODE &&
1179           "Node was deleted but visit returned NULL!");
1180
1181    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1182        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1183
1184      // Expose the DAG combiner to the target combiner impls.
1185      TargetLowering::DAGCombinerInfo
1186        DagCombineInfo(DAG, Level, false, this);
1187
1188      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1189    }
1190  }
1191
1192  // If nothing happened still, try promoting the operation.
1193  if (RV.getNode() == 0) {
1194    switch (N->getOpcode()) {
1195    default: break;
1196    case ISD::ADD:
1197    case ISD::SUB:
1198    case ISD::MUL:
1199    case ISD::AND:
1200    case ISD::OR:
1201    case ISD::XOR:
1202      RV = PromoteIntBinOp(SDValue(N, 0));
1203      break;
1204    case ISD::SHL:
1205    case ISD::SRA:
1206    case ISD::SRL:
1207      RV = PromoteIntShiftOp(SDValue(N, 0));
1208      break;
1209    case ISD::SIGN_EXTEND:
1210    case ISD::ZERO_EXTEND:
1211    case ISD::ANY_EXTEND:
1212      RV = PromoteExtend(SDValue(N, 0));
1213      break;
1214    case ISD::LOAD:
1215      if (PromoteLoad(SDValue(N, 0)))
1216        RV = SDValue(N, 0);
1217      break;
1218    }
1219  }
1220
1221  // If N is a commutative binary node, try commuting it to enable more
1222  // sdisel CSE.
1223  if (RV.getNode() == 0 &&
1224      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1225      N->getNumValues() == 1) {
1226    SDValue N0 = N->getOperand(0);
1227    SDValue N1 = N->getOperand(1);
1228
1229    // Constant operands are canonicalized to RHS.
1230    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1231      SDValue Ops[] = { N1, N0 };
1232      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1233                                            Ops, 2);
1234      if (CSENode)
1235        return SDValue(CSENode, 0);
1236    }
1237  }
1238
1239  return RV;
1240}
1241
1242/// getInputChainForNode - Given a node, return its input chain if it has one,
1243/// otherwise return a null sd operand.
1244static SDValue getInputChainForNode(SDNode *N) {
1245  if (unsigned NumOps = N->getNumOperands()) {
1246    if (N->getOperand(0).getValueType() == MVT::Other)
1247      return N->getOperand(0);
1248    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1249      return N->getOperand(NumOps-1);
1250    for (unsigned i = 1; i < NumOps-1; ++i)
1251      if (N->getOperand(i).getValueType() == MVT::Other)
1252        return N->getOperand(i);
1253  }
1254  return SDValue();
1255}
1256
1257SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1258  // If N has two operands, where one has an input chain equal to the other,
1259  // the 'other' chain is redundant.
1260  if (N->getNumOperands() == 2) {
1261    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1262      return N->getOperand(0);
1263    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1264      return N->getOperand(1);
1265  }
1266
1267  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1268  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1269  SmallPtrSet<SDNode*, 16> SeenOps;
1270  bool Changed = false;             // If we should replace this token factor.
1271
1272  // Start out with this token factor.
1273  TFs.push_back(N);
1274
1275  // Iterate through token factors.  The TFs grows when new token factors are
1276  // encountered.
1277  for (unsigned i = 0; i < TFs.size(); ++i) {
1278    SDNode *TF = TFs[i];
1279
1280    // Check each of the operands.
1281    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1282      SDValue Op = TF->getOperand(i);
1283
1284      switch (Op.getOpcode()) {
1285      case ISD::EntryToken:
1286        // Entry tokens don't need to be added to the list. They are
1287        // rededundant.
1288        Changed = true;
1289        break;
1290
1291      case ISD::TokenFactor:
1292        if (Op.hasOneUse() &&
1293            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1294          // Queue up for processing.
1295          TFs.push_back(Op.getNode());
1296          // Clean up in case the token factor is removed.
1297          AddToWorkList(Op.getNode());
1298          Changed = true;
1299          break;
1300        }
1301        // Fall thru
1302
1303      default:
1304        // Only add if it isn't already in the list.
1305        if (SeenOps.insert(Op.getNode()))
1306          Ops.push_back(Op);
1307        else
1308          Changed = true;
1309        break;
1310      }
1311    }
1312  }
1313
1314  SDValue Result;
1315
1316  // If we've change things around then replace token factor.
1317  if (Changed) {
1318    if (Ops.empty()) {
1319      // The entry token is the only possible outcome.
1320      Result = DAG.getEntryNode();
1321    } else {
1322      // New and improved token factor.
1323      Result = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
1324                           MVT::Other, &Ops[0], Ops.size());
1325    }
1326
1327    // Don't add users to work list.
1328    return CombineTo(N, Result, false);
1329  }
1330
1331  return Result;
1332}
1333
1334/// MERGE_VALUES can always be eliminated.
1335SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1336  WorkListRemover DeadNodes(*this);
1337  // Replacing results may cause a different MERGE_VALUES to suddenly
1338  // be CSE'd with N, and carry its uses with it. Iterate until no
1339  // uses remain, to ensure that the node can be safely deleted.
1340  // First add the users of this node to the work list so that they
1341  // can be tried again once they have new operands.
1342  AddUsersToWorkList(N);
1343  do {
1344    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1345      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1346  } while (!N->use_empty());
1347  removeFromWorkList(N);
1348  DAG.DeleteNode(N);
1349  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1350}
1351
1352static
1353SDValue combineShlAddConstant(DebugLoc DL, SDValue N0, SDValue N1,
1354                              SelectionDAG &DAG) {
1355  EVT VT = N0.getValueType();
1356  SDValue N00 = N0.getOperand(0);
1357  SDValue N01 = N0.getOperand(1);
1358  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1359
1360  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1361      isa<ConstantSDNode>(N00.getOperand(1))) {
1362    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1363    N0 = DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
1364                     DAG.getNode(ISD::SHL, N00.getDebugLoc(), VT,
1365                                 N00.getOperand(0), N01),
1366                     DAG.getNode(ISD::SHL, N01.getDebugLoc(), VT,
1367                                 N00.getOperand(1), N01));
1368    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1369  }
1370
1371  return SDValue();
1372}
1373
1374SDValue DAGCombiner::visitADD(SDNode *N) {
1375  SDValue N0 = N->getOperand(0);
1376  SDValue N1 = N->getOperand(1);
1377  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1378  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1379  EVT VT = N0.getValueType();
1380
1381  // fold vector ops
1382  if (VT.isVector()) {
1383    SDValue FoldedVOp = SimplifyVBinOp(N);
1384    if (FoldedVOp.getNode()) return FoldedVOp;
1385
1386    // fold (add x, 0) -> x, vector edition
1387    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1388      return N0;
1389    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1390      return N1;
1391  }
1392
1393  // fold (add x, undef) -> undef
1394  if (N0.getOpcode() == ISD::UNDEF)
1395    return N0;
1396  if (N1.getOpcode() == ISD::UNDEF)
1397    return N1;
1398  // fold (add c1, c2) -> c1+c2
1399  if (N0C && N1C)
1400    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1401  // canonicalize constant to RHS
1402  if (N0C && !N1C)
1403    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1, N0);
1404  // fold (add x, 0) -> x
1405  if (N1C && N1C->isNullValue())
1406    return N0;
1407  // fold (add Sym, c) -> Sym+c
1408  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1409    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1410        GA->getOpcode() == ISD::GlobalAddress)
1411      return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1412                                  GA->getOffset() +
1413                                    (uint64_t)N1C->getSExtValue());
1414  // fold ((c1-A)+c2) -> (c1+c2)-A
1415  if (N1C && N0.getOpcode() == ISD::SUB)
1416    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1417      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1418                         DAG.getConstant(N1C->getAPIntValue()+
1419                                         N0C->getAPIntValue(), VT),
1420                         N0.getOperand(1));
1421  // reassociate add
1422  SDValue RADD = ReassociateOps(ISD::ADD, N->getDebugLoc(), N0, N1);
1423  if (RADD.getNode() != 0)
1424    return RADD;
1425  // fold ((0-A) + B) -> B-A
1426  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1427      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1428    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1, N0.getOperand(1));
1429  // fold (A + (0-B)) -> A-B
1430  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1431      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1432    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1.getOperand(1));
1433  // fold (A+(B-A)) -> B
1434  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1435    return N1.getOperand(0);
1436  // fold ((B-A)+A) -> B
1437  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1438    return N0.getOperand(0);
1439  // fold (A+(B-(A+C))) to (B-C)
1440  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1441      N0 == N1.getOperand(1).getOperand(0))
1442    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1443                       N1.getOperand(1).getOperand(1));
1444  // fold (A+(B-(C+A))) to (B-C)
1445  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1446      N0 == N1.getOperand(1).getOperand(1))
1447    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1.getOperand(0),
1448                       N1.getOperand(1).getOperand(0));
1449  // fold (A+((B-A)+or-C)) to (B+or-C)
1450  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1451      N1.getOperand(0).getOpcode() == ISD::SUB &&
1452      N0 == N1.getOperand(0).getOperand(1))
1453    return DAG.getNode(N1.getOpcode(), N->getDebugLoc(), VT,
1454                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1455
1456  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1457  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1458    SDValue N00 = N0.getOperand(0);
1459    SDValue N01 = N0.getOperand(1);
1460    SDValue N10 = N1.getOperand(0);
1461    SDValue N11 = N1.getOperand(1);
1462
1463    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1464      return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1465                         DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT, N00, N10),
1466                         DAG.getNode(ISD::ADD, N1.getDebugLoc(), VT, N01, N11));
1467  }
1468
1469  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1470    return SDValue(N, 0);
1471
1472  // fold (a+b) -> (a|b) iff a and b share no bits.
1473  if (VT.isInteger() && !VT.isVector()) {
1474    APInt LHSZero, LHSOne;
1475    APInt RHSZero, RHSOne;
1476    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1477
1478    if (LHSZero.getBoolValue()) {
1479      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1480
1481      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1482      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1483      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1484        return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1);
1485    }
1486  }
1487
1488  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1489  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1490    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N0, N1, DAG);
1491    if (Result.getNode()) return Result;
1492  }
1493  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1494    SDValue Result = combineShlAddConstant(N->getDebugLoc(), N1, N0, DAG);
1495    if (Result.getNode()) return Result;
1496  }
1497
1498  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1499  if (N1.getOpcode() == ISD::SHL &&
1500      N1.getOperand(0).getOpcode() == ISD::SUB)
1501    if (ConstantSDNode *C =
1502          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1503      if (C->getAPIntValue() == 0)
1504        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0,
1505                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1506                                       N1.getOperand(0).getOperand(1),
1507                                       N1.getOperand(1)));
1508  if (N0.getOpcode() == ISD::SHL &&
1509      N0.getOperand(0).getOpcode() == ISD::SUB)
1510    if (ConstantSDNode *C =
1511          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1512      if (C->getAPIntValue() == 0)
1513        return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N1,
1514                           DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1515                                       N0.getOperand(0).getOperand(1),
1516                                       N0.getOperand(1)));
1517
1518  if (N1.getOpcode() == ISD::AND) {
1519    SDValue AndOp0 = N1.getOperand(0);
1520    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1521    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1522    unsigned DestBits = VT.getScalarType().getSizeInBits();
1523
1524    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1525    // and similar xforms where the inner op is either ~0 or 0.
1526    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1527      DebugLoc DL = N->getDebugLoc();
1528      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1529    }
1530  }
1531
1532  // add (sext i1), X -> sub X, (zext i1)
1533  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1534      N0.getOperand(0).getValueType() == MVT::i1 &&
1535      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1536    DebugLoc DL = N->getDebugLoc();
1537    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1538    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1539  }
1540
1541  return SDValue();
1542}
1543
1544SDValue DAGCombiner::visitADDC(SDNode *N) {
1545  SDValue N0 = N->getOperand(0);
1546  SDValue N1 = N->getOperand(1);
1547  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1548  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1549  EVT VT = N0.getValueType();
1550
1551  // If the flag result is dead, turn this into an ADD.
1552  if (!N->hasAnyUseOfValue(1))
1553    return CombineTo(N, DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N1),
1554                     DAG.getNode(ISD::CARRY_FALSE,
1555                                 N->getDebugLoc(), MVT::Glue));
1556
1557  // canonicalize constant to RHS.
1558  if (N0C && !N1C)
1559    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N1, N0);
1560
1561  // fold (addc x, 0) -> x + no carry out
1562  if (N1C && N1C->isNullValue())
1563    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1564                                        N->getDebugLoc(), MVT::Glue));
1565
1566  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1567  APInt LHSZero, LHSOne;
1568  APInt RHSZero, RHSOne;
1569  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1570
1571  if (LHSZero.getBoolValue()) {
1572    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1573
1574    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1575    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1576    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1577      return CombineTo(N, DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N1),
1578                       DAG.getNode(ISD::CARRY_FALSE,
1579                                   N->getDebugLoc(), MVT::Glue));
1580  }
1581
1582  return SDValue();
1583}
1584
1585SDValue DAGCombiner::visitADDE(SDNode *N) {
1586  SDValue N0 = N->getOperand(0);
1587  SDValue N1 = N->getOperand(1);
1588  SDValue CarryIn = N->getOperand(2);
1589  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1590  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1591
1592  // canonicalize constant to RHS
1593  if (N0C && !N1C)
1594    return DAG.getNode(ISD::ADDE, N->getDebugLoc(), N->getVTList(),
1595                       N1, N0, CarryIn);
1596
1597  // fold (adde x, y, false) -> (addc x, y)
1598  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1599    return DAG.getNode(ISD::ADDC, N->getDebugLoc(), N->getVTList(), N0, N1);
1600
1601  return SDValue();
1602}
1603
1604// Since it may not be valid to emit a fold to zero for vector initializers
1605// check if we can before folding.
1606static SDValue tryFoldToZero(DebugLoc DL, const TargetLowering &TLI, EVT VT,
1607                             SelectionDAG &DAG, bool LegalOperations) {
1608  if (!VT.isVector()) {
1609    return DAG.getConstant(0, VT);
1610  }
1611  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1612    // Produce a vector of zeros.
1613    SDValue El = DAG.getConstant(0, VT.getVectorElementType());
1614    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1615    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1616      &Ops[0], Ops.size());
1617  }
1618  return SDValue();
1619}
1620
1621SDValue DAGCombiner::visitSUB(SDNode *N) {
1622  SDValue N0 = N->getOperand(0);
1623  SDValue N1 = N->getOperand(1);
1624  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1625  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1626  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1627    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1628  EVT VT = N0.getValueType();
1629
1630  // fold vector ops
1631  if (VT.isVector()) {
1632    SDValue FoldedVOp = SimplifyVBinOp(N);
1633    if (FoldedVOp.getNode()) return FoldedVOp;
1634
1635    // fold (sub x, 0) -> x, vector edition
1636    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1637      return N0;
1638  }
1639
1640  // fold (sub x, x) -> 0
1641  // FIXME: Refactor this and xor and other similar operations together.
1642  if (N0 == N1)
1643    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
1644  // fold (sub c1, c2) -> c1-c2
1645  if (N0C && N1C)
1646    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1647  // fold (sub x, c) -> (add x, -c)
1648  if (N1C)
1649    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0,
1650                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1651  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1652  if (N0C && N0C->isAllOnesValue())
1653    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
1654  // fold A-(A-B) -> B
1655  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1656    return N1.getOperand(1);
1657  // fold (A+B)-A -> B
1658  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1659    return N0.getOperand(1);
1660  // fold (A+B)-B -> A
1661  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1662    return N0.getOperand(0);
1663  // fold C2-(A+C1) -> (C2-C1)-A
1664  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1665    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1666                                   VT);
1667    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, NewC,
1668                       N1.getOperand(0));
1669  }
1670  // fold ((A+(B+or-C))-B) -> A+or-C
1671  if (N0.getOpcode() == ISD::ADD &&
1672      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1673       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1674      N0.getOperand(1).getOperand(0) == N1)
1675    return DAG.getNode(N0.getOperand(1).getOpcode(), N->getDebugLoc(), VT,
1676                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1677  // fold ((A+(C+B))-B) -> A+C
1678  if (N0.getOpcode() == ISD::ADD &&
1679      N0.getOperand(1).getOpcode() == ISD::ADD &&
1680      N0.getOperand(1).getOperand(1) == N1)
1681    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1682                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1683  // fold ((A-(B-C))-C) -> A-B
1684  if (N0.getOpcode() == ISD::SUB &&
1685      N0.getOperand(1).getOpcode() == ISD::SUB &&
1686      N0.getOperand(1).getOperand(1) == N1)
1687    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1688                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1689
1690  // If either operand of a sub is undef, the result is undef
1691  if (N0.getOpcode() == ISD::UNDEF)
1692    return N0;
1693  if (N1.getOpcode() == ISD::UNDEF)
1694    return N1;
1695
1696  // If the relocation model supports it, consider symbol offsets.
1697  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1698    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1699      // fold (sub Sym, c) -> Sym-c
1700      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1701        return DAG.getGlobalAddress(GA->getGlobal(), N1C->getDebugLoc(), VT,
1702                                    GA->getOffset() -
1703                                      (uint64_t)N1C->getSExtValue());
1704      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1705      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1706        if (GA->getGlobal() == GB->getGlobal())
1707          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1708                                 VT);
1709    }
1710
1711  return SDValue();
1712}
1713
1714SDValue DAGCombiner::visitSUBC(SDNode *N) {
1715  SDValue N0 = N->getOperand(0);
1716  SDValue N1 = N->getOperand(1);
1717  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1719  EVT VT = N0.getValueType();
1720
1721  // If the flag result is dead, turn this into an SUB.
1722  if (!N->hasAnyUseOfValue(1))
1723    return CombineTo(N, DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, N1),
1724                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1725                                 MVT::Glue));
1726
1727  // fold (subc x, x) -> 0 + no borrow
1728  if (N0 == N1)
1729    return CombineTo(N, DAG.getConstant(0, VT),
1730                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1731                                 MVT::Glue));
1732
1733  // fold (subc x, 0) -> x + no borrow
1734  if (N1C && N1C->isNullValue())
1735    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1736                                        MVT::Glue));
1737
1738  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1739  if (N0C && N0C->isAllOnesValue())
1740    return CombineTo(N, DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0),
1741                     DAG.getNode(ISD::CARRY_FALSE, N->getDebugLoc(),
1742                                 MVT::Glue));
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBE(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  SDValue CarryIn = N->getOperand(2);
1751
1752  // fold (sube x, y, false) -> (subc x, y)
1753  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1754    return DAG.getNode(ISD::SUBC, N->getDebugLoc(), N->getVTList(), N0, N1);
1755
1756  return SDValue();
1757}
1758
1759SDValue DAGCombiner::visitMUL(SDNode *N) {
1760  SDValue N0 = N->getOperand(0);
1761  SDValue N1 = N->getOperand(1);
1762  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1763  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1764  EVT VT = N0.getValueType();
1765
1766  // fold vector ops
1767  if (VT.isVector()) {
1768    SDValue FoldedVOp = SimplifyVBinOp(N);
1769    if (FoldedVOp.getNode()) return FoldedVOp;
1770  }
1771
1772  // fold (mul x, undef) -> 0
1773  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1774    return DAG.getConstant(0, VT);
1775  // fold (mul c1, c2) -> c1*c2
1776  if (N0C && N1C)
1777    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);
1778  // canonicalize constant to RHS
1779  if (N0C && !N1C)
1780    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);
1781  // fold (mul x, 0) -> 0
1782  if (N1C && N1C->isNullValue())
1783    return N1;
1784  // fold (mul x, -1) -> 0-x
1785  if (N1C && N1C->isAllOnesValue())
1786    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1787                       DAG.getConstant(0, VT), N0);
1788  // fold (mul x, (1 << c)) -> x << c
1789  if (N1C && N1C->getAPIntValue().isPowerOf2())
1790    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1791                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1792                                       getShiftAmountTy(N0.getValueType())));
1793  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1794  if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
1795    unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
1796    // FIXME: If the input is something that is easily negated (e.g. a
1797    // single-use add), we should put the negate there.
1798    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1799                       DAG.getConstant(0, VT),
1800                       DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
1801                            DAG.getConstant(Log2Val,
1802                                      getShiftAmountTy(N0.getValueType()))));
1803  }
1804  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1805  if (N1C && N0.getOpcode() == ISD::SHL &&
1806      isa<ConstantSDNode>(N0.getOperand(1))) {
1807    SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1808                             N1, N0.getOperand(1));
1809    AddToWorkList(C3.getNode());
1810    return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1811                       N0.getOperand(0), C3);
1812  }
1813
1814  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1815  // use.
1816  {
1817    SDValue Sh(0,0), Y(0,0);
1818    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1819    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1820        N0.getNode()->hasOneUse()) {
1821      Sh = N0; Y = N1;
1822    } else if (N1.getOpcode() == ISD::SHL &&
1823               isa<ConstantSDNode>(N1.getOperand(1)) &&
1824               N1.getNode()->hasOneUse()) {
1825      Sh = N1; Y = N0;
1826    }
1827
1828    if (Sh.getNode()) {
1829      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
1830                                Sh.getOperand(0), Y);
1831      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
1832                         Mul, Sh.getOperand(1));
1833    }
1834  }
1835
1836  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1837  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1838      isa<ConstantSDNode>(N0.getOperand(1)))
1839    return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
1840                       DAG.getNode(ISD::MUL, N0.getDebugLoc(), VT,
1841                                   N0.getOperand(0), N1),
1842                       DAG.getNode(ISD::MUL, N1.getDebugLoc(), VT,
1843                                   N0.getOperand(1), N1));
1844
1845  // reassociate mul
1846  SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0, N1);
1847  if (RMUL.getNode() != 0)
1848    return RMUL;
1849
1850  return SDValue();
1851}
1852
1853SDValue DAGCombiner::visitSDIV(SDNode *N) {
1854  SDValue N0 = N->getOperand(0);
1855  SDValue N1 = N->getOperand(1);
1856  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1857  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1858  EVT VT = N->getValueType(0);
1859
1860  // fold vector ops
1861  if (VT.isVector()) {
1862    SDValue FoldedVOp = SimplifyVBinOp(N);
1863    if (FoldedVOp.getNode()) return FoldedVOp;
1864  }
1865
1866  // fold (sdiv c1, c2) -> c1/c2
1867  if (N0C && N1C && !N1C->isNullValue())
1868    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1869  // fold (sdiv X, 1) -> X
1870  if (N1C && N1C->getAPIntValue() == 1LL)
1871    return N0;
1872  // fold (sdiv X, -1) -> 0-X
1873  if (N1C && N1C->isAllOnesValue())
1874    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1875                       DAG.getConstant(0, VT), N0);
1876  // If we know the sign bits of both operands are zero, strength reduce to a
1877  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1878  if (!VT.isVector()) {
1879    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1880      return DAG.getNode(ISD::UDIV, N->getDebugLoc(), N1.getValueType(),
1881                         N0, N1);
1882  }
1883  // fold (sdiv X, pow2) -> simple ops after legalize
1884  if (N1C && !N1C->isNullValue() &&
1885      (N1C->getAPIntValue().isPowerOf2() ||
1886       (-N1C->getAPIntValue()).isPowerOf2())) {
1887    // If dividing by powers of two is cheap, then don't perform the following
1888    // fold.
1889    if (TLI.isPow2DivCheap())
1890      return SDValue();
1891
1892    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1893
1894    // Splat the sign bit into the register
1895    SDValue SGN = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
1896                              DAG.getConstant(VT.getSizeInBits()-1,
1897                                       getShiftAmountTy(N0.getValueType())));
1898    AddToWorkList(SGN.getNode());
1899
1900    // Add (N0 < 0) ? abs2 - 1 : 0;
1901    SDValue SRL = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, SGN,
1902                              DAG.getConstant(VT.getSizeInBits() - lg2,
1903                                       getShiftAmountTy(SGN.getValueType())));
1904    SDValue ADD = DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, SRL);
1905    AddToWorkList(SRL.getNode());
1906    AddToWorkList(ADD.getNode());    // Divide by pow2
1907    SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, ADD,
1908                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1909
1910    // If we're dividing by a positive value, we're done.  Otherwise, we must
1911    // negate the result.
1912    if (N1C->getAPIntValue().isNonNegative())
1913      return SRA;
1914
1915    AddToWorkList(SRA.getNode());
1916    return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
1917                       DAG.getConstant(0, VT), SRA);
1918  }
1919
1920  // if integer divide is expensive and we satisfy the requirements, emit an
1921  // alternate sequence.
1922  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1923    SDValue Op = BuildSDIV(N);
1924    if (Op.getNode()) return Op;
1925  }
1926
1927  // undef / X -> 0
1928  if (N0.getOpcode() == ISD::UNDEF)
1929    return DAG.getConstant(0, VT);
1930  // X / undef -> undef
1931  if (N1.getOpcode() == ISD::UNDEF)
1932    return N1;
1933
1934  return SDValue();
1935}
1936
1937SDValue DAGCombiner::visitUDIV(SDNode *N) {
1938  SDValue N0 = N->getOperand(0);
1939  SDValue N1 = N->getOperand(1);
1940  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1942  EVT VT = N->getValueType(0);
1943
1944  // fold vector ops
1945  if (VT.isVector()) {
1946    SDValue FoldedVOp = SimplifyVBinOp(N);
1947    if (FoldedVOp.getNode()) return FoldedVOp;
1948  }
1949
1950  // fold (udiv c1, c2) -> c1/c2
1951  if (N0C && N1C && !N1C->isNullValue())
1952    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
1953  // fold (udiv x, (1 << c)) -> x >>u c
1954  if (N1C && N1C->getAPIntValue().isPowerOf2())
1955    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
1956                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
1957                                       getShiftAmountTy(N0.getValueType())));
1958  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1959  if (N1.getOpcode() == ISD::SHL) {
1960    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1961      if (SHC->getAPIntValue().isPowerOf2()) {
1962        EVT ADDVT = N1.getOperand(1).getValueType();
1963        SDValue Add = DAG.getNode(ISD::ADD, N->getDebugLoc(), ADDVT,
1964                                  N1.getOperand(1),
1965                                  DAG.getConstant(SHC->getAPIntValue()
1966                                                                  .logBase2(),
1967                                                  ADDVT));
1968        AddToWorkList(Add.getNode());
1969        return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, Add);
1970      }
1971    }
1972  }
1973  // fold (udiv x, c) -> alternate
1974  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1975    SDValue Op = BuildUDIV(N);
1976    if (Op.getNode()) return Op;
1977  }
1978
1979  // undef / X -> 0
1980  if (N0.getOpcode() == ISD::UNDEF)
1981    return DAG.getConstant(0, VT);
1982  // X / undef -> undef
1983  if (N1.getOpcode() == ISD::UNDEF)
1984    return N1;
1985
1986  return SDValue();
1987}
1988
1989SDValue DAGCombiner::visitSREM(SDNode *N) {
1990  SDValue N0 = N->getOperand(0);
1991  SDValue N1 = N->getOperand(1);
1992  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1994  EVT VT = N->getValueType(0);
1995
1996  // fold (srem c1, c2) -> c1%c2
1997  if (N0C && N1C && !N1C->isNullValue())
1998    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
1999  // If we know the sign bits of both operands are zero, strength reduce to a
2000  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2001  if (!VT.isVector()) {
2002    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2003      return DAG.getNode(ISD::UREM, N->getDebugLoc(), VT, N0, N1);
2004  }
2005
2006  // If X/C can be simplified by the division-by-constant logic, lower
2007  // X%C to the equivalent of X-X/C*C.
2008  if (N1C && !N1C->isNullValue()) {
2009    SDValue Div = DAG.getNode(ISD::SDIV, N->getDebugLoc(), VT, N0, N1);
2010    AddToWorkList(Div.getNode());
2011    SDValue OptimizedDiv = combine(Div.getNode());
2012    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2013      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2014                                OptimizedDiv, N1);
2015      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2016      AddToWorkList(Mul.getNode());
2017      return Sub;
2018    }
2019  }
2020
2021  // undef % X -> 0
2022  if (N0.getOpcode() == ISD::UNDEF)
2023    return DAG.getConstant(0, VT);
2024  // X % undef -> undef
2025  if (N1.getOpcode() == ISD::UNDEF)
2026    return N1;
2027
2028  return SDValue();
2029}
2030
2031SDValue DAGCombiner::visitUREM(SDNode *N) {
2032  SDValue N0 = N->getOperand(0);
2033  SDValue N1 = N->getOperand(1);
2034  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2035  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2036  EVT VT = N->getValueType(0);
2037
2038  // fold (urem c1, c2) -> c1%c2
2039  if (N0C && N1C && !N1C->isNullValue())
2040    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2041  // fold (urem x, pow2) -> (and x, pow2-1)
2042  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2043    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0,
2044                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2045  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2046  if (N1.getOpcode() == ISD::SHL) {
2047    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2048      if (SHC->getAPIntValue().isPowerOf2()) {
2049        SDValue Add =
2050          DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N1,
2051                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2052                                 VT));
2053        AddToWorkList(Add.getNode());
2054        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, Add);
2055      }
2056    }
2057  }
2058
2059  // If X/C can be simplified by the division-by-constant logic, lower
2060  // X%C to the equivalent of X-X/C*C.
2061  if (N1C && !N1C->isNullValue()) {
2062    SDValue Div = DAG.getNode(ISD::UDIV, N->getDebugLoc(), VT, N0, N1);
2063    AddToWorkList(Div.getNode());
2064    SDValue OptimizedDiv = combine(Div.getNode());
2065    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2066      SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
2067                                OptimizedDiv, N1);
2068      SDValue Sub = DAG.getNode(ISD::SUB, N->getDebugLoc(), VT, N0, Mul);
2069      AddToWorkList(Mul.getNode());
2070      return Sub;
2071    }
2072  }
2073
2074  // undef % X -> 0
2075  if (N0.getOpcode() == ISD::UNDEF)
2076    return DAG.getConstant(0, VT);
2077  // X % undef -> undef
2078  if (N1.getOpcode() == ISD::UNDEF)
2079    return N1;
2080
2081  return SDValue();
2082}
2083
2084SDValue DAGCombiner::visitMULHS(SDNode *N) {
2085  SDValue N0 = N->getOperand(0);
2086  SDValue N1 = N->getOperand(1);
2087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2088  EVT VT = N->getValueType(0);
2089  DebugLoc DL = N->getDebugLoc();
2090
2091  // fold (mulhs x, 0) -> 0
2092  if (N1C && N1C->isNullValue())
2093    return N1;
2094  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2095  if (N1C && N1C->getAPIntValue() == 1)
2096    return DAG.getNode(ISD::SRA, N->getDebugLoc(), N0.getValueType(), N0,
2097                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2098                                       getShiftAmountTy(N0.getValueType())));
2099  // fold (mulhs x, undef) -> 0
2100  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2101    return DAG.getConstant(0, VT);
2102
2103  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2104  // plus a shift.
2105  if (VT.isSimple() && !VT.isVector()) {
2106    MVT Simple = VT.getSimpleVT();
2107    unsigned SimpleSize = Simple.getSizeInBits();
2108    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2109    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2110      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2111      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2112      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2113      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2114            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2115      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2116    }
2117  }
2118
2119  return SDValue();
2120}
2121
2122SDValue DAGCombiner::visitMULHU(SDNode *N) {
2123  SDValue N0 = N->getOperand(0);
2124  SDValue N1 = N->getOperand(1);
2125  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2126  EVT VT = N->getValueType(0);
2127  DebugLoc DL = N->getDebugLoc();
2128
2129  // fold (mulhu x, 0) -> 0
2130  if (N1C && N1C->isNullValue())
2131    return N1;
2132  // fold (mulhu x, 1) -> 0
2133  if (N1C && N1C->getAPIntValue() == 1)
2134    return DAG.getConstant(0, N0.getValueType());
2135  // fold (mulhu x, undef) -> 0
2136  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2137    return DAG.getConstant(0, VT);
2138
2139  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2140  // plus a shift.
2141  if (VT.isSimple() && !VT.isVector()) {
2142    MVT Simple = VT.getSimpleVT();
2143    unsigned SimpleSize = Simple.getSizeInBits();
2144    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2145    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2146      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2147      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2148      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2149      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2150            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2151      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2152    }
2153  }
2154
2155  return SDValue();
2156}
2157
2158/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2159/// compute two values. LoOp and HiOp give the opcodes for the two computations
2160/// that are being performed. Return true if a simplification was made.
2161///
2162SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2163                                                unsigned HiOp) {
2164  // If the high half is not needed, just compute the low half.
2165  bool HiExists = N->hasAnyUseOfValue(1);
2166  if (!HiExists &&
2167      (!LegalOperations ||
2168       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2169    SDValue Res = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2170                              N->op_begin(), N->getNumOperands());
2171    return CombineTo(N, Res, Res);
2172  }
2173
2174  // If the low half is not needed, just compute the high half.
2175  bool LoExists = N->hasAnyUseOfValue(0);
2176  if (!LoExists &&
2177      (!LegalOperations ||
2178       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2179    SDValue Res = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2180                              N->op_begin(), N->getNumOperands());
2181    return CombineTo(N, Res, Res);
2182  }
2183
2184  // If both halves are used, return as it is.
2185  if (LoExists && HiExists)
2186    return SDValue();
2187
2188  // If the two computed results can be simplified separately, separate them.
2189  if (LoExists) {
2190    SDValue Lo = DAG.getNode(LoOp, N->getDebugLoc(), N->getValueType(0),
2191                             N->op_begin(), N->getNumOperands());
2192    AddToWorkList(Lo.getNode());
2193    SDValue LoOpt = combine(Lo.getNode());
2194    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2195        (!LegalOperations ||
2196         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2197      return CombineTo(N, LoOpt, LoOpt);
2198  }
2199
2200  if (HiExists) {
2201    SDValue Hi = DAG.getNode(HiOp, N->getDebugLoc(), N->getValueType(1),
2202                             N->op_begin(), N->getNumOperands());
2203    AddToWorkList(Hi.getNode());
2204    SDValue HiOpt = combine(Hi.getNode());
2205    if (HiOpt.getNode() && HiOpt != Hi &&
2206        (!LegalOperations ||
2207         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2208      return CombineTo(N, HiOpt, HiOpt);
2209  }
2210
2211  return SDValue();
2212}
2213
2214SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2215  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2216  if (Res.getNode()) return Res;
2217
2218  EVT VT = N->getValueType(0);
2219  DebugLoc DL = N->getDebugLoc();
2220
2221  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2222  // plus a shift.
2223  if (VT.isSimple() && !VT.isVector()) {
2224    MVT Simple = VT.getSimpleVT();
2225    unsigned SimpleSize = Simple.getSizeInBits();
2226    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2227    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2228      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2229      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2230      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2231      // Compute the high part as N1.
2232      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2233            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2234      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2235      // Compute the low part as N0.
2236      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2237      return CombineTo(N, Lo, Hi);
2238    }
2239  }
2240
2241  return SDValue();
2242}
2243
2244SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2245  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2246  if (Res.getNode()) return Res;
2247
2248  EVT VT = N->getValueType(0);
2249  DebugLoc DL = N->getDebugLoc();
2250
2251  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2252  // plus a shift.
2253  if (VT.isSimple() && !VT.isVector()) {
2254    MVT Simple = VT.getSimpleVT();
2255    unsigned SimpleSize = Simple.getSizeInBits();
2256    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2257    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2258      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2259      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2260      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2261      // Compute the high part as N1.
2262      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2263            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2264      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2265      // Compute the low part as N0.
2266      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2267      return CombineTo(N, Lo, Hi);
2268    }
2269  }
2270
2271  return SDValue();
2272}
2273
2274SDValue DAGCombiner::visitSMULO(SDNode *N) {
2275  // (smulo x, 2) -> (saddo x, x)
2276  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2277    if (C2->getAPIntValue() == 2)
2278      return DAG.getNode(ISD::SADDO, N->getDebugLoc(), N->getVTList(),
2279                         N->getOperand(0), N->getOperand(0));
2280
2281  return SDValue();
2282}
2283
2284SDValue DAGCombiner::visitUMULO(SDNode *N) {
2285  // (umulo x, 2) -> (uaddo x, x)
2286  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2287    if (C2->getAPIntValue() == 2)
2288      return DAG.getNode(ISD::UADDO, N->getDebugLoc(), N->getVTList(),
2289                         N->getOperand(0), N->getOperand(0));
2290
2291  return SDValue();
2292}
2293
2294SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2295  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2296  if (Res.getNode()) return Res;
2297
2298  return SDValue();
2299}
2300
2301SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2302  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2303  if (Res.getNode()) return Res;
2304
2305  return SDValue();
2306}
2307
2308/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2309/// two operands of the same opcode, try to simplify it.
2310SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2311  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2312  EVT VT = N0.getValueType();
2313  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2314
2315  // Bail early if none of these transforms apply.
2316  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2317
2318  // For each of OP in AND/OR/XOR:
2319  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2320  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2321  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2322  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2323  //
2324  // do not sink logical op inside of a vector extend, since it may combine
2325  // into a vsetcc.
2326  EVT Op0VT = N0.getOperand(0).getValueType();
2327  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2328       N0.getOpcode() == ISD::SIGN_EXTEND ||
2329       // Avoid infinite looping with PromoteIntBinOp.
2330       (N0.getOpcode() == ISD::ANY_EXTEND &&
2331        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2332       (N0.getOpcode() == ISD::TRUNCATE &&
2333        (!TLI.isZExtFree(VT, Op0VT) ||
2334         !TLI.isTruncateFree(Op0VT, VT)) &&
2335        TLI.isTypeLegal(Op0VT))) &&
2336      !VT.isVector() &&
2337      Op0VT == N1.getOperand(0).getValueType() &&
2338      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2339    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2340                                 N0.getOperand(0).getValueType(),
2341                                 N0.getOperand(0), N1.getOperand(0));
2342    AddToWorkList(ORNode.getNode());
2343    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, ORNode);
2344  }
2345
2346  // For each of OP in SHL/SRL/SRA/AND...
2347  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2348  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2349  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2350  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2351       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2352      N0.getOperand(1) == N1.getOperand(1)) {
2353    SDValue ORNode = DAG.getNode(N->getOpcode(), N0.getDebugLoc(),
2354                                 N0.getOperand(0).getValueType(),
2355                                 N0.getOperand(0), N1.getOperand(0));
2356    AddToWorkList(ORNode.getNode());
2357    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
2358                       ORNode, N0.getOperand(1));
2359  }
2360
2361  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2362  // Only perform this optimization after type legalization and before
2363  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2364  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2365  // we don't want to undo this promotion.
2366  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2367  // on scalars.
2368  if ((N0.getOpcode() == ISD::BITCAST ||
2369       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2370      Level == AfterLegalizeTypes) {
2371    SDValue In0 = N0.getOperand(0);
2372    SDValue In1 = N1.getOperand(0);
2373    EVT In0Ty = In0.getValueType();
2374    EVT In1Ty = In1.getValueType();
2375    DebugLoc DL = N->getDebugLoc();
2376    // If both incoming values are integers, and the original types are the
2377    // same.
2378    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2379      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2380      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2381      AddToWorkList(Op.getNode());
2382      return BC;
2383    }
2384  }
2385
2386  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2387  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2388  // If both shuffles use the same mask, and both shuffle within a single
2389  // vector, then it is worthwhile to move the swizzle after the operation.
2390  // The type-legalizer generates this pattern when loading illegal
2391  // vector types from memory. In many cases this allows additional shuffle
2392  // optimizations.
2393  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2394      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2395      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2396    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2397    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2398
2399    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2400           "Inputs to shuffles are not the same type");
2401
2402    unsigned NumElts = VT.getVectorNumElements();
2403
2404    // Check that both shuffles use the same mask. The masks are known to be of
2405    // the same length because the result vector type is the same.
2406    bool SameMask = true;
2407    for (unsigned i = 0; i != NumElts; ++i) {
2408      int Idx0 = SVN0->getMaskElt(i);
2409      int Idx1 = SVN1->getMaskElt(i);
2410      if (Idx0 != Idx1) {
2411        SameMask = false;
2412        break;
2413      }
2414    }
2415
2416    if (SameMask) {
2417      SDValue Op = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
2418                               N0.getOperand(0), N1.getOperand(0));
2419      AddToWorkList(Op.getNode());
2420      return DAG.getVectorShuffle(VT, N->getDebugLoc(), Op,
2421                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2422    }
2423  }
2424
2425  return SDValue();
2426}
2427
2428SDValue DAGCombiner::visitAND(SDNode *N) {
2429  SDValue N0 = N->getOperand(0);
2430  SDValue N1 = N->getOperand(1);
2431  SDValue LL, LR, RL, RR, CC0, CC1;
2432  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2433  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2434  EVT VT = N1.getValueType();
2435  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2436
2437  // fold vector ops
2438  if (VT.isVector()) {
2439    SDValue FoldedVOp = SimplifyVBinOp(N);
2440    if (FoldedVOp.getNode()) return FoldedVOp;
2441
2442    // fold (and x, 0) -> 0, vector edition
2443    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2444      return N0;
2445    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2446      return N1;
2447
2448    // fold (and x, -1) -> x, vector edition
2449    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2450      return N1;
2451    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2452      return N0;
2453  }
2454
2455  // fold (and x, undef) -> 0
2456  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2457    return DAG.getConstant(0, VT);
2458  // fold (and c1, c2) -> c1&c2
2459  if (N0C && N1C)
2460    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2461  // canonicalize constant to RHS
2462  if (N0C && !N1C)
2463    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N1, N0);
2464  // fold (and x, -1) -> x
2465  if (N1C && N1C->isAllOnesValue())
2466    return N0;
2467  // if (and x, c) is known to be zero, return 0
2468  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2469                                   APInt::getAllOnesValue(BitWidth)))
2470    return DAG.getConstant(0, VT);
2471  // reassociate and
2472  SDValue RAND = ReassociateOps(ISD::AND, N->getDebugLoc(), N0, N1);
2473  if (RAND.getNode() != 0)
2474    return RAND;
2475  // fold (and (or x, C), D) -> D if (C & D) == D
2476  if (N1C && N0.getOpcode() == ISD::OR)
2477    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2478      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2479        return N1;
2480  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2481  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2482    SDValue N0Op0 = N0.getOperand(0);
2483    APInt Mask = ~N1C->getAPIntValue();
2484    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2485    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2486      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(),
2487                                 N0.getValueType(), N0Op0);
2488
2489      // Replace uses of the AND with uses of the Zero extend node.
2490      CombineTo(N, Zext);
2491
2492      // We actually want to replace all uses of the any_extend with the
2493      // zero_extend, to avoid duplicating things.  This will later cause this
2494      // AND to be folded.
2495      CombineTo(N0.getNode(), Zext);
2496      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2497    }
2498  }
2499  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2500  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2501  // already be zero by virtue of the width of the base type of the load.
2502  //
2503  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2504  // more cases.
2505  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2506       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2507      N0.getOpcode() == ISD::LOAD) {
2508    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2509                                         N0 : N0.getOperand(0) );
2510
2511    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2512    // This can be a pure constant or a vector splat, in which case we treat the
2513    // vector as a scalar and use the splat value.
2514    APInt Constant = APInt::getNullValue(1);
2515    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2516      Constant = C->getAPIntValue();
2517    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2518      APInt SplatValue, SplatUndef;
2519      unsigned SplatBitSize;
2520      bool HasAnyUndefs;
2521      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2522                                             SplatBitSize, HasAnyUndefs);
2523      if (IsSplat) {
2524        // Undef bits can contribute to a possible optimisation if set, so
2525        // set them.
2526        SplatValue |= SplatUndef;
2527
2528        // The splat value may be something like "0x00FFFFFF", which means 0 for
2529        // the first vector value and FF for the rest, repeating. We need a mask
2530        // that will apply equally to all members of the vector, so AND all the
2531        // lanes of the constant together.
2532        EVT VT = Vector->getValueType(0);
2533        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2534
2535        // If the splat value has been compressed to a bitlength lower
2536        // than the size of the vector lane, we need to re-expand it to
2537        // the lane size.
2538        if (BitWidth > SplatBitSize)
2539          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2540               SplatBitSize < BitWidth;
2541               SplatBitSize = SplatBitSize * 2)
2542            SplatValue |= SplatValue.shl(SplatBitSize);
2543
2544        Constant = APInt::getAllOnesValue(BitWidth);
2545        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2546          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2547      }
2548    }
2549
2550    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2551    // actually legal and isn't going to get expanded, else this is a false
2552    // optimisation.
2553    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2554                                                    Load->getMemoryVT());
2555
2556    // Resize the constant to the same size as the original memory access before
2557    // extension. If it is still the AllOnesValue then this AND is completely
2558    // unneeded.
2559    Constant =
2560      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2561
2562    bool B;
2563    switch (Load->getExtensionType()) {
2564    default: B = false; break;
2565    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2566    case ISD::ZEXTLOAD:
2567    case ISD::NON_EXTLOAD: B = true; break;
2568    }
2569
2570    if (B && Constant.isAllOnesValue()) {
2571      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2572      // preserve semantics once we get rid of the AND.
2573      SDValue NewLoad(Load, 0);
2574      if (Load->getExtensionType() == ISD::EXTLOAD) {
2575        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2576                              Load->getValueType(0), Load->getDebugLoc(),
2577                              Load->getChain(), Load->getBasePtr(),
2578                              Load->getOffset(), Load->getMemoryVT(),
2579                              Load->getMemOperand());
2580        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2581        if (Load->getNumValues() == 3) {
2582          // PRE/POST_INC loads have 3 values.
2583          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2584                           NewLoad.getValue(2) };
2585          CombineTo(Load, To, 3, true);
2586        } else {
2587          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2588        }
2589      }
2590
2591      // Fold the AND away, taking care not to fold to the old load node if we
2592      // replaced it.
2593      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2594
2595      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2596    }
2597  }
2598  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2599  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2600    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2601    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2602
2603    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2604        LL.getValueType().isInteger()) {
2605      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2606      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2607        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2608                                     LR.getValueType(), LL, RL);
2609        AddToWorkList(ORNode.getNode());
2610        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2611      }
2612      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2613      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2614        SDValue ANDNode = DAG.getNode(ISD::AND, N0.getDebugLoc(),
2615                                      LR.getValueType(), LL, RL);
2616        AddToWorkList(ANDNode.getNode());
2617        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
2618      }
2619      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2620      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2621        SDValue ORNode = DAG.getNode(ISD::OR, N0.getDebugLoc(),
2622                                     LR.getValueType(), LL, RL);
2623        AddToWorkList(ORNode.getNode());
2624        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
2625      }
2626    }
2627    // canonicalize equivalent to ll == rl
2628    if (LL == RR && LR == RL) {
2629      Op1 = ISD::getSetCCSwappedOperands(Op1);
2630      std::swap(RL, RR);
2631    }
2632    if (LL == RL && LR == RR) {
2633      bool isInteger = LL.getValueType().isInteger();
2634      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2635      if (Result != ISD::SETCC_INVALID &&
2636          (!LegalOperations ||
2637           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2638            TLI.isOperationLegal(ISD::SETCC,
2639                            TLI.getSetCCResultType(N0.getSimpleValueType())))))
2640        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
2641                            LL, LR, Result);
2642    }
2643  }
2644
2645  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2646  if (N0.getOpcode() == N1.getOpcode()) {
2647    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2648    if (Tmp.getNode()) return Tmp;
2649  }
2650
2651  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2652  // fold (and (sra)) -> (and (srl)) when possible.
2653  if (!VT.isVector() &&
2654      SimplifyDemandedBits(SDValue(N, 0)))
2655    return SDValue(N, 0);
2656
2657  // fold (zext_inreg (extload x)) -> (zextload x)
2658  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2659    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2660    EVT MemVT = LN0->getMemoryVT();
2661    // If we zero all the possible extended bits, then we can turn this into
2662    // a zextload if we are running before legalize or the operation is legal.
2663    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2664    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2665                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2666        ((!LegalOperations && !LN0->isVolatile()) ||
2667         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2668      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2669                                       LN0->getChain(), LN0->getBasePtr(),
2670                                       LN0->getPointerInfo(), MemVT,
2671                                       LN0->isVolatile(), LN0->isNonTemporal(),
2672                                       LN0->getAlignment());
2673      AddToWorkList(N);
2674      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2675      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2676    }
2677  }
2678  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2679  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2680      N0.hasOneUse()) {
2681    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2682    EVT MemVT = LN0->getMemoryVT();
2683    // If we zero all the possible extended bits, then we can turn this into
2684    // a zextload if we are running before legalize or the operation is legal.
2685    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2686    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2687                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2688        ((!LegalOperations && !LN0->isVolatile()) ||
2689         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2690      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N0.getDebugLoc(), VT,
2691                                       LN0->getChain(),
2692                                       LN0->getBasePtr(), LN0->getPointerInfo(),
2693                                       MemVT,
2694                                       LN0->isVolatile(), LN0->isNonTemporal(),
2695                                       LN0->getAlignment());
2696      AddToWorkList(N);
2697      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2698      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2699    }
2700  }
2701
2702  // fold (and (load x), 255) -> (zextload x, i8)
2703  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2704  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2705  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2706              (N0.getOpcode() == ISD::ANY_EXTEND &&
2707               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2708    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2709    LoadSDNode *LN0 = HasAnyExt
2710      ? cast<LoadSDNode>(N0.getOperand(0))
2711      : cast<LoadSDNode>(N0);
2712    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2713        LN0->isUnindexed() && N0.hasOneUse() && LN0->hasOneUse()) {
2714      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2715      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2716        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2717        EVT LoadedVT = LN0->getMemoryVT();
2718
2719        if (ExtVT == LoadedVT &&
2720            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2721          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2722
2723          SDValue NewLoad =
2724            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2725                           LN0->getChain(), LN0->getBasePtr(),
2726                           LN0->getPointerInfo(),
2727                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2728                           LN0->getAlignment());
2729          AddToWorkList(N);
2730          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2731          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2732        }
2733
2734        // Do not change the width of a volatile load.
2735        // Do not generate loads of non-round integer types since these can
2736        // be expensive (and would be wrong if the type is not byte sized).
2737        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2738            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2739          EVT PtrType = LN0->getOperand(1).getValueType();
2740
2741          unsigned Alignment = LN0->getAlignment();
2742          SDValue NewPtr = LN0->getBasePtr();
2743
2744          // For big endian targets, we need to add an offset to the pointer
2745          // to load the correct bytes.  For little endian systems, we merely
2746          // need to read fewer bytes from the same pointer.
2747          if (TLI.isBigEndian()) {
2748            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2749            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2750            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2751            NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(), PtrType,
2752                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2753            Alignment = MinAlign(Alignment, PtrOff);
2754          }
2755
2756          AddToWorkList(NewPtr.getNode());
2757
2758          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2759          SDValue Load =
2760            DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), LoadResultTy,
2761                           LN0->getChain(), NewPtr,
2762                           LN0->getPointerInfo(),
2763                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2764                           Alignment);
2765          AddToWorkList(N);
2766          CombineTo(LN0, Load, Load.getValue(1));
2767          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2768        }
2769      }
2770    }
2771  }
2772
2773  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2774      VT.getSizeInBits() <= 64) {
2775    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2776      APInt ADDC = ADDI->getAPIntValue();
2777      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2778        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2779        // immediate for an add, but it is legal if its top c2 bits are set,
2780        // transform the ADD so the immediate doesn't need to be materialized
2781        // in a register.
2782        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2783          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2784                                             SRLI->getZExtValue());
2785          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2786            ADDC |= Mask;
2787            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2788              SDValue NewAdd =
2789                DAG.getNode(ISD::ADD, N0.getDebugLoc(), VT,
2790                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2791              CombineTo(N0.getNode(), NewAdd);
2792              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2793            }
2794          }
2795        }
2796      }
2797    }
2798  }
2799
2800  return SDValue();
2801}
2802
2803/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2804///
2805SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2806                                        bool DemandHighBits) {
2807  if (!LegalOperations)
2808    return SDValue();
2809
2810  EVT VT = N->getValueType(0);
2811  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2812    return SDValue();
2813  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2814    return SDValue();
2815
2816  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2817  bool LookPassAnd0 = false;
2818  bool LookPassAnd1 = false;
2819  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2820      std::swap(N0, N1);
2821  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2822      std::swap(N0, N1);
2823  if (N0.getOpcode() == ISD::AND) {
2824    if (!N0.getNode()->hasOneUse())
2825      return SDValue();
2826    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2827    if (!N01C || N01C->getZExtValue() != 0xFF00)
2828      return SDValue();
2829    N0 = N0.getOperand(0);
2830    LookPassAnd0 = true;
2831  }
2832
2833  if (N1.getOpcode() == ISD::AND) {
2834    if (!N1.getNode()->hasOneUse())
2835      return SDValue();
2836    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2837    if (!N11C || N11C->getZExtValue() != 0xFF)
2838      return SDValue();
2839    N1 = N1.getOperand(0);
2840    LookPassAnd1 = true;
2841  }
2842
2843  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2844    std::swap(N0, N1);
2845  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2846    return SDValue();
2847  if (!N0.getNode()->hasOneUse() ||
2848      !N1.getNode()->hasOneUse())
2849    return SDValue();
2850
2851  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2852  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2853  if (!N01C || !N11C)
2854    return SDValue();
2855  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2856    return SDValue();
2857
2858  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2859  SDValue N00 = N0->getOperand(0);
2860  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2861    if (!N00.getNode()->hasOneUse())
2862      return SDValue();
2863    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2864    if (!N001C || N001C->getZExtValue() != 0xFF)
2865      return SDValue();
2866    N00 = N00.getOperand(0);
2867    LookPassAnd0 = true;
2868  }
2869
2870  SDValue N10 = N1->getOperand(0);
2871  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2872    if (!N10.getNode()->hasOneUse())
2873      return SDValue();
2874    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2875    if (!N101C || N101C->getZExtValue() != 0xFF00)
2876      return SDValue();
2877    N10 = N10.getOperand(0);
2878    LookPassAnd1 = true;
2879  }
2880
2881  if (N00 != N10)
2882    return SDValue();
2883
2884  // Make sure everything beyond the low halfword is zero since the SRL 16
2885  // will clear the top bits.
2886  unsigned OpSizeInBits = VT.getSizeInBits();
2887  if (DemandHighBits && OpSizeInBits > 16 &&
2888      (!LookPassAnd0 || !LookPassAnd1) &&
2889      !DAG.MaskedValueIsZero(N10, APInt::getHighBitsSet(OpSizeInBits, 16)))
2890    return SDValue();
2891
2892  SDValue Res = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT, N00);
2893  if (OpSizeInBits > 16)
2894    Res = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, Res,
2895                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2896  return Res;
2897}
2898
2899/// isBSwapHWordElement - Return true if the specified node is an element
2900/// that makes up a 32-bit packed halfword byteswap. i.e.
2901/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2902static bool isBSwapHWordElement(SDValue N, SmallVector<SDNode*,4> &Parts) {
2903  if (!N.getNode()->hasOneUse())
2904    return false;
2905
2906  unsigned Opc = N.getOpcode();
2907  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2908    return false;
2909
2910  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2911  if (!N1C)
2912    return false;
2913
2914  unsigned Num;
2915  switch (N1C->getZExtValue()) {
2916  default:
2917    return false;
2918  case 0xFF:       Num = 0; break;
2919  case 0xFF00:     Num = 1; break;
2920  case 0xFF0000:   Num = 2; break;
2921  case 0xFF000000: Num = 3; break;
2922  }
2923
2924  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
2925  SDValue N0 = N.getOperand(0);
2926  if (Opc == ISD::AND) {
2927    if (Num == 0 || Num == 2) {
2928      // (x >> 8) & 0xff
2929      // (x >> 8) & 0xff0000
2930      if (N0.getOpcode() != ISD::SRL)
2931        return false;
2932      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2933      if (!C || C->getZExtValue() != 8)
2934        return false;
2935    } else {
2936      // (x << 8) & 0xff00
2937      // (x << 8) & 0xff000000
2938      if (N0.getOpcode() != ISD::SHL)
2939        return false;
2940      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2941      if (!C || C->getZExtValue() != 8)
2942        return false;
2943    }
2944  } else if (Opc == ISD::SHL) {
2945    // (x & 0xff) << 8
2946    // (x & 0xff0000) << 8
2947    if (Num != 0 && Num != 2)
2948      return false;
2949    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2950    if (!C || C->getZExtValue() != 8)
2951      return false;
2952  } else { // Opc == ISD::SRL
2953    // (x & 0xff00) >> 8
2954    // (x & 0xff000000) >> 8
2955    if (Num != 1 && Num != 3)
2956      return false;
2957    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2958    if (!C || C->getZExtValue() != 8)
2959      return false;
2960  }
2961
2962  if (Parts[Num])
2963    return false;
2964
2965  Parts[Num] = N0.getOperand(0).getNode();
2966  return true;
2967}
2968
2969/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
2970/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2971/// => (rotl (bswap x), 16)
2972SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
2973  if (!LegalOperations)
2974    return SDValue();
2975
2976  EVT VT = N->getValueType(0);
2977  if (VT != MVT::i32)
2978    return SDValue();
2979  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2980    return SDValue();
2981
2982  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
2983  // Look for either
2984  // (or (or (and), (and)), (or (and), (and)))
2985  // (or (or (or (and), (and)), (and)), (and))
2986  if (N0.getOpcode() != ISD::OR)
2987    return SDValue();
2988  SDValue N00 = N0.getOperand(0);
2989  SDValue N01 = N0.getOperand(1);
2990
2991  if (N1.getOpcode() == ISD::OR &&
2992      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
2993    // (or (or (and), (and)), (or (and), (and)))
2994    SDValue N000 = N00.getOperand(0);
2995    if (!isBSwapHWordElement(N000, Parts))
2996      return SDValue();
2997
2998    SDValue N001 = N00.getOperand(1);
2999    if (!isBSwapHWordElement(N001, Parts))
3000      return SDValue();
3001    SDValue N010 = N01.getOperand(0);
3002    if (!isBSwapHWordElement(N010, Parts))
3003      return SDValue();
3004    SDValue N011 = N01.getOperand(1);
3005    if (!isBSwapHWordElement(N011, Parts))
3006      return SDValue();
3007  } else {
3008    // (or (or (or (and), (and)), (and)), (and))
3009    if (!isBSwapHWordElement(N1, Parts))
3010      return SDValue();
3011    if (!isBSwapHWordElement(N01, Parts))
3012      return SDValue();
3013    if (N00.getOpcode() != ISD::OR)
3014      return SDValue();
3015    SDValue N000 = N00.getOperand(0);
3016    if (!isBSwapHWordElement(N000, Parts))
3017      return SDValue();
3018    SDValue N001 = N00.getOperand(1);
3019    if (!isBSwapHWordElement(N001, Parts))
3020      return SDValue();
3021  }
3022
3023  // Make sure the parts are all coming from the same node.
3024  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3025    return SDValue();
3026
3027  SDValue BSwap = DAG.getNode(ISD::BSWAP, N->getDebugLoc(), VT,
3028                              SDValue(Parts[0],0));
3029
3030  // Result of the bswap should be rotated by 16. If it's not legal, than
3031  // do  (x << 16) | (x >> 16).
3032  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3033  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3034    return DAG.getNode(ISD::ROTL, N->getDebugLoc(), VT, BSwap, ShAmt);
3035  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3036    return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, BSwap, ShAmt);
3037  return DAG.getNode(ISD::OR, N->getDebugLoc(), VT,
3038                     DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, BSwap, ShAmt),
3039                     DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, BSwap, ShAmt));
3040}
3041
3042SDValue DAGCombiner::visitOR(SDNode *N) {
3043  SDValue N0 = N->getOperand(0);
3044  SDValue N1 = N->getOperand(1);
3045  SDValue LL, LR, RL, RR, CC0, CC1;
3046  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3047  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3048  EVT VT = N1.getValueType();
3049
3050  // fold vector ops
3051  if (VT.isVector()) {
3052    SDValue FoldedVOp = SimplifyVBinOp(N);
3053    if (FoldedVOp.getNode()) return FoldedVOp;
3054
3055    // fold (or x, 0) -> x, vector edition
3056    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3057      return N1;
3058    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3059      return N0;
3060
3061    // fold (or x, -1) -> -1, vector edition
3062    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3063      return N0;
3064    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3065      return N1;
3066  }
3067
3068  // fold (or x, undef) -> -1
3069  if (!LegalOperations &&
3070      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3071    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3072    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3073  }
3074  // fold (or c1, c2) -> c1|c2
3075  if (N0C && N1C)
3076    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3077  // canonicalize constant to RHS
3078  if (N0C && !N1C)
3079    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N1, N0);
3080  // fold (or x, 0) -> x
3081  if (N1C && N1C->isNullValue())
3082    return N0;
3083  // fold (or x, -1) -> -1
3084  if (N1C && N1C->isAllOnesValue())
3085    return N1;
3086  // fold (or x, c) -> c iff (x & ~c) == 0
3087  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3088    return N1;
3089
3090  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3091  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3092  if (BSwap.getNode() != 0)
3093    return BSwap;
3094  BSwap = MatchBSwapHWordLow(N, N0, N1);
3095  if (BSwap.getNode() != 0)
3096    return BSwap;
3097
3098  // reassociate or
3099  SDValue ROR = ReassociateOps(ISD::OR, N->getDebugLoc(), N0, N1);
3100  if (ROR.getNode() != 0)
3101    return ROR;
3102  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3103  // iff (c1 & c2) == 0.
3104  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3105             isa<ConstantSDNode>(N0.getOperand(1))) {
3106    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3107    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3108      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
3109                         DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3110                                     N0.getOperand(0), N1),
3111                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3112  }
3113  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3114  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3115    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3116    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3117
3118    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3119        LL.getValueType().isInteger()) {
3120      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3121      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3122      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3123          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3124        SDValue ORNode = DAG.getNode(ISD::OR, LR.getDebugLoc(),
3125                                     LR.getValueType(), LL, RL);
3126        AddToWorkList(ORNode.getNode());
3127        return DAG.getSetCC(N->getDebugLoc(), VT, ORNode, LR, Op1);
3128      }
3129      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3130      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3131      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3132          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3133        SDValue ANDNode = DAG.getNode(ISD::AND, LR.getDebugLoc(),
3134                                      LR.getValueType(), LL, RL);
3135        AddToWorkList(ANDNode.getNode());
3136        return DAG.getSetCC(N->getDebugLoc(), VT, ANDNode, LR, Op1);
3137      }
3138    }
3139    // canonicalize equivalent to ll == rl
3140    if (LL == RR && LR == RL) {
3141      Op1 = ISD::getSetCCSwappedOperands(Op1);
3142      std::swap(RL, RR);
3143    }
3144    if (LL == RL && LR == RR) {
3145      bool isInteger = LL.getValueType().isInteger();
3146      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3147      if (Result != ISD::SETCC_INVALID &&
3148          (!LegalOperations ||
3149           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3150            TLI.isOperationLegal(ISD::SETCC,
3151              TLI.getSetCCResultType(N0.getValueType())))))
3152        return DAG.getSetCC(N->getDebugLoc(), N0.getValueType(),
3153                            LL, LR, Result);
3154    }
3155  }
3156
3157  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3158  if (N0.getOpcode() == N1.getOpcode()) {
3159    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3160    if (Tmp.getNode()) return Tmp;
3161  }
3162
3163  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3164  if (N0.getOpcode() == ISD::AND &&
3165      N1.getOpcode() == ISD::AND &&
3166      N0.getOperand(1).getOpcode() == ISD::Constant &&
3167      N1.getOperand(1).getOpcode() == ISD::Constant &&
3168      // Don't increase # computations.
3169      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3170    // We can only do this xform if we know that bits from X that are set in C2
3171    // but not in C1 are already zero.  Likewise for Y.
3172    const APInt &LHSMask =
3173      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3174    const APInt &RHSMask =
3175      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3176
3177    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3178        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3179      SDValue X = DAG.getNode(ISD::OR, N0.getDebugLoc(), VT,
3180                              N0.getOperand(0), N1.getOperand(0));
3181      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, X,
3182                         DAG.getConstant(LHSMask | RHSMask, VT));
3183    }
3184  }
3185
3186  // See if this is some rotate idiom.
3187  if (SDNode *Rot = MatchRotate(N0, N1, N->getDebugLoc()))
3188    return SDValue(Rot, 0);
3189
3190  // Simplify the operands using demanded-bits information.
3191  if (!VT.isVector() &&
3192      SimplifyDemandedBits(SDValue(N, 0)))
3193    return SDValue(N, 0);
3194
3195  return SDValue();
3196}
3197
3198/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3199static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3200  if (Op.getOpcode() == ISD::AND) {
3201    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3202      Mask = Op.getOperand(1);
3203      Op = Op.getOperand(0);
3204    } else {
3205      return false;
3206    }
3207  }
3208
3209  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3210    Shift = Op;
3211    return true;
3212  }
3213
3214  return false;
3215}
3216
3217// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3218// idioms for rotate, and if the target supports rotation instructions, generate
3219// a rot[lr].
3220SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, DebugLoc DL) {
3221  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3222  EVT VT = LHS.getValueType();
3223  if (!TLI.isTypeLegal(VT)) return 0;
3224
3225  // The target must have at least one rotate flavor.
3226  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3227  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3228  if (!HasROTL && !HasROTR) return 0;
3229
3230  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3231  SDValue LHSShift;   // The shift.
3232  SDValue LHSMask;    // AND value if any.
3233  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3234    return 0; // Not part of a rotate.
3235
3236  SDValue RHSShift;   // The shift.
3237  SDValue RHSMask;    // AND value if any.
3238  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3239    return 0; // Not part of a rotate.
3240
3241  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3242    return 0;   // Not shifting the same value.
3243
3244  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3245    return 0;   // Shifts must disagree.
3246
3247  // Canonicalize shl to left side in a shl/srl pair.
3248  if (RHSShift.getOpcode() == ISD::SHL) {
3249    std::swap(LHS, RHS);
3250    std::swap(LHSShift, RHSShift);
3251    std::swap(LHSMask , RHSMask );
3252  }
3253
3254  unsigned OpSizeInBits = VT.getSizeInBits();
3255  SDValue LHSShiftArg = LHSShift.getOperand(0);
3256  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3257  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3258
3259  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3260  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3261  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3262      RHSShiftAmt.getOpcode() == ISD::Constant) {
3263    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3264    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3265    if ((LShVal + RShVal) != OpSizeInBits)
3266      return 0;
3267
3268    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3269                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3270
3271    // If there is an AND of either shifted operand, apply it to the result.
3272    if (LHSMask.getNode() || RHSMask.getNode()) {
3273      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3274
3275      if (LHSMask.getNode()) {
3276        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3277        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3278      }
3279      if (RHSMask.getNode()) {
3280        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3281        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3282      }
3283
3284      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3285    }
3286
3287    return Rot.getNode();
3288  }
3289
3290  // If there is a mask here, and we have a variable shift, we can't be sure
3291  // that we're masking out the right stuff.
3292  if (LHSMask.getNode() || RHSMask.getNode())
3293    return 0;
3294
3295  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
3296  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
3297  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
3298      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
3299    if (ConstantSDNode *SUBC =
3300          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
3301      if (SUBC->getAPIntValue() == OpSizeInBits) {
3302        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3303                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3304      }
3305    }
3306  }
3307
3308  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
3309  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
3310  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
3311      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
3312    if (ConstantSDNode *SUBC =
3313          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
3314      if (SUBC->getAPIntValue() == OpSizeInBits) {
3315        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3316                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3317      }
3318    }
3319  }
3320
3321  // Look for sign/zext/any-extended or truncate cases:
3322  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3323       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3324       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3325       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3326      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3327       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3328       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3329       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3330    SDValue LExtOp0 = LHSShiftAmt.getOperand(0);
3331    SDValue RExtOp0 = RHSShiftAmt.getOperand(0);
3332    if (RExtOp0.getOpcode() == ISD::SUB &&
3333        RExtOp0.getOperand(1) == LExtOp0) {
3334      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3335      //   (rotl x, y)
3336      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3337      //   (rotr x, (sub 32, y))
3338      if (ConstantSDNode *SUBC =
3339            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3340        if (SUBC->getAPIntValue() == OpSizeInBits) {
3341          return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3342                             LHSShiftArg,
3343                             HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3344        }
3345      }
3346    } else if (LExtOp0.getOpcode() == ISD::SUB &&
3347               RExtOp0 == LExtOp0.getOperand(1)) {
3348      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3349      //   (rotr x, y)
3350      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3351      //   (rotl x, (sub 32, y))
3352      if (ConstantSDNode *SUBC =
3353            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3354        if (SUBC->getAPIntValue() == OpSizeInBits) {
3355          return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT,
3356                             LHSShiftArg,
3357                             HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3358        }
3359      }
3360    }
3361  }
3362
3363  return 0;
3364}
3365
3366SDValue DAGCombiner::visitXOR(SDNode *N) {
3367  SDValue N0 = N->getOperand(0);
3368  SDValue N1 = N->getOperand(1);
3369  SDValue LHS, RHS, CC;
3370  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3371  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3372  EVT VT = N0.getValueType();
3373
3374  // fold vector ops
3375  if (VT.isVector()) {
3376    SDValue FoldedVOp = SimplifyVBinOp(N);
3377    if (FoldedVOp.getNode()) return FoldedVOp;
3378
3379    // fold (xor x, 0) -> x, vector edition
3380    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3381      return N1;
3382    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3383      return N0;
3384  }
3385
3386  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3387  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3388    return DAG.getConstant(0, VT);
3389  // fold (xor x, undef) -> undef
3390  if (N0.getOpcode() == ISD::UNDEF)
3391    return N0;
3392  if (N1.getOpcode() == ISD::UNDEF)
3393    return N1;
3394  // fold (xor c1, c2) -> c1^c2
3395  if (N0C && N1C)
3396    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3397  // canonicalize constant to RHS
3398  if (N0C && !N1C)
3399    return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N1, N0);
3400  // fold (xor x, 0) -> x
3401  if (N1C && N1C->isNullValue())
3402    return N0;
3403  // reassociate xor
3404  SDValue RXOR = ReassociateOps(ISD::XOR, N->getDebugLoc(), N0, N1);
3405  if (RXOR.getNode() != 0)
3406    return RXOR;
3407
3408  // fold !(x cc y) -> (x !cc y)
3409  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3410    bool isInt = LHS.getValueType().isInteger();
3411    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3412                                               isInt);
3413
3414    if (!LegalOperations ||
3415        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3416      switch (N0.getOpcode()) {
3417      default:
3418        llvm_unreachable("Unhandled SetCC Equivalent!");
3419      case ISD::SETCC:
3420        return DAG.getSetCC(N->getDebugLoc(), VT, LHS, RHS, NotCC);
3421      case ISD::SELECT_CC:
3422        return DAG.getSelectCC(N->getDebugLoc(), LHS, RHS, N0.getOperand(2),
3423                               N0.getOperand(3), NotCC);
3424      }
3425    }
3426  }
3427
3428  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3429  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3430      N0.getNode()->hasOneUse() &&
3431      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3432    SDValue V = N0.getOperand(0);
3433    V = DAG.getNode(ISD::XOR, N0.getDebugLoc(), V.getValueType(), V,
3434                    DAG.getConstant(1, V.getValueType()));
3435    AddToWorkList(V.getNode());
3436    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, V);
3437  }
3438
3439  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3440  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3441      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3442    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3443    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3444      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3445      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3446      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3447      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3448      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3449    }
3450  }
3451  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3452  if (N1C && N1C->isAllOnesValue() &&
3453      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3454    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3455    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3456      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3457      LHS = DAG.getNode(ISD::XOR, LHS.getDebugLoc(), VT, LHS, N1); // LHS = ~LHS
3458      RHS = DAG.getNode(ISD::XOR, RHS.getDebugLoc(), VT, RHS, N1); // RHS = ~RHS
3459      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3460      return DAG.getNode(NewOpcode, N->getDebugLoc(), VT, LHS, RHS);
3461    }
3462  }
3463  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3464  if (N1C && N0.getOpcode() == ISD::XOR) {
3465    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3466    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3467    if (N00C)
3468      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(1),
3469                         DAG.getConstant(N1C->getAPIntValue() ^
3470                                         N00C->getAPIntValue(), VT));
3471    if (N01C)
3472      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT, N0.getOperand(0),
3473                         DAG.getConstant(N1C->getAPIntValue() ^
3474                                         N01C->getAPIntValue(), VT));
3475  }
3476  // fold (xor x, x) -> 0
3477  if (N0 == N1)
3478    return tryFoldToZero(N->getDebugLoc(), TLI, VT, DAG, LegalOperations);
3479
3480  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3481  if (N0.getOpcode() == N1.getOpcode()) {
3482    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3483    if (Tmp.getNode()) return Tmp;
3484  }
3485
3486  // Simplify the expression using non-local knowledge.
3487  if (!VT.isVector() &&
3488      SimplifyDemandedBits(SDValue(N, 0)))
3489    return SDValue(N, 0);
3490
3491  return SDValue();
3492}
3493
3494/// visitShiftByConstant - Handle transforms common to the three shifts, when
3495/// the shift amount is a constant.
3496SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3497  SDNode *LHS = N->getOperand(0).getNode();
3498  if (!LHS->hasOneUse()) return SDValue();
3499
3500  // We want to pull some binops through shifts, so that we have (and (shift))
3501  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3502  // thing happens with address calculations, so it's important to canonicalize
3503  // it.
3504  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3505
3506  switch (LHS->getOpcode()) {
3507  default: return SDValue();
3508  case ISD::OR:
3509  case ISD::XOR:
3510    HighBitSet = false; // We can only transform sra if the high bit is clear.
3511    break;
3512  case ISD::AND:
3513    HighBitSet = true;  // We can only transform sra if the high bit is set.
3514    break;
3515  case ISD::ADD:
3516    if (N->getOpcode() != ISD::SHL)
3517      return SDValue(); // only shl(add) not sr[al](add).
3518    HighBitSet = false; // We can only transform sra if the high bit is clear.
3519    break;
3520  }
3521
3522  // We require the RHS of the binop to be a constant as well.
3523  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3524  if (!BinOpCst) return SDValue();
3525
3526  // FIXME: disable this unless the input to the binop is a shift by a constant.
3527  // If it is not a shift, it pessimizes some common cases like:
3528  //
3529  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3530  //    int bar(int *X, int i) { return X[i & 255]; }
3531  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3532  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3533       BinOpLHSVal->getOpcode() != ISD::SRA &&
3534       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3535      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3536    return SDValue();
3537
3538  EVT VT = N->getValueType(0);
3539
3540  // If this is a signed shift right, and the high bit is modified by the
3541  // logical operation, do not perform the transformation. The highBitSet
3542  // boolean indicates the value of the high bit of the constant which would
3543  // cause it to be modified for this operation.
3544  if (N->getOpcode() == ISD::SRA) {
3545    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3546    if (BinOpRHSSignSet != HighBitSet)
3547      return SDValue();
3548  }
3549
3550  // Fold the constants, shifting the binop RHS by the shift amount.
3551  SDValue NewRHS = DAG.getNode(N->getOpcode(), LHS->getOperand(1).getDebugLoc(),
3552                               N->getValueType(0),
3553                               LHS->getOperand(1), N->getOperand(1));
3554
3555  // Create the new shift.
3556  SDValue NewShift = DAG.getNode(N->getOpcode(),
3557                                 LHS->getOperand(0).getDebugLoc(),
3558                                 VT, LHS->getOperand(0), N->getOperand(1));
3559
3560  // Create the new binop.
3561  return DAG.getNode(LHS->getOpcode(), N->getDebugLoc(), VT, NewShift, NewRHS);
3562}
3563
3564SDValue DAGCombiner::visitSHL(SDNode *N) {
3565  SDValue N0 = N->getOperand(0);
3566  SDValue N1 = N->getOperand(1);
3567  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3568  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3569  EVT VT = N0.getValueType();
3570  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3571
3572  // fold (shl c1, c2) -> c1<<c2
3573  if (N0C && N1C)
3574    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3575  // fold (shl 0, x) -> 0
3576  if (N0C && N0C->isNullValue())
3577    return N0;
3578  // fold (shl x, c >= size(x)) -> undef
3579  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3580    return DAG.getUNDEF(VT);
3581  // fold (shl x, 0) -> x
3582  if (N1C && N1C->isNullValue())
3583    return N0;
3584  // fold (shl undef, x) -> 0
3585  if (N0.getOpcode() == ISD::UNDEF)
3586    return DAG.getConstant(0, VT);
3587  // if (shl x, c) is known to be zero, return 0
3588  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3589                            APInt::getAllOnesValue(OpSizeInBits)))
3590    return DAG.getConstant(0, VT);
3591  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3592  if (N1.getOpcode() == ISD::TRUNCATE &&
3593      N1.getOperand(0).getOpcode() == ISD::AND &&
3594      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3595    SDValue N101 = N1.getOperand(0).getOperand(1);
3596    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3597      EVT TruncVT = N1.getValueType();
3598      SDValue N100 = N1.getOperand(0).getOperand(0);
3599      APInt TruncC = N101C->getAPIntValue();
3600      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3601      return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
3602                         DAG.getNode(ISD::AND, N->getDebugLoc(), TruncVT,
3603                                     DAG.getNode(ISD::TRUNCATE,
3604                                                 N->getDebugLoc(),
3605                                                 TruncVT, N100),
3606                                     DAG.getConstant(TruncC, TruncVT)));
3607    }
3608  }
3609
3610  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3611    return SDValue(N, 0);
3612
3613  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3614  if (N1C && N0.getOpcode() == ISD::SHL &&
3615      N0.getOperand(1).getOpcode() == ISD::Constant) {
3616    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3617    uint64_t c2 = N1C->getZExtValue();
3618    if (c1 + c2 >= OpSizeInBits)
3619      return DAG.getConstant(0, VT);
3620    return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3621                       DAG.getConstant(c1 + c2, N1.getValueType()));
3622  }
3623
3624  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3625  // For this to be valid, the second form must not preserve any of the bits
3626  // that are shifted out by the inner shift in the first form.  This means
3627  // the outer shift size must be >= the number of bits added by the ext.
3628  // As a corollary, we don't care what kind of ext it is.
3629  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3630              N0.getOpcode() == ISD::ANY_EXTEND ||
3631              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3632      N0.getOperand(0).getOpcode() == ISD::SHL &&
3633      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3634    uint64_t c1 =
3635      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3636    uint64_t c2 = N1C->getZExtValue();
3637    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3638    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3639    if (c2 >= OpSizeInBits - InnerShiftSize) {
3640      if (c1 + c2 >= OpSizeInBits)
3641        return DAG.getConstant(0, VT);
3642      return DAG.getNode(ISD::SHL, N0->getDebugLoc(), VT,
3643                         DAG.getNode(N0.getOpcode(), N0->getDebugLoc(), VT,
3644                                     N0.getOperand(0)->getOperand(0)),
3645                         DAG.getConstant(c1 + c2, N1.getValueType()));
3646    }
3647  }
3648
3649  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3650  //                               (and (srl x, (sub c1, c2), MASK)
3651  // Only fold this if the inner shift has no other uses -- if it does, folding
3652  // this will increase the total number of instructions.
3653  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3654      N0.getOperand(1).getOpcode() == ISD::Constant) {
3655    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3656    if (c1 < VT.getSizeInBits()) {
3657      uint64_t c2 = N1C->getZExtValue();
3658      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3659                                         VT.getSizeInBits() - c1);
3660      SDValue Shift;
3661      if (c2 > c1) {
3662        Mask = Mask.shl(c2-c1);
3663        Shift = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0.getOperand(0),
3664                            DAG.getConstant(c2-c1, N1.getValueType()));
3665      } else {
3666        Mask = Mask.lshr(c1-c2);
3667        Shift = DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3668                            DAG.getConstant(c1-c2, N1.getValueType()));
3669      }
3670      return DAG.getNode(ISD::AND, N0.getDebugLoc(), VT, Shift,
3671                         DAG.getConstant(Mask, VT));
3672    }
3673  }
3674  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3675  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3676    SDValue HiBitsMask =
3677      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3678                                            VT.getSizeInBits() -
3679                                              N1C->getZExtValue()),
3680                      VT);
3681    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3682                       HiBitsMask);
3683  }
3684
3685  if (N1C) {
3686    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3687    if (NewSHL.getNode())
3688      return NewSHL;
3689  }
3690
3691  return SDValue();
3692}
3693
3694SDValue DAGCombiner::visitSRA(SDNode *N) {
3695  SDValue N0 = N->getOperand(0);
3696  SDValue N1 = N->getOperand(1);
3697  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3698  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3699  EVT VT = N0.getValueType();
3700  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3701
3702  // fold (sra c1, c2) -> (sra c1, c2)
3703  if (N0C && N1C)
3704    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3705  // fold (sra 0, x) -> 0
3706  if (N0C && N0C->isNullValue())
3707    return N0;
3708  // fold (sra -1, x) -> -1
3709  if (N0C && N0C->isAllOnesValue())
3710    return N0;
3711  // fold (sra x, (setge c, size(x))) -> undef
3712  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3713    return DAG.getUNDEF(VT);
3714  // fold (sra x, 0) -> x
3715  if (N1C && N1C->isNullValue())
3716    return N0;
3717  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3718  // sext_inreg.
3719  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3720    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3721    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3722    if (VT.isVector())
3723      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3724                               ExtVT, VT.getVectorNumElements());
3725    if ((!LegalOperations ||
3726         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3727      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
3728                         N0.getOperand(0), DAG.getValueType(ExtVT));
3729  }
3730
3731  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3732  if (N1C && N0.getOpcode() == ISD::SRA) {
3733    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3734      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3735      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3736      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0.getOperand(0),
3737                         DAG.getConstant(Sum, N1C->getValueType(0)));
3738    }
3739  }
3740
3741  // fold (sra (shl X, m), (sub result_size, n))
3742  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3743  // result_size - n != m.
3744  // If truncate is free for the target sext(shl) is likely to result in better
3745  // code.
3746  if (N0.getOpcode() == ISD::SHL) {
3747    // Get the two constanst of the shifts, CN0 = m, CN = n.
3748    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3749    if (N01C && N1C) {
3750      // Determine what the truncate's result bitsize and type would be.
3751      EVT TruncVT =
3752        EVT::getIntegerVT(*DAG.getContext(),
3753                          OpSizeInBits - N1C->getZExtValue());
3754      // Determine the residual right-shift amount.
3755      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3756
3757      // If the shift is not a no-op (in which case this should be just a sign
3758      // extend already), the truncated to type is legal, sign_extend is legal
3759      // on that type, and the truncate to that type is both legal and free,
3760      // perform the transform.
3761      if ((ShiftAmt > 0) &&
3762          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3763          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3764          TLI.isTruncateFree(VT, TruncVT)) {
3765
3766          SDValue Amt = DAG.getConstant(ShiftAmt,
3767              getShiftAmountTy(N0.getOperand(0).getValueType()));
3768          SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT,
3769                                      N0.getOperand(0), Amt);
3770          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), TruncVT,
3771                                      Shift);
3772          return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(),
3773                             N->getValueType(0), Trunc);
3774      }
3775    }
3776  }
3777
3778  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3779  if (N1.getOpcode() == ISD::TRUNCATE &&
3780      N1.getOperand(0).getOpcode() == ISD::AND &&
3781      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3782    SDValue N101 = N1.getOperand(0).getOperand(1);
3783    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3784      EVT TruncVT = N1.getValueType();
3785      SDValue N100 = N1.getOperand(0).getOperand(0);
3786      APInt TruncC = N101C->getAPIntValue();
3787      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3788      return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT, N0,
3789                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3790                                     TruncVT,
3791                                     DAG.getNode(ISD::TRUNCATE,
3792                                                 N->getDebugLoc(),
3793                                                 TruncVT, N100),
3794                                     DAG.getConstant(TruncC, TruncVT)));
3795    }
3796  }
3797
3798  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3799  //      if c1 is equal to the number of bits the trunc removes
3800  if (N0.getOpcode() == ISD::TRUNCATE &&
3801      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3802       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3803      N0.getOperand(0).hasOneUse() &&
3804      N0.getOperand(0).getOperand(1).hasOneUse() &&
3805      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3806    EVT LargeVT = N0.getOperand(0).getValueType();
3807    ConstantSDNode *LargeShiftAmt =
3808      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3809
3810    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3811        LargeShiftAmt->getZExtValue()) {
3812      SDValue Amt =
3813        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3814              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3815      SDValue SRA = DAG.getNode(ISD::SRA, N->getDebugLoc(), LargeVT,
3816                                N0.getOperand(0).getOperand(0), Amt);
3817      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, SRA);
3818    }
3819  }
3820
3821  // Simplify, based on bits shifted out of the LHS.
3822  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3823    return SDValue(N, 0);
3824
3825
3826  // If the sign bit is known to be zero, switch this to a SRL.
3827  if (DAG.SignBitIsZero(N0))
3828    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0, N1);
3829
3830  if (N1C) {
3831    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3832    if (NewSRA.getNode())
3833      return NewSRA;
3834  }
3835
3836  return SDValue();
3837}
3838
3839SDValue DAGCombiner::visitSRL(SDNode *N) {
3840  SDValue N0 = N->getOperand(0);
3841  SDValue N1 = N->getOperand(1);
3842  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3843  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3844  EVT VT = N0.getValueType();
3845  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3846
3847  // fold (srl c1, c2) -> c1 >>u c2
3848  if (N0C && N1C)
3849    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
3850  // fold (srl 0, x) -> 0
3851  if (N0C && N0C->isNullValue())
3852    return N0;
3853  // fold (srl x, c >= size(x)) -> undef
3854  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3855    return DAG.getUNDEF(VT);
3856  // fold (srl x, 0) -> x
3857  if (N1C && N1C->isNullValue())
3858    return N0;
3859  // if (srl x, c) is known to be zero, return 0
3860  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3861                                   APInt::getAllOnesValue(OpSizeInBits)))
3862    return DAG.getConstant(0, VT);
3863
3864  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
3865  if (N1C && N0.getOpcode() == ISD::SRL &&
3866      N0.getOperand(1).getOpcode() == ISD::Constant) {
3867    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3868    uint64_t c2 = N1C->getZExtValue();
3869    if (c1 + c2 >= OpSizeInBits)
3870      return DAG.getConstant(0, VT);
3871    return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0),
3872                       DAG.getConstant(c1 + c2, N1.getValueType()));
3873  }
3874
3875  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
3876  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
3877      N0.getOperand(0).getOpcode() == ISD::SRL &&
3878      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3879    uint64_t c1 =
3880      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3881    uint64_t c2 = N1C->getZExtValue();
3882    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3883    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
3884    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3885    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
3886    if (c1 + OpSizeInBits == InnerShiftSize) {
3887      if (c1 + c2 >= InnerShiftSize)
3888        return DAG.getConstant(0, VT);
3889      return DAG.getNode(ISD::TRUNCATE, N0->getDebugLoc(), VT,
3890                         DAG.getNode(ISD::SRL, N0->getDebugLoc(), InnerShiftVT,
3891                                     N0.getOperand(0)->getOperand(0),
3892                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
3893    }
3894  }
3895
3896  // fold (srl (shl x, c), c) -> (and x, cst2)
3897  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
3898      N0.getValueSizeInBits() <= 64) {
3899    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
3900    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0.getOperand(0),
3901                       DAG.getConstant(~0ULL >> ShAmt, VT));
3902  }
3903
3904
3905  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
3906  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3907    // Shifting in all undef bits?
3908    EVT SmallVT = N0.getOperand(0).getValueType();
3909    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
3910      return DAG.getUNDEF(VT);
3911
3912    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
3913      uint64_t ShiftAmt = N1C->getZExtValue();
3914      SDValue SmallShift = DAG.getNode(ISD::SRL, N0.getDebugLoc(), SmallVT,
3915                                       N0.getOperand(0),
3916                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
3917      AddToWorkList(SmallShift.getNode());
3918      return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, SmallShift);
3919    }
3920  }
3921
3922  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
3923  // bit, which is unmodified by sra.
3924  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
3925    if (N0.getOpcode() == ISD::SRA)
3926      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0.getOperand(0), N1);
3927  }
3928
3929  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
3930  if (N1C && N0.getOpcode() == ISD::CTLZ &&
3931      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
3932    APInt KnownZero, KnownOne;
3933    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
3934
3935    // If any of the input bits are KnownOne, then the input couldn't be all
3936    // zeros, thus the result of the srl will always be zero.
3937    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
3938
3939    // If all of the bits input the to ctlz node are known to be zero, then
3940    // the result of the ctlz is "32" and the result of the shift is one.
3941    APInt UnknownBits = ~KnownZero;
3942    if (UnknownBits == 0) return DAG.getConstant(1, VT);
3943
3944    // Otherwise, check to see if there is exactly one bit input to the ctlz.
3945    if ((UnknownBits & (UnknownBits - 1)) == 0) {
3946      // Okay, we know that only that the single bit specified by UnknownBits
3947      // could be set on input to the CTLZ node. If this bit is set, the SRL
3948      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
3949      // to an SRL/XOR pair, which is likely to simplify more.
3950      unsigned ShAmt = UnknownBits.countTrailingZeros();
3951      SDValue Op = N0.getOperand(0);
3952
3953      if (ShAmt) {
3954        Op = DAG.getNode(ISD::SRL, N0.getDebugLoc(), VT, Op,
3955                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
3956        AddToWorkList(Op.getNode());
3957      }
3958
3959      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
3960                         Op, DAG.getConstant(1, VT));
3961    }
3962  }
3963
3964  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
3965  if (N1.getOpcode() == ISD::TRUNCATE &&
3966      N1.getOperand(0).getOpcode() == ISD::AND &&
3967      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3968    SDValue N101 = N1.getOperand(0).getOperand(1);
3969    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3970      EVT TruncVT = N1.getValueType();
3971      SDValue N100 = N1.getOperand(0).getOperand(0);
3972      APInt TruncC = N101C->getAPIntValue();
3973      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3974      return DAG.getNode(ISD::SRL, N->getDebugLoc(), VT, N0,
3975                         DAG.getNode(ISD::AND, N->getDebugLoc(),
3976                                     TruncVT,
3977                                     DAG.getNode(ISD::TRUNCATE,
3978                                                 N->getDebugLoc(),
3979                                                 TruncVT, N100),
3980                                     DAG.getConstant(TruncC, TruncVT)));
3981    }
3982  }
3983
3984  // fold operands of srl based on knowledge that the low bits are not
3985  // demanded.
3986  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3987    return SDValue(N, 0);
3988
3989  if (N1C) {
3990    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
3991    if (NewSRL.getNode())
3992      return NewSRL;
3993  }
3994
3995  // Attempt to convert a srl of a load into a narrower zero-extending load.
3996  SDValue NarrowLoad = ReduceLoadWidth(N);
3997  if (NarrowLoad.getNode())
3998    return NarrowLoad;
3999
4000  // Here is a common situation. We want to optimize:
4001  //
4002  //   %a = ...
4003  //   %b = and i32 %a, 2
4004  //   %c = srl i32 %b, 1
4005  //   brcond i32 %c ...
4006  //
4007  // into
4008  //
4009  //   %a = ...
4010  //   %b = and %a, 2
4011  //   %c = setcc eq %b, 0
4012  //   brcond %c ...
4013  //
4014  // However when after the source operand of SRL is optimized into AND, the SRL
4015  // itself may not be optimized further. Look for it and add the BRCOND into
4016  // the worklist.
4017  if (N->hasOneUse()) {
4018    SDNode *Use = *N->use_begin();
4019    if (Use->getOpcode() == ISD::BRCOND)
4020      AddToWorkList(Use);
4021    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4022      // Also look pass the truncate.
4023      Use = *Use->use_begin();
4024      if (Use->getOpcode() == ISD::BRCOND)
4025        AddToWorkList(Use);
4026    }
4027  }
4028
4029  return SDValue();
4030}
4031
4032SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4033  SDValue N0 = N->getOperand(0);
4034  EVT VT = N->getValueType(0);
4035
4036  // fold (ctlz c1) -> c2
4037  if (isa<ConstantSDNode>(N0))
4038    return DAG.getNode(ISD::CTLZ, N->getDebugLoc(), VT, N0);
4039  return SDValue();
4040}
4041
4042SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4043  SDValue N0 = N->getOperand(0);
4044  EVT VT = N->getValueType(0);
4045
4046  // fold (ctlz_zero_undef c1) -> c2
4047  if (isa<ConstantSDNode>(N0))
4048    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4049  return SDValue();
4050}
4051
4052SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4053  SDValue N0 = N->getOperand(0);
4054  EVT VT = N->getValueType(0);
4055
4056  // fold (cttz c1) -> c2
4057  if (isa<ConstantSDNode>(N0))
4058    return DAG.getNode(ISD::CTTZ, N->getDebugLoc(), VT, N0);
4059  return SDValue();
4060}
4061
4062SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4063  SDValue N0 = N->getOperand(0);
4064  EVT VT = N->getValueType(0);
4065
4066  // fold (cttz_zero_undef c1) -> c2
4067  if (isa<ConstantSDNode>(N0))
4068    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, N->getDebugLoc(), VT, N0);
4069  return SDValue();
4070}
4071
4072SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4073  SDValue N0 = N->getOperand(0);
4074  EVT VT = N->getValueType(0);
4075
4076  // fold (ctpop c1) -> c2
4077  if (isa<ConstantSDNode>(N0))
4078    return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), VT, N0);
4079  return SDValue();
4080}
4081
4082SDValue DAGCombiner::visitSELECT(SDNode *N) {
4083  SDValue N0 = N->getOperand(0);
4084  SDValue N1 = N->getOperand(1);
4085  SDValue N2 = N->getOperand(2);
4086  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4087  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4088  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4089  EVT VT = N->getValueType(0);
4090  EVT VT0 = N0.getValueType();
4091
4092  // fold (select C, X, X) -> X
4093  if (N1 == N2)
4094    return N1;
4095  // fold (select true, X, Y) -> X
4096  if (N0C && !N0C->isNullValue())
4097    return N1;
4098  // fold (select false, X, Y) -> Y
4099  if (N0C && N0C->isNullValue())
4100    return N2;
4101  // fold (select C, 1, X) -> (or C, X)
4102  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4103    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4104  // fold (select C, 0, 1) -> (xor C, 1)
4105  if (VT.isInteger() &&
4106      (VT0 == MVT::i1 ||
4107       (VT0.isInteger() &&
4108        TLI.getBooleanContents(false) ==
4109        TargetLowering::ZeroOrOneBooleanContent)) &&
4110      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4111    SDValue XORNode;
4112    if (VT == VT0)
4113      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT0,
4114                         N0, DAG.getConstant(1, VT0));
4115    XORNode = DAG.getNode(ISD::XOR, N0.getDebugLoc(), VT0,
4116                          N0, DAG.getConstant(1, VT0));
4117    AddToWorkList(XORNode.getNode());
4118    if (VT.bitsGT(VT0))
4119      return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, XORNode);
4120    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, XORNode);
4121  }
4122  // fold (select C, 0, X) -> (and (not C), X)
4123  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4124    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4125    AddToWorkList(NOTNode.getNode());
4126    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, NOTNode, N2);
4127  }
4128  // fold (select C, X, 1) -> (or (not C), X)
4129  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4130    SDValue NOTNode = DAG.getNOT(N0.getDebugLoc(), N0, VT);
4131    AddToWorkList(NOTNode.getNode());
4132    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, NOTNode, N1);
4133  }
4134  // fold (select C, X, 0) -> (and C, X)
4135  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4136    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4137  // fold (select X, X, Y) -> (or X, Y)
4138  // fold (select X, 1, Y) -> (or X, Y)
4139  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4140    return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, N0, N2);
4141  // fold (select X, Y, X) -> (and X, Y)
4142  // fold (select X, Y, 0) -> (and X, Y)
4143  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4144    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, N0, N1);
4145
4146  // If we can fold this based on the true/false value, do so.
4147  if (SimplifySelectOps(N, N1, N2))
4148    return SDValue(N, 0);  // Don't revisit N.
4149
4150  // fold selects based on a setcc into other things, such as min/max/abs
4151  if (N0.getOpcode() == ISD::SETCC) {
4152    // FIXME:
4153    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4154    // having to say they don't support SELECT_CC on every type the DAG knows
4155    // about, since there is no way to mark an opcode illegal at all value types
4156    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4157        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4158      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT,
4159                         N0.getOperand(0), N0.getOperand(1),
4160                         N1, N2, N0.getOperand(2));
4161    return SimplifySelect(N->getDebugLoc(), N0, N1, N2);
4162  }
4163
4164  return SDValue();
4165}
4166
4167SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4168  SDValue N0 = N->getOperand(0);
4169  SDValue N1 = N->getOperand(1);
4170  SDValue N2 = N->getOperand(2);
4171  SDValue N3 = N->getOperand(3);
4172  SDValue N4 = N->getOperand(4);
4173  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4174
4175  // fold select_cc lhs, rhs, x, x, cc -> x
4176  if (N2 == N3)
4177    return N2;
4178
4179  // Determine if the condition we're dealing with is constant
4180  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
4181                              N0, N1, CC, N->getDebugLoc(), false);
4182  if (SCC.getNode()) AddToWorkList(SCC.getNode());
4183
4184  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
4185    if (!SCCC->isNullValue())
4186      return N2;    // cond always true -> true val
4187    else
4188      return N3;    // cond always false -> false val
4189  }
4190
4191  // Fold to a simpler select_cc
4192  if (SCC.getNode() && SCC.getOpcode() == ISD::SETCC)
4193    return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), N2.getValueType(),
4194                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4195                       SCC.getOperand(2));
4196
4197  // If we can fold this based on the true/false value, do so.
4198  if (SimplifySelectOps(N, N2, N3))
4199    return SDValue(N, 0);  // Don't revisit N.
4200
4201  // fold select_cc into other things, such as min/max/abs
4202  return SimplifySelectCC(N->getDebugLoc(), N0, N1, N2, N3, CC);
4203}
4204
4205SDValue DAGCombiner::visitSETCC(SDNode *N) {
4206  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4207                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4208                       N->getDebugLoc());
4209}
4210
4211// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4212// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4213// transformation. Returns true if extension are possible and the above
4214// mentioned transformation is profitable.
4215static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4216                                    unsigned ExtOpc,
4217                                    SmallVector<SDNode*, 4> &ExtendNodes,
4218                                    const TargetLowering &TLI) {
4219  bool HasCopyToRegUses = false;
4220  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4221  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4222                            UE = N0.getNode()->use_end();
4223       UI != UE; ++UI) {
4224    SDNode *User = *UI;
4225    if (User == N)
4226      continue;
4227    if (UI.getUse().getResNo() != N0.getResNo())
4228      continue;
4229    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4230    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4231      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4232      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4233        // Sign bits will be lost after a zext.
4234        return false;
4235      bool Add = false;
4236      for (unsigned i = 0; i != 2; ++i) {
4237        SDValue UseOp = User->getOperand(i);
4238        if (UseOp == N0)
4239          continue;
4240        if (!isa<ConstantSDNode>(UseOp))
4241          return false;
4242        Add = true;
4243      }
4244      if (Add)
4245        ExtendNodes.push_back(User);
4246      continue;
4247    }
4248    // If truncates aren't free and there are users we can't
4249    // extend, it isn't worthwhile.
4250    if (!isTruncFree)
4251      return false;
4252    // Remember if this value is live-out.
4253    if (User->getOpcode() == ISD::CopyToReg)
4254      HasCopyToRegUses = true;
4255  }
4256
4257  if (HasCopyToRegUses) {
4258    bool BothLiveOut = false;
4259    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4260         UI != UE; ++UI) {
4261      SDUse &Use = UI.getUse();
4262      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4263        BothLiveOut = true;
4264        break;
4265      }
4266    }
4267    if (BothLiveOut)
4268      // Both unextended and extended values are live out. There had better be
4269      // a good reason for the transformation.
4270      return ExtendNodes.size();
4271  }
4272  return true;
4273}
4274
4275void DAGCombiner::ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
4276                                  SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
4277                                  ISD::NodeType ExtType) {
4278  // Extend SetCC uses if necessary.
4279  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4280    SDNode *SetCC = SetCCs[i];
4281    SmallVector<SDValue, 4> Ops;
4282
4283    for (unsigned j = 0; j != 2; ++j) {
4284      SDValue SOp = SetCC->getOperand(j);
4285      if (SOp == Trunc)
4286        Ops.push_back(ExtLoad);
4287      else
4288        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4289    }
4290
4291    Ops.push_back(SetCC->getOperand(2));
4292    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4293                                 &Ops[0], Ops.size()));
4294  }
4295}
4296
4297SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4298  SDValue N0 = N->getOperand(0);
4299  EVT VT = N->getValueType(0);
4300
4301  // fold (sext c1) -> c1
4302  if (isa<ConstantSDNode>(N0))
4303    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N0);
4304
4305  // fold (sext (sext x)) -> (sext x)
4306  // fold (sext (aext x)) -> (sext x)
4307  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4308    return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT,
4309                       N0.getOperand(0));
4310
4311  if (N0.getOpcode() == ISD::TRUNCATE) {
4312    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4313    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4314    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4315    if (NarrowLoad.getNode()) {
4316      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4317      if (NarrowLoad.getNode() != N0.getNode()) {
4318        CombineTo(N0.getNode(), NarrowLoad);
4319        // CombineTo deleted the truncate, if needed, but not what's under it.
4320        AddToWorkList(oye);
4321      }
4322      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4323    }
4324
4325    // See if the value being truncated is already sign extended.  If so, just
4326    // eliminate the trunc/sext pair.
4327    SDValue Op = N0.getOperand(0);
4328    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4329    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4330    unsigned DestBits = VT.getScalarType().getSizeInBits();
4331    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4332
4333    if (OpBits == DestBits) {
4334      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4335      // bits, it is already ready.
4336      if (NumSignBits > DestBits-MidBits)
4337        return Op;
4338    } else if (OpBits < DestBits) {
4339      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4340      // bits, just sext from i32.
4341      if (NumSignBits > OpBits-MidBits)
4342        return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, Op);
4343    } else {
4344      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4345      // bits, just truncate to i32.
4346      if (NumSignBits > OpBits-MidBits)
4347        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4348    }
4349
4350    // fold (sext (truncate x)) -> (sextinreg x).
4351    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4352                                                 N0.getValueType())) {
4353      if (OpBits < DestBits)
4354        Op = DAG.getNode(ISD::ANY_EXTEND, N0.getDebugLoc(), VT, Op);
4355      else if (OpBits > DestBits)
4356        Op = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), VT, Op);
4357      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, Op,
4358                         DAG.getValueType(N0.getValueType()));
4359    }
4360  }
4361
4362  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4363  // None of the supported targets knows how to perform load and sign extend
4364  // on vectors in one instruction.  We only perform this transformation on
4365  // scalars.
4366  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4367      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4368       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4369    bool DoXform = true;
4370    SmallVector<SDNode*, 4> SetCCs;
4371    if (!N0.hasOneUse())
4372      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4373    if (DoXform) {
4374      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4375      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4376                                       LN0->getChain(),
4377                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4378                                       N0.getValueType(),
4379                                       LN0->isVolatile(), LN0->isNonTemporal(),
4380                                       LN0->getAlignment());
4381      CombineTo(N, ExtLoad);
4382      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4383                                  N0.getValueType(), ExtLoad);
4384      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4385      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4386                      ISD::SIGN_EXTEND);
4387      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4388    }
4389  }
4390
4391  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4392  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4393  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4394      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4395    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4396    EVT MemVT = LN0->getMemoryVT();
4397    if ((!LegalOperations && !LN0->isVolatile()) ||
4398        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4399      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
4400                                       LN0->getChain(),
4401                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4402                                       MemVT,
4403                                       LN0->isVolatile(), LN0->isNonTemporal(),
4404                                       LN0->getAlignment());
4405      CombineTo(N, ExtLoad);
4406      CombineTo(N0.getNode(),
4407                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4408                            N0.getValueType(), ExtLoad),
4409                ExtLoad.getValue(1));
4410      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4411    }
4412  }
4413
4414  // fold (sext (and/or/xor (load x), cst)) ->
4415  //      (and/or/xor (sextload x), (sext cst))
4416  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4417       N0.getOpcode() == ISD::XOR) &&
4418      isa<LoadSDNode>(N0.getOperand(0)) &&
4419      N0.getOperand(1).getOpcode() == ISD::Constant &&
4420      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4421      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4422    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4423    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4424      bool DoXform = true;
4425      SmallVector<SDNode*, 4> SetCCs;
4426      if (!N0.hasOneUse())
4427        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4428                                          SetCCs, TLI);
4429      if (DoXform) {
4430        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, LN0->getDebugLoc(), VT,
4431                                         LN0->getChain(), LN0->getBasePtr(),
4432                                         LN0->getPointerInfo(),
4433                                         LN0->getMemoryVT(),
4434                                         LN0->isVolatile(),
4435                                         LN0->isNonTemporal(),
4436                                         LN0->getAlignment());
4437        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4438        Mask = Mask.sext(VT.getSizeInBits());
4439        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4440                                  ExtLoad, DAG.getConstant(Mask, VT));
4441        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4442                                    N0.getOperand(0).getDebugLoc(),
4443                                    N0.getOperand(0).getValueType(), ExtLoad);
4444        CombineTo(N, And);
4445        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4446        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4447                        ISD::SIGN_EXTEND);
4448        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4449      }
4450    }
4451  }
4452
4453  if (N0.getOpcode() == ISD::SETCC) {
4454    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4455    // Only do this before legalize for now.
4456    if (VT.isVector() && !LegalOperations) {
4457      EVT N0VT = N0.getOperand(0).getValueType();
4458      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4459      // of the same size as the compared operands. Only optimize sext(setcc())
4460      // if this is the case.
4461      EVT SVT = TLI.getSetCCResultType(N0VT);
4462
4463      // We know that the # elements of the results is the same as the
4464      // # elements of the compare (and the # elements of the compare result
4465      // for that matter).  Check to see that they are the same size.  If so,
4466      // we know that the element size of the sext'd result matches the
4467      // element size of the compare operands.
4468      if (VT.getSizeInBits() == SVT.getSizeInBits())
4469        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4470                             N0.getOperand(1),
4471                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4472      // If the desired elements are smaller or larger than the source
4473      // elements we can use a matching integer vector type and then
4474      // truncate/sign extend
4475      EVT MatchingElementType =
4476        EVT::getIntegerVT(*DAG.getContext(),
4477                          N0VT.getScalarType().getSizeInBits());
4478      EVT MatchingVectorType =
4479        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4480                         N0VT.getVectorNumElements());
4481
4482      if (SVT == MatchingVectorType) {
4483        SDValue VsetCC = DAG.getSetCC(N->getDebugLoc(), MatchingVectorType,
4484                               N0.getOperand(0), N0.getOperand(1),
4485                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4486        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4487      }
4488    }
4489
4490    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4491    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4492    SDValue NegOne =
4493      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4494    SDValue SCC =
4495      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4496                       NegOne, DAG.getConstant(0, VT),
4497                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4498    if (SCC.getNode()) return SCC;
4499    if (!LegalOperations ||
4500        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(VT)))
4501      return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4502                         DAG.getSetCC(N->getDebugLoc(),
4503                                      TLI.getSetCCResultType(VT),
4504                                      N0.getOperand(0), N0.getOperand(1),
4505                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4506                         NegOne, DAG.getConstant(0, VT));
4507  }
4508
4509  // fold (sext x) -> (zext x) if the sign bit is known zero.
4510  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4511      DAG.SignBitIsZero(N0))
4512    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4513
4514  return SDValue();
4515}
4516
4517// isTruncateOf - If N is a truncate of some other value, return true, record
4518// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4519// This function computes KnownZero to avoid a duplicated call to
4520// ComputeMaskedBits in the caller.
4521static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4522                         APInt &KnownZero) {
4523  APInt KnownOne;
4524  if (N->getOpcode() == ISD::TRUNCATE) {
4525    Op = N->getOperand(0);
4526    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4527    return true;
4528  }
4529
4530  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4531      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4532    return false;
4533
4534  SDValue Op0 = N->getOperand(0);
4535  SDValue Op1 = N->getOperand(1);
4536  assert(Op0.getValueType() == Op1.getValueType());
4537
4538  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4539  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4540  if (COp0 && COp0->isNullValue())
4541    Op = Op1;
4542  else if (COp1 && COp1->isNullValue())
4543    Op = Op0;
4544  else
4545    return false;
4546
4547  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4548
4549  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4550    return false;
4551
4552  return true;
4553}
4554
4555SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4556  SDValue N0 = N->getOperand(0);
4557  EVT VT = N->getValueType(0);
4558
4559  // fold (zext c1) -> c1
4560  if (isa<ConstantSDNode>(N0))
4561    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, N0);
4562  // fold (zext (zext x)) -> (zext x)
4563  // fold (zext (aext x)) -> (zext x)
4564  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4565    return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT,
4566                       N0.getOperand(0));
4567
4568  // fold (zext (truncate x)) -> (zext x) or
4569  //      (zext (truncate x)) -> (truncate x)
4570  // This is valid when the truncated bits of x are already zero.
4571  // FIXME: We should extend this to work for vectors too.
4572  SDValue Op;
4573  APInt KnownZero;
4574  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4575    APInt TruncatedBits =
4576      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4577      APInt(Op.getValueSizeInBits(), 0) :
4578      APInt::getBitsSet(Op.getValueSizeInBits(),
4579                        N0.getValueSizeInBits(),
4580                        std::min(Op.getValueSizeInBits(),
4581                                 VT.getSizeInBits()));
4582    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4583      if (VT.bitsGT(Op.getValueType()))
4584        return DAG.getNode(ISD::ZERO_EXTEND, N->getDebugLoc(), VT, Op);
4585      if (VT.bitsLT(Op.getValueType()))
4586        return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4587
4588      return Op;
4589    }
4590  }
4591
4592  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4593  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4594  if (N0.getOpcode() == ISD::TRUNCATE) {
4595    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4596    if (NarrowLoad.getNode()) {
4597      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4598      if (NarrowLoad.getNode() != N0.getNode()) {
4599        CombineTo(N0.getNode(), NarrowLoad);
4600        // CombineTo deleted the truncate, if needed, but not what's under it.
4601        AddToWorkList(oye);
4602      }
4603      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4604    }
4605  }
4606
4607  // fold (zext (truncate x)) -> (and x, mask)
4608  if (N0.getOpcode() == ISD::TRUNCATE &&
4609      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4610
4611    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4612    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4613    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4614    if (NarrowLoad.getNode()) {
4615      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4616      if (NarrowLoad.getNode() != N0.getNode()) {
4617        CombineTo(N0.getNode(), NarrowLoad);
4618        // CombineTo deleted the truncate, if needed, but not what's under it.
4619        AddToWorkList(oye);
4620      }
4621      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4622    }
4623
4624    SDValue Op = N0.getOperand(0);
4625    if (Op.getValueType().bitsLT(VT)) {
4626      Op = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, Op);
4627      AddToWorkList(Op.getNode());
4628    } else if (Op.getValueType().bitsGT(VT)) {
4629      Op = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Op);
4630      AddToWorkList(Op.getNode());
4631    }
4632    return DAG.getZeroExtendInReg(Op, N->getDebugLoc(),
4633                                  N0.getValueType().getScalarType());
4634  }
4635
4636  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4637  // if either of the casts is not free.
4638  if (N0.getOpcode() == ISD::AND &&
4639      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4640      N0.getOperand(1).getOpcode() == ISD::Constant &&
4641      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4642                           N0.getValueType()) ||
4643       !TLI.isZExtFree(N0.getValueType(), VT))) {
4644    SDValue X = N0.getOperand(0).getOperand(0);
4645    if (X.getValueType().bitsLT(VT)) {
4646      X = DAG.getNode(ISD::ANY_EXTEND, X.getDebugLoc(), VT, X);
4647    } else if (X.getValueType().bitsGT(VT)) {
4648      X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
4649    }
4650    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4651    Mask = Mask.zext(VT.getSizeInBits());
4652    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4653                       X, DAG.getConstant(Mask, VT));
4654  }
4655
4656  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4657  // None of the supported targets knows how to perform load and vector_zext
4658  // on vectors in one instruction.  We only perform this transformation on
4659  // scalars.
4660  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4661      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4662       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4663    bool DoXform = true;
4664    SmallVector<SDNode*, 4> SetCCs;
4665    if (!N0.hasOneUse())
4666      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4667    if (DoXform) {
4668      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4669      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4670                                       LN0->getChain(),
4671                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4672                                       N0.getValueType(),
4673                                       LN0->isVolatile(), LN0->isNonTemporal(),
4674                                       LN0->getAlignment());
4675      CombineTo(N, ExtLoad);
4676      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4677                                  N0.getValueType(), ExtLoad);
4678      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4679
4680      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4681                      ISD::ZERO_EXTEND);
4682      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4683    }
4684  }
4685
4686  // fold (zext (and/or/xor (load x), cst)) ->
4687  //      (and/or/xor (zextload x), (zext cst))
4688  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4689       N0.getOpcode() == ISD::XOR) &&
4690      isa<LoadSDNode>(N0.getOperand(0)) &&
4691      N0.getOperand(1).getOpcode() == ISD::Constant &&
4692      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4693      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4694    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4695    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4696      bool DoXform = true;
4697      SmallVector<SDNode*, 4> SetCCs;
4698      if (!N0.hasOneUse())
4699        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4700                                          SetCCs, TLI);
4701      if (DoXform) {
4702        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, LN0->getDebugLoc(), VT,
4703                                         LN0->getChain(), LN0->getBasePtr(),
4704                                         LN0->getPointerInfo(),
4705                                         LN0->getMemoryVT(),
4706                                         LN0->isVolatile(),
4707                                         LN0->isNonTemporal(),
4708                                         LN0->getAlignment());
4709        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4710        Mask = Mask.zext(VT.getSizeInBits());
4711        SDValue And = DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
4712                                  ExtLoad, DAG.getConstant(Mask, VT));
4713        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4714                                    N0.getOperand(0).getDebugLoc(),
4715                                    N0.getOperand(0).getValueType(), ExtLoad);
4716        CombineTo(N, And);
4717        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4718        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4719                        ISD::ZERO_EXTEND);
4720        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4721      }
4722    }
4723  }
4724
4725  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4726  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4727  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4728      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4729    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4730    EVT MemVT = LN0->getMemoryVT();
4731    if ((!LegalOperations && !LN0->isVolatile()) ||
4732        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4733      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, N->getDebugLoc(), VT,
4734                                       LN0->getChain(),
4735                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4736                                       MemVT,
4737                                       LN0->isVolatile(), LN0->isNonTemporal(),
4738                                       LN0->getAlignment());
4739      CombineTo(N, ExtLoad);
4740      CombineTo(N0.getNode(),
4741                DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(), N0.getValueType(),
4742                            ExtLoad),
4743                ExtLoad.getValue(1));
4744      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4745    }
4746  }
4747
4748  if (N0.getOpcode() == ISD::SETCC) {
4749    if (!LegalOperations && VT.isVector()) {
4750      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4751      // Only do this before legalize for now.
4752      EVT N0VT = N0.getOperand(0).getValueType();
4753      EVT EltVT = VT.getVectorElementType();
4754      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4755                                    DAG.getConstant(1, EltVT));
4756      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4757        // We know that the # elements of the results is the same as the
4758        // # elements of the compare (and the # elements of the compare result
4759        // for that matter).  Check to see that they are the same size.  If so,
4760        // we know that the element size of the sext'd result matches the
4761        // element size of the compare operands.
4762        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4763                           DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4764                                         N0.getOperand(1),
4765                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4766                           DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4767                                       &OneOps[0], OneOps.size()));
4768
4769      // If the desired elements are smaller or larger than the source
4770      // elements we can use a matching integer vector type and then
4771      // truncate/sign extend
4772      EVT MatchingElementType =
4773        EVT::getIntegerVT(*DAG.getContext(),
4774                          N0VT.getScalarType().getSizeInBits());
4775      EVT MatchingVectorType =
4776        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4777                         N0VT.getVectorNumElements());
4778      SDValue VsetCC =
4779        DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4780                      N0.getOperand(1),
4781                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
4782      return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4783                         DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT),
4784                         DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT,
4785                                     &OneOps[0], OneOps.size()));
4786    }
4787
4788    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4789    SDValue SCC =
4790      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4791                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4792                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4793    if (SCC.getNode()) return SCC;
4794  }
4795
4796  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
4797  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
4798      isa<ConstantSDNode>(N0.getOperand(1)) &&
4799      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
4800      N0.hasOneUse()) {
4801    SDValue ShAmt = N0.getOperand(1);
4802    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4803    if (N0.getOpcode() == ISD::SHL) {
4804      SDValue InnerZExt = N0.getOperand(0);
4805      // If the original shl may be shifting out bits, do not perform this
4806      // transformation.
4807      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
4808        InnerZExt.getOperand(0).getValueType().getSizeInBits();
4809      if (ShAmtVal > KnownZeroBits)
4810        return SDValue();
4811    }
4812
4813    DebugLoc DL = N->getDebugLoc();
4814
4815    // Ensure that the shift amount is wide enough for the shifted value.
4816    if (VT.getSizeInBits() >= 256)
4817      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
4818
4819    return DAG.getNode(N0.getOpcode(), DL, VT,
4820                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
4821                       ShAmt);
4822  }
4823
4824  return SDValue();
4825}
4826
4827SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
4828  SDValue N0 = N->getOperand(0);
4829  EVT VT = N->getValueType(0);
4830
4831  // fold (aext c1) -> c1
4832  if (isa<ConstantSDNode>(N0))
4833    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, N0);
4834  // fold (aext (aext x)) -> (aext x)
4835  // fold (aext (zext x)) -> (zext x)
4836  // fold (aext (sext x)) -> (sext x)
4837  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
4838      N0.getOpcode() == ISD::ZERO_EXTEND ||
4839      N0.getOpcode() == ISD::SIGN_EXTEND)
4840    return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT, N0.getOperand(0));
4841
4842  // fold (aext (truncate (load x))) -> (aext (smaller load x))
4843  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
4844  if (N0.getOpcode() == ISD::TRUNCATE) {
4845    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4846    if (NarrowLoad.getNode()) {
4847      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4848      if (NarrowLoad.getNode() != N0.getNode()) {
4849        CombineTo(N0.getNode(), NarrowLoad);
4850        // CombineTo deleted the truncate, if needed, but not what's under it.
4851        AddToWorkList(oye);
4852      }
4853      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4854    }
4855  }
4856
4857  // fold (aext (truncate x))
4858  if (N0.getOpcode() == ISD::TRUNCATE) {
4859    SDValue TruncOp = N0.getOperand(0);
4860    if (TruncOp.getValueType() == VT)
4861      return TruncOp; // x iff x size == zext size.
4862    if (TruncOp.getValueType().bitsGT(VT))
4863      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, TruncOp);
4864    return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, TruncOp);
4865  }
4866
4867  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
4868  // if the trunc is not free.
4869  if (N0.getOpcode() == ISD::AND &&
4870      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4871      N0.getOperand(1).getOpcode() == ISD::Constant &&
4872      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4873                          N0.getValueType())) {
4874    SDValue X = N0.getOperand(0).getOperand(0);
4875    if (X.getValueType().bitsLT(VT)) {
4876      X = DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), VT, X);
4877    } else if (X.getValueType().bitsGT(VT)) {
4878      X = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, X);
4879    }
4880    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4881    Mask = Mask.zext(VT.getSizeInBits());
4882    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
4883                       X, DAG.getConstant(Mask, VT));
4884  }
4885
4886  // fold (aext (load x)) -> (aext (truncate (extload x)))
4887  // None of the supported targets knows how to perform load and any_ext
4888  // on vectors in one instruction.  We only perform this transformation on
4889  // scalars.
4890  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4891      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4892       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
4893    bool DoXform = true;
4894    SmallVector<SDNode*, 4> SetCCs;
4895    if (!N0.hasOneUse())
4896      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
4897    if (DoXform) {
4898      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4899      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
4900                                       LN0->getChain(),
4901                                       LN0->getBasePtr(), LN0->getPointerInfo(),
4902                                       N0.getValueType(),
4903                                       LN0->isVolatile(), LN0->isNonTemporal(),
4904                                       LN0->getAlignment());
4905      CombineTo(N, ExtLoad);
4906      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4907                                  N0.getValueType(), ExtLoad);
4908      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4909      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, N->getDebugLoc(),
4910                      ISD::ANY_EXTEND);
4911      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4912    }
4913  }
4914
4915  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
4916  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
4917  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
4918  if (N0.getOpcode() == ISD::LOAD &&
4919      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
4920      N0.hasOneUse()) {
4921    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4922    EVT MemVT = LN0->getMemoryVT();
4923    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), N->getDebugLoc(),
4924                                     VT, LN0->getChain(), LN0->getBasePtr(),
4925                                     LN0->getPointerInfo(), MemVT,
4926                                     LN0->isVolatile(), LN0->isNonTemporal(),
4927                                     LN0->getAlignment());
4928    CombineTo(N, ExtLoad);
4929    CombineTo(N0.getNode(),
4930              DAG.getNode(ISD::TRUNCATE, N0.getDebugLoc(),
4931                          N0.getValueType(), ExtLoad),
4932              ExtLoad.getValue(1));
4933    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4934  }
4935
4936  if (N0.getOpcode() == ISD::SETCC) {
4937    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
4938    // Only do this before legalize for now.
4939    if (VT.isVector() && !LegalOperations) {
4940      EVT N0VT = N0.getOperand(0).getValueType();
4941        // We know that the # elements of the results is the same as the
4942        // # elements of the compare (and the # elements of the compare result
4943        // for that matter).  Check to see that they are the same size.  If so,
4944        // we know that the element size of the sext'd result matches the
4945        // element size of the compare operands.
4946      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4947        return DAG.getSetCC(N->getDebugLoc(), VT, N0.getOperand(0),
4948                             N0.getOperand(1),
4949                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4950      // If the desired elements are smaller or larger than the source
4951      // elements we can use a matching integer vector type and then
4952      // truncate/sign extend
4953      else {
4954        EVT MatchingElementType =
4955          EVT::getIntegerVT(*DAG.getContext(),
4956                            N0VT.getScalarType().getSizeInBits());
4957        EVT MatchingVectorType =
4958          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
4959                           N0VT.getVectorNumElements());
4960        SDValue VsetCC =
4961          DAG.getSetCC(N->getDebugLoc(), MatchingVectorType, N0.getOperand(0),
4962                        N0.getOperand(1),
4963                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
4964        return DAG.getSExtOrTrunc(VsetCC, N->getDebugLoc(), VT);
4965      }
4966    }
4967
4968    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
4969    SDValue SCC =
4970      SimplifySelectCC(N->getDebugLoc(), N0.getOperand(0), N0.getOperand(1),
4971                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
4972                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4973    if (SCC.getNode())
4974      return SCC;
4975  }
4976
4977  return SDValue();
4978}
4979
4980/// GetDemandedBits - See if the specified operand can be simplified with the
4981/// knowledge that only the bits specified by Mask are used.  If so, return the
4982/// simpler operand, otherwise return a null SDValue.
4983SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
4984  switch (V.getOpcode()) {
4985  default: break;
4986  case ISD::Constant: {
4987    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
4988    assert(CV != 0 && "Const value should be ConstSDNode.");
4989    const APInt &CVal = CV->getAPIntValue();
4990    APInt NewVal = CVal & Mask;
4991    if (NewVal != CVal) {
4992      return DAG.getConstant(NewVal, V.getValueType());
4993    }
4994    break;
4995  }
4996  case ISD::OR:
4997  case ISD::XOR:
4998    // If the LHS or RHS don't contribute bits to the or, drop them.
4999    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5000      return V.getOperand(1);
5001    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5002      return V.getOperand(0);
5003    break;
5004  case ISD::SRL:
5005    // Only look at single-use SRLs.
5006    if (!V.getNode()->hasOneUse())
5007      break;
5008    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5009      // See if we can recursively simplify the LHS.
5010      unsigned Amt = RHSC->getZExtValue();
5011
5012      // Watch out for shift count overflow though.
5013      if (Amt >= Mask.getBitWidth()) break;
5014      APInt NewMask = Mask << Amt;
5015      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5016      if (SimplifyLHS.getNode())
5017        return DAG.getNode(ISD::SRL, V.getDebugLoc(), V.getValueType(),
5018                           SimplifyLHS, V.getOperand(1));
5019    }
5020  }
5021  return SDValue();
5022}
5023
5024/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5025/// bits and then truncated to a narrower type and where N is a multiple
5026/// of number of bits of the narrower type, transform it to a narrower load
5027/// from address + N / num of bits of new type. If the result is to be
5028/// extended, also fold the extension to form a extending load.
5029SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5030  unsigned Opc = N->getOpcode();
5031
5032  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5033  SDValue N0 = N->getOperand(0);
5034  EVT VT = N->getValueType(0);
5035  EVT ExtVT = VT;
5036
5037  // This transformation isn't valid for vector loads.
5038  if (VT.isVector())
5039    return SDValue();
5040
5041  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5042  // extended to VT.
5043  if (Opc == ISD::SIGN_EXTEND_INREG) {
5044    ExtType = ISD::SEXTLOAD;
5045    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5046  } else if (Opc == ISD::SRL) {
5047    // Another special-case: SRL is basically zero-extending a narrower value.
5048    ExtType = ISD::ZEXTLOAD;
5049    N0 = SDValue(N, 0);
5050    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5051    if (!N01) return SDValue();
5052    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5053                              VT.getSizeInBits() - N01->getZExtValue());
5054  }
5055  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5056    return SDValue();
5057
5058  unsigned EVTBits = ExtVT.getSizeInBits();
5059
5060  // Do not generate loads of non-round integer types since these can
5061  // be expensive (and would be wrong if the type is not byte sized).
5062  if (!ExtVT.isRound())
5063    return SDValue();
5064
5065  unsigned ShAmt = 0;
5066  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5067    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5068      ShAmt = N01->getZExtValue();
5069      // Is the shift amount a multiple of size of VT?
5070      if ((ShAmt & (EVTBits-1)) == 0) {
5071        N0 = N0.getOperand(0);
5072        // Is the load width a multiple of size of VT?
5073        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5074          return SDValue();
5075      }
5076
5077      // At this point, we must have a load or else we can't do the transform.
5078      if (!isa<LoadSDNode>(N0)) return SDValue();
5079
5080      // Because a SRL must be assumed to *need* to zero-extend the high bits
5081      // (as opposed to anyext the high bits), we can't combine the zextload
5082      // lowering of SRL and an sextload.
5083      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5084        return SDValue();
5085
5086      // If the shift amount is larger than the input type then we're not
5087      // accessing any of the loaded bytes.  If the load was a zextload/extload
5088      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5089      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5090        return SDValue();
5091    }
5092  }
5093
5094  // If the load is shifted left (and the result isn't shifted back right),
5095  // we can fold the truncate through the shift.
5096  unsigned ShLeftAmt = 0;
5097  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5098      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5099    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5100      ShLeftAmt = N01->getZExtValue();
5101      N0 = N0.getOperand(0);
5102    }
5103  }
5104
5105  // If we haven't found a load, we can't narrow it.  Don't transform one with
5106  // multiple uses, this would require adding a new load.
5107  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5108    return SDValue();
5109
5110  // Don't change the width of a volatile load.
5111  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5112  if (LN0->isVolatile())
5113    return SDValue();
5114
5115  // Verify that we are actually reducing a load width here.
5116  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5117    return SDValue();
5118
5119  // For the transform to be legal, the load must produce only two values
5120  // (the value loaded and the chain).  Don't transform a pre-increment
5121  // load, for example, which produces an extra value.  Otherwise the
5122  // transformation is not equivalent, and the downstream logic to replace
5123  // uses gets things wrong.
5124  if (LN0->getNumValues() > 2)
5125    return SDValue();
5126
5127  EVT PtrType = N0.getOperand(1).getValueType();
5128
5129  if (PtrType == MVT::Untyped || PtrType.isExtended())
5130    // It's not possible to generate a constant of extended or untyped type.
5131    return SDValue();
5132
5133  // For big endian targets, we need to adjust the offset to the pointer to
5134  // load the correct bytes.
5135  if (TLI.isBigEndian()) {
5136    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5137    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5138    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5139  }
5140
5141  uint64_t PtrOff = ShAmt / 8;
5142  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5143  SDValue NewPtr = DAG.getNode(ISD::ADD, LN0->getDebugLoc(),
5144                               PtrType, LN0->getBasePtr(),
5145                               DAG.getConstant(PtrOff, PtrType));
5146  AddToWorkList(NewPtr.getNode());
5147
5148  SDValue Load;
5149  if (ExtType == ISD::NON_EXTLOAD)
5150    Load =  DAG.getLoad(VT, N0.getDebugLoc(), LN0->getChain(), NewPtr,
5151                        LN0->getPointerInfo().getWithOffset(PtrOff),
5152                        LN0->isVolatile(), LN0->isNonTemporal(),
5153                        LN0->isInvariant(), NewAlign);
5154  else
5155    Load = DAG.getExtLoad(ExtType, N0.getDebugLoc(), VT, LN0->getChain(),NewPtr,
5156                          LN0->getPointerInfo().getWithOffset(PtrOff),
5157                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5158                          NewAlign);
5159
5160  // Replace the old load's chain with the new load's chain.
5161  WorkListRemover DeadNodes(*this);
5162  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5163
5164  // Shift the result left, if we've swallowed a left shift.
5165  SDValue Result = Load;
5166  if (ShLeftAmt != 0) {
5167    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5168    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5169      ShImmTy = VT;
5170    // If the shift amount is as large as the result size (but, presumably,
5171    // no larger than the source) then the useful bits of the result are
5172    // zero; we can't simply return the shortened shift, because the result
5173    // of that operation is undefined.
5174    if (ShLeftAmt >= VT.getSizeInBits())
5175      Result = DAG.getConstant(0, VT);
5176    else
5177      Result = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT,
5178                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5179  }
5180
5181  // Return the new loaded value.
5182  return Result;
5183}
5184
5185SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5186  SDValue N0 = N->getOperand(0);
5187  SDValue N1 = N->getOperand(1);
5188  EVT VT = N->getValueType(0);
5189  EVT EVT = cast<VTSDNode>(N1)->getVT();
5190  unsigned VTBits = VT.getScalarType().getSizeInBits();
5191  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5192
5193  // fold (sext_in_reg c1) -> c1
5194  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5195    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT, N0, N1);
5196
5197  // If the input is already sign extended, just drop the extension.
5198  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5199    return N0;
5200
5201  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5202  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5203      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) {
5204    return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5205                       N0.getOperand(0), N1);
5206  }
5207
5208  // fold (sext_in_reg (sext x)) -> (sext x)
5209  // fold (sext_in_reg (aext x)) -> (sext x)
5210  // if x is small enough.
5211  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5212    SDValue N00 = N0.getOperand(0);
5213    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5214        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5215      return DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, N00, N1);
5216  }
5217
5218  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5219  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5220    return DAG.getZeroExtendInReg(N0, N->getDebugLoc(), EVT);
5221
5222  // fold operands of sext_in_reg based on knowledge that the top bits are not
5223  // demanded.
5224  if (SimplifyDemandedBits(SDValue(N, 0)))
5225    return SDValue(N, 0);
5226
5227  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5228  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5229  SDValue NarrowLoad = ReduceLoadWidth(N);
5230  if (NarrowLoad.getNode())
5231    return NarrowLoad;
5232
5233  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5234  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5235  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5236  if (N0.getOpcode() == ISD::SRL) {
5237    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5238      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5239        // We can turn this into an SRA iff the input to the SRL is already sign
5240        // extended enough.
5241        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5242        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5243          return DAG.getNode(ISD::SRA, N->getDebugLoc(), VT,
5244                             N0.getOperand(0), N0.getOperand(1));
5245      }
5246  }
5247
5248  // fold (sext_inreg (extload x)) -> (sextload x)
5249  if (ISD::isEXTLoad(N0.getNode()) &&
5250      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5251      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5252      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5253       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5254    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5255    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5256                                     LN0->getChain(),
5257                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5258                                     EVT,
5259                                     LN0->isVolatile(), LN0->isNonTemporal(),
5260                                     LN0->getAlignment());
5261    CombineTo(N, ExtLoad);
5262    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5263    AddToWorkList(ExtLoad.getNode());
5264    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5265  }
5266  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5267  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5268      N0.hasOneUse() &&
5269      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5270      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5271       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5272    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5273    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, N->getDebugLoc(), VT,
5274                                     LN0->getChain(),
5275                                     LN0->getBasePtr(), LN0->getPointerInfo(),
5276                                     EVT,
5277                                     LN0->isVolatile(), LN0->isNonTemporal(),
5278                                     LN0->getAlignment());
5279    CombineTo(N, ExtLoad);
5280    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5281    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5282  }
5283
5284  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5285  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5286    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5287                                       N0.getOperand(1), false);
5288    if (BSwap.getNode() != 0)
5289      return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(), VT,
5290                         BSwap, N1);
5291  }
5292
5293  return SDValue();
5294}
5295
5296SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5297  SDValue N0 = N->getOperand(0);
5298  EVT VT = N->getValueType(0);
5299  bool isLE = TLI.isLittleEndian();
5300
5301  // noop truncate
5302  if (N0.getValueType() == N->getValueType(0))
5303    return N0;
5304  // fold (truncate c1) -> c1
5305  if (isa<ConstantSDNode>(N0))
5306    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0);
5307  // fold (truncate (truncate x)) -> (truncate x)
5308  if (N0.getOpcode() == ISD::TRUNCATE)
5309    return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5310  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5311  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5312      N0.getOpcode() == ISD::SIGN_EXTEND ||
5313      N0.getOpcode() == ISD::ANY_EXTEND) {
5314    if (N0.getOperand(0).getValueType().bitsLT(VT))
5315      // if the source is smaller than the dest, we still need an extend
5316      return DAG.getNode(N0.getOpcode(), N->getDebugLoc(), VT,
5317                         N0.getOperand(0));
5318    if (N0.getOperand(0).getValueType().bitsGT(VT))
5319      // if the source is larger than the dest, than we just need the truncate
5320      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, N0.getOperand(0));
5321    // if the source and dest are the same type, we can drop both the extend
5322    // and the truncate.
5323    return N0.getOperand(0);
5324  }
5325
5326  // Fold extract-and-trunc into a narrow extract. For example:
5327  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5328  //   i32 y = TRUNCATE(i64 x)
5329  //        -- becomes --
5330  //   v16i8 b = BITCAST (v2i64 val)
5331  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5332  //
5333  // Note: We only run this optimization after type legalization (which often
5334  // creates this pattern) and before operation legalization after which
5335  // we need to be more careful about the vector instructions that we generate.
5336  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5337      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5338
5339    EVT VecTy = N0.getOperand(0).getValueType();
5340    EVT ExTy = N0.getValueType();
5341    EVT TrTy = N->getValueType(0);
5342
5343    unsigned NumElem = VecTy.getVectorNumElements();
5344    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5345
5346    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5347    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5348
5349    SDValue EltNo = N0->getOperand(1);
5350    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5351      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5352      EVT IndexTy = N0->getOperand(1).getValueType();
5353      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5354
5355      SDValue V = DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
5356                              NVT, N0.getOperand(0));
5357
5358      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5359                         N->getDebugLoc(), TrTy, V,
5360                         DAG.getConstant(Index, IndexTy));
5361    }
5362  }
5363
5364  // Fold a series of buildvector, bitcast, and truncate if possible.
5365  // For example fold
5366  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5367  //   (2xi32 (buildvector x, y)).
5368  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5369      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5370      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5371      N0.getOperand(0).hasOneUse()) {
5372
5373    SDValue BuildVect = N0.getOperand(0);
5374    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5375    EVT TruncVecEltTy = VT.getVectorElementType();
5376
5377    // Check that the element types match.
5378    if (BuildVectEltTy == TruncVecEltTy) {
5379      // Now we only need to compute the offset of the truncated elements.
5380      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5381      unsigned TruncVecNumElts = VT.getVectorNumElements();
5382      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5383
5384      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5385             "Invalid number of elements");
5386
5387      SmallVector<SDValue, 8> Opnds;
5388      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5389        Opnds.push_back(BuildVect.getOperand(i));
5390
5391      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), VT, &Opnds[0],
5392                         Opnds.size());
5393    }
5394  }
5395
5396  // See if we can simplify the input to this truncate through knowledge that
5397  // only the low bits are being used.
5398  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5399  // Currently we only perform this optimization on scalars because vectors
5400  // may have different active low bits.
5401  if (!VT.isVector()) {
5402    SDValue Shorter =
5403      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5404                                               VT.getSizeInBits()));
5405    if (Shorter.getNode())
5406      return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, Shorter);
5407  }
5408  // fold (truncate (load x)) -> (smaller load x)
5409  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5410  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5411    SDValue Reduced = ReduceLoadWidth(N);
5412    if (Reduced.getNode())
5413      return Reduced;
5414  }
5415  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5416  // where ... are all 'undef'.
5417  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5418    SmallVector<EVT, 8> VTs;
5419    SDValue V;
5420    unsigned Idx = 0;
5421    unsigned NumDefs = 0;
5422
5423    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5424      SDValue X = N0.getOperand(i);
5425      if (X.getOpcode() != ISD::UNDEF) {
5426        V = X;
5427        Idx = i;
5428        NumDefs++;
5429      }
5430      // Stop if more than one members are non-undef.
5431      if (NumDefs > 1)
5432        break;
5433      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5434                                     VT.getVectorElementType(),
5435                                     X.getValueType().getVectorNumElements()));
5436    }
5437
5438    if (NumDefs == 0)
5439      return DAG.getUNDEF(VT);
5440
5441    if (NumDefs == 1) {
5442      assert(V.getNode() && "The single defined operand is empty!");
5443      SmallVector<SDValue, 8> Opnds;
5444      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5445        if (i != Idx) {
5446          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5447          continue;
5448        }
5449        SDValue NV = DAG.getNode(ISD::TRUNCATE, V.getDebugLoc(), VTs[i], V);
5450        AddToWorkList(NV.getNode());
5451        Opnds.push_back(NV);
5452      }
5453      return DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5454                         &Opnds[0], Opnds.size());
5455    }
5456  }
5457
5458  // Simplify the operands using demanded-bits information.
5459  if (!VT.isVector() &&
5460      SimplifyDemandedBits(SDValue(N, 0)))
5461    return SDValue(N, 0);
5462
5463  return SDValue();
5464}
5465
5466static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5467  SDValue Elt = N->getOperand(i);
5468  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5469    return Elt.getNode();
5470  return Elt.getOperand(Elt.getResNo()).getNode();
5471}
5472
5473/// CombineConsecutiveLoads - build_pair (load, load) -> load
5474/// if load locations are consecutive.
5475SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5476  assert(N->getOpcode() == ISD::BUILD_PAIR);
5477
5478  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5479  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5480  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5481      LD1->getPointerInfo().getAddrSpace() !=
5482         LD2->getPointerInfo().getAddrSpace())
5483    return SDValue();
5484  EVT LD1VT = LD1->getValueType(0);
5485
5486  if (ISD::isNON_EXTLoad(LD2) &&
5487      LD2->hasOneUse() &&
5488      // If both are volatile this would reduce the number of volatile loads.
5489      // If one is volatile it might be ok, but play conservative and bail out.
5490      !LD1->isVolatile() &&
5491      !LD2->isVolatile() &&
5492      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5493    unsigned Align = LD1->getAlignment();
5494    unsigned NewAlign = TLI.getDataLayout()->
5495      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5496
5497    if (NewAlign <= Align &&
5498        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5499      return DAG.getLoad(VT, N->getDebugLoc(), LD1->getChain(),
5500                         LD1->getBasePtr(), LD1->getPointerInfo(),
5501                         false, false, false, Align);
5502  }
5503
5504  return SDValue();
5505}
5506
5507SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5508  SDValue N0 = N->getOperand(0);
5509  EVT VT = N->getValueType(0);
5510
5511  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5512  // Only do this before legalize, since afterward the target may be depending
5513  // on the bitconvert.
5514  // First check to see if this is all constant.
5515  if (!LegalTypes &&
5516      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5517      VT.isVector()) {
5518    bool isSimple = true;
5519    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5520      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5521          N0.getOperand(i).getOpcode() != ISD::Constant &&
5522          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5523        isSimple = false;
5524        break;
5525      }
5526
5527    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5528    assert(!DestEltVT.isVector() &&
5529           "Element type of vector ValueType must not be vector!");
5530    if (isSimple)
5531      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5532  }
5533
5534  // If the input is a constant, let getNode fold it.
5535  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5536    SDValue Res = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, N0);
5537    if (Res.getNode() != N) {
5538      if (!LegalOperations ||
5539          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5540        return Res;
5541
5542      // Folding it resulted in an illegal node, and it's too late to
5543      // do that. Clean up the old node and forego the transformation.
5544      // Ideally this won't happen very often, because instcombine
5545      // and the earlier dagcombine runs (where illegal nodes are
5546      // permitted) should have folded most of them already.
5547      DAG.DeleteNode(Res.getNode());
5548    }
5549  }
5550
5551  // (conv (conv x, t1), t2) -> (conv x, t2)
5552  if (N0.getOpcode() == ISD::BITCAST)
5553    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT,
5554                       N0.getOperand(0));
5555
5556  // fold (conv (load x)) -> (load (conv*)x)
5557  // If the resultant load doesn't need a higher alignment than the original!
5558  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5559      // Do not change the width of a volatile load.
5560      !cast<LoadSDNode>(N0)->isVolatile() &&
5561      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) {
5562    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5563    unsigned Align = TLI.getDataLayout()->
5564      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5565    unsigned OrigAlign = LN0->getAlignment();
5566
5567    if (Align <= OrigAlign) {
5568      SDValue Load = DAG.getLoad(VT, N->getDebugLoc(), LN0->getChain(),
5569                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5570                                 LN0->isVolatile(), LN0->isNonTemporal(),
5571                                 LN0->isInvariant(), OrigAlign);
5572      AddToWorkList(N);
5573      CombineTo(N0.getNode(),
5574                DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5575                            N0.getValueType(), Load),
5576                Load.getValue(1));
5577      return Load;
5578    }
5579  }
5580
5581  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5582  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5583  // This often reduces constant pool loads.
5584  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(VT)) ||
5585       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(VT))) &&
5586      N0.getNode()->hasOneUse() && VT.isInteger() &&
5587      !VT.isVector() && !N0.getValueType().isVector()) {
5588    SDValue NewConv = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(), VT,
5589                                  N0.getOperand(0));
5590    AddToWorkList(NewConv.getNode());
5591
5592    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5593    if (N0.getOpcode() == ISD::FNEG)
5594      return DAG.getNode(ISD::XOR, N->getDebugLoc(), VT,
5595                         NewConv, DAG.getConstant(SignBit, VT));
5596    assert(N0.getOpcode() == ISD::FABS);
5597    return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
5598                       NewConv, DAG.getConstant(~SignBit, VT));
5599  }
5600
5601  // fold (bitconvert (fcopysign cst, x)) ->
5602  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5603  // Note that we don't handle (copysign x, cst) because this can always be
5604  // folded to an fneg or fabs.
5605  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5606      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5607      VT.isInteger() && !VT.isVector()) {
5608    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5609    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5610    if (isTypeLegal(IntXVT)) {
5611      SDValue X = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5612                              IntXVT, N0.getOperand(1));
5613      AddToWorkList(X.getNode());
5614
5615      // If X has a different width than the result/lhs, sext it or truncate it.
5616      unsigned VTWidth = VT.getSizeInBits();
5617      if (OrigXWidth < VTWidth) {
5618        X = DAG.getNode(ISD::SIGN_EXTEND, N->getDebugLoc(), VT, X);
5619        AddToWorkList(X.getNode());
5620      } else if (OrigXWidth > VTWidth) {
5621        // To get the sign bit in the right place, we have to shift it right
5622        // before truncating.
5623        X = DAG.getNode(ISD::SRL, X.getDebugLoc(),
5624                        X.getValueType(), X,
5625                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5626        AddToWorkList(X.getNode());
5627        X = DAG.getNode(ISD::TRUNCATE, X.getDebugLoc(), VT, X);
5628        AddToWorkList(X.getNode());
5629      }
5630
5631      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5632      X = DAG.getNode(ISD::AND, X.getDebugLoc(), VT,
5633                      X, DAG.getConstant(SignBit, VT));
5634      AddToWorkList(X.getNode());
5635
5636      SDValue Cst = DAG.getNode(ISD::BITCAST, N0.getDebugLoc(),
5637                                VT, N0.getOperand(0));
5638      Cst = DAG.getNode(ISD::AND, Cst.getDebugLoc(), VT,
5639                        Cst, DAG.getConstant(~SignBit, VT));
5640      AddToWorkList(Cst.getNode());
5641
5642      return DAG.getNode(ISD::OR, N->getDebugLoc(), VT, X, Cst);
5643    }
5644  }
5645
5646  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5647  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5648    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5649    if (CombineLD.getNode())
5650      return CombineLD;
5651  }
5652
5653  return SDValue();
5654}
5655
5656SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5657  EVT VT = N->getValueType(0);
5658  return CombineConsecutiveLoads(N, VT);
5659}
5660
5661/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5662/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5663/// destination element value type.
5664SDValue DAGCombiner::
5665ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5666  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5667
5668  // If this is already the right type, we're done.
5669  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5670
5671  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5672  unsigned DstBitSize = DstEltVT.getSizeInBits();
5673
5674  // If this is a conversion of N elements of one type to N elements of another
5675  // type, convert each element.  This handles FP<->INT cases.
5676  if (SrcBitSize == DstBitSize) {
5677    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5678                              BV->getValueType(0).getVectorNumElements());
5679
5680    // Due to the FP element handling below calling this routine recursively,
5681    // we can end up with a scalar-to-vector node here.
5682    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5683      return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5684                         DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5685                                     DstEltVT, BV->getOperand(0)));
5686
5687    SmallVector<SDValue, 8> Ops;
5688    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5689      SDValue Op = BV->getOperand(i);
5690      // If the vector element type is not legal, the BUILD_VECTOR operands
5691      // are promoted and implicitly truncated.  Make that explicit here.
5692      if (Op.getValueType() != SrcEltVT)
5693        Op = DAG.getNode(ISD::TRUNCATE, BV->getDebugLoc(), SrcEltVT, Op);
5694      Ops.push_back(DAG.getNode(ISD::BITCAST, BV->getDebugLoc(),
5695                                DstEltVT, Op));
5696      AddToWorkList(Ops.back().getNode());
5697    }
5698    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5699                       &Ops[0], Ops.size());
5700  }
5701
5702  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5703  // handle annoying details of growing/shrinking FP values, we convert them to
5704  // int first.
5705  if (SrcEltVT.isFloatingPoint()) {
5706    // Convert the input float vector to a int vector where the elements are the
5707    // same sizes.
5708    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5709    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5710    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5711    SrcEltVT = IntVT;
5712  }
5713
5714  // Now we know the input is an integer vector.  If the output is a FP type,
5715  // convert to integer first, then to FP of the right size.
5716  if (DstEltVT.isFloatingPoint()) {
5717    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5718    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5719    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5720
5721    // Next, convert to FP elements of the same size.
5722    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5723  }
5724
5725  // Okay, we know the src/dst types are both integers of differing types.
5726  // Handling growing first.
5727  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5728  if (SrcBitSize < DstBitSize) {
5729    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5730
5731    SmallVector<SDValue, 8> Ops;
5732    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5733         i += NumInputsPerOutput) {
5734      bool isLE = TLI.isLittleEndian();
5735      APInt NewBits = APInt(DstBitSize, 0);
5736      bool EltIsUndef = true;
5737      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5738        // Shift the previously computed bits over.
5739        NewBits <<= SrcBitSize;
5740        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5741        if (Op.getOpcode() == ISD::UNDEF) continue;
5742        EltIsUndef = false;
5743
5744        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5745                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5746      }
5747
5748      if (EltIsUndef)
5749        Ops.push_back(DAG.getUNDEF(DstEltVT));
5750      else
5751        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5752    }
5753
5754    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5755    return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5756                       &Ops[0], Ops.size());
5757  }
5758
5759  // Finally, this must be the case where we are shrinking elements: each input
5760  // turns into multiple outputs.
5761  bool isS2V = ISD::isScalarToVector(BV);
5762  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5763  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5764                            NumOutputsPerInput*BV->getNumOperands());
5765  SmallVector<SDValue, 8> Ops;
5766
5767  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5768    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5769      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5770        Ops.push_back(DAG.getUNDEF(DstEltVT));
5771      continue;
5772    }
5773
5774    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5775                  getAPIntValue().zextOrTrunc(SrcBitSize);
5776
5777    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
5778      APInt ThisVal = OpVal.trunc(DstBitSize);
5779      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
5780      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
5781        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
5782        return DAG.getNode(ISD::SCALAR_TO_VECTOR, BV->getDebugLoc(), VT,
5783                           Ops[0]);
5784      OpVal = OpVal.lshr(DstBitSize);
5785    }
5786
5787    // For big endian targets, swap the order of the pieces of each element.
5788    if (TLI.isBigEndian())
5789      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
5790  }
5791
5792  return DAG.getNode(ISD::BUILD_VECTOR, BV->getDebugLoc(), VT,
5793                     &Ops[0], Ops.size());
5794}
5795
5796SDValue DAGCombiner::visitFADD(SDNode *N) {
5797  SDValue N0 = N->getOperand(0);
5798  SDValue N1 = N->getOperand(1);
5799  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
5800  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5801  EVT VT = N->getValueType(0);
5802
5803  // fold vector ops
5804  if (VT.isVector()) {
5805    SDValue FoldedVOp = SimplifyVBinOp(N);
5806    if (FoldedVOp.getNode()) return FoldedVOp;
5807  }
5808
5809  // fold (fadd c1, c2) -> c1 + c2
5810  if (N0CFP && N1CFP)
5811    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N1);
5812  // canonicalize constant to RHS
5813  if (N0CFP && !N1CFP)
5814    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N0);
5815  // fold (fadd A, 0) -> A
5816  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5817      N1CFP->getValueAPF().isZero())
5818    return N0;
5819  // fold (fadd A, (fneg B)) -> (fsub A, B)
5820  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5821    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5822    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0,
5823                       GetNegatedExpression(N1, DAG, LegalOperations));
5824  // fold (fadd (fneg A), B) -> (fsub B, A)
5825  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
5826    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
5827    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N1,
5828                       GetNegatedExpression(N0, DAG, LegalOperations));
5829
5830  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
5831  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
5832      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
5833      isa<ConstantFPSDNode>(N0.getOperand(1)))
5834    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0.getOperand(0),
5835                       DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5836                                   N0.getOperand(1), N1));
5837
5838  // If allow, fold (fadd (fneg x), x) -> 0.0
5839  if (DAG.getTarget().Options.UnsafeFPMath &&
5840      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) {
5841    return DAG.getConstantFP(0.0, VT);
5842  }
5843
5844    // If allow, fold (fadd x, (fneg x)) -> 0.0
5845  if (DAG.getTarget().Options.UnsafeFPMath &&
5846      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) {
5847    return DAG.getConstantFP(0.0, VT);
5848  }
5849
5850  // In unsafe math mode, we can fold chains of FADD's of the same value
5851  // into multiplications.  This transform is not safe in general because
5852  // we are reducing the number of rounding steps.
5853  if (DAG.getTarget().Options.UnsafeFPMath &&
5854      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
5855      !N0CFP && !N1CFP) {
5856    if (N0.getOpcode() == ISD::FMUL) {
5857      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5858      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
5859
5860      // (fadd (fmul c, x), x) -> (fmul c+1, x)
5861      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
5862        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5863                                     SDValue(CFP00, 0),
5864                                     DAG.getConstantFP(1.0, VT));
5865        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5866                           N1, NewCFP);
5867      }
5868
5869      // (fadd (fmul x, c), x) -> (fmul c+1, x)
5870      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
5871        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5872                                     SDValue(CFP01, 0),
5873                                     DAG.getConstantFP(1.0, VT));
5874        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5875                           N1, NewCFP);
5876      }
5877
5878      // (fadd (fmul c, x), (fadd x, x)) -> (fmul c+2, x)
5879      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
5880          N1.getOperand(0) == N1.getOperand(1) &&
5881          N0.getOperand(1) == N1.getOperand(0)) {
5882        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5883                                     SDValue(CFP00, 0),
5884                                     DAG.getConstantFP(2.0, VT));
5885        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5886                           N0.getOperand(1), NewCFP);
5887      }
5888
5889      // (fadd (fmul x, c), (fadd x, x)) -> (fmul c+2, x)
5890      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
5891          N1.getOperand(0) == N1.getOperand(1) &&
5892          N0.getOperand(0) == N1.getOperand(0)) {
5893        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5894                                     SDValue(CFP01, 0),
5895                                     DAG.getConstantFP(2.0, VT));
5896        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5897                           N0.getOperand(0), NewCFP);
5898      }
5899    }
5900
5901    if (N1.getOpcode() == ISD::FMUL) {
5902      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5903      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
5904
5905      // (fadd x, (fmul c, x)) -> (fmul c+1, x)
5906      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
5907        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5908                                     SDValue(CFP10, 0),
5909                                     DAG.getConstantFP(1.0, VT));
5910        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5911                           N0, NewCFP);
5912      }
5913
5914      // (fadd x, (fmul x, c)) -> (fmul c+1, x)
5915      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
5916        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5917                                     SDValue(CFP11, 0),
5918                                     DAG.getConstantFP(1.0, VT));
5919        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5920                           N0, NewCFP);
5921      }
5922
5923
5924      // (fadd (fadd x, x), (fmul c, x)) -> (fmul c+2, x)
5925      if (CFP10 && !CFP11 && N1.getOpcode() == ISD::FADD &&
5926          N1.getOperand(0) == N1.getOperand(1) &&
5927          N0.getOperand(1) == N1.getOperand(0)) {
5928        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5929                                     SDValue(CFP10, 0),
5930                                     DAG.getConstantFP(2.0, VT));
5931        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5932                           N0.getOperand(1), NewCFP);
5933      }
5934
5935      // (fadd (fadd x, x), (fmul x, c)) -> (fmul c+2, x)
5936      if (CFP11 && !CFP10 && N1.getOpcode() == ISD::FADD &&
5937          N1.getOperand(0) == N1.getOperand(1) &&
5938          N0.getOperand(0) == N1.getOperand(0)) {
5939        SDValue NewCFP = DAG.getNode(ISD::FADD, N->getDebugLoc(), VT,
5940                                     SDValue(CFP11, 0),
5941                                     DAG.getConstantFP(2.0, VT));
5942        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5943                           N0.getOperand(0), NewCFP);
5944      }
5945    }
5946
5947    if (N0.getOpcode() == ISD::FADD) {
5948      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
5949      // (fadd (fadd x, x), x) -> (fmul 3.0, x)
5950      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
5951          (N0.getOperand(0) == N1)) {
5952        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5953                           N1, DAG.getConstantFP(3.0, VT));
5954      }
5955    }
5956
5957    if (N1.getOpcode() == ISD::FADD) {
5958      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
5959      // (fadd x, (fadd x, x)) -> (fmul 3.0, x)
5960      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
5961          N1.getOperand(0) == N0) {
5962        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5963                           N0, DAG.getConstantFP(3.0, VT));
5964      }
5965    }
5966
5967    // (fadd (fadd x, x), (fadd x, x)) -> (fmul 4.0, x)
5968    if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
5969        N0.getOperand(0) == N0.getOperand(1) &&
5970        N1.getOperand(0) == N1.getOperand(1) &&
5971        N0.getOperand(0) == N1.getOperand(0)) {
5972      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
5973                         N0.getOperand(0),
5974                         DAG.getConstantFP(4.0, VT));
5975    }
5976  }
5977
5978  // FADD -> FMA combines:
5979  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
5980       DAG.getTarget().Options.UnsafeFPMath) &&
5981      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
5982      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
5983
5984    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5985    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
5986      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5987                         N0.getOperand(0), N0.getOperand(1), N1);
5988    }
5989
5990    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5991    // Note: Commutes FADD operands.
5992    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
5993      return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT,
5994                         N1.getOperand(0), N1.getOperand(1), N0);
5995    }
5996  }
5997
5998  return SDValue();
5999}
6000
6001SDValue DAGCombiner::visitFSUB(SDNode *N) {
6002  SDValue N0 = N->getOperand(0);
6003  SDValue N1 = N->getOperand(1);
6004  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6005  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6006  EVT VT = N->getValueType(0);
6007  DebugLoc dl = N->getDebugLoc();
6008
6009  // fold vector ops
6010  if (VT.isVector()) {
6011    SDValue FoldedVOp = SimplifyVBinOp(N);
6012    if (FoldedVOp.getNode()) return FoldedVOp;
6013  }
6014
6015  // fold (fsub c1, c2) -> c1-c2
6016  if (N0CFP && N1CFP)
6017    return DAG.getNode(ISD::FSUB, N->getDebugLoc(), VT, N0, N1);
6018  // fold (fsub A, 0) -> A
6019  if (DAG.getTarget().Options.UnsafeFPMath &&
6020      N1CFP && N1CFP->getValueAPF().isZero())
6021    return N0;
6022  // fold (fsub 0, B) -> -B
6023  if (DAG.getTarget().Options.UnsafeFPMath &&
6024      N0CFP && N0CFP->getValueAPF().isZero()) {
6025    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6026      return GetNegatedExpression(N1, DAG, LegalOperations);
6027    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6028      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6029  }
6030  // fold (fsub A, (fneg B)) -> (fadd A, B)
6031  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6032    return DAG.getNode(ISD::FADD, dl, VT, N0,
6033                       GetNegatedExpression(N1, DAG, LegalOperations));
6034
6035  // If 'unsafe math' is enabled, fold
6036  //    (fsub x, x) -> 0.0 &
6037  //    (fsub x, (fadd x, y)) -> (fneg y) &
6038  //    (fsub x, (fadd y, x)) -> (fneg y)
6039  if (DAG.getTarget().Options.UnsafeFPMath) {
6040    if (N0 == N1)
6041      return DAG.getConstantFP(0.0f, VT);
6042
6043    if (N1.getOpcode() == ISD::FADD) {
6044      SDValue N10 = N1->getOperand(0);
6045      SDValue N11 = N1->getOperand(1);
6046
6047      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6048                                          &DAG.getTarget().Options))
6049        return GetNegatedExpression(N11, DAG, LegalOperations);
6050      else if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6051                                               &DAG.getTarget().Options))
6052        return GetNegatedExpression(N10, DAG, LegalOperations);
6053    }
6054  }
6055
6056  // FSUB -> FMA combines:
6057  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6058       DAG.getTarget().Options.UnsafeFPMath) &&
6059      DAG.getTarget().getTargetLowering()->isFMAFasterThanMulAndAdd(VT) &&
6060      TLI.isOperationLegalOrCustom(ISD::FMA, VT)) {
6061
6062    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6063    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse()) {
6064      return DAG.getNode(ISD::FMA, dl, VT,
6065                         N0.getOperand(0), N0.getOperand(1),
6066                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6067    }
6068
6069    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6070    // Note: Commutes FSUB operands.
6071    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse()) {
6072      return DAG.getNode(ISD::FMA, dl, VT,
6073                         DAG.getNode(ISD::FNEG, dl, VT,
6074                         N1.getOperand(0)),
6075                         N1.getOperand(1), N0);
6076    }
6077
6078    // fold (fsub (-(fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6079    if (N0.getOpcode() == ISD::FNEG &&
6080        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6081        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6082      SDValue N00 = N0.getOperand(0).getOperand(0);
6083      SDValue N01 = N0.getOperand(0).getOperand(1);
6084      return DAG.getNode(ISD::FMA, dl, VT,
6085                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6086                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6087    }
6088  }
6089
6090  return SDValue();
6091}
6092
6093SDValue DAGCombiner::visitFMUL(SDNode *N) {
6094  SDValue N0 = N->getOperand(0);
6095  SDValue N1 = N->getOperand(1);
6096  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6097  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6098  EVT VT = N->getValueType(0);
6099  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6100
6101  // fold vector ops
6102  if (VT.isVector()) {
6103    SDValue FoldedVOp = SimplifyVBinOp(N);
6104    if (FoldedVOp.getNode()) return FoldedVOp;
6105  }
6106
6107  // fold (fmul c1, c2) -> c1*c2
6108  if (N0CFP && N1CFP)
6109    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0, N1);
6110  // canonicalize constant to RHS
6111  if (N0CFP && !N1CFP)
6112    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N1, N0);
6113  // fold (fmul A, 0) -> 0
6114  if (DAG.getTarget().Options.UnsafeFPMath &&
6115      N1CFP && N1CFP->getValueAPF().isZero())
6116    return N1;
6117  // fold (fmul A, 0) -> 0, vector edition.
6118  if (DAG.getTarget().Options.UnsafeFPMath &&
6119      ISD::isBuildVectorAllZeros(N1.getNode()))
6120    return N1;
6121  // fold (fmul A, 1.0) -> A
6122  if (N1CFP && N1CFP->isExactlyValue(1.0))
6123    return N0;
6124  // fold (fmul X, 2.0) -> (fadd X, X)
6125  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6126    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N0);
6127  // fold (fmul X, -1.0) -> (fneg X)
6128  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6129    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6130      return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT, N0);
6131
6132  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6133  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6134                                       &DAG.getTarget().Options)) {
6135    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6136                                         &DAG.getTarget().Options)) {
6137      // Both can be negated for free, check to see if at least one is cheaper
6138      // negated.
6139      if (LHSNeg == 2 || RHSNeg == 2)
6140        return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6141                           GetNegatedExpression(N0, DAG, LegalOperations),
6142                           GetNegatedExpression(N1, DAG, LegalOperations));
6143    }
6144  }
6145
6146  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6147  if (DAG.getTarget().Options.UnsafeFPMath &&
6148      N1CFP && N0.getOpcode() == ISD::FMUL &&
6149      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6150    return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0.getOperand(0),
6151                       DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6152                                   N0.getOperand(1), N1));
6153
6154  return SDValue();
6155}
6156
6157SDValue DAGCombiner::visitFMA(SDNode *N) {
6158  SDValue N0 = N->getOperand(0);
6159  SDValue N1 = N->getOperand(1);
6160  SDValue N2 = N->getOperand(2);
6161  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6162  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6163  EVT VT = N->getValueType(0);
6164  DebugLoc dl = N->getDebugLoc();
6165
6166  if (DAG.getTarget().Options.UnsafeFPMath) {
6167    if (N0CFP && N0CFP->isZero())
6168      return N2;
6169    if (N1CFP && N1CFP->isZero())
6170      return N2;
6171  }
6172  if (N0CFP && N0CFP->isExactlyValue(1.0))
6173    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N1, N2);
6174  if (N1CFP && N1CFP->isExactlyValue(1.0))
6175    return DAG.getNode(ISD::FADD, N->getDebugLoc(), VT, N0, N2);
6176
6177  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6178  if (N0CFP && !N1CFP)
6179    return DAG.getNode(ISD::FMA, N->getDebugLoc(), VT, N1, N0, N2);
6180
6181  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6182  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6183      N2.getOpcode() == ISD::FMUL &&
6184      N0 == N2.getOperand(0) &&
6185      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6186    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6187                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6188  }
6189
6190
6191  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6192  if (DAG.getTarget().Options.UnsafeFPMath &&
6193      N0.getOpcode() == ISD::FMUL && N1CFP &&
6194      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6195    return DAG.getNode(ISD::FMA, dl, VT,
6196                       N0.getOperand(0),
6197                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6198                       N2);
6199  }
6200
6201  // (fma x, 1, y) -> (fadd x, y)
6202  // (fma x, -1, y) -> (fadd (fneg x), y)
6203  if (N1CFP) {
6204    if (N1CFP->isExactlyValue(1.0))
6205      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6206
6207    if (N1CFP->isExactlyValue(-1.0) &&
6208        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6209      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6210      AddToWorkList(RHSNeg.getNode());
6211      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6212    }
6213  }
6214
6215  // (fma x, c, x) -> (fmul x, (c+1))
6216  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2) {
6217    return DAG.getNode(ISD::FMUL, dl, VT,
6218                       N0,
6219                       DAG.getNode(ISD::FADD, dl, VT,
6220                                   N1, DAG.getConstantFP(1.0, VT)));
6221  }
6222
6223  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6224  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6225      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
6226    return DAG.getNode(ISD::FMUL, dl, VT,
6227                       N0,
6228                       DAG.getNode(ISD::FADD, dl, VT,
6229                                   N1, DAG.getConstantFP(-1.0, VT)));
6230  }
6231
6232
6233  return SDValue();
6234}
6235
6236SDValue DAGCombiner::visitFDIV(SDNode *N) {
6237  SDValue N0 = N->getOperand(0);
6238  SDValue N1 = N->getOperand(1);
6239  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6240  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6241  EVT VT = N->getValueType(0);
6242  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6243
6244  // fold vector ops
6245  if (VT.isVector()) {
6246    SDValue FoldedVOp = SimplifyVBinOp(N);
6247    if (FoldedVOp.getNode()) return FoldedVOp;
6248  }
6249
6250  // fold (fdiv c1, c2) -> c1/c2
6251  if (N0CFP && N1CFP)
6252    return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT, N0, N1);
6253
6254  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6255  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6256    // Compute the reciprocal 1.0 / c2.
6257    APFloat N1APF = N1CFP->getValueAPF();
6258    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6259    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6260    // Only do the transform if the reciprocal is a legal fp immediate that
6261    // isn't too nasty (eg NaN, denormal, ...).
6262    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6263        (!LegalOperations ||
6264         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6265         // backend)... we should handle this gracefully after Legalize.
6266         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6267         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6268         TLI.isFPImmLegal(Recip, VT)))
6269      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT, N0,
6270                         DAG.getConstantFP(Recip, VT));
6271  }
6272
6273  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6274  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6275                                       &DAG.getTarget().Options)) {
6276    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6277                                         &DAG.getTarget().Options)) {
6278      // Both can be negated for free, check to see if at least one is cheaper
6279      // negated.
6280      if (LHSNeg == 2 || RHSNeg == 2)
6281        return DAG.getNode(ISD::FDIV, N->getDebugLoc(), VT,
6282                           GetNegatedExpression(N0, DAG, LegalOperations),
6283                           GetNegatedExpression(N1, DAG, LegalOperations));
6284    }
6285  }
6286
6287  return SDValue();
6288}
6289
6290SDValue DAGCombiner::visitFREM(SDNode *N) {
6291  SDValue N0 = N->getOperand(0);
6292  SDValue N1 = N->getOperand(1);
6293  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6294  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6295  EVT VT = N->getValueType(0);
6296
6297  // fold (frem c1, c2) -> fmod(c1,c2)
6298  if (N0CFP && N1CFP)
6299    return DAG.getNode(ISD::FREM, N->getDebugLoc(), VT, N0, N1);
6300
6301  return SDValue();
6302}
6303
6304SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6305  SDValue N0 = N->getOperand(0);
6306  SDValue N1 = N->getOperand(1);
6307  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6308  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6309  EVT VT = N->getValueType(0);
6310
6311  if (N0CFP && N1CFP)  // Constant fold
6312    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT, N0, N1);
6313
6314  if (N1CFP) {
6315    const APFloat& V = N1CFP->getValueAPF();
6316    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6317    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6318    if (!V.isNegative()) {
6319      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6320        return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6321    } else {
6322      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6323        return DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6324                           DAG.getNode(ISD::FABS, N0.getDebugLoc(), VT, N0));
6325    }
6326  }
6327
6328  // copysign(fabs(x), y) -> copysign(x, y)
6329  // copysign(fneg(x), y) -> copysign(x, y)
6330  // copysign(copysign(x,z), y) -> copysign(x, y)
6331  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6332      N0.getOpcode() == ISD::FCOPYSIGN)
6333    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6334                       N0.getOperand(0), N1);
6335
6336  // copysign(x, abs(y)) -> abs(x)
6337  if (N1.getOpcode() == ISD::FABS)
6338    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6339
6340  // copysign(x, copysign(y,z)) -> copysign(x, z)
6341  if (N1.getOpcode() == ISD::FCOPYSIGN)
6342    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6343                       N0, N1.getOperand(1));
6344
6345  // copysign(x, fp_extend(y)) -> copysign(x, y)
6346  // copysign(x, fp_round(y)) -> copysign(x, y)
6347  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6348    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6349                       N0, N1.getOperand(0));
6350
6351  return SDValue();
6352}
6353
6354SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6355  SDValue N0 = N->getOperand(0);
6356  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6357  EVT VT = N->getValueType(0);
6358  EVT OpVT = N0.getValueType();
6359
6360  // fold (sint_to_fp c1) -> c1fp
6361  if (N0C &&
6362      // ...but only if the target supports immediate floating-point values
6363      (!LegalOperations ||
6364       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6365    return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6366
6367  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6368  // but UINT_TO_FP is legal on this target, try to convert.
6369  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6370      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6371    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6372    if (DAG.SignBitIsZero(N0))
6373      return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6374  }
6375
6376  // The next optimizations are desireable only if SELECT_CC can be lowered.
6377  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6378  // having to say they don't support SELECT_CC on every type the DAG knows
6379  // about, since there is no way to mark an opcode illegal at all value types
6380  // (See also visitSELECT)
6381  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6382    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6383    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6384        !VT.isVector() &&
6385        (!LegalOperations ||
6386         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6387      SDValue Ops[] =
6388        { N0.getOperand(0), N0.getOperand(1),
6389          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6390          N0.getOperand(2) };
6391      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6392    }
6393
6394    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6395    //      (select_cc x, y, 1.0, 0.0,, cc)
6396    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6397        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6398        (!LegalOperations ||
6399         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6400      SDValue Ops[] =
6401        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6402          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6403          N0.getOperand(0).getOperand(2) };
6404      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6405    }
6406  }
6407
6408  return SDValue();
6409}
6410
6411SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6412  SDValue N0 = N->getOperand(0);
6413  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6414  EVT VT = N->getValueType(0);
6415  EVT OpVT = N0.getValueType();
6416
6417  // fold (uint_to_fp c1) -> c1fp
6418  if (N0C &&
6419      // ...but only if the target supports immediate floating-point values
6420      (!LegalOperations ||
6421       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6422    return DAG.getNode(ISD::UINT_TO_FP, N->getDebugLoc(), VT, N0);
6423
6424  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6425  // but SINT_TO_FP is legal on this target, try to convert.
6426  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6427      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6428    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6429    if (DAG.SignBitIsZero(N0))
6430      return DAG.getNode(ISD::SINT_TO_FP, N->getDebugLoc(), VT, N0);
6431  }
6432
6433  // The next optimizations are desireable only if SELECT_CC can be lowered.
6434  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6435  // having to say they don't support SELECT_CC on every type the DAG knows
6436  // about, since there is no way to mark an opcode illegal at all value types
6437  // (See also visitSELECT)
6438  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6439    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6440
6441    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6442        (!LegalOperations ||
6443         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6444      SDValue Ops[] =
6445        { N0.getOperand(0), N0.getOperand(1),
6446          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6447          N0.getOperand(2) };
6448      return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(), VT, Ops, 5);
6449    }
6450  }
6451
6452  return SDValue();
6453}
6454
6455SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6456  SDValue N0 = N->getOperand(0);
6457  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6458  EVT VT = N->getValueType(0);
6459
6460  // fold (fp_to_sint c1fp) -> c1
6461  if (N0CFP)
6462    return DAG.getNode(ISD::FP_TO_SINT, N->getDebugLoc(), VT, N0);
6463
6464  return SDValue();
6465}
6466
6467SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6468  SDValue N0 = N->getOperand(0);
6469  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6470  EVT VT = N->getValueType(0);
6471
6472  // fold (fp_to_uint c1fp) -> c1
6473  if (N0CFP)
6474    return DAG.getNode(ISD::FP_TO_UINT, N->getDebugLoc(), VT, N0);
6475
6476  return SDValue();
6477}
6478
6479SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6480  SDValue N0 = N->getOperand(0);
6481  SDValue N1 = N->getOperand(1);
6482  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6483  EVT VT = N->getValueType(0);
6484
6485  // fold (fp_round c1fp) -> c1fp
6486  if (N0CFP)
6487    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0, N1);
6488
6489  // fold (fp_round (fp_extend x)) -> x
6490  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6491    return N0.getOperand(0);
6492
6493  // fold (fp_round (fp_round x)) -> (fp_round x)
6494  if (N0.getOpcode() == ISD::FP_ROUND) {
6495    // This is a value preserving truncation if both round's are.
6496    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6497                   N0.getNode()->getConstantOperandVal(1) == 1;
6498    return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT, N0.getOperand(0),
6499                       DAG.getIntPtrConstant(IsTrunc));
6500  }
6501
6502  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6503  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6504    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(), VT,
6505                              N0.getOperand(0), N1);
6506    AddToWorkList(Tmp.getNode());
6507    return DAG.getNode(ISD::FCOPYSIGN, N->getDebugLoc(), VT,
6508                       Tmp, N0.getOperand(1));
6509  }
6510
6511  return SDValue();
6512}
6513
6514SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6515  SDValue N0 = N->getOperand(0);
6516  EVT VT = N->getValueType(0);
6517  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6518  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6519
6520  // fold (fp_round_inreg c1fp) -> c1fp
6521  if (N0CFP && isTypeLegal(EVT)) {
6522    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6523    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, Round);
6524  }
6525
6526  return SDValue();
6527}
6528
6529SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6530  SDValue N0 = N->getOperand(0);
6531  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6532  EVT VT = N->getValueType(0);
6533
6534  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6535  if (N->hasOneUse() &&
6536      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6537    return SDValue();
6538
6539  // fold (fp_extend c1fp) -> c1fp
6540  if (N0CFP)
6541    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, N0);
6542
6543  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6544  // value of X.
6545  if (N0.getOpcode() == ISD::FP_ROUND
6546      && N0.getNode()->getConstantOperandVal(1) == 1) {
6547    SDValue In = N0.getOperand(0);
6548    if (In.getValueType() == VT) return In;
6549    if (VT.bitsLT(In.getValueType()))
6550      return DAG.getNode(ISD::FP_ROUND, N->getDebugLoc(), VT,
6551                         In, N0.getOperand(1));
6552    return DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), VT, In);
6553  }
6554
6555  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6556  if (ISD::isNON_EXTLoad(N0.getNode()) && N0.hasOneUse() &&
6557      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6558       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6559    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6560    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, N->getDebugLoc(), VT,
6561                                     LN0->getChain(),
6562                                     LN0->getBasePtr(), LN0->getPointerInfo(),
6563                                     N0.getValueType(),
6564                                     LN0->isVolatile(), LN0->isNonTemporal(),
6565                                     LN0->getAlignment());
6566    CombineTo(N, ExtLoad);
6567    CombineTo(N0.getNode(),
6568              DAG.getNode(ISD::FP_ROUND, N0.getDebugLoc(),
6569                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6570              ExtLoad.getValue(1));
6571    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6572  }
6573
6574  return SDValue();
6575}
6576
6577SDValue DAGCombiner::visitFNEG(SDNode *N) {
6578  SDValue N0 = N->getOperand(0);
6579  EVT VT = N->getValueType(0);
6580
6581  if (VT.isVector()) {
6582    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6583    if (FoldedVOp.getNode()) return FoldedVOp;
6584  }
6585
6586  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6587                         &DAG.getTarget().Options))
6588    return GetNegatedExpression(N0, DAG, LegalOperations);
6589
6590  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6591  // constant pool values.
6592  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6593      !VT.isVector() &&
6594      N0.getNode()->hasOneUse() &&
6595      N0.getOperand(0).getValueType().isInteger()) {
6596    SDValue Int = N0.getOperand(0);
6597    EVT IntVT = Int.getValueType();
6598    if (IntVT.isInteger() && !IntVT.isVector()) {
6599      Int = DAG.getNode(ISD::XOR, N0.getDebugLoc(), IntVT, Int,
6600              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6601      AddToWorkList(Int.getNode());
6602      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6603                         VT, Int);
6604    }
6605  }
6606
6607  // (fneg (fmul c, x)) -> (fmul -c, x)
6608  if (N0.getOpcode() == ISD::FMUL) {
6609    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6610    if (CFP1) {
6611      return DAG.getNode(ISD::FMUL, N->getDebugLoc(), VT,
6612                         N0.getOperand(0),
6613                         DAG.getNode(ISD::FNEG, N->getDebugLoc(), VT,
6614                                     N0.getOperand(1)));
6615    }
6616  }
6617
6618  return SDValue();
6619}
6620
6621SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6622  SDValue N0 = N->getOperand(0);
6623  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6624  EVT VT = N->getValueType(0);
6625
6626  // fold (fceil c1) -> fceil(c1)
6627  if (N0CFP)
6628    return DAG.getNode(ISD::FCEIL, N->getDebugLoc(), VT, N0);
6629
6630  return SDValue();
6631}
6632
6633SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6634  SDValue N0 = N->getOperand(0);
6635  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6636  EVT VT = N->getValueType(0);
6637
6638  // fold (ftrunc c1) -> ftrunc(c1)
6639  if (N0CFP)
6640    return DAG.getNode(ISD::FTRUNC, N->getDebugLoc(), VT, N0);
6641
6642  return SDValue();
6643}
6644
6645SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6646  SDValue N0 = N->getOperand(0);
6647  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6648  EVT VT = N->getValueType(0);
6649
6650  // fold (ffloor c1) -> ffloor(c1)
6651  if (N0CFP)
6652    return DAG.getNode(ISD::FFLOOR, N->getDebugLoc(), VT, N0);
6653
6654  return SDValue();
6655}
6656
6657SDValue DAGCombiner::visitFABS(SDNode *N) {
6658  SDValue N0 = N->getOperand(0);
6659  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6660  EVT VT = N->getValueType(0);
6661
6662  if (VT.isVector()) {
6663    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6664    if (FoldedVOp.getNode()) return FoldedVOp;
6665  }
6666
6667  // fold (fabs c1) -> fabs(c1)
6668  if (N0CFP)
6669    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0);
6670  // fold (fabs (fabs x)) -> (fabs x)
6671  if (N0.getOpcode() == ISD::FABS)
6672    return N->getOperand(0);
6673  // fold (fabs (fneg x)) -> (fabs x)
6674  // fold (fabs (fcopysign x, y)) -> (fabs x)
6675  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6676    return DAG.getNode(ISD::FABS, N->getDebugLoc(), VT, N0.getOperand(0));
6677
6678  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6679  // constant pool values.
6680  if (!TLI.isFAbsFree(VT) &&
6681      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6682      N0.getOperand(0).getValueType().isInteger() &&
6683      !N0.getOperand(0).getValueType().isVector()) {
6684    SDValue Int = N0.getOperand(0);
6685    EVT IntVT = Int.getValueType();
6686    if (IntVT.isInteger() && !IntVT.isVector()) {
6687      Int = DAG.getNode(ISD::AND, N0.getDebugLoc(), IntVT, Int,
6688             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6689      AddToWorkList(Int.getNode());
6690      return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
6691                         N->getValueType(0), Int);
6692    }
6693  }
6694
6695  return SDValue();
6696}
6697
6698SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6699  SDValue Chain = N->getOperand(0);
6700  SDValue N1 = N->getOperand(1);
6701  SDValue N2 = N->getOperand(2);
6702
6703  // If N is a constant we could fold this into a fallthrough or unconditional
6704  // branch. However that doesn't happen very often in normal code, because
6705  // Instcombine/SimplifyCFG should have handled the available opportunities.
6706  // If we did this folding here, it would be necessary to update the
6707  // MachineBasicBlock CFG, which is awkward.
6708
6709  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6710  // on the target.
6711  if (N1.getOpcode() == ISD::SETCC &&
6712      TLI.isOperationLegalOrCustom(ISD::BR_CC, MVT::Other)) {
6713    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6714                       Chain, N1.getOperand(2),
6715                       N1.getOperand(0), N1.getOperand(1), N2);
6716  }
6717
6718  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6719      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6720       (N1.getOperand(0).hasOneUse() &&
6721        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6722    SDNode *Trunc = 0;
6723    if (N1.getOpcode() == ISD::TRUNCATE) {
6724      // Look pass the truncate.
6725      Trunc = N1.getNode();
6726      N1 = N1.getOperand(0);
6727    }
6728
6729    // Match this pattern so that we can generate simpler code:
6730    //
6731    //   %a = ...
6732    //   %b = and i32 %a, 2
6733    //   %c = srl i32 %b, 1
6734    //   brcond i32 %c ...
6735    //
6736    // into
6737    //
6738    //   %a = ...
6739    //   %b = and i32 %a, 2
6740    //   %c = setcc eq %b, 0
6741    //   brcond %c ...
6742    //
6743    // This applies only when the AND constant value has one bit set and the
6744    // SRL constant is equal to the log2 of the AND constant. The back-end is
6745    // smart enough to convert the result into a TEST/JMP sequence.
6746    SDValue Op0 = N1.getOperand(0);
6747    SDValue Op1 = N1.getOperand(1);
6748
6749    if (Op0.getOpcode() == ISD::AND &&
6750        Op1.getOpcode() == ISD::Constant) {
6751      SDValue AndOp1 = Op0.getOperand(1);
6752
6753      if (AndOp1.getOpcode() == ISD::Constant) {
6754        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6755
6756        if (AndConst.isPowerOf2() &&
6757            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6758          SDValue SetCC =
6759            DAG.getSetCC(N->getDebugLoc(),
6760                         TLI.getSetCCResultType(Op0.getValueType()),
6761                         Op0, DAG.getConstant(0, Op0.getValueType()),
6762                         ISD::SETNE);
6763
6764          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6765                                          MVT::Other, Chain, SetCC, N2);
6766          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6767          // will convert it back to (X & C1) >> C2.
6768          CombineTo(N, NewBRCond, false);
6769          // Truncate is dead.
6770          if (Trunc) {
6771            removeFromWorkList(Trunc);
6772            DAG.DeleteNode(Trunc);
6773          }
6774          // Replace the uses of SRL with SETCC
6775          WorkListRemover DeadNodes(*this);
6776          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6777          removeFromWorkList(N1.getNode());
6778          DAG.DeleteNode(N1.getNode());
6779          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6780        }
6781      }
6782    }
6783
6784    if (Trunc)
6785      // Restore N1 if the above transformation doesn't match.
6786      N1 = N->getOperand(1);
6787  }
6788
6789  // Transform br(xor(x, y)) -> br(x != y)
6790  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
6791  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
6792    SDNode *TheXor = N1.getNode();
6793    SDValue Op0 = TheXor->getOperand(0);
6794    SDValue Op1 = TheXor->getOperand(1);
6795    if (Op0.getOpcode() == Op1.getOpcode()) {
6796      // Avoid missing important xor optimizations.
6797      SDValue Tmp = visitXOR(TheXor);
6798      if (Tmp.getNode()) {
6799        if (Tmp.getNode() != TheXor) {
6800          DEBUG(dbgs() << "\nReplacing.8 ";
6801                TheXor->dump(&DAG);
6802                dbgs() << "\nWith: ";
6803                Tmp.getNode()->dump(&DAG);
6804                dbgs() << '\n');
6805          WorkListRemover DeadNodes(*this);
6806          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
6807          removeFromWorkList(TheXor);
6808          DAG.DeleteNode(TheXor);
6809          return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6810                             MVT::Other, Chain, Tmp, N2);
6811        }
6812
6813        // visitXOR has changed XOR's operands.
6814        Op0 = TheXor->getOperand(0);
6815        Op1 = TheXor->getOperand(1);
6816      }
6817    }
6818
6819    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
6820      bool Equal = false;
6821      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
6822        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
6823            Op0.getOpcode() == ISD::XOR) {
6824          TheXor = Op0.getNode();
6825          Equal = true;
6826        }
6827
6828      EVT SetCCVT = N1.getValueType();
6829      if (LegalTypes)
6830        SetCCVT = TLI.getSetCCResultType(SetCCVT);
6831      SDValue SetCC = DAG.getSetCC(TheXor->getDebugLoc(),
6832                                   SetCCVT,
6833                                   Op0, Op1,
6834                                   Equal ? ISD::SETEQ : ISD::SETNE);
6835      // Replace the uses of XOR with SETCC
6836      WorkListRemover DeadNodes(*this);
6837      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6838      removeFromWorkList(N1.getNode());
6839      DAG.DeleteNode(N1.getNode());
6840      return DAG.getNode(ISD::BRCOND, N->getDebugLoc(),
6841                         MVT::Other, Chain, SetCC, N2);
6842    }
6843  }
6844
6845  return SDValue();
6846}
6847
6848// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
6849//
6850SDValue DAGCombiner::visitBR_CC(SDNode *N) {
6851  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
6852  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
6853
6854  // If N is a constant we could fold this into a fallthrough or unconditional
6855  // branch. However that doesn't happen very often in normal code, because
6856  // Instcombine/SimplifyCFG should have handled the available opportunities.
6857  // If we did this folding here, it would be necessary to update the
6858  // MachineBasicBlock CFG, which is awkward.
6859
6860  // Use SimplifySetCC to simplify SETCC's.
6861  SDValue Simp = SimplifySetCC(TLI.getSetCCResultType(CondLHS.getValueType()),
6862                               CondLHS, CondRHS, CC->get(), N->getDebugLoc(),
6863                               false);
6864  if (Simp.getNode()) AddToWorkList(Simp.getNode());
6865
6866  // fold to a simpler setcc
6867  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
6868    return DAG.getNode(ISD::BR_CC, N->getDebugLoc(), MVT::Other,
6869                       N->getOperand(0), Simp.getOperand(2),
6870                       Simp.getOperand(0), Simp.getOperand(1),
6871                       N->getOperand(4));
6872
6873  return SDValue();
6874}
6875
6876/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
6877/// uses N as its base pointer and that N may be folded in the load / store
6878/// addressing mode.
6879static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
6880                                    SelectionDAG &DAG,
6881                                    const TargetLowering &TLI) {
6882  EVT VT;
6883  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
6884    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
6885      return false;
6886    VT = Use->getValueType(0);
6887  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
6888    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
6889      return false;
6890    VT = ST->getValue().getValueType();
6891  } else
6892    return false;
6893
6894  TargetLowering::AddrMode AM;
6895  if (N->getOpcode() == ISD::ADD) {
6896    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6897    if (Offset)
6898      // [reg +/- imm]
6899      AM.BaseOffs = Offset->getSExtValue();
6900    else
6901      // [reg +/- reg]
6902      AM.Scale = 1;
6903  } else if (N->getOpcode() == ISD::SUB) {
6904    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
6905    if (Offset)
6906      // [reg +/- imm]
6907      AM.BaseOffs = -Offset->getSExtValue();
6908    else
6909      // [reg +/- reg]
6910      AM.Scale = 1;
6911  } else
6912    return false;
6913
6914  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
6915}
6916
6917/// CombineToPreIndexedLoadStore - Try turning a load / store into a
6918/// pre-indexed load / store when the base pointer is an add or subtract
6919/// and it has other uses besides the load / store. After the
6920/// transformation, the new indexed load / store has effectively folded
6921/// the add / subtract in and all of its other uses are redirected to the
6922/// new load / store.
6923bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
6924  if (Level < AfterLegalizeDAG)
6925    return false;
6926
6927  bool isLoad = true;
6928  SDValue Ptr;
6929  EVT VT;
6930  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
6931    if (LD->isIndexed())
6932      return false;
6933    VT = LD->getMemoryVT();
6934    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
6935        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
6936      return false;
6937    Ptr = LD->getBasePtr();
6938  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
6939    if (ST->isIndexed())
6940      return false;
6941    VT = ST->getMemoryVT();
6942    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
6943        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
6944      return false;
6945    Ptr = ST->getBasePtr();
6946    isLoad = false;
6947  } else {
6948    return false;
6949  }
6950
6951  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
6952  // out.  There is no reason to make this a preinc/predec.
6953  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
6954      Ptr.getNode()->hasOneUse())
6955    return false;
6956
6957  // Ask the target to do addressing mode selection.
6958  SDValue BasePtr;
6959  SDValue Offset;
6960  ISD::MemIndexedMode AM = ISD::UNINDEXED;
6961  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
6962    return false;
6963
6964  // Backends without true r+i pre-indexed forms may need to pass a
6965  // constant base with a variable offset so that constant coercion
6966  // will work with the patterns in canonical form.
6967  bool Swapped = false;
6968  if (isa<ConstantSDNode>(BasePtr)) {
6969    std::swap(BasePtr, Offset);
6970    Swapped = true;
6971  }
6972
6973  // Don't create a indexed load / store with zero offset.
6974  if (isa<ConstantSDNode>(Offset) &&
6975      cast<ConstantSDNode>(Offset)->isNullValue())
6976    return false;
6977
6978  // Try turning it into a pre-indexed load / store except when:
6979  // 1) The new base ptr is a frame index.
6980  // 2) If N is a store and the new base ptr is either the same as or is a
6981  //    predecessor of the value being stored.
6982  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
6983  //    that would create a cycle.
6984  // 4) All uses are load / store ops that use it as old base ptr.
6985
6986  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
6987  // (plus the implicit offset) to a register to preinc anyway.
6988  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
6989    return false;
6990
6991  // Check #2.
6992  if (!isLoad) {
6993    SDValue Val = cast<StoreSDNode>(N)->getValue();
6994    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
6995      return false;
6996  }
6997
6998  // If the offset is a constant, there may be other adds of constants that
6999  // can be folded with this one. We should do this to avoid having to keep
7000  // a copy of the original base pointer.
7001  SmallVector<SDNode *, 16> OtherUses;
7002  if (isa<ConstantSDNode>(Offset))
7003    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7004         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7005      SDNode *Use = *I;
7006      if (Use == Ptr.getNode())
7007        continue;
7008
7009      if (Use->isPredecessorOf(N))
7010        continue;
7011
7012      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7013        OtherUses.clear();
7014        break;
7015      }
7016
7017      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7018      if (Op1.getNode() == BasePtr.getNode())
7019        std::swap(Op0, Op1);
7020      assert(Op0.getNode() == BasePtr.getNode() &&
7021             "Use of ADD/SUB but not an operand");
7022
7023      if (!isa<ConstantSDNode>(Op1)) {
7024        OtherUses.clear();
7025        break;
7026      }
7027
7028      // FIXME: In some cases, we can be smarter about this.
7029      if (Op1.getValueType() != Offset.getValueType()) {
7030        OtherUses.clear();
7031        break;
7032      }
7033
7034      OtherUses.push_back(Use);
7035    }
7036
7037  if (Swapped)
7038    std::swap(BasePtr, Offset);
7039
7040  // Now check for #3 and #4.
7041  bool RealUse = false;
7042
7043  // Caches for hasPredecessorHelper
7044  SmallPtrSet<const SDNode *, 32> Visited;
7045  SmallVector<const SDNode *, 16> Worklist;
7046
7047  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7048         E = Ptr.getNode()->use_end(); I != E; ++I) {
7049    SDNode *Use = *I;
7050    if (Use == N)
7051      continue;
7052    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7053      return false;
7054
7055    // If Ptr may be folded in addressing mode of other use, then it's
7056    // not profitable to do this transformation.
7057    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7058      RealUse = true;
7059  }
7060
7061  if (!RealUse)
7062    return false;
7063
7064  SDValue Result;
7065  if (isLoad)
7066    Result = DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7067                                BasePtr, Offset, AM);
7068  else
7069    Result = DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7070                                 BasePtr, Offset, AM);
7071  ++PreIndexedNodes;
7072  ++NodesCombined;
7073  DEBUG(dbgs() << "\nReplacing.4 ";
7074        N->dump(&DAG);
7075        dbgs() << "\nWith: ";
7076        Result.getNode()->dump(&DAG);
7077        dbgs() << '\n');
7078  WorkListRemover DeadNodes(*this);
7079  if (isLoad) {
7080    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7081    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7082  } else {
7083    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7084  }
7085
7086  // Finally, since the node is now dead, remove it from the graph.
7087  DAG.DeleteNode(N);
7088
7089  if (Swapped)
7090    std::swap(BasePtr, Offset);
7091
7092  // Replace other uses of BasePtr that can be updated to use Ptr
7093  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7094    unsigned OffsetIdx = 1;
7095    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7096      OffsetIdx = 0;
7097    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7098           BasePtr.getNode() && "Expected BasePtr operand");
7099
7100    APInt OV =
7101      cast<ConstantSDNode>(Offset)->getAPIntValue();
7102    if (AM == ISD::PRE_DEC)
7103      OV = -OV;
7104
7105    ConstantSDNode *CN =
7106      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7107    APInt CNV = CN->getAPIntValue();
7108    if (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1)
7109      CNV += OV;
7110    else
7111      CNV -= OV;
7112
7113    SDValue NewOp1 = Result.getValue(isLoad ? 1 : 0);
7114    SDValue NewOp2 = DAG.getConstant(CNV, CN->getValueType(0));
7115    if (OffsetIdx == 0)
7116      std::swap(NewOp1, NewOp2);
7117
7118    SDValue NewUse = DAG.getNode(OtherUses[i]->getOpcode(),
7119                                 OtherUses[i]->getDebugLoc(),
7120                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7121    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7122    removeFromWorkList(OtherUses[i]);
7123    DAG.DeleteNode(OtherUses[i]);
7124  }
7125
7126  // Replace the uses of Ptr with uses of the updated base value.
7127  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7128  removeFromWorkList(Ptr.getNode());
7129  DAG.DeleteNode(Ptr.getNode());
7130
7131  return true;
7132}
7133
7134/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7135/// add / sub of the base pointer node into a post-indexed load / store.
7136/// The transformation folded the add / subtract into the new indexed
7137/// load / store effectively and all of its uses are redirected to the
7138/// new load / store.
7139bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7140  if (Level < AfterLegalizeDAG)
7141    return false;
7142
7143  bool isLoad = true;
7144  SDValue Ptr;
7145  EVT VT;
7146  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7147    if (LD->isIndexed())
7148      return false;
7149    VT = LD->getMemoryVT();
7150    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7151        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7152      return false;
7153    Ptr = LD->getBasePtr();
7154  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7155    if (ST->isIndexed())
7156      return false;
7157    VT = ST->getMemoryVT();
7158    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7159        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7160      return false;
7161    Ptr = ST->getBasePtr();
7162    isLoad = false;
7163  } else {
7164    return false;
7165  }
7166
7167  if (Ptr.getNode()->hasOneUse())
7168    return false;
7169
7170  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7171         E = Ptr.getNode()->use_end(); I != E; ++I) {
7172    SDNode *Op = *I;
7173    if (Op == N ||
7174        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7175      continue;
7176
7177    SDValue BasePtr;
7178    SDValue Offset;
7179    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7180    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7181      // Don't create a indexed load / store with zero offset.
7182      if (isa<ConstantSDNode>(Offset) &&
7183          cast<ConstantSDNode>(Offset)->isNullValue())
7184        continue;
7185
7186      // Try turning it into a post-indexed load / store except when
7187      // 1) All uses are load / store ops that use it as base ptr (and
7188      //    it may be folded as addressing mmode).
7189      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7190      //    nor a successor of N. Otherwise, if Op is folded that would
7191      //    create a cycle.
7192
7193      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7194        continue;
7195
7196      // Check for #1.
7197      bool TryNext = false;
7198      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7199             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7200        SDNode *Use = *II;
7201        if (Use == Ptr.getNode())
7202          continue;
7203
7204        // If all the uses are load / store addresses, then don't do the
7205        // transformation.
7206        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7207          bool RealUse = false;
7208          for (SDNode::use_iterator III = Use->use_begin(),
7209                 EEE = Use->use_end(); III != EEE; ++III) {
7210            SDNode *UseUse = *III;
7211            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7212              RealUse = true;
7213          }
7214
7215          if (!RealUse) {
7216            TryNext = true;
7217            break;
7218          }
7219        }
7220      }
7221
7222      if (TryNext)
7223        continue;
7224
7225      // Check for #2
7226      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7227        SDValue Result = isLoad
7228          ? DAG.getIndexedLoad(SDValue(N,0), N->getDebugLoc(),
7229                               BasePtr, Offset, AM)
7230          : DAG.getIndexedStore(SDValue(N,0), N->getDebugLoc(),
7231                                BasePtr, Offset, AM);
7232        ++PostIndexedNodes;
7233        ++NodesCombined;
7234        DEBUG(dbgs() << "\nReplacing.5 ";
7235              N->dump(&DAG);
7236              dbgs() << "\nWith: ";
7237              Result.getNode()->dump(&DAG);
7238              dbgs() << '\n');
7239        WorkListRemover DeadNodes(*this);
7240        if (isLoad) {
7241          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7242          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7243        } else {
7244          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7245        }
7246
7247        // Finally, since the node is now dead, remove it from the graph.
7248        DAG.DeleteNode(N);
7249
7250        // Replace the uses of Use with uses of the updated base value.
7251        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7252                                      Result.getValue(isLoad ? 1 : 0));
7253        removeFromWorkList(Op);
7254        DAG.DeleteNode(Op);
7255        return true;
7256      }
7257    }
7258  }
7259
7260  return false;
7261}
7262
7263SDValue DAGCombiner::visitLOAD(SDNode *N) {
7264  LoadSDNode *LD  = cast<LoadSDNode>(N);
7265  SDValue Chain = LD->getChain();
7266  SDValue Ptr   = LD->getBasePtr();
7267
7268  // If load is not volatile and there are no uses of the loaded value (and
7269  // the updated indexed value in case of indexed loads), change uses of the
7270  // chain value into uses of the chain input (i.e. delete the dead load).
7271  if (!LD->isVolatile()) {
7272    if (N->getValueType(1) == MVT::Other) {
7273      // Unindexed loads.
7274      if (!N->hasAnyUseOfValue(0)) {
7275        // It's not safe to use the two value CombineTo variant here. e.g.
7276        // v1, chain2 = load chain1, loc
7277        // v2, chain3 = load chain2, loc
7278        // v3         = add v2, c
7279        // Now we replace use of chain2 with chain1.  This makes the second load
7280        // isomorphic to the one we are deleting, and thus makes this load live.
7281        DEBUG(dbgs() << "\nReplacing.6 ";
7282              N->dump(&DAG);
7283              dbgs() << "\nWith chain: ";
7284              Chain.getNode()->dump(&DAG);
7285              dbgs() << "\n");
7286        WorkListRemover DeadNodes(*this);
7287        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7288
7289        if (N->use_empty()) {
7290          removeFromWorkList(N);
7291          DAG.DeleteNode(N);
7292        }
7293
7294        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7295      }
7296    } else {
7297      // Indexed loads.
7298      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7299      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7300        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7301        DEBUG(dbgs() << "\nReplacing.7 ";
7302              N->dump(&DAG);
7303              dbgs() << "\nWith: ";
7304              Undef.getNode()->dump(&DAG);
7305              dbgs() << " and 2 other values\n");
7306        WorkListRemover DeadNodes(*this);
7307        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7308        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7309                                      DAG.getUNDEF(N->getValueType(1)));
7310        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7311        removeFromWorkList(N);
7312        DAG.DeleteNode(N);
7313        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7314      }
7315    }
7316  }
7317
7318  // If this load is directly stored, replace the load value with the stored
7319  // value.
7320  // TODO: Handle store large -> read small portion.
7321  // TODO: Handle TRUNCSTORE/LOADEXT
7322  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7323    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7324      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7325      if (PrevST->getBasePtr() == Ptr &&
7326          PrevST->getValue().getValueType() == N->getValueType(0))
7327      return CombineTo(N, Chain.getOperand(1), Chain);
7328    }
7329  }
7330
7331  // Try to infer better alignment information than the load already has.
7332  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7333    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7334      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7335        SDValue NewLoad =
7336               DAG.getExtLoad(LD->getExtensionType(), N->getDebugLoc(),
7337                              LD->getValueType(0),
7338                              Chain, Ptr, LD->getPointerInfo(),
7339                              LD->getMemoryVT(),
7340                              LD->isVolatile(), LD->isNonTemporal(), Align);
7341        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7342      }
7343    }
7344  }
7345
7346  if (CombinerAA) {
7347    // Walk up chain skipping non-aliasing memory nodes.
7348    SDValue BetterChain = FindBetterChain(N, Chain);
7349
7350    // If there is a better chain.
7351    if (Chain != BetterChain) {
7352      SDValue ReplLoad;
7353
7354      // Replace the chain to void dependency.
7355      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7356        ReplLoad = DAG.getLoad(N->getValueType(0), LD->getDebugLoc(),
7357                               BetterChain, Ptr, LD->getPointerInfo(),
7358                               LD->isVolatile(), LD->isNonTemporal(),
7359                               LD->isInvariant(), LD->getAlignment());
7360      } else {
7361        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), LD->getDebugLoc(),
7362                                  LD->getValueType(0),
7363                                  BetterChain, Ptr, LD->getPointerInfo(),
7364                                  LD->getMemoryVT(),
7365                                  LD->isVolatile(),
7366                                  LD->isNonTemporal(),
7367                                  LD->getAlignment());
7368      }
7369
7370      // Create token factor to keep old chain connected.
7371      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
7372                                  MVT::Other, Chain, ReplLoad.getValue(1));
7373
7374      // Make sure the new and old chains are cleaned up.
7375      AddToWorkList(Token.getNode());
7376
7377      // Replace uses with load result and token factor. Don't add users
7378      // to work list.
7379      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7380    }
7381  }
7382
7383  // Try transforming N to an indexed load.
7384  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7385    return SDValue(N, 0);
7386
7387  return SDValue();
7388}
7389
7390/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
7391/// load is having specific bytes cleared out.  If so, return the byte size
7392/// being masked out and the shift amount.
7393static std::pair<unsigned, unsigned>
7394CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
7395  std::pair<unsigned, unsigned> Result(0, 0);
7396
7397  // Check for the structure we're looking for.
7398  if (V->getOpcode() != ISD::AND ||
7399      !isa<ConstantSDNode>(V->getOperand(1)) ||
7400      !ISD::isNormalLoad(V->getOperand(0).getNode()))
7401    return Result;
7402
7403  // Check the chain and pointer.
7404  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
7405  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
7406
7407  // The store should be chained directly to the load or be an operand of a
7408  // tokenfactor.
7409  if (LD == Chain.getNode())
7410    ; // ok.
7411  else if (Chain->getOpcode() != ISD::TokenFactor)
7412    return Result; // Fail.
7413  else {
7414    bool isOk = false;
7415    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
7416      if (Chain->getOperand(i).getNode() == LD) {
7417        isOk = true;
7418        break;
7419      }
7420    if (!isOk) return Result;
7421  }
7422
7423  // This only handles simple types.
7424  if (V.getValueType() != MVT::i16 &&
7425      V.getValueType() != MVT::i32 &&
7426      V.getValueType() != MVT::i64)
7427    return Result;
7428
7429  // Check the constant mask.  Invert it so that the bits being masked out are
7430  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
7431  // follow the sign bit for uniformity.
7432  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
7433  unsigned NotMaskLZ = CountLeadingZeros_64(NotMask);
7434  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
7435  unsigned NotMaskTZ = CountTrailingZeros_64(NotMask);
7436  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
7437  if (NotMaskLZ == 64) return Result;  // All zero mask.
7438
7439  // See if we have a continuous run of bits.  If so, we have 0*1+0*
7440  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
7441    return Result;
7442
7443  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
7444  if (V.getValueType() != MVT::i64 && NotMaskLZ)
7445    NotMaskLZ -= 64-V.getValueSizeInBits();
7446
7447  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
7448  switch (MaskedBytes) {
7449  case 1:
7450  case 2:
7451  case 4: break;
7452  default: return Result; // All one mask, or 5-byte mask.
7453  }
7454
7455  // Verify that the first bit starts at a multiple of mask so that the access
7456  // is aligned the same as the access width.
7457  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
7458
7459  Result.first = MaskedBytes;
7460  Result.second = NotMaskTZ/8;
7461  return Result;
7462}
7463
7464
7465/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
7466/// provides a value as specified by MaskInfo.  If so, replace the specified
7467/// store with a narrower store of truncated IVal.
7468static SDNode *
7469ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
7470                                SDValue IVal, StoreSDNode *St,
7471                                DAGCombiner *DC) {
7472  unsigned NumBytes = MaskInfo.first;
7473  unsigned ByteShift = MaskInfo.second;
7474  SelectionDAG &DAG = DC->getDAG();
7475
7476  // Check to see if IVal is all zeros in the part being masked in by the 'or'
7477  // that uses this.  If not, this is not a replacement.
7478  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
7479                                  ByteShift*8, (ByteShift+NumBytes)*8);
7480  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
7481
7482  // Check that it is legal on the target to do this.  It is legal if the new
7483  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
7484  // legalization.
7485  MVT VT = MVT::getIntegerVT(NumBytes*8);
7486  if (!DC->isTypeLegal(VT))
7487    return 0;
7488
7489  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
7490  // shifted by ByteShift and truncated down to NumBytes.
7491  if (ByteShift)
7492    IVal = DAG.getNode(ISD::SRL, IVal->getDebugLoc(), IVal.getValueType(), IVal,
7493                       DAG.getConstant(ByteShift*8,
7494                                    DC->getShiftAmountTy(IVal.getValueType())));
7495
7496  // Figure out the offset for the store and the alignment of the access.
7497  unsigned StOffset;
7498  unsigned NewAlign = St->getAlignment();
7499
7500  if (DAG.getTargetLoweringInfo().isLittleEndian())
7501    StOffset = ByteShift;
7502  else
7503    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
7504
7505  SDValue Ptr = St->getBasePtr();
7506  if (StOffset) {
7507    Ptr = DAG.getNode(ISD::ADD, IVal->getDebugLoc(), Ptr.getValueType(),
7508                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
7509    NewAlign = MinAlign(NewAlign, StOffset);
7510  }
7511
7512  // Truncate down to the new size.
7513  IVal = DAG.getNode(ISD::TRUNCATE, IVal->getDebugLoc(), VT, IVal);
7514
7515  ++OpsNarrowed;
7516  return DAG.getStore(St->getChain(), St->getDebugLoc(), IVal, Ptr,
7517                      St->getPointerInfo().getWithOffset(StOffset),
7518                      false, false, NewAlign).getNode();
7519}
7520
7521
7522/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
7523/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
7524/// of the loaded bits, try narrowing the load and store if it would end up
7525/// being a win for performance or code size.
7526SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
7527  StoreSDNode *ST  = cast<StoreSDNode>(N);
7528  if (ST->isVolatile())
7529    return SDValue();
7530
7531  SDValue Chain = ST->getChain();
7532  SDValue Value = ST->getValue();
7533  SDValue Ptr   = ST->getBasePtr();
7534  EVT VT = Value.getValueType();
7535
7536  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
7537    return SDValue();
7538
7539  unsigned Opc = Value.getOpcode();
7540
7541  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
7542  // is a byte mask indicating a consecutive number of bytes, check to see if
7543  // Y is known to provide just those bytes.  If so, we try to replace the
7544  // load + replace + store sequence with a single (narrower) store, which makes
7545  // the load dead.
7546  if (Opc == ISD::OR) {
7547    std::pair<unsigned, unsigned> MaskedLoad;
7548    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
7549    if (MaskedLoad.first)
7550      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7551                                                  Value.getOperand(1), ST,this))
7552        return SDValue(NewST, 0);
7553
7554    // Or is commutative, so try swapping X and Y.
7555    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
7556    if (MaskedLoad.first)
7557      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
7558                                                  Value.getOperand(0), ST,this))
7559        return SDValue(NewST, 0);
7560  }
7561
7562  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
7563      Value.getOperand(1).getOpcode() != ISD::Constant)
7564    return SDValue();
7565
7566  SDValue N0 = Value.getOperand(0);
7567  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7568      Chain == SDValue(N0.getNode(), 1)) {
7569    LoadSDNode *LD = cast<LoadSDNode>(N0);
7570    if (LD->getBasePtr() != Ptr ||
7571        LD->getPointerInfo().getAddrSpace() !=
7572        ST->getPointerInfo().getAddrSpace())
7573      return SDValue();
7574
7575    // Find the type to narrow it the load / op / store to.
7576    SDValue N1 = Value.getOperand(1);
7577    unsigned BitWidth = N1.getValueSizeInBits();
7578    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
7579    if (Opc == ISD::AND)
7580      Imm ^= APInt::getAllOnesValue(BitWidth);
7581    if (Imm == 0 || Imm.isAllOnesValue())
7582      return SDValue();
7583    unsigned ShAmt = Imm.countTrailingZeros();
7584    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
7585    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
7586    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7587    while (NewBW < BitWidth &&
7588           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
7589             TLI.isNarrowingProfitable(VT, NewVT))) {
7590      NewBW = NextPowerOf2(NewBW);
7591      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
7592    }
7593    if (NewBW >= BitWidth)
7594      return SDValue();
7595
7596    // If the lsb changed does not start at the type bitwidth boundary,
7597    // start at the previous one.
7598    if (ShAmt % NewBW)
7599      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
7600    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
7601                                   std::min(BitWidth, ShAmt + NewBW));
7602    if ((Imm & Mask) == Imm) {
7603      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
7604      if (Opc == ISD::AND)
7605        NewImm ^= APInt::getAllOnesValue(NewBW);
7606      uint64_t PtrOff = ShAmt / 8;
7607      // For big endian targets, we need to adjust the offset to the pointer to
7608      // load the correct bytes.
7609      if (TLI.isBigEndian())
7610        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
7611
7612      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
7613      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
7614      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
7615        return SDValue();
7616
7617      SDValue NewPtr = DAG.getNode(ISD::ADD, LD->getDebugLoc(),
7618                                   Ptr.getValueType(), Ptr,
7619                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
7620      SDValue NewLD = DAG.getLoad(NewVT, N0.getDebugLoc(),
7621                                  LD->getChain(), NewPtr,
7622                                  LD->getPointerInfo().getWithOffset(PtrOff),
7623                                  LD->isVolatile(), LD->isNonTemporal(),
7624                                  LD->isInvariant(), NewAlign);
7625      SDValue NewVal = DAG.getNode(Opc, Value.getDebugLoc(), NewVT, NewLD,
7626                                   DAG.getConstant(NewImm, NewVT));
7627      SDValue NewST = DAG.getStore(Chain, N->getDebugLoc(),
7628                                   NewVal, NewPtr,
7629                                   ST->getPointerInfo().getWithOffset(PtrOff),
7630                                   false, false, NewAlign);
7631
7632      AddToWorkList(NewPtr.getNode());
7633      AddToWorkList(NewLD.getNode());
7634      AddToWorkList(NewVal.getNode());
7635      WorkListRemover DeadNodes(*this);
7636      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
7637      ++OpsNarrowed;
7638      return NewST;
7639    }
7640  }
7641
7642  return SDValue();
7643}
7644
7645/// TransformFPLoadStorePair - For a given floating point load / store pair,
7646/// if the load value isn't used by any other operations, then consider
7647/// transforming the pair to integer load / store operations if the target
7648/// deems the transformation profitable.
7649SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
7650  StoreSDNode *ST  = cast<StoreSDNode>(N);
7651  SDValue Chain = ST->getChain();
7652  SDValue Value = ST->getValue();
7653  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
7654      Value.hasOneUse() &&
7655      Chain == SDValue(Value.getNode(), 1)) {
7656    LoadSDNode *LD = cast<LoadSDNode>(Value);
7657    EVT VT = LD->getMemoryVT();
7658    if (!VT.isFloatingPoint() ||
7659        VT != ST->getMemoryVT() ||
7660        LD->isNonTemporal() ||
7661        ST->isNonTemporal() ||
7662        LD->getPointerInfo().getAddrSpace() != 0 ||
7663        ST->getPointerInfo().getAddrSpace() != 0)
7664      return SDValue();
7665
7666    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7667    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
7668        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
7669        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
7670        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
7671      return SDValue();
7672
7673    unsigned LDAlign = LD->getAlignment();
7674    unsigned STAlign = ST->getAlignment();
7675    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
7676    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
7677    if (LDAlign < ABIAlign || STAlign < ABIAlign)
7678      return SDValue();
7679
7680    SDValue NewLD = DAG.getLoad(IntVT, Value.getDebugLoc(),
7681                                LD->getChain(), LD->getBasePtr(),
7682                                LD->getPointerInfo(),
7683                                false, false, false, LDAlign);
7684
7685    SDValue NewST = DAG.getStore(NewLD.getValue(1), N->getDebugLoc(),
7686                                 NewLD, ST->getBasePtr(),
7687                                 ST->getPointerInfo(),
7688                                 false, false, STAlign);
7689
7690    AddToWorkList(NewLD.getNode());
7691    AddToWorkList(NewST.getNode());
7692    WorkListRemover DeadNodes(*this);
7693    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
7694    ++LdStFP2Int;
7695    return NewST;
7696  }
7697
7698  return SDValue();
7699}
7700
7701/// Returns the base pointer and an integer offset from that object.
7702static std::pair<SDValue, int64_t> GetPointerBaseAndOffset(SDValue Ptr) {
7703  if (Ptr->getOpcode() == ISD::ADD && isa<ConstantSDNode>(Ptr->getOperand(1))) {
7704    int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
7705    SDValue Base = Ptr->getOperand(0);
7706    return std::make_pair(Base, Offset);
7707  }
7708
7709  return std::make_pair(Ptr, 0);
7710}
7711
7712/// Holds a pointer to an LSBaseSDNode as well as information on where it
7713/// is located in a sequence of memory operations connected by a chain.
7714struct MemOpLink {
7715  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
7716    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
7717  // Ptr to the mem node.
7718  LSBaseSDNode *MemNode;
7719  // Offset from the base ptr.
7720  int64_t OffsetFromBase;
7721  // What is the sequence number of this mem node.
7722  // Lowest mem operand in the DAG starts at zero.
7723  unsigned SequenceNum;
7724};
7725
7726/// Sorts store nodes in a link according to their offset from a shared
7727// base ptr.
7728struct ConsecutiveMemoryChainSorter {
7729  bool operator()(MemOpLink LHS, MemOpLink RHS) {
7730    return LHS.OffsetFromBase < RHS.OffsetFromBase;
7731  }
7732};
7733
7734bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
7735  EVT MemVT = St->getMemoryVT();
7736  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
7737  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
7738    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
7739
7740  // Don't merge vectors into wider inputs.
7741  if (MemVT.isVector() || !MemVT.isSimple())
7742    return false;
7743
7744  // Perform an early exit check. Do not bother looking at stored values that
7745  // are not constants or loads.
7746  SDValue StoredVal = St->getValue();
7747  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
7748  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
7749      !IsLoadSrc)
7750    return false;
7751
7752  // Only look at ends of store sequences.
7753  SDValue Chain = SDValue(St, 1);
7754  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
7755    return false;
7756
7757  // This holds the base pointer and the offset in bytes from the base pointer.
7758  std::pair<SDValue, int64_t> BasePtr =
7759      GetPointerBaseAndOffset(St->getBasePtr());
7760
7761  // We must have a base and an offset.
7762  if (!BasePtr.first.getNode())
7763    return false;
7764
7765  // Do not handle stores to undef base pointers.
7766  if (BasePtr.first.getOpcode() == ISD::UNDEF)
7767    return false;
7768
7769  // Save the LoadSDNodes that we find in the chain.
7770  // We need to make sure that these nodes do not interfere with
7771  // any of the store nodes.
7772  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
7773
7774  // Save the StoreSDNodes that we find in the chain.
7775  SmallVector<MemOpLink, 8> StoreNodes;
7776
7777  // Walk up the chain and look for nodes with offsets from the same
7778  // base pointer. Stop when reaching an instruction with a different kind
7779  // or instruction which has a different base pointer.
7780  unsigned Seq = 0;
7781  StoreSDNode *Index = St;
7782  while (Index) {
7783    // If the chain has more than one use, then we can't reorder the mem ops.
7784    if (Index != St && !SDValue(Index, 1)->hasOneUse())
7785      break;
7786
7787    // Find the base pointer and offset for this memory node.
7788    std::pair<SDValue, int64_t> Ptr =
7789      GetPointerBaseAndOffset(Index->getBasePtr());
7790
7791    // Check that the base pointer is the same as the original one.
7792    if (Ptr.first.getNode() != BasePtr.first.getNode())
7793      break;
7794
7795    // Check that the alignment is the same.
7796    if (Index->getAlignment() != St->getAlignment())
7797      break;
7798
7799    // The memory operands must not be volatile.
7800    if (Index->isVolatile() || Index->isIndexed())
7801      break;
7802
7803    // No truncation.
7804    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
7805      if (St->isTruncatingStore())
7806        break;
7807
7808    // The stored memory type must be the same.
7809    if (Index->getMemoryVT() != MemVT)
7810      break;
7811
7812    // We do not allow unaligned stores because we want to prevent overriding
7813    // stores.
7814    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
7815      break;
7816
7817    // We found a potential memory operand to merge.
7818    StoreNodes.push_back(MemOpLink(Index, Ptr.second, Seq++));
7819
7820    // Find the next memory operand in the chain. If the next operand in the
7821    // chain is a store then move up and continue the scan with the next
7822    // memory operand. If the next operand is a load save it and use alias
7823    // information to check if it interferes with anything.
7824    SDNode *NextInChain = Index->getChain().getNode();
7825    while (1) {
7826      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
7827        // We found a store node. Use it for the next iteration.
7828        Index = STn;
7829        break;
7830      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
7831        // Save the load node for later. Continue the scan.
7832        AliasLoadNodes.push_back(Ldn);
7833        NextInChain = Ldn->getChain().getNode();
7834        continue;
7835      } else {
7836        Index = NULL;
7837        break;
7838      }
7839    }
7840  }
7841
7842  // Check if there is anything to merge.
7843  if (StoreNodes.size() < 2)
7844    return false;
7845
7846  // Sort the memory operands according to their distance from the base pointer.
7847  std::sort(StoreNodes.begin(), StoreNodes.end(),
7848            ConsecutiveMemoryChainSorter());
7849
7850  // Scan the memory operations on the chain and find the first non-consecutive
7851  // store memory address.
7852  unsigned LastConsecutiveStore = 0;
7853  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
7854  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
7855
7856    // Check that the addresses are consecutive starting from the second
7857    // element in the list of stores.
7858    if (i > 0) {
7859      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
7860      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
7861        break;
7862    }
7863
7864    bool Alias = false;
7865    // Check if this store interferes with any of the loads that we found.
7866    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
7867      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
7868        Alias = true;
7869        break;
7870      }
7871    // We found a load that alias with this store. Stop the sequence.
7872    if (Alias)
7873      break;
7874
7875    // Mark this node as useful.
7876    LastConsecutiveStore = i;
7877  }
7878
7879  // The node with the lowest store address.
7880  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
7881
7882  // Store the constants into memory as one consecutive store.
7883  if (!IsLoadSrc) {
7884    unsigned LastLegalType = 0;
7885    unsigned LastLegalVectorType = 0;
7886    bool NonZero = false;
7887    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
7888      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
7889      SDValue StoredVal = St->getValue();
7890
7891      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
7892        NonZero |= !C->isNullValue();
7893      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
7894        NonZero |= !C->getConstantFPValue()->isNullValue();
7895      } else {
7896        // Non constant.
7897        break;
7898      }
7899
7900      // Find a legal type for the constant store.
7901      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
7902      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7903      if (TLI.isTypeLegal(StoreTy))
7904        LastLegalType = i+1;
7905
7906      // Find a legal type for the vector store.
7907      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
7908      if (TLI.isTypeLegal(Ty))
7909        LastLegalVectorType = i + 1;
7910    }
7911
7912    // We only use vectors if the constant is known to be zero and the
7913    // function is not marked with the noimplicitfloat attribute.
7914    if (NonZero || NoVectors)
7915      LastLegalVectorType = 0;
7916
7917    // Check if we found a legal integer type to store.
7918    if (LastLegalType == 0 && LastLegalVectorType == 0)
7919      return false;
7920
7921    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
7922    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
7923
7924    // Make sure we have something to merge.
7925    if (NumElem < 2)
7926      return false;
7927
7928    unsigned EarliestNodeUsed = 0;
7929    for (unsigned i=0; i < NumElem; ++i) {
7930      // Find a chain for the new wide-store operand. Notice that some
7931      // of the store nodes that we found may not be selected for inclusion
7932      // in the wide store. The chain we use needs to be the chain of the
7933      // earliest store node which is *used* and replaced by the wide store.
7934      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
7935        EarliestNodeUsed = i;
7936    }
7937
7938    // The earliest Node in the DAG.
7939    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
7940    DebugLoc DL = StoreNodes[0].MemNode->getDebugLoc();
7941
7942    SDValue StoredVal;
7943    if (UseVector) {
7944      // Find a legal type for the vector store.
7945      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
7946      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
7947      StoredVal = DAG.getConstant(0, Ty);
7948    } else {
7949      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
7950      APInt StoreInt(StoreBW, 0);
7951
7952      // Construct a single integer constant which is made of the smaller
7953      // constant inputs.
7954      bool IsLE = TLI.isLittleEndian();
7955      for (unsigned i = 0; i < NumElem ; ++i) {
7956        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
7957        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
7958        SDValue Val = St->getValue();
7959        StoreInt<<=ElementSizeBytes*8;
7960        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
7961          StoreInt|=C->getAPIntValue().zext(StoreBW);
7962        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
7963          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
7964        } else {
7965          assert(false && "Invalid constant element type");
7966        }
7967      }
7968
7969      // Create the new Load and Store operations.
7970      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
7971      StoredVal = DAG.getConstant(StoreInt, StoreTy);
7972    }
7973
7974    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
7975                                    FirstInChain->getBasePtr(),
7976                                    FirstInChain->getPointerInfo(),
7977                                    false, false,
7978                                    FirstInChain->getAlignment());
7979
7980    // Replace the first store with the new store
7981    CombineTo(EarliestOp, NewStore);
7982    // Erase all other stores.
7983    for (unsigned i = 0; i < NumElem ; ++i) {
7984      if (StoreNodes[i].MemNode == EarliestOp)
7985        continue;
7986      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
7987      // ReplaceAllUsesWith will replace all uses that existed when it was
7988      // called, but graph optimizations may cause new ones to appear. For
7989      // example, the case in pr14333 looks like
7990      //
7991      //  St's chain -> St -> another store -> X
7992      //
7993      // And the only difference from St to the other store is the chain.
7994      // When we change it's chain to be St's chain they become identical,
7995      // get CSEed and the net result is that X is now a use of St.
7996      // Since we know that St is redundant, just iterate.
7997      while (!St->use_empty())
7998        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
7999      removeFromWorkList(St);
8000      DAG.DeleteNode(St);
8001    }
8002
8003    return true;
8004  }
8005
8006  // Below we handle the case of multiple consecutive stores that
8007  // come from multiple consecutive loads. We merge them into a single
8008  // wide load and a single wide store.
8009
8010  // Look for load nodes which are used by the stored values.
8011  SmallVector<MemOpLink, 8> LoadNodes;
8012
8013  // Find acceptable loads. Loads need to have the same chain (token factor),
8014  // must not be zext, volatile, indexed, and they must be consecutive.
8015  SDValue LdBasePtr;
8016  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8017    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8018    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8019    if (!Ld) break;
8020
8021    // Loads must only have one use.
8022    if (!Ld->hasNUsesOfValue(1, 0))
8023      break;
8024
8025    // Check that the alignment is the same as the stores.
8026    if (Ld->getAlignment() != St->getAlignment())
8027      break;
8028
8029    // The memory operands must not be volatile.
8030    if (Ld->isVolatile() || Ld->isIndexed())
8031      break;
8032
8033    // We do not accept ext loads.
8034    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8035      break;
8036
8037    // The stored memory type must be the same.
8038    if (Ld->getMemoryVT() != MemVT)
8039      break;
8040
8041    std::pair<SDValue, int64_t> LdPtr =
8042    GetPointerBaseAndOffset(Ld->getBasePtr());
8043
8044    // If this is not the first ptr that we check.
8045    if (LdBasePtr.getNode()) {
8046      // The base ptr must be the same.
8047      if (LdPtr.first != LdBasePtr)
8048        break;
8049    } else {
8050      // Check that all other base pointers are the same as this one.
8051      LdBasePtr = LdPtr.first;
8052    }
8053
8054    // We found a potential memory operand to merge.
8055    LoadNodes.push_back(MemOpLink(Ld, LdPtr.second, 0));
8056  }
8057
8058  if (LoadNodes.size() < 2)
8059    return false;
8060
8061  // Scan the memory operations on the chain and find the first non-consecutive
8062  // load memory address. These variables hold the index in the store node
8063  // array.
8064  unsigned LastConsecutiveLoad = 0;
8065  // This variable refers to the size and not index in the array.
8066  unsigned LastLegalVectorType = 0;
8067  unsigned LastLegalIntegerType = 0;
8068  StartAddress = LoadNodes[0].OffsetFromBase;
8069  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8070  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8071    // All loads much share the same chain.
8072    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8073      break;
8074
8075    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8076    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8077      break;
8078    LastConsecutiveLoad = i;
8079
8080    // Find a legal type for the vector store.
8081    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8082    if (TLI.isTypeLegal(StoreTy))
8083      LastLegalVectorType = i + 1;
8084
8085    // Find a legal type for the integer store.
8086    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8087    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8088    if (TLI.isTypeLegal(StoreTy))
8089      LastLegalIntegerType = i + 1;
8090  }
8091
8092  // Only use vector types if the vector type is larger than the integer type.
8093  // If they are the same, use integers.
8094  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8095  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8096
8097  // We add +1 here because the LastXXX variables refer to location while
8098  // the NumElem refers to array/index size.
8099  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8100  NumElem = std::min(LastLegalType, NumElem);
8101
8102  if (NumElem < 2)
8103    return false;
8104
8105  // The earliest Node in the DAG.
8106  unsigned EarliestNodeUsed = 0;
8107  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8108  for (unsigned i=1; i<NumElem; ++i) {
8109    // Find a chain for the new wide-store operand. Notice that some
8110    // of the store nodes that we found may not be selected for inclusion
8111    // in the wide store. The chain we use needs to be the chain of the
8112    // earliest store node which is *used* and replaced by the wide store.
8113    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8114      EarliestNodeUsed = i;
8115  }
8116
8117  // Find if it is better to use vectors or integers to load and store
8118  // to memory.
8119  EVT JointMemOpVT;
8120  if (UseVectorTy) {
8121    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8122  } else {
8123    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8124    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8125  }
8126
8127  DebugLoc LoadDL = LoadNodes[0].MemNode->getDebugLoc();
8128  DebugLoc StoreDL = StoreNodes[0].MemNode->getDebugLoc();
8129
8130  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
8131  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
8132                                FirstLoad->getChain(),
8133                                FirstLoad->getBasePtr(),
8134                                FirstLoad->getPointerInfo(),
8135                                false, false, false,
8136                                FirstLoad->getAlignment());
8137
8138  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
8139                                  FirstInChain->getBasePtr(),
8140                                  FirstInChain->getPointerInfo(), false, false,
8141                                  FirstInChain->getAlignment());
8142
8143  // Replace one of the loads with the new load.
8144  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
8145  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
8146                                SDValue(NewLoad.getNode(), 1));
8147
8148  // Remove the rest of the load chains.
8149  for (unsigned i = 1; i < NumElem ; ++i) {
8150    // Replace all chain users of the old load nodes with the chain of the new
8151    // load node.
8152    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
8153    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
8154  }
8155
8156  // Replace the first store with the new store.
8157  CombineTo(EarliestOp, NewStore);
8158  // Erase all other stores.
8159  for (unsigned i = 0; i < NumElem ; ++i) {
8160    // Remove all Store nodes.
8161    if (StoreNodes[i].MemNode == EarliestOp)
8162      continue;
8163    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8164    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
8165    removeFromWorkList(St);
8166    DAG.DeleteNode(St);
8167  }
8168
8169  return true;
8170}
8171
8172SDValue DAGCombiner::visitSTORE(SDNode *N) {
8173  StoreSDNode *ST  = cast<StoreSDNode>(N);
8174  SDValue Chain = ST->getChain();
8175  SDValue Value = ST->getValue();
8176  SDValue Ptr   = ST->getBasePtr();
8177
8178  // If this is a store of a bit convert, store the input value if the
8179  // resultant store does not need a higher alignment than the original.
8180  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
8181      ST->isUnindexed()) {
8182    unsigned OrigAlign = ST->getAlignment();
8183    EVT SVT = Value.getOperand(0).getValueType();
8184    unsigned Align = TLI.getDataLayout()->
8185      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
8186    if (Align <= OrigAlign &&
8187        ((!LegalOperations && !ST->isVolatile()) ||
8188         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
8189      return DAG.getStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8190                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
8191                          ST->isNonTemporal(), OrigAlign);
8192  }
8193
8194  // Turn 'store undef, Ptr' -> nothing.
8195  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
8196    return Chain;
8197
8198  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
8199  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
8200    // NOTE: If the original store is volatile, this transform must not increase
8201    // the number of stores.  For example, on x86-32 an f64 can be stored in one
8202    // processor operation but an i64 (which is not legal) requires two.  So the
8203    // transform should not be done in this case.
8204    if (Value.getOpcode() != ISD::TargetConstantFP) {
8205      SDValue Tmp;
8206      switch (CFP->getValueType(0).getSimpleVT().SimpleTy) {
8207      default: llvm_unreachable("Unknown FP type");
8208      case MVT::f16:    // We don't do this for these yet.
8209      case MVT::f80:
8210      case MVT::f128:
8211      case MVT::ppcf128:
8212        break;
8213      case MVT::f32:
8214        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
8215            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8216          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
8217                              bitcastToAPInt().getZExtValue(), MVT::i32);
8218          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8219                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8220                              ST->isNonTemporal(), ST->getAlignment());
8221        }
8222        break;
8223      case MVT::f64:
8224        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
8225             !ST->isVolatile()) ||
8226            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
8227          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
8228                                getZExtValue(), MVT::i64);
8229          return DAG.getStore(Chain, N->getDebugLoc(), Tmp,
8230                              Ptr, ST->getPointerInfo(), ST->isVolatile(),
8231                              ST->isNonTemporal(), ST->getAlignment());
8232        }
8233
8234        if (!ST->isVolatile() &&
8235            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
8236          // Many FP stores are not made apparent until after legalize, e.g. for
8237          // argument passing.  Since this is so common, custom legalize the
8238          // 64-bit integer store into two 32-bit stores.
8239          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
8240          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
8241          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
8242          if (TLI.isBigEndian()) std::swap(Lo, Hi);
8243
8244          unsigned Alignment = ST->getAlignment();
8245          bool isVolatile = ST->isVolatile();
8246          bool isNonTemporal = ST->isNonTemporal();
8247
8248          SDValue St0 = DAG.getStore(Chain, ST->getDebugLoc(), Lo,
8249                                     Ptr, ST->getPointerInfo(),
8250                                     isVolatile, isNonTemporal,
8251                                     ST->getAlignment());
8252          Ptr = DAG.getNode(ISD::ADD, N->getDebugLoc(), Ptr.getValueType(), Ptr,
8253                            DAG.getConstant(4, Ptr.getValueType()));
8254          Alignment = MinAlign(Alignment, 4U);
8255          SDValue St1 = DAG.getStore(Chain, ST->getDebugLoc(), Hi,
8256                                     Ptr, ST->getPointerInfo().getWithOffset(4),
8257                                     isVolatile, isNonTemporal,
8258                                     Alignment);
8259          return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
8260                             St0, St1);
8261        }
8262
8263        break;
8264      }
8265    }
8266  }
8267
8268  // Try to infer better alignment information than the store already has.
8269  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
8270    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
8271      if (Align > ST->getAlignment())
8272        return DAG.getTruncStore(Chain, N->getDebugLoc(), Value,
8273                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8274                                 ST->isVolatile(), ST->isNonTemporal(), Align);
8275    }
8276  }
8277
8278  // Try transforming a pair floating point load / store ops to integer
8279  // load / store ops.
8280  SDValue NewST = TransformFPLoadStorePair(N);
8281  if (NewST.getNode())
8282    return NewST;
8283
8284  if (CombinerAA) {
8285    // Walk up chain skipping non-aliasing memory nodes.
8286    SDValue BetterChain = FindBetterChain(N, Chain);
8287
8288    // If there is a better chain.
8289    if (Chain != BetterChain) {
8290      SDValue ReplStore;
8291
8292      // Replace the chain to avoid dependency.
8293      if (ST->isTruncatingStore()) {
8294        ReplStore = DAG.getTruncStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8295                                      ST->getPointerInfo(),
8296                                      ST->getMemoryVT(), ST->isVolatile(),
8297                                      ST->isNonTemporal(), ST->getAlignment());
8298      } else {
8299        ReplStore = DAG.getStore(BetterChain, N->getDebugLoc(), Value, Ptr,
8300                                 ST->getPointerInfo(),
8301                                 ST->isVolatile(), ST->isNonTemporal(),
8302                                 ST->getAlignment());
8303      }
8304
8305      // Create token to keep both nodes around.
8306      SDValue Token = DAG.getNode(ISD::TokenFactor, N->getDebugLoc(),
8307                                  MVT::Other, Chain, ReplStore);
8308
8309      // Make sure the new and old chains are cleaned up.
8310      AddToWorkList(Token.getNode());
8311
8312      // Don't add users to work list.
8313      return CombineTo(N, Token, false);
8314    }
8315  }
8316
8317  // Try transforming N to an indexed store.
8318  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
8319    return SDValue(N, 0);
8320
8321  // FIXME: is there such a thing as a truncating indexed store?
8322  if (ST->isTruncatingStore() && ST->isUnindexed() &&
8323      Value.getValueType().isInteger()) {
8324    // See if we can simplify the input to this truncstore with knowledge that
8325    // only the low bits are being used.  For example:
8326    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
8327    SDValue Shorter =
8328      GetDemandedBits(Value,
8329                      APInt::getLowBitsSet(
8330                        Value.getValueType().getScalarType().getSizeInBits(),
8331                        ST->getMemoryVT().getScalarType().getSizeInBits()));
8332    AddToWorkList(Value.getNode());
8333    if (Shorter.getNode())
8334      return DAG.getTruncStore(Chain, N->getDebugLoc(), Shorter,
8335                               Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8336                               ST->isVolatile(), ST->isNonTemporal(),
8337                               ST->getAlignment());
8338
8339    // Otherwise, see if we can simplify the operation with
8340    // SimplifyDemandedBits, which only works if the value has a single use.
8341    if (SimplifyDemandedBits(Value,
8342                        APInt::getLowBitsSet(
8343                          Value.getValueType().getScalarType().getSizeInBits(),
8344                          ST->getMemoryVT().getScalarType().getSizeInBits())))
8345      return SDValue(N, 0);
8346  }
8347
8348  // If this is a load followed by a store to the same location, then the store
8349  // is dead/noop.
8350  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
8351    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
8352        ST->isUnindexed() && !ST->isVolatile() &&
8353        // There can't be any side effects between the load and store, such as
8354        // a call or store.
8355        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
8356      // The store is dead, remove it.
8357      return Chain;
8358    }
8359  }
8360
8361  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
8362  // truncating store.  We can do this even if this is already a truncstore.
8363  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
8364      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
8365      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
8366                            ST->getMemoryVT())) {
8367    return DAG.getTruncStore(Chain, N->getDebugLoc(), Value.getOperand(0),
8368                             Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
8369                             ST->isVolatile(), ST->isNonTemporal(),
8370                             ST->getAlignment());
8371  }
8372
8373  // Only perform this optimization before the types are legal, because we
8374  // don't want to perform this optimization on every DAGCombine invocation.
8375  if (!LegalTypes) {
8376    bool EverChanged = false;
8377
8378    do {
8379      // There can be multiple store sequences on the same chain.
8380      // Keep trying to merge store sequences until we are unable to do so
8381      // or until we merge the last store on the chain.
8382      bool Changed = MergeConsecutiveStores(ST);
8383      EverChanged |= Changed;
8384      if (!Changed) break;
8385    } while (ST->getOpcode() != ISD::DELETED_NODE);
8386
8387    if (EverChanged)
8388      return SDValue(N, 0);
8389  }
8390
8391  return ReduceLoadOpStoreWidth(N);
8392}
8393
8394SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
8395  SDValue InVec = N->getOperand(0);
8396  SDValue InVal = N->getOperand(1);
8397  SDValue EltNo = N->getOperand(2);
8398  DebugLoc dl = N->getDebugLoc();
8399
8400  // If the inserted element is an UNDEF, just use the input vector.
8401  if (InVal.getOpcode() == ISD::UNDEF)
8402    return InVec;
8403
8404  EVT VT = InVec.getValueType();
8405
8406  // If we can't generate a legal BUILD_VECTOR, exit
8407  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
8408    return SDValue();
8409
8410  // Check that we know which element is being inserted
8411  if (!isa<ConstantSDNode>(EltNo))
8412    return SDValue();
8413  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8414
8415  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
8416  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
8417  // vector elements.
8418  SmallVector<SDValue, 8> Ops;
8419  if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
8420    Ops.append(InVec.getNode()->op_begin(),
8421               InVec.getNode()->op_end());
8422  } else if (InVec.getOpcode() == ISD::UNDEF) {
8423    unsigned NElts = VT.getVectorNumElements();
8424    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
8425  } else {
8426    return SDValue();
8427  }
8428
8429  // Insert the element
8430  if (Elt < Ops.size()) {
8431    // All the operands of BUILD_VECTOR must have the same type;
8432    // we enforce that here.
8433    EVT OpVT = Ops[0].getValueType();
8434    if (InVal.getValueType() != OpVT)
8435      InVal = OpVT.bitsGT(InVal.getValueType()) ?
8436                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
8437                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
8438    Ops[Elt] = InVal;
8439  }
8440
8441  // Return the new vector
8442  return DAG.getNode(ISD::BUILD_VECTOR, dl,
8443                     VT, &Ops[0], Ops.size());
8444}
8445
8446SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
8447  // (vextract (scalar_to_vector val, 0) -> val
8448  SDValue InVec = N->getOperand(0);
8449  EVT VT = InVec.getValueType();
8450  EVT NVT = N->getValueType(0);
8451
8452  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8453    // Check if the result type doesn't match the inserted element type. A
8454    // SCALAR_TO_VECTOR may truncate the inserted element and the
8455    // EXTRACT_VECTOR_ELT may widen the extracted vector.
8456    SDValue InOp = InVec.getOperand(0);
8457    if (InOp.getValueType() != NVT) {
8458      assert(InOp.getValueType().isInteger() && NVT.isInteger());
8459      return DAG.getSExtOrTrunc(InOp, InVec.getDebugLoc(), NVT);
8460    }
8461    return InOp;
8462  }
8463
8464  SDValue EltNo = N->getOperand(1);
8465  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
8466
8467  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
8468  // We only perform this optimization before the op legalization phase because
8469  // we may introduce new vector instructions which are not backed by TD
8470  // patterns. For example on AVX, extracting elements from a wide vector
8471  // without using extract_subvector.
8472  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
8473      && ConstEltNo && !LegalOperations) {
8474    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8475    int NumElem = VT.getVectorNumElements();
8476    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
8477    // Find the new index to extract from.
8478    int OrigElt = SVOp->getMaskElt(Elt);
8479
8480    // Extracting an undef index is undef.
8481    if (OrigElt == -1)
8482      return DAG.getUNDEF(NVT);
8483
8484    // Select the right vector half to extract from.
8485    if (OrigElt < NumElem) {
8486      InVec = InVec->getOperand(0);
8487    } else {
8488      InVec = InVec->getOperand(1);
8489      OrigElt -= NumElem;
8490    }
8491
8492    EVT IndexTy = N->getOperand(1).getValueType();
8493    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, N->getDebugLoc(), NVT,
8494                       InVec, DAG.getConstant(OrigElt, IndexTy));
8495  }
8496
8497  // Perform only after legalization to ensure build_vector / vector_shuffle
8498  // optimizations have already been done.
8499  if (!LegalOperations) return SDValue();
8500
8501  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
8502  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
8503  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
8504
8505  if (ConstEltNo) {
8506    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
8507    bool NewLoad = false;
8508    bool BCNumEltsChanged = false;
8509    EVT ExtVT = VT.getVectorElementType();
8510    EVT LVT = ExtVT;
8511
8512    // If the result of load has to be truncated, then it's not necessarily
8513    // profitable.
8514    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
8515      return SDValue();
8516
8517    if (InVec.getOpcode() == ISD::BITCAST) {
8518      // Don't duplicate a load with other uses.
8519      if (!InVec.hasOneUse())
8520        return SDValue();
8521
8522      EVT BCVT = InVec.getOperand(0).getValueType();
8523      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
8524        return SDValue();
8525      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
8526        BCNumEltsChanged = true;
8527      InVec = InVec.getOperand(0);
8528      ExtVT = BCVT.getVectorElementType();
8529      NewLoad = true;
8530    }
8531
8532    LoadSDNode *LN0 = NULL;
8533    const ShuffleVectorSDNode *SVN = NULL;
8534    if (ISD::isNormalLoad(InVec.getNode())) {
8535      LN0 = cast<LoadSDNode>(InVec);
8536    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
8537               InVec.getOperand(0).getValueType() == ExtVT &&
8538               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
8539      // Don't duplicate a load with other uses.
8540      if (!InVec.hasOneUse())
8541        return SDValue();
8542
8543      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
8544    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
8545      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
8546      // =>
8547      // (load $addr+1*size)
8548
8549      // Don't duplicate a load with other uses.
8550      if (!InVec.hasOneUse())
8551        return SDValue();
8552
8553      // If the bit convert changed the number of elements, it is unsafe
8554      // to examine the mask.
8555      if (BCNumEltsChanged)
8556        return SDValue();
8557
8558      // Select the input vector, guarding against out of range extract vector.
8559      unsigned NumElems = VT.getVectorNumElements();
8560      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
8561      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
8562
8563      if (InVec.getOpcode() == ISD::BITCAST) {
8564        // Don't duplicate a load with other uses.
8565        if (!InVec.hasOneUse())
8566          return SDValue();
8567
8568        InVec = InVec.getOperand(0);
8569      }
8570      if (ISD::isNormalLoad(InVec.getNode())) {
8571        LN0 = cast<LoadSDNode>(InVec);
8572        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
8573      }
8574    }
8575
8576    // Make sure we found a non-volatile load and the extractelement is
8577    // the only use.
8578    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
8579      return SDValue();
8580
8581    // If Idx was -1 above, Elt is going to be -1, so just return undef.
8582    if (Elt == -1)
8583      return DAG.getUNDEF(LVT);
8584
8585    unsigned Align = LN0->getAlignment();
8586    if (NewLoad) {
8587      // Check the resultant load doesn't need a higher alignment than the
8588      // original load.
8589      unsigned NewAlign =
8590        TLI.getDataLayout()
8591            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
8592
8593      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
8594        return SDValue();
8595
8596      Align = NewAlign;
8597    }
8598
8599    SDValue NewPtr = LN0->getBasePtr();
8600    unsigned PtrOff = 0;
8601
8602    if (Elt) {
8603      PtrOff = LVT.getSizeInBits() * Elt / 8;
8604      EVT PtrType = NewPtr.getValueType();
8605      if (TLI.isBigEndian())
8606        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
8607      NewPtr = DAG.getNode(ISD::ADD, N->getDebugLoc(), PtrType, NewPtr,
8608                           DAG.getConstant(PtrOff, PtrType));
8609    }
8610
8611    // The replacement we need to do here is a little tricky: we need to
8612    // replace an extractelement of a load with a load.
8613    // Use ReplaceAllUsesOfValuesWith to do the replacement.
8614    // Note that this replacement assumes that the extractvalue is the only
8615    // use of the load; that's okay because we don't want to perform this
8616    // transformation in other cases anyway.
8617    SDValue Load;
8618    SDValue Chain;
8619    if (NVT.bitsGT(LVT)) {
8620      // If the result type of vextract is wider than the load, then issue an
8621      // extending load instead.
8622      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
8623        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
8624      Load = DAG.getExtLoad(ExtType, N->getDebugLoc(), NVT, LN0->getChain(),
8625                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
8626                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),Align);
8627      Chain = Load.getValue(1);
8628    } else {
8629      Load = DAG.getLoad(LVT, N->getDebugLoc(), LN0->getChain(), NewPtr,
8630                         LN0->getPointerInfo().getWithOffset(PtrOff),
8631                         LN0->isVolatile(), LN0->isNonTemporal(),
8632                         LN0->isInvariant(), Align);
8633      Chain = Load.getValue(1);
8634      if (NVT.bitsLT(LVT))
8635        Load = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), NVT, Load);
8636      else
8637        Load = DAG.getNode(ISD::BITCAST, N->getDebugLoc(), NVT, Load);
8638    }
8639    WorkListRemover DeadNodes(*this);
8640    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
8641    SDValue To[] = { Load, Chain };
8642    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8643    // Since we're explcitly calling ReplaceAllUses, add the new node to the
8644    // worklist explicitly as well.
8645    AddToWorkList(Load.getNode());
8646    AddUsersToWorkList(Load.getNode()); // Add users too
8647    // Make sure to revisit this node to clean it up; it will usually be dead.
8648    AddToWorkList(N);
8649    return SDValue(N, 0);
8650  }
8651
8652  return SDValue();
8653}
8654
8655// Simplify (build_vec (ext )) to (bitcast (build_vec ))
8656SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
8657  // We perform this optimization post type-legalization because
8658  // the type-legalizer often scalarizes integer-promoted vectors.
8659  // Performing this optimization before may create bit-casts which
8660  // will be type-legalized to complex code sequences.
8661  // We perform this optimization only before the operation legalizer because we
8662  // may introduce illegal operations.
8663  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
8664    return SDValue();
8665
8666  unsigned NumInScalars = N->getNumOperands();
8667  DebugLoc dl = N->getDebugLoc();
8668  EVT VT = N->getValueType(0);
8669
8670  // Check to see if this is a BUILD_VECTOR of a bunch of values
8671  // which come from any_extend or zero_extend nodes. If so, we can create
8672  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
8673  // optimizations. We do not handle sign-extend because we can't fill the sign
8674  // using shuffles.
8675  EVT SourceType = MVT::Other;
8676  bool AllAnyExt = true;
8677
8678  for (unsigned i = 0; i != NumInScalars; ++i) {
8679    SDValue In = N->getOperand(i);
8680    // Ignore undef inputs.
8681    if (In.getOpcode() == ISD::UNDEF) continue;
8682
8683    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
8684    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
8685
8686    // Abort if the element is not an extension.
8687    if (!ZeroExt && !AnyExt) {
8688      SourceType = MVT::Other;
8689      break;
8690    }
8691
8692    // The input is a ZeroExt or AnyExt. Check the original type.
8693    EVT InTy = In.getOperand(0).getValueType();
8694
8695    // Check that all of the widened source types are the same.
8696    if (SourceType == MVT::Other)
8697      // First time.
8698      SourceType = InTy;
8699    else if (InTy != SourceType) {
8700      // Multiple income types. Abort.
8701      SourceType = MVT::Other;
8702      break;
8703    }
8704
8705    // Check if all of the extends are ANY_EXTENDs.
8706    AllAnyExt &= AnyExt;
8707  }
8708
8709  // In order to have valid types, all of the inputs must be extended from the
8710  // same source type and all of the inputs must be any or zero extend.
8711  // Scalar sizes must be a power of two.
8712  EVT OutScalarTy = VT.getScalarType();
8713  bool ValidTypes = SourceType != MVT::Other &&
8714                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
8715                 isPowerOf2_32(SourceType.getSizeInBits());
8716
8717  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
8718  // turn into a single shuffle instruction.
8719  if (!ValidTypes)
8720    return SDValue();
8721
8722  bool isLE = TLI.isLittleEndian();
8723  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
8724  assert(ElemRatio > 1 && "Invalid element size ratio");
8725  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
8726                               DAG.getConstant(0, SourceType);
8727
8728  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
8729  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
8730
8731  // Populate the new build_vector
8732  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8733    SDValue Cast = N->getOperand(i);
8734    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
8735            Cast.getOpcode() == ISD::ZERO_EXTEND ||
8736            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
8737    SDValue In;
8738    if (Cast.getOpcode() == ISD::UNDEF)
8739      In = DAG.getUNDEF(SourceType);
8740    else
8741      In = Cast->getOperand(0);
8742    unsigned Index = isLE ? (i * ElemRatio) :
8743                            (i * ElemRatio + (ElemRatio - 1));
8744
8745    assert(Index < Ops.size() && "Invalid index");
8746    Ops[Index] = In;
8747  }
8748
8749  // The type of the new BUILD_VECTOR node.
8750  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
8751  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
8752         "Invalid vector size");
8753  // Check if the new vector type is legal.
8754  if (!isTypeLegal(VecVT)) return SDValue();
8755
8756  // Make the new BUILD_VECTOR.
8757  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
8758
8759  // The new BUILD_VECTOR node has the potential to be further optimized.
8760  AddToWorkList(BV.getNode());
8761  // Bitcast to the desired type.
8762  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8763}
8764
8765SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
8766  EVT VT = N->getValueType(0);
8767
8768  unsigned NumInScalars = N->getNumOperands();
8769  DebugLoc dl = N->getDebugLoc();
8770
8771  EVT SrcVT = MVT::Other;
8772  unsigned Opcode = ISD::DELETED_NODE;
8773  unsigned NumDefs = 0;
8774
8775  for (unsigned i = 0; i != NumInScalars; ++i) {
8776    SDValue In = N->getOperand(i);
8777    unsigned Opc = In.getOpcode();
8778
8779    if (Opc == ISD::UNDEF)
8780      continue;
8781
8782    // If all scalar values are floats and converted from integers.
8783    if (Opcode == ISD::DELETED_NODE &&
8784        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
8785      Opcode = Opc;
8786    }
8787
8788    if (Opc != Opcode)
8789      return SDValue();
8790
8791    EVT InVT = In.getOperand(0).getValueType();
8792
8793    // If all scalar values are typed differently, bail out. It's chosen to
8794    // simplify BUILD_VECTOR of integer types.
8795    if (SrcVT == MVT::Other)
8796      SrcVT = InVT;
8797    if (SrcVT != InVT)
8798      return SDValue();
8799    NumDefs++;
8800  }
8801
8802  // If the vector has just one element defined, it's not worth to fold it into
8803  // a vectorized one.
8804  if (NumDefs < 2)
8805    return SDValue();
8806
8807  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
8808         && "Should only handle conversion from integer to float.");
8809  assert(SrcVT != MVT::Other && "Cannot determine source type!");
8810
8811  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
8812
8813  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
8814    return SDValue();
8815
8816  SmallVector<SDValue, 8> Opnds;
8817  for (unsigned i = 0; i != NumInScalars; ++i) {
8818    SDValue In = N->getOperand(i);
8819
8820    if (In.getOpcode() == ISD::UNDEF)
8821      Opnds.push_back(DAG.getUNDEF(SrcVT));
8822    else
8823      Opnds.push_back(In.getOperand(0));
8824  }
8825  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
8826                           &Opnds[0], Opnds.size());
8827  AddToWorkList(BV.getNode());
8828
8829  return DAG.getNode(Opcode, dl, VT, BV);
8830}
8831
8832SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
8833  unsigned NumInScalars = N->getNumOperands();
8834  DebugLoc dl = N->getDebugLoc();
8835  EVT VT = N->getValueType(0);
8836
8837  // A vector built entirely of undefs is undef.
8838  if (ISD::allOperandsUndef(N))
8839    return DAG.getUNDEF(VT);
8840
8841  SDValue V = reduceBuildVecExtToExtBuildVec(N);
8842  if (V.getNode())
8843    return V;
8844
8845  V = reduceBuildVecConvertToConvertBuildVec(N);
8846  if (V.getNode())
8847    return V;
8848
8849  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
8850  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
8851  // at most two distinct vectors, turn this into a shuffle node.
8852
8853  // May only combine to shuffle after legalize if shuffle is legal.
8854  if (LegalOperations &&
8855      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
8856    return SDValue();
8857
8858  SDValue VecIn1, VecIn2;
8859  for (unsigned i = 0; i != NumInScalars; ++i) {
8860    // Ignore undef inputs.
8861    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
8862
8863    // If this input is something other than a EXTRACT_VECTOR_ELT with a
8864    // constant index, bail out.
8865    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8866        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
8867      VecIn1 = VecIn2 = SDValue(0, 0);
8868      break;
8869    }
8870
8871    // We allow up to two distinct input vectors.
8872    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
8873    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
8874      continue;
8875
8876    if (VecIn1.getNode() == 0) {
8877      VecIn1 = ExtractedFromVec;
8878    } else if (VecIn2.getNode() == 0) {
8879      VecIn2 = ExtractedFromVec;
8880    } else {
8881      // Too many inputs.
8882      VecIn1 = VecIn2 = SDValue(0, 0);
8883      break;
8884    }
8885  }
8886
8887    // If everything is good, we can make a shuffle operation.
8888  if (VecIn1.getNode()) {
8889    SmallVector<int, 8> Mask;
8890    for (unsigned i = 0; i != NumInScalars; ++i) {
8891      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
8892        Mask.push_back(-1);
8893        continue;
8894      }
8895
8896      // If extracting from the first vector, just use the index directly.
8897      SDValue Extract = N->getOperand(i);
8898      SDValue ExtVal = Extract.getOperand(1);
8899      if (Extract.getOperand(0) == VecIn1) {
8900        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8901        if (ExtIndex > VT.getVectorNumElements())
8902          return SDValue();
8903
8904        Mask.push_back(ExtIndex);
8905        continue;
8906      }
8907
8908      // Otherwise, use InIdx + VecSize
8909      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
8910      Mask.push_back(Idx+NumInScalars);
8911    }
8912
8913    // We can't generate a shuffle node with mismatched input and output types.
8914    // Attempt to transform a single input vector to the correct type.
8915    if ((VT != VecIn1.getValueType())) {
8916      // We don't support shuffeling between TWO values of different types.
8917      if (VecIn2.getNode() != 0)
8918        return SDValue();
8919
8920      // We only support widening of vectors which are half the size of the
8921      // output registers. For example XMM->YMM widening on X86 with AVX.
8922      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
8923        return SDValue();
8924
8925      // If the input vector type has a different base type to the output
8926      // vector type, bail out.
8927      if (VecIn1.getValueType().getVectorElementType() !=
8928          VT.getVectorElementType())
8929        return SDValue();
8930
8931      // Widen the input vector by adding undef values.
8932      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8933                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
8934    }
8935
8936    // If VecIn2 is unused then change it to undef.
8937    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
8938
8939    // Check that we were able to transform all incoming values to the same
8940    // type.
8941    if (VecIn2.getValueType() != VecIn1.getValueType() ||
8942        VecIn1.getValueType() != VT)
8943          return SDValue();
8944
8945    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
8946    if (!isTypeLegal(VT))
8947      return SDValue();
8948
8949    // Return the new VECTOR_SHUFFLE node.
8950    SDValue Ops[2];
8951    Ops[0] = VecIn1;
8952    Ops[1] = VecIn2;
8953    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
8954  }
8955
8956  return SDValue();
8957}
8958
8959SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
8960  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
8961  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
8962  // inputs come from at most two distinct vectors, turn this into a shuffle
8963  // node.
8964
8965  // If we only have one input vector, we don't need to do any concatenation.
8966  if (N->getNumOperands() == 1)
8967    return N->getOperand(0);
8968
8969  // Check if all of the operands are undefs.
8970  if (ISD::allOperandsUndef(N))
8971    return DAG.getUNDEF(N->getValueType(0));
8972
8973  return SDValue();
8974}
8975
8976SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
8977  EVT NVT = N->getValueType(0);
8978  SDValue V = N->getOperand(0);
8979
8980  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
8981    // Handle only simple case where vector being inserted and vector
8982    // being extracted are of same type, and are half size of larger vectors.
8983    EVT BigVT = V->getOperand(0).getValueType();
8984    EVT SmallVT = V->getOperand(1).getValueType();
8985    if (NVT != SmallVT || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
8986      return SDValue();
8987
8988    // Only handle cases where both indexes are constants with the same type.
8989    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
8990    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
8991
8992    if (InsIdx && ExtIdx &&
8993        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
8994        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
8995      // Combine:
8996      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
8997      // Into:
8998      //    indices are equal => V1
8999      //    otherwise => (extract_subvec V1, ExtIdx)
9000      if (InsIdx->getZExtValue() == ExtIdx->getZExtValue())
9001        return V->getOperand(1);
9002      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, N->getDebugLoc(), NVT,
9003                         V->getOperand(0), N->getOperand(1));
9004    }
9005  }
9006
9007  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9008    // Combine:
9009    //    (extract_subvec (concat V1, V2, ...), i)
9010    // Into:
9011    //    Vi if possible
9012    // Only operand 0 is checked as 'concat' assumes all inputs of the same type.
9013    if (V->getOperand(0).getValueType() != NVT)
9014      return SDValue();
9015    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9016    unsigned NumElems = NVT.getVectorNumElements();
9017    assert((Idx % NumElems) == 0 &&
9018           "IDX in concat is not a multiple of the result vector length.");
9019    return V->getOperand(Idx / NumElems);
9020  }
9021
9022  return SDValue();
9023}
9024
9025SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
9026  EVT VT = N->getValueType(0);
9027  unsigned NumElts = VT.getVectorNumElements();
9028
9029  SDValue N0 = N->getOperand(0);
9030  SDValue N1 = N->getOperand(1);
9031
9032  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
9033
9034  // Canonicalize shuffle undef, undef -> undef
9035  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
9036    return DAG.getUNDEF(VT);
9037
9038  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9039
9040  // Canonicalize shuffle v, v -> v, undef
9041  if (N0 == N1) {
9042    SmallVector<int, 8> NewMask;
9043    for (unsigned i = 0; i != NumElts; ++i) {
9044      int Idx = SVN->getMaskElt(i);
9045      if (Idx >= (int)NumElts) Idx -= NumElts;
9046      NewMask.push_back(Idx);
9047    }
9048    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, DAG.getUNDEF(VT),
9049                                &NewMask[0]);
9050  }
9051
9052  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
9053  if (N0.getOpcode() == ISD::UNDEF) {
9054    SmallVector<int, 8> NewMask;
9055    for (unsigned i = 0; i != NumElts; ++i) {
9056      int Idx = SVN->getMaskElt(i);
9057      if (Idx >= 0) {
9058        if (Idx < (int)NumElts)
9059          Idx += NumElts;
9060        else
9061          Idx -= NumElts;
9062      }
9063      NewMask.push_back(Idx);
9064    }
9065    return DAG.getVectorShuffle(VT, N->getDebugLoc(), N1, DAG.getUNDEF(VT),
9066                                &NewMask[0]);
9067  }
9068
9069  // Remove references to rhs if it is undef
9070  if (N1.getOpcode() == ISD::UNDEF) {
9071    bool Changed = false;
9072    SmallVector<int, 8> NewMask;
9073    for (unsigned i = 0; i != NumElts; ++i) {
9074      int Idx = SVN->getMaskElt(i);
9075      if (Idx >= (int)NumElts) {
9076        Idx = -1;
9077        Changed = true;
9078      }
9079      NewMask.push_back(Idx);
9080    }
9081    if (Changed)
9082      return DAG.getVectorShuffle(VT, N->getDebugLoc(), N0, N1, &NewMask[0]);
9083  }
9084
9085  // If it is a splat, check if the argument vector is another splat or a
9086  // build_vector with all scalar elements the same.
9087  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
9088    SDNode *V = N0.getNode();
9089
9090    // If this is a bit convert that changes the element type of the vector but
9091    // not the number of vector elements, look through it.  Be careful not to
9092    // look though conversions that change things like v4f32 to v2f64.
9093    if (V->getOpcode() == ISD::BITCAST) {
9094      SDValue ConvInput = V->getOperand(0);
9095      if (ConvInput.getValueType().isVector() &&
9096          ConvInput.getValueType().getVectorNumElements() == NumElts)
9097        V = ConvInput.getNode();
9098    }
9099
9100    if (V->getOpcode() == ISD::BUILD_VECTOR) {
9101      assert(V->getNumOperands() == NumElts &&
9102             "BUILD_VECTOR has wrong number of operands");
9103      SDValue Base;
9104      bool AllSame = true;
9105      for (unsigned i = 0; i != NumElts; ++i) {
9106        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
9107          Base = V->getOperand(i);
9108          break;
9109        }
9110      }
9111      // Splat of <u, u, u, u>, return <u, u, u, u>
9112      if (!Base.getNode())
9113        return N0;
9114      for (unsigned i = 0; i != NumElts; ++i) {
9115        if (V->getOperand(i) != Base) {
9116          AllSame = false;
9117          break;
9118        }
9119      }
9120      // Splat of <x, x, x, x>, return <x, x, x, x>
9121      if (AllSame)
9122        return N0;
9123    }
9124  }
9125
9126  // If this shuffle node is simply a swizzle of another shuffle node,
9127  // and it reverses the swizzle of the previous shuffle then we can
9128  // optimize shuffle(shuffle(x, undef), undef) -> x.
9129  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
9130      N1.getOpcode() == ISD::UNDEF) {
9131
9132    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
9133
9134    // Shuffle nodes can only reverse shuffles with a single non-undef value.
9135    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
9136      return SDValue();
9137
9138    // The incoming shuffle must be of the same type as the result of the
9139    // current shuffle.
9140    assert(OtherSV->getOperand(0).getValueType() == VT &&
9141           "Shuffle types don't match");
9142
9143    for (unsigned i = 0; i != NumElts; ++i) {
9144      int Idx = SVN->getMaskElt(i);
9145      assert(Idx < (int)NumElts && "Index references undef operand");
9146      // Next, this index comes from the first value, which is the incoming
9147      // shuffle. Adopt the incoming index.
9148      if (Idx >= 0)
9149        Idx = OtherSV->getMaskElt(Idx);
9150
9151      // The combined shuffle must map each index to itself.
9152      if (Idx >= 0 && (unsigned)Idx != i)
9153        return SDValue();
9154    }
9155
9156    return OtherSV->getOperand(0);
9157  }
9158
9159  return SDValue();
9160}
9161
9162SDValue DAGCombiner::visitMEMBARRIER(SDNode* N) {
9163  if (!TLI.getShouldFoldAtomicFences())
9164    return SDValue();
9165
9166  SDValue atomic = N->getOperand(0);
9167  switch (atomic.getOpcode()) {
9168    case ISD::ATOMIC_CMP_SWAP:
9169    case ISD::ATOMIC_SWAP:
9170    case ISD::ATOMIC_LOAD_ADD:
9171    case ISD::ATOMIC_LOAD_SUB:
9172    case ISD::ATOMIC_LOAD_AND:
9173    case ISD::ATOMIC_LOAD_OR:
9174    case ISD::ATOMIC_LOAD_XOR:
9175    case ISD::ATOMIC_LOAD_NAND:
9176    case ISD::ATOMIC_LOAD_MIN:
9177    case ISD::ATOMIC_LOAD_MAX:
9178    case ISD::ATOMIC_LOAD_UMIN:
9179    case ISD::ATOMIC_LOAD_UMAX:
9180      break;
9181    default:
9182      return SDValue();
9183  }
9184
9185  SDValue fence = atomic.getOperand(0);
9186  if (fence.getOpcode() != ISD::MEMBARRIER)
9187    return SDValue();
9188
9189  switch (atomic.getOpcode()) {
9190    case ISD::ATOMIC_CMP_SWAP:
9191      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9192                                    fence.getOperand(0),
9193                                    atomic.getOperand(1), atomic.getOperand(2),
9194                                    atomic.getOperand(3)), atomic.getResNo());
9195    case ISD::ATOMIC_SWAP:
9196    case ISD::ATOMIC_LOAD_ADD:
9197    case ISD::ATOMIC_LOAD_SUB:
9198    case ISD::ATOMIC_LOAD_AND:
9199    case ISD::ATOMIC_LOAD_OR:
9200    case ISD::ATOMIC_LOAD_XOR:
9201    case ISD::ATOMIC_LOAD_NAND:
9202    case ISD::ATOMIC_LOAD_MIN:
9203    case ISD::ATOMIC_LOAD_MAX:
9204    case ISD::ATOMIC_LOAD_UMIN:
9205    case ISD::ATOMIC_LOAD_UMAX:
9206      return SDValue(DAG.UpdateNodeOperands(atomic.getNode(),
9207                                    fence.getOperand(0),
9208                                    atomic.getOperand(1), atomic.getOperand(2)),
9209                     atomic.getResNo());
9210    default:
9211      return SDValue();
9212  }
9213}
9214
9215/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
9216/// an AND to a vector_shuffle with the destination vector and a zero vector.
9217/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
9218///      vector_shuffle V, Zero, <0, 4, 2, 4>
9219SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
9220  EVT VT = N->getValueType(0);
9221  DebugLoc dl = N->getDebugLoc();
9222  SDValue LHS = N->getOperand(0);
9223  SDValue RHS = N->getOperand(1);
9224  if (N->getOpcode() == ISD::AND) {
9225    if (RHS.getOpcode() == ISD::BITCAST)
9226      RHS = RHS.getOperand(0);
9227    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
9228      SmallVector<int, 8> Indices;
9229      unsigned NumElts = RHS.getNumOperands();
9230      for (unsigned i = 0; i != NumElts; ++i) {
9231        SDValue Elt = RHS.getOperand(i);
9232        if (!isa<ConstantSDNode>(Elt))
9233          return SDValue();
9234
9235        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
9236          Indices.push_back(i);
9237        else if (cast<ConstantSDNode>(Elt)->isNullValue())
9238          Indices.push_back(NumElts);
9239        else
9240          return SDValue();
9241      }
9242
9243      // Let's see if the target supports this vector_shuffle.
9244      EVT RVT = RHS.getValueType();
9245      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
9246        return SDValue();
9247
9248      // Return the new VECTOR_SHUFFLE node.
9249      EVT EltVT = RVT.getVectorElementType();
9250      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
9251                                     DAG.getConstant(0, EltVT));
9252      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9253                                 RVT, &ZeroOps[0], ZeroOps.size());
9254      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
9255      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
9256      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
9257    }
9258  }
9259
9260  return SDValue();
9261}
9262
9263/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
9264SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
9265  // After legalize, the target may be depending on adds and other
9266  // binary ops to provide legal ways to construct constants or other
9267  // things. Simplifying them may result in a loss of legality.
9268  if (LegalOperations) return SDValue();
9269
9270  assert(N->getValueType(0).isVector() &&
9271         "SimplifyVBinOp only works on vectors!");
9272
9273  SDValue LHS = N->getOperand(0);
9274  SDValue RHS = N->getOperand(1);
9275  SDValue Shuffle = XformToShuffleWithZero(N);
9276  if (Shuffle.getNode()) return Shuffle;
9277
9278  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
9279  // this operation.
9280  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
9281      RHS.getOpcode() == ISD::BUILD_VECTOR) {
9282    SmallVector<SDValue, 8> Ops;
9283    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
9284      SDValue LHSOp = LHS.getOperand(i);
9285      SDValue RHSOp = RHS.getOperand(i);
9286      // If these two elements can't be folded, bail out.
9287      if ((LHSOp.getOpcode() != ISD::UNDEF &&
9288           LHSOp.getOpcode() != ISD::Constant &&
9289           LHSOp.getOpcode() != ISD::ConstantFP) ||
9290          (RHSOp.getOpcode() != ISD::UNDEF &&
9291           RHSOp.getOpcode() != ISD::Constant &&
9292           RHSOp.getOpcode() != ISD::ConstantFP))
9293        break;
9294
9295      // Can't fold divide by zero.
9296      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
9297          N->getOpcode() == ISD::FDIV) {
9298        if ((RHSOp.getOpcode() == ISD::Constant &&
9299             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
9300            (RHSOp.getOpcode() == ISD::ConstantFP &&
9301             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
9302          break;
9303      }
9304
9305      EVT VT = LHSOp.getValueType();
9306      EVT RVT = RHSOp.getValueType();
9307      if (RVT != VT) {
9308        // Integer BUILD_VECTOR operands may have types larger than the element
9309        // size (e.g., when the element type is not legal).  Prior to type
9310        // legalization, the types may not match between the two BUILD_VECTORS.
9311        // Truncate one of the operands to make them match.
9312        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
9313          RHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, RHSOp);
9314        } else {
9315          LHSOp = DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), RVT, LHSOp);
9316          VT = RVT;
9317        }
9318      }
9319      SDValue FoldOp = DAG.getNode(N->getOpcode(), LHS.getDebugLoc(), VT,
9320                                   LHSOp, RHSOp);
9321      if (FoldOp.getOpcode() != ISD::UNDEF &&
9322          FoldOp.getOpcode() != ISD::Constant &&
9323          FoldOp.getOpcode() != ISD::ConstantFP)
9324        break;
9325      Ops.push_back(FoldOp);
9326      AddToWorkList(FoldOp.getNode());
9327    }
9328
9329    if (Ops.size() == LHS.getNumOperands())
9330      return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9331                         LHS.getValueType(), &Ops[0], Ops.size());
9332  }
9333
9334  return SDValue();
9335}
9336
9337/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
9338SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
9339  // After legalize, the target may be depending on adds and other
9340  // binary ops to provide legal ways to construct constants or other
9341  // things. Simplifying them may result in a loss of legality.
9342  if (LegalOperations) return SDValue();
9343
9344  assert(N->getValueType(0).isVector() &&
9345         "SimplifyVUnaryOp only works on vectors!");
9346
9347  SDValue N0 = N->getOperand(0);
9348
9349  if (N0.getOpcode() != ISD::BUILD_VECTOR)
9350    return SDValue();
9351
9352  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
9353  SmallVector<SDValue, 8> Ops;
9354  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
9355    SDValue Op = N0.getOperand(i);
9356    if (Op.getOpcode() != ISD::UNDEF &&
9357        Op.getOpcode() != ISD::ConstantFP)
9358      break;
9359    EVT EltVT = Op.getValueType();
9360    SDValue FoldOp = DAG.getNode(N->getOpcode(), N0.getDebugLoc(), EltVT, Op);
9361    if (FoldOp.getOpcode() != ISD::UNDEF &&
9362        FoldOp.getOpcode() != ISD::ConstantFP)
9363      break;
9364    Ops.push_back(FoldOp);
9365    AddToWorkList(FoldOp.getNode());
9366  }
9367
9368  if (Ops.size() != N0.getNumOperands())
9369    return SDValue();
9370
9371  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
9372                     N0.getValueType(), &Ops[0], Ops.size());
9373}
9374
9375SDValue DAGCombiner::SimplifySelect(DebugLoc DL, SDValue N0,
9376                                    SDValue N1, SDValue N2){
9377  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
9378
9379  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
9380                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9381
9382  // If we got a simplified select_cc node back from SimplifySelectCC, then
9383  // break it down into a new SETCC node, and a new SELECT node, and then return
9384  // the SELECT node, since we were called with a SELECT node.
9385  if (SCC.getNode()) {
9386    // Check to see if we got a select_cc back (to turn into setcc/select).
9387    // Otherwise, just return whatever node we got back, like fabs.
9388    if (SCC.getOpcode() == ISD::SELECT_CC) {
9389      SDValue SETCC = DAG.getNode(ISD::SETCC, N0.getDebugLoc(),
9390                                  N0.getValueType(),
9391                                  SCC.getOperand(0), SCC.getOperand(1),
9392                                  SCC.getOperand(4));
9393      AddToWorkList(SETCC.getNode());
9394      return DAG.getNode(ISD::SELECT, SCC.getDebugLoc(), SCC.getValueType(),
9395                         SCC.getOperand(2), SCC.getOperand(3), SETCC);
9396    }
9397
9398    return SCC;
9399  }
9400  return SDValue();
9401}
9402
9403/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
9404/// are the two values being selected between, see if we can simplify the
9405/// select.  Callers of this should assume that TheSelect is deleted if this
9406/// returns true.  As such, they should return the appropriate thing (e.g. the
9407/// node) back to the top-level of the DAG combiner loop to avoid it being
9408/// looked at.
9409bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
9410                                    SDValue RHS) {
9411
9412  // Cannot simplify select with vector condition
9413  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
9414
9415  // If this is a select from two identical things, try to pull the operation
9416  // through the select.
9417  if (LHS.getOpcode() != RHS.getOpcode() ||
9418      !LHS.hasOneUse() || !RHS.hasOneUse())
9419    return false;
9420
9421  // If this is a load and the token chain is identical, replace the select
9422  // of two loads with a load through a select of the address to load from.
9423  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
9424  // constants have been dropped into the constant pool.
9425  if (LHS.getOpcode() == ISD::LOAD) {
9426    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
9427    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
9428
9429    // Token chains must be identical.
9430    if (LHS.getOperand(0) != RHS.getOperand(0) ||
9431        // Do not let this transformation reduce the number of volatile loads.
9432        LLD->isVolatile() || RLD->isVolatile() ||
9433        // If this is an EXTLOAD, the VT's must match.
9434        LLD->getMemoryVT() != RLD->getMemoryVT() ||
9435        // If this is an EXTLOAD, the kind of extension must match.
9436        (LLD->getExtensionType() != RLD->getExtensionType() &&
9437         // The only exception is if one of the extensions is anyext.
9438         LLD->getExtensionType() != ISD::EXTLOAD &&
9439         RLD->getExtensionType() != ISD::EXTLOAD) ||
9440        // FIXME: this discards src value information.  This is
9441        // over-conservative. It would be beneficial to be able to remember
9442        // both potential memory locations.  Since we are discarding
9443        // src value info, don't do the transformation if the memory
9444        // locations are not in the default address space.
9445        LLD->getPointerInfo().getAddrSpace() != 0 ||
9446        RLD->getPointerInfo().getAddrSpace() != 0 ||
9447        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
9448                                      LLD->getBasePtr().getValueType()))
9449      return false;
9450
9451    // Check that the select condition doesn't reach either load.  If so,
9452    // folding this will induce a cycle into the DAG.  If not, this is safe to
9453    // xform, so create a select of the addresses.
9454    SDValue Addr;
9455    if (TheSelect->getOpcode() == ISD::SELECT) {
9456      SDNode *CondNode = TheSelect->getOperand(0).getNode();
9457      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
9458          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
9459        return false;
9460      // The loads must not depend on one another.
9461      if (LLD->isPredecessorOf(RLD) ||
9462          RLD->isPredecessorOf(LLD))
9463        return false;
9464      Addr = DAG.getNode(ISD::SELECT, TheSelect->getDebugLoc(),
9465                         LLD->getBasePtr().getValueType(),
9466                         TheSelect->getOperand(0), LLD->getBasePtr(),
9467                         RLD->getBasePtr());
9468    } else {  // Otherwise SELECT_CC
9469      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
9470      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
9471
9472      if ((LLD->hasAnyUseOfValue(1) &&
9473           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
9474          (RLD->hasAnyUseOfValue(1) &&
9475           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
9476        return false;
9477
9478      Addr = DAG.getNode(ISD::SELECT_CC, TheSelect->getDebugLoc(),
9479                         LLD->getBasePtr().getValueType(),
9480                         TheSelect->getOperand(0),
9481                         TheSelect->getOperand(1),
9482                         LLD->getBasePtr(), RLD->getBasePtr(),
9483                         TheSelect->getOperand(4));
9484    }
9485
9486    SDValue Load;
9487    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
9488      Load = DAG.getLoad(TheSelect->getValueType(0),
9489                         TheSelect->getDebugLoc(),
9490                         // FIXME: Discards pointer info.
9491                         LLD->getChain(), Addr, MachinePointerInfo(),
9492                         LLD->isVolatile(), LLD->isNonTemporal(),
9493                         LLD->isInvariant(), LLD->getAlignment());
9494    } else {
9495      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
9496                            RLD->getExtensionType() : LLD->getExtensionType(),
9497                            TheSelect->getDebugLoc(),
9498                            TheSelect->getValueType(0),
9499                            // FIXME: Discards pointer info.
9500                            LLD->getChain(), Addr, MachinePointerInfo(),
9501                            LLD->getMemoryVT(), LLD->isVolatile(),
9502                            LLD->isNonTemporal(), LLD->getAlignment());
9503    }
9504
9505    // Users of the select now use the result of the load.
9506    CombineTo(TheSelect, Load);
9507
9508    // Users of the old loads now use the new load's chain.  We know the
9509    // old-load value is dead now.
9510    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
9511    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
9512    return true;
9513  }
9514
9515  return false;
9516}
9517
9518/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
9519/// where 'cond' is the comparison specified by CC.
9520SDValue DAGCombiner::SimplifySelectCC(DebugLoc DL, SDValue N0, SDValue N1,
9521                                      SDValue N2, SDValue N3,
9522                                      ISD::CondCode CC, bool NotExtCompare) {
9523  // (x ? y : y) -> y.
9524  if (N2 == N3) return N2;
9525
9526  EVT VT = N2.getValueType();
9527  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
9528  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
9529  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
9530
9531  // Determine if the condition we're dealing with is constant
9532  SDValue SCC = SimplifySetCC(TLI.getSetCCResultType(N0.getValueType()),
9533                              N0, N1, CC, DL, false);
9534  if (SCC.getNode()) AddToWorkList(SCC.getNode());
9535  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
9536
9537  // fold select_cc true, x, y -> x
9538  if (SCCC && !SCCC->isNullValue())
9539    return N2;
9540  // fold select_cc false, x, y -> y
9541  if (SCCC && SCCC->isNullValue())
9542    return N3;
9543
9544  // Check to see if we can simplify the select into an fabs node
9545  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
9546    // Allow either -0.0 or 0.0
9547    if (CFP->getValueAPF().isZero()) {
9548      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
9549      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
9550          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
9551          N2 == N3.getOperand(0))
9552        return DAG.getNode(ISD::FABS, DL, VT, N0);
9553
9554      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
9555      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
9556          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
9557          N2.getOperand(0) == N3)
9558        return DAG.getNode(ISD::FABS, DL, VT, N3);
9559    }
9560  }
9561
9562  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
9563  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
9564  // in it.  This is a win when the constant is not otherwise available because
9565  // it replaces two constant pool loads with one.  We only do this if the FP
9566  // type is known to be legal, because if it isn't, then we are before legalize
9567  // types an we want the other legalization to happen first (e.g. to avoid
9568  // messing with soft float) and if the ConstantFP is not legal, because if
9569  // it is legal, we may not need to store the FP constant in a constant pool.
9570  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
9571    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
9572      if (TLI.isTypeLegal(N2.getValueType()) &&
9573          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
9574           TargetLowering::Legal) &&
9575          // If both constants have multiple uses, then we won't need to do an
9576          // extra load, they are likely around in registers for other users.
9577          (TV->hasOneUse() || FV->hasOneUse())) {
9578        Constant *Elts[] = {
9579          const_cast<ConstantFP*>(FV->getConstantFPValue()),
9580          const_cast<ConstantFP*>(TV->getConstantFPValue())
9581        };
9582        Type *FPTy = Elts[0]->getType();
9583        const DataLayout &TD = *TLI.getDataLayout();
9584
9585        // Create a ConstantArray of the two constants.
9586        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
9587        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
9588                                            TD.getPrefTypeAlignment(FPTy));
9589        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9590
9591        // Get the offsets to the 0 and 1 element of the array so that we can
9592        // select between them.
9593        SDValue Zero = DAG.getIntPtrConstant(0);
9594        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
9595        SDValue One = DAG.getIntPtrConstant(EltSize);
9596
9597        SDValue Cond = DAG.getSetCC(DL,
9598                                    TLI.getSetCCResultType(N0.getValueType()),
9599                                    N0, N1, CC);
9600        AddToWorkList(Cond.getNode());
9601        SDValue CstOffset = DAG.getNode(ISD::SELECT, DL, Zero.getValueType(),
9602                                        Cond, One, Zero);
9603        AddToWorkList(CstOffset.getNode());
9604        CPIdx = DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(), CPIdx,
9605                            CstOffset);
9606        AddToWorkList(CPIdx.getNode());
9607        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
9608                           MachinePointerInfo::getConstantPool(), false,
9609                           false, false, Alignment);
9610
9611      }
9612    }
9613
9614  // Check to see if we can perform the "gzip trick", transforming
9615  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
9616  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
9617      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
9618       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
9619    EVT XType = N0.getValueType();
9620    EVT AType = N2.getValueType();
9621    if (XType.bitsGE(AType)) {
9622      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
9623      // single-bit constant.
9624      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
9625        unsigned ShCtV = N2C->getAPIntValue().logBase2();
9626        ShCtV = XType.getSizeInBits()-ShCtV-1;
9627        SDValue ShCt = DAG.getConstant(ShCtV,
9628                                       getShiftAmountTy(N0.getValueType()));
9629        SDValue Shift = DAG.getNode(ISD::SRL, N0.getDebugLoc(),
9630                                    XType, N0, ShCt);
9631        AddToWorkList(Shift.getNode());
9632
9633        if (XType.bitsGT(AType)) {
9634          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9635          AddToWorkList(Shift.getNode());
9636        }
9637
9638        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9639      }
9640
9641      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(),
9642                                  XType, N0,
9643                                  DAG.getConstant(XType.getSizeInBits()-1,
9644                                         getShiftAmountTy(N0.getValueType())));
9645      AddToWorkList(Shift.getNode());
9646
9647      if (XType.bitsGT(AType)) {
9648        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
9649        AddToWorkList(Shift.getNode());
9650      }
9651
9652      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
9653    }
9654  }
9655
9656  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
9657  // where y is has a single bit set.
9658  // A plaintext description would be, we can turn the SELECT_CC into an AND
9659  // when the condition can be materialized as an all-ones register.  Any
9660  // single bit-test can be materialized as an all-ones register with
9661  // shift-left and shift-right-arith.
9662  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
9663      N0->getValueType(0) == VT &&
9664      N1C && N1C->isNullValue() &&
9665      N2C && N2C->isNullValue()) {
9666    SDValue AndLHS = N0->getOperand(0);
9667    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9668    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
9669      // Shift the tested bit over the sign bit.
9670      APInt AndMask = ConstAndRHS->getAPIntValue();
9671      SDValue ShlAmt =
9672        DAG.getConstant(AndMask.countLeadingZeros(),
9673                        getShiftAmountTy(AndLHS.getValueType()));
9674      SDValue Shl = DAG.getNode(ISD::SHL, N0.getDebugLoc(), VT, AndLHS, ShlAmt);
9675
9676      // Now arithmetic right shift it all the way over, so the result is either
9677      // all-ones, or zero.
9678      SDValue ShrAmt =
9679        DAG.getConstant(AndMask.getBitWidth()-1,
9680                        getShiftAmountTy(Shl.getValueType()));
9681      SDValue Shr = DAG.getNode(ISD::SRA, N0.getDebugLoc(), VT, Shl, ShrAmt);
9682
9683      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
9684    }
9685  }
9686
9687  // fold select C, 16, 0 -> shl C, 4
9688  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
9689    TLI.getBooleanContents(N0.getValueType().isVector()) ==
9690      TargetLowering::ZeroOrOneBooleanContent) {
9691
9692    // If the caller doesn't want us to simplify this into a zext of a compare,
9693    // don't do it.
9694    if (NotExtCompare && N2C->getAPIntValue() == 1)
9695      return SDValue();
9696
9697    // Get a SetCC of the condition
9698    // NOTE: Don't create a SETCC if it's not legal on this target.
9699    if (!LegalOperations ||
9700        TLI.isOperationLegal(ISD::SETCC,
9701          LegalTypes ? TLI.getSetCCResultType(N0.getValueType()) : MVT::i1)) {
9702      SDValue Temp, SCC;
9703      // cast from setcc result type to select result type
9704      if (LegalTypes) {
9705        SCC  = DAG.getSetCC(DL, TLI.getSetCCResultType(N0.getValueType()),
9706                            N0, N1, CC);
9707        if (N2.getValueType().bitsLT(SCC.getValueType()))
9708          Temp = DAG.getZeroExtendInReg(SCC, N2.getDebugLoc(),
9709                                        N2.getValueType());
9710        else
9711          Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9712                             N2.getValueType(), SCC);
9713      } else {
9714        SCC  = DAG.getSetCC(N0.getDebugLoc(), MVT::i1, N0, N1, CC);
9715        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getDebugLoc(),
9716                           N2.getValueType(), SCC);
9717      }
9718
9719      AddToWorkList(SCC.getNode());
9720      AddToWorkList(Temp.getNode());
9721
9722      if (N2C->getAPIntValue() == 1)
9723        return Temp;
9724
9725      // shl setcc result by log2 n2c
9726      return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
9727                         DAG.getConstant(N2C->getAPIntValue().logBase2(),
9728                                         getShiftAmountTy(Temp.getValueType())));
9729    }
9730  }
9731
9732  // Check to see if this is the equivalent of setcc
9733  // FIXME: Turn all of these into setcc if setcc if setcc is legal
9734  // otherwise, go ahead with the folds.
9735  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
9736    EVT XType = N0.getValueType();
9737    if (!LegalOperations ||
9738        TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultType(XType))) {
9739      SDValue Res = DAG.getSetCC(DL, TLI.getSetCCResultType(XType), N0, N1, CC);
9740      if (Res.getValueType() != VT)
9741        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
9742      return Res;
9743    }
9744
9745    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
9746    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
9747        (!LegalOperations ||
9748         TLI.isOperationLegal(ISD::CTLZ, XType))) {
9749      SDValue Ctlz = DAG.getNode(ISD::CTLZ, N0.getDebugLoc(), XType, N0);
9750      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
9751                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
9752                                       getShiftAmountTy(Ctlz.getValueType())));
9753    }
9754    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
9755    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
9756      SDValue NegN0 = DAG.getNode(ISD::SUB, N0.getDebugLoc(),
9757                                  XType, DAG.getConstant(0, XType), N0);
9758      SDValue NotN0 = DAG.getNOT(N0.getDebugLoc(), N0, XType);
9759      return DAG.getNode(ISD::SRL, DL, XType,
9760                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
9761                         DAG.getConstant(XType.getSizeInBits()-1,
9762                                         getShiftAmountTy(XType)));
9763    }
9764    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
9765    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
9766      SDValue Sign = DAG.getNode(ISD::SRL, N0.getDebugLoc(), XType, N0,
9767                                 DAG.getConstant(XType.getSizeInBits()-1,
9768                                         getShiftAmountTy(N0.getValueType())));
9769      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
9770    }
9771  }
9772
9773  // Check to see if this is an integer abs.
9774  // select_cc setg[te] X,  0,  X, -X ->
9775  // select_cc setgt    X, -1,  X, -X ->
9776  // select_cc setl[te] X,  0, -X,  X ->
9777  // select_cc setlt    X,  1, -X,  X ->
9778  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
9779  if (N1C) {
9780    ConstantSDNode *SubC = NULL;
9781    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
9782         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
9783        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
9784      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
9785    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
9786              (N1C->isOne() && CC == ISD::SETLT)) &&
9787             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
9788      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
9789
9790    EVT XType = N0.getValueType();
9791    if (SubC && SubC->isNullValue() && XType.isInteger()) {
9792      SDValue Shift = DAG.getNode(ISD::SRA, N0.getDebugLoc(), XType,
9793                                  N0,
9794                                  DAG.getConstant(XType.getSizeInBits()-1,
9795                                         getShiftAmountTy(N0.getValueType())));
9796      SDValue Add = DAG.getNode(ISD::ADD, N0.getDebugLoc(),
9797                                XType, N0, Shift);
9798      AddToWorkList(Shift.getNode());
9799      AddToWorkList(Add.getNode());
9800      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
9801    }
9802  }
9803
9804  return SDValue();
9805}
9806
9807/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
9808SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
9809                                   SDValue N1, ISD::CondCode Cond,
9810                                   DebugLoc DL, bool foldBooleans) {
9811  TargetLowering::DAGCombinerInfo
9812    DagCombineInfo(DAG, Level, false, this);
9813  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
9814}
9815
9816/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
9817/// return a DAG expression to select that will generate the same value by
9818/// multiplying by a magic number.  See:
9819/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9820SDValue DAGCombiner::BuildSDIV(SDNode *N) {
9821  std::vector<SDNode*> Built;
9822  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
9823
9824  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9825       ii != ee; ++ii)
9826    AddToWorkList(*ii);
9827  return S;
9828}
9829
9830/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
9831/// return a DAG expression to select that will generate the same value by
9832/// multiplying by a magic number.  See:
9833/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
9834SDValue DAGCombiner::BuildUDIV(SDNode *N) {
9835  std::vector<SDNode*> Built;
9836  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
9837
9838  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
9839       ii != ee; ++ii)
9840    AddToWorkList(*ii);
9841  return S;
9842}
9843
9844/// FindBaseOffset - Return true if base is a frame index, which is known not
9845// to alias with anything but itself.  Provides base object and offset as
9846// results.
9847static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
9848                           const GlobalValue *&GV, const void *&CV) {
9849  // Assume it is a primitive operation.
9850  Base = Ptr; Offset = 0; GV = 0; CV = 0;
9851
9852  // If it's an adding a simple constant then integrate the offset.
9853  if (Base.getOpcode() == ISD::ADD) {
9854    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
9855      Base = Base.getOperand(0);
9856      Offset += C->getZExtValue();
9857    }
9858  }
9859
9860  // Return the underlying GlobalValue, and update the Offset.  Return false
9861  // for GlobalAddressSDNode since the same GlobalAddress may be represented
9862  // by multiple nodes with different offsets.
9863  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
9864    GV = G->getGlobal();
9865    Offset += G->getOffset();
9866    return false;
9867  }
9868
9869  // Return the underlying Constant value, and update the Offset.  Return false
9870  // for ConstantSDNodes since the same constant pool entry may be represented
9871  // by multiple nodes with different offsets.
9872  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
9873    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
9874                                         : (const void *)C->getConstVal();
9875    Offset += C->getOffset();
9876    return false;
9877  }
9878  // If it's any of the following then it can't alias with anything but itself.
9879  return isa<FrameIndexSDNode>(Base);
9880}
9881
9882/// isAlias - Return true if there is any possibility that the two addresses
9883/// overlap.
9884bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1,
9885                          const Value *SrcValue1, int SrcValueOffset1,
9886                          unsigned SrcValueAlign1,
9887                          const MDNode *TBAAInfo1,
9888                          SDValue Ptr2, int64_t Size2,
9889                          const Value *SrcValue2, int SrcValueOffset2,
9890                          unsigned SrcValueAlign2,
9891                          const MDNode *TBAAInfo2) const {
9892  // If they are the same then they must be aliases.
9893  if (Ptr1 == Ptr2) return true;
9894
9895  // Gather base node and offset information.
9896  SDValue Base1, Base2;
9897  int64_t Offset1, Offset2;
9898  const GlobalValue *GV1, *GV2;
9899  const void *CV1, *CV2;
9900  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
9901  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
9902
9903  // If they have a same base address then check to see if they overlap.
9904  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
9905    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9906
9907  // It is possible for different frame indices to alias each other, mostly
9908  // when tail call optimization reuses return address slots for arguments.
9909  // To catch this case, look up the actual index of frame indices to compute
9910  // the real alias relationship.
9911  if (isFrameIndex1 && isFrameIndex2) {
9912    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9913    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
9914    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
9915    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
9916  }
9917
9918  // Otherwise, if we know what the bases are, and they aren't identical, then
9919  // we know they cannot alias.
9920  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
9921    return false;
9922
9923  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
9924  // compared to the size and offset of the access, we may be able to prove they
9925  // do not alias.  This check is conservative for now to catch cases created by
9926  // splitting vector types.
9927  if ((SrcValueAlign1 == SrcValueAlign2) &&
9928      (SrcValueOffset1 != SrcValueOffset2) &&
9929      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
9930    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
9931    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
9932
9933    // There is no overlap between these relatively aligned accesses of similar
9934    // size, return no alias.
9935    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
9936      return false;
9937  }
9938
9939  if (CombinerGlobalAA) {
9940    // Use alias analysis information.
9941    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
9942    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
9943    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
9944    AliasAnalysis::AliasResult AAResult =
9945      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
9946               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
9947    if (AAResult == AliasAnalysis::NoAlias)
9948      return false;
9949  }
9950
9951  // Otherwise we have to assume they alias.
9952  return true;
9953}
9954
9955bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
9956  SDValue Ptr0, Ptr1;
9957  int64_t Size0, Size1;
9958  const Value *SrcValue0, *SrcValue1;
9959  int SrcValueOffset0, SrcValueOffset1;
9960  unsigned SrcValueAlign0, SrcValueAlign1;
9961  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
9962  FindAliasInfo(Op0, Ptr0, Size0, SrcValue0, SrcValueOffset0,
9963                SrcValueAlign0, SrcTBAAInfo0);
9964  FindAliasInfo(Op1, Ptr1, Size1, SrcValue1, SrcValueOffset1,
9965                SrcValueAlign1, SrcTBAAInfo1);
9966  return isAlias(Ptr0, Size0, SrcValue0, SrcValueOffset0,
9967                 SrcValueAlign0, SrcTBAAInfo0,
9968                 Ptr1, Size1, SrcValue1, SrcValueOffset1,
9969                 SrcValueAlign1, SrcTBAAInfo1);
9970}
9971
9972/// FindAliasInfo - Extracts the relevant alias information from the memory
9973/// node.  Returns true if the operand was a load.
9974bool DAGCombiner::FindAliasInfo(SDNode *N,
9975                                SDValue &Ptr, int64_t &Size,
9976                                const Value *&SrcValue,
9977                                int &SrcValueOffset,
9978                                unsigned &SrcValueAlign,
9979                                const MDNode *&TBAAInfo) const {
9980  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
9981
9982  Ptr = LS->getBasePtr();
9983  Size = LS->getMemoryVT().getSizeInBits() >> 3;
9984  SrcValue = LS->getSrcValue();
9985  SrcValueOffset = LS->getSrcValueOffset();
9986  SrcValueAlign = LS->getOriginalAlignment();
9987  TBAAInfo = LS->getTBAAInfo();
9988  return isa<LoadSDNode>(LS);
9989}
9990
9991/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
9992/// looking for aliasing nodes and adding them to the Aliases vector.
9993void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
9994                                   SmallVector<SDValue, 8> &Aliases) {
9995  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
9996  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
9997
9998  // Get alias information for node.
9999  SDValue Ptr;
10000  int64_t Size;
10001  const Value *SrcValue;
10002  int SrcValueOffset;
10003  unsigned SrcValueAlign;
10004  const MDNode *SrcTBAAInfo;
10005  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset,
10006                              SrcValueAlign, SrcTBAAInfo);
10007
10008  // Starting off.
10009  Chains.push_back(OriginalChain);
10010  unsigned Depth = 0;
10011
10012  // Look at each chain and determine if it is an alias.  If so, add it to the
10013  // aliases list.  If not, then continue up the chain looking for the next
10014  // candidate.
10015  while (!Chains.empty()) {
10016    SDValue Chain = Chains.back();
10017    Chains.pop_back();
10018
10019    // For TokenFactor nodes, look at each operand and only continue up the
10020    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10021    // find more and revert to original chain since the xform is unlikely to be
10022    // profitable.
10023    //
10024    // FIXME: The depth check could be made to return the last non-aliasing
10025    // chain we found before we hit a tokenfactor rather than the original
10026    // chain.
10027    if (Depth > 6 || Aliases.size() == 2) {
10028      Aliases.clear();
10029      Aliases.push_back(OriginalChain);
10030      break;
10031    }
10032
10033    // Don't bother if we've been before.
10034    if (!Visited.insert(Chain.getNode()))
10035      continue;
10036
10037    switch (Chain.getOpcode()) {
10038    case ISD::EntryToken:
10039      // Entry token is ideal chain operand, but handled in FindBetterChain.
10040      break;
10041
10042    case ISD::LOAD:
10043    case ISD::STORE: {
10044      // Get alias information for Chain.
10045      SDValue OpPtr;
10046      int64_t OpSize;
10047      const Value *OpSrcValue;
10048      int OpSrcValueOffset;
10049      unsigned OpSrcValueAlign;
10050      const MDNode *OpSrcTBAAInfo;
10051      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
10052                                    OpSrcValue, OpSrcValueOffset,
10053                                    OpSrcValueAlign,
10054                                    OpSrcTBAAInfo);
10055
10056      // If chain is alias then stop here.
10057      if (!(IsLoad && IsOpLoad) &&
10058          isAlias(Ptr, Size, SrcValue, SrcValueOffset, SrcValueAlign,
10059                  SrcTBAAInfo,
10060                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset,
10061                  OpSrcValueAlign, OpSrcTBAAInfo)) {
10062        Aliases.push_back(Chain);
10063      } else {
10064        // Look further up the chain.
10065        Chains.push_back(Chain.getOperand(0));
10066        ++Depth;
10067      }
10068      break;
10069    }
10070
10071    case ISD::TokenFactor:
10072      // We have to check each of the operands of the token factor for "small"
10073      // token factors, so we queue them up.  Adding the operands to the queue
10074      // (stack) in reverse order maintains the original order and increases the
10075      // likelihood that getNode will find a matching token factor (CSE.)
10076      if (Chain.getNumOperands() > 16) {
10077        Aliases.push_back(Chain);
10078        break;
10079      }
10080      for (unsigned n = Chain.getNumOperands(); n;)
10081        Chains.push_back(Chain.getOperand(--n));
10082      ++Depth;
10083      break;
10084
10085    default:
10086      // For all other instructions we will just have to take what we can get.
10087      Aliases.push_back(Chain);
10088      break;
10089    }
10090  }
10091}
10092
10093/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
10094/// for a better chain (aliasing node.)
10095SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
10096  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
10097
10098  // Accumulate all the aliases to this node.
10099  GatherAllAliases(N, OldChain, Aliases);
10100
10101  // If no operands then chain to entry token.
10102  if (Aliases.size() == 0)
10103    return DAG.getEntryNode();
10104
10105  // If a single operand then chain to it.  We don't need to revisit it.
10106  if (Aliases.size() == 1)
10107    return Aliases[0];
10108
10109  // Construct a custom tailored token factor.
10110  return DAG.getNode(ISD::TokenFactor, N->getDebugLoc(), MVT::Other,
10111                     &Aliases[0], Aliases.size());
10112}
10113
10114// SelectionDAG::Combine - This is the entry point for the file.
10115//
10116void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
10117                           CodeGenOpt::Level OptLevel) {
10118  /// run - This is the main entry point to this class.
10119  ///
10120  DAGCombiner(*this, AA, OptLevel).Run(Level);
10121}
10122