DAGCombiner.cpp revision d047c3e716d3b54f67222de86173979575bddc0c
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/CodeGen/MachineFunction.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetOptions.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/CommandLine.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34STATISTIC(NodesCombined   , "Number of dag nodes combined");
35STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
36STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
37
38namespace {
39#ifndef NDEBUG
40  static cl::opt<bool>
41    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
42                    cl::desc("Pop up a window to show dags before the first "
43                             "dag combine pass"));
44  static cl::opt<bool>
45    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
46                    cl::desc("Pop up a window to show dags before the second "
47                             "dag combine pass"));
48#else
49  static const bool ViewDAGCombine1 = false;
50  static const bool ViewDAGCombine2 = false;
51#endif
52
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Turn on alias analysis during testing"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Include global information in alias analysis"));
60
61//------------------------------ DAGCombiner ---------------------------------//
62
63  class VISIBILITY_HIDDEN DAGCombiner {
64    SelectionDAG &DAG;
65    TargetLowering &TLI;
66    bool AfterLegalize;
67
68    // Worklist of all of the nodes that need to be simplified.
69    std::vector<SDNode*> WorkList;
70
71    // AA - Used for DAG load/store alias analysis.
72    AliasAnalysis &AA;
73
74    /// AddUsersToWorkList - When an instruction is simplified, add all users of
75    /// the instruction to the work lists because they might get more simplified
76    /// now.
77    ///
78    void AddUsersToWorkList(SDNode *N) {
79      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
80           UI != UE; ++UI)
81        AddToWorkList(*UI);
82    }
83
84    /// visit - call the node-specific routine that knows how to fold each
85    /// particular type of node.
86    SDOperand visit(SDNode *N);
87
88  public:
89    /// AddToWorkList - Add to the work list making sure it's instance is at the
90    /// the back (next to be processed.)
91    void AddToWorkList(SDNode *N) {
92      removeFromWorkList(N);
93      WorkList.push_back(N);
94    }
95
96    /// removeFromWorkList - remove all instances of N from the worklist.
97    ///
98    void removeFromWorkList(SDNode *N) {
99      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
100                     WorkList.end());
101    }
102
103    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
104                        bool AddTo = true);
105
106    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
107      return CombineTo(N, &Res, 1, AddTo);
108    }
109
110    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
111                        bool AddTo = true) {
112      SDOperand To[] = { Res0, Res1 };
113      return CombineTo(N, To, 2, AddTo);
114    }
115
116  private:
117
118    /// SimplifyDemandedBits - Check the specified integer node value to see if
119    /// it can be simplified or if things it uses can be simplified by bit
120    /// propagation.  If so, return true.
121    bool SimplifyDemandedBits(SDOperand Op) {
122      APInt Demanded = APInt::getAllOnesValue(Op.getValueSizeInBits());
123      return SimplifyDemandedBits(Op, Demanded);
124    }
125
126    bool SimplifyDemandedBits(SDOperand Op, const APInt &Demanded);
127
128    bool CombineToPreIndexedLoadStore(SDNode *N);
129    bool CombineToPostIndexedLoadStore(SDNode *N);
130
131
132    /// combine - call the node-specific routine that knows how to fold each
133    /// particular type of node. If that doesn't do anything, try the
134    /// target-specific DAG combines.
135    SDOperand combine(SDNode *N);
136
137    // Visitation implementation - Implement dag node combining for different
138    // node types.  The semantics are as follows:
139    // Return Value:
140    //   SDOperand.Val == 0   - No change was made
141    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
142    //   otherwise            - N should be replaced by the returned Operand.
143    //
144    SDOperand visitTokenFactor(SDNode *N);
145    SDOperand visitMERGE_VALUES(SDNode *N);
146    SDOperand visitADD(SDNode *N);
147    SDOperand visitSUB(SDNode *N);
148    SDOperand visitADDC(SDNode *N);
149    SDOperand visitADDE(SDNode *N);
150    SDOperand visitMUL(SDNode *N);
151    SDOperand visitSDIV(SDNode *N);
152    SDOperand visitUDIV(SDNode *N);
153    SDOperand visitSREM(SDNode *N);
154    SDOperand visitUREM(SDNode *N);
155    SDOperand visitMULHU(SDNode *N);
156    SDOperand visitMULHS(SDNode *N);
157    SDOperand visitSMUL_LOHI(SDNode *N);
158    SDOperand visitUMUL_LOHI(SDNode *N);
159    SDOperand visitSDIVREM(SDNode *N);
160    SDOperand visitUDIVREM(SDNode *N);
161    SDOperand visitAND(SDNode *N);
162    SDOperand visitOR(SDNode *N);
163    SDOperand visitXOR(SDNode *N);
164    SDOperand SimplifyVBinOp(SDNode *N);
165    SDOperand visitSHL(SDNode *N);
166    SDOperand visitSRA(SDNode *N);
167    SDOperand visitSRL(SDNode *N);
168    SDOperand visitCTLZ(SDNode *N);
169    SDOperand visitCTTZ(SDNode *N);
170    SDOperand visitCTPOP(SDNode *N);
171    SDOperand visitSELECT(SDNode *N);
172    SDOperand visitSELECT_CC(SDNode *N);
173    SDOperand visitSETCC(SDNode *N);
174    SDOperand visitSIGN_EXTEND(SDNode *N);
175    SDOperand visitZERO_EXTEND(SDNode *N);
176    SDOperand visitANY_EXTEND(SDNode *N);
177    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
178    SDOperand visitTRUNCATE(SDNode *N);
179    SDOperand visitBIT_CONVERT(SDNode *N);
180    SDOperand visitFADD(SDNode *N);
181    SDOperand visitFSUB(SDNode *N);
182    SDOperand visitFMUL(SDNode *N);
183    SDOperand visitFDIV(SDNode *N);
184    SDOperand visitFREM(SDNode *N);
185    SDOperand visitFCOPYSIGN(SDNode *N);
186    SDOperand visitSINT_TO_FP(SDNode *N);
187    SDOperand visitUINT_TO_FP(SDNode *N);
188    SDOperand visitFP_TO_SINT(SDNode *N);
189    SDOperand visitFP_TO_UINT(SDNode *N);
190    SDOperand visitFP_ROUND(SDNode *N);
191    SDOperand visitFP_ROUND_INREG(SDNode *N);
192    SDOperand visitFP_EXTEND(SDNode *N);
193    SDOperand visitFNEG(SDNode *N);
194    SDOperand visitFABS(SDNode *N);
195    SDOperand visitBRCOND(SDNode *N);
196    SDOperand visitBR_CC(SDNode *N);
197    SDOperand visitLOAD(SDNode *N);
198    SDOperand visitSTORE(SDNode *N);
199    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
200    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
201    SDOperand visitBUILD_VECTOR(SDNode *N);
202    SDOperand visitCONCAT_VECTORS(SDNode *N);
203    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
204
205    SDOperand XformToShuffleWithZero(SDNode *N);
206    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
207
208    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
209
210    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
211    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
212    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
213    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
214                               SDOperand N3, ISD::CondCode CC,
215                               bool NotExtCompare = false);
216    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
217                            ISD::CondCode Cond, bool foldBooleans = true);
218    SDOperand SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
219                                         unsigned HiOp);
220    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
221    SDOperand BuildSDIV(SDNode *N);
222    SDOperand BuildUDIV(SDNode *N);
223    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
224    SDOperand ReduceLoadWidth(SDNode *N);
225
226    SDOperand GetDemandedBits(SDOperand V, const APInt &Mask);
227
228    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
229    /// looking for aliasing nodes and adding them to the Aliases vector.
230    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
231                          SmallVector<SDOperand, 8> &Aliases);
232
233    /// isAlias - Return true if there is any possibility that the two addresses
234    /// overlap.
235    bool isAlias(SDOperand Ptr1, int64_t Size1,
236                 const Value *SrcValue1, int SrcValueOffset1,
237                 SDOperand Ptr2, int64_t Size2,
238                 const Value *SrcValue2, int SrcValueOffset2);
239
240    /// FindAliasInfo - Extracts the relevant alias information from the memory
241    /// node.  Returns true if the operand was a load.
242    bool FindAliasInfo(SDNode *N,
243                       SDOperand &Ptr, int64_t &Size,
244                       const Value *&SrcValue, int &SrcValueOffset);
245
246    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
247    /// looking for a better chain (aliasing node.)
248    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
249
250public:
251    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
252      : DAG(D),
253        TLI(D.getTargetLoweringInfo()),
254        AfterLegalize(false),
255        AA(A) {}
256
257    /// Run - runs the dag combiner on all nodes in the work list
258    void Run(bool RunningAfterLegalize);
259  };
260}
261
262
263namespace {
264/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
265/// nodes from the worklist.
266class VISIBILITY_HIDDEN WorkListRemover :
267  public SelectionDAG::DAGUpdateListener {
268  DAGCombiner &DC;
269public:
270  explicit WorkListRemover(DAGCombiner &dc) : DC(dc) {}
271
272  virtual void NodeDeleted(SDNode *N) {
273    DC.removeFromWorkList(N);
274  }
275
276  virtual void NodeUpdated(SDNode *N) {
277    // Ignore updates.
278  }
279};
280}
281
282//===----------------------------------------------------------------------===//
283//  TargetLowering::DAGCombinerInfo implementation
284//===----------------------------------------------------------------------===//
285
286void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
287  ((DAGCombiner*)DC)->AddToWorkList(N);
288}
289
290SDOperand TargetLowering::DAGCombinerInfo::
291CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
292  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
293}
294
295SDOperand TargetLowering::DAGCombinerInfo::
296CombineTo(SDNode *N, SDOperand Res) {
297  return ((DAGCombiner*)DC)->CombineTo(N, Res);
298}
299
300
301SDOperand TargetLowering::DAGCombinerInfo::
302CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
303  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
304}
305
306
307//===----------------------------------------------------------------------===//
308// Helper Functions
309//===----------------------------------------------------------------------===//
310
311/// isNegatibleForFree - Return 1 if we can compute the negated form of the
312/// specified expression for the same cost as the expression itself, or 2 if we
313/// can compute the negated form more cheaply than the expression itself.
314static char isNegatibleForFree(SDOperand Op, bool AfterLegalize,
315                               unsigned Depth = 0) {
316  // No compile time optimizations on this type.
317  if (Op.getValueType() == MVT::ppcf128)
318    return 0;
319
320  // fneg is removable even if it has multiple uses.
321  if (Op.getOpcode() == ISD::FNEG) return 2;
322
323  // Don't allow anything with multiple uses.
324  if (!Op.hasOneUse()) return 0;
325
326  // Don't recurse exponentially.
327  if (Depth > 6) return 0;
328
329  switch (Op.getOpcode()) {
330  default: return false;
331  case ISD::ConstantFP:
332    // Don't invert constant FP values after legalize.  The negated constant
333    // isn't necessarily legal.
334    return AfterLegalize ? 0 : 1;
335  case ISD::FADD:
336    // FIXME: determine better conditions for this xform.
337    if (!UnsafeFPMath) return 0;
338
339    // -(A+B) -> -A - B
340    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
341      return V;
342    // -(A+B) -> -B - A
343    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
344  case ISD::FSUB:
345    // We can't turn -(A-B) into B-A when we honor signed zeros.
346    if (!UnsafeFPMath) return 0;
347
348    // -(A-B) -> B-A
349    return 1;
350
351  case ISD::FMUL:
352  case ISD::FDIV:
353    if (HonorSignDependentRoundingFPMath()) return 0;
354
355    // -(X*Y) -> (-X * Y) or (X*-Y)
356    if (char V = isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
357      return V;
358
359    return isNegatibleForFree(Op.getOperand(1), AfterLegalize, Depth+1);
360
361  case ISD::FP_EXTEND:
362  case ISD::FP_ROUND:
363  case ISD::FSIN:
364    return isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1);
365  }
366}
367
368/// GetNegatedExpression - If isNegatibleForFree returns true, this function
369/// returns the newly negated expression.
370static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
371                                      bool AfterLegalize, unsigned Depth = 0) {
372  // fneg is removable even if it has multiple uses.
373  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
374
375  // Don't allow anything with multiple uses.
376  assert(Op.hasOneUse() && "Unknown reuse!");
377
378  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
379  switch (Op.getOpcode()) {
380  default: assert(0 && "Unknown code");
381  case ISD::ConstantFP: {
382    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
383    V.changeSign();
384    return DAG.getConstantFP(V, Op.getValueType());
385  }
386  case ISD::FADD:
387    // FIXME: determine better conditions for this xform.
388    assert(UnsafeFPMath);
389
390    // -(A+B) -> -A - B
391    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
392      return DAG.getNode(ISD::FSUB, Op.getValueType(),
393                         GetNegatedExpression(Op.getOperand(0), DAG,
394                                              AfterLegalize, Depth+1),
395                         Op.getOperand(1));
396    // -(A+B) -> -B - A
397    return DAG.getNode(ISD::FSUB, Op.getValueType(),
398                       GetNegatedExpression(Op.getOperand(1), DAG,
399                                            AfterLegalize, Depth+1),
400                       Op.getOperand(0));
401  case ISD::FSUB:
402    // We can't turn -(A-B) into B-A when we honor signed zeros.
403    assert(UnsafeFPMath);
404
405    // -(0-B) -> B
406    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
407      if (N0CFP->getValueAPF().isZero())
408        return Op.getOperand(1);
409
410    // -(A-B) -> B-A
411    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
412                       Op.getOperand(0));
413
414  case ISD::FMUL:
415  case ISD::FDIV:
416    assert(!HonorSignDependentRoundingFPMath());
417
418    // -(X*Y) -> -X * Y
419    if (isNegatibleForFree(Op.getOperand(0), AfterLegalize, Depth+1))
420      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
421                         GetNegatedExpression(Op.getOperand(0), DAG,
422                                              AfterLegalize, Depth+1),
423                         Op.getOperand(1));
424
425    // -(X*Y) -> X * -Y
426    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
427                       Op.getOperand(0),
428                       GetNegatedExpression(Op.getOperand(1), DAG,
429                                            AfterLegalize, Depth+1));
430
431  case ISD::FP_EXTEND:
432  case ISD::FSIN:
433    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
434                       GetNegatedExpression(Op.getOperand(0), DAG,
435                                            AfterLegalize, Depth+1));
436  case ISD::FP_ROUND:
437      return DAG.getNode(ISD::FP_ROUND, Op.getValueType(),
438                         GetNegatedExpression(Op.getOperand(0), DAG,
439                                              AfterLegalize, Depth+1),
440                         Op.getOperand(1));
441  }
442}
443
444
445// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
446// that selects between the values 1 and 0, making it equivalent to a setcc.
447// Also, set the incoming LHS, RHS, and CC references to the appropriate
448// nodes based on the type of node we are checking.  This simplifies life a
449// bit for the callers.
450static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
451                              SDOperand &CC) {
452  if (N.getOpcode() == ISD::SETCC) {
453    LHS = N.getOperand(0);
454    RHS = N.getOperand(1);
455    CC  = N.getOperand(2);
456    return true;
457  }
458  if (N.getOpcode() == ISD::SELECT_CC &&
459      N.getOperand(2).getOpcode() == ISD::Constant &&
460      N.getOperand(3).getOpcode() == ISD::Constant &&
461      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
462      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
463    LHS = N.getOperand(0);
464    RHS = N.getOperand(1);
465    CC  = N.getOperand(4);
466    return true;
467  }
468  return false;
469}
470
471// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
472// one use.  If this is true, it allows the users to invert the operation for
473// free when it is profitable to do so.
474static bool isOneUseSetCC(SDOperand N) {
475  SDOperand N0, N1, N2;
476  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
477    return true;
478  return false;
479}
480
481SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
482  MVT::ValueType VT = N0.getValueType();
483  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
484  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
485  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
486    if (isa<ConstantSDNode>(N1)) {
487      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
488      AddToWorkList(OpNode.Val);
489      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
490    } else if (N0.hasOneUse()) {
491      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
492      AddToWorkList(OpNode.Val);
493      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
494    }
495  }
496  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
497  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
498  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
499    if (isa<ConstantSDNode>(N0)) {
500      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
501      AddToWorkList(OpNode.Val);
502      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
503    } else if (N1.hasOneUse()) {
504      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
505      AddToWorkList(OpNode.Val);
506      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
507    }
508  }
509  return SDOperand();
510}
511
512SDOperand DAGCombiner::CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
513                                 bool AddTo) {
514  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
515  ++NodesCombined;
516  DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
517  DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
518  DOUT << " and " << NumTo-1 << " other values\n";
519  WorkListRemover DeadNodes(*this);
520  DAG.ReplaceAllUsesWith(N, To, &DeadNodes);
521
522  if (AddTo) {
523    // Push the new nodes and any users onto the worklist
524    for (unsigned i = 0, e = NumTo; i != e; ++i) {
525      AddToWorkList(To[i].Val);
526      AddUsersToWorkList(To[i].Val);
527    }
528  }
529
530  // Nodes can be reintroduced into the worklist.  Make sure we do not
531  // process a node that has been replaced.
532  removeFromWorkList(N);
533
534  // Finally, since the node is now dead, remove it from the graph.
535  DAG.DeleteNode(N);
536  return SDOperand(N, 0);
537}
538
539/// SimplifyDemandedBits - Check the specified integer node value to see if
540/// it can be simplified or if things it uses can be simplified by bit
541/// propagation.  If so, return true.
542bool DAGCombiner::SimplifyDemandedBits(SDOperand Op, const APInt &Demanded) {
543  TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
544  APInt KnownZero, KnownOne;
545  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
546    return false;
547
548  // Revisit the node.
549  AddToWorkList(Op.Val);
550
551  // Replace the old value with the new one.
552  ++NodesCombined;
553  DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
554  DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
555  DOUT << '\n';
556
557  // Replace all uses.  If any nodes become isomorphic to other nodes and
558  // are deleted, make sure to remove them from our worklist.
559  WorkListRemover DeadNodes(*this);
560  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
561
562  // Push the new node and any (possibly new) users onto the worklist.
563  AddToWorkList(TLO.New.Val);
564  AddUsersToWorkList(TLO.New.Val);
565
566  // Finally, if the node is now dead, remove it from the graph.  The node
567  // may not be dead if the replacement process recursively simplified to
568  // something else needing this node.
569  if (TLO.Old.Val->use_empty()) {
570    removeFromWorkList(TLO.Old.Val);
571
572    // If the operands of this node are only used by the node, they will now
573    // be dead.  Make sure to visit them first to delete dead nodes early.
574    for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
575      if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
576        AddToWorkList(TLO.Old.Val->getOperand(i).Val);
577
578    DAG.DeleteNode(TLO.Old.Val);
579  }
580  return true;
581}
582
583//===----------------------------------------------------------------------===//
584//  Main DAG Combiner implementation
585//===----------------------------------------------------------------------===//
586
587void DAGCombiner::Run(bool RunningAfterLegalize) {
588  // set the instance variable, so that the various visit routines may use it.
589  AfterLegalize = RunningAfterLegalize;
590
591  // Add all the dag nodes to the worklist.
592  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
593       E = DAG.allnodes_end(); I != E; ++I)
594    WorkList.push_back(I);
595
596  // Create a dummy node (which is not added to allnodes), that adds a reference
597  // to the root node, preventing it from being deleted, and tracking any
598  // changes of the root.
599  HandleSDNode Dummy(DAG.getRoot());
600
601  // The root of the dag may dangle to deleted nodes until the dag combiner is
602  // done.  Set it to null to avoid confusion.
603  DAG.setRoot(SDOperand());
604
605  // while the worklist isn't empty, inspect the node on the end of it and
606  // try and combine it.
607  while (!WorkList.empty()) {
608    SDNode *N = WorkList.back();
609    WorkList.pop_back();
610
611    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
612    // N is deleted from the DAG, since they too may now be dead or may have a
613    // reduced number of uses, allowing other xforms.
614    if (N->use_empty() && N != &Dummy) {
615      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
616        AddToWorkList(N->getOperand(i).Val);
617
618      DAG.DeleteNode(N);
619      continue;
620    }
621
622    SDOperand RV = combine(N);
623
624    if (RV.Val == 0)
625      continue;
626
627    ++NodesCombined;
628
629    // If we get back the same node we passed in, rather than a new node or
630    // zero, we know that the node must have defined multiple values and
631    // CombineTo was used.  Since CombineTo takes care of the worklist
632    // mechanics for us, we have no work to do in this case.
633    if (RV.Val == N)
634      continue;
635
636    assert(N->getOpcode() != ISD::DELETED_NODE &&
637           RV.Val->getOpcode() != ISD::DELETED_NODE &&
638           "Node was deleted but visit returned new node!");
639
640    DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
641    DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
642    DOUT << '\n';
643    WorkListRemover DeadNodes(*this);
644    if (N->getNumValues() == RV.Val->getNumValues())
645      DAG.ReplaceAllUsesWith(N, RV.Val, &DeadNodes);
646    else {
647      assert(N->getValueType(0) == RV.getValueType() &&
648             N->getNumValues() == 1 && "Type mismatch");
649      SDOperand OpV = RV;
650      DAG.ReplaceAllUsesWith(N, &OpV, &DeadNodes);
651    }
652
653    // Push the new node and any users onto the worklist
654    AddToWorkList(RV.Val);
655    AddUsersToWorkList(RV.Val);
656
657    // Add any uses of the old node to the worklist in case this node is the
658    // last one that uses them.  They may become dead after this node is
659    // deleted.
660    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
661      AddToWorkList(N->getOperand(i).Val);
662
663    // Nodes can be reintroduced into the worklist.  Make sure we do not
664    // process a node that has been replaced.
665    removeFromWorkList(N);
666
667    // Finally, since the node is now dead, remove it from the graph.
668    DAG.DeleteNode(N);
669  }
670
671  // If the root changed (e.g. it was a dead load, update the root).
672  DAG.setRoot(Dummy.getValue());
673}
674
675SDOperand DAGCombiner::visit(SDNode *N) {
676  switch(N->getOpcode()) {
677  default: break;
678  case ISD::TokenFactor:        return visitTokenFactor(N);
679  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
680  case ISD::ADD:                return visitADD(N);
681  case ISD::SUB:                return visitSUB(N);
682  case ISD::ADDC:               return visitADDC(N);
683  case ISD::ADDE:               return visitADDE(N);
684  case ISD::MUL:                return visitMUL(N);
685  case ISD::SDIV:               return visitSDIV(N);
686  case ISD::UDIV:               return visitUDIV(N);
687  case ISD::SREM:               return visitSREM(N);
688  case ISD::UREM:               return visitUREM(N);
689  case ISD::MULHU:              return visitMULHU(N);
690  case ISD::MULHS:              return visitMULHS(N);
691  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
692  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
693  case ISD::SDIVREM:            return visitSDIVREM(N);
694  case ISD::UDIVREM:            return visitUDIVREM(N);
695  case ISD::AND:                return visitAND(N);
696  case ISD::OR:                 return visitOR(N);
697  case ISD::XOR:                return visitXOR(N);
698  case ISD::SHL:                return visitSHL(N);
699  case ISD::SRA:                return visitSRA(N);
700  case ISD::SRL:                return visitSRL(N);
701  case ISD::CTLZ:               return visitCTLZ(N);
702  case ISD::CTTZ:               return visitCTTZ(N);
703  case ISD::CTPOP:              return visitCTPOP(N);
704  case ISD::SELECT:             return visitSELECT(N);
705  case ISD::SELECT_CC:          return visitSELECT_CC(N);
706  case ISD::SETCC:              return visitSETCC(N);
707  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
708  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
709  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
710  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
711  case ISD::TRUNCATE:           return visitTRUNCATE(N);
712  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
713  case ISD::FADD:               return visitFADD(N);
714  case ISD::FSUB:               return visitFSUB(N);
715  case ISD::FMUL:               return visitFMUL(N);
716  case ISD::FDIV:               return visitFDIV(N);
717  case ISD::FREM:               return visitFREM(N);
718  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
719  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
720  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
721  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
722  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
723  case ISD::FP_ROUND:           return visitFP_ROUND(N);
724  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
725  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
726  case ISD::FNEG:               return visitFNEG(N);
727  case ISD::FABS:               return visitFABS(N);
728  case ISD::BRCOND:             return visitBRCOND(N);
729  case ISD::BR_CC:              return visitBR_CC(N);
730  case ISD::LOAD:               return visitLOAD(N);
731  case ISD::STORE:              return visitSTORE(N);
732  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
733  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
734  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
735  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
736  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
737  }
738  return SDOperand();
739}
740
741SDOperand DAGCombiner::combine(SDNode *N) {
742
743  SDOperand RV = visit(N);
744
745  // If nothing happened, try a target-specific DAG combine.
746  if (RV.Val == 0) {
747    assert(N->getOpcode() != ISD::DELETED_NODE &&
748           "Node was deleted but visit returned NULL!");
749
750    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
751        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
752
753      // Expose the DAG combiner to the target combiner impls.
754      TargetLowering::DAGCombinerInfo
755        DagCombineInfo(DAG, !AfterLegalize, false, this);
756
757      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
758    }
759  }
760
761  return RV;
762}
763
764/// getInputChainForNode - Given a node, return its input chain if it has one,
765/// otherwise return a null sd operand.
766static SDOperand getInputChainForNode(SDNode *N) {
767  if (unsigned NumOps = N->getNumOperands()) {
768    if (N->getOperand(0).getValueType() == MVT::Other)
769      return N->getOperand(0);
770    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
771      return N->getOperand(NumOps-1);
772    for (unsigned i = 1; i < NumOps-1; ++i)
773      if (N->getOperand(i).getValueType() == MVT::Other)
774        return N->getOperand(i);
775  }
776  return SDOperand(0, 0);
777}
778
779SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
780  // If N has two operands, where one has an input chain equal to the other,
781  // the 'other' chain is redundant.
782  if (N->getNumOperands() == 2) {
783    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
784      return N->getOperand(0);
785    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
786      return N->getOperand(1);
787  }
788
789  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
790  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
791  SmallPtrSet<SDNode*, 16> SeenOps;
792  bool Changed = false;             // If we should replace this token factor.
793
794  // Start out with this token factor.
795  TFs.push_back(N);
796
797  // Iterate through token factors.  The TFs grows when new token factors are
798  // encountered.
799  for (unsigned i = 0; i < TFs.size(); ++i) {
800    SDNode *TF = TFs[i];
801
802    // Check each of the operands.
803    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
804      SDOperand Op = TF->getOperand(i);
805
806      switch (Op.getOpcode()) {
807      case ISD::EntryToken:
808        // Entry tokens don't need to be added to the list. They are
809        // rededundant.
810        Changed = true;
811        break;
812
813      case ISD::TokenFactor:
814        if ((CombinerAA || Op.hasOneUse()) &&
815            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
816          // Queue up for processing.
817          TFs.push_back(Op.Val);
818          // Clean up in case the token factor is removed.
819          AddToWorkList(Op.Val);
820          Changed = true;
821          break;
822        }
823        // Fall thru
824
825      default:
826        // Only add if it isn't already in the list.
827        if (SeenOps.insert(Op.Val))
828          Ops.push_back(Op);
829        else
830          Changed = true;
831        break;
832      }
833    }
834  }
835
836  SDOperand Result;
837
838  // If we've change things around then replace token factor.
839  if (Changed) {
840    if (Ops.empty()) {
841      // The entry token is the only possible outcome.
842      Result = DAG.getEntryNode();
843    } else {
844      // New and improved token factor.
845      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
846    }
847
848    // Don't add users to work list.
849    return CombineTo(N, Result, false);
850  }
851
852  return Result;
853}
854
855/// MERGE_VALUES can always be eliminated.
856SDOperand DAGCombiner::visitMERGE_VALUES(SDNode *N) {
857  WorkListRemover DeadNodes(*this);
858  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
859    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, i), N->getOperand(i),
860                                  &DeadNodes);
861  removeFromWorkList(N);
862  DAG.DeleteNode(N);
863  return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
864}
865
866
867static
868SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
869  MVT::ValueType VT = N0.getValueType();
870  SDOperand N00 = N0.getOperand(0);
871  SDOperand N01 = N0.getOperand(1);
872  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
873  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
874      isa<ConstantSDNode>(N00.getOperand(1))) {
875    N0 = DAG.getNode(ISD::ADD, VT,
876                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
877                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
878    return DAG.getNode(ISD::ADD, VT, N0, N1);
879  }
880  return SDOperand();
881}
882
883static
884SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
885                              SelectionDAG &DAG) {
886  MVT::ValueType VT = N->getValueType(0);
887  unsigned Opc = N->getOpcode();
888  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
889  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
890  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
891  ISD::CondCode CC = ISD::SETCC_INVALID;
892  if (isSlctCC)
893    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
894  else {
895    SDOperand CCOp = Slct.getOperand(0);
896    if (CCOp.getOpcode() == ISD::SETCC)
897      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
898  }
899
900  bool DoXform = false;
901  bool InvCC = false;
902  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
903          "Bad input!");
904  if (LHS.getOpcode() == ISD::Constant &&
905      cast<ConstantSDNode>(LHS)->isNullValue())
906    DoXform = true;
907  else if (CC != ISD::SETCC_INVALID &&
908           RHS.getOpcode() == ISD::Constant &&
909           cast<ConstantSDNode>(RHS)->isNullValue()) {
910    std::swap(LHS, RHS);
911    SDOperand Op0 = Slct.getOperand(0);
912    bool isInt = MVT::isInteger(isSlctCC ? Op0.getValueType()
913                                : Op0.getOperand(0).getValueType());
914    CC = ISD::getSetCCInverse(CC, isInt);
915    DoXform = true;
916    InvCC = true;
917  }
918
919  if (DoXform) {
920    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
921    if (isSlctCC)
922      return DAG.getSelectCC(OtherOp, Result,
923                             Slct.getOperand(0), Slct.getOperand(1), CC);
924    SDOperand CCOp = Slct.getOperand(0);
925    if (InvCC)
926      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
927                          CCOp.getOperand(1), CC);
928    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
929  }
930  return SDOperand();
931}
932
933SDOperand DAGCombiner::visitADD(SDNode *N) {
934  SDOperand N0 = N->getOperand(0);
935  SDOperand N1 = N->getOperand(1);
936  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
937  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
938  MVT::ValueType VT = N0.getValueType();
939
940  // fold vector ops
941  if (MVT::isVector(VT)) {
942    SDOperand FoldedVOp = SimplifyVBinOp(N);
943    if (FoldedVOp.Val) return FoldedVOp;
944  }
945
946  // fold (add x, undef) -> undef
947  if (N0.getOpcode() == ISD::UNDEF)
948    return N0;
949  if (N1.getOpcode() == ISD::UNDEF)
950    return N1;
951  // fold (add c1, c2) -> c1+c2
952  if (N0C && N1C)
953    return DAG.getConstant(N0C->getValue() + N1C->getValue(), VT);
954  // canonicalize constant to RHS
955  if (N0C && !N1C)
956    return DAG.getNode(ISD::ADD, VT, N1, N0);
957  // fold (add x, 0) -> x
958  if (N1C && N1C->isNullValue())
959    return N0;
960  // fold ((c1-A)+c2) -> (c1+c2)-A
961  if (N1C && N0.getOpcode() == ISD::SUB)
962    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
963      return DAG.getNode(ISD::SUB, VT,
964                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
965                         N0.getOperand(1));
966  // reassociate add
967  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
968  if (RADD.Val != 0)
969    return RADD;
970  // fold ((0-A) + B) -> B-A
971  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
972      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
973    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
974  // fold (A + (0-B)) -> A-B
975  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
976      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
977    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
978  // fold (A+(B-A)) -> B
979  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
980    return N1.getOperand(0);
981
982  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
983    return SDOperand(N, 0);
984
985  // fold (a+b) -> (a|b) iff a and b share no bits.
986  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
987    APInt LHSZero, LHSOne;
988    APInt RHSZero, RHSOne;
989    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
990    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
991    if (LHSZero.getBoolValue()) {
992      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
993
994      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
995      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
996      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
997          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
998        return DAG.getNode(ISD::OR, VT, N0, N1);
999    }
1000  }
1001
1002  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1003  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
1004    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
1005    if (Result.Val) return Result;
1006  }
1007  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
1008    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
1009    if (Result.Val) return Result;
1010  }
1011
1012  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1013  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
1014    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
1015    if (Result.Val) return Result;
1016  }
1017  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1018    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1019    if (Result.Val) return Result;
1020  }
1021
1022  return SDOperand();
1023}
1024
1025SDOperand DAGCombiner::visitADDC(SDNode *N) {
1026  SDOperand N0 = N->getOperand(0);
1027  SDOperand N1 = N->getOperand(1);
1028  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1029  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1030  MVT::ValueType VT = N0.getValueType();
1031
1032  // If the flag result is dead, turn this into an ADD.
1033  if (N->hasNUsesOfValue(0, 1))
1034    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
1035                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1036
1037  // canonicalize constant to RHS.
1038  if (N0C && !N1C) {
1039    SDOperand Ops[] = { N1, N0 };
1040    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1041  }
1042
1043  // fold (addc x, 0) -> x + no carry out
1044  if (N1C && N1C->isNullValue())
1045    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1046
1047  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1048  APInt LHSZero, LHSOne;
1049  APInt RHSZero, RHSOne;
1050  APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
1051  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
1052  if (LHSZero.getBoolValue()) {
1053    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
1054
1055    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1056    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1057    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
1058        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
1059      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
1060                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
1061  }
1062
1063  return SDOperand();
1064}
1065
1066SDOperand DAGCombiner::visitADDE(SDNode *N) {
1067  SDOperand N0 = N->getOperand(0);
1068  SDOperand N1 = N->getOperand(1);
1069  SDOperand CarryIn = N->getOperand(2);
1070  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1071  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1072  //MVT::ValueType VT = N0.getValueType();
1073
1074  // canonicalize constant to RHS
1075  if (N0C && !N1C) {
1076    SDOperand Ops[] = { N1, N0, CarryIn };
1077    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1078  }
1079
1080  // fold (adde x, y, false) -> (addc x, y)
1081  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1082    SDOperand Ops[] = { N1, N0 };
1083    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1084  }
1085
1086  return SDOperand();
1087}
1088
1089
1090
1091SDOperand DAGCombiner::visitSUB(SDNode *N) {
1092  SDOperand N0 = N->getOperand(0);
1093  SDOperand N1 = N->getOperand(1);
1094  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1096  MVT::ValueType VT = N0.getValueType();
1097
1098  // fold vector ops
1099  if (MVT::isVector(VT)) {
1100    SDOperand FoldedVOp = SimplifyVBinOp(N);
1101    if (FoldedVOp.Val) return FoldedVOp;
1102  }
1103
1104  // fold (sub x, x) -> 0
1105  if (N0 == N1)
1106    return DAG.getConstant(0, N->getValueType(0));
1107  // fold (sub c1, c2) -> c1-c2
1108  if (N0C && N1C)
1109    return DAG.getNode(ISD::SUB, VT, N0, N1);
1110  // fold (sub x, c) -> (add x, -c)
1111  if (N1C)
1112    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1113  // fold (A+B)-A -> B
1114  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1115    return N0.getOperand(1);
1116  // fold (A+B)-B -> A
1117  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1118    return N0.getOperand(0);
1119  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1120  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1121    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1122    if (Result.Val) return Result;
1123  }
1124  // If either operand of a sub is undef, the result is undef
1125  if (N0.getOpcode() == ISD::UNDEF)
1126    return N0;
1127  if (N1.getOpcode() == ISD::UNDEF)
1128    return N1;
1129
1130  return SDOperand();
1131}
1132
1133SDOperand DAGCombiner::visitMUL(SDNode *N) {
1134  SDOperand N0 = N->getOperand(0);
1135  SDOperand N1 = N->getOperand(1);
1136  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1137  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1138  MVT::ValueType VT = N0.getValueType();
1139
1140  // fold vector ops
1141  if (MVT::isVector(VT)) {
1142    SDOperand FoldedVOp = SimplifyVBinOp(N);
1143    if (FoldedVOp.Val) return FoldedVOp;
1144  }
1145
1146  // fold (mul x, undef) -> 0
1147  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1148    return DAG.getConstant(0, VT);
1149  // fold (mul c1, c2) -> c1*c2
1150  if (N0C && N1C)
1151    return DAG.getNode(ISD::MUL, VT, N0, N1);
1152  // canonicalize constant to RHS
1153  if (N0C && !N1C)
1154    return DAG.getNode(ISD::MUL, VT, N1, N0);
1155  // fold (mul x, 0) -> 0
1156  if (N1C && N1C->isNullValue())
1157    return N1;
1158  // fold (mul x, -1) -> 0-x
1159  if (N1C && N1C->isAllOnesValue())
1160    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1161  // fold (mul x, (1 << c)) -> x << c
1162  if (N1C && isPowerOf2_64(N1C->getValue()))
1163    return DAG.getNode(ISD::SHL, VT, N0,
1164                       DAG.getConstant(Log2_64(N1C->getValue()),
1165                                       TLI.getShiftAmountTy()));
1166  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1167  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1168    // FIXME: If the input is something that is easily negated (e.g. a
1169    // single-use add), we should put the negate there.
1170    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1171                       DAG.getNode(ISD::SHL, VT, N0,
1172                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1173                                            TLI.getShiftAmountTy())));
1174  }
1175
1176  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1177  if (N1C && N0.getOpcode() == ISD::SHL &&
1178      isa<ConstantSDNode>(N0.getOperand(1))) {
1179    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1180    AddToWorkList(C3.Val);
1181    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1182  }
1183
1184  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1185  // use.
1186  {
1187    SDOperand Sh(0,0), Y(0,0);
1188    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1189    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1190        N0.Val->hasOneUse()) {
1191      Sh = N0; Y = N1;
1192    } else if (N1.getOpcode() == ISD::SHL &&
1193               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1194      Sh = N1; Y = N0;
1195    }
1196    if (Sh.Val) {
1197      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1198      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1199    }
1200  }
1201  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1202  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1203      isa<ConstantSDNode>(N0.getOperand(1))) {
1204    return DAG.getNode(ISD::ADD, VT,
1205                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1206                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1207  }
1208
1209  // reassociate mul
1210  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1211  if (RMUL.Val != 0)
1212    return RMUL;
1213
1214  return SDOperand();
1215}
1216
1217SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1218  SDOperand N0 = N->getOperand(0);
1219  SDOperand N1 = N->getOperand(1);
1220  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1221  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1222  MVT::ValueType VT = N->getValueType(0);
1223
1224  // fold vector ops
1225  if (MVT::isVector(VT)) {
1226    SDOperand FoldedVOp = SimplifyVBinOp(N);
1227    if (FoldedVOp.Val) return FoldedVOp;
1228  }
1229
1230  // fold (sdiv c1, c2) -> c1/c2
1231  if (N0C && N1C && !N1C->isNullValue())
1232    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1233  // fold (sdiv X, 1) -> X
1234  if (N1C && N1C->getSignExtended() == 1LL)
1235    return N0;
1236  // fold (sdiv X, -1) -> 0-X
1237  if (N1C && N1C->isAllOnesValue())
1238    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1239  // If we know the sign bits of both operands are zero, strength reduce to a
1240  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1241  if (!MVT::isVector(VT)) {
1242    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1243      return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1244  }
1245  // fold (sdiv X, pow2) -> simple ops after legalize
1246  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1247      (isPowerOf2_64(N1C->getSignExtended()) ||
1248       isPowerOf2_64(-N1C->getSignExtended()))) {
1249    // If dividing by powers of two is cheap, then don't perform the following
1250    // fold.
1251    if (TLI.isPow2DivCheap())
1252      return SDOperand();
1253    int64_t pow2 = N1C->getSignExtended();
1254    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1255    unsigned lg2 = Log2_64(abs2);
1256    // Splat the sign bit into the register
1257    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1258                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1259                                                TLI.getShiftAmountTy()));
1260    AddToWorkList(SGN.Val);
1261    // Add (N0 < 0) ? abs2 - 1 : 0;
1262    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1263                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1264                                                TLI.getShiftAmountTy()));
1265    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1266    AddToWorkList(SRL.Val);
1267    AddToWorkList(ADD.Val);    // Divide by pow2
1268    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1269                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1270    // If we're dividing by a positive value, we're done.  Otherwise, we must
1271    // negate the result.
1272    if (pow2 > 0)
1273      return SRA;
1274    AddToWorkList(SRA.Val);
1275    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1276  }
1277  // if integer divide is expensive and we satisfy the requirements, emit an
1278  // alternate sequence.
1279  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1280      !TLI.isIntDivCheap()) {
1281    SDOperand Op = BuildSDIV(N);
1282    if (Op.Val) return Op;
1283  }
1284
1285  // undef / X -> 0
1286  if (N0.getOpcode() == ISD::UNDEF)
1287    return DAG.getConstant(0, VT);
1288  // X / undef -> undef
1289  if (N1.getOpcode() == ISD::UNDEF)
1290    return N1;
1291
1292  return SDOperand();
1293}
1294
1295SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1296  SDOperand N0 = N->getOperand(0);
1297  SDOperand N1 = N->getOperand(1);
1298  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1299  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1300  MVT::ValueType VT = N->getValueType(0);
1301
1302  // fold vector ops
1303  if (MVT::isVector(VT)) {
1304    SDOperand FoldedVOp = SimplifyVBinOp(N);
1305    if (FoldedVOp.Val) return FoldedVOp;
1306  }
1307
1308  // fold (udiv c1, c2) -> c1/c2
1309  if (N0C && N1C && !N1C->isNullValue())
1310    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1311  // fold (udiv x, (1 << c)) -> x >>u c
1312  if (N1C && isPowerOf2_64(N1C->getValue()))
1313    return DAG.getNode(ISD::SRL, VT, N0,
1314                       DAG.getConstant(Log2_64(N1C->getValue()),
1315                                       TLI.getShiftAmountTy()));
1316  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1317  if (N1.getOpcode() == ISD::SHL) {
1318    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1319      if (isPowerOf2_64(SHC->getValue())) {
1320        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1321        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1322                                    DAG.getConstant(Log2_64(SHC->getValue()),
1323                                                    ADDVT));
1324        AddToWorkList(Add.Val);
1325        return DAG.getNode(ISD::SRL, VT, N0, Add);
1326      }
1327    }
1328  }
1329  // fold (udiv x, c) -> alternate
1330  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1331    SDOperand Op = BuildUDIV(N);
1332    if (Op.Val) return Op;
1333  }
1334
1335  // undef / X -> 0
1336  if (N0.getOpcode() == ISD::UNDEF)
1337    return DAG.getConstant(0, VT);
1338  // X / undef -> undef
1339  if (N1.getOpcode() == ISD::UNDEF)
1340    return N1;
1341
1342  return SDOperand();
1343}
1344
1345SDOperand DAGCombiner::visitSREM(SDNode *N) {
1346  SDOperand N0 = N->getOperand(0);
1347  SDOperand N1 = N->getOperand(1);
1348  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1349  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1350  MVT::ValueType VT = N->getValueType(0);
1351
1352  // fold (srem c1, c2) -> c1%c2
1353  if (N0C && N1C && !N1C->isNullValue())
1354    return DAG.getNode(ISD::SREM, VT, N0, N1);
1355  // If we know the sign bits of both operands are zero, strength reduce to a
1356  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1357  if (!MVT::isVector(VT)) {
1358    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1359      return DAG.getNode(ISD::UREM, VT, N0, N1);
1360  }
1361
1362  // If X/C can be simplified by the division-by-constant logic, lower
1363  // X%C to the equivalent of X-X/C*C.
1364  if (N1C && !N1C->isNullValue()) {
1365    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1366    AddToWorkList(Div.Val);
1367    SDOperand OptimizedDiv = combine(Div.Val);
1368    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1369      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1370      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1371      AddToWorkList(Mul.Val);
1372      return Sub;
1373    }
1374  }
1375
1376  // undef % X -> 0
1377  if (N0.getOpcode() == ISD::UNDEF)
1378    return DAG.getConstant(0, VT);
1379  // X % undef -> undef
1380  if (N1.getOpcode() == ISD::UNDEF)
1381    return N1;
1382
1383  return SDOperand();
1384}
1385
1386SDOperand DAGCombiner::visitUREM(SDNode *N) {
1387  SDOperand N0 = N->getOperand(0);
1388  SDOperand N1 = N->getOperand(1);
1389  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1390  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1391  MVT::ValueType VT = N->getValueType(0);
1392
1393  // fold (urem c1, c2) -> c1%c2
1394  if (N0C && N1C && !N1C->isNullValue())
1395    return DAG.getNode(ISD::UREM, VT, N0, N1);
1396  // fold (urem x, pow2) -> (and x, pow2-1)
1397  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1398    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1399  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1400  if (N1.getOpcode() == ISD::SHL) {
1401    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1402      if (isPowerOf2_64(SHC->getValue())) {
1403        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1404        AddToWorkList(Add.Val);
1405        return DAG.getNode(ISD::AND, VT, N0, Add);
1406      }
1407    }
1408  }
1409
1410  // If X/C can be simplified by the division-by-constant logic, lower
1411  // X%C to the equivalent of X-X/C*C.
1412  if (N1C && !N1C->isNullValue()) {
1413    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1414    SDOperand OptimizedDiv = combine(Div.Val);
1415    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1416      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1417      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1418      AddToWorkList(Mul.Val);
1419      return Sub;
1420    }
1421  }
1422
1423  // undef % X -> 0
1424  if (N0.getOpcode() == ISD::UNDEF)
1425    return DAG.getConstant(0, VT);
1426  // X % undef -> undef
1427  if (N1.getOpcode() == ISD::UNDEF)
1428    return N1;
1429
1430  return SDOperand();
1431}
1432
1433SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1434  SDOperand N0 = N->getOperand(0);
1435  SDOperand N1 = N->getOperand(1);
1436  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1437  MVT::ValueType VT = N->getValueType(0);
1438
1439  // fold (mulhs x, 0) -> 0
1440  if (N1C && N1C->isNullValue())
1441    return N1;
1442  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1443  if (N1C && N1C->getValue() == 1)
1444    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1445                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1446                                       TLI.getShiftAmountTy()));
1447  // fold (mulhs x, undef) -> 0
1448  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1449    return DAG.getConstant(0, VT);
1450
1451  return SDOperand();
1452}
1453
1454SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1455  SDOperand N0 = N->getOperand(0);
1456  SDOperand N1 = N->getOperand(1);
1457  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1458  MVT::ValueType VT = N->getValueType(0);
1459
1460  // fold (mulhu x, 0) -> 0
1461  if (N1C && N1C->isNullValue())
1462    return N1;
1463  // fold (mulhu x, 1) -> 0
1464  if (N1C && N1C->getValue() == 1)
1465    return DAG.getConstant(0, N0.getValueType());
1466  // fold (mulhu x, undef) -> 0
1467  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1468    return DAG.getConstant(0, VT);
1469
1470  return SDOperand();
1471}
1472
1473/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1474/// compute two values. LoOp and HiOp give the opcodes for the two computations
1475/// that are being performed. Return true if a simplification was made.
1476///
1477SDOperand DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
1478                                                  unsigned HiOp) {
1479  // If the high half is not needed, just compute the low half.
1480  bool HiExists = N->hasAnyUseOfValue(1);
1481  if (!HiExists &&
1482      (!AfterLegalize ||
1483       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1484    SDOperand Res = DAG.getNode(LoOp, N->getValueType(0), N->op_begin(),
1485                                N->getNumOperands());
1486    return CombineTo(N, Res, Res);
1487  }
1488
1489  // If the low half is not needed, just compute the high half.
1490  bool LoExists = N->hasAnyUseOfValue(0);
1491  if (!LoExists &&
1492      (!AfterLegalize ||
1493       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1494    SDOperand Res = DAG.getNode(HiOp, N->getValueType(1), N->op_begin(),
1495                                N->getNumOperands());
1496    return CombineTo(N, Res, Res);
1497  }
1498
1499  // If both halves are used, return as it is.
1500  if (LoExists && HiExists)
1501    return SDOperand();
1502
1503  // If the two computed results can be simplified separately, separate them.
1504  if (LoExists) {
1505    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1506                               N->op_begin(), N->getNumOperands());
1507    AddToWorkList(Lo.Val);
1508    SDOperand LoOpt = combine(Lo.Val);
1509    if (LoOpt.Val && LoOpt.Val != Lo.Val &&
1510        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType()))
1511      return CombineTo(N, LoOpt, LoOpt);
1512  }
1513
1514  if (HiExists) {
1515    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1516                               N->op_begin(), N->getNumOperands());
1517    AddToWorkList(Hi.Val);
1518    SDOperand HiOpt = combine(Hi.Val);
1519    if (HiOpt.Val && HiOpt != Hi &&
1520        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType()))
1521      return CombineTo(N, HiOpt, HiOpt);
1522  }
1523  return SDOperand();
1524}
1525
1526SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1527  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
1528  if (Res.Val) return Res;
1529
1530  return SDOperand();
1531}
1532
1533SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1534  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
1535  if (Res.Val) return Res;
1536
1537  return SDOperand();
1538}
1539
1540SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1541  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
1542  if (Res.Val) return Res;
1543
1544  return SDOperand();
1545}
1546
1547SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1548  SDOperand Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
1549  if (Res.Val) return Res;
1550
1551  return SDOperand();
1552}
1553
1554/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1555/// two operands of the same opcode, try to simplify it.
1556SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1557  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1558  MVT::ValueType VT = N0.getValueType();
1559  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1560
1561  // For each of OP in AND/OR/XOR:
1562  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1563  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1564  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1565  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1566  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1567       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1568      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1569    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1570                                   N0.getOperand(0).getValueType(),
1571                                   N0.getOperand(0), N1.getOperand(0));
1572    AddToWorkList(ORNode.Val);
1573    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1574  }
1575
1576  // For each of OP in SHL/SRL/SRA/AND...
1577  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1578  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1579  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1580  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1581       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1582      N0.getOperand(1) == N1.getOperand(1)) {
1583    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1584                                   N0.getOperand(0).getValueType(),
1585                                   N0.getOperand(0), N1.getOperand(0));
1586    AddToWorkList(ORNode.Val);
1587    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1588  }
1589
1590  return SDOperand();
1591}
1592
1593SDOperand DAGCombiner::visitAND(SDNode *N) {
1594  SDOperand N0 = N->getOperand(0);
1595  SDOperand N1 = N->getOperand(1);
1596  SDOperand LL, LR, RL, RR, CC0, CC1;
1597  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1598  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1599  MVT::ValueType VT = N1.getValueType();
1600  unsigned BitWidth = MVT::getSizeInBits(VT);
1601
1602  // fold vector ops
1603  if (MVT::isVector(VT)) {
1604    SDOperand FoldedVOp = SimplifyVBinOp(N);
1605    if (FoldedVOp.Val) return FoldedVOp;
1606  }
1607
1608  // fold (and x, undef) -> 0
1609  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1610    return DAG.getConstant(0, VT);
1611  // fold (and c1, c2) -> c1&c2
1612  if (N0C && N1C)
1613    return DAG.getNode(ISD::AND, VT, N0, N1);
1614  // canonicalize constant to RHS
1615  if (N0C && !N1C)
1616    return DAG.getNode(ISD::AND, VT, N1, N0);
1617  // fold (and x, -1) -> x
1618  if (N1C && N1C->isAllOnesValue())
1619    return N0;
1620  // if (and x, c) is known to be zero, return 0
1621  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
1622                                   APInt::getAllOnesValue(BitWidth)))
1623    return DAG.getConstant(0, VT);
1624  // reassociate and
1625  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1626  if (RAND.Val != 0)
1627    return RAND;
1628  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1629  if (N1C && N0.getOpcode() == ISD::OR)
1630    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1631      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1632        return N1;
1633  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1634  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1635    SDOperand N0Op0 = N0.getOperand(0);
1636    APInt Mask = ~N1C->getAPIntValue();
1637    Mask.trunc(N0Op0.getValueSizeInBits());
1638    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
1639      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1640                                   N0Op0);
1641
1642      // Replace uses of the AND with uses of the Zero extend node.
1643      CombineTo(N, Zext);
1644
1645      // We actually want to replace all uses of the any_extend with the
1646      // zero_extend, to avoid duplicating things.  This will later cause this
1647      // AND to be folded.
1648      CombineTo(N0.Val, Zext);
1649      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1650    }
1651  }
1652  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1653  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1654    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1655    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1656
1657    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1658        MVT::isInteger(LL.getValueType())) {
1659      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1660      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1661        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1662        AddToWorkList(ORNode.Val);
1663        return DAG.getSetCC(VT, ORNode, LR, Op1);
1664      }
1665      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1666      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1667        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1668        AddToWorkList(ANDNode.Val);
1669        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1670      }
1671      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1672      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1673        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1674        AddToWorkList(ORNode.Val);
1675        return DAG.getSetCC(VT, ORNode, LR, Op1);
1676      }
1677    }
1678    // canonicalize equivalent to ll == rl
1679    if (LL == RR && LR == RL) {
1680      Op1 = ISD::getSetCCSwappedOperands(Op1);
1681      std::swap(RL, RR);
1682    }
1683    if (LL == RL && LR == RR) {
1684      bool isInteger = MVT::isInteger(LL.getValueType());
1685      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1686      if (Result != ISD::SETCC_INVALID)
1687        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1688    }
1689  }
1690
1691  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1692  if (N0.getOpcode() == N1.getOpcode()) {
1693    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1694    if (Tmp.Val) return Tmp;
1695  }
1696
1697  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1698  // fold (and (sra)) -> (and (srl)) when possible.
1699  if (!MVT::isVector(VT) &&
1700      SimplifyDemandedBits(SDOperand(N, 0)))
1701    return SDOperand(N, 0);
1702  // fold (zext_inreg (extload x)) -> (zextload x)
1703  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1704    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1705    MVT::ValueType EVT = LN0->getMemoryVT();
1706    // If we zero all the possible extended bits, then we can turn this into
1707    // a zextload if we are running before legalize or the operation is legal.
1708    unsigned BitWidth = N1.getValueSizeInBits();
1709    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1710                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1711        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1712      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1713                                         LN0->getBasePtr(), LN0->getSrcValue(),
1714                                         LN0->getSrcValueOffset(), EVT,
1715                                         LN0->isVolatile(),
1716                                         LN0->getAlignment());
1717      AddToWorkList(N);
1718      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1719      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1720    }
1721  }
1722  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1723  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1724      N0.hasOneUse()) {
1725    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1726    MVT::ValueType EVT = LN0->getMemoryVT();
1727    // If we zero all the possible extended bits, then we can turn this into
1728    // a zextload if we are running before legalize or the operation is legal.
1729    unsigned BitWidth = N1.getValueSizeInBits();
1730    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
1731                                     BitWidth - MVT::getSizeInBits(EVT))) &&
1732        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1733      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1734                                         LN0->getBasePtr(), LN0->getSrcValue(),
1735                                         LN0->getSrcValueOffset(), EVT,
1736                                         LN0->isVolatile(),
1737                                         LN0->getAlignment());
1738      AddToWorkList(N);
1739      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1740      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1741    }
1742  }
1743
1744  // fold (and (load x), 255) -> (zextload x, i8)
1745  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1746  if (N1C && N0.getOpcode() == ISD::LOAD) {
1747    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1748    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1749        LN0->isUnindexed() && N0.hasOneUse()) {
1750      MVT::ValueType EVT, LoadedVT;
1751      if (N1C->getValue() == 255)
1752        EVT = MVT::i8;
1753      else if (N1C->getValue() == 65535)
1754        EVT = MVT::i16;
1755      else if (N1C->getValue() == ~0U)
1756        EVT = MVT::i32;
1757      else
1758        EVT = MVT::Other;
1759
1760      LoadedVT = LN0->getMemoryVT();
1761      if (EVT != MVT::Other && LoadedVT > EVT &&
1762          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1763        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1764        // For big endian targets, we need to add an offset to the pointer to
1765        // load the correct bytes.  For little endian systems, we merely need to
1766        // read fewer bytes from the same pointer.
1767        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1768        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1769        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1770        unsigned Alignment = LN0->getAlignment();
1771        SDOperand NewPtr = LN0->getBasePtr();
1772        if (TLI.isBigEndian()) {
1773          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1774                               DAG.getConstant(PtrOff, PtrType));
1775          Alignment = MinAlign(Alignment, PtrOff);
1776        }
1777        AddToWorkList(NewPtr.Val);
1778        SDOperand Load =
1779          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1780                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1781                         LN0->isVolatile(), Alignment);
1782        AddToWorkList(N);
1783        CombineTo(N0.Val, Load, Load.getValue(1));
1784        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1785      }
1786    }
1787  }
1788
1789  return SDOperand();
1790}
1791
1792SDOperand DAGCombiner::visitOR(SDNode *N) {
1793  SDOperand N0 = N->getOperand(0);
1794  SDOperand N1 = N->getOperand(1);
1795  SDOperand LL, LR, RL, RR, CC0, CC1;
1796  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1797  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1798  MVT::ValueType VT = N1.getValueType();
1799
1800  // fold vector ops
1801  if (MVT::isVector(VT)) {
1802    SDOperand FoldedVOp = SimplifyVBinOp(N);
1803    if (FoldedVOp.Val) return FoldedVOp;
1804  }
1805
1806  // fold (or x, undef) -> -1
1807  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1808    return DAG.getConstant(~0ULL, VT);
1809  // fold (or c1, c2) -> c1|c2
1810  if (N0C && N1C)
1811    return DAG.getNode(ISD::OR, VT, N0, N1);
1812  // canonicalize constant to RHS
1813  if (N0C && !N1C)
1814    return DAG.getNode(ISD::OR, VT, N1, N0);
1815  // fold (or x, 0) -> x
1816  if (N1C && N1C->isNullValue())
1817    return N0;
1818  // fold (or x, -1) -> -1
1819  if (N1C && N1C->isAllOnesValue())
1820    return N1;
1821  // fold (or x, c) -> c iff (x & ~c) == 0
1822  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
1823    return N1;
1824  // reassociate or
1825  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1826  if (ROR.Val != 0)
1827    return ROR;
1828  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1829  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1830             isa<ConstantSDNode>(N0.getOperand(1))) {
1831    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1832    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1833                                                 N1),
1834                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1835  }
1836  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1837  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1838    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1839    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1840
1841    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1842        MVT::isInteger(LL.getValueType())) {
1843      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1844      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1845      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1846          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1847        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1848        AddToWorkList(ORNode.Val);
1849        return DAG.getSetCC(VT, ORNode, LR, Op1);
1850      }
1851      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1852      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1853      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1854          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1855        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1856        AddToWorkList(ANDNode.Val);
1857        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1858      }
1859    }
1860    // canonicalize equivalent to ll == rl
1861    if (LL == RR && LR == RL) {
1862      Op1 = ISD::getSetCCSwappedOperands(Op1);
1863      std::swap(RL, RR);
1864    }
1865    if (LL == RL && LR == RR) {
1866      bool isInteger = MVT::isInteger(LL.getValueType());
1867      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1868      if (Result != ISD::SETCC_INVALID)
1869        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1870    }
1871  }
1872
1873  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1874  if (N0.getOpcode() == N1.getOpcode()) {
1875    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1876    if (Tmp.Val) return Tmp;
1877  }
1878
1879  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1880  if (N0.getOpcode() == ISD::AND &&
1881      N1.getOpcode() == ISD::AND &&
1882      N0.getOperand(1).getOpcode() == ISD::Constant &&
1883      N1.getOperand(1).getOpcode() == ISD::Constant &&
1884      // Don't increase # computations.
1885      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1886    // We can only do this xform if we know that bits from X that are set in C2
1887    // but not in C1 are already zero.  Likewise for Y.
1888    const APInt &LHSMask =
1889      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1890    const APInt &RHSMask =
1891      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
1892
1893    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1894        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1895      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1896      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1897    }
1898  }
1899
1900
1901  // See if this is some rotate idiom.
1902  if (SDNode *Rot = MatchRotate(N0, N1))
1903    return SDOperand(Rot, 0);
1904
1905  return SDOperand();
1906}
1907
1908
1909/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1910static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1911  if (Op.getOpcode() == ISD::AND) {
1912    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1913      Mask = Op.getOperand(1);
1914      Op = Op.getOperand(0);
1915    } else {
1916      return false;
1917    }
1918  }
1919
1920  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1921    Shift = Op;
1922    return true;
1923  }
1924  return false;
1925}
1926
1927
1928// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1929// idioms for rotate, and if the target supports rotation instructions, generate
1930// a rot[lr].
1931SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1932  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1933  MVT::ValueType VT = LHS.getValueType();
1934  if (!TLI.isTypeLegal(VT)) return 0;
1935
1936  // The target must have at least one rotate flavor.
1937  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1938  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1939  if (!HasROTL && !HasROTR) return 0;
1940
1941  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1942  SDOperand LHSShift;   // The shift.
1943  SDOperand LHSMask;    // AND value if any.
1944  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1945    return 0; // Not part of a rotate.
1946
1947  SDOperand RHSShift;   // The shift.
1948  SDOperand RHSMask;    // AND value if any.
1949  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1950    return 0; // Not part of a rotate.
1951
1952  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1953    return 0;   // Not shifting the same value.
1954
1955  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1956    return 0;   // Shifts must disagree.
1957
1958  // Canonicalize shl to left side in a shl/srl pair.
1959  if (RHSShift.getOpcode() == ISD::SHL) {
1960    std::swap(LHS, RHS);
1961    std::swap(LHSShift, RHSShift);
1962    std::swap(LHSMask , RHSMask );
1963  }
1964
1965  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1966  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1967  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1968  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1969
1970  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1971  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1972  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1973      RHSShiftAmt.getOpcode() == ISD::Constant) {
1974    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1975    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1976    if ((LShVal + RShVal) != OpSizeInBits)
1977      return 0;
1978
1979    SDOperand Rot;
1980    if (HasROTL)
1981      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1982    else
1983      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1984
1985    // If there is an AND of either shifted operand, apply it to the result.
1986    if (LHSMask.Val || RHSMask.Val) {
1987      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
1988
1989      if (LHSMask.Val) {
1990        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
1991        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
1992      }
1993      if (RHSMask.Val) {
1994        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
1995        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
1996      }
1997
1998      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1999    }
2000
2001    return Rot.Val;
2002  }
2003
2004  // If there is a mask here, and we have a variable shift, we can't be sure
2005  // that we're masking out the right stuff.
2006  if (LHSMask.Val || RHSMask.Val)
2007    return 0;
2008
2009  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
2010  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
2011  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
2012      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
2013    if (ConstantSDNode *SUBC =
2014          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
2015      if (SUBC->getValue() == OpSizeInBits) {
2016        if (HasROTL)
2017          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2018        else
2019          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2020      }
2021    }
2022  }
2023
2024  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
2025  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
2026  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
2027      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
2028    if (ConstantSDNode *SUBC =
2029          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
2030      if (SUBC->getValue() == OpSizeInBits) {
2031        if (HasROTL)
2032          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2033        else
2034          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2035      }
2036    }
2037  }
2038
2039  // Look for sign/zext/any-extended cases:
2040  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2041       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2042       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
2043      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
2044       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
2045       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
2046    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
2047    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
2048    if (RExtOp0.getOpcode() == ISD::SUB &&
2049        RExtOp0.getOperand(1) == LExtOp0) {
2050      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2051      //   (rotr x, y)
2052      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
2053      //   (rotl x, (sub 32, y))
2054      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
2055        if (SUBC->getValue() == OpSizeInBits) {
2056          if (HasROTL)
2057            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2058          else
2059            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
2060        }
2061      }
2062    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2063               RExtOp0 == LExtOp0.getOperand(1)) {
2064      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2065      //   (rotl x, y)
2066      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2067      //   (rotr x, (sub 32, y))
2068      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2069        if (SUBC->getValue() == OpSizeInBits) {
2070          if (HasROTL)
2071            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2072          else
2073            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2074        }
2075      }
2076    }
2077  }
2078
2079  return 0;
2080}
2081
2082
2083SDOperand DAGCombiner::visitXOR(SDNode *N) {
2084  SDOperand N0 = N->getOperand(0);
2085  SDOperand N1 = N->getOperand(1);
2086  SDOperand LHS, RHS, CC;
2087  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2088  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2089  MVT::ValueType VT = N0.getValueType();
2090
2091  // fold vector ops
2092  if (MVT::isVector(VT)) {
2093    SDOperand FoldedVOp = SimplifyVBinOp(N);
2094    if (FoldedVOp.Val) return FoldedVOp;
2095  }
2096
2097  // fold (xor x, undef) -> undef
2098  if (N0.getOpcode() == ISD::UNDEF)
2099    return N0;
2100  if (N1.getOpcode() == ISD::UNDEF)
2101    return N1;
2102  // fold (xor c1, c2) -> c1^c2
2103  if (N0C && N1C)
2104    return DAG.getNode(ISD::XOR, VT, N0, N1);
2105  // canonicalize constant to RHS
2106  if (N0C && !N1C)
2107    return DAG.getNode(ISD::XOR, VT, N1, N0);
2108  // fold (xor x, 0) -> x
2109  if (N1C && N1C->isNullValue())
2110    return N0;
2111  // reassociate xor
2112  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2113  if (RXOR.Val != 0)
2114    return RXOR;
2115  // fold !(x cc y) -> (x !cc y)
2116  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2117    bool isInt = MVT::isInteger(LHS.getValueType());
2118    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2119                                               isInt);
2120    if (N0.getOpcode() == ISD::SETCC)
2121      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2122    if (N0.getOpcode() == ISD::SELECT_CC)
2123      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2124    assert(0 && "Unhandled SetCC Equivalent!");
2125    abort();
2126  }
2127  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2128  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2129      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2130    SDOperand V = N0.getOperand(0);
2131    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2132                    DAG.getConstant(1, V.getValueType()));
2133    AddToWorkList(V.Val);
2134    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2135  }
2136
2137  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2138  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2139      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2140    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2141    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2142      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2143      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2144      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2145      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2146      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2147    }
2148  }
2149  // fold !(x or y) -> (!x and !y) iff x or y are constants
2150  if (N1C && N1C->isAllOnesValue() &&
2151      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2152    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2153    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2154      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2155      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2156      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2157      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2158      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2159    }
2160  }
2161  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2162  if (N1C && N0.getOpcode() == ISD::XOR) {
2163    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2164    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2165    if (N00C)
2166      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2167                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2168    if (N01C)
2169      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2170                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2171  }
2172  // fold (xor x, x) -> 0
2173  if (N0 == N1) {
2174    if (!MVT::isVector(VT)) {
2175      return DAG.getConstant(0, VT);
2176    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2177      // Produce a vector of zeros.
2178      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2179      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2180      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2181    }
2182  }
2183
2184  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2185  if (N0.getOpcode() == N1.getOpcode()) {
2186    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2187    if (Tmp.Val) return Tmp;
2188  }
2189
2190  // Simplify the expression using non-local knowledge.
2191  if (!MVT::isVector(VT) &&
2192      SimplifyDemandedBits(SDOperand(N, 0)))
2193    return SDOperand(N, 0);
2194
2195  return SDOperand();
2196}
2197
2198/// visitShiftByConstant - Handle transforms common to the three shifts, when
2199/// the shift amount is a constant.
2200SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2201  SDNode *LHS = N->getOperand(0).Val;
2202  if (!LHS->hasOneUse()) return SDOperand();
2203
2204  // We want to pull some binops through shifts, so that we have (and (shift))
2205  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2206  // thing happens with address calculations, so it's important to canonicalize
2207  // it.
2208  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2209
2210  switch (LHS->getOpcode()) {
2211  default: return SDOperand();
2212  case ISD::OR:
2213  case ISD::XOR:
2214    HighBitSet = false; // We can only transform sra if the high bit is clear.
2215    break;
2216  case ISD::AND:
2217    HighBitSet = true;  // We can only transform sra if the high bit is set.
2218    break;
2219  case ISD::ADD:
2220    if (N->getOpcode() != ISD::SHL)
2221      return SDOperand(); // only shl(add) not sr[al](add).
2222    HighBitSet = false; // We can only transform sra if the high bit is clear.
2223    break;
2224  }
2225
2226  // We require the RHS of the binop to be a constant as well.
2227  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2228  if (!BinOpCst) return SDOperand();
2229
2230
2231  // FIXME: disable this for unless the input to the binop is a shift by a
2232  // constant.  If it is not a shift, it pessimizes some common cases like:
2233  //
2234  //void foo(int *X, int i) { X[i & 1235] = 1; }
2235  //int bar(int *X, int i) { return X[i & 255]; }
2236  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2237  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2238       BinOpLHSVal->getOpcode() != ISD::SRA &&
2239       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2240      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2241    return SDOperand();
2242
2243  MVT::ValueType VT = N->getValueType(0);
2244
2245  // If this is a signed shift right, and the high bit is modified
2246  // by the logical operation, do not perform the transformation.
2247  // The highBitSet boolean indicates the value of the high bit of
2248  // the constant which would cause it to be modified for this
2249  // operation.
2250  if (N->getOpcode() == ISD::SRA) {
2251    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
2252    if (BinOpRHSSignSet != HighBitSet)
2253      return SDOperand();
2254  }
2255
2256  // Fold the constants, shifting the binop RHS by the shift amount.
2257  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2258                                 LHS->getOperand(1), N->getOperand(1));
2259
2260  // Create the new shift.
2261  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2262                                   N->getOperand(1));
2263
2264  // Create the new binop.
2265  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2266}
2267
2268
2269SDOperand DAGCombiner::visitSHL(SDNode *N) {
2270  SDOperand N0 = N->getOperand(0);
2271  SDOperand N1 = N->getOperand(1);
2272  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2273  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2274  MVT::ValueType VT = N0.getValueType();
2275  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2276
2277  // fold (shl c1, c2) -> c1<<c2
2278  if (N0C && N1C)
2279    return DAG.getNode(ISD::SHL, VT, N0, N1);
2280  // fold (shl 0, x) -> 0
2281  if (N0C && N0C->isNullValue())
2282    return N0;
2283  // fold (shl x, c >= size(x)) -> undef
2284  if (N1C && N1C->getValue() >= OpSizeInBits)
2285    return DAG.getNode(ISD::UNDEF, VT);
2286  // fold (shl x, 0) -> x
2287  if (N1C && N1C->isNullValue())
2288    return N0;
2289  // if (shl x, c) is known to be zero, return 0
2290  if (DAG.MaskedValueIsZero(SDOperand(N, 0),
2291                            APInt::getAllOnesValue(MVT::getSizeInBits(VT))))
2292    return DAG.getConstant(0, VT);
2293  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2294    return SDOperand(N, 0);
2295  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2296  if (N1C && N0.getOpcode() == ISD::SHL &&
2297      N0.getOperand(1).getOpcode() == ISD::Constant) {
2298    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2299    uint64_t c2 = N1C->getValue();
2300    if (c1 + c2 > OpSizeInBits)
2301      return DAG.getConstant(0, VT);
2302    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2303                       DAG.getConstant(c1 + c2, N1.getValueType()));
2304  }
2305  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2306  //                               (srl (and x, -1 << c1), c1-c2)
2307  if (N1C && N0.getOpcode() == ISD::SRL &&
2308      N0.getOperand(1).getOpcode() == ISD::Constant) {
2309    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2310    uint64_t c2 = N1C->getValue();
2311    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2312                                 DAG.getConstant(~0ULL << c1, VT));
2313    if (c2 > c1)
2314      return DAG.getNode(ISD::SHL, VT, Mask,
2315                         DAG.getConstant(c2-c1, N1.getValueType()));
2316    else
2317      return DAG.getNode(ISD::SRL, VT, Mask,
2318                         DAG.getConstant(c1-c2, N1.getValueType()));
2319  }
2320  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2321  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2322    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2323                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2324
2325  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2326}
2327
2328SDOperand DAGCombiner::visitSRA(SDNode *N) {
2329  SDOperand N0 = N->getOperand(0);
2330  SDOperand N1 = N->getOperand(1);
2331  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2332  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2333  MVT::ValueType VT = N0.getValueType();
2334
2335  // fold (sra c1, c2) -> c1>>c2
2336  if (N0C && N1C)
2337    return DAG.getNode(ISD::SRA, VT, N0, N1);
2338  // fold (sra 0, x) -> 0
2339  if (N0C && N0C->isNullValue())
2340    return N0;
2341  // fold (sra -1, x) -> -1
2342  if (N0C && N0C->isAllOnesValue())
2343    return N0;
2344  // fold (sra x, c >= size(x)) -> undef
2345  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2346    return DAG.getNode(ISD::UNDEF, VT);
2347  // fold (sra x, 0) -> x
2348  if (N1C && N1C->isNullValue())
2349    return N0;
2350  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2351  // sext_inreg.
2352  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2353    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2354    MVT::ValueType EVT;
2355    switch (LowBits) {
2356    default: EVT = MVT::Other; break;
2357    case  1: EVT = MVT::i1;    break;
2358    case  8: EVT = MVT::i8;    break;
2359    case 16: EVT = MVT::i16;   break;
2360    case 32: EVT = MVT::i32;   break;
2361    }
2362    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2363      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2364                         DAG.getValueType(EVT));
2365  }
2366
2367  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2368  if (N1C && N0.getOpcode() == ISD::SRA) {
2369    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2370      unsigned Sum = N1C->getValue() + C1->getValue();
2371      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2372      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2373                         DAG.getConstant(Sum, N1C->getValueType(0)));
2374    }
2375  }
2376
2377  // Simplify, based on bits shifted out of the LHS.
2378  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2379    return SDOperand(N, 0);
2380
2381
2382  // If the sign bit is known to be zero, switch this to a SRL.
2383  if (DAG.SignBitIsZero(N0))
2384    return DAG.getNode(ISD::SRL, VT, N0, N1);
2385
2386  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2387}
2388
2389SDOperand DAGCombiner::visitSRL(SDNode *N) {
2390  SDOperand N0 = N->getOperand(0);
2391  SDOperand N1 = N->getOperand(1);
2392  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2393  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2394  MVT::ValueType VT = N0.getValueType();
2395  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2396
2397  // fold (srl c1, c2) -> c1 >>u c2
2398  if (N0C && N1C)
2399    return DAG.getNode(ISD::SRL, VT, N0, N1);
2400  // fold (srl 0, x) -> 0
2401  if (N0C && N0C->isNullValue())
2402    return N0;
2403  // fold (srl x, c >= size(x)) -> undef
2404  if (N1C && N1C->getValue() >= OpSizeInBits)
2405    return DAG.getNode(ISD::UNDEF, VT);
2406  // fold (srl x, 0) -> x
2407  if (N1C && N1C->isNullValue())
2408    return N0;
2409  // if (srl x, c) is known to be zero, return 0
2410  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0),
2411                                   APInt::getAllOnesValue(OpSizeInBits)))
2412    return DAG.getConstant(0, VT);
2413
2414  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2415  if (N1C && N0.getOpcode() == ISD::SRL &&
2416      N0.getOperand(1).getOpcode() == ISD::Constant) {
2417    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2418    uint64_t c2 = N1C->getValue();
2419    if (c1 + c2 > OpSizeInBits)
2420      return DAG.getConstant(0, VT);
2421    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2422                       DAG.getConstant(c1 + c2, N1.getValueType()));
2423  }
2424
2425  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2426  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2427    // Shifting in all undef bits?
2428    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2429    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2430      return DAG.getNode(ISD::UNDEF, VT);
2431
2432    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2433    AddToWorkList(SmallShift.Val);
2434    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2435  }
2436
2437  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2438  // bit, which is unmodified by sra.
2439  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2440    if (N0.getOpcode() == ISD::SRA)
2441      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2442  }
2443
2444  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2445  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2446      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2447    APInt KnownZero, KnownOne;
2448    APInt Mask = APInt::getAllOnesValue(MVT::getSizeInBits(VT));
2449    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2450
2451    // If any of the input bits are KnownOne, then the input couldn't be all
2452    // zeros, thus the result of the srl will always be zero.
2453    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
2454
2455    // If all of the bits input the to ctlz node are known to be zero, then
2456    // the result of the ctlz is "32" and the result of the shift is one.
2457    APInt UnknownBits = ~KnownZero & Mask;
2458    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2459
2460    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2461    if ((UnknownBits & (UnknownBits-1)) == 0) {
2462      // Okay, we know that only that the single bit specified by UnknownBits
2463      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2464      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2465      // to an SRL,XOR pair, which is likely to simplify more.
2466      unsigned ShAmt = UnknownBits.countTrailingZeros();
2467      SDOperand Op = N0.getOperand(0);
2468      if (ShAmt) {
2469        Op = DAG.getNode(ISD::SRL, VT, Op,
2470                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2471        AddToWorkList(Op.Val);
2472      }
2473      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2474    }
2475  }
2476
2477  // fold operands of srl based on knowledge that the low bits are not
2478  // demanded.
2479  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2480    return SDOperand(N, 0);
2481
2482  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2483}
2484
2485SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2486  SDOperand N0 = N->getOperand(0);
2487  MVT::ValueType VT = N->getValueType(0);
2488
2489  // fold (ctlz c1) -> c2
2490  if (isa<ConstantSDNode>(N0))
2491    return DAG.getNode(ISD::CTLZ, VT, N0);
2492  return SDOperand();
2493}
2494
2495SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2496  SDOperand N0 = N->getOperand(0);
2497  MVT::ValueType VT = N->getValueType(0);
2498
2499  // fold (cttz c1) -> c2
2500  if (isa<ConstantSDNode>(N0))
2501    return DAG.getNode(ISD::CTTZ, VT, N0);
2502  return SDOperand();
2503}
2504
2505SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2506  SDOperand N0 = N->getOperand(0);
2507  MVT::ValueType VT = N->getValueType(0);
2508
2509  // fold (ctpop c1) -> c2
2510  if (isa<ConstantSDNode>(N0))
2511    return DAG.getNode(ISD::CTPOP, VT, N0);
2512  return SDOperand();
2513}
2514
2515SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2516  SDOperand N0 = N->getOperand(0);
2517  SDOperand N1 = N->getOperand(1);
2518  SDOperand N2 = N->getOperand(2);
2519  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2520  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2521  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2522  MVT::ValueType VT = N->getValueType(0);
2523  MVT::ValueType VT0 = N0.getValueType();
2524
2525  // fold select C, X, X -> X
2526  if (N1 == N2)
2527    return N1;
2528  // fold select true, X, Y -> X
2529  if (N0C && !N0C->isNullValue())
2530    return N1;
2531  // fold select false, X, Y -> Y
2532  if (N0C && N0C->isNullValue())
2533    return N2;
2534  // fold select C, 1, X -> C | X
2535  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2536    return DAG.getNode(ISD::OR, VT, N0, N2);
2537  // fold select C, 0, 1 -> ~C
2538  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2539      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2540    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2541    if (VT == VT0)
2542      return XORNode;
2543    AddToWorkList(XORNode.Val);
2544    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2545      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2546    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2547  }
2548  // fold select C, 0, X -> ~C & X
2549  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2550    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2551    AddToWorkList(XORNode.Val);
2552    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2553  }
2554  // fold select C, X, 1 -> ~C | X
2555  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2556    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2557    AddToWorkList(XORNode.Val);
2558    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2559  }
2560  // fold select C, X, 0 -> C & X
2561  // FIXME: this should check for C type == X type, not i1?
2562  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2563    return DAG.getNode(ISD::AND, VT, N0, N1);
2564  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2565  if (MVT::i1 == VT && N0 == N1)
2566    return DAG.getNode(ISD::OR, VT, N0, N2);
2567  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2568  if (MVT::i1 == VT && N0 == N2)
2569    return DAG.getNode(ISD::AND, VT, N0, N1);
2570
2571  // If we can fold this based on the true/false value, do so.
2572  if (SimplifySelectOps(N, N1, N2))
2573    return SDOperand(N, 0);  // Don't revisit N.
2574
2575  // fold selects based on a setcc into other things, such as min/max/abs
2576  if (N0.getOpcode() == ISD::SETCC) {
2577    // FIXME:
2578    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2579    // having to say they don't support SELECT_CC on every type the DAG knows
2580    // about, since there is no way to mark an opcode illegal at all value types
2581    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2582      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2583                         N1, N2, N0.getOperand(2));
2584    else
2585      return SimplifySelect(N0, N1, N2);
2586  }
2587  return SDOperand();
2588}
2589
2590SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2591  SDOperand N0 = N->getOperand(0);
2592  SDOperand N1 = N->getOperand(1);
2593  SDOperand N2 = N->getOperand(2);
2594  SDOperand N3 = N->getOperand(3);
2595  SDOperand N4 = N->getOperand(4);
2596  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2597
2598  // fold select_cc lhs, rhs, x, x, cc -> x
2599  if (N2 == N3)
2600    return N2;
2601
2602  // Determine if the condition we're dealing with is constant
2603  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2604  if (SCC.Val) AddToWorkList(SCC.Val);
2605
2606  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2607    if (SCCC->getValue())
2608      return N2;    // cond always true -> true val
2609    else
2610      return N3;    // cond always false -> false val
2611  }
2612
2613  // Fold to a simpler select_cc
2614  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2615    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2616                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2617                       SCC.getOperand(2));
2618
2619  // If we can fold this based on the true/false value, do so.
2620  if (SimplifySelectOps(N, N2, N3))
2621    return SDOperand(N, 0);  // Don't revisit N.
2622
2623  // fold select_cc into other things, such as min/max/abs
2624  return SimplifySelectCC(N0, N1, N2, N3, CC);
2625}
2626
2627SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2628  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2629                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2630}
2631
2632// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2633// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2634// transformation. Returns true if extension are possible and the above
2635// mentioned transformation is profitable.
2636static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2637                                    unsigned ExtOpc,
2638                                    SmallVector<SDNode*, 4> &ExtendNodes,
2639                                    TargetLowering &TLI) {
2640  bool HasCopyToRegUses = false;
2641  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2642  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2643       UI != UE; ++UI) {
2644    SDNode *User = *UI;
2645    if (User == N)
2646      continue;
2647    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2648    if (User->getOpcode() == ISD::SETCC) {
2649      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2650      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2651        // Sign bits will be lost after a zext.
2652        return false;
2653      bool Add = false;
2654      for (unsigned i = 0; i != 2; ++i) {
2655        SDOperand UseOp = User->getOperand(i);
2656        if (UseOp == N0)
2657          continue;
2658        if (!isa<ConstantSDNode>(UseOp))
2659          return false;
2660        Add = true;
2661      }
2662      if (Add)
2663        ExtendNodes.push_back(User);
2664    } else {
2665      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2666        SDOperand UseOp = User->getOperand(i);
2667        if (UseOp == N0) {
2668          // If truncate from extended type to original load type is free
2669          // on this target, then it's ok to extend a CopyToReg.
2670          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2671            HasCopyToRegUses = true;
2672          else
2673            return false;
2674        }
2675      }
2676    }
2677  }
2678
2679  if (HasCopyToRegUses) {
2680    bool BothLiveOut = false;
2681    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2682         UI != UE; ++UI) {
2683      SDNode *User = *UI;
2684      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2685        SDOperand UseOp = User->getOperand(i);
2686        if (UseOp.Val == N && UseOp.ResNo == 0) {
2687          BothLiveOut = true;
2688          break;
2689        }
2690      }
2691    }
2692    if (BothLiveOut)
2693      // Both unextended and extended values are live out. There had better be
2694      // good a reason for the transformation.
2695      return ExtendNodes.size();
2696  }
2697  return true;
2698}
2699
2700SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2701  SDOperand N0 = N->getOperand(0);
2702  MVT::ValueType VT = N->getValueType(0);
2703
2704  // fold (sext c1) -> c1
2705  if (isa<ConstantSDNode>(N0))
2706    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2707
2708  // fold (sext (sext x)) -> (sext x)
2709  // fold (sext (aext x)) -> (sext x)
2710  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2711    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2712
2713  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2714  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2715  if (N0.getOpcode() == ISD::TRUNCATE) {
2716    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2717    if (NarrowLoad.Val) {
2718      if (NarrowLoad.Val != N0.Val)
2719        CombineTo(N0.Val, NarrowLoad);
2720      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2721    }
2722  }
2723
2724  // See if the value being truncated is already sign extended.  If so, just
2725  // eliminate the trunc/sext pair.
2726  if (N0.getOpcode() == ISD::TRUNCATE) {
2727    SDOperand Op = N0.getOperand(0);
2728    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2729    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2730    unsigned DestBits = MVT::getSizeInBits(VT);
2731    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2732
2733    if (OpBits == DestBits) {
2734      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2735      // bits, it is already ready.
2736      if (NumSignBits > DestBits-MidBits)
2737        return Op;
2738    } else if (OpBits < DestBits) {
2739      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2740      // bits, just sext from i32.
2741      if (NumSignBits > OpBits-MidBits)
2742        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2743    } else {
2744      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2745      // bits, just truncate to i32.
2746      if (NumSignBits > OpBits-MidBits)
2747        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2748    }
2749
2750    // fold (sext (truncate x)) -> (sextinreg x).
2751    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2752                                               N0.getValueType())) {
2753      if (Op.getValueType() < VT)
2754        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2755      else if (Op.getValueType() > VT)
2756        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2757      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2758                         DAG.getValueType(N0.getValueType()));
2759    }
2760  }
2761
2762  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2763  if (ISD::isNON_EXTLoad(N0.Val) &&
2764      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2765    bool DoXform = true;
2766    SmallVector<SDNode*, 4> SetCCs;
2767    if (!N0.hasOneUse())
2768      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2769    if (DoXform) {
2770      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2771      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2772                                         LN0->getBasePtr(), LN0->getSrcValue(),
2773                                         LN0->getSrcValueOffset(),
2774                                         N0.getValueType(),
2775                                         LN0->isVolatile(),
2776                                         LN0->getAlignment());
2777      CombineTo(N, ExtLoad);
2778      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2779      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2780      // Extend SetCC uses if necessary.
2781      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2782        SDNode *SetCC = SetCCs[i];
2783        SmallVector<SDOperand, 4> Ops;
2784        for (unsigned j = 0; j != 2; ++j) {
2785          SDOperand SOp = SetCC->getOperand(j);
2786          if (SOp == Trunc)
2787            Ops.push_back(ExtLoad);
2788          else
2789            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2790          }
2791        Ops.push_back(SetCC->getOperand(2));
2792        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2793                                     &Ops[0], Ops.size()));
2794      }
2795      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2796    }
2797  }
2798
2799  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2800  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2801  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2802      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2803    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2804    MVT::ValueType EVT = LN0->getMemoryVT();
2805    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2806      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2807                                         LN0->getBasePtr(), LN0->getSrcValue(),
2808                                         LN0->getSrcValueOffset(), EVT,
2809                                         LN0->isVolatile(),
2810                                         LN0->getAlignment());
2811      CombineTo(N, ExtLoad);
2812      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2813                ExtLoad.getValue(1));
2814      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2815    }
2816  }
2817
2818  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2819  if (N0.getOpcode() == ISD::SETCC) {
2820    SDOperand SCC =
2821      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2822                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2823                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2824    if (SCC.Val) return SCC;
2825  }
2826
2827  return SDOperand();
2828}
2829
2830SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2831  SDOperand N0 = N->getOperand(0);
2832  MVT::ValueType VT = N->getValueType(0);
2833
2834  // fold (zext c1) -> c1
2835  if (isa<ConstantSDNode>(N0))
2836    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2837  // fold (zext (zext x)) -> (zext x)
2838  // fold (zext (aext x)) -> (zext x)
2839  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2840    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2841
2842  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2843  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2844  if (N0.getOpcode() == ISD::TRUNCATE) {
2845    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2846    if (NarrowLoad.Val) {
2847      if (NarrowLoad.Val != N0.Val)
2848        CombineTo(N0.Val, NarrowLoad);
2849      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2850    }
2851  }
2852
2853  // fold (zext (truncate x)) -> (and x, mask)
2854  if (N0.getOpcode() == ISD::TRUNCATE &&
2855      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2856    SDOperand Op = N0.getOperand(0);
2857    if (Op.getValueType() < VT) {
2858      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2859    } else if (Op.getValueType() > VT) {
2860      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2861    }
2862    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2863  }
2864
2865  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2866  if (N0.getOpcode() == ISD::AND &&
2867      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2868      N0.getOperand(1).getOpcode() == ISD::Constant) {
2869    SDOperand X = N0.getOperand(0).getOperand(0);
2870    if (X.getValueType() < VT) {
2871      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2872    } else if (X.getValueType() > VT) {
2873      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2874    }
2875    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2876    Mask.zext(MVT::getSizeInBits(VT));
2877    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2878  }
2879
2880  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2881  if (ISD::isNON_EXTLoad(N0.Val) &&
2882      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2883    bool DoXform = true;
2884    SmallVector<SDNode*, 4> SetCCs;
2885    if (!N0.hasOneUse())
2886      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2887    if (DoXform) {
2888      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2889      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2890                                         LN0->getBasePtr(), LN0->getSrcValue(),
2891                                         LN0->getSrcValueOffset(),
2892                                         N0.getValueType(),
2893                                         LN0->isVolatile(),
2894                                         LN0->getAlignment());
2895      CombineTo(N, ExtLoad);
2896      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2897      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2898      // Extend SetCC uses if necessary.
2899      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2900        SDNode *SetCC = SetCCs[i];
2901        SmallVector<SDOperand, 4> Ops;
2902        for (unsigned j = 0; j != 2; ++j) {
2903          SDOperand SOp = SetCC->getOperand(j);
2904          if (SOp == Trunc)
2905            Ops.push_back(ExtLoad);
2906          else
2907            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2908          }
2909        Ops.push_back(SetCC->getOperand(2));
2910        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2911                                     &Ops[0], Ops.size()));
2912      }
2913      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2914    }
2915  }
2916
2917  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2918  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2919  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2920      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2921    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2922    MVT::ValueType EVT = LN0->getMemoryVT();
2923    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2924                                       LN0->getBasePtr(), LN0->getSrcValue(),
2925                                       LN0->getSrcValueOffset(), EVT,
2926                                       LN0->isVolatile(),
2927                                       LN0->getAlignment());
2928    CombineTo(N, ExtLoad);
2929    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2930              ExtLoad.getValue(1));
2931    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2932  }
2933
2934  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2935  if (N0.getOpcode() == ISD::SETCC) {
2936    SDOperand SCC =
2937      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2938                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2939                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2940    if (SCC.Val) return SCC;
2941  }
2942
2943  return SDOperand();
2944}
2945
2946SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2947  SDOperand N0 = N->getOperand(0);
2948  MVT::ValueType VT = N->getValueType(0);
2949
2950  // fold (aext c1) -> c1
2951  if (isa<ConstantSDNode>(N0))
2952    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2953  // fold (aext (aext x)) -> (aext x)
2954  // fold (aext (zext x)) -> (zext x)
2955  // fold (aext (sext x)) -> (sext x)
2956  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2957      N0.getOpcode() == ISD::ZERO_EXTEND ||
2958      N0.getOpcode() == ISD::SIGN_EXTEND)
2959    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2960
2961  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2962  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2963  if (N0.getOpcode() == ISD::TRUNCATE) {
2964    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2965    if (NarrowLoad.Val) {
2966      if (NarrowLoad.Val != N0.Val)
2967        CombineTo(N0.Val, NarrowLoad);
2968      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2969    }
2970  }
2971
2972  // fold (aext (truncate x))
2973  if (N0.getOpcode() == ISD::TRUNCATE) {
2974    SDOperand TruncOp = N0.getOperand(0);
2975    if (TruncOp.getValueType() == VT)
2976      return TruncOp; // x iff x size == zext size.
2977    if (TruncOp.getValueType() > VT)
2978      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2979    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2980  }
2981
2982  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2983  if (N0.getOpcode() == ISD::AND &&
2984      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2985      N0.getOperand(1).getOpcode() == ISD::Constant) {
2986    SDOperand X = N0.getOperand(0).getOperand(0);
2987    if (X.getValueType() < VT) {
2988      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2989    } else if (X.getValueType() > VT) {
2990      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2991    }
2992    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2993    Mask.zext(MVT::getSizeInBits(VT));
2994    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2995  }
2996
2997  // fold (aext (load x)) -> (aext (truncate (extload x)))
2998  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2999      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3000    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3001    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3002                                       LN0->getBasePtr(), LN0->getSrcValue(),
3003                                       LN0->getSrcValueOffset(),
3004                                       N0.getValueType(),
3005                                       LN0->isVolatile(),
3006                                       LN0->getAlignment());
3007    CombineTo(N, ExtLoad);
3008    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3009              ExtLoad.getValue(1));
3010    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3011  }
3012
3013  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
3014  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
3015  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
3016  if (N0.getOpcode() == ISD::LOAD &&
3017      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3018      N0.hasOneUse()) {
3019    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3020    MVT::ValueType EVT = LN0->getMemoryVT();
3021    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
3022                                       LN0->getChain(), LN0->getBasePtr(),
3023                                       LN0->getSrcValue(),
3024                                       LN0->getSrcValueOffset(), EVT,
3025                                       LN0->isVolatile(),
3026                                       LN0->getAlignment());
3027    CombineTo(N, ExtLoad);
3028    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
3029              ExtLoad.getValue(1));
3030    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3031  }
3032
3033  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
3034  if (N0.getOpcode() == ISD::SETCC) {
3035    SDOperand SCC =
3036      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
3037                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
3038                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
3039    if (SCC.Val)
3040      return SCC;
3041  }
3042
3043  return SDOperand();
3044}
3045
3046/// GetDemandedBits - See if the specified operand can be simplified with the
3047/// knowledge that only the bits specified by Mask are used.  If so, return the
3048/// simpler operand, otherwise return a null SDOperand.
3049SDOperand DAGCombiner::GetDemandedBits(SDOperand V, const APInt &Mask) {
3050  switch (V.getOpcode()) {
3051  default: break;
3052  case ISD::OR:
3053  case ISD::XOR:
3054    // If the LHS or RHS don't contribute bits to the or, drop them.
3055    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
3056      return V.getOperand(1);
3057    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
3058      return V.getOperand(0);
3059    break;
3060  case ISD::SRL:
3061    // Only look at single-use SRLs.
3062    if (!V.Val->hasOneUse())
3063      break;
3064    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3065      // See if we can recursively simplify the LHS.
3066      unsigned Amt = RHSC->getValue();
3067      APInt NewMask = Mask << Amt;
3068      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
3069      if (SimplifyLHS.Val) {
3070        return DAG.getNode(ISD::SRL, V.getValueType(),
3071                           SimplifyLHS, V.getOperand(1));
3072      }
3073    }
3074  }
3075  return SDOperand();
3076}
3077
3078/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3079/// bits and then truncated to a narrower type and where N is a multiple
3080/// of number of bits of the narrower type, transform it to a narrower load
3081/// from address + N / num of bits of new type. If the result is to be
3082/// extended, also fold the extension to form a extending load.
3083SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3084  unsigned Opc = N->getOpcode();
3085  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3086  SDOperand N0 = N->getOperand(0);
3087  MVT::ValueType VT = N->getValueType(0);
3088  MVT::ValueType EVT = N->getValueType(0);
3089
3090  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3091  // extended to VT.
3092  if (Opc == ISD::SIGN_EXTEND_INREG) {
3093    ExtType = ISD::SEXTLOAD;
3094    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3095    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3096      return SDOperand();
3097  }
3098
3099  unsigned EVTBits = MVT::getSizeInBits(EVT);
3100  unsigned ShAmt = 0;
3101  bool CombineSRL =  false;
3102  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3103    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3104      ShAmt = N01->getValue();
3105      // Is the shift amount a multiple of size of VT?
3106      if ((ShAmt & (EVTBits-1)) == 0) {
3107        N0 = N0.getOperand(0);
3108        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3109          return SDOperand();
3110        CombineSRL = true;
3111      }
3112    }
3113  }
3114
3115  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3116      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3117      // zero extended form: by shrinking the load, we lose track of the fact
3118      // that it is already zero extended.
3119      // FIXME: This should be reevaluated.
3120      VT != MVT::i1) {
3121    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3122           "Cannot truncate to larger type!");
3123    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3124    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3125    // For big endian targets, we need to adjust the offset to the pointer to
3126    // load the correct bytes.
3127    if (TLI.isBigEndian()) {
3128      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3129      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3130      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3131    }
3132    uint64_t PtrOff =  ShAmt / 8;
3133    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3134    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3135                                   DAG.getConstant(PtrOff, PtrType));
3136    AddToWorkList(NewPtr.Val);
3137    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3138      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3139                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3140                    LN0->isVolatile(), NewAlign)
3141      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3142                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3143                       LN0->isVolatile(), NewAlign);
3144    AddToWorkList(N);
3145    if (CombineSRL) {
3146      WorkListRemover DeadNodes(*this);
3147      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1),
3148                                    &DeadNodes);
3149      CombineTo(N->getOperand(0).Val, Load);
3150    } else
3151      CombineTo(N0.Val, Load, Load.getValue(1));
3152    if (ShAmt) {
3153      if (Opc == ISD::SIGN_EXTEND_INREG)
3154        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3155      else
3156        return DAG.getNode(Opc, VT, Load);
3157    }
3158    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3159  }
3160
3161  return SDOperand();
3162}
3163
3164
3165SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3166  SDOperand N0 = N->getOperand(0);
3167  SDOperand N1 = N->getOperand(1);
3168  MVT::ValueType VT = N->getValueType(0);
3169  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3170  unsigned VTBits = MVT::getSizeInBits(VT);
3171  unsigned EVTBits = MVT::getSizeInBits(EVT);
3172
3173  // fold (sext_in_reg c1) -> c1
3174  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3175    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3176
3177  // If the input is already sign extended, just drop the extension.
3178  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3179    return N0;
3180
3181  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3182  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3183      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3184    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3185  }
3186
3187  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3188  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
3189    return DAG.getZeroExtendInReg(N0, EVT);
3190
3191  // fold operands of sext_in_reg based on knowledge that the top bits are not
3192  // demanded.
3193  if (SimplifyDemandedBits(SDOperand(N, 0)))
3194    return SDOperand(N, 0);
3195
3196  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3197  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3198  SDOperand NarrowLoad = ReduceLoadWidth(N);
3199  if (NarrowLoad.Val)
3200    return NarrowLoad;
3201
3202  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3203  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3204  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3205  if (N0.getOpcode() == ISD::SRL) {
3206    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3207      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3208        // We can turn this into an SRA iff the input to the SRL is already sign
3209        // extended enough.
3210        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3211        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3212          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3213      }
3214  }
3215
3216  // fold (sext_inreg (extload x)) -> (sextload x)
3217  if (ISD::isEXTLoad(N0.Val) &&
3218      ISD::isUNINDEXEDLoad(N0.Val) &&
3219      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3220      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3221    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3222    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3223                                       LN0->getBasePtr(), LN0->getSrcValue(),
3224                                       LN0->getSrcValueOffset(), EVT,
3225                                       LN0->isVolatile(),
3226                                       LN0->getAlignment());
3227    CombineTo(N, ExtLoad);
3228    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3229    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3230  }
3231  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3232  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3233      N0.hasOneUse() &&
3234      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
3235      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3236    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3237    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3238                                       LN0->getBasePtr(), LN0->getSrcValue(),
3239                                       LN0->getSrcValueOffset(), EVT,
3240                                       LN0->isVolatile(),
3241                                       LN0->getAlignment());
3242    CombineTo(N, ExtLoad);
3243    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3244    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3245  }
3246  return SDOperand();
3247}
3248
3249SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3250  SDOperand N0 = N->getOperand(0);
3251  MVT::ValueType VT = N->getValueType(0);
3252
3253  // noop truncate
3254  if (N0.getValueType() == N->getValueType(0))
3255    return N0;
3256  // fold (truncate c1) -> c1
3257  if (isa<ConstantSDNode>(N0))
3258    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3259  // fold (truncate (truncate x)) -> (truncate x)
3260  if (N0.getOpcode() == ISD::TRUNCATE)
3261    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3262  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3263  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3264      N0.getOpcode() == ISD::ANY_EXTEND) {
3265    if (N0.getOperand(0).getValueType() < VT)
3266      // if the source is smaller than the dest, we still need an extend
3267      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3268    else if (N0.getOperand(0).getValueType() > VT)
3269      // if the source is larger than the dest, than we just need the truncate
3270      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3271    else
3272      // if the source and dest are the same type, we can drop both the extend
3273      // and the truncate
3274      return N0.getOperand(0);
3275  }
3276
3277  // See if we can simplify the input to this truncate through knowledge that
3278  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3279  // -> trunc y
3280  SDOperand Shorter =
3281    GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
3282                                             MVT::getSizeInBits(VT)));
3283  if (Shorter.Val)
3284    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3285
3286  // fold (truncate (load x)) -> (smaller load x)
3287  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3288  return ReduceLoadWidth(N);
3289}
3290
3291SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3292  SDOperand N0 = N->getOperand(0);
3293  MVT::ValueType VT = N->getValueType(0);
3294
3295  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3296  // Only do this before legalize, since afterward the target may be depending
3297  // on the bitconvert.
3298  // First check to see if this is all constant.
3299  if (!AfterLegalize &&
3300      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3301      MVT::isVector(VT)) {
3302    bool isSimple = true;
3303    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3304      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3305          N0.getOperand(i).getOpcode() != ISD::Constant &&
3306          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3307        isSimple = false;
3308        break;
3309      }
3310
3311    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3312    assert(!MVT::isVector(DestEltVT) &&
3313           "Element type of vector ValueType must not be vector!");
3314    if (isSimple) {
3315      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3316    }
3317  }
3318
3319  // If the input is a constant, let getNode() fold it.
3320  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3321    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3322    if (Res.Val != N) return Res;
3323  }
3324
3325  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3326    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3327
3328  // fold (conv (load x)) -> (load (conv*)x)
3329  // If the resultant load doesn't need a higher alignment than the original!
3330  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3331      TLI.isOperationLegal(ISD::LOAD, VT)) {
3332    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3333    unsigned Align = TLI.getTargetMachine().getTargetData()->
3334      getABITypeAlignment(MVT::getTypeForValueType(VT));
3335    unsigned OrigAlign = LN0->getAlignment();
3336    if (Align <= OrigAlign) {
3337      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3338                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3339                                   LN0->isVolatile(), Align);
3340      AddToWorkList(N);
3341      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3342                Load.getValue(1));
3343      return Load;
3344    }
3345  }
3346
3347  // Fold bitconvert(fneg(x)) -> xor(bitconvert(x), signbit)
3348  // Fold bitconvert(fabs(x)) -> and(bitconvert(x), ~signbit)
3349  // This often reduces constant pool loads.
3350  if ((N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FABS) &&
3351      N0.Val->hasOneUse() && MVT::isInteger(VT) && !MVT::isVector(VT)) {
3352    SDOperand NewConv = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3353    AddToWorkList(NewConv.Val);
3354
3355    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3356    if (N0.getOpcode() == ISD::FNEG)
3357      return DAG.getNode(ISD::XOR, VT, NewConv, DAG.getConstant(SignBit, VT));
3358    assert(N0.getOpcode() == ISD::FABS);
3359    return DAG.getNode(ISD::AND, VT, NewConv, DAG.getConstant(~SignBit, VT));
3360  }
3361
3362  // Fold bitconvert(fcopysign(cst, x)) -> bitconvert(x)&sign | cst&~sign'
3363  // Note that we don't handle copysign(x,cst) because this can always be folded
3364  // to an fneg or fabs.
3365  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse() &&
3366      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
3367      MVT::isInteger(VT) && !MVT::isVector(VT)) {
3368    unsigned OrigXWidth = MVT::getSizeInBits(N0.getOperand(1).getValueType());
3369    SDOperand X = DAG.getNode(ISD::BIT_CONVERT, MVT::getIntegerType(OrigXWidth),
3370                              N0.getOperand(1));
3371    AddToWorkList(X.Val);
3372
3373    // If X has a different width than the result/lhs, sext it or truncate it.
3374    unsigned VTWidth = MVT::getSizeInBits(VT);
3375    if (OrigXWidth < VTWidth) {
3376      X = DAG.getNode(ISD::SIGN_EXTEND, VT, X);
3377      AddToWorkList(X.Val);
3378    } else if (OrigXWidth > VTWidth) {
3379      // To get the sign bit in the right place, we have to shift it right
3380      // before truncating.
3381      X = DAG.getNode(ISD::SRL, X.getValueType(), X,
3382                      DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
3383      AddToWorkList(X.Val);
3384      X = DAG.getNode(ISD::TRUNCATE, VT, X);
3385      AddToWorkList(X.Val);
3386    }
3387
3388    APInt SignBit = APInt::getSignBit(MVT::getSizeInBits(VT));
3389    X = DAG.getNode(ISD::AND, VT, X, DAG.getConstant(SignBit, VT));
3390    AddToWorkList(X.Val);
3391
3392    SDOperand Cst = DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3393    Cst = DAG.getNode(ISD::AND, VT, Cst, DAG.getConstant(~SignBit, VT));
3394    AddToWorkList(Cst.Val);
3395
3396    return DAG.getNode(ISD::OR, VT, X, Cst);
3397  }
3398
3399  return SDOperand();
3400}
3401
3402/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3403/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3404/// destination element value type.
3405SDOperand DAGCombiner::
3406ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3407  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3408
3409  // If this is already the right type, we're done.
3410  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3411
3412  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3413  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3414
3415  // If this is a conversion of N elements of one type to N elements of another
3416  // type, convert each element.  This handles FP<->INT cases.
3417  if (SrcBitSize == DstBitSize) {
3418    SmallVector<SDOperand, 8> Ops;
3419    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3420      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3421      AddToWorkList(Ops.back().Val);
3422    }
3423    MVT::ValueType VT =
3424      MVT::getVectorType(DstEltVT,
3425                         MVT::getVectorNumElements(BV->getValueType(0)));
3426    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3427  }
3428
3429  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3430  // handle annoying details of growing/shrinking FP values, we convert them to
3431  // int first.
3432  if (MVT::isFloatingPoint(SrcEltVT)) {
3433    // Convert the input float vector to a int vector where the elements are the
3434    // same sizes.
3435    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3436    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3437    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3438    SrcEltVT = IntVT;
3439  }
3440
3441  // Now we know the input is an integer vector.  If the output is a FP type,
3442  // convert to integer first, then to FP of the right size.
3443  if (MVT::isFloatingPoint(DstEltVT)) {
3444    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3445    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3446    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3447
3448    // Next, convert to FP elements of the same size.
3449    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3450  }
3451
3452  // Okay, we know the src/dst types are both integers of differing types.
3453  // Handling growing first.
3454  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3455  if (SrcBitSize < DstBitSize) {
3456    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3457
3458    SmallVector<SDOperand, 8> Ops;
3459    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3460         i += NumInputsPerOutput) {
3461      bool isLE = TLI.isLittleEndian();
3462      APInt NewBits = APInt(DstBitSize, 0);
3463      bool EltIsUndef = true;
3464      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3465        // Shift the previously computed bits over.
3466        NewBits <<= SrcBitSize;
3467        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3468        if (Op.getOpcode() == ISD::UNDEF) continue;
3469        EltIsUndef = false;
3470
3471        NewBits |=
3472          APInt(cast<ConstantSDNode>(Op)->getAPIntValue()).zext(DstBitSize);
3473      }
3474
3475      if (EltIsUndef)
3476        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3477      else
3478        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3479    }
3480
3481    MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3482    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3483  }
3484
3485  // Finally, this must be the case where we are shrinking elements: each input
3486  // turns into multiple outputs.
3487  bool isS2V = ISD::isScalarToVector(BV);
3488  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3489  MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3490                                     NumOutputsPerInput * BV->getNumOperands());
3491  SmallVector<SDOperand, 8> Ops;
3492  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3493    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3494      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3495        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3496      continue;
3497    }
3498    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getAPIntValue();
3499    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3500      APInt ThisVal = APInt(OpVal).trunc(DstBitSize);
3501      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3502      if (isS2V && i == 0 && j == 0 && APInt(ThisVal).zext(SrcBitSize) == OpVal)
3503        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
3504        return DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Ops[0]);
3505      OpVal = OpVal.lshr(DstBitSize);
3506    }
3507
3508    // For big endian targets, swap the order of the pieces of each element.
3509    if (TLI.isBigEndian())
3510      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3511  }
3512  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3513}
3514
3515
3516
3517SDOperand DAGCombiner::visitFADD(SDNode *N) {
3518  SDOperand N0 = N->getOperand(0);
3519  SDOperand N1 = N->getOperand(1);
3520  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3521  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3522  MVT::ValueType VT = N->getValueType(0);
3523
3524  // fold vector ops
3525  if (MVT::isVector(VT)) {
3526    SDOperand FoldedVOp = SimplifyVBinOp(N);
3527    if (FoldedVOp.Val) return FoldedVOp;
3528  }
3529
3530  // fold (fadd c1, c2) -> c1+c2
3531  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3532    return DAG.getNode(ISD::FADD, VT, N0, N1);
3533  // canonicalize constant to RHS
3534  if (N0CFP && !N1CFP)
3535    return DAG.getNode(ISD::FADD, VT, N1, N0);
3536  // fold (A + (-B)) -> A-B
3537  if (isNegatibleForFree(N1, AfterLegalize) == 2)
3538    return DAG.getNode(ISD::FSUB, VT, N0,
3539                       GetNegatedExpression(N1, DAG, AfterLegalize));
3540  // fold ((-A) + B) -> B-A
3541  if (isNegatibleForFree(N0, AfterLegalize) == 2)
3542    return DAG.getNode(ISD::FSUB, VT, N1,
3543                       GetNegatedExpression(N0, DAG, AfterLegalize));
3544
3545  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3546  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3547      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3548    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3549                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3550
3551  return SDOperand();
3552}
3553
3554SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3555  SDOperand N0 = N->getOperand(0);
3556  SDOperand N1 = N->getOperand(1);
3557  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3558  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3559  MVT::ValueType VT = N->getValueType(0);
3560
3561  // fold vector ops
3562  if (MVT::isVector(VT)) {
3563    SDOperand FoldedVOp = SimplifyVBinOp(N);
3564    if (FoldedVOp.Val) return FoldedVOp;
3565  }
3566
3567  // fold (fsub c1, c2) -> c1-c2
3568  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3569    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3570  // fold (0-B) -> -B
3571  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3572    if (isNegatibleForFree(N1, AfterLegalize))
3573      return GetNegatedExpression(N1, DAG, AfterLegalize);
3574    return DAG.getNode(ISD::FNEG, VT, N1);
3575  }
3576  // fold (A-(-B)) -> A+B
3577  if (isNegatibleForFree(N1, AfterLegalize))
3578    return DAG.getNode(ISD::FADD, VT, N0,
3579                       GetNegatedExpression(N1, DAG, AfterLegalize));
3580
3581  return SDOperand();
3582}
3583
3584SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3585  SDOperand N0 = N->getOperand(0);
3586  SDOperand N1 = N->getOperand(1);
3587  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3588  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3589  MVT::ValueType VT = N->getValueType(0);
3590
3591  // fold vector ops
3592  if (MVT::isVector(VT)) {
3593    SDOperand FoldedVOp = SimplifyVBinOp(N);
3594    if (FoldedVOp.Val) return FoldedVOp;
3595  }
3596
3597  // fold (fmul c1, c2) -> c1*c2
3598  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3599    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3600  // canonicalize constant to RHS
3601  if (N0CFP && !N1CFP)
3602    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3603  // fold (fmul X, 2.0) -> (fadd X, X)
3604  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3605    return DAG.getNode(ISD::FADD, VT, N0, N0);
3606  // fold (fmul X, -1.0) -> (fneg X)
3607  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3608    return DAG.getNode(ISD::FNEG, VT, N0);
3609
3610  // -X * -Y -> X*Y
3611  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3612    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3613      // Both can be negated for free, check to see if at least one is cheaper
3614      // negated.
3615      if (LHSNeg == 2 || RHSNeg == 2)
3616        return DAG.getNode(ISD::FMUL, VT,
3617                           GetNegatedExpression(N0, DAG, AfterLegalize),
3618                           GetNegatedExpression(N1, DAG, AfterLegalize));
3619    }
3620  }
3621
3622  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3623  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3624      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3625    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3626                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3627
3628  return SDOperand();
3629}
3630
3631SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3632  SDOperand N0 = N->getOperand(0);
3633  SDOperand N1 = N->getOperand(1);
3634  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3635  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3636  MVT::ValueType VT = N->getValueType(0);
3637
3638  // fold vector ops
3639  if (MVT::isVector(VT)) {
3640    SDOperand FoldedVOp = SimplifyVBinOp(N);
3641    if (FoldedVOp.Val) return FoldedVOp;
3642  }
3643
3644  // fold (fdiv c1, c2) -> c1/c2
3645  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3646    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3647
3648
3649  // -X / -Y -> X*Y
3650  if (char LHSNeg = isNegatibleForFree(N0, AfterLegalize)) {
3651    if (char RHSNeg = isNegatibleForFree(N1, AfterLegalize)) {
3652      // Both can be negated for free, check to see if at least one is cheaper
3653      // negated.
3654      if (LHSNeg == 2 || RHSNeg == 2)
3655        return DAG.getNode(ISD::FDIV, VT,
3656                           GetNegatedExpression(N0, DAG, AfterLegalize),
3657                           GetNegatedExpression(N1, DAG, AfterLegalize));
3658    }
3659  }
3660
3661  return SDOperand();
3662}
3663
3664SDOperand DAGCombiner::visitFREM(SDNode *N) {
3665  SDOperand N0 = N->getOperand(0);
3666  SDOperand N1 = N->getOperand(1);
3667  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3668  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3669  MVT::ValueType VT = N->getValueType(0);
3670
3671  // fold (frem c1, c2) -> fmod(c1,c2)
3672  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3673    return DAG.getNode(ISD::FREM, VT, N0, N1);
3674
3675  return SDOperand();
3676}
3677
3678SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3679  SDOperand N0 = N->getOperand(0);
3680  SDOperand N1 = N->getOperand(1);
3681  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3682  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3683  MVT::ValueType VT = N->getValueType(0);
3684
3685  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3686    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3687
3688  if (N1CFP) {
3689    const APFloat& V = N1CFP->getValueAPF();
3690    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3691    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3692    if (!V.isNegative())
3693      return DAG.getNode(ISD::FABS, VT, N0);
3694    else
3695      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3696  }
3697
3698  // copysign(fabs(x), y) -> copysign(x, y)
3699  // copysign(fneg(x), y) -> copysign(x, y)
3700  // copysign(copysign(x,z), y) -> copysign(x, y)
3701  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3702      N0.getOpcode() == ISD::FCOPYSIGN)
3703    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3704
3705  // copysign(x, abs(y)) -> abs(x)
3706  if (N1.getOpcode() == ISD::FABS)
3707    return DAG.getNode(ISD::FABS, VT, N0);
3708
3709  // copysign(x, copysign(y,z)) -> copysign(x, z)
3710  if (N1.getOpcode() == ISD::FCOPYSIGN)
3711    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3712
3713  // copysign(x, fp_extend(y)) -> copysign(x, y)
3714  // copysign(x, fp_round(y)) -> copysign(x, y)
3715  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3716    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3717
3718  return SDOperand();
3719}
3720
3721
3722
3723SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3724  SDOperand N0 = N->getOperand(0);
3725  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3726  MVT::ValueType VT = N->getValueType(0);
3727
3728  // fold (sint_to_fp c1) -> c1fp
3729  if (N0C && N0.getValueType() != MVT::ppcf128)
3730    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3731  return SDOperand();
3732}
3733
3734SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3735  SDOperand N0 = N->getOperand(0);
3736  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3737  MVT::ValueType VT = N->getValueType(0);
3738
3739  // fold (uint_to_fp c1) -> c1fp
3740  if (N0C && N0.getValueType() != MVT::ppcf128)
3741    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3742  return SDOperand();
3743}
3744
3745SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3746  SDOperand N0 = N->getOperand(0);
3747  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3748  MVT::ValueType VT = N->getValueType(0);
3749
3750  // fold (fp_to_sint c1fp) -> c1
3751  if (N0CFP)
3752    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3753  return SDOperand();
3754}
3755
3756SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3757  SDOperand N0 = N->getOperand(0);
3758  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3759  MVT::ValueType VT = N->getValueType(0);
3760
3761  // fold (fp_to_uint c1fp) -> c1
3762  if (N0CFP && VT != MVT::ppcf128)
3763    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3764  return SDOperand();
3765}
3766
3767SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3768  SDOperand N0 = N->getOperand(0);
3769  SDOperand N1 = N->getOperand(1);
3770  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3771  MVT::ValueType VT = N->getValueType(0);
3772
3773  // fold (fp_round c1fp) -> c1fp
3774  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3775    return DAG.getNode(ISD::FP_ROUND, VT, N0, N1);
3776
3777  // fold (fp_round (fp_extend x)) -> x
3778  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3779    return N0.getOperand(0);
3780
3781  // fold (fp_round (fp_round x)) -> (fp_round x)
3782  if (N0.getOpcode() == ISD::FP_ROUND) {
3783    // This is a value preserving truncation if both round's are.
3784    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
3785                   N0.Val->getConstantOperandVal(1) == 1;
3786    return DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0),
3787                       DAG.getIntPtrConstant(IsTrunc));
3788  }
3789
3790  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3791  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3792    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0), N1);
3793    AddToWorkList(Tmp.Val);
3794    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3795  }
3796
3797  return SDOperand();
3798}
3799
3800SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3801  SDOperand N0 = N->getOperand(0);
3802  MVT::ValueType VT = N->getValueType(0);
3803  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3804  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3805
3806  // fold (fp_round_inreg c1fp) -> c1fp
3807  if (N0CFP) {
3808    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3809    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3810  }
3811  return SDOperand();
3812}
3813
3814SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3815  SDOperand N0 = N->getOperand(0);
3816  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3817  MVT::ValueType VT = N->getValueType(0);
3818
3819  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3820  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3821    return SDOperand();
3822
3823  // fold (fp_extend c1fp) -> c1fp
3824  if (N0CFP && VT != MVT::ppcf128)
3825    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3826
3827  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
3828  // value of X.
3829  if (N0.getOpcode() == ISD::FP_ROUND && N0.Val->getConstantOperandVal(1) == 1){
3830    SDOperand In = N0.getOperand(0);
3831    if (In.getValueType() == VT) return In;
3832    if (VT < In.getValueType())
3833      return DAG.getNode(ISD::FP_ROUND, VT, In, N0.getOperand(1));
3834    return DAG.getNode(ISD::FP_EXTEND, VT, In);
3835  }
3836
3837  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
3838  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3839      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3840    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3841    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3842                                       LN0->getBasePtr(), LN0->getSrcValue(),
3843                                       LN0->getSrcValueOffset(),
3844                                       N0.getValueType(),
3845                                       LN0->isVolatile(),
3846                                       LN0->getAlignment());
3847    CombineTo(N, ExtLoad);
3848    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad,
3849                                  DAG.getIntPtrConstant(1)),
3850              ExtLoad.getValue(1));
3851    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3852  }
3853
3854
3855  return SDOperand();
3856}
3857
3858SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3859  SDOperand N0 = N->getOperand(0);
3860
3861  if (isNegatibleForFree(N0, AfterLegalize))
3862    return GetNegatedExpression(N0, DAG, AfterLegalize);
3863
3864  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
3865  // constant pool values.
3866  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3867      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3868      !MVT::isVector(N0.getOperand(0).getValueType())) {
3869    SDOperand Int = N0.getOperand(0);
3870    MVT::ValueType IntVT = Int.getValueType();
3871    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3872      Int = DAG.getNode(ISD::XOR, IntVT, Int,
3873                        DAG.getConstant(MVT::getIntVTSignBit(IntVT), IntVT));
3874      AddToWorkList(Int.Val);
3875      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3876    }
3877  }
3878
3879  return SDOperand();
3880}
3881
3882SDOperand DAGCombiner::visitFABS(SDNode *N) {
3883  SDOperand N0 = N->getOperand(0);
3884  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3885  MVT::ValueType VT = N->getValueType(0);
3886
3887  // fold (fabs c1) -> fabs(c1)
3888  if (N0CFP && VT != MVT::ppcf128)
3889    return DAG.getNode(ISD::FABS, VT, N0);
3890  // fold (fabs (fabs x)) -> (fabs x)
3891  if (N0.getOpcode() == ISD::FABS)
3892    return N->getOperand(0);
3893  // fold (fabs (fneg x)) -> (fabs x)
3894  // fold (fabs (fcopysign x, y)) -> (fabs x)
3895  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3896    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3897
3898  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
3899  // constant pool values.
3900  if (N0.getOpcode() == ISD::BIT_CONVERT && N0.Val->hasOneUse() &&
3901      MVT::isInteger(N0.getOperand(0).getValueType()) &&
3902      !MVT::isVector(N0.getOperand(0).getValueType())) {
3903    SDOperand Int = N0.getOperand(0);
3904    MVT::ValueType IntVT = Int.getValueType();
3905    if (MVT::isInteger(IntVT) && !MVT::isVector(IntVT)) {
3906      Int = DAG.getNode(ISD::AND, IntVT, Int,
3907                        DAG.getConstant(~MVT::getIntVTSignBit(IntVT), IntVT));
3908      AddToWorkList(Int.Val);
3909      return DAG.getNode(ISD::BIT_CONVERT, N->getValueType(0), Int);
3910    }
3911  }
3912
3913  return SDOperand();
3914}
3915
3916SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3917  SDOperand Chain = N->getOperand(0);
3918  SDOperand N1 = N->getOperand(1);
3919  SDOperand N2 = N->getOperand(2);
3920  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3921
3922  // never taken branch, fold to chain
3923  if (N1C && N1C->isNullValue())
3924    return Chain;
3925  // unconditional branch
3926  if (N1C && N1C->getValue() == 1)
3927    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3928  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3929  // on the target.
3930  if (N1.getOpcode() == ISD::SETCC &&
3931      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3932    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3933                       N1.getOperand(0), N1.getOperand(1), N2);
3934  }
3935  return SDOperand();
3936}
3937
3938// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3939//
3940SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3941  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3942  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3943
3944  // Use SimplifySetCC  to simplify SETCC's.
3945  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3946  if (Simp.Val) AddToWorkList(Simp.Val);
3947
3948  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3949
3950  // fold br_cc true, dest -> br dest (unconditional branch)
3951  if (SCCC && SCCC->getValue())
3952    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3953                       N->getOperand(4));
3954  // fold br_cc false, dest -> unconditional fall through
3955  if (SCCC && SCCC->isNullValue())
3956    return N->getOperand(0);
3957
3958  // fold to a simpler setcc
3959  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3960    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3961                       Simp.getOperand(2), Simp.getOperand(0),
3962                       Simp.getOperand(1), N->getOperand(4));
3963  return SDOperand();
3964}
3965
3966
3967/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3968/// pre-indexed load / store when the base pointer is a add or subtract
3969/// and it has other uses besides the load / store. After the
3970/// transformation, the new indexed load / store has effectively folded
3971/// the add / subtract in and all of its other uses are redirected to the
3972/// new load / store.
3973bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3974  if (!AfterLegalize)
3975    return false;
3976
3977  bool isLoad = true;
3978  SDOperand Ptr;
3979  MVT::ValueType VT;
3980  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3981    if (LD->isIndexed())
3982      return false;
3983    VT = LD->getMemoryVT();
3984    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3985        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3986      return false;
3987    Ptr = LD->getBasePtr();
3988  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3989    if (ST->isIndexed())
3990      return false;
3991    VT = ST->getMemoryVT();
3992    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3993        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3994      return false;
3995    Ptr = ST->getBasePtr();
3996    isLoad = false;
3997  } else
3998    return false;
3999
4000  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
4001  // out.  There is no reason to make this a preinc/predec.
4002  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
4003      Ptr.Val->hasOneUse())
4004    return false;
4005
4006  // Ask the target to do addressing mode selection.
4007  SDOperand BasePtr;
4008  SDOperand Offset;
4009  ISD::MemIndexedMode AM = ISD::UNINDEXED;
4010  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
4011    return false;
4012  // Don't create a indexed load / store with zero offset.
4013  if (isa<ConstantSDNode>(Offset) &&
4014      cast<ConstantSDNode>(Offset)->getValue() == 0)
4015    return false;
4016
4017  // Try turning it into a pre-indexed load / store except when:
4018  // 1) The new base ptr is a frame index.
4019  // 2) If N is a store and the new base ptr is either the same as or is a
4020  //    predecessor of the value being stored.
4021  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
4022  //    that would create a cycle.
4023  // 4) All uses are load / store ops that use it as old base ptr.
4024
4025  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
4026  // (plus the implicit offset) to a register to preinc anyway.
4027  if (isa<FrameIndexSDNode>(BasePtr))
4028    return false;
4029
4030  // Check #2.
4031  if (!isLoad) {
4032    SDOperand Val = cast<StoreSDNode>(N)->getValue();
4033    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
4034      return false;
4035  }
4036
4037  // Now check for #3 and #4.
4038  bool RealUse = false;
4039  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4040         E = Ptr.Val->use_end(); I != E; ++I) {
4041    SDNode *Use = *I;
4042    if (Use == N)
4043      continue;
4044    if (Use->isPredecessor(N))
4045      return false;
4046
4047    if (!((Use->getOpcode() == ISD::LOAD &&
4048           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
4049          (Use->getOpcode() == ISD::STORE &&
4050           cast<StoreSDNode>(Use)->getBasePtr() == Ptr)))
4051      RealUse = true;
4052  }
4053  if (!RealUse)
4054    return false;
4055
4056  SDOperand Result;
4057  if (isLoad)
4058    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
4059  else
4060    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4061  ++PreIndexedNodes;
4062  ++NodesCombined;
4063  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
4064  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4065  DOUT << '\n';
4066  WorkListRemover DeadNodes(*this);
4067  if (isLoad) {
4068    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4069                                  &DeadNodes);
4070    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4071                                  &DeadNodes);
4072  } else {
4073    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4074                                  &DeadNodes);
4075  }
4076
4077  // Finally, since the node is now dead, remove it from the graph.
4078  DAG.DeleteNode(N);
4079
4080  // Replace the uses of Ptr with uses of the updated base value.
4081  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
4082                                &DeadNodes);
4083  removeFromWorkList(Ptr.Val);
4084  DAG.DeleteNode(Ptr.Val);
4085
4086  return true;
4087}
4088
4089/// CombineToPostIndexedLoadStore - Try combine a load / store with a
4090/// add / sub of the base pointer node into a post-indexed load / store.
4091/// The transformation folded the add / subtract into the new indexed
4092/// load / store effectively and all of its uses are redirected to the
4093/// new load / store.
4094bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
4095  if (!AfterLegalize)
4096    return false;
4097
4098  bool isLoad = true;
4099  SDOperand Ptr;
4100  MVT::ValueType VT;
4101  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
4102    if (LD->isIndexed())
4103      return false;
4104    VT = LD->getMemoryVT();
4105    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
4106        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
4107      return false;
4108    Ptr = LD->getBasePtr();
4109  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
4110    if (ST->isIndexed())
4111      return false;
4112    VT = ST->getMemoryVT();
4113    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
4114        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
4115      return false;
4116    Ptr = ST->getBasePtr();
4117    isLoad = false;
4118  } else
4119    return false;
4120
4121  if (Ptr.Val->hasOneUse())
4122    return false;
4123
4124  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
4125         E = Ptr.Val->use_end(); I != E; ++I) {
4126    SDNode *Op = *I;
4127    if (Op == N ||
4128        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
4129      continue;
4130
4131    SDOperand BasePtr;
4132    SDOperand Offset;
4133    ISD::MemIndexedMode AM = ISD::UNINDEXED;
4134    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
4135      if (Ptr == Offset)
4136        std::swap(BasePtr, Offset);
4137      if (Ptr != BasePtr)
4138        continue;
4139      // Don't create a indexed load / store with zero offset.
4140      if (isa<ConstantSDNode>(Offset) &&
4141          cast<ConstantSDNode>(Offset)->getValue() == 0)
4142        continue;
4143
4144      // Try turning it into a post-indexed load / store except when
4145      // 1) All uses are load / store ops that use it as base ptr.
4146      // 2) Op must be independent of N, i.e. Op is neither a predecessor
4147      //    nor a successor of N. Otherwise, if Op is folded that would
4148      //    create a cycle.
4149
4150      // Check for #1.
4151      bool TryNext = false;
4152      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
4153             EE = BasePtr.Val->use_end(); II != EE; ++II) {
4154        SDNode *Use = *II;
4155        if (Use == Ptr.Val)
4156          continue;
4157
4158        // If all the uses are load / store addresses, then don't do the
4159        // transformation.
4160        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
4161          bool RealUse = false;
4162          for (SDNode::use_iterator III = Use->use_begin(),
4163                 EEE = Use->use_end(); III != EEE; ++III) {
4164            SDNode *UseUse = *III;
4165            if (!((UseUse->getOpcode() == ISD::LOAD &&
4166                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
4167                  (UseUse->getOpcode() == ISD::STORE &&
4168                   cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use)))
4169              RealUse = true;
4170          }
4171
4172          if (!RealUse) {
4173            TryNext = true;
4174            break;
4175          }
4176        }
4177      }
4178      if (TryNext)
4179        continue;
4180
4181      // Check for #2
4182      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
4183        SDOperand Result = isLoad
4184          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4185          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4186        ++PostIndexedNodes;
4187        ++NodesCombined;
4188        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4189        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4190        DOUT << '\n';
4191        WorkListRemover DeadNodes(*this);
4192        if (isLoad) {
4193          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4194                                        &DeadNodes);
4195          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4196                                        &DeadNodes);
4197        } else {
4198          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4199                                        &DeadNodes);
4200        }
4201
4202        // Finally, since the node is now dead, remove it from the graph.
4203        DAG.DeleteNode(N);
4204
4205        // Replace the uses of Use with uses of the updated base value.
4206        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4207                                      Result.getValue(isLoad ? 1 : 0),
4208                                      &DeadNodes);
4209        removeFromWorkList(Op);
4210        DAG.DeleteNode(Op);
4211        return true;
4212      }
4213    }
4214  }
4215  return false;
4216}
4217
4218/// InferAlignment - If we can infer some alignment information from this
4219/// pointer, return it.
4220static unsigned InferAlignment(SDOperand Ptr, SelectionDAG &DAG) {
4221  // If this is a direct reference to a stack slot, use information about the
4222  // stack slot's alignment.
4223  int FrameIdx = 1 << 31;
4224  int64_t FrameOffset = 0;
4225  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
4226    FrameIdx = FI->getIndex();
4227  } else if (Ptr.getOpcode() == ISD::ADD &&
4228             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4229             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4230    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4231    FrameOffset = Ptr.getConstantOperandVal(1);
4232  }
4233
4234  if (FrameIdx != (1 << 31)) {
4235    // FIXME: Handle FI+CST.
4236    const MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
4237    if (MFI.isFixedObjectIndex(FrameIdx)) {
4238      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx);
4239
4240      // The alignment of the frame index can be determined from its offset from
4241      // the incoming frame position.  If the frame object is at offset 32 and
4242      // the stack is guaranteed to be 16-byte aligned, then we know that the
4243      // object is 16-byte aligned.
4244      unsigned StackAlign = DAG.getTarget().getFrameInfo()->getStackAlignment();
4245      unsigned Align = MinAlign(ObjectOffset, StackAlign);
4246
4247      // Finally, the frame object itself may have a known alignment.  Factor
4248      // the alignment + offset into a new alignment.  For example, if we know
4249      // the  FI is 8 byte aligned, but the pointer is 4 off, we really have a
4250      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
4251      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
4252      unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
4253                                      FrameOffset);
4254      return std::max(Align, FIInfoAlign);
4255    }
4256  }
4257
4258  return 0;
4259}
4260
4261SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4262  LoadSDNode *LD  = cast<LoadSDNode>(N);
4263  SDOperand Chain = LD->getChain();
4264  SDOperand Ptr   = LD->getBasePtr();
4265
4266  // Try to infer better alignment information than the load already has.
4267  if (LD->isUnindexed()) {
4268    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4269      if (Align > LD->getAlignment())
4270        return DAG.getExtLoad(LD->getExtensionType(), LD->getValueType(0),
4271                              Chain, Ptr, LD->getSrcValue(),
4272                              LD->getSrcValueOffset(), LD->getMemoryVT(),
4273                              LD->isVolatile(), Align);
4274    }
4275  }
4276
4277
4278  // If load is not volatile and there are no uses of the loaded value (and
4279  // the updated indexed value in case of indexed loads), change uses of the
4280  // chain value into uses of the chain input (i.e. delete the dead load).
4281  if (!LD->isVolatile()) {
4282    if (N->getValueType(1) == MVT::Other) {
4283      // Unindexed loads.
4284      if (N->hasNUsesOfValue(0, 0)) {
4285        // It's not safe to use the two value CombineTo variant here. e.g.
4286        // v1, chain2 = load chain1, loc
4287        // v2, chain3 = load chain2, loc
4288        // v3         = add v2, c
4289        // Now we replace use of chain2 with chain1.  This makes the second load
4290        // isomorphic to the one we are deleting, and thus makes this load live.
4291        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4292        DOUT << "\nWith chain: "; DEBUG(Chain.Val->dump(&DAG));
4293        DOUT << "\n";
4294        WorkListRemover DeadNodes(*this);
4295        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &DeadNodes);
4296        if (N->use_empty()) {
4297          removeFromWorkList(N);
4298          DAG.DeleteNode(N);
4299        }
4300        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4301      }
4302    } else {
4303      // Indexed loads.
4304      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4305      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4306        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4307        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4308        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4309        DOUT << " and 2 other values\n";
4310        WorkListRemover DeadNodes(*this);
4311        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &DeadNodes);
4312        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4313                                    DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4314                                      &DeadNodes);
4315        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &DeadNodes);
4316        removeFromWorkList(N);
4317        DAG.DeleteNode(N);
4318        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4319      }
4320    }
4321  }
4322
4323  // If this load is directly stored, replace the load value with the stored
4324  // value.
4325  // TODO: Handle store large -> read small portion.
4326  // TODO: Handle TRUNCSTORE/LOADEXT
4327  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4328    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4329      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4330      if (PrevST->getBasePtr() == Ptr &&
4331          PrevST->getValue().getValueType() == N->getValueType(0))
4332      return CombineTo(N, Chain.getOperand(1), Chain);
4333    }
4334  }
4335
4336  if (CombinerAA) {
4337    // Walk up chain skipping non-aliasing memory nodes.
4338    SDOperand BetterChain = FindBetterChain(N, Chain);
4339
4340    // If there is a better chain.
4341    if (Chain != BetterChain) {
4342      SDOperand ReplLoad;
4343
4344      // Replace the chain to void dependency.
4345      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4346        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4347                               LD->getSrcValue(), LD->getSrcValueOffset(),
4348                               LD->isVolatile(), LD->getAlignment());
4349      } else {
4350        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4351                                  LD->getValueType(0),
4352                                  BetterChain, Ptr, LD->getSrcValue(),
4353                                  LD->getSrcValueOffset(),
4354                                  LD->getMemoryVT(),
4355                                  LD->isVolatile(),
4356                                  LD->getAlignment());
4357      }
4358
4359      // Create token factor to keep old chain connected.
4360      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4361                                    Chain, ReplLoad.getValue(1));
4362
4363      // Replace uses with load result and token factor. Don't add users
4364      // to work list.
4365      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4366    }
4367  }
4368
4369  // Try transforming N to an indexed load.
4370  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4371    return SDOperand(N, 0);
4372
4373  return SDOperand();
4374}
4375
4376
4377SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4378  StoreSDNode *ST  = cast<StoreSDNode>(N);
4379  SDOperand Chain = ST->getChain();
4380  SDOperand Value = ST->getValue();
4381  SDOperand Ptr   = ST->getBasePtr();
4382
4383  // Try to infer better alignment information than the store already has.
4384  if (ST->isUnindexed()) {
4385    if (unsigned Align = InferAlignment(Ptr, DAG)) {
4386      if (Align > ST->getAlignment())
4387        return DAG.getTruncStore(Chain, Value, Ptr, ST->getSrcValue(),
4388                                 ST->getSrcValueOffset(), ST->getMemoryVT(),
4389                                 ST->isVolatile(), Align);
4390    }
4391  }
4392
4393  // If this is a store of a bit convert, store the input value if the
4394  // resultant store does not need a higher alignment than the original.
4395  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4396      ST->isUnindexed()) {
4397    unsigned Align = ST->getAlignment();
4398    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4399    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4400      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4401    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4402      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4403                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4404  }
4405
4406  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4407  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4408    if (Value.getOpcode() != ISD::TargetConstantFP) {
4409      SDOperand Tmp;
4410      switch (CFP->getValueType(0)) {
4411      default: assert(0 && "Unknown FP type");
4412      case MVT::f80:    // We don't do this for these yet.
4413      case MVT::f128:
4414      case MVT::ppcf128:
4415        break;
4416      case MVT::f32:
4417        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4418          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4419                              convertToAPInt().getZExtValue(), MVT::i32);
4420          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4421                              ST->getSrcValueOffset(), ST->isVolatile(),
4422                              ST->getAlignment());
4423        }
4424        break;
4425      case MVT::f64:
4426        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4427          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4428                                  getZExtValue(), MVT::i64);
4429          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4430                              ST->getSrcValueOffset(), ST->isVolatile(),
4431                              ST->getAlignment());
4432        } else if (TLI.isTypeLegal(MVT::i32)) {
4433          // Many FP stores are not made apparent until after legalize, e.g. for
4434          // argument passing.  Since this is so common, custom legalize the
4435          // 64-bit integer store into two 32-bit stores.
4436          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4437          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4438          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4439          if (TLI.isBigEndian()) std::swap(Lo, Hi);
4440
4441          int SVOffset = ST->getSrcValueOffset();
4442          unsigned Alignment = ST->getAlignment();
4443          bool isVolatile = ST->isVolatile();
4444
4445          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4446                                       ST->getSrcValueOffset(),
4447                                       isVolatile, ST->getAlignment());
4448          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4449                            DAG.getConstant(4, Ptr.getValueType()));
4450          SVOffset += 4;
4451          Alignment = MinAlign(Alignment, 4U);
4452          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4453                                       SVOffset, isVolatile, Alignment);
4454          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4455        }
4456        break;
4457      }
4458    }
4459  }
4460
4461  if (CombinerAA) {
4462    // Walk up chain skipping non-aliasing memory nodes.
4463    SDOperand BetterChain = FindBetterChain(N, Chain);
4464
4465    // If there is a better chain.
4466    if (Chain != BetterChain) {
4467      // Replace the chain to avoid dependency.
4468      SDOperand ReplStore;
4469      if (ST->isTruncatingStore()) {
4470        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4471                                      ST->getSrcValue(),ST->getSrcValueOffset(),
4472                                      ST->getMemoryVT(),
4473                                      ST->isVolatile(), ST->getAlignment());
4474      } else {
4475        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4476                                 ST->getSrcValue(), ST->getSrcValueOffset(),
4477                                 ST->isVolatile(), ST->getAlignment());
4478      }
4479
4480      // Create token to keep both nodes around.
4481      SDOperand Token =
4482        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4483
4484      // Don't add users to work list.
4485      return CombineTo(N, Token, false);
4486    }
4487  }
4488
4489  // Try transforming N to an indexed store.
4490  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4491    return SDOperand(N, 0);
4492
4493  // FIXME: is there such a thing as a truncating indexed store?
4494  if (ST->isTruncatingStore() && ST->isUnindexed() &&
4495      MVT::isInteger(Value.getValueType())) {
4496    // See if we can simplify the input to this truncstore with knowledge that
4497    // only the low bits are being used.  For example:
4498    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4499    SDOperand Shorter =
4500      GetDemandedBits(Value,
4501                 APInt::getLowBitsSet(Value.getValueSizeInBits(),
4502                                      MVT::getSizeInBits(ST->getMemoryVT())));
4503    AddToWorkList(Value.Val);
4504    if (Shorter.Val)
4505      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4506                               ST->getSrcValueOffset(), ST->getMemoryVT(),
4507                               ST->isVolatile(), ST->getAlignment());
4508
4509    // Otherwise, see if we can simplify the operation with
4510    // SimplifyDemandedBits, which only works if the value has a single use.
4511    if (SimplifyDemandedBits(Value,
4512                             APInt::getLowBitsSet(
4513                               Value.getValueSizeInBits(),
4514                               MVT::getSizeInBits(ST->getMemoryVT()))))
4515      return SDOperand(N, 0);
4516  }
4517
4518  // If this is a load followed by a store to the same location, then the store
4519  // is dead/noop.
4520  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4521    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
4522        ST->isUnindexed() && !ST->isVolatile() &&
4523        // There can't be any side effects between the load and store, such as
4524        // a call or store.
4525        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4526      // The store is dead, remove it.
4527      return Chain;
4528    }
4529  }
4530
4531  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
4532  // truncating store.  We can do this even if this is already a truncstore.
4533  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
4534      && TLI.isTypeLegal(Value.getOperand(0).getValueType()) &&
4535      Value.Val->hasOneUse() && ST->isUnindexed() &&
4536      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
4537                            ST->getMemoryVT())) {
4538    return DAG.getTruncStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4539                             ST->getSrcValueOffset(), ST->getMemoryVT(),
4540                             ST->isVolatile(), ST->getAlignment());
4541  }
4542
4543  return SDOperand();
4544}
4545
4546SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4547  SDOperand InVec = N->getOperand(0);
4548  SDOperand InVal = N->getOperand(1);
4549  SDOperand EltNo = N->getOperand(2);
4550
4551  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4552  // vector with the inserted element.
4553  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4554    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4555    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4556    if (Elt < Ops.size())
4557      Ops[Elt] = InVal;
4558    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4559                       &Ops[0], Ops.size());
4560  }
4561
4562  return SDOperand();
4563}
4564
4565SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4566  SDOperand InVec = N->getOperand(0);
4567  SDOperand EltNo = N->getOperand(1);
4568
4569  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4570  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4571  if (isa<ConstantSDNode>(EltNo)) {
4572    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4573    bool NewLoad = false;
4574    if (Elt == 0) {
4575      MVT::ValueType VT = InVec.getValueType();
4576      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4577      MVT::ValueType LVT = EVT;
4578      unsigned NumElts = MVT::getVectorNumElements(VT);
4579      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4580        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4581        if (!MVT::isVector(BCVT) ||
4582            NumElts != MVT::getVectorNumElements(BCVT))
4583          return SDOperand();
4584        InVec = InVec.getOperand(0);
4585        EVT = MVT::getVectorElementType(BCVT);
4586        NewLoad = true;
4587      }
4588      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4589          InVec.getOperand(0).getValueType() == EVT &&
4590          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4591          InVec.getOperand(0).hasOneUse()) {
4592        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4593        unsigned Align = LN0->getAlignment();
4594        if (NewLoad) {
4595          // Check the resultant load doesn't need a higher alignment than the
4596          // original load.
4597          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4598            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4599          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4600            return SDOperand();
4601          Align = NewAlign;
4602        }
4603
4604        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4605                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4606                           LN0->isVolatile(), Align);
4607      }
4608    }
4609  }
4610  return SDOperand();
4611}
4612
4613
4614SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4615  unsigned NumInScalars = N->getNumOperands();
4616  MVT::ValueType VT = N->getValueType(0);
4617  unsigned NumElts = MVT::getVectorNumElements(VT);
4618  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4619
4620  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4621  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4622  // at most two distinct vectors, turn this into a shuffle node.
4623  SDOperand VecIn1, VecIn2;
4624  for (unsigned i = 0; i != NumInScalars; ++i) {
4625    // Ignore undef inputs.
4626    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4627
4628    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4629    // constant index, bail out.
4630    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4631        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4632      VecIn1 = VecIn2 = SDOperand(0, 0);
4633      break;
4634    }
4635
4636    // If the input vector type disagrees with the result of the build_vector,
4637    // we can't make a shuffle.
4638    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4639    if (ExtractedFromVec.getValueType() != VT) {
4640      VecIn1 = VecIn2 = SDOperand(0, 0);
4641      break;
4642    }
4643
4644    // Otherwise, remember this.  We allow up to two distinct input vectors.
4645    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4646      continue;
4647
4648    if (VecIn1.Val == 0) {
4649      VecIn1 = ExtractedFromVec;
4650    } else if (VecIn2.Val == 0) {
4651      VecIn2 = ExtractedFromVec;
4652    } else {
4653      // Too many inputs.
4654      VecIn1 = VecIn2 = SDOperand(0, 0);
4655      break;
4656    }
4657  }
4658
4659  // If everything is good, we can make a shuffle operation.
4660  if (VecIn1.Val) {
4661    SmallVector<SDOperand, 8> BuildVecIndices;
4662    for (unsigned i = 0; i != NumInScalars; ++i) {
4663      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4664        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4665        continue;
4666      }
4667
4668      SDOperand Extract = N->getOperand(i);
4669
4670      // If extracting from the first vector, just use the index directly.
4671      if (Extract.getOperand(0) == VecIn1) {
4672        BuildVecIndices.push_back(Extract.getOperand(1));
4673        continue;
4674      }
4675
4676      // Otherwise, use InIdx + VecSize
4677      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4678      BuildVecIndices.push_back(DAG.getIntPtrConstant(Idx+NumInScalars));
4679    }
4680
4681    // Add count and size info.
4682    MVT::ValueType BuildVecVT = MVT::getVectorType(TLI.getPointerTy(), NumElts);
4683
4684    // Return the new VECTOR_SHUFFLE node.
4685    SDOperand Ops[5];
4686    Ops[0] = VecIn1;
4687    if (VecIn2.Val) {
4688      Ops[1] = VecIn2;
4689    } else {
4690      // Use an undef build_vector as input for the second operand.
4691      std::vector<SDOperand> UnOps(NumInScalars,
4692                                   DAG.getNode(ISD::UNDEF,
4693                                               EltType));
4694      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4695                           &UnOps[0], UnOps.size());
4696      AddToWorkList(Ops[1].Val);
4697    }
4698    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4699                         &BuildVecIndices[0], BuildVecIndices.size());
4700    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4701  }
4702
4703  return SDOperand();
4704}
4705
4706SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4707  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4708  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4709  // inputs come from at most two distinct vectors, turn this into a shuffle
4710  // node.
4711
4712  // If we only have one input vector, we don't need to do any concatenation.
4713  if (N->getNumOperands() == 1) {
4714    return N->getOperand(0);
4715  }
4716
4717  return SDOperand();
4718}
4719
4720SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4721  SDOperand ShufMask = N->getOperand(2);
4722  unsigned NumElts = ShufMask.getNumOperands();
4723
4724  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4725  bool isIdentity = true;
4726  for (unsigned i = 0; i != NumElts; ++i) {
4727    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4728        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4729      isIdentity = false;
4730      break;
4731    }
4732  }
4733  if (isIdentity) return N->getOperand(0);
4734
4735  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4736  isIdentity = true;
4737  for (unsigned i = 0; i != NumElts; ++i) {
4738    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4739        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4740      isIdentity = false;
4741      break;
4742    }
4743  }
4744  if (isIdentity) return N->getOperand(1);
4745
4746  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4747  // needed at all.
4748  bool isUnary = true;
4749  bool isSplat = true;
4750  int VecNum = -1;
4751  unsigned BaseIdx = 0;
4752  for (unsigned i = 0; i != NumElts; ++i)
4753    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4754      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4755      int V = (Idx < NumElts) ? 0 : 1;
4756      if (VecNum == -1) {
4757        VecNum = V;
4758        BaseIdx = Idx;
4759      } else {
4760        if (BaseIdx != Idx)
4761          isSplat = false;
4762        if (VecNum != V) {
4763          isUnary = false;
4764          break;
4765        }
4766      }
4767    }
4768
4769  SDOperand N0 = N->getOperand(0);
4770  SDOperand N1 = N->getOperand(1);
4771  // Normalize unary shuffle so the RHS is undef.
4772  if (isUnary && VecNum == 1)
4773    std::swap(N0, N1);
4774
4775  // If it is a splat, check if the argument vector is a build_vector with
4776  // all scalar elements the same.
4777  if (isSplat) {
4778    SDNode *V = N0.Val;
4779
4780    // If this is a bit convert that changes the element type of the vector but
4781    // not the number of vector elements, look through it.  Be careful not to
4782    // look though conversions that change things like v4f32 to v2f64.
4783    if (V->getOpcode() == ISD::BIT_CONVERT) {
4784      SDOperand ConvInput = V->getOperand(0);
4785      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4786        V = ConvInput.Val;
4787    }
4788
4789    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4790      unsigned NumElems = V->getNumOperands();
4791      if (NumElems > BaseIdx) {
4792        SDOperand Base;
4793        bool AllSame = true;
4794        for (unsigned i = 0; i != NumElems; ++i) {
4795          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4796            Base = V->getOperand(i);
4797            break;
4798          }
4799        }
4800        // Splat of <u, u, u, u>, return <u, u, u, u>
4801        if (!Base.Val)
4802          return N0;
4803        for (unsigned i = 0; i != NumElems; ++i) {
4804          if (V->getOperand(i) != Base) {
4805            AllSame = false;
4806            break;
4807          }
4808        }
4809        // Splat of <x, x, x, x>, return <x, x, x, x>
4810        if (AllSame)
4811          return N0;
4812      }
4813    }
4814  }
4815
4816  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4817  // into an undef.
4818  if (isUnary || N0 == N1) {
4819    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4820    // first operand.
4821    SmallVector<SDOperand, 8> MappedOps;
4822    for (unsigned i = 0; i != NumElts; ++i) {
4823      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4824          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4825        MappedOps.push_back(ShufMask.getOperand(i));
4826      } else {
4827        unsigned NewIdx =
4828          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4829        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4830      }
4831    }
4832    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4833                           &MappedOps[0], MappedOps.size());
4834    AddToWorkList(ShufMask.Val);
4835    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4836                       N0,
4837                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4838                       ShufMask);
4839  }
4840
4841  return SDOperand();
4842}
4843
4844/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4845/// an AND to a vector_shuffle with the destination vector and a zero vector.
4846/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4847///      vector_shuffle V, Zero, <0, 4, 2, 4>
4848SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4849  SDOperand LHS = N->getOperand(0);
4850  SDOperand RHS = N->getOperand(1);
4851  if (N->getOpcode() == ISD::AND) {
4852    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4853      RHS = RHS.getOperand(0);
4854    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4855      std::vector<SDOperand> IdxOps;
4856      unsigned NumOps = RHS.getNumOperands();
4857      unsigned NumElts = NumOps;
4858      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4859      for (unsigned i = 0; i != NumElts; ++i) {
4860        SDOperand Elt = RHS.getOperand(i);
4861        if (!isa<ConstantSDNode>(Elt))
4862          return SDOperand();
4863        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4864          IdxOps.push_back(DAG.getConstant(i, EVT));
4865        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4866          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4867        else
4868          return SDOperand();
4869      }
4870
4871      // Let's see if the target supports this vector_shuffle.
4872      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4873        return SDOperand();
4874
4875      // Return the new VECTOR_SHUFFLE node.
4876      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4877      std::vector<SDOperand> Ops;
4878      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4879      Ops.push_back(LHS);
4880      AddToWorkList(LHS.Val);
4881      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4882      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4883                                &ZeroOps[0], ZeroOps.size()));
4884      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4885                                &IdxOps[0], IdxOps.size()));
4886      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4887                                     &Ops[0], Ops.size());
4888      if (VT != LHS.getValueType()) {
4889        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4890      }
4891      return Result;
4892    }
4893  }
4894  return SDOperand();
4895}
4896
4897/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4898SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4899  // After legalize, the target may be depending on adds and other
4900  // binary ops to provide legal ways to construct constants or other
4901  // things. Simplifying them may result in a loss of legality.
4902  if (AfterLegalize) return SDOperand();
4903
4904  MVT::ValueType VT = N->getValueType(0);
4905  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4906
4907  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4908  SDOperand LHS = N->getOperand(0);
4909  SDOperand RHS = N->getOperand(1);
4910  SDOperand Shuffle = XformToShuffleWithZero(N);
4911  if (Shuffle.Val) return Shuffle;
4912
4913  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4914  // this operation.
4915  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4916      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4917    SmallVector<SDOperand, 8> Ops;
4918    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4919      SDOperand LHSOp = LHS.getOperand(i);
4920      SDOperand RHSOp = RHS.getOperand(i);
4921      // If these two elements can't be folded, bail out.
4922      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4923           LHSOp.getOpcode() != ISD::Constant &&
4924           LHSOp.getOpcode() != ISD::ConstantFP) ||
4925          (RHSOp.getOpcode() != ISD::UNDEF &&
4926           RHSOp.getOpcode() != ISD::Constant &&
4927           RHSOp.getOpcode() != ISD::ConstantFP))
4928        break;
4929      // Can't fold divide by zero.
4930      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4931          N->getOpcode() == ISD::FDIV) {
4932        if ((RHSOp.getOpcode() == ISD::Constant &&
4933             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4934            (RHSOp.getOpcode() == ISD::ConstantFP &&
4935             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4936          break;
4937      }
4938      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4939      AddToWorkList(Ops.back().Val);
4940      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4941              Ops.back().getOpcode() == ISD::Constant ||
4942              Ops.back().getOpcode() == ISD::ConstantFP) &&
4943             "Scalar binop didn't fold!");
4944    }
4945
4946    if (Ops.size() == LHS.getNumOperands()) {
4947      MVT::ValueType VT = LHS.getValueType();
4948      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4949    }
4950  }
4951
4952  return SDOperand();
4953}
4954
4955SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4956  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4957
4958  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4959                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4960  // If we got a simplified select_cc node back from SimplifySelectCC, then
4961  // break it down into a new SETCC node, and a new SELECT node, and then return
4962  // the SELECT node, since we were called with a SELECT node.
4963  if (SCC.Val) {
4964    // Check to see if we got a select_cc back (to turn into setcc/select).
4965    // Otherwise, just return whatever node we got back, like fabs.
4966    if (SCC.getOpcode() == ISD::SELECT_CC) {
4967      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4968                                    SCC.getOperand(0), SCC.getOperand(1),
4969                                    SCC.getOperand(4));
4970      AddToWorkList(SETCC.Val);
4971      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4972                         SCC.getOperand(3), SETCC);
4973    }
4974    return SCC;
4975  }
4976  return SDOperand();
4977}
4978
4979/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4980/// are the two values being selected between, see if we can simplify the
4981/// select.  Callers of this should assume that TheSelect is deleted if this
4982/// returns true.  As such, they should return the appropriate thing (e.g. the
4983/// node) back to the top-level of the DAG combiner loop to avoid it being
4984/// looked at.
4985///
4986bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4987                                    SDOperand RHS) {
4988
4989  // If this is a select from two identical things, try to pull the operation
4990  // through the select.
4991  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4992    // If this is a load and the token chain is identical, replace the select
4993    // of two loads with a load through a select of the address to load from.
4994    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4995    // constants have been dropped into the constant pool.
4996    if (LHS.getOpcode() == ISD::LOAD &&
4997        // Token chains must be identical.
4998        LHS.getOperand(0) == RHS.getOperand(0)) {
4999      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
5000      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
5001
5002      // If this is an EXTLOAD, the VT's must match.
5003      if (LLD->getMemoryVT() == RLD->getMemoryVT()) {
5004        // FIXME: this conflates two src values, discarding one.  This is not
5005        // the right thing to do, but nothing uses srcvalues now.  When they do,
5006        // turn SrcValue into a list of locations.
5007        SDOperand Addr;
5008        if (TheSelect->getOpcode() == ISD::SELECT) {
5009          // Check that the condition doesn't reach either load.  If so, folding
5010          // this will induce a cycle into the DAG.
5011          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
5012              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
5013            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
5014                               TheSelect->getOperand(0), LLD->getBasePtr(),
5015                               RLD->getBasePtr());
5016          }
5017        } else {
5018          // Check that the condition doesn't reach either load.  If so, folding
5019          // this will induce a cycle into the DAG.
5020          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
5021              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
5022              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
5023              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
5024            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
5025                             TheSelect->getOperand(0),
5026                             TheSelect->getOperand(1),
5027                             LLD->getBasePtr(), RLD->getBasePtr(),
5028                             TheSelect->getOperand(4));
5029          }
5030        }
5031
5032        if (Addr.Val) {
5033          SDOperand Load;
5034          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
5035            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
5036                               Addr,LLD->getSrcValue(),
5037                               LLD->getSrcValueOffset(),
5038                               LLD->isVolatile(),
5039                               LLD->getAlignment());
5040          else {
5041            Load = DAG.getExtLoad(LLD->getExtensionType(),
5042                                  TheSelect->getValueType(0),
5043                                  LLD->getChain(), Addr, LLD->getSrcValue(),
5044                                  LLD->getSrcValueOffset(),
5045                                  LLD->getMemoryVT(),
5046                                  LLD->isVolatile(),
5047                                  LLD->getAlignment());
5048          }
5049          // Users of the select now use the result of the load.
5050          CombineTo(TheSelect, Load);
5051
5052          // Users of the old loads now use the new load's chain.  We know the
5053          // old-load value is dead now.
5054          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
5055          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
5056          return true;
5057        }
5058      }
5059    }
5060  }
5061
5062  return false;
5063}
5064
5065SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
5066                                        SDOperand N2, SDOperand N3,
5067                                        ISD::CondCode CC, bool NotExtCompare) {
5068
5069  MVT::ValueType VT = N2.getValueType();
5070  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
5071  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
5072  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
5073
5074  // Determine if the condition we're dealing with is constant
5075  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
5076  if (SCC.Val) AddToWorkList(SCC.Val);
5077  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
5078
5079  // fold select_cc true, x, y -> x
5080  if (SCCC && SCCC->getValue())
5081    return N2;
5082  // fold select_cc false, x, y -> y
5083  if (SCCC && SCCC->getValue() == 0)
5084    return N3;
5085
5086  // Check to see if we can simplify the select into an fabs node
5087  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
5088    // Allow either -0.0 or 0.0
5089    if (CFP->getValueAPF().isZero()) {
5090      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
5091      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
5092          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
5093          N2 == N3.getOperand(0))
5094        return DAG.getNode(ISD::FABS, VT, N0);
5095
5096      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
5097      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
5098          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
5099          N2.getOperand(0) == N3)
5100        return DAG.getNode(ISD::FABS, VT, N3);
5101    }
5102  }
5103
5104  // Check to see if we can perform the "gzip trick", transforming
5105  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
5106  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
5107      MVT::isInteger(N0.getValueType()) &&
5108      MVT::isInteger(N2.getValueType()) &&
5109      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
5110       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
5111    MVT::ValueType XType = N0.getValueType();
5112    MVT::ValueType AType = N2.getValueType();
5113    if (XType >= AType) {
5114      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
5115      // single-bit constant.
5116      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
5117        unsigned ShCtV = Log2_64(N2C->getValue());
5118        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
5119        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
5120        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
5121        AddToWorkList(Shift.Val);
5122        if (XType > AType) {
5123          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5124          AddToWorkList(Shift.Val);
5125        }
5126        return DAG.getNode(ISD::AND, AType, Shift, N2);
5127      }
5128      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5129                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5130                                                    TLI.getShiftAmountTy()));
5131      AddToWorkList(Shift.Val);
5132      if (XType > AType) {
5133        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
5134        AddToWorkList(Shift.Val);
5135      }
5136      return DAG.getNode(ISD::AND, AType, Shift, N2);
5137    }
5138  }
5139
5140  // fold select C, 16, 0 -> shl C, 4
5141  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
5142      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
5143
5144    // If the caller doesn't want us to simplify this into a zext of a compare,
5145    // don't do it.
5146    if (NotExtCompare && N2C->getValue() == 1)
5147      return SDOperand();
5148
5149    // Get a SetCC of the condition
5150    // FIXME: Should probably make sure that setcc is legal if we ever have a
5151    // target where it isn't.
5152    SDOperand Temp, SCC;
5153    // cast from setcc result type to select result type
5154    if (AfterLegalize) {
5155      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5156      if (N2.getValueType() < SCC.getValueType())
5157        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
5158      else
5159        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5160    } else {
5161      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
5162      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
5163    }
5164    AddToWorkList(SCC.Val);
5165    AddToWorkList(Temp.Val);
5166
5167    if (N2C->getValue() == 1)
5168      return Temp;
5169    // shl setcc result by log2 n2c
5170    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
5171                       DAG.getConstant(Log2_64(N2C->getValue()),
5172                                       TLI.getShiftAmountTy()));
5173  }
5174
5175  // Check to see if this is the equivalent of setcc
5176  // FIXME: Turn all of these into setcc if setcc if setcc is legal
5177  // otherwise, go ahead with the folds.
5178  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
5179    MVT::ValueType XType = N0.getValueType();
5180    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
5181      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
5182      if (Res.getValueType() != VT)
5183        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
5184      return Res;
5185    }
5186
5187    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
5188    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
5189        TLI.isOperationLegal(ISD::CTLZ, XType)) {
5190      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
5191      return DAG.getNode(ISD::SRL, XType, Ctlz,
5192                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
5193                                         TLI.getShiftAmountTy()));
5194    }
5195    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
5196    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
5197      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
5198                                    N0);
5199      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
5200                                    DAG.getConstant(~0ULL, XType));
5201      return DAG.getNode(ISD::SRL, XType,
5202                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
5203                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
5204                                         TLI.getShiftAmountTy()));
5205    }
5206    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
5207    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
5208      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
5209                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
5210                                                   TLI.getShiftAmountTy()));
5211      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
5212    }
5213  }
5214
5215  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
5216  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5217  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
5218      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
5219      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
5220    MVT::ValueType XType = N0.getValueType();
5221    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5222                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
5223                                                  TLI.getShiftAmountTy()));
5224    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5225    AddToWorkList(Shift.Val);
5226    AddToWorkList(Add.Val);
5227    return DAG.getNode(ISD::XOR, XType, Add, Shift);
5228  }
5229  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
5230  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5231  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
5232      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
5233    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
5234      MVT::ValueType XType = N0.getValueType();
5235      if (SubC->isNullValue() && MVT::isInteger(XType)) {
5236        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
5237                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5238                                                      TLI.getShiftAmountTy()));
5239        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5240        AddToWorkList(Shift.Val);
5241        AddToWorkList(Add.Val);
5242        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5243      }
5244    }
5245  }
5246
5247  return SDOperand();
5248}
5249
5250/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5251SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5252                                     SDOperand N1, ISD::CondCode Cond,
5253                                     bool foldBooleans) {
5254  TargetLowering::DAGCombinerInfo
5255    DagCombineInfo(DAG, !AfterLegalize, false, this);
5256  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5257}
5258
5259/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5260/// return a DAG expression to select that will generate the same value by
5261/// multiplying by a magic number.  See:
5262/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5263SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5264  std::vector<SDNode*> Built;
5265  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5266
5267  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5268       ii != ee; ++ii)
5269    AddToWorkList(*ii);
5270  return S;
5271}
5272
5273/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5274/// return a DAG expression to select that will generate the same value by
5275/// multiplying by a magic number.  See:
5276/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5277SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5278  std::vector<SDNode*> Built;
5279  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5280
5281  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5282       ii != ee; ++ii)
5283    AddToWorkList(*ii);
5284  return S;
5285}
5286
5287/// FindBaseOffset - Return true if base is known not to alias with anything
5288/// but itself.  Provides base object and offset as results.
5289static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5290  // Assume it is a primitive operation.
5291  Base = Ptr; Offset = 0;
5292
5293  // If it's an adding a simple constant then integrate the offset.
5294  if (Base.getOpcode() == ISD::ADD) {
5295    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5296      Base = Base.getOperand(0);
5297      Offset += C->getValue();
5298    }
5299  }
5300
5301  // If it's any of the following then it can't alias with anything but itself.
5302  return isa<FrameIndexSDNode>(Base) ||
5303         isa<ConstantPoolSDNode>(Base) ||
5304         isa<GlobalAddressSDNode>(Base);
5305}
5306
5307/// isAlias - Return true if there is any possibility that the two addresses
5308/// overlap.
5309bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5310                          const Value *SrcValue1, int SrcValueOffset1,
5311                          SDOperand Ptr2, int64_t Size2,
5312                          const Value *SrcValue2, int SrcValueOffset2)
5313{
5314  // If they are the same then they must be aliases.
5315  if (Ptr1 == Ptr2) return true;
5316
5317  // Gather base node and offset information.
5318  SDOperand Base1, Base2;
5319  int64_t Offset1, Offset2;
5320  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5321  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5322
5323  // If they have a same base address then...
5324  if (Base1 == Base2) {
5325    // Check to see if the addresses overlap.
5326    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5327  }
5328
5329  // If we know both bases then they can't alias.
5330  if (KnownBase1 && KnownBase2) return false;
5331
5332  if (CombinerGlobalAA) {
5333    // Use alias analysis information.
5334    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5335    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5336    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5337    AliasAnalysis::AliasResult AAResult =
5338                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5339    if (AAResult == AliasAnalysis::NoAlias)
5340      return false;
5341  }
5342
5343  // Otherwise we have to assume they alias.
5344  return true;
5345}
5346
5347/// FindAliasInfo - Extracts the relevant alias information from the memory
5348/// node.  Returns true if the operand was a load.
5349bool DAGCombiner::FindAliasInfo(SDNode *N,
5350                        SDOperand &Ptr, int64_t &Size,
5351                        const Value *&SrcValue, int &SrcValueOffset) {
5352  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5353    Ptr = LD->getBasePtr();
5354    Size = MVT::getSizeInBits(LD->getMemoryVT()) >> 3;
5355    SrcValue = LD->getSrcValue();
5356    SrcValueOffset = LD->getSrcValueOffset();
5357    return true;
5358  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5359    Ptr = ST->getBasePtr();
5360    Size = MVT::getSizeInBits(ST->getMemoryVT()) >> 3;
5361    SrcValue = ST->getSrcValue();
5362    SrcValueOffset = ST->getSrcValueOffset();
5363  } else {
5364    assert(0 && "FindAliasInfo expected a memory operand");
5365  }
5366
5367  return false;
5368}
5369
5370/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5371/// looking for aliasing nodes and adding them to the Aliases vector.
5372void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5373                                   SmallVector<SDOperand, 8> &Aliases) {
5374  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5375  std::set<SDNode *> Visited;           // Visited node set.
5376
5377  // Get alias information for node.
5378  SDOperand Ptr;
5379  int64_t Size;
5380  const Value *SrcValue;
5381  int SrcValueOffset;
5382  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5383
5384  // Starting off.
5385  Chains.push_back(OriginalChain);
5386
5387  // Look at each chain and determine if it is an alias.  If so, add it to the
5388  // aliases list.  If not, then continue up the chain looking for the next
5389  // candidate.
5390  while (!Chains.empty()) {
5391    SDOperand Chain = Chains.back();
5392    Chains.pop_back();
5393
5394     // Don't bother if we've been before.
5395    if (Visited.find(Chain.Val) != Visited.end()) continue;
5396    Visited.insert(Chain.Val);
5397
5398    switch (Chain.getOpcode()) {
5399    case ISD::EntryToken:
5400      // Entry token is ideal chain operand, but handled in FindBetterChain.
5401      break;
5402
5403    case ISD::LOAD:
5404    case ISD::STORE: {
5405      // Get alias information for Chain.
5406      SDOperand OpPtr;
5407      int64_t OpSize;
5408      const Value *OpSrcValue;
5409      int OpSrcValueOffset;
5410      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5411                                    OpSrcValue, OpSrcValueOffset);
5412
5413      // If chain is alias then stop here.
5414      if (!(IsLoad && IsOpLoad) &&
5415          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5416                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5417        Aliases.push_back(Chain);
5418      } else {
5419        // Look further up the chain.
5420        Chains.push_back(Chain.getOperand(0));
5421        // Clean up old chain.
5422        AddToWorkList(Chain.Val);
5423      }
5424      break;
5425    }
5426
5427    case ISD::TokenFactor:
5428      // We have to check each of the operands of the token factor, so we queue
5429      // then up.  Adding the  operands to the queue (stack) in reverse order
5430      // maintains the original order and increases the likelihood that getNode
5431      // will find a matching token factor (CSE.)
5432      for (unsigned n = Chain.getNumOperands(); n;)
5433        Chains.push_back(Chain.getOperand(--n));
5434      // Eliminate the token factor if we can.
5435      AddToWorkList(Chain.Val);
5436      break;
5437
5438    default:
5439      // For all other instructions we will just have to take what we can get.
5440      Aliases.push_back(Chain);
5441      break;
5442    }
5443  }
5444}
5445
5446/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5447/// for a better chain (aliasing node.)
5448SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5449  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5450
5451  // Accumulate all the aliases to this node.
5452  GatherAllAliases(N, OldChain, Aliases);
5453
5454  if (Aliases.size() == 0) {
5455    // If no operands then chain to entry token.
5456    return DAG.getEntryNode();
5457  } else if (Aliases.size() == 1) {
5458    // If a single operand then chain to it.  We don't need to revisit it.
5459    return Aliases[0];
5460  }
5461
5462  // Construct a custom tailored token factor.
5463  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5464                                   &Aliases[0], Aliases.size());
5465
5466  // Make sure the old chain gets cleaned up.
5467  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5468
5469  return NewChain;
5470}
5471
5472// SelectionDAG::Combine - This is the entry point for the file.
5473//
5474void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5475  if (!RunningAfterLegalize && ViewDAGCombine1)
5476    viewGraph();
5477  if (RunningAfterLegalize && ViewDAGCombine2)
5478    viewGraph();
5479  /// run - This is the main entry point to this class.
5480  ///
5481  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5482}
5483