DAGCombiner.cpp revision ddc3c964657cc0be4994ddfaf056d5ec6bb11e5b
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined   , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51  static cl::opt<bool>
52    CombinerAA("combiner-alias-analysis", cl::Hidden,
53               cl::desc("Turn on alias analysis during testing"));
54
55  static cl::opt<bool>
56    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57               cl::desc("Include global information in alias analysis"));
58
59  /// Hidden option to stress test load slicing, i.e., when this option
60  /// is enabled, load slicing bypasses most of its profitability guards.
61  static cl::opt<bool>
62  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63                    cl::desc("Bypass the profitability model of load "
64                             "slicing"),
65                    cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69  class DAGCombiner {
70    SelectionDAG &DAG;
71    const TargetLowering &TLI;
72    CombineLevel Level;
73    CodeGenOpt::Level OptLevel;
74    bool LegalOperations;
75    bool LegalTypes;
76    bool ForCodeSize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    //
80    // This has the semantics that when adding to the worklist,
81    // the item added must be next to be processed. It should
82    // also only appear once. The naive approach to this takes
83    // linear time.
84    //
85    // To reduce the insert/remove time to logarithmic, we use
86    // a set and a vector to maintain our worklist.
87    //
88    // The set contains the items on the worklist, but does not
89    // maintain the order they should be visited.
90    //
91    // The vector maintains the order nodes should be visited, but may
92    // contain duplicate or removed nodes. When choosing a node to
93    // visit, we pop off the order stack until we find an item that is
94    // also in the contents set. All operations are O(log N).
95    SmallPtrSet<SDNode*, 64> WorkListContents;
96    SmallVector<SDNode*, 64> WorkListOrder;
97
98    // AA - Used for DAG load/store alias analysis.
99    AliasAnalysis &AA;
100
101    /// AddUsersToWorkList - When an instruction is simplified, add all users of
102    /// the instruction to the work lists because they might get more simplified
103    /// now.
104    ///
105    void AddUsersToWorkList(SDNode *N) {
106      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107           UI != UE; ++UI)
108        AddToWorkList(*UI);
109    }
110
111    /// visit - call the node-specific routine that knows how to fold each
112    /// particular type of node.
113    SDValue visit(SDNode *N);
114
115  public:
116    /// AddToWorkList - Add to the work list making sure its instance is at the
117    /// back (next to be processed.)
118    void AddToWorkList(SDNode *N) {
119      WorkListContents.insert(N);
120      WorkListOrder.push_back(N);
121    }
122
123    /// removeFromWorkList - remove all instances of N from the worklist.
124    ///
125    void removeFromWorkList(SDNode *N) {
126      WorkListContents.erase(N);
127    }
128
129    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130                      bool AddTo = true);
131
132    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133      return CombineTo(N, &Res, 1, AddTo);
134    }
135
136    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137                      bool AddTo = true) {
138      SDValue To[] = { Res0, Res1 };
139      return CombineTo(N, To, 2, AddTo);
140    }
141
142    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144  private:
145
146    /// SimplifyDemandedBits - Check the specified integer node value to see if
147    /// it can be simplified or if things it uses can be simplified by bit
148    /// propagation.  If so, return true.
149    bool SimplifyDemandedBits(SDValue Op) {
150      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151      APInt Demanded = APInt::getAllOnesValue(BitWidth);
152      return SimplifyDemandedBits(Op, Demanded);
153    }
154
155    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157    bool CombineToPreIndexedLoadStore(SDNode *N);
158    bool CombineToPostIndexedLoadStore(SDNode *N);
159    bool SliceUpLoad(SDNode *N);
160
161    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165    SDValue PromoteIntBinOp(SDValue Op);
166    SDValue PromoteIntShiftOp(SDValue Op);
167    SDValue PromoteExtend(SDValue Op);
168    bool PromoteLoad(SDValue Op);
169
170    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172                         ISD::NodeType ExtType);
173
174    /// combine - call the node-specific routine that knows how to fold each
175    /// particular type of node. If that doesn't do anything, try the
176    /// target-specific DAG combines.
177    SDValue combine(SDNode *N);
178
179    // Visitation implementation - Implement dag node combining for different
180    // node types.  The semantics are as follows:
181    // Return Value:
182    //   SDValue.getNode() == 0 - No change was made
183    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
184    //   otherwise              - N should be replaced by the returned Operand.
185    //
186    SDValue visitTokenFactor(SDNode *N);
187    SDValue visitMERGE_VALUES(SDNode *N);
188    SDValue visitADD(SDNode *N);
189    SDValue visitSUB(SDNode *N);
190    SDValue visitADDC(SDNode *N);
191    SDValue visitSUBC(SDNode *N);
192    SDValue visitADDE(SDNode *N);
193    SDValue visitSUBE(SDNode *N);
194    SDValue visitMUL(SDNode *N);
195    SDValue visitSDIV(SDNode *N);
196    SDValue visitUDIV(SDNode *N);
197    SDValue visitSREM(SDNode *N);
198    SDValue visitUREM(SDNode *N);
199    SDValue visitMULHU(SDNode *N);
200    SDValue visitMULHS(SDNode *N);
201    SDValue visitSMUL_LOHI(SDNode *N);
202    SDValue visitUMUL_LOHI(SDNode *N);
203    SDValue visitSMULO(SDNode *N);
204    SDValue visitUMULO(SDNode *N);
205    SDValue visitSDIVREM(SDNode *N);
206    SDValue visitUDIVREM(SDNode *N);
207    SDValue visitAND(SDNode *N);
208    SDValue visitOR(SDNode *N);
209    SDValue visitXOR(SDNode *N);
210    SDValue SimplifyVBinOp(SDNode *N);
211    SDValue SimplifyVUnaryOp(SDNode *N);
212    SDValue visitSHL(SDNode *N);
213    SDValue visitSRA(SDNode *N);
214    SDValue visitSRL(SDNode *N);
215    SDValue visitCTLZ(SDNode *N);
216    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217    SDValue visitCTTZ(SDNode *N);
218    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219    SDValue visitCTPOP(SDNode *N);
220    SDValue visitSELECT(SDNode *N);
221    SDValue visitVSELECT(SDNode *N);
222    SDValue visitSELECT_CC(SDNode *N);
223    SDValue visitSETCC(SDNode *N);
224    SDValue visitSIGN_EXTEND(SDNode *N);
225    SDValue visitZERO_EXTEND(SDNode *N);
226    SDValue visitANY_EXTEND(SDNode *N);
227    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228    SDValue visitTRUNCATE(SDNode *N);
229    SDValue visitBITCAST(SDNode *N);
230    SDValue visitBUILD_PAIR(SDNode *N);
231    SDValue visitFADD(SDNode *N);
232    SDValue visitFSUB(SDNode *N);
233    SDValue visitFMUL(SDNode *N);
234    SDValue visitFMA(SDNode *N);
235    SDValue visitFDIV(SDNode *N);
236    SDValue visitFREM(SDNode *N);
237    SDValue visitFCOPYSIGN(SDNode *N);
238    SDValue visitSINT_TO_FP(SDNode *N);
239    SDValue visitUINT_TO_FP(SDNode *N);
240    SDValue visitFP_TO_SINT(SDNode *N);
241    SDValue visitFP_TO_UINT(SDNode *N);
242    SDValue visitFP_ROUND(SDNode *N);
243    SDValue visitFP_ROUND_INREG(SDNode *N);
244    SDValue visitFP_EXTEND(SDNode *N);
245    SDValue visitFNEG(SDNode *N);
246    SDValue visitFABS(SDNode *N);
247    SDValue visitFCEIL(SDNode *N);
248    SDValue visitFTRUNC(SDNode *N);
249    SDValue visitFFLOOR(SDNode *N);
250    SDValue visitBRCOND(SDNode *N);
251    SDValue visitBR_CC(SDNode *N);
252    SDValue visitLOAD(SDNode *N);
253    SDValue visitSTORE(SDNode *N);
254    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256    SDValue visitBUILD_VECTOR(SDNode *N);
257    SDValue visitCONCAT_VECTORS(SDNode *N);
258    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259    SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261    SDValue XformToShuffleWithZero(SDNode *N);
262    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270                             SDValue N3, ISD::CondCode CC,
271                             bool NotExtCompare = false);
272    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273                          SDLoc DL, bool foldBooleans = true);
274    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275                                         unsigned HiOp);
276    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278    SDValue BuildSDIV(SDNode *N);
279    SDValue BuildUDIV(SDNode *N);
280    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281                               bool DemandHighBits = true);
282    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284    SDValue ReduceLoadWidth(SDNode *N);
285    SDValue ReduceLoadOpStoreWidth(SDNode *N);
286    SDValue TransformFPLoadStorePair(SDNode *N);
287    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293    /// looking for aliasing nodes and adding them to the Aliases vector.
294    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295                          SmallVectorImpl<SDValue> &Aliases);
296
297    /// isAlias - Return true if there is any possibility that the two addresses
298    /// overlap.
299    bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
300                 const Value *SrcValue1, int SrcValueOffset1,
301                 unsigned SrcValueAlign1,
302                 const MDNode *TBAAInfo1,
303                 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
304                 const Value *SrcValue2, int SrcValueOffset2,
305                 unsigned SrcValueAlign2,
306                 const MDNode *TBAAInfo2) const;
307
308    /// isAlias - Return true if there is any possibility that the two addresses
309    /// overlap.
310    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDValue &Ptr, int64_t &Size, bool &IsVolatile,
316                       const Value *&SrcValue, int &SrcValueOffset,
317                       unsigned &SrcValueAlignment,
318                       const MDNode *&TBAAInfo) const;
319
320    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321    /// looking for a better chain (aliasing node.)
322    SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324    /// Merge consecutive store operations into a wide store.
325    /// This optimization uses wide integers or vectors when possible.
326    /// \return True if some memory operations were changed.
327    bool MergeConsecutiveStores(StoreSDNode *N);
328
329  public:
330    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333      AttributeSet FnAttrs =
334          DAG.getMachineFunction().getFunction()->getAttributes();
335      ForCodeSize =
336          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337                               Attribute::OptimizeForSize) ||
338          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339    }
340
341    /// Run - runs the dag combiner on all nodes in the work list
342    void Run(CombineLevel AtLevel);
343
344    SelectionDAG &getDAG() const { return DAG; }
345
346    /// getShiftAmountTy - Returns a type large enough to hold any valid
347    /// shift amount - before type legalization these can be huge.
348    EVT getShiftAmountTy(EVT LHSTy) {
349      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350      if (LHSTy.isVector())
351        return LHSTy;
352      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353                        : TLI.getPointerTy();
354    }
355
356    /// isTypeLegal - This method returns true if we are running before type
357    /// legalization or if the specified VT is legal.
358    bool isTypeLegal(const EVT &VT) {
359      if (!LegalTypes) return true;
360      return TLI.isTypeLegal(VT);
361    }
362
363    /// getSetCCResultType - Convenience wrapper around
364    /// TargetLowering::getSetCCResultType
365    EVT getSetCCResultType(EVT VT) const {
366      return TLI.getSetCCResultType(*DAG.getContext(), VT);
367    }
368  };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376  DAGCombiner &DC;
377public:
378  explicit WorkListRemover(DAGCombiner &dc)
379    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381  virtual void NodeDeleted(SDNode *N, SDNode *E) {
382    DC.removeFromWorkList(N);
383  }
384};
385}
386
387//===----------------------------------------------------------------------===//
388//  TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392  ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396  ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428                               const TargetLowering &TLI,
429                               const TargetOptions *Options,
430                               unsigned Depth = 0) {
431  // fneg is removable even if it has multiple uses.
432  if (Op.getOpcode() == ISD::FNEG) return 2;
433
434  // Don't allow anything with multiple uses.
435  if (!Op.hasOneUse()) return 0;
436
437  // Don't recurse exponentially.
438  if (Depth > 6) return 0;
439
440  switch (Op.getOpcode()) {
441  default: return false;
442  case ISD::ConstantFP:
443    // Don't invert constant FP values after legalize.  The negated constant
444    // isn't necessarily legal.
445    return LegalOperations ? 0 : 1;
446  case ISD::FADD:
447    // FIXME: determine better conditions for this xform.
448    if (!Options->UnsafeFPMath) return 0;
449
450    // After operation legalization, it might not be legal to create new FSUBs.
451    if (LegalOperations &&
452        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
453      return 0;
454
455    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457                                    Options, Depth + 1))
458      return V;
459    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461                              Depth + 1);
462  case ISD::FSUB:
463    // We can't turn -(A-B) into B-A when we honor signed zeros.
464    if (!Options->UnsafeFPMath) return 0;
465
466    // fold (fneg (fsub A, B)) -> (fsub B, A)
467    return 1;
468
469  case ISD::FMUL:
470  case ISD::FDIV:
471    if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475                                    Options, Depth + 1))
476      return V;
477
478    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479                              Depth + 1);
480
481  case ISD::FP_EXTEND:
482  case ISD::FP_ROUND:
483  case ISD::FSIN:
484    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485                              Depth + 1);
486  }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492                                    bool LegalOperations, unsigned Depth = 0) {
493  // fneg is removable even if it has multiple uses.
494  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496  // Don't allow anything with multiple uses.
497  assert(Op.hasOneUse() && "Unknown reuse!");
498
499  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500  switch (Op.getOpcode()) {
501  default: llvm_unreachable("Unknown code");
502  case ISD::ConstantFP: {
503    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504    V.changeSign();
505    return DAG.getConstantFP(V, Op.getValueType());
506  }
507  case ISD::FADD:
508    // FIXME: determine better conditions for this xform.
509    assert(DAG.getTarget().Options.UnsafeFPMath);
510
511    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521                       GetNegatedExpression(Op.getOperand(1), DAG,
522                                            LegalOperations, Depth+1),
523                       Op.getOperand(0));
524  case ISD::FSUB:
525    // We can't turn -(A-B) into B-A when we honor signed zeros.
526    assert(DAG.getTarget().Options.UnsafeFPMath);
527
528    // fold (fneg (fsub 0, B)) -> B
529    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530      if (N0CFP->getValueAPF().isZero())
531        return Op.getOperand(1);
532
533    // fold (fneg (fsub A, B)) -> (fsub B, A)
534    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535                       Op.getOperand(1), Op.getOperand(0));
536
537  case ISD::FMUL:
538  case ISD::FDIV:
539    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543                           DAG.getTargetLoweringInfo(),
544                           &DAG.getTarget().Options, Depth+1))
545      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546                         GetNegatedExpression(Op.getOperand(0), DAG,
547                                              LegalOperations, Depth+1),
548                         Op.getOperand(1));
549
550    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552                       Op.getOperand(0),
553                       GetNegatedExpression(Op.getOperand(1), DAG,
554                                            LegalOperations, Depth+1));
555
556  case ISD::FP_EXTEND:
557  case ISD::FSIN:
558    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559                       GetNegatedExpression(Op.getOperand(0), DAG,
560                                            LegalOperations, Depth+1));
561  case ISD::FP_ROUND:
562      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563                         GetNegatedExpression(Op.getOperand(0), DAG,
564                                              LegalOperations, Depth+1),
565                         Op.getOperand(1));
566  }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking.  This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576                              SDValue &CC) {
577  if (N.getOpcode() == ISD::SETCC) {
578    LHS = N.getOperand(0);
579    RHS = N.getOperand(1);
580    CC  = N.getOperand(2);
581    return true;
582  }
583  if (N.getOpcode() == ISD::SELECT_CC &&
584      N.getOperand(2).getOpcode() == ISD::Constant &&
585      N.getOperand(3).getOpcode() == ISD::Constant &&
586      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588    LHS = N.getOperand(0);
589    RHS = N.getOperand(1);
590    CC  = N.getOperand(4);
591    return true;
592  }
593  return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use.  If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600  SDValue N0, N1, N2;
601  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602    return true;
603  return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607                                    SDValue N0, SDValue N1) {
608  EVT VT = N0.getValueType();
609  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610    if (isa<ConstantSDNode>(N1)) {
611      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612      SDValue OpNode =
613        DAG.FoldConstantArithmetic(Opc, VT,
614                                   cast<ConstantSDNode>(N0.getOperand(1)),
615                                   cast<ConstantSDNode>(N1));
616      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617    }
618    if (N0.hasOneUse()) {
619      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621                                   N0.getOperand(0), N1);
622      AddToWorkList(OpNode.getNode());
623      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624    }
625  }
626
627  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628    if (isa<ConstantSDNode>(N0)) {
629      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630      SDValue OpNode =
631        DAG.FoldConstantArithmetic(Opc, VT,
632                                   cast<ConstantSDNode>(N1.getOperand(1)),
633                                   cast<ConstantSDNode>(N0));
634      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635    }
636    if (N1.hasOneUse()) {
637      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639                                   N1.getOperand(0), N0);
640      AddToWorkList(OpNode.getNode());
641      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642    }
643  }
644
645  return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649                               bool AddTo) {
650  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651  ++NodesCombined;
652  DEBUG(dbgs() << "\nReplacing.1 ";
653        N->dump(&DAG);
654        dbgs() << "\nWith: ";
655        To[0].getNode()->dump(&DAG);
656        dbgs() << " and " << NumTo-1 << " other values\n";
657        for (unsigned i = 0, e = NumTo; i != e; ++i)
658          assert((!To[i].getNode() ||
659                  N->getValueType(i) == To[i].getValueType()) &&
660                 "Cannot combine value to value of different type!"));
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesWith(N, To);
663  if (AddTo) {
664    // Push the new nodes and any users onto the worklist
665    for (unsigned i = 0, e = NumTo; i != e; ++i) {
666      if (To[i].getNode()) {
667        AddToWorkList(To[i].getNode());
668        AddUsersToWorkList(To[i].getNode());
669      }
670    }
671  }
672
673  // Finally, if the node is now dead, remove it from the graph.  The node
674  // may not be dead if the replacement process recursively simplified to
675  // something else needing this node.
676  if (N->use_empty()) {
677    // Nodes can be reintroduced into the worklist.  Make sure we do not
678    // process a node that has been replaced.
679    removeFromWorkList(N);
680
681    // Finally, since the node is now dead, remove it from the graph.
682    DAG.DeleteNode(N);
683  }
684  return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689  // Replace all uses.  If any nodes become isomorphic to other nodes and
690  // are deleted, make sure to remove them from our worklist.
691  WorkListRemover DeadNodes(*this);
692  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694  // Push the new node and any (possibly new) users onto the worklist.
695  AddToWorkList(TLO.New.getNode());
696  AddUsersToWorkList(TLO.New.getNode());
697
698  // Finally, if the node is now dead, remove it from the graph.  The node
699  // may not be dead if the replacement process recursively simplified to
700  // something else needing this node.
701  if (TLO.Old.getNode()->use_empty()) {
702    removeFromWorkList(TLO.Old.getNode());
703
704    // If the operands of this node are only used by the node, they will now
705    // be dead.  Make sure to visit them first to delete dead nodes early.
706    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710    DAG.DeleteNode(TLO.Old.getNode());
711  }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation.  If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719  APInt KnownZero, KnownOne;
720  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721    return false;
722
723  // Revisit the node.
724  AddToWorkList(Op.getNode());
725
726  // Replace the old value with the new one.
727  ++NodesCombined;
728  DEBUG(dbgs() << "\nReplacing.2 ";
729        TLO.Old.getNode()->dump(&DAG);
730        dbgs() << "\nWith: ";
731        TLO.New.getNode()->dump(&DAG);
732        dbgs() << '\n');
733
734  CommitTargetLoweringOpt(TLO);
735  return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739  SDLoc dl(Load);
740  EVT VT = Load->getValueType(0);
741  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743  DEBUG(dbgs() << "\nReplacing.9 ";
744        Load->dump(&DAG);
745        dbgs() << "\nWith: ";
746        Trunc.getNode()->dump(&DAG);
747        dbgs() << '\n');
748  WorkListRemover DeadNodes(*this);
749  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751  removeFromWorkList(Load);
752  DAG.DeleteNode(Load);
753  AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757  Replace = false;
758  SDLoc dl(Op);
759  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760    EVT MemVT = LD->getMemoryVT();
761    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763                                                  : ISD::EXTLOAD)
764      : LD->getExtensionType();
765    Replace = true;
766    return DAG.getExtLoad(ExtType, dl, PVT,
767                          LD->getChain(), LD->getBasePtr(),
768                          MemVT, LD->getMemOperand());
769  }
770
771  unsigned Opc = Op.getOpcode();
772  switch (Opc) {
773  default: break;
774  case ISD::AssertSext:
775    return DAG.getNode(ISD::AssertSext, dl, PVT,
776                       SExtPromoteOperand(Op.getOperand(0), PVT),
777                       Op.getOperand(1));
778  case ISD::AssertZext:
779    return DAG.getNode(ISD::AssertZext, dl, PVT,
780                       ZExtPromoteOperand(Op.getOperand(0), PVT),
781                       Op.getOperand(1));
782  case ISD::Constant: {
783    unsigned ExtOpc =
784      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
785    return DAG.getNode(ExtOpc, dl, PVT, Op);
786  }
787  }
788
789  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
790    return SDValue();
791  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
792}
793
794SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
795  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
796    return SDValue();
797  EVT OldVT = Op.getValueType();
798  SDLoc dl(Op);
799  bool Replace = false;
800  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
801  if (NewOp.getNode() == 0)
802    return SDValue();
803  AddToWorkList(NewOp.getNode());
804
805  if (Replace)
806    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
807  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
808                     DAG.getValueType(OldVT));
809}
810
811SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
812  EVT OldVT = Op.getValueType();
813  SDLoc dl(Op);
814  bool Replace = false;
815  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
816  if (NewOp.getNode() == 0)
817    return SDValue();
818  AddToWorkList(NewOp.getNode());
819
820  if (Replace)
821    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
822  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
823}
824
825/// PromoteIntBinOp - Promote the specified integer binary operation if the
826/// target indicates it is beneficial. e.g. On x86, it's usually better to
827/// promote i16 operations to i32 since i16 instructions are longer.
828SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
829  if (!LegalOperations)
830    return SDValue();
831
832  EVT VT = Op.getValueType();
833  if (VT.isVector() || !VT.isInteger())
834    return SDValue();
835
836  // If operation type is 'undesirable', e.g. i16 on x86, consider
837  // promoting it.
838  unsigned Opc = Op.getOpcode();
839  if (TLI.isTypeDesirableForOp(Opc, VT))
840    return SDValue();
841
842  EVT PVT = VT;
843  // Consult target whether it is a good idea to promote this operation and
844  // what's the right type to promote it to.
845  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
846    assert(PVT != VT && "Don't know what type to promote to!");
847
848    bool Replace0 = false;
849    SDValue N0 = Op.getOperand(0);
850    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
851    if (NN0.getNode() == 0)
852      return SDValue();
853
854    bool Replace1 = false;
855    SDValue N1 = Op.getOperand(1);
856    SDValue NN1;
857    if (N0 == N1)
858      NN1 = NN0;
859    else {
860      NN1 = PromoteOperand(N1, PVT, Replace1);
861      if (NN1.getNode() == 0)
862        return SDValue();
863    }
864
865    AddToWorkList(NN0.getNode());
866    if (NN1.getNode())
867      AddToWorkList(NN1.getNode());
868
869    if (Replace0)
870      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
871    if (Replace1)
872      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
873
874    DEBUG(dbgs() << "\nPromoting ";
875          Op.getNode()->dump(&DAG));
876    SDLoc dl(Op);
877    return DAG.getNode(ISD::TRUNCATE, dl, VT,
878                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
879  }
880  return SDValue();
881}
882
883/// PromoteIntShiftOp - Promote the specified integer shift operation if the
884/// target indicates it is beneficial. e.g. On x86, it's usually better to
885/// promote i16 operations to i32 since i16 instructions are longer.
886SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
887  if (!LegalOperations)
888    return SDValue();
889
890  EVT VT = Op.getValueType();
891  if (VT.isVector() || !VT.isInteger())
892    return SDValue();
893
894  // If operation type is 'undesirable', e.g. i16 on x86, consider
895  // promoting it.
896  unsigned Opc = Op.getOpcode();
897  if (TLI.isTypeDesirableForOp(Opc, VT))
898    return SDValue();
899
900  EVT PVT = VT;
901  // Consult target whether it is a good idea to promote this operation and
902  // what's the right type to promote it to.
903  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
904    assert(PVT != VT && "Don't know what type to promote to!");
905
906    bool Replace = false;
907    SDValue N0 = Op.getOperand(0);
908    if (Opc == ISD::SRA)
909      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
910    else if (Opc == ISD::SRL)
911      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
912    else
913      N0 = PromoteOperand(N0, PVT, Replace);
914    if (N0.getNode() == 0)
915      return SDValue();
916
917    AddToWorkList(N0.getNode());
918    if (Replace)
919      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
920
921    DEBUG(dbgs() << "\nPromoting ";
922          Op.getNode()->dump(&DAG));
923    SDLoc dl(Op);
924    return DAG.getNode(ISD::TRUNCATE, dl, VT,
925                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
926  }
927  return SDValue();
928}
929
930SDValue DAGCombiner::PromoteExtend(SDValue Op) {
931  if (!LegalOperations)
932    return SDValue();
933
934  EVT VT = Op.getValueType();
935  if (VT.isVector() || !VT.isInteger())
936    return SDValue();
937
938  // If operation type is 'undesirable', e.g. i16 on x86, consider
939  // promoting it.
940  unsigned Opc = Op.getOpcode();
941  if (TLI.isTypeDesirableForOp(Opc, VT))
942    return SDValue();
943
944  EVT PVT = VT;
945  // Consult target whether it is a good idea to promote this operation and
946  // what's the right type to promote it to.
947  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948    assert(PVT != VT && "Don't know what type to promote to!");
949    // fold (aext (aext x)) -> (aext x)
950    // fold (aext (zext x)) -> (zext x)
951    // fold (aext (sext x)) -> (sext x)
952    DEBUG(dbgs() << "\nPromoting ";
953          Op.getNode()->dump(&DAG));
954    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
955  }
956  return SDValue();
957}
958
959bool DAGCombiner::PromoteLoad(SDValue Op) {
960  if (!LegalOperations)
961    return false;
962
963  EVT VT = Op.getValueType();
964  if (VT.isVector() || !VT.isInteger())
965    return false;
966
967  // If operation type is 'undesirable', e.g. i16 on x86, consider
968  // promoting it.
969  unsigned Opc = Op.getOpcode();
970  if (TLI.isTypeDesirableForOp(Opc, VT))
971    return false;
972
973  EVT PVT = VT;
974  // Consult target whether it is a good idea to promote this operation and
975  // what's the right type to promote it to.
976  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
977    assert(PVT != VT && "Don't know what type to promote to!");
978
979    SDLoc dl(Op);
980    SDNode *N = Op.getNode();
981    LoadSDNode *LD = cast<LoadSDNode>(N);
982    EVT MemVT = LD->getMemoryVT();
983    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
984      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
985                                                  : ISD::EXTLOAD)
986      : LD->getExtensionType();
987    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
988                                   LD->getChain(), LD->getBasePtr(),
989                                   MemVT, LD->getMemOperand());
990    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
991
992    DEBUG(dbgs() << "\nPromoting ";
993          N->dump(&DAG);
994          dbgs() << "\nTo: ";
995          Result.getNode()->dump(&DAG);
996          dbgs() << '\n');
997    WorkListRemover DeadNodes(*this);
998    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
999    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1000    removeFromWorkList(N);
1001    DAG.DeleteNode(N);
1002    AddToWorkList(Result.getNode());
1003    return true;
1004  }
1005  return false;
1006}
1007
1008
1009//===----------------------------------------------------------------------===//
1010//  Main DAG Combiner implementation
1011//===----------------------------------------------------------------------===//
1012
1013void DAGCombiner::Run(CombineLevel AtLevel) {
1014  // set the instance variables, so that the various visit routines may use it.
1015  Level = AtLevel;
1016  LegalOperations = Level >= AfterLegalizeVectorOps;
1017  LegalTypes = Level >= AfterLegalizeTypes;
1018
1019  // Add all the dag nodes to the worklist.
1020  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1021       E = DAG.allnodes_end(); I != E; ++I)
1022    AddToWorkList(I);
1023
1024  // Create a dummy node (which is not added to allnodes), that adds a reference
1025  // to the root node, preventing it from being deleted, and tracking any
1026  // changes of the root.
1027  HandleSDNode Dummy(DAG.getRoot());
1028
1029  // The root of the dag may dangle to deleted nodes until the dag combiner is
1030  // done.  Set it to null to avoid confusion.
1031  DAG.setRoot(SDValue());
1032
1033  // while the worklist isn't empty, find a node and
1034  // try and combine it.
1035  while (!WorkListContents.empty()) {
1036    SDNode *N;
1037    // The WorkListOrder holds the SDNodes in order, but it may contain
1038    // duplicates.
1039    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1040    // worklist *should* contain, and check the node we want to visit is should
1041    // actually be visited.
1042    do {
1043      N = WorkListOrder.pop_back_val();
1044    } while (!WorkListContents.erase(N));
1045
1046    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1047    // N is deleted from the DAG, since they too may now be dead or may have a
1048    // reduced number of uses, allowing other xforms.
1049    if (N->use_empty() && N != &Dummy) {
1050      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1051        AddToWorkList(N->getOperand(i).getNode());
1052
1053      DAG.DeleteNode(N);
1054      continue;
1055    }
1056
1057    SDValue RV = combine(N);
1058
1059    if (RV.getNode() == 0)
1060      continue;
1061
1062    ++NodesCombined;
1063
1064    // If we get back the same node we passed in, rather than a new node or
1065    // zero, we know that the node must have defined multiple values and
1066    // CombineTo was used.  Since CombineTo takes care of the worklist
1067    // mechanics for us, we have no work to do in this case.
1068    if (RV.getNode() == N)
1069      continue;
1070
1071    assert(N->getOpcode() != ISD::DELETED_NODE &&
1072           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1073           "Node was deleted but visit returned new node!");
1074
1075    DEBUG(dbgs() << "\nReplacing.3 ";
1076          N->dump(&DAG);
1077          dbgs() << "\nWith: ";
1078          RV.getNode()->dump(&DAG);
1079          dbgs() << '\n');
1080
1081    // Transfer debug value.
1082    DAG.TransferDbgValues(SDValue(N, 0), RV);
1083    WorkListRemover DeadNodes(*this);
1084    if (N->getNumValues() == RV.getNode()->getNumValues())
1085      DAG.ReplaceAllUsesWith(N, RV.getNode());
1086    else {
1087      assert(N->getValueType(0) == RV.getValueType() &&
1088             N->getNumValues() == 1 && "Type mismatch");
1089      SDValue OpV = RV;
1090      DAG.ReplaceAllUsesWith(N, &OpV);
1091    }
1092
1093    // Push the new node and any users onto the worklist
1094    AddToWorkList(RV.getNode());
1095    AddUsersToWorkList(RV.getNode());
1096
1097    // Add any uses of the old node to the worklist in case this node is the
1098    // last one that uses them.  They may become dead after this node is
1099    // deleted.
1100    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1101      AddToWorkList(N->getOperand(i).getNode());
1102
1103    // Finally, if the node is now dead, remove it from the graph.  The node
1104    // may not be dead if the replacement process recursively simplified to
1105    // something else needing this node.
1106    if (N->use_empty()) {
1107      // Nodes can be reintroduced into the worklist.  Make sure we do not
1108      // process a node that has been replaced.
1109      removeFromWorkList(N);
1110
1111      // Finally, since the node is now dead, remove it from the graph.
1112      DAG.DeleteNode(N);
1113    }
1114  }
1115
1116  // If the root changed (e.g. it was a dead load, update the root).
1117  DAG.setRoot(Dummy.getValue());
1118  DAG.RemoveDeadNodes();
1119}
1120
1121SDValue DAGCombiner::visit(SDNode *N) {
1122  switch (N->getOpcode()) {
1123  default: break;
1124  case ISD::TokenFactor:        return visitTokenFactor(N);
1125  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1126  case ISD::ADD:                return visitADD(N);
1127  case ISD::SUB:                return visitSUB(N);
1128  case ISD::ADDC:               return visitADDC(N);
1129  case ISD::SUBC:               return visitSUBC(N);
1130  case ISD::ADDE:               return visitADDE(N);
1131  case ISD::SUBE:               return visitSUBE(N);
1132  case ISD::MUL:                return visitMUL(N);
1133  case ISD::SDIV:               return visitSDIV(N);
1134  case ISD::UDIV:               return visitUDIV(N);
1135  case ISD::SREM:               return visitSREM(N);
1136  case ISD::UREM:               return visitUREM(N);
1137  case ISD::MULHU:              return visitMULHU(N);
1138  case ISD::MULHS:              return visitMULHS(N);
1139  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1140  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1141  case ISD::SMULO:              return visitSMULO(N);
1142  case ISD::UMULO:              return visitUMULO(N);
1143  case ISD::SDIVREM:            return visitSDIVREM(N);
1144  case ISD::UDIVREM:            return visitUDIVREM(N);
1145  case ISD::AND:                return visitAND(N);
1146  case ISD::OR:                 return visitOR(N);
1147  case ISD::XOR:                return visitXOR(N);
1148  case ISD::SHL:                return visitSHL(N);
1149  case ISD::SRA:                return visitSRA(N);
1150  case ISD::SRL:                return visitSRL(N);
1151  case ISD::CTLZ:               return visitCTLZ(N);
1152  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1153  case ISD::CTTZ:               return visitCTTZ(N);
1154  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1155  case ISD::CTPOP:              return visitCTPOP(N);
1156  case ISD::SELECT:             return visitSELECT(N);
1157  case ISD::VSELECT:            return visitVSELECT(N);
1158  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1159  case ISD::SETCC:              return visitSETCC(N);
1160  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1161  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1162  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1163  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1164  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1165  case ISD::BITCAST:            return visitBITCAST(N);
1166  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1167  case ISD::FADD:               return visitFADD(N);
1168  case ISD::FSUB:               return visitFSUB(N);
1169  case ISD::FMUL:               return visitFMUL(N);
1170  case ISD::FMA:                return visitFMA(N);
1171  case ISD::FDIV:               return visitFDIV(N);
1172  case ISD::FREM:               return visitFREM(N);
1173  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1174  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1175  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1176  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1177  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1178  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1179  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1180  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1181  case ISD::FNEG:               return visitFNEG(N);
1182  case ISD::FABS:               return visitFABS(N);
1183  case ISD::FFLOOR:             return visitFFLOOR(N);
1184  case ISD::FCEIL:              return visitFCEIL(N);
1185  case ISD::FTRUNC:             return visitFTRUNC(N);
1186  case ISD::BRCOND:             return visitBRCOND(N);
1187  case ISD::BR_CC:              return visitBR_CC(N);
1188  case ISD::LOAD:               return visitLOAD(N);
1189  case ISD::STORE:              return visitSTORE(N);
1190  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1191  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1192  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1193  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1194  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1195  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1196  }
1197  return SDValue();
1198}
1199
1200SDValue DAGCombiner::combine(SDNode *N) {
1201  SDValue RV = visit(N);
1202
1203  // If nothing happened, try a target-specific DAG combine.
1204  if (RV.getNode() == 0) {
1205    assert(N->getOpcode() != ISD::DELETED_NODE &&
1206           "Node was deleted but visit returned NULL!");
1207
1208    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1209        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1210
1211      // Expose the DAG combiner to the target combiner impls.
1212      TargetLowering::DAGCombinerInfo
1213        DagCombineInfo(DAG, Level, false, this);
1214
1215      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1216    }
1217  }
1218
1219  // If nothing happened still, try promoting the operation.
1220  if (RV.getNode() == 0) {
1221    switch (N->getOpcode()) {
1222    default: break;
1223    case ISD::ADD:
1224    case ISD::SUB:
1225    case ISD::MUL:
1226    case ISD::AND:
1227    case ISD::OR:
1228    case ISD::XOR:
1229      RV = PromoteIntBinOp(SDValue(N, 0));
1230      break;
1231    case ISD::SHL:
1232    case ISD::SRA:
1233    case ISD::SRL:
1234      RV = PromoteIntShiftOp(SDValue(N, 0));
1235      break;
1236    case ISD::SIGN_EXTEND:
1237    case ISD::ZERO_EXTEND:
1238    case ISD::ANY_EXTEND:
1239      RV = PromoteExtend(SDValue(N, 0));
1240      break;
1241    case ISD::LOAD:
1242      if (PromoteLoad(SDValue(N, 0)))
1243        RV = SDValue(N, 0);
1244      break;
1245    }
1246  }
1247
1248  // If N is a commutative binary node, try commuting it to enable more
1249  // sdisel CSE.
1250  if (RV.getNode() == 0 &&
1251      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1252      N->getNumValues() == 1) {
1253    SDValue N0 = N->getOperand(0);
1254    SDValue N1 = N->getOperand(1);
1255
1256    // Constant operands are canonicalized to RHS.
1257    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1258      SDValue Ops[] = { N1, N0 };
1259      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1260                                            Ops, 2);
1261      if (CSENode)
1262        return SDValue(CSENode, 0);
1263    }
1264  }
1265
1266  return RV;
1267}
1268
1269/// getInputChainForNode - Given a node, return its input chain if it has one,
1270/// otherwise return a null sd operand.
1271static SDValue getInputChainForNode(SDNode *N) {
1272  if (unsigned NumOps = N->getNumOperands()) {
1273    if (N->getOperand(0).getValueType() == MVT::Other)
1274      return N->getOperand(0);
1275    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1276      return N->getOperand(NumOps-1);
1277    for (unsigned i = 1; i < NumOps-1; ++i)
1278      if (N->getOperand(i).getValueType() == MVT::Other)
1279        return N->getOperand(i);
1280  }
1281  return SDValue();
1282}
1283
1284SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1285  // If N has two operands, where one has an input chain equal to the other,
1286  // the 'other' chain is redundant.
1287  if (N->getNumOperands() == 2) {
1288    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1289      return N->getOperand(0);
1290    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1291      return N->getOperand(1);
1292  }
1293
1294  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1295  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1296  SmallPtrSet<SDNode*, 16> SeenOps;
1297  bool Changed = false;             // If we should replace this token factor.
1298
1299  // Start out with this token factor.
1300  TFs.push_back(N);
1301
1302  // Iterate through token factors.  The TFs grows when new token factors are
1303  // encountered.
1304  for (unsigned i = 0; i < TFs.size(); ++i) {
1305    SDNode *TF = TFs[i];
1306
1307    // Check each of the operands.
1308    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1309      SDValue Op = TF->getOperand(i);
1310
1311      switch (Op.getOpcode()) {
1312      case ISD::EntryToken:
1313        // Entry tokens don't need to be added to the list. They are
1314        // rededundant.
1315        Changed = true;
1316        break;
1317
1318      case ISD::TokenFactor:
1319        if (Op.hasOneUse() &&
1320            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1321          // Queue up for processing.
1322          TFs.push_back(Op.getNode());
1323          // Clean up in case the token factor is removed.
1324          AddToWorkList(Op.getNode());
1325          Changed = true;
1326          break;
1327        }
1328        // Fall thru
1329
1330      default:
1331        // Only add if it isn't already in the list.
1332        if (SeenOps.insert(Op.getNode()))
1333          Ops.push_back(Op);
1334        else
1335          Changed = true;
1336        break;
1337      }
1338    }
1339  }
1340
1341  SDValue Result;
1342
1343  // If we've change things around then replace token factor.
1344  if (Changed) {
1345    if (Ops.empty()) {
1346      // The entry token is the only possible outcome.
1347      Result = DAG.getEntryNode();
1348    } else {
1349      // New and improved token factor.
1350      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1351                           MVT::Other, &Ops[0], Ops.size());
1352    }
1353
1354    // Don't add users to work list.
1355    return CombineTo(N, Result, false);
1356  }
1357
1358  return Result;
1359}
1360
1361/// MERGE_VALUES can always be eliminated.
1362SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1363  WorkListRemover DeadNodes(*this);
1364  // Replacing results may cause a different MERGE_VALUES to suddenly
1365  // be CSE'd with N, and carry its uses with it. Iterate until no
1366  // uses remain, to ensure that the node can be safely deleted.
1367  // First add the users of this node to the work list so that they
1368  // can be tried again once they have new operands.
1369  AddUsersToWorkList(N);
1370  do {
1371    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1372      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1373  } while (!N->use_empty());
1374  removeFromWorkList(N);
1375  DAG.DeleteNode(N);
1376  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1377}
1378
1379static
1380SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1381                              SelectionDAG &DAG) {
1382  EVT VT = N0.getValueType();
1383  SDValue N00 = N0.getOperand(0);
1384  SDValue N01 = N0.getOperand(1);
1385  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1386
1387  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1388      isa<ConstantSDNode>(N00.getOperand(1))) {
1389    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1390    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1391                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1392                                 N00.getOperand(0), N01),
1393                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1394                                 N00.getOperand(1), N01));
1395    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1396  }
1397
1398  return SDValue();
1399}
1400
1401SDValue DAGCombiner::visitADD(SDNode *N) {
1402  SDValue N0 = N->getOperand(0);
1403  SDValue N1 = N->getOperand(1);
1404  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1406  EVT VT = N0.getValueType();
1407
1408  // fold vector ops
1409  if (VT.isVector()) {
1410    SDValue FoldedVOp = SimplifyVBinOp(N);
1411    if (FoldedVOp.getNode()) return FoldedVOp;
1412
1413    // fold (add x, 0) -> x, vector edition
1414    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1415      return N0;
1416    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1417      return N1;
1418  }
1419
1420  // fold (add x, undef) -> undef
1421  if (N0.getOpcode() == ISD::UNDEF)
1422    return N0;
1423  if (N1.getOpcode() == ISD::UNDEF)
1424    return N1;
1425  // fold (add c1, c2) -> c1+c2
1426  if (N0C && N1C)
1427    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1428  // canonicalize constant to RHS
1429  if (N0C && !N1C)
1430    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1431  // fold (add x, 0) -> x
1432  if (N1C && N1C->isNullValue())
1433    return N0;
1434  // fold (add Sym, c) -> Sym+c
1435  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1436    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1437        GA->getOpcode() == ISD::GlobalAddress)
1438      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1439                                  GA->getOffset() +
1440                                    (uint64_t)N1C->getSExtValue());
1441  // fold ((c1-A)+c2) -> (c1+c2)-A
1442  if (N1C && N0.getOpcode() == ISD::SUB)
1443    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1444      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1445                         DAG.getConstant(N1C->getAPIntValue()+
1446                                         N0C->getAPIntValue(), VT),
1447                         N0.getOperand(1));
1448  // reassociate add
1449  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1450  if (RADD.getNode() != 0)
1451    return RADD;
1452  // fold ((0-A) + B) -> B-A
1453  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1454      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1455    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1456  // fold (A + (0-B)) -> A-B
1457  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1458      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1459    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1460  // fold (A+(B-A)) -> B
1461  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1462    return N1.getOperand(0);
1463  // fold ((B-A)+A) -> B
1464  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1465    return N0.getOperand(0);
1466  // fold (A+(B-(A+C))) to (B-C)
1467  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1468      N0 == N1.getOperand(1).getOperand(0))
1469    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1470                       N1.getOperand(1).getOperand(1));
1471  // fold (A+(B-(C+A))) to (B-C)
1472  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1473      N0 == N1.getOperand(1).getOperand(1))
1474    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1475                       N1.getOperand(1).getOperand(0));
1476  // fold (A+((B-A)+or-C)) to (B+or-C)
1477  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1478      N1.getOperand(0).getOpcode() == ISD::SUB &&
1479      N0 == N1.getOperand(0).getOperand(1))
1480    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1481                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1482
1483  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1484  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1485    SDValue N00 = N0.getOperand(0);
1486    SDValue N01 = N0.getOperand(1);
1487    SDValue N10 = N1.getOperand(0);
1488    SDValue N11 = N1.getOperand(1);
1489
1490    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1491      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1492                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1493                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1494  }
1495
1496  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1497    return SDValue(N, 0);
1498
1499  // fold (a+b) -> (a|b) iff a and b share no bits.
1500  if (VT.isInteger() && !VT.isVector()) {
1501    APInt LHSZero, LHSOne;
1502    APInt RHSZero, RHSOne;
1503    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1504
1505    if (LHSZero.getBoolValue()) {
1506      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1507
1508      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1509      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1510      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1511        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1512    }
1513  }
1514
1515  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1516  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1517    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1518    if (Result.getNode()) return Result;
1519  }
1520  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1521    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1522    if (Result.getNode()) return Result;
1523  }
1524
1525  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1526  if (N1.getOpcode() == ISD::SHL &&
1527      N1.getOperand(0).getOpcode() == ISD::SUB)
1528    if (ConstantSDNode *C =
1529          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1530      if (C->getAPIntValue() == 0)
1531        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1532                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1533                                       N1.getOperand(0).getOperand(1),
1534                                       N1.getOperand(1)));
1535  if (N0.getOpcode() == ISD::SHL &&
1536      N0.getOperand(0).getOpcode() == ISD::SUB)
1537    if (ConstantSDNode *C =
1538          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1539      if (C->getAPIntValue() == 0)
1540        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1541                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1542                                       N0.getOperand(0).getOperand(1),
1543                                       N0.getOperand(1)));
1544
1545  if (N1.getOpcode() == ISD::AND) {
1546    SDValue AndOp0 = N1.getOperand(0);
1547    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1548    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1549    unsigned DestBits = VT.getScalarType().getSizeInBits();
1550
1551    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1552    // and similar xforms where the inner op is either ~0 or 0.
1553    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1554      SDLoc DL(N);
1555      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1556    }
1557  }
1558
1559  // add (sext i1), X -> sub X, (zext i1)
1560  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1561      N0.getOperand(0).getValueType() == MVT::i1 &&
1562      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1563    SDLoc DL(N);
1564    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1565    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1566  }
1567
1568  return SDValue();
1569}
1570
1571SDValue DAGCombiner::visitADDC(SDNode *N) {
1572  SDValue N0 = N->getOperand(0);
1573  SDValue N1 = N->getOperand(1);
1574  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576  EVT VT = N0.getValueType();
1577
1578  // If the flag result is dead, turn this into an ADD.
1579  if (!N->hasAnyUseOfValue(1))
1580    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1581                     DAG.getNode(ISD::CARRY_FALSE,
1582                                 SDLoc(N), MVT::Glue));
1583
1584  // canonicalize constant to RHS.
1585  if (N0C && !N1C)
1586    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1587
1588  // fold (addc x, 0) -> x + no carry out
1589  if (N1C && N1C->isNullValue())
1590    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1591                                        SDLoc(N), MVT::Glue));
1592
1593  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1594  APInt LHSZero, LHSOne;
1595  APInt RHSZero, RHSOne;
1596  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1597
1598  if (LHSZero.getBoolValue()) {
1599    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1600
1601    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1602    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1603    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1604      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1605                       DAG.getNode(ISD::CARRY_FALSE,
1606                                   SDLoc(N), MVT::Glue));
1607  }
1608
1609  return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitADDE(SDNode *N) {
1613  SDValue N0 = N->getOperand(0);
1614  SDValue N1 = N->getOperand(1);
1615  SDValue CarryIn = N->getOperand(2);
1616  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1617  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1618
1619  // canonicalize constant to RHS
1620  if (N0C && !N1C)
1621    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1622                       N1, N0, CarryIn);
1623
1624  // fold (adde x, y, false) -> (addc x, y)
1625  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1626    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1627
1628  return SDValue();
1629}
1630
1631// Since it may not be valid to emit a fold to zero for vector initializers
1632// check if we can before folding.
1633static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1634                             SelectionDAG &DAG,
1635                             bool LegalOperations, bool LegalTypes) {
1636  if (!VT.isVector())
1637    return DAG.getConstant(0, VT);
1638  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1639    return DAG.getConstant(0, VT);
1640  return SDValue();
1641}
1642
1643SDValue DAGCombiner::visitSUB(SDNode *N) {
1644  SDValue N0 = N->getOperand(0);
1645  SDValue N1 = N->getOperand(1);
1646  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1647  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1648  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1649    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1650  EVT VT = N0.getValueType();
1651
1652  // fold vector ops
1653  if (VT.isVector()) {
1654    SDValue FoldedVOp = SimplifyVBinOp(N);
1655    if (FoldedVOp.getNode()) return FoldedVOp;
1656
1657    // fold (sub x, 0) -> x, vector edition
1658    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1659      return N0;
1660  }
1661
1662  // fold (sub x, x) -> 0
1663  // FIXME: Refactor this and xor and other similar operations together.
1664  if (N0 == N1)
1665    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1666  // fold (sub c1, c2) -> c1-c2
1667  if (N0C && N1C)
1668    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1669  // fold (sub x, c) -> (add x, -c)
1670  if (N1C)
1671    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1672                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1673  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1674  if (N0C && N0C->isAllOnesValue())
1675    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1676  // fold A-(A-B) -> B
1677  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1678    return N1.getOperand(1);
1679  // fold (A+B)-A -> B
1680  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1681    return N0.getOperand(1);
1682  // fold (A+B)-B -> A
1683  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1684    return N0.getOperand(0);
1685  // fold C2-(A+C1) -> (C2-C1)-A
1686  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1687    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1688                                   VT);
1689    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1690                       N1.getOperand(0));
1691  }
1692  // fold ((A+(B+or-C))-B) -> A+or-C
1693  if (N0.getOpcode() == ISD::ADD &&
1694      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1695       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1696      N0.getOperand(1).getOperand(0) == N1)
1697    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1698                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1699  // fold ((A+(C+B))-B) -> A+C
1700  if (N0.getOpcode() == ISD::ADD &&
1701      N0.getOperand(1).getOpcode() == ISD::ADD &&
1702      N0.getOperand(1).getOperand(1) == N1)
1703    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1704                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1705  // fold ((A-(B-C))-C) -> A-B
1706  if (N0.getOpcode() == ISD::SUB &&
1707      N0.getOperand(1).getOpcode() == ISD::SUB &&
1708      N0.getOperand(1).getOperand(1) == N1)
1709    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1710                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1711
1712  // If either operand of a sub is undef, the result is undef
1713  if (N0.getOpcode() == ISD::UNDEF)
1714    return N0;
1715  if (N1.getOpcode() == ISD::UNDEF)
1716    return N1;
1717
1718  // If the relocation model supports it, consider symbol offsets.
1719  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1720    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1721      // fold (sub Sym, c) -> Sym-c
1722      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1723        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1724                                    GA->getOffset() -
1725                                      (uint64_t)N1C->getSExtValue());
1726      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1727      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1728        if (GA->getGlobal() == GB->getGlobal())
1729          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1730                                 VT);
1731    }
1732
1733  return SDValue();
1734}
1735
1736SDValue DAGCombiner::visitSUBC(SDNode *N) {
1737  SDValue N0 = N->getOperand(0);
1738  SDValue N1 = N->getOperand(1);
1739  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1741  EVT VT = N0.getValueType();
1742
1743  // If the flag result is dead, turn this into an SUB.
1744  if (!N->hasAnyUseOfValue(1))
1745    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1746                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1747                                 MVT::Glue));
1748
1749  // fold (subc x, x) -> 0 + no borrow
1750  if (N0 == N1)
1751    return CombineTo(N, DAG.getConstant(0, VT),
1752                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1753                                 MVT::Glue));
1754
1755  // fold (subc x, 0) -> x + no borrow
1756  if (N1C && N1C->isNullValue())
1757    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758                                        MVT::Glue));
1759
1760  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1761  if (N0C && N0C->isAllOnesValue())
1762    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1763                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1764                                 MVT::Glue));
1765
1766  return SDValue();
1767}
1768
1769SDValue DAGCombiner::visitSUBE(SDNode *N) {
1770  SDValue N0 = N->getOperand(0);
1771  SDValue N1 = N->getOperand(1);
1772  SDValue CarryIn = N->getOperand(2);
1773
1774  // fold (sube x, y, false) -> (subc x, y)
1775  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1776    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1777
1778  return SDValue();
1779}
1780
1781/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1782/// elements are all the same constant or undefined.
1783static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1784  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1785  if (!C)
1786    return false;
1787
1788  APInt SplatUndef;
1789  unsigned SplatBitSize;
1790  bool HasAnyUndefs;
1791  EVT EltVT = N->getValueType(0).getVectorElementType();
1792  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1793                             HasAnyUndefs) &&
1794          EltVT.getSizeInBits() >= SplatBitSize);
1795}
1796
1797SDValue DAGCombiner::visitMUL(SDNode *N) {
1798  SDValue N0 = N->getOperand(0);
1799  SDValue N1 = N->getOperand(1);
1800  EVT VT = N0.getValueType();
1801
1802  // fold (mul x, undef) -> 0
1803  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1804    return DAG.getConstant(0, VT);
1805
1806  bool N0IsConst = false;
1807  bool N1IsConst = false;
1808  APInt ConstValue0, ConstValue1;
1809  // fold vector ops
1810  if (VT.isVector()) {
1811    SDValue FoldedVOp = SimplifyVBinOp(N);
1812    if (FoldedVOp.getNode()) return FoldedVOp;
1813
1814    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1815    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1816  } else {
1817    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1818    ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1819                            : APInt();
1820    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1821    ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1822                            : APInt();
1823  }
1824
1825  // fold (mul c1, c2) -> c1*c2
1826  if (N0IsConst && N1IsConst)
1827    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1828
1829  // canonicalize constant to RHS
1830  if (N0IsConst && !N1IsConst)
1831    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1832  // fold (mul x, 0) -> 0
1833  if (N1IsConst && ConstValue1 == 0)
1834    return N1;
1835  // We require a splat of the entire scalar bit width for non-contiguous
1836  // bit patterns.
1837  bool IsFullSplat =
1838    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1839  // fold (mul x, 1) -> x
1840  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1841    return N0;
1842  // fold (mul x, -1) -> 0-x
1843  if (N1IsConst && ConstValue1.isAllOnesValue())
1844    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1845                       DAG.getConstant(0, VT), N0);
1846  // fold (mul x, (1 << c)) -> x << c
1847  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1848    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1849                       DAG.getConstant(ConstValue1.logBase2(),
1850                                       getShiftAmountTy(N0.getValueType())));
1851  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1852  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1853    unsigned Log2Val = (-ConstValue1).logBase2();
1854    // FIXME: If the input is something that is easily negated (e.g. a
1855    // single-use add), we should put the negate there.
1856    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1857                       DAG.getConstant(0, VT),
1858                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1859                            DAG.getConstant(Log2Val,
1860                                      getShiftAmountTy(N0.getValueType()))));
1861  }
1862
1863  APInt Val;
1864  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1865  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1866      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1867                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1868    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1869                             N1, N0.getOperand(1));
1870    AddToWorkList(C3.getNode());
1871    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1872                       N0.getOperand(0), C3);
1873  }
1874
1875  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1876  // use.
1877  {
1878    SDValue Sh(0,0), Y(0,0);
1879    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1880    if (N0.getOpcode() == ISD::SHL &&
1881        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1882                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1883        N0.getNode()->hasOneUse()) {
1884      Sh = N0; Y = N1;
1885    } else if (N1.getOpcode() == ISD::SHL &&
1886               isa<ConstantSDNode>(N1.getOperand(1)) &&
1887               N1.getNode()->hasOneUse()) {
1888      Sh = N1; Y = N0;
1889    }
1890
1891    if (Sh.getNode()) {
1892      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1893                                Sh.getOperand(0), Y);
1894      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1895                         Mul, Sh.getOperand(1));
1896    }
1897  }
1898
1899  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1900  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1901      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1902                     isa<ConstantSDNode>(N0.getOperand(1))))
1903    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1904                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1905                                   N0.getOperand(0), N1),
1906                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1907                                   N0.getOperand(1), N1));
1908
1909  // reassociate mul
1910  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1911  if (RMUL.getNode() != 0)
1912    return RMUL;
1913
1914  return SDValue();
1915}
1916
1917SDValue DAGCombiner::visitSDIV(SDNode *N) {
1918  SDValue N0 = N->getOperand(0);
1919  SDValue N1 = N->getOperand(1);
1920  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1921  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1922  EVT VT = N->getValueType(0);
1923
1924  // fold vector ops
1925  if (VT.isVector()) {
1926    SDValue FoldedVOp = SimplifyVBinOp(N);
1927    if (FoldedVOp.getNode()) return FoldedVOp;
1928  }
1929
1930  // fold (sdiv c1, c2) -> c1/c2
1931  if (N0C && N1C && !N1C->isNullValue())
1932    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1933  // fold (sdiv X, 1) -> X
1934  if (N1C && N1C->getAPIntValue() == 1LL)
1935    return N0;
1936  // fold (sdiv X, -1) -> 0-X
1937  if (N1C && N1C->isAllOnesValue())
1938    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1939                       DAG.getConstant(0, VT), N0);
1940  // If we know the sign bits of both operands are zero, strength reduce to a
1941  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1942  if (!VT.isVector()) {
1943    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1944      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1945                         N0, N1);
1946  }
1947  // fold (sdiv X, pow2) -> simple ops after legalize
1948  if (N1C && !N1C->isNullValue() &&
1949      (N1C->getAPIntValue().isPowerOf2() ||
1950       (-N1C->getAPIntValue()).isPowerOf2())) {
1951    // If dividing by powers of two is cheap, then don't perform the following
1952    // fold.
1953    if (TLI.isPow2DivCheap())
1954      return SDValue();
1955
1956    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1957
1958    // Splat the sign bit into the register
1959    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1960                              DAG.getConstant(VT.getSizeInBits()-1,
1961                                       getShiftAmountTy(N0.getValueType())));
1962    AddToWorkList(SGN.getNode());
1963
1964    // Add (N0 < 0) ? abs2 - 1 : 0;
1965    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1966                              DAG.getConstant(VT.getSizeInBits() - lg2,
1967                                       getShiftAmountTy(SGN.getValueType())));
1968    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1969    AddToWorkList(SRL.getNode());
1970    AddToWorkList(ADD.getNode());    // Divide by pow2
1971    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1972                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1973
1974    // If we're dividing by a positive value, we're done.  Otherwise, we must
1975    // negate the result.
1976    if (N1C->getAPIntValue().isNonNegative())
1977      return SRA;
1978
1979    AddToWorkList(SRA.getNode());
1980    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1981                       DAG.getConstant(0, VT), SRA);
1982  }
1983
1984  // if integer divide is expensive and we satisfy the requirements, emit an
1985  // alternate sequence.
1986  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1987    SDValue Op = BuildSDIV(N);
1988    if (Op.getNode()) return Op;
1989  }
1990
1991  // undef / X -> 0
1992  if (N0.getOpcode() == ISD::UNDEF)
1993    return DAG.getConstant(0, VT);
1994  // X / undef -> undef
1995  if (N1.getOpcode() == ISD::UNDEF)
1996    return N1;
1997
1998  return SDValue();
1999}
2000
2001SDValue DAGCombiner::visitUDIV(SDNode *N) {
2002  SDValue N0 = N->getOperand(0);
2003  SDValue N1 = N->getOperand(1);
2004  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2005  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2006  EVT VT = N->getValueType(0);
2007
2008  // fold vector ops
2009  if (VT.isVector()) {
2010    SDValue FoldedVOp = SimplifyVBinOp(N);
2011    if (FoldedVOp.getNode()) return FoldedVOp;
2012  }
2013
2014  // fold (udiv c1, c2) -> c1/c2
2015  if (N0C && N1C && !N1C->isNullValue())
2016    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2017  // fold (udiv x, (1 << c)) -> x >>u c
2018  if (N1C && N1C->getAPIntValue().isPowerOf2())
2019    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2020                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2021                                       getShiftAmountTy(N0.getValueType())));
2022  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2023  if (N1.getOpcode() == ISD::SHL) {
2024    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2025      if (SHC->getAPIntValue().isPowerOf2()) {
2026        EVT ADDVT = N1.getOperand(1).getValueType();
2027        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2028                                  N1.getOperand(1),
2029                                  DAG.getConstant(SHC->getAPIntValue()
2030                                                                  .logBase2(),
2031                                                  ADDVT));
2032        AddToWorkList(Add.getNode());
2033        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2034      }
2035    }
2036  }
2037  // fold (udiv x, c) -> alternate
2038  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2039    SDValue Op = BuildUDIV(N);
2040    if (Op.getNode()) return Op;
2041  }
2042
2043  // undef / X -> 0
2044  if (N0.getOpcode() == ISD::UNDEF)
2045    return DAG.getConstant(0, VT);
2046  // X / undef -> undef
2047  if (N1.getOpcode() == ISD::UNDEF)
2048    return N1;
2049
2050  return SDValue();
2051}
2052
2053SDValue DAGCombiner::visitSREM(SDNode *N) {
2054  SDValue N0 = N->getOperand(0);
2055  SDValue N1 = N->getOperand(1);
2056  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2057  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2058  EVT VT = N->getValueType(0);
2059
2060  // fold (srem c1, c2) -> c1%c2
2061  if (N0C && N1C && !N1C->isNullValue())
2062    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2063  // If we know the sign bits of both operands are zero, strength reduce to a
2064  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2065  if (!VT.isVector()) {
2066    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2067      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2068  }
2069
2070  // If X/C can be simplified by the division-by-constant logic, lower
2071  // X%C to the equivalent of X-X/C*C.
2072  if (N1C && !N1C->isNullValue()) {
2073    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2074    AddToWorkList(Div.getNode());
2075    SDValue OptimizedDiv = combine(Div.getNode());
2076    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2077      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2078                                OptimizedDiv, N1);
2079      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2080      AddToWorkList(Mul.getNode());
2081      return Sub;
2082    }
2083  }
2084
2085  // undef % X -> 0
2086  if (N0.getOpcode() == ISD::UNDEF)
2087    return DAG.getConstant(0, VT);
2088  // X % undef -> undef
2089  if (N1.getOpcode() == ISD::UNDEF)
2090    return N1;
2091
2092  return SDValue();
2093}
2094
2095SDValue DAGCombiner::visitUREM(SDNode *N) {
2096  SDValue N0 = N->getOperand(0);
2097  SDValue N1 = N->getOperand(1);
2098  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2099  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2100  EVT VT = N->getValueType(0);
2101
2102  // fold (urem c1, c2) -> c1%c2
2103  if (N0C && N1C && !N1C->isNullValue())
2104    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2105  // fold (urem x, pow2) -> (and x, pow2-1)
2106  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2107    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2108                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2109  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2110  if (N1.getOpcode() == ISD::SHL) {
2111    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2112      if (SHC->getAPIntValue().isPowerOf2()) {
2113        SDValue Add =
2114          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2115                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2116                                 VT));
2117        AddToWorkList(Add.getNode());
2118        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2119      }
2120    }
2121  }
2122
2123  // If X/C can be simplified by the division-by-constant logic, lower
2124  // X%C to the equivalent of X-X/C*C.
2125  if (N1C && !N1C->isNullValue()) {
2126    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2127    AddToWorkList(Div.getNode());
2128    SDValue OptimizedDiv = combine(Div.getNode());
2129    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2130      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2131                                OptimizedDiv, N1);
2132      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2133      AddToWorkList(Mul.getNode());
2134      return Sub;
2135    }
2136  }
2137
2138  // undef % X -> 0
2139  if (N0.getOpcode() == ISD::UNDEF)
2140    return DAG.getConstant(0, VT);
2141  // X % undef -> undef
2142  if (N1.getOpcode() == ISD::UNDEF)
2143    return N1;
2144
2145  return SDValue();
2146}
2147
2148SDValue DAGCombiner::visitMULHS(SDNode *N) {
2149  SDValue N0 = N->getOperand(0);
2150  SDValue N1 = N->getOperand(1);
2151  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2152  EVT VT = N->getValueType(0);
2153  SDLoc DL(N);
2154
2155  // fold (mulhs x, 0) -> 0
2156  if (N1C && N1C->isNullValue())
2157    return N1;
2158  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2159  if (N1C && N1C->getAPIntValue() == 1)
2160    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2161                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2162                                       getShiftAmountTy(N0.getValueType())));
2163  // fold (mulhs x, undef) -> 0
2164  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2165    return DAG.getConstant(0, VT);
2166
2167  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2168  // plus a shift.
2169  if (VT.isSimple() && !VT.isVector()) {
2170    MVT Simple = VT.getSimpleVT();
2171    unsigned SimpleSize = Simple.getSizeInBits();
2172    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2173    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2174      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2175      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2176      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2177      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2178            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2179      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2180    }
2181  }
2182
2183  return SDValue();
2184}
2185
2186SDValue DAGCombiner::visitMULHU(SDNode *N) {
2187  SDValue N0 = N->getOperand(0);
2188  SDValue N1 = N->getOperand(1);
2189  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2190  EVT VT = N->getValueType(0);
2191  SDLoc DL(N);
2192
2193  // fold (mulhu x, 0) -> 0
2194  if (N1C && N1C->isNullValue())
2195    return N1;
2196  // fold (mulhu x, 1) -> 0
2197  if (N1C && N1C->getAPIntValue() == 1)
2198    return DAG.getConstant(0, N0.getValueType());
2199  // fold (mulhu x, undef) -> 0
2200  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2201    return DAG.getConstant(0, VT);
2202
2203  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2204  // plus a shift.
2205  if (VT.isSimple() && !VT.isVector()) {
2206    MVT Simple = VT.getSimpleVT();
2207    unsigned SimpleSize = Simple.getSizeInBits();
2208    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2209    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2210      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2211      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2212      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2213      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2214            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2215      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2216    }
2217  }
2218
2219  return SDValue();
2220}
2221
2222/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2223/// compute two values. LoOp and HiOp give the opcodes for the two computations
2224/// that are being performed. Return true if a simplification was made.
2225///
2226SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2227                                                unsigned HiOp) {
2228  // If the high half is not needed, just compute the low half.
2229  bool HiExists = N->hasAnyUseOfValue(1);
2230  if (!HiExists &&
2231      (!LegalOperations ||
2232       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2233    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2234                              N->op_begin(), N->getNumOperands());
2235    return CombineTo(N, Res, Res);
2236  }
2237
2238  // If the low half is not needed, just compute the high half.
2239  bool LoExists = N->hasAnyUseOfValue(0);
2240  if (!LoExists &&
2241      (!LegalOperations ||
2242       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2243    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2244                              N->op_begin(), N->getNumOperands());
2245    return CombineTo(N, Res, Res);
2246  }
2247
2248  // If both halves are used, return as it is.
2249  if (LoExists && HiExists)
2250    return SDValue();
2251
2252  // If the two computed results can be simplified separately, separate them.
2253  if (LoExists) {
2254    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2255                             N->op_begin(), N->getNumOperands());
2256    AddToWorkList(Lo.getNode());
2257    SDValue LoOpt = combine(Lo.getNode());
2258    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2259        (!LegalOperations ||
2260         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2261      return CombineTo(N, LoOpt, LoOpt);
2262  }
2263
2264  if (HiExists) {
2265    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2266                             N->op_begin(), N->getNumOperands());
2267    AddToWorkList(Hi.getNode());
2268    SDValue HiOpt = combine(Hi.getNode());
2269    if (HiOpt.getNode() && HiOpt != Hi &&
2270        (!LegalOperations ||
2271         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2272      return CombineTo(N, HiOpt, HiOpt);
2273  }
2274
2275  return SDValue();
2276}
2277
2278SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2279  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2280  if (Res.getNode()) return Res;
2281
2282  EVT VT = N->getValueType(0);
2283  SDLoc DL(N);
2284
2285  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2286  // plus a shift.
2287  if (VT.isSimple() && !VT.isVector()) {
2288    MVT Simple = VT.getSimpleVT();
2289    unsigned SimpleSize = Simple.getSizeInBits();
2290    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2291    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2292      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2293      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2294      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2295      // Compute the high part as N1.
2296      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2297            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2298      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2299      // Compute the low part as N0.
2300      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2301      return CombineTo(N, Lo, Hi);
2302    }
2303  }
2304
2305  return SDValue();
2306}
2307
2308SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2309  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2310  if (Res.getNode()) return Res;
2311
2312  EVT VT = N->getValueType(0);
2313  SDLoc DL(N);
2314
2315  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2316  // plus a shift.
2317  if (VT.isSimple() && !VT.isVector()) {
2318    MVT Simple = VT.getSimpleVT();
2319    unsigned SimpleSize = Simple.getSizeInBits();
2320    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2321    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2322      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2323      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2324      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2325      // Compute the high part as N1.
2326      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2327            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2328      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2329      // Compute the low part as N0.
2330      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2331      return CombineTo(N, Lo, Hi);
2332    }
2333  }
2334
2335  return SDValue();
2336}
2337
2338SDValue DAGCombiner::visitSMULO(SDNode *N) {
2339  // (smulo x, 2) -> (saddo x, x)
2340  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2341    if (C2->getAPIntValue() == 2)
2342      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2343                         N->getOperand(0), N->getOperand(0));
2344
2345  return SDValue();
2346}
2347
2348SDValue DAGCombiner::visitUMULO(SDNode *N) {
2349  // (umulo x, 2) -> (uaddo x, x)
2350  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2351    if (C2->getAPIntValue() == 2)
2352      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2353                         N->getOperand(0), N->getOperand(0));
2354
2355  return SDValue();
2356}
2357
2358SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2359  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2360  if (Res.getNode()) return Res;
2361
2362  return SDValue();
2363}
2364
2365SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2366  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2367  if (Res.getNode()) return Res;
2368
2369  return SDValue();
2370}
2371
2372/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2373/// two operands of the same opcode, try to simplify it.
2374SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2375  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2376  EVT VT = N0.getValueType();
2377  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2378
2379  // Bail early if none of these transforms apply.
2380  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2381
2382  // For each of OP in AND/OR/XOR:
2383  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2384  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2385  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2386  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2387  //
2388  // do not sink logical op inside of a vector extend, since it may combine
2389  // into a vsetcc.
2390  EVT Op0VT = N0.getOperand(0).getValueType();
2391  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2392       N0.getOpcode() == ISD::SIGN_EXTEND ||
2393       // Avoid infinite looping with PromoteIntBinOp.
2394       (N0.getOpcode() == ISD::ANY_EXTEND &&
2395        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2396       (N0.getOpcode() == ISD::TRUNCATE &&
2397        (!TLI.isZExtFree(VT, Op0VT) ||
2398         !TLI.isTruncateFree(Op0VT, VT)) &&
2399        TLI.isTypeLegal(Op0VT))) &&
2400      !VT.isVector() &&
2401      Op0VT == N1.getOperand(0).getValueType() &&
2402      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2403    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2404                                 N0.getOperand(0).getValueType(),
2405                                 N0.getOperand(0), N1.getOperand(0));
2406    AddToWorkList(ORNode.getNode());
2407    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2408  }
2409
2410  // For each of OP in SHL/SRL/SRA/AND...
2411  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2412  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2413  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2414  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2415       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2416      N0.getOperand(1) == N1.getOperand(1)) {
2417    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2418                                 N0.getOperand(0).getValueType(),
2419                                 N0.getOperand(0), N1.getOperand(0));
2420    AddToWorkList(ORNode.getNode());
2421    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2422                       ORNode, N0.getOperand(1));
2423  }
2424
2425  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2426  // Only perform this optimization after type legalization and before
2427  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2428  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2429  // we don't want to undo this promotion.
2430  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2431  // on scalars.
2432  if ((N0.getOpcode() == ISD::BITCAST ||
2433       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2434      Level == AfterLegalizeTypes) {
2435    SDValue In0 = N0.getOperand(0);
2436    SDValue In1 = N1.getOperand(0);
2437    EVT In0Ty = In0.getValueType();
2438    EVT In1Ty = In1.getValueType();
2439    SDLoc DL(N);
2440    // If both incoming values are integers, and the original types are the
2441    // same.
2442    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2443      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2444      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2445      AddToWorkList(Op.getNode());
2446      return BC;
2447    }
2448  }
2449
2450  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2451  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2452  // If both shuffles use the same mask, and both shuffle within a single
2453  // vector, then it is worthwhile to move the swizzle after the operation.
2454  // The type-legalizer generates this pattern when loading illegal
2455  // vector types from memory. In many cases this allows additional shuffle
2456  // optimizations.
2457  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2458      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2459      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2460    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2461    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2462
2463    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2464           "Inputs to shuffles are not the same type");
2465
2466    unsigned NumElts = VT.getVectorNumElements();
2467
2468    // Check that both shuffles use the same mask. The masks are known to be of
2469    // the same length because the result vector type is the same.
2470    bool SameMask = true;
2471    for (unsigned i = 0; i != NumElts; ++i) {
2472      int Idx0 = SVN0->getMaskElt(i);
2473      int Idx1 = SVN1->getMaskElt(i);
2474      if (Idx0 != Idx1) {
2475        SameMask = false;
2476        break;
2477      }
2478    }
2479
2480    if (SameMask) {
2481      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2482                               N0.getOperand(0), N1.getOperand(0));
2483      AddToWorkList(Op.getNode());
2484      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2485                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2486    }
2487  }
2488
2489  return SDValue();
2490}
2491
2492SDValue DAGCombiner::visitAND(SDNode *N) {
2493  SDValue N0 = N->getOperand(0);
2494  SDValue N1 = N->getOperand(1);
2495  SDValue LL, LR, RL, RR, CC0, CC1;
2496  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2497  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2498  EVT VT = N1.getValueType();
2499  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2500
2501  // fold vector ops
2502  if (VT.isVector()) {
2503    SDValue FoldedVOp = SimplifyVBinOp(N);
2504    if (FoldedVOp.getNode()) return FoldedVOp;
2505
2506    // fold (and x, 0) -> 0, vector edition
2507    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2508      return N0;
2509    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2510      return N1;
2511
2512    // fold (and x, -1) -> x, vector edition
2513    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2514      return N1;
2515    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2516      return N0;
2517  }
2518
2519  // fold (and x, undef) -> 0
2520  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2521    return DAG.getConstant(0, VT);
2522  // fold (and c1, c2) -> c1&c2
2523  if (N0C && N1C)
2524    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2525  // canonicalize constant to RHS
2526  if (N0C && !N1C)
2527    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2528  // fold (and x, -1) -> x
2529  if (N1C && N1C->isAllOnesValue())
2530    return N0;
2531  // if (and x, c) is known to be zero, return 0
2532  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2533                                   APInt::getAllOnesValue(BitWidth)))
2534    return DAG.getConstant(0, VT);
2535  // reassociate and
2536  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2537  if (RAND.getNode() != 0)
2538    return RAND;
2539  // fold (and (or x, C), D) -> D if (C & D) == D
2540  if (N1C && N0.getOpcode() == ISD::OR)
2541    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2542      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2543        return N1;
2544  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2545  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2546    SDValue N0Op0 = N0.getOperand(0);
2547    APInt Mask = ~N1C->getAPIntValue();
2548    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2549    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2550      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2551                                 N0.getValueType(), N0Op0);
2552
2553      // Replace uses of the AND with uses of the Zero extend node.
2554      CombineTo(N, Zext);
2555
2556      // We actually want to replace all uses of the any_extend with the
2557      // zero_extend, to avoid duplicating things.  This will later cause this
2558      // AND to be folded.
2559      CombineTo(N0.getNode(), Zext);
2560      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2561    }
2562  }
2563  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2564  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2565  // already be zero by virtue of the width of the base type of the load.
2566  //
2567  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2568  // more cases.
2569  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2570       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2571      N0.getOpcode() == ISD::LOAD) {
2572    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2573                                         N0 : N0.getOperand(0) );
2574
2575    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2576    // This can be a pure constant or a vector splat, in which case we treat the
2577    // vector as a scalar and use the splat value.
2578    APInt Constant = APInt::getNullValue(1);
2579    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2580      Constant = C->getAPIntValue();
2581    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2582      APInt SplatValue, SplatUndef;
2583      unsigned SplatBitSize;
2584      bool HasAnyUndefs;
2585      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2586                                             SplatBitSize, HasAnyUndefs);
2587      if (IsSplat) {
2588        // Undef bits can contribute to a possible optimisation if set, so
2589        // set them.
2590        SplatValue |= SplatUndef;
2591
2592        // The splat value may be something like "0x00FFFFFF", which means 0 for
2593        // the first vector value and FF for the rest, repeating. We need a mask
2594        // that will apply equally to all members of the vector, so AND all the
2595        // lanes of the constant together.
2596        EVT VT = Vector->getValueType(0);
2597        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2598
2599        // If the splat value has been compressed to a bitlength lower
2600        // than the size of the vector lane, we need to re-expand it to
2601        // the lane size.
2602        if (BitWidth > SplatBitSize)
2603          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2604               SplatBitSize < BitWidth;
2605               SplatBitSize = SplatBitSize * 2)
2606            SplatValue |= SplatValue.shl(SplatBitSize);
2607
2608        Constant = APInt::getAllOnesValue(BitWidth);
2609        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2610          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2611      }
2612    }
2613
2614    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2615    // actually legal and isn't going to get expanded, else this is a false
2616    // optimisation.
2617    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2618                                                    Load->getMemoryVT());
2619
2620    // Resize the constant to the same size as the original memory access before
2621    // extension. If it is still the AllOnesValue then this AND is completely
2622    // unneeded.
2623    Constant =
2624      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2625
2626    bool B;
2627    switch (Load->getExtensionType()) {
2628    default: B = false; break;
2629    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2630    case ISD::ZEXTLOAD:
2631    case ISD::NON_EXTLOAD: B = true; break;
2632    }
2633
2634    if (B && Constant.isAllOnesValue()) {
2635      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2636      // preserve semantics once we get rid of the AND.
2637      SDValue NewLoad(Load, 0);
2638      if (Load->getExtensionType() == ISD::EXTLOAD) {
2639        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2640                              Load->getValueType(0), SDLoc(Load),
2641                              Load->getChain(), Load->getBasePtr(),
2642                              Load->getOffset(), Load->getMemoryVT(),
2643                              Load->getMemOperand());
2644        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2645        if (Load->getNumValues() == 3) {
2646          // PRE/POST_INC loads have 3 values.
2647          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2648                           NewLoad.getValue(2) };
2649          CombineTo(Load, To, 3, true);
2650        } else {
2651          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2652        }
2653      }
2654
2655      // Fold the AND away, taking care not to fold to the old load node if we
2656      // replaced it.
2657      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2658
2659      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2660    }
2661  }
2662  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2663  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2664    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2665    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2666
2667    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2668        LL.getValueType().isInteger()) {
2669      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2670      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2671        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2672                                     LR.getValueType(), LL, RL);
2673        AddToWorkList(ORNode.getNode());
2674        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2675      }
2676      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2677      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2678        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2679                                      LR.getValueType(), LL, RL);
2680        AddToWorkList(ANDNode.getNode());
2681        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2682      }
2683      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2684      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2685        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2686                                     LR.getValueType(), LL, RL);
2687        AddToWorkList(ORNode.getNode());
2688        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2689      }
2690    }
2691    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2692    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2693        Op0 == Op1 && LL.getValueType().isInteger() &&
2694      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2695                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2696                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2697                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2698      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2699                                    LL, DAG.getConstant(1, LL.getValueType()));
2700      AddToWorkList(ADDNode.getNode());
2701      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2702                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2703    }
2704    // canonicalize equivalent to ll == rl
2705    if (LL == RR && LR == RL) {
2706      Op1 = ISD::getSetCCSwappedOperands(Op1);
2707      std::swap(RL, RR);
2708    }
2709    if (LL == RL && LR == RR) {
2710      bool isInteger = LL.getValueType().isInteger();
2711      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2712      if (Result != ISD::SETCC_INVALID &&
2713          (!LegalOperations ||
2714           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2715            TLI.isOperationLegal(ISD::SETCC,
2716                            getSetCCResultType(N0.getSimpleValueType())))))
2717        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2718                            LL, LR, Result);
2719    }
2720  }
2721
2722  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2723  if (N0.getOpcode() == N1.getOpcode()) {
2724    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2725    if (Tmp.getNode()) return Tmp;
2726  }
2727
2728  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2729  // fold (and (sra)) -> (and (srl)) when possible.
2730  if (!VT.isVector() &&
2731      SimplifyDemandedBits(SDValue(N, 0)))
2732    return SDValue(N, 0);
2733
2734  // fold (zext_inreg (extload x)) -> (zextload x)
2735  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2736    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2737    EVT MemVT = LN0->getMemoryVT();
2738    // If we zero all the possible extended bits, then we can turn this into
2739    // a zextload if we are running before legalize or the operation is legal.
2740    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2741    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2742                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2743        ((!LegalOperations && !LN0->isVolatile()) ||
2744         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2745      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2746                                       LN0->getChain(), LN0->getBasePtr(),
2747                                       MemVT, LN0->getMemOperand());
2748      AddToWorkList(N);
2749      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2750      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2751    }
2752  }
2753  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2754  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2755      N0.hasOneUse()) {
2756    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2757    EVT MemVT = LN0->getMemoryVT();
2758    // If we zero all the possible extended bits, then we can turn this into
2759    // a zextload if we are running before legalize or the operation is legal.
2760    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2761    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2762                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2763        ((!LegalOperations && !LN0->isVolatile()) ||
2764         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2765      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2766                                       LN0->getChain(), LN0->getBasePtr(),
2767                                       MemVT, LN0->getMemOperand());
2768      AddToWorkList(N);
2769      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2770      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2771    }
2772  }
2773
2774  // fold (and (load x), 255) -> (zextload x, i8)
2775  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2776  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2777  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2778              (N0.getOpcode() == ISD::ANY_EXTEND &&
2779               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2780    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2781    LoadSDNode *LN0 = HasAnyExt
2782      ? cast<LoadSDNode>(N0.getOperand(0))
2783      : cast<LoadSDNode>(N0);
2784    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2785        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2786      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2787      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2788        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2789        EVT LoadedVT = LN0->getMemoryVT();
2790
2791        if (ExtVT == LoadedVT &&
2792            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2793          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2794
2795          SDValue NewLoad =
2796            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2797                           LN0->getChain(), LN0->getBasePtr(), ExtVT,
2798                           LN0->getMemOperand());
2799          AddToWorkList(N);
2800          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2801          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2802        }
2803
2804        // Do not change the width of a volatile load.
2805        // Do not generate loads of non-round integer types since these can
2806        // be expensive (and would be wrong if the type is not byte sized).
2807        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2808            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2809          EVT PtrType = LN0->getOperand(1).getValueType();
2810
2811          unsigned Alignment = LN0->getAlignment();
2812          SDValue NewPtr = LN0->getBasePtr();
2813
2814          // For big endian targets, we need to add an offset to the pointer
2815          // to load the correct bytes.  For little endian systems, we merely
2816          // need to read fewer bytes from the same pointer.
2817          if (TLI.isBigEndian()) {
2818            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2819            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2820            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2821            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2822                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2823            Alignment = MinAlign(Alignment, PtrOff);
2824          }
2825
2826          AddToWorkList(NewPtr.getNode());
2827
2828          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2829          SDValue Load =
2830            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2831                           LN0->getChain(), NewPtr,
2832                           LN0->getPointerInfo(),
2833                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2834                           Alignment, LN0->getTBAAInfo());
2835          AddToWorkList(N);
2836          CombineTo(LN0, Load, Load.getValue(1));
2837          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2838        }
2839      }
2840    }
2841  }
2842
2843  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2844      VT.getSizeInBits() <= 64) {
2845    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2846      APInt ADDC = ADDI->getAPIntValue();
2847      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2848        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2849        // immediate for an add, but it is legal if its top c2 bits are set,
2850        // transform the ADD so the immediate doesn't need to be materialized
2851        // in a register.
2852        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2853          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2854                                             SRLI->getZExtValue());
2855          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2856            ADDC |= Mask;
2857            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2858              SDValue NewAdd =
2859                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2860                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2861              CombineTo(N0.getNode(), NewAdd);
2862              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2863            }
2864          }
2865        }
2866      }
2867    }
2868  }
2869
2870  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2871  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2872    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2873                                       N0.getOperand(1), false);
2874    if (BSwap.getNode())
2875      return BSwap;
2876  }
2877
2878  return SDValue();
2879}
2880
2881/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2882///
2883SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2884                                        bool DemandHighBits) {
2885  if (!LegalOperations)
2886    return SDValue();
2887
2888  EVT VT = N->getValueType(0);
2889  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2890    return SDValue();
2891  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2892    return SDValue();
2893
2894  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2895  bool LookPassAnd0 = false;
2896  bool LookPassAnd1 = false;
2897  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2898      std::swap(N0, N1);
2899  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2900      std::swap(N0, N1);
2901  if (N0.getOpcode() == ISD::AND) {
2902    if (!N0.getNode()->hasOneUse())
2903      return SDValue();
2904    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2905    if (!N01C || N01C->getZExtValue() != 0xFF00)
2906      return SDValue();
2907    N0 = N0.getOperand(0);
2908    LookPassAnd0 = true;
2909  }
2910
2911  if (N1.getOpcode() == ISD::AND) {
2912    if (!N1.getNode()->hasOneUse())
2913      return SDValue();
2914    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2915    if (!N11C || N11C->getZExtValue() != 0xFF)
2916      return SDValue();
2917    N1 = N1.getOperand(0);
2918    LookPassAnd1 = true;
2919  }
2920
2921  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2922    std::swap(N0, N1);
2923  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2924    return SDValue();
2925  if (!N0.getNode()->hasOneUse() ||
2926      !N1.getNode()->hasOneUse())
2927    return SDValue();
2928
2929  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2930  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2931  if (!N01C || !N11C)
2932    return SDValue();
2933  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2934    return SDValue();
2935
2936  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2937  SDValue N00 = N0->getOperand(0);
2938  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2939    if (!N00.getNode()->hasOneUse())
2940      return SDValue();
2941    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2942    if (!N001C || N001C->getZExtValue() != 0xFF)
2943      return SDValue();
2944    N00 = N00.getOperand(0);
2945    LookPassAnd0 = true;
2946  }
2947
2948  SDValue N10 = N1->getOperand(0);
2949  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2950    if (!N10.getNode()->hasOneUse())
2951      return SDValue();
2952    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2953    if (!N101C || N101C->getZExtValue() != 0xFF00)
2954      return SDValue();
2955    N10 = N10.getOperand(0);
2956    LookPassAnd1 = true;
2957  }
2958
2959  if (N00 != N10)
2960    return SDValue();
2961
2962  // Make sure everything beyond the low halfword gets set to zero since the SRL
2963  // 16 will clear the top bits.
2964  unsigned OpSizeInBits = VT.getSizeInBits();
2965  if (DemandHighBits && OpSizeInBits > 16) {
2966    // If the left-shift isn't masked out then the only way this is a bswap is
2967    // if all bits beyond the low 8 are 0. In that case the entire pattern
2968    // reduces to a left shift anyway: leave it for other parts of the combiner.
2969    if (!LookPassAnd0)
2970      return SDValue();
2971
2972    // However, if the right shift isn't masked out then it might be because
2973    // it's not needed. See if we can spot that too.
2974    if (!LookPassAnd1 &&
2975        !DAG.MaskedValueIsZero(
2976            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2977      return SDValue();
2978  }
2979
2980  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2981  if (OpSizeInBits > 16)
2982    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2983                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2984  return Res;
2985}
2986
2987/// isBSwapHWordElement - Return true if the specified node is an element
2988/// that makes up a 32-bit packed halfword byteswap. i.e.
2989/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
2990static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
2991  if (!N.getNode()->hasOneUse())
2992    return false;
2993
2994  unsigned Opc = N.getOpcode();
2995  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
2996    return false;
2997
2998  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
2999  if (!N1C)
3000    return false;
3001
3002  unsigned Num;
3003  switch (N1C->getZExtValue()) {
3004  default:
3005    return false;
3006  case 0xFF:       Num = 0; break;
3007  case 0xFF00:     Num = 1; break;
3008  case 0xFF0000:   Num = 2; break;
3009  case 0xFF000000: Num = 3; break;
3010  }
3011
3012  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3013  SDValue N0 = N.getOperand(0);
3014  if (Opc == ISD::AND) {
3015    if (Num == 0 || Num == 2) {
3016      // (x >> 8) & 0xff
3017      // (x >> 8) & 0xff0000
3018      if (N0.getOpcode() != ISD::SRL)
3019        return false;
3020      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3021      if (!C || C->getZExtValue() != 8)
3022        return false;
3023    } else {
3024      // (x << 8) & 0xff00
3025      // (x << 8) & 0xff000000
3026      if (N0.getOpcode() != ISD::SHL)
3027        return false;
3028      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3029      if (!C || C->getZExtValue() != 8)
3030        return false;
3031    }
3032  } else if (Opc == ISD::SHL) {
3033    // (x & 0xff) << 8
3034    // (x & 0xff0000) << 8
3035    if (Num != 0 && Num != 2)
3036      return false;
3037    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3038    if (!C || C->getZExtValue() != 8)
3039      return false;
3040  } else { // Opc == ISD::SRL
3041    // (x & 0xff00) >> 8
3042    // (x & 0xff000000) >> 8
3043    if (Num != 1 && Num != 3)
3044      return false;
3045    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3046    if (!C || C->getZExtValue() != 8)
3047      return false;
3048  }
3049
3050  if (Parts[Num])
3051    return false;
3052
3053  Parts[Num] = N0.getOperand(0).getNode();
3054  return true;
3055}
3056
3057/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3058/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3059/// => (rotl (bswap x), 16)
3060SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3061  if (!LegalOperations)
3062    return SDValue();
3063
3064  EVT VT = N->getValueType(0);
3065  if (VT != MVT::i32)
3066    return SDValue();
3067  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3068    return SDValue();
3069
3070  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3071  // Look for either
3072  // (or (or (and), (and)), (or (and), (and)))
3073  // (or (or (or (and), (and)), (and)), (and))
3074  if (N0.getOpcode() != ISD::OR)
3075    return SDValue();
3076  SDValue N00 = N0.getOperand(0);
3077  SDValue N01 = N0.getOperand(1);
3078
3079  if (N1.getOpcode() == ISD::OR &&
3080      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3081    // (or (or (and), (and)), (or (and), (and)))
3082    SDValue N000 = N00.getOperand(0);
3083    if (!isBSwapHWordElement(N000, Parts))
3084      return SDValue();
3085
3086    SDValue N001 = N00.getOperand(1);
3087    if (!isBSwapHWordElement(N001, Parts))
3088      return SDValue();
3089    SDValue N010 = N01.getOperand(0);
3090    if (!isBSwapHWordElement(N010, Parts))
3091      return SDValue();
3092    SDValue N011 = N01.getOperand(1);
3093    if (!isBSwapHWordElement(N011, Parts))
3094      return SDValue();
3095  } else {
3096    // (or (or (or (and), (and)), (and)), (and))
3097    if (!isBSwapHWordElement(N1, Parts))
3098      return SDValue();
3099    if (!isBSwapHWordElement(N01, Parts))
3100      return SDValue();
3101    if (N00.getOpcode() != ISD::OR)
3102      return SDValue();
3103    SDValue N000 = N00.getOperand(0);
3104    if (!isBSwapHWordElement(N000, Parts))
3105      return SDValue();
3106    SDValue N001 = N00.getOperand(1);
3107    if (!isBSwapHWordElement(N001, Parts))
3108      return SDValue();
3109  }
3110
3111  // Make sure the parts are all coming from the same node.
3112  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3113    return SDValue();
3114
3115  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3116                              SDValue(Parts[0],0));
3117
3118  // Result of the bswap should be rotated by 16. If it's not legal, then
3119  // do  (x << 16) | (x >> 16).
3120  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3121  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3122    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3123  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3124    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3125  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3126                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3127                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3128}
3129
3130SDValue DAGCombiner::visitOR(SDNode *N) {
3131  SDValue N0 = N->getOperand(0);
3132  SDValue N1 = N->getOperand(1);
3133  SDValue LL, LR, RL, RR, CC0, CC1;
3134  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3135  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3136  EVT VT = N1.getValueType();
3137
3138  // fold vector ops
3139  if (VT.isVector()) {
3140    SDValue FoldedVOp = SimplifyVBinOp(N);
3141    if (FoldedVOp.getNode()) return FoldedVOp;
3142
3143    // fold (or x, 0) -> x, vector edition
3144    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3145      return N1;
3146    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3147      return N0;
3148
3149    // fold (or x, -1) -> -1, vector edition
3150    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3151      return N0;
3152    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3153      return N1;
3154  }
3155
3156  // fold (or x, undef) -> -1
3157  if (!LegalOperations &&
3158      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3159    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3160    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3161  }
3162  // fold (or c1, c2) -> c1|c2
3163  if (N0C && N1C)
3164    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3165  // canonicalize constant to RHS
3166  if (N0C && !N1C)
3167    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3168  // fold (or x, 0) -> x
3169  if (N1C && N1C->isNullValue())
3170    return N0;
3171  // fold (or x, -1) -> -1
3172  if (N1C && N1C->isAllOnesValue())
3173    return N1;
3174  // fold (or x, c) -> c iff (x & ~c) == 0
3175  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3176    return N1;
3177
3178  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3179  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3180  if (BSwap.getNode() != 0)
3181    return BSwap;
3182  BSwap = MatchBSwapHWordLow(N, N0, N1);
3183  if (BSwap.getNode() != 0)
3184    return BSwap;
3185
3186  // reassociate or
3187  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3188  if (ROR.getNode() != 0)
3189    return ROR;
3190  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3191  // iff (c1 & c2) == 0.
3192  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3193             isa<ConstantSDNode>(N0.getOperand(1))) {
3194    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3195    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3196      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3197                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3198                                     N0.getOperand(0), N1),
3199                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3200  }
3201  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3202  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3203    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3204    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3205
3206    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3207        LL.getValueType().isInteger()) {
3208      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3209      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3210      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3211          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3212        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3213                                     LR.getValueType(), LL, RL);
3214        AddToWorkList(ORNode.getNode());
3215        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3216      }
3217      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3218      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3219      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3220          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3221        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3222                                      LR.getValueType(), LL, RL);
3223        AddToWorkList(ANDNode.getNode());
3224        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3225      }
3226    }
3227    // canonicalize equivalent to ll == rl
3228    if (LL == RR && LR == RL) {
3229      Op1 = ISD::getSetCCSwappedOperands(Op1);
3230      std::swap(RL, RR);
3231    }
3232    if (LL == RL && LR == RR) {
3233      bool isInteger = LL.getValueType().isInteger();
3234      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3235      if (Result != ISD::SETCC_INVALID &&
3236          (!LegalOperations ||
3237           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3238            TLI.isOperationLegal(ISD::SETCC,
3239              getSetCCResultType(N0.getValueType())))))
3240        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3241                            LL, LR, Result);
3242    }
3243  }
3244
3245  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3246  if (N0.getOpcode() == N1.getOpcode()) {
3247    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3248    if (Tmp.getNode()) return Tmp;
3249  }
3250
3251  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3252  if (N0.getOpcode() == ISD::AND &&
3253      N1.getOpcode() == ISD::AND &&
3254      N0.getOperand(1).getOpcode() == ISD::Constant &&
3255      N1.getOperand(1).getOpcode() == ISD::Constant &&
3256      // Don't increase # computations.
3257      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3258    // We can only do this xform if we know that bits from X that are set in C2
3259    // but not in C1 are already zero.  Likewise for Y.
3260    const APInt &LHSMask =
3261      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3262    const APInt &RHSMask =
3263      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3264
3265    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3266        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3267      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3268                              N0.getOperand(0), N1.getOperand(0));
3269      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3270                         DAG.getConstant(LHSMask | RHSMask, VT));
3271    }
3272  }
3273
3274  // See if this is some rotate idiom.
3275  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3276    return SDValue(Rot, 0);
3277
3278  // Simplify the operands using demanded-bits information.
3279  if (!VT.isVector() &&
3280      SimplifyDemandedBits(SDValue(N, 0)))
3281    return SDValue(N, 0);
3282
3283  return SDValue();
3284}
3285
3286/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3287static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3288  if (Op.getOpcode() == ISD::AND) {
3289    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3290      Mask = Op.getOperand(1);
3291      Op = Op.getOperand(0);
3292    } else {
3293      return false;
3294    }
3295  }
3296
3297  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3298    Shift = Op;
3299    return true;
3300  }
3301
3302  return false;
3303}
3304
3305// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3306// idioms for rotate, and if the target supports rotation instructions, generate
3307// a rot[lr].
3308SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3309  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3310  EVT VT = LHS.getValueType();
3311  if (!TLI.isTypeLegal(VT)) return 0;
3312
3313  // The target must have at least one rotate flavor.
3314  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3315  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3316  if (!HasROTL && !HasROTR) return 0;
3317
3318  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3319  SDValue LHSShift;   // The shift.
3320  SDValue LHSMask;    // AND value if any.
3321  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3322    return 0; // Not part of a rotate.
3323
3324  SDValue RHSShift;   // The shift.
3325  SDValue RHSMask;    // AND value if any.
3326  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3327    return 0; // Not part of a rotate.
3328
3329  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3330    return 0;   // Not shifting the same value.
3331
3332  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3333    return 0;   // Shifts must disagree.
3334
3335  // Canonicalize shl to left side in a shl/srl pair.
3336  if (RHSShift.getOpcode() == ISD::SHL) {
3337    std::swap(LHS, RHS);
3338    std::swap(LHSShift, RHSShift);
3339    std::swap(LHSMask , RHSMask );
3340  }
3341
3342  unsigned OpSizeInBits = VT.getSizeInBits();
3343  SDValue LHSShiftArg = LHSShift.getOperand(0);
3344  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3345  SDValue RHSShiftArg = RHSShift.getOperand(0);
3346  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3347
3348  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3349  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3350  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3351      RHSShiftAmt.getOpcode() == ISD::Constant) {
3352    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3353    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3354    if ((LShVal + RShVal) != OpSizeInBits)
3355      return 0;
3356
3357    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3358                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3359
3360    // If there is an AND of either shifted operand, apply it to the result.
3361    if (LHSMask.getNode() || RHSMask.getNode()) {
3362      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3363
3364      if (LHSMask.getNode()) {
3365        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3366        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3367      }
3368      if (RHSMask.getNode()) {
3369        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3370        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3371      }
3372
3373      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3374    }
3375
3376    return Rot.getNode();
3377  }
3378
3379  // If there is a mask here, and we have a variable shift, we can't be sure
3380  // that we're masking out the right stuff.
3381  if (LHSMask.getNode() || RHSMask.getNode())
3382    return 0;
3383
3384  // If the shift amount is sign/zext/any-extended just peel it off.
3385  SDValue LExtOp0 = LHSShiftAmt;
3386  SDValue RExtOp0 = RHSShiftAmt;
3387  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3388       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3389       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3390       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3391      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3392       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3393       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3394       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3395    LExtOp0 = LHSShiftAmt.getOperand(0);
3396    RExtOp0 = RHSShiftAmt.getOperand(0);
3397  }
3398
3399  if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3400    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3401    //   (rotl x, y)
3402    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3403    //   (rotr x, (sub 32, y))
3404    if (ConstantSDNode *SUBC =
3405            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3406      if (SUBC->getAPIntValue() == OpSizeInBits) {
3407        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3408                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3409      } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3410                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3411        // fold (or (shl (*ext x), (*ext y)),
3412        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3413        //   (*ext (rotl x, y))
3414        // fold (or (shl (*ext x), (*ext y)),
3415        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3416        //   (*ext (rotr x, (sub 32, y)))
3417        SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3418        EVT LArgVT = LArgExtOp0.getValueType();
3419        bool HasROTRWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTR, LArgVT);
3420        bool HasROTLWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTL, LArgVT);
3421        if (HasROTRWithLArg || HasROTLWithLArg) {
3422          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3423            SDValue V =
3424                DAG.getNode(HasROTLWithLArg ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3425                            LArgExtOp0, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3426            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3427          }
3428        }
3429      }
3430    }
3431  } else if (LExtOp0.getOpcode() == ISD::SUB &&
3432             RExtOp0 == LExtOp0.getOperand(1)) {
3433    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3434    //   (rotr x, y)
3435    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3436    //   (rotl x, (sub 32, y))
3437    if (ConstantSDNode *SUBC =
3438            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3439      if (SUBC->getAPIntValue() == OpSizeInBits) {
3440        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3441                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3442      } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3443                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3444        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3445        //          (srl (*ext x), (*ext y))) ->
3446        //   (*ext (rotl x, y))
3447        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3448        //          (srl (*ext x), (*ext y))) ->
3449        //   (*ext (rotr x, (sub 32, y)))
3450        SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3451        EVT RArgVT = RArgExtOp0.getValueType();
3452        bool HasROTRWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTR, RArgVT);
3453        bool HasROTLWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTL, RArgVT);
3454        if (HasROTRWithRArg || HasROTLWithRArg) {
3455          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3456            SDValue V =
3457                DAG.getNode(HasROTRWithRArg ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3458                            RArgExtOp0, HasROTR ? RHSShiftAmt : LHSShiftAmt);
3459            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3460          }
3461        }
3462      }
3463    }
3464  }
3465
3466  return 0;
3467}
3468
3469SDValue DAGCombiner::visitXOR(SDNode *N) {
3470  SDValue N0 = N->getOperand(0);
3471  SDValue N1 = N->getOperand(1);
3472  SDValue LHS, RHS, CC;
3473  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3474  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3475  EVT VT = N0.getValueType();
3476
3477  // fold vector ops
3478  if (VT.isVector()) {
3479    SDValue FoldedVOp = SimplifyVBinOp(N);
3480    if (FoldedVOp.getNode()) return FoldedVOp;
3481
3482    // fold (xor x, 0) -> x, vector edition
3483    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3484      return N1;
3485    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3486      return N0;
3487  }
3488
3489  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3490  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3491    return DAG.getConstant(0, VT);
3492  // fold (xor x, undef) -> undef
3493  if (N0.getOpcode() == ISD::UNDEF)
3494    return N0;
3495  if (N1.getOpcode() == ISD::UNDEF)
3496    return N1;
3497  // fold (xor c1, c2) -> c1^c2
3498  if (N0C && N1C)
3499    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3500  // canonicalize constant to RHS
3501  if (N0C && !N1C)
3502    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3503  // fold (xor x, 0) -> x
3504  if (N1C && N1C->isNullValue())
3505    return N0;
3506  // reassociate xor
3507  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3508  if (RXOR.getNode() != 0)
3509    return RXOR;
3510
3511  // fold !(x cc y) -> (x !cc y)
3512  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3513    bool isInt = LHS.getValueType().isInteger();
3514    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3515                                               isInt);
3516
3517    if (!LegalOperations ||
3518        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3519      switch (N0.getOpcode()) {
3520      default:
3521        llvm_unreachable("Unhandled SetCC Equivalent!");
3522      case ISD::SETCC:
3523        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3524      case ISD::SELECT_CC:
3525        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3526                               N0.getOperand(3), NotCC);
3527      }
3528    }
3529  }
3530
3531  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3532  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3533      N0.getNode()->hasOneUse() &&
3534      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3535    SDValue V = N0.getOperand(0);
3536    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3537                    DAG.getConstant(1, V.getValueType()));
3538    AddToWorkList(V.getNode());
3539    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3540  }
3541
3542  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3543  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3544      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3545    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3546    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3547      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3548      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3549      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3550      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3551      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3552    }
3553  }
3554  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3555  if (N1C && N1C->isAllOnesValue() &&
3556      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3557    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3558    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3559      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3560      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3561      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3562      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3563      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3564    }
3565  }
3566  // fold (xor (and x, y), y) -> (and (not x), y)
3567  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3568      N0->getOperand(1) == N1) {
3569    SDValue X = N0->getOperand(0);
3570    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3571    AddToWorkList(NotX.getNode());
3572    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3573  }
3574  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3575  if (N1C && N0.getOpcode() == ISD::XOR) {
3576    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3577    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3578    if (N00C)
3579      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3580                         DAG.getConstant(N1C->getAPIntValue() ^
3581                                         N00C->getAPIntValue(), VT));
3582    if (N01C)
3583      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3584                         DAG.getConstant(N1C->getAPIntValue() ^
3585                                         N01C->getAPIntValue(), VT));
3586  }
3587  // fold (xor x, x) -> 0
3588  if (N0 == N1)
3589    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3590
3591  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3592  if (N0.getOpcode() == N1.getOpcode()) {
3593    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3594    if (Tmp.getNode()) return Tmp;
3595  }
3596
3597  // Simplify the expression using non-local knowledge.
3598  if (!VT.isVector() &&
3599      SimplifyDemandedBits(SDValue(N, 0)))
3600    return SDValue(N, 0);
3601
3602  return SDValue();
3603}
3604
3605/// visitShiftByConstant - Handle transforms common to the three shifts, when
3606/// the shift amount is a constant.
3607SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3608  SDNode *LHS = N->getOperand(0).getNode();
3609  if (!LHS->hasOneUse()) return SDValue();
3610
3611  // We want to pull some binops through shifts, so that we have (and (shift))
3612  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3613  // thing happens with address calculations, so it's important to canonicalize
3614  // it.
3615  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3616
3617  switch (LHS->getOpcode()) {
3618  default: return SDValue();
3619  case ISD::OR:
3620  case ISD::XOR:
3621    HighBitSet = false; // We can only transform sra if the high bit is clear.
3622    break;
3623  case ISD::AND:
3624    HighBitSet = true;  // We can only transform sra if the high bit is set.
3625    break;
3626  case ISD::ADD:
3627    if (N->getOpcode() != ISD::SHL)
3628      return SDValue(); // only shl(add) not sr[al](add).
3629    HighBitSet = false; // We can only transform sra if the high bit is clear.
3630    break;
3631  }
3632
3633  // We require the RHS of the binop to be a constant as well.
3634  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3635  if (!BinOpCst) return SDValue();
3636
3637  // FIXME: disable this unless the input to the binop is a shift by a constant.
3638  // If it is not a shift, it pessimizes some common cases like:
3639  //
3640  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3641  //    int bar(int *X, int i) { return X[i & 255]; }
3642  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3643  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3644       BinOpLHSVal->getOpcode() != ISD::SRA &&
3645       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3646      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3647    return SDValue();
3648
3649  EVT VT = N->getValueType(0);
3650
3651  // If this is a signed shift right, and the high bit is modified by the
3652  // logical operation, do not perform the transformation. The highBitSet
3653  // boolean indicates the value of the high bit of the constant which would
3654  // cause it to be modified for this operation.
3655  if (N->getOpcode() == ISD::SRA) {
3656    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3657    if (BinOpRHSSignSet != HighBitSet)
3658      return SDValue();
3659  }
3660
3661  // Fold the constants, shifting the binop RHS by the shift amount.
3662  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3663                               N->getValueType(0),
3664                               LHS->getOperand(1), N->getOperand(1));
3665
3666  // Create the new shift.
3667  SDValue NewShift = DAG.getNode(N->getOpcode(),
3668                                 SDLoc(LHS->getOperand(0)),
3669                                 VT, LHS->getOperand(0), N->getOperand(1));
3670
3671  // Create the new binop.
3672  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3673}
3674
3675SDValue DAGCombiner::visitSHL(SDNode *N) {
3676  SDValue N0 = N->getOperand(0);
3677  SDValue N1 = N->getOperand(1);
3678  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3679  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3680  EVT VT = N0.getValueType();
3681  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3682
3683  // fold vector ops
3684  if (VT.isVector()) {
3685    SDValue FoldedVOp = SimplifyVBinOp(N);
3686    if (FoldedVOp.getNode()) return FoldedVOp;
3687  }
3688
3689  // fold (shl c1, c2) -> c1<<c2
3690  if (N0C && N1C)
3691    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3692  // fold (shl 0, x) -> 0
3693  if (N0C && N0C->isNullValue())
3694    return N0;
3695  // fold (shl x, c >= size(x)) -> undef
3696  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3697    return DAG.getUNDEF(VT);
3698  // fold (shl x, 0) -> x
3699  if (N1C && N1C->isNullValue())
3700    return N0;
3701  // fold (shl undef, x) -> 0
3702  if (N0.getOpcode() == ISD::UNDEF)
3703    return DAG.getConstant(0, VT);
3704  // if (shl x, c) is known to be zero, return 0
3705  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3706                            APInt::getAllOnesValue(OpSizeInBits)))
3707    return DAG.getConstant(0, VT);
3708  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3709  if (N1.getOpcode() == ISD::TRUNCATE &&
3710      N1.getOperand(0).getOpcode() == ISD::AND &&
3711      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3712    SDValue N101 = N1.getOperand(0).getOperand(1);
3713    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3714      EVT TruncVT = N1.getValueType();
3715      SDValue N100 = N1.getOperand(0).getOperand(0);
3716      APInt TruncC = N101C->getAPIntValue();
3717      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3718      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3719                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3720                                     DAG.getNode(ISD::TRUNCATE,
3721                                                 SDLoc(N),
3722                                                 TruncVT, N100),
3723                                     DAG.getConstant(TruncC, TruncVT)));
3724    }
3725  }
3726
3727  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3728    return SDValue(N, 0);
3729
3730  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3731  if (N1C && N0.getOpcode() == ISD::SHL &&
3732      N0.getOperand(1).getOpcode() == ISD::Constant) {
3733    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3734    uint64_t c2 = N1C->getZExtValue();
3735    if (c1 + c2 >= OpSizeInBits)
3736      return DAG.getConstant(0, VT);
3737    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3738                       DAG.getConstant(c1 + c2, N1.getValueType()));
3739  }
3740
3741  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3742  // For this to be valid, the second form must not preserve any of the bits
3743  // that are shifted out by the inner shift in the first form.  This means
3744  // the outer shift size must be >= the number of bits added by the ext.
3745  // As a corollary, we don't care what kind of ext it is.
3746  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3747              N0.getOpcode() == ISD::ANY_EXTEND ||
3748              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3749      N0.getOperand(0).getOpcode() == ISD::SHL &&
3750      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3751    uint64_t c1 =
3752      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3753    uint64_t c2 = N1C->getZExtValue();
3754    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3755    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3756    if (c2 >= OpSizeInBits - InnerShiftSize) {
3757      if (c1 + c2 >= OpSizeInBits)
3758        return DAG.getConstant(0, VT);
3759      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3760                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3761                                     N0.getOperand(0)->getOperand(0)),
3762                         DAG.getConstant(c1 + c2, N1.getValueType()));
3763    }
3764  }
3765
3766  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3767  // Only fold this if the inner zext has no other uses to avoid increasing
3768  // the total number of instructions.
3769  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3770      N0.getOperand(0).getOpcode() == ISD::SRL &&
3771      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3772    uint64_t c1 =
3773      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3774    if (c1 < VT.getSizeInBits()) {
3775      uint64_t c2 = N1C->getZExtValue();
3776      if (c1 == c2) {
3777        SDValue NewOp0 = N0.getOperand(0);
3778        EVT CountVT = NewOp0.getOperand(1).getValueType();
3779        SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3780                                     NewOp0, DAG.getConstant(c2, CountVT));
3781        AddToWorkList(NewSHL.getNode());
3782        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3783      }
3784    }
3785  }
3786
3787  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3788  //                               (and (srl x, (sub c1, c2), MASK)
3789  // Only fold this if the inner shift has no other uses -- if it does, folding
3790  // this will increase the total number of instructions.
3791  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3792      N0.getOperand(1).getOpcode() == ISD::Constant) {
3793    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3794    if (c1 < VT.getSizeInBits()) {
3795      uint64_t c2 = N1C->getZExtValue();
3796      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3797                                         VT.getSizeInBits() - c1);
3798      SDValue Shift;
3799      if (c2 > c1) {
3800        Mask = Mask.shl(c2-c1);
3801        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3802                            DAG.getConstant(c2-c1, N1.getValueType()));
3803      } else {
3804        Mask = Mask.lshr(c1-c2);
3805        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3806                            DAG.getConstant(c1-c2, N1.getValueType()));
3807      }
3808      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3809                         DAG.getConstant(Mask, VT));
3810    }
3811  }
3812  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3813  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3814    SDValue HiBitsMask =
3815      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3816                                            VT.getSizeInBits() -
3817                                              N1C->getZExtValue()),
3818                      VT);
3819    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3820                       HiBitsMask);
3821  }
3822
3823  if (N1C) {
3824    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3825    if (NewSHL.getNode())
3826      return NewSHL;
3827  }
3828
3829  return SDValue();
3830}
3831
3832SDValue DAGCombiner::visitSRA(SDNode *N) {
3833  SDValue N0 = N->getOperand(0);
3834  SDValue N1 = N->getOperand(1);
3835  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3836  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3837  EVT VT = N0.getValueType();
3838  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3839
3840  // fold vector ops
3841  if (VT.isVector()) {
3842    SDValue FoldedVOp = SimplifyVBinOp(N);
3843    if (FoldedVOp.getNode()) return FoldedVOp;
3844  }
3845
3846  // fold (sra c1, c2) -> (sra c1, c2)
3847  if (N0C && N1C)
3848    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3849  // fold (sra 0, x) -> 0
3850  if (N0C && N0C->isNullValue())
3851    return N0;
3852  // fold (sra -1, x) -> -1
3853  if (N0C && N0C->isAllOnesValue())
3854    return N0;
3855  // fold (sra x, (setge c, size(x))) -> undef
3856  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3857    return DAG.getUNDEF(VT);
3858  // fold (sra x, 0) -> x
3859  if (N1C && N1C->isNullValue())
3860    return N0;
3861  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3862  // sext_inreg.
3863  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3864    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3865    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3866    if (VT.isVector())
3867      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3868                               ExtVT, VT.getVectorNumElements());
3869    if ((!LegalOperations ||
3870         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3871      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3872                         N0.getOperand(0), DAG.getValueType(ExtVT));
3873  }
3874
3875  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3876  if (N1C && N0.getOpcode() == ISD::SRA) {
3877    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3878      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3879      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3880      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3881                         DAG.getConstant(Sum, N1C->getValueType(0)));
3882    }
3883  }
3884
3885  // fold (sra (shl X, m), (sub result_size, n))
3886  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3887  // result_size - n != m.
3888  // If truncate is free for the target sext(shl) is likely to result in better
3889  // code.
3890  if (N0.getOpcode() == ISD::SHL) {
3891    // Get the two constanst of the shifts, CN0 = m, CN = n.
3892    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3893    if (N01C && N1C) {
3894      // Determine what the truncate's result bitsize and type would be.
3895      EVT TruncVT =
3896        EVT::getIntegerVT(*DAG.getContext(),
3897                          OpSizeInBits - N1C->getZExtValue());
3898      // Determine the residual right-shift amount.
3899      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3900
3901      // If the shift is not a no-op (in which case this should be just a sign
3902      // extend already), the truncated to type is legal, sign_extend is legal
3903      // on that type, and the truncate to that type is both legal and free,
3904      // perform the transform.
3905      if ((ShiftAmt > 0) &&
3906          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3907          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3908          TLI.isTruncateFree(VT, TruncVT)) {
3909
3910          SDValue Amt = DAG.getConstant(ShiftAmt,
3911              getShiftAmountTy(N0.getOperand(0).getValueType()));
3912          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3913                                      N0.getOperand(0), Amt);
3914          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3915                                      Shift);
3916          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3917                             N->getValueType(0), Trunc);
3918      }
3919    }
3920  }
3921
3922  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3923  if (N1.getOpcode() == ISD::TRUNCATE &&
3924      N1.getOperand(0).getOpcode() == ISD::AND &&
3925      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3926    SDValue N101 = N1.getOperand(0).getOperand(1);
3927    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3928      EVT TruncVT = N1.getValueType();
3929      SDValue N100 = N1.getOperand(0).getOperand(0);
3930      APInt TruncC = N101C->getAPIntValue();
3931      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3932      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3933                         DAG.getNode(ISD::AND, SDLoc(N),
3934                                     TruncVT,
3935                                     DAG.getNode(ISD::TRUNCATE,
3936                                                 SDLoc(N),
3937                                                 TruncVT, N100),
3938                                     DAG.getConstant(TruncC, TruncVT)));
3939    }
3940  }
3941
3942  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3943  //      if c1 is equal to the number of bits the trunc removes
3944  if (N0.getOpcode() == ISD::TRUNCATE &&
3945      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3946       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3947      N0.getOperand(0).hasOneUse() &&
3948      N0.getOperand(0).getOperand(1).hasOneUse() &&
3949      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3950    EVT LargeVT = N0.getOperand(0).getValueType();
3951    ConstantSDNode *LargeShiftAmt =
3952      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3953
3954    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3955        LargeShiftAmt->getZExtValue()) {
3956      SDValue Amt =
3957        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3958              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3959      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3960                                N0.getOperand(0).getOperand(0), Amt);
3961      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3962    }
3963  }
3964
3965  // Simplify, based on bits shifted out of the LHS.
3966  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3967    return SDValue(N, 0);
3968
3969
3970  // If the sign bit is known to be zero, switch this to a SRL.
3971  if (DAG.SignBitIsZero(N0))
3972    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3973
3974  if (N1C) {
3975    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3976    if (NewSRA.getNode())
3977      return NewSRA;
3978  }
3979
3980  return SDValue();
3981}
3982
3983SDValue DAGCombiner::visitSRL(SDNode *N) {
3984  SDValue N0 = N->getOperand(0);
3985  SDValue N1 = N->getOperand(1);
3986  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3987  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3988  EVT VT = N0.getValueType();
3989  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3990
3991  // fold vector ops
3992  if (VT.isVector()) {
3993    SDValue FoldedVOp = SimplifyVBinOp(N);
3994    if (FoldedVOp.getNode()) return FoldedVOp;
3995  }
3996
3997  // fold (srl c1, c2) -> c1 >>u c2
3998  if (N0C && N1C)
3999    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
4000  // fold (srl 0, x) -> 0
4001  if (N0C && N0C->isNullValue())
4002    return N0;
4003  // fold (srl x, c >= size(x)) -> undef
4004  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4005    return DAG.getUNDEF(VT);
4006  // fold (srl x, 0) -> x
4007  if (N1C && N1C->isNullValue())
4008    return N0;
4009  // if (srl x, c) is known to be zero, return 0
4010  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4011                                   APInt::getAllOnesValue(OpSizeInBits)))
4012    return DAG.getConstant(0, VT);
4013
4014  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4015  if (N1C && N0.getOpcode() == ISD::SRL &&
4016      N0.getOperand(1).getOpcode() == ISD::Constant) {
4017    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
4018    uint64_t c2 = N1C->getZExtValue();
4019    if (c1 + c2 >= OpSizeInBits)
4020      return DAG.getConstant(0, VT);
4021    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4022                       DAG.getConstant(c1 + c2, N1.getValueType()));
4023  }
4024
4025  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4026  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4027      N0.getOperand(0).getOpcode() == ISD::SRL &&
4028      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4029    uint64_t c1 =
4030      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4031    uint64_t c2 = N1C->getZExtValue();
4032    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4033    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4034    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4035    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4036    if (c1 + OpSizeInBits == InnerShiftSize) {
4037      if (c1 + c2 >= InnerShiftSize)
4038        return DAG.getConstant(0, VT);
4039      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4040                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4041                                     N0.getOperand(0)->getOperand(0),
4042                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4043    }
4044  }
4045
4046  // fold (srl (shl x, c), c) -> (and x, cst2)
4047  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4048      N0.getValueSizeInBits() <= 64) {
4049    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4050    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4051                       DAG.getConstant(~0ULL >> ShAmt, VT));
4052  }
4053
4054  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4055  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4056    // Shifting in all undef bits?
4057    EVT SmallVT = N0.getOperand(0).getValueType();
4058    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4059      return DAG.getUNDEF(VT);
4060
4061    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4062      uint64_t ShiftAmt = N1C->getZExtValue();
4063      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4064                                       N0.getOperand(0),
4065                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4066      AddToWorkList(SmallShift.getNode());
4067      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4068      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4069                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4070                         DAG.getConstant(Mask, VT));
4071    }
4072  }
4073
4074  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4075  // bit, which is unmodified by sra.
4076  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4077    if (N0.getOpcode() == ISD::SRA)
4078      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4079  }
4080
4081  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4082  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4083      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4084    APInt KnownZero, KnownOne;
4085    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4086
4087    // If any of the input bits are KnownOne, then the input couldn't be all
4088    // zeros, thus the result of the srl will always be zero.
4089    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4090
4091    // If all of the bits input the to ctlz node are known to be zero, then
4092    // the result of the ctlz is "32" and the result of the shift is one.
4093    APInt UnknownBits = ~KnownZero;
4094    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4095
4096    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4097    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4098      // Okay, we know that only that the single bit specified by UnknownBits
4099      // could be set on input to the CTLZ node. If this bit is set, the SRL
4100      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4101      // to an SRL/XOR pair, which is likely to simplify more.
4102      unsigned ShAmt = UnknownBits.countTrailingZeros();
4103      SDValue Op = N0.getOperand(0);
4104
4105      if (ShAmt) {
4106        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4107                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4108        AddToWorkList(Op.getNode());
4109      }
4110
4111      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4112                         Op, DAG.getConstant(1, VT));
4113    }
4114  }
4115
4116  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4117  if (N1.getOpcode() == ISD::TRUNCATE &&
4118      N1.getOperand(0).getOpcode() == ISD::AND &&
4119      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4120    SDValue N101 = N1.getOperand(0).getOperand(1);
4121    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4122      EVT TruncVT = N1.getValueType();
4123      SDValue N100 = N1.getOperand(0).getOperand(0);
4124      APInt TruncC = N101C->getAPIntValue();
4125      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4126      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4127                         DAG.getNode(ISD::AND, SDLoc(N),
4128                                     TruncVT,
4129                                     DAG.getNode(ISD::TRUNCATE,
4130                                                 SDLoc(N),
4131                                                 TruncVT, N100),
4132                                     DAG.getConstant(TruncC, TruncVT)));
4133    }
4134  }
4135
4136  // fold operands of srl based on knowledge that the low bits are not
4137  // demanded.
4138  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4139    return SDValue(N, 0);
4140
4141  if (N1C) {
4142    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4143    if (NewSRL.getNode())
4144      return NewSRL;
4145  }
4146
4147  // Attempt to convert a srl of a load into a narrower zero-extending load.
4148  SDValue NarrowLoad = ReduceLoadWidth(N);
4149  if (NarrowLoad.getNode())
4150    return NarrowLoad;
4151
4152  // Here is a common situation. We want to optimize:
4153  //
4154  //   %a = ...
4155  //   %b = and i32 %a, 2
4156  //   %c = srl i32 %b, 1
4157  //   brcond i32 %c ...
4158  //
4159  // into
4160  //
4161  //   %a = ...
4162  //   %b = and %a, 2
4163  //   %c = setcc eq %b, 0
4164  //   brcond %c ...
4165  //
4166  // However when after the source operand of SRL is optimized into AND, the SRL
4167  // itself may not be optimized further. Look for it and add the BRCOND into
4168  // the worklist.
4169  if (N->hasOneUse()) {
4170    SDNode *Use = *N->use_begin();
4171    if (Use->getOpcode() == ISD::BRCOND)
4172      AddToWorkList(Use);
4173    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4174      // Also look pass the truncate.
4175      Use = *Use->use_begin();
4176      if (Use->getOpcode() == ISD::BRCOND)
4177        AddToWorkList(Use);
4178    }
4179  }
4180
4181  return SDValue();
4182}
4183
4184SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4185  SDValue N0 = N->getOperand(0);
4186  EVT VT = N->getValueType(0);
4187
4188  // fold (ctlz c1) -> c2
4189  if (isa<ConstantSDNode>(N0))
4190    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4191  return SDValue();
4192}
4193
4194SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4195  SDValue N0 = N->getOperand(0);
4196  EVT VT = N->getValueType(0);
4197
4198  // fold (ctlz_zero_undef c1) -> c2
4199  if (isa<ConstantSDNode>(N0))
4200    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4201  return SDValue();
4202}
4203
4204SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4205  SDValue N0 = N->getOperand(0);
4206  EVT VT = N->getValueType(0);
4207
4208  // fold (cttz c1) -> c2
4209  if (isa<ConstantSDNode>(N0))
4210    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4211  return SDValue();
4212}
4213
4214SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4215  SDValue N0 = N->getOperand(0);
4216  EVT VT = N->getValueType(0);
4217
4218  // fold (cttz_zero_undef c1) -> c2
4219  if (isa<ConstantSDNode>(N0))
4220    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4221  return SDValue();
4222}
4223
4224SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4225  SDValue N0 = N->getOperand(0);
4226  EVT VT = N->getValueType(0);
4227
4228  // fold (ctpop c1) -> c2
4229  if (isa<ConstantSDNode>(N0))
4230    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4231  return SDValue();
4232}
4233
4234SDValue DAGCombiner::visitSELECT(SDNode *N) {
4235  SDValue N0 = N->getOperand(0);
4236  SDValue N1 = N->getOperand(1);
4237  SDValue N2 = N->getOperand(2);
4238  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4239  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4240  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4241  EVT VT = N->getValueType(0);
4242  EVT VT0 = N0.getValueType();
4243
4244  // fold (select C, X, X) -> X
4245  if (N1 == N2)
4246    return N1;
4247  // fold (select true, X, Y) -> X
4248  if (N0C && !N0C->isNullValue())
4249    return N1;
4250  // fold (select false, X, Y) -> Y
4251  if (N0C && N0C->isNullValue())
4252    return N2;
4253  // fold (select C, 1, X) -> (or C, X)
4254  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4255    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4256  // fold (select C, 0, 1) -> (xor C, 1)
4257  if (VT.isInteger() &&
4258      (VT0 == MVT::i1 ||
4259       (VT0.isInteger() &&
4260        TLI.getBooleanContents(false) ==
4261        TargetLowering::ZeroOrOneBooleanContent)) &&
4262      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4263    SDValue XORNode;
4264    if (VT == VT0)
4265      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4266                         N0, DAG.getConstant(1, VT0));
4267    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4268                          N0, DAG.getConstant(1, VT0));
4269    AddToWorkList(XORNode.getNode());
4270    if (VT.bitsGT(VT0))
4271      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4272    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4273  }
4274  // fold (select C, 0, X) -> (and (not C), X)
4275  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4276    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4277    AddToWorkList(NOTNode.getNode());
4278    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4279  }
4280  // fold (select C, X, 1) -> (or (not C), X)
4281  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4282    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4283    AddToWorkList(NOTNode.getNode());
4284    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4285  }
4286  // fold (select C, X, 0) -> (and C, X)
4287  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4288    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4289  // fold (select X, X, Y) -> (or X, Y)
4290  // fold (select X, 1, Y) -> (or X, Y)
4291  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4292    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4293  // fold (select X, Y, X) -> (and X, Y)
4294  // fold (select X, Y, 0) -> (and X, Y)
4295  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4296    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4297
4298  // If we can fold this based on the true/false value, do so.
4299  if (SimplifySelectOps(N, N1, N2))
4300    return SDValue(N, 0);  // Don't revisit N.
4301
4302  // fold selects based on a setcc into other things, such as min/max/abs
4303  if (N0.getOpcode() == ISD::SETCC) {
4304    // FIXME:
4305    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4306    // having to say they don't support SELECT_CC on every type the DAG knows
4307    // about, since there is no way to mark an opcode illegal at all value types
4308    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4309        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4310      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4311                         N0.getOperand(0), N0.getOperand(1),
4312                         N1, N2, N0.getOperand(2));
4313    return SimplifySelect(SDLoc(N), N0, N1, N2);
4314  }
4315
4316  return SDValue();
4317}
4318
4319static
4320std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
4321  SDLoc DL(N);
4322  EVT LoVT, HiVT;
4323  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4324
4325  // Split the inputs.
4326  SDValue Lo, Hi, LL, LH, RL, RH;
4327  llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
4328  llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
4329
4330  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
4331  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
4332
4333  return std::make_pair(Lo, Hi);
4334}
4335
4336SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4337  SDValue N0 = N->getOperand(0);
4338  SDValue N1 = N->getOperand(1);
4339  SDValue N2 = N->getOperand(2);
4340  SDLoc DL(N);
4341
4342  // Canonicalize integer abs.
4343  // vselect (setg[te] X,  0),  X, -X ->
4344  // vselect (setgt    X, -1),  X, -X ->
4345  // vselect (setl[te] X,  0), -X,  X ->
4346  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4347  if (N0.getOpcode() == ISD::SETCC) {
4348    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4349    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4350    bool isAbs = false;
4351    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4352
4353    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4354         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4355        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4356      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4357    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4358             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4359      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4360
4361    if (isAbs) {
4362      EVT VT = LHS.getValueType();
4363      SDValue Shift = DAG.getNode(
4364          ISD::SRA, DL, VT, LHS,
4365          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4366      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4367      AddToWorkList(Shift.getNode());
4368      AddToWorkList(Add.getNode());
4369      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4370    }
4371  }
4372
4373  // If the VSELECT result requires splitting and the mask is provided by a
4374  // SETCC, then split both nodes and its operands before legalization. This
4375  // prevents the type legalizer from unrolling SETCC into scalar comparisons
4376  // and enables future optimizations (e.g. min/max pattern matching on X86).
4377  if (N0.getOpcode() == ISD::SETCC) {
4378    EVT VT = N->getValueType(0);
4379
4380    // Check if any splitting is required.
4381    if (TLI.getTypeAction(*DAG.getContext(), VT) !=
4382        TargetLowering::TypeSplitVector)
4383      return SDValue();
4384
4385    SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
4386    llvm::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
4387    llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
4388    llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
4389
4390    Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
4391    Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
4392
4393    // Add the new VSELECT nodes to the work list in case they need to be split
4394    // again.
4395    AddToWorkList(Lo.getNode());
4396    AddToWorkList(Hi.getNode());
4397
4398    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
4399  }
4400
4401  return SDValue();
4402}
4403
4404SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4405  SDValue N0 = N->getOperand(0);
4406  SDValue N1 = N->getOperand(1);
4407  SDValue N2 = N->getOperand(2);
4408  SDValue N3 = N->getOperand(3);
4409  SDValue N4 = N->getOperand(4);
4410  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4411
4412  // fold select_cc lhs, rhs, x, x, cc -> x
4413  if (N2 == N3)
4414    return N2;
4415
4416  // Determine if the condition we're dealing with is constant
4417  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4418                              N0, N1, CC, SDLoc(N), false);
4419  if (SCC.getNode()) {
4420    AddToWorkList(SCC.getNode());
4421
4422    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4423      if (!SCCC->isNullValue())
4424        return N2;    // cond always true -> true val
4425      else
4426        return N3;    // cond always false -> false val
4427    }
4428
4429    // Fold to a simpler select_cc
4430    if (SCC.getOpcode() == ISD::SETCC)
4431      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4432                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4433                         SCC.getOperand(2));
4434  }
4435
4436  // If we can fold this based on the true/false value, do so.
4437  if (SimplifySelectOps(N, N2, N3))
4438    return SDValue(N, 0);  // Don't revisit N.
4439
4440  // fold select_cc into other things, such as min/max/abs
4441  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4442}
4443
4444SDValue DAGCombiner::visitSETCC(SDNode *N) {
4445  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4446                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4447                       SDLoc(N));
4448}
4449
4450// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4451// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4452// transformation. Returns true if extension are possible and the above
4453// mentioned transformation is profitable.
4454static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4455                                    unsigned ExtOpc,
4456                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4457                                    const TargetLowering &TLI) {
4458  bool HasCopyToRegUses = false;
4459  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4460  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4461                            UE = N0.getNode()->use_end();
4462       UI != UE; ++UI) {
4463    SDNode *User = *UI;
4464    if (User == N)
4465      continue;
4466    if (UI.getUse().getResNo() != N0.getResNo())
4467      continue;
4468    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4469    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4470      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4471      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4472        // Sign bits will be lost after a zext.
4473        return false;
4474      bool Add = false;
4475      for (unsigned i = 0; i != 2; ++i) {
4476        SDValue UseOp = User->getOperand(i);
4477        if (UseOp == N0)
4478          continue;
4479        if (!isa<ConstantSDNode>(UseOp))
4480          return false;
4481        Add = true;
4482      }
4483      if (Add)
4484        ExtendNodes.push_back(User);
4485      continue;
4486    }
4487    // If truncates aren't free and there are users we can't
4488    // extend, it isn't worthwhile.
4489    if (!isTruncFree)
4490      return false;
4491    // Remember if this value is live-out.
4492    if (User->getOpcode() == ISD::CopyToReg)
4493      HasCopyToRegUses = true;
4494  }
4495
4496  if (HasCopyToRegUses) {
4497    bool BothLiveOut = false;
4498    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4499         UI != UE; ++UI) {
4500      SDUse &Use = UI.getUse();
4501      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4502        BothLiveOut = true;
4503        break;
4504      }
4505    }
4506    if (BothLiveOut)
4507      // Both unextended and extended values are live out. There had better be
4508      // a good reason for the transformation.
4509      return ExtendNodes.size();
4510  }
4511  return true;
4512}
4513
4514void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4515                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4516                                  ISD::NodeType ExtType) {
4517  // Extend SetCC uses if necessary.
4518  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4519    SDNode *SetCC = SetCCs[i];
4520    SmallVector<SDValue, 4> Ops;
4521
4522    for (unsigned j = 0; j != 2; ++j) {
4523      SDValue SOp = SetCC->getOperand(j);
4524      if (SOp == Trunc)
4525        Ops.push_back(ExtLoad);
4526      else
4527        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4528    }
4529
4530    Ops.push_back(SetCC->getOperand(2));
4531    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4532                                 &Ops[0], Ops.size()));
4533  }
4534}
4535
4536SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4537  SDValue N0 = N->getOperand(0);
4538  EVT VT = N->getValueType(0);
4539
4540  // fold (sext c1) -> c1
4541  if (isa<ConstantSDNode>(N0))
4542    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4543
4544  // fold (sext (sext x)) -> (sext x)
4545  // fold (sext (aext x)) -> (sext x)
4546  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4547    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4548                       N0.getOperand(0));
4549
4550  if (N0.getOpcode() == ISD::TRUNCATE) {
4551    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4552    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4553    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4554    if (NarrowLoad.getNode()) {
4555      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4556      if (NarrowLoad.getNode() != N0.getNode()) {
4557        CombineTo(N0.getNode(), NarrowLoad);
4558        // CombineTo deleted the truncate, if needed, but not what's under it.
4559        AddToWorkList(oye);
4560      }
4561      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4562    }
4563
4564    // See if the value being truncated is already sign extended.  If so, just
4565    // eliminate the trunc/sext pair.
4566    SDValue Op = N0.getOperand(0);
4567    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4568    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4569    unsigned DestBits = VT.getScalarType().getSizeInBits();
4570    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4571
4572    if (OpBits == DestBits) {
4573      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4574      // bits, it is already ready.
4575      if (NumSignBits > DestBits-MidBits)
4576        return Op;
4577    } else if (OpBits < DestBits) {
4578      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4579      // bits, just sext from i32.
4580      if (NumSignBits > OpBits-MidBits)
4581        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4582    } else {
4583      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4584      // bits, just truncate to i32.
4585      if (NumSignBits > OpBits-MidBits)
4586        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4587    }
4588
4589    // fold (sext (truncate x)) -> (sextinreg x).
4590    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4591                                                 N0.getValueType())) {
4592      if (OpBits < DestBits)
4593        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4594      else if (OpBits > DestBits)
4595        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4596      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4597                         DAG.getValueType(N0.getValueType()));
4598    }
4599  }
4600
4601  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4602  // None of the supported targets knows how to perform load and sign extend
4603  // on vectors in one instruction.  We only perform this transformation on
4604  // scalars.
4605  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4606      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4607       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4608    bool DoXform = true;
4609    SmallVector<SDNode*, 4> SetCCs;
4610    if (!N0.hasOneUse())
4611      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4612    if (DoXform) {
4613      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4614      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4615                                       LN0->getChain(),
4616                                       LN0->getBasePtr(), N0.getValueType(),
4617                                       LN0->getMemOperand());
4618      CombineTo(N, ExtLoad);
4619      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4620                                  N0.getValueType(), ExtLoad);
4621      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4622      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4623                      ISD::SIGN_EXTEND);
4624      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4625    }
4626  }
4627
4628  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4629  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4630  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4631      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4632    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4633    EVT MemVT = LN0->getMemoryVT();
4634    if ((!LegalOperations && !LN0->isVolatile()) ||
4635        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4636      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4637                                       LN0->getChain(),
4638                                       LN0->getBasePtr(), MemVT,
4639                                       LN0->getMemOperand());
4640      CombineTo(N, ExtLoad);
4641      CombineTo(N0.getNode(),
4642                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4643                            N0.getValueType(), ExtLoad),
4644                ExtLoad.getValue(1));
4645      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4646    }
4647  }
4648
4649  // fold (sext (and/or/xor (load x), cst)) ->
4650  //      (and/or/xor (sextload x), (sext cst))
4651  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4652       N0.getOpcode() == ISD::XOR) &&
4653      isa<LoadSDNode>(N0.getOperand(0)) &&
4654      N0.getOperand(1).getOpcode() == ISD::Constant &&
4655      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4656      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4657    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4658    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4659      bool DoXform = true;
4660      SmallVector<SDNode*, 4> SetCCs;
4661      if (!N0.hasOneUse())
4662        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4663                                          SetCCs, TLI);
4664      if (DoXform) {
4665        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4666                                         LN0->getChain(), LN0->getBasePtr(),
4667                                         LN0->getMemoryVT(),
4668                                         LN0->getMemOperand());
4669        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4670        Mask = Mask.sext(VT.getSizeInBits());
4671        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4672                                  ExtLoad, DAG.getConstant(Mask, VT));
4673        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4674                                    SDLoc(N0.getOperand(0)),
4675                                    N0.getOperand(0).getValueType(), ExtLoad);
4676        CombineTo(N, And);
4677        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4678        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4679                        ISD::SIGN_EXTEND);
4680        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4681      }
4682    }
4683  }
4684
4685  if (N0.getOpcode() == ISD::SETCC) {
4686    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4687    // Only do this before legalize for now.
4688    if (VT.isVector() && !LegalOperations &&
4689        TLI.getBooleanContents(true) ==
4690          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4691      EVT N0VT = N0.getOperand(0).getValueType();
4692      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4693      // of the same size as the compared operands. Only optimize sext(setcc())
4694      // if this is the case.
4695      EVT SVT = getSetCCResultType(N0VT);
4696
4697      // We know that the # elements of the results is the same as the
4698      // # elements of the compare (and the # elements of the compare result
4699      // for that matter).  Check to see that they are the same size.  If so,
4700      // we know that the element size of the sext'd result matches the
4701      // element size of the compare operands.
4702      if (VT.getSizeInBits() == SVT.getSizeInBits())
4703        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4704                             N0.getOperand(1),
4705                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4706
4707      // If the desired elements are smaller or larger than the source
4708      // elements we can use a matching integer vector type and then
4709      // truncate/sign extend
4710      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4711      if (SVT == MatchingVectorType) {
4712        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4713                               N0.getOperand(0), N0.getOperand(1),
4714                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4715        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4716      }
4717    }
4718
4719    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4720    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4721    SDValue NegOne =
4722      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4723    SDValue SCC =
4724      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4725                       NegOne, DAG.getConstant(0, VT),
4726                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4727    if (SCC.getNode()) return SCC;
4728    if (!VT.isVector() &&
4729        (!LegalOperations ||
4730         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4731      return DAG.getSelect(SDLoc(N), VT,
4732                           DAG.getSetCC(SDLoc(N),
4733                           getSetCCResultType(VT),
4734                           N0.getOperand(0), N0.getOperand(1),
4735                           cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4736                           NegOne, DAG.getConstant(0, VT));
4737    }
4738  }
4739
4740  // fold (sext x) -> (zext x) if the sign bit is known zero.
4741  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4742      DAG.SignBitIsZero(N0))
4743    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4744
4745  return SDValue();
4746}
4747
4748// isTruncateOf - If N is a truncate of some other value, return true, record
4749// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4750// This function computes KnownZero to avoid a duplicated call to
4751// ComputeMaskedBits in the caller.
4752static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4753                         APInt &KnownZero) {
4754  APInt KnownOne;
4755  if (N->getOpcode() == ISD::TRUNCATE) {
4756    Op = N->getOperand(0);
4757    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4758    return true;
4759  }
4760
4761  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4762      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4763    return false;
4764
4765  SDValue Op0 = N->getOperand(0);
4766  SDValue Op1 = N->getOperand(1);
4767  assert(Op0.getValueType() == Op1.getValueType());
4768
4769  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4770  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4771  if (COp0 && COp0->isNullValue())
4772    Op = Op1;
4773  else if (COp1 && COp1->isNullValue())
4774    Op = Op0;
4775  else
4776    return false;
4777
4778  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4779
4780  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4781    return false;
4782
4783  return true;
4784}
4785
4786SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4787  SDValue N0 = N->getOperand(0);
4788  EVT VT = N->getValueType(0);
4789
4790  // fold (zext c1) -> c1
4791  if (isa<ConstantSDNode>(N0))
4792    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4793  // fold (zext (zext x)) -> (zext x)
4794  // fold (zext (aext x)) -> (zext x)
4795  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4796    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4797                       N0.getOperand(0));
4798
4799  // fold (zext (truncate x)) -> (zext x) or
4800  //      (zext (truncate x)) -> (truncate x)
4801  // This is valid when the truncated bits of x are already zero.
4802  // FIXME: We should extend this to work for vectors too.
4803  SDValue Op;
4804  APInt KnownZero;
4805  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4806    APInt TruncatedBits =
4807      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4808      APInt(Op.getValueSizeInBits(), 0) :
4809      APInt::getBitsSet(Op.getValueSizeInBits(),
4810                        N0.getValueSizeInBits(),
4811                        std::min(Op.getValueSizeInBits(),
4812                                 VT.getSizeInBits()));
4813    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4814      if (VT.bitsGT(Op.getValueType()))
4815        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4816      if (VT.bitsLT(Op.getValueType()))
4817        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4818
4819      return Op;
4820    }
4821  }
4822
4823  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4824  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4825  if (N0.getOpcode() == ISD::TRUNCATE) {
4826    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4827    if (NarrowLoad.getNode()) {
4828      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4829      if (NarrowLoad.getNode() != N0.getNode()) {
4830        CombineTo(N0.getNode(), NarrowLoad);
4831        // CombineTo deleted the truncate, if needed, but not what's under it.
4832        AddToWorkList(oye);
4833      }
4834      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4835    }
4836  }
4837
4838  // fold (zext (truncate x)) -> (and x, mask)
4839  if (N0.getOpcode() == ISD::TRUNCATE &&
4840      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4841
4842    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4843    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4844    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4845    if (NarrowLoad.getNode()) {
4846      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4847      if (NarrowLoad.getNode() != N0.getNode()) {
4848        CombineTo(N0.getNode(), NarrowLoad);
4849        // CombineTo deleted the truncate, if needed, but not what's under it.
4850        AddToWorkList(oye);
4851      }
4852      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4853    }
4854
4855    SDValue Op = N0.getOperand(0);
4856    if (Op.getValueType().bitsLT(VT)) {
4857      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4858      AddToWorkList(Op.getNode());
4859    } else if (Op.getValueType().bitsGT(VT)) {
4860      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4861      AddToWorkList(Op.getNode());
4862    }
4863    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4864                                  N0.getValueType().getScalarType());
4865  }
4866
4867  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4868  // if either of the casts is not free.
4869  if (N0.getOpcode() == ISD::AND &&
4870      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4871      N0.getOperand(1).getOpcode() == ISD::Constant &&
4872      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4873                           N0.getValueType()) ||
4874       !TLI.isZExtFree(N0.getValueType(), VT))) {
4875    SDValue X = N0.getOperand(0).getOperand(0);
4876    if (X.getValueType().bitsLT(VT)) {
4877      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4878    } else if (X.getValueType().bitsGT(VT)) {
4879      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4880    }
4881    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4882    Mask = Mask.zext(VT.getSizeInBits());
4883    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4884                       X, DAG.getConstant(Mask, VT));
4885  }
4886
4887  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4888  // None of the supported targets knows how to perform load and vector_zext
4889  // on vectors in one instruction.  We only perform this transformation on
4890  // scalars.
4891  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4892      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4893       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4894    bool DoXform = true;
4895    SmallVector<SDNode*, 4> SetCCs;
4896    if (!N0.hasOneUse())
4897      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4898    if (DoXform) {
4899      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4900      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4901                                       LN0->getChain(),
4902                                       LN0->getBasePtr(), N0.getValueType(),
4903                                       LN0->getMemOperand());
4904      CombineTo(N, ExtLoad);
4905      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4906                                  N0.getValueType(), ExtLoad);
4907      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4908
4909      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4910                      ISD::ZERO_EXTEND);
4911      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4912    }
4913  }
4914
4915  // fold (zext (and/or/xor (load x), cst)) ->
4916  //      (and/or/xor (zextload x), (zext cst))
4917  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4918       N0.getOpcode() == ISD::XOR) &&
4919      isa<LoadSDNode>(N0.getOperand(0)) &&
4920      N0.getOperand(1).getOpcode() == ISD::Constant &&
4921      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4922      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4923    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4924    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4925      bool DoXform = true;
4926      SmallVector<SDNode*, 4> SetCCs;
4927      if (!N0.hasOneUse())
4928        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4929                                          SetCCs, TLI);
4930      if (DoXform) {
4931        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4932                                         LN0->getChain(), LN0->getBasePtr(),
4933                                         LN0->getMemoryVT(),
4934                                         LN0->getMemOperand());
4935        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4936        Mask = Mask.zext(VT.getSizeInBits());
4937        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4938                                  ExtLoad, DAG.getConstant(Mask, VT));
4939        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4940                                    SDLoc(N0.getOperand(0)),
4941                                    N0.getOperand(0).getValueType(), ExtLoad);
4942        CombineTo(N, And);
4943        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4944        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4945                        ISD::ZERO_EXTEND);
4946        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4947      }
4948    }
4949  }
4950
4951  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4952  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4953  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4954      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4955    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4956    EVT MemVT = LN0->getMemoryVT();
4957    if ((!LegalOperations && !LN0->isVolatile()) ||
4958        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4959      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4960                                       LN0->getChain(),
4961                                       LN0->getBasePtr(), MemVT,
4962                                       LN0->getMemOperand());
4963      CombineTo(N, ExtLoad);
4964      CombineTo(N0.getNode(),
4965                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4966                            ExtLoad),
4967                ExtLoad.getValue(1));
4968      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4969    }
4970  }
4971
4972  if (N0.getOpcode() == ISD::SETCC) {
4973    if (!LegalOperations && VT.isVector()) {
4974      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4975      // Only do this before legalize for now.
4976      EVT N0VT = N0.getOperand(0).getValueType();
4977      EVT EltVT = VT.getVectorElementType();
4978      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4979                                    DAG.getConstant(1, EltVT));
4980      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4981        // We know that the # elements of the results is the same as the
4982        // # elements of the compare (and the # elements of the compare result
4983        // for that matter).  Check to see that they are the same size.  If so,
4984        // we know that the element size of the sext'd result matches the
4985        // element size of the compare operands.
4986        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4987                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4988                                         N0.getOperand(1),
4989                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4990                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
4991                                       &OneOps[0], OneOps.size()));
4992
4993      // If the desired elements are smaller or larger than the source
4994      // elements we can use a matching integer vector type and then
4995      // truncate/sign extend
4996      EVT MatchingElementType =
4997        EVT::getIntegerVT(*DAG.getContext(),
4998                          N0VT.getScalarType().getSizeInBits());
4999      EVT MatchingVectorType =
5000        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5001                         N0VT.getVectorNumElements());
5002      SDValue VsetCC =
5003        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5004                      N0.getOperand(1),
5005                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
5006      return DAG.getNode(ISD::AND, SDLoc(N), VT,
5007                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
5008                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
5009                                     &OneOps[0], OneOps.size()));
5010    }
5011
5012    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5013    SDValue SCC =
5014      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5015                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5016                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5017    if (SCC.getNode()) return SCC;
5018  }
5019
5020  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
5021  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
5022      isa<ConstantSDNode>(N0.getOperand(1)) &&
5023      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
5024      N0.hasOneUse()) {
5025    SDValue ShAmt = N0.getOperand(1);
5026    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5027    if (N0.getOpcode() == ISD::SHL) {
5028      SDValue InnerZExt = N0.getOperand(0);
5029      // If the original shl may be shifting out bits, do not perform this
5030      // transformation.
5031      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
5032        InnerZExt.getOperand(0).getValueType().getSizeInBits();
5033      if (ShAmtVal > KnownZeroBits)
5034        return SDValue();
5035    }
5036
5037    SDLoc DL(N);
5038
5039    // Ensure that the shift amount is wide enough for the shifted value.
5040    if (VT.getSizeInBits() >= 256)
5041      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
5042
5043    return DAG.getNode(N0.getOpcode(), DL, VT,
5044                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5045                       ShAmt);
5046  }
5047
5048  return SDValue();
5049}
5050
5051SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5052  SDValue N0 = N->getOperand(0);
5053  EVT VT = N->getValueType(0);
5054
5055  // fold (aext c1) -> c1
5056  if (isa<ConstantSDNode>(N0))
5057    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5058  // fold (aext (aext x)) -> (aext x)
5059  // fold (aext (zext x)) -> (zext x)
5060  // fold (aext (sext x)) -> (sext x)
5061  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5062      N0.getOpcode() == ISD::ZERO_EXTEND ||
5063      N0.getOpcode() == ISD::SIGN_EXTEND)
5064    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5065
5066  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5067  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5068  if (N0.getOpcode() == ISD::TRUNCATE) {
5069    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5070    if (NarrowLoad.getNode()) {
5071      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5072      if (NarrowLoad.getNode() != N0.getNode()) {
5073        CombineTo(N0.getNode(), NarrowLoad);
5074        // CombineTo deleted the truncate, if needed, but not what's under it.
5075        AddToWorkList(oye);
5076      }
5077      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5078    }
5079  }
5080
5081  // fold (aext (truncate x))
5082  if (N0.getOpcode() == ISD::TRUNCATE) {
5083    SDValue TruncOp = N0.getOperand(0);
5084    if (TruncOp.getValueType() == VT)
5085      return TruncOp; // x iff x size == zext size.
5086    if (TruncOp.getValueType().bitsGT(VT))
5087      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5088    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5089  }
5090
5091  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5092  // if the trunc is not free.
5093  if (N0.getOpcode() == ISD::AND &&
5094      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5095      N0.getOperand(1).getOpcode() == ISD::Constant &&
5096      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5097                          N0.getValueType())) {
5098    SDValue X = N0.getOperand(0).getOperand(0);
5099    if (X.getValueType().bitsLT(VT)) {
5100      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5101    } else if (X.getValueType().bitsGT(VT)) {
5102      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5103    }
5104    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5105    Mask = Mask.zext(VT.getSizeInBits());
5106    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5107                       X, DAG.getConstant(Mask, VT));
5108  }
5109
5110  // fold (aext (load x)) -> (aext (truncate (extload x)))
5111  // None of the supported targets knows how to perform load and any_ext
5112  // on vectors in one instruction.  We only perform this transformation on
5113  // scalars.
5114  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5115      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5116       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5117    bool DoXform = true;
5118    SmallVector<SDNode*, 4> SetCCs;
5119    if (!N0.hasOneUse())
5120      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5121    if (DoXform) {
5122      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5123      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5124                                       LN0->getChain(),
5125                                       LN0->getBasePtr(), N0.getValueType(),
5126                                       LN0->getMemOperand());
5127      CombineTo(N, ExtLoad);
5128      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5129                                  N0.getValueType(), ExtLoad);
5130      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5131      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5132                      ISD::ANY_EXTEND);
5133      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5134    }
5135  }
5136
5137  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5138  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5139  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5140  if (N0.getOpcode() == ISD::LOAD &&
5141      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5142      N0.hasOneUse()) {
5143    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5144    EVT MemVT = LN0->getMemoryVT();
5145    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5146                                     VT, LN0->getChain(), LN0->getBasePtr(),
5147                                     MemVT, LN0->getMemOperand());
5148    CombineTo(N, ExtLoad);
5149    CombineTo(N0.getNode(),
5150              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5151                          N0.getValueType(), ExtLoad),
5152              ExtLoad.getValue(1));
5153    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5154  }
5155
5156  if (N0.getOpcode() == ISD::SETCC) {
5157    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5158    // Only do this before legalize for now.
5159    if (VT.isVector() && !LegalOperations) {
5160      EVT N0VT = N0.getOperand(0).getValueType();
5161        // We know that the # elements of the results is the same as the
5162        // # elements of the compare (and the # elements of the compare result
5163        // for that matter).  Check to see that they are the same size.  If so,
5164        // we know that the element size of the sext'd result matches the
5165        // element size of the compare operands.
5166      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5167        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5168                             N0.getOperand(1),
5169                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5170      // If the desired elements are smaller or larger than the source
5171      // elements we can use a matching integer vector type and then
5172      // truncate/sign extend
5173      else {
5174        EVT MatchingElementType =
5175          EVT::getIntegerVT(*DAG.getContext(),
5176                            N0VT.getScalarType().getSizeInBits());
5177        EVT MatchingVectorType =
5178          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5179                           N0VT.getVectorNumElements());
5180        SDValue VsetCC =
5181          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5182                        N0.getOperand(1),
5183                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5184        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5185      }
5186    }
5187
5188    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5189    SDValue SCC =
5190      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5191                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5192                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5193    if (SCC.getNode())
5194      return SCC;
5195  }
5196
5197  return SDValue();
5198}
5199
5200/// GetDemandedBits - See if the specified operand can be simplified with the
5201/// knowledge that only the bits specified by Mask are used.  If so, return the
5202/// simpler operand, otherwise return a null SDValue.
5203SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5204  switch (V.getOpcode()) {
5205  default: break;
5206  case ISD::Constant: {
5207    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5208    assert(CV != 0 && "Const value should be ConstSDNode.");
5209    const APInt &CVal = CV->getAPIntValue();
5210    APInt NewVal = CVal & Mask;
5211    if (NewVal != CVal)
5212      return DAG.getConstant(NewVal, V.getValueType());
5213    break;
5214  }
5215  case ISD::OR:
5216  case ISD::XOR:
5217    // If the LHS or RHS don't contribute bits to the or, drop them.
5218    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5219      return V.getOperand(1);
5220    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5221      return V.getOperand(0);
5222    break;
5223  case ISD::SRL:
5224    // Only look at single-use SRLs.
5225    if (!V.getNode()->hasOneUse())
5226      break;
5227    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5228      // See if we can recursively simplify the LHS.
5229      unsigned Amt = RHSC->getZExtValue();
5230
5231      // Watch out for shift count overflow though.
5232      if (Amt >= Mask.getBitWidth()) break;
5233      APInt NewMask = Mask << Amt;
5234      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5235      if (SimplifyLHS.getNode())
5236        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5237                           SimplifyLHS, V.getOperand(1));
5238    }
5239  }
5240  return SDValue();
5241}
5242
5243/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5244/// bits and then truncated to a narrower type and where N is a multiple
5245/// of number of bits of the narrower type, transform it to a narrower load
5246/// from address + N / num of bits of new type. If the result is to be
5247/// extended, also fold the extension to form a extending load.
5248SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5249  unsigned Opc = N->getOpcode();
5250
5251  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5252  SDValue N0 = N->getOperand(0);
5253  EVT VT = N->getValueType(0);
5254  EVT ExtVT = VT;
5255
5256  // This transformation isn't valid for vector loads.
5257  if (VT.isVector())
5258    return SDValue();
5259
5260  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5261  // extended to VT.
5262  if (Opc == ISD::SIGN_EXTEND_INREG) {
5263    ExtType = ISD::SEXTLOAD;
5264    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5265  } else if (Opc == ISD::SRL) {
5266    // Another special-case: SRL is basically zero-extending a narrower value.
5267    ExtType = ISD::ZEXTLOAD;
5268    N0 = SDValue(N, 0);
5269    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5270    if (!N01) return SDValue();
5271    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5272                              VT.getSizeInBits() - N01->getZExtValue());
5273  }
5274  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5275    return SDValue();
5276
5277  unsigned EVTBits = ExtVT.getSizeInBits();
5278
5279  // Do not generate loads of non-round integer types since these can
5280  // be expensive (and would be wrong if the type is not byte sized).
5281  if (!ExtVT.isRound())
5282    return SDValue();
5283
5284  unsigned ShAmt = 0;
5285  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5286    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5287      ShAmt = N01->getZExtValue();
5288      // Is the shift amount a multiple of size of VT?
5289      if ((ShAmt & (EVTBits-1)) == 0) {
5290        N0 = N0.getOperand(0);
5291        // Is the load width a multiple of size of VT?
5292        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5293          return SDValue();
5294      }
5295
5296      // At this point, we must have a load or else we can't do the transform.
5297      if (!isa<LoadSDNode>(N0)) return SDValue();
5298
5299      // Because a SRL must be assumed to *need* to zero-extend the high bits
5300      // (as opposed to anyext the high bits), we can't combine the zextload
5301      // lowering of SRL and an sextload.
5302      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5303        return SDValue();
5304
5305      // If the shift amount is larger than the input type then we're not
5306      // accessing any of the loaded bytes.  If the load was a zextload/extload
5307      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5308      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5309        return SDValue();
5310    }
5311  }
5312
5313  // If the load is shifted left (and the result isn't shifted back right),
5314  // we can fold the truncate through the shift.
5315  unsigned ShLeftAmt = 0;
5316  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5317      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5318    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5319      ShLeftAmt = N01->getZExtValue();
5320      N0 = N0.getOperand(0);
5321    }
5322  }
5323
5324  // If we haven't found a load, we can't narrow it.  Don't transform one with
5325  // multiple uses, this would require adding a new load.
5326  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5327    return SDValue();
5328
5329  // Don't change the width of a volatile load.
5330  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5331  if (LN0->isVolatile())
5332    return SDValue();
5333
5334  // Verify that we are actually reducing a load width here.
5335  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5336    return SDValue();
5337
5338  // For the transform to be legal, the load must produce only two values
5339  // (the value loaded and the chain).  Don't transform a pre-increment
5340  // load, for example, which produces an extra value.  Otherwise the
5341  // transformation is not equivalent, and the downstream logic to replace
5342  // uses gets things wrong.
5343  if (LN0->getNumValues() > 2)
5344    return SDValue();
5345
5346  // If the load that we're shrinking is an extload and we're not just
5347  // discarding the extension we can't simply shrink the load. Bail.
5348  // TODO: It would be possible to merge the extensions in some cases.
5349  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5350      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5351    return SDValue();
5352
5353  EVT PtrType = N0.getOperand(1).getValueType();
5354
5355  if (PtrType == MVT::Untyped || PtrType.isExtended())
5356    // It's not possible to generate a constant of extended or untyped type.
5357    return SDValue();
5358
5359  // For big endian targets, we need to adjust the offset to the pointer to
5360  // load the correct bytes.
5361  if (TLI.isBigEndian()) {
5362    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5363    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5364    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5365  }
5366
5367  uint64_t PtrOff = ShAmt / 8;
5368  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5369  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5370                               PtrType, LN0->getBasePtr(),
5371                               DAG.getConstant(PtrOff, PtrType));
5372  AddToWorkList(NewPtr.getNode());
5373
5374  SDValue Load;
5375  if (ExtType == ISD::NON_EXTLOAD)
5376    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5377                        LN0->getPointerInfo().getWithOffset(PtrOff),
5378                        LN0->isVolatile(), LN0->isNonTemporal(),
5379                        LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5380  else
5381    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5382                          LN0->getPointerInfo().getWithOffset(PtrOff),
5383                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5384                          NewAlign, LN0->getTBAAInfo());
5385
5386  // Replace the old load's chain with the new load's chain.
5387  WorkListRemover DeadNodes(*this);
5388  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5389
5390  // Shift the result left, if we've swallowed a left shift.
5391  SDValue Result = Load;
5392  if (ShLeftAmt != 0) {
5393    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5394    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5395      ShImmTy = VT;
5396    // If the shift amount is as large as the result size (but, presumably,
5397    // no larger than the source) then the useful bits of the result are
5398    // zero; we can't simply return the shortened shift, because the result
5399    // of that operation is undefined.
5400    if (ShLeftAmt >= VT.getSizeInBits())
5401      Result = DAG.getConstant(0, VT);
5402    else
5403      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5404                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5405  }
5406
5407  // Return the new loaded value.
5408  return Result;
5409}
5410
5411SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5412  SDValue N0 = N->getOperand(0);
5413  SDValue N1 = N->getOperand(1);
5414  EVT VT = N->getValueType(0);
5415  EVT EVT = cast<VTSDNode>(N1)->getVT();
5416  unsigned VTBits = VT.getScalarType().getSizeInBits();
5417  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5418
5419  // fold (sext_in_reg c1) -> c1
5420  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5421    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5422
5423  // If the input is already sign extended, just drop the extension.
5424  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5425    return N0;
5426
5427  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5428  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5429      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5430    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5431                       N0.getOperand(0), N1);
5432
5433  // fold (sext_in_reg (sext x)) -> (sext x)
5434  // fold (sext_in_reg (aext x)) -> (sext x)
5435  // if x is small enough.
5436  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5437    SDValue N00 = N0.getOperand(0);
5438    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5439        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5440      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5441  }
5442
5443  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5444  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5445    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5446
5447  // fold operands of sext_in_reg based on knowledge that the top bits are not
5448  // demanded.
5449  if (SimplifyDemandedBits(SDValue(N, 0)))
5450    return SDValue(N, 0);
5451
5452  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5453  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5454  SDValue NarrowLoad = ReduceLoadWidth(N);
5455  if (NarrowLoad.getNode())
5456    return NarrowLoad;
5457
5458  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5459  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5460  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5461  if (N0.getOpcode() == ISD::SRL) {
5462    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5463      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5464        // We can turn this into an SRA iff the input to the SRL is already sign
5465        // extended enough.
5466        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5467        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5468          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5469                             N0.getOperand(0), N0.getOperand(1));
5470      }
5471  }
5472
5473  // fold (sext_inreg (extload x)) -> (sextload x)
5474  if (ISD::isEXTLoad(N0.getNode()) &&
5475      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5476      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5477      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5478       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5479    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5480    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5481                                     LN0->getChain(),
5482                                     LN0->getBasePtr(), EVT,
5483                                     LN0->getMemOperand());
5484    CombineTo(N, ExtLoad);
5485    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5486    AddToWorkList(ExtLoad.getNode());
5487    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5488  }
5489  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5490  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5491      N0.hasOneUse() &&
5492      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5493      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5494       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5495    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5496    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5497                                     LN0->getChain(),
5498                                     LN0->getBasePtr(), EVT,
5499                                     LN0->getMemOperand());
5500    CombineTo(N, ExtLoad);
5501    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5502    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5503  }
5504
5505  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5506  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5507    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5508                                       N0.getOperand(1), false);
5509    if (BSwap.getNode() != 0)
5510      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5511                         BSwap, N1);
5512  }
5513
5514  return SDValue();
5515}
5516
5517SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5518  SDValue N0 = N->getOperand(0);
5519  EVT VT = N->getValueType(0);
5520  bool isLE = TLI.isLittleEndian();
5521
5522  // noop truncate
5523  if (N0.getValueType() == N->getValueType(0))
5524    return N0;
5525  // fold (truncate c1) -> c1
5526  if (isa<ConstantSDNode>(N0))
5527    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5528  // fold (truncate (truncate x)) -> (truncate x)
5529  if (N0.getOpcode() == ISD::TRUNCATE)
5530    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5531  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5532  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5533      N0.getOpcode() == ISD::SIGN_EXTEND ||
5534      N0.getOpcode() == ISD::ANY_EXTEND) {
5535    if (N0.getOperand(0).getValueType().bitsLT(VT))
5536      // if the source is smaller than the dest, we still need an extend
5537      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5538                         N0.getOperand(0));
5539    if (N0.getOperand(0).getValueType().bitsGT(VT))
5540      // if the source is larger than the dest, than we just need the truncate
5541      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5542    // if the source and dest are the same type, we can drop both the extend
5543    // and the truncate.
5544    return N0.getOperand(0);
5545  }
5546
5547  // Fold extract-and-trunc into a narrow extract. For example:
5548  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5549  //   i32 y = TRUNCATE(i64 x)
5550  //        -- becomes --
5551  //   v16i8 b = BITCAST (v2i64 val)
5552  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5553  //
5554  // Note: We only run this optimization after type legalization (which often
5555  // creates this pattern) and before operation legalization after which
5556  // we need to be more careful about the vector instructions that we generate.
5557  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5558      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5559
5560    EVT VecTy = N0.getOperand(0).getValueType();
5561    EVT ExTy = N0.getValueType();
5562    EVT TrTy = N->getValueType(0);
5563
5564    unsigned NumElem = VecTy.getVectorNumElements();
5565    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5566
5567    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5568    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5569
5570    SDValue EltNo = N0->getOperand(1);
5571    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5572      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5573      EVT IndexTy = TLI.getVectorIdxTy();
5574      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5575
5576      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5577                              NVT, N0.getOperand(0));
5578
5579      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5580                         SDLoc(N), TrTy, V,
5581                         DAG.getConstant(Index, IndexTy));
5582    }
5583  }
5584
5585  // Fold a series of buildvector, bitcast, and truncate if possible.
5586  // For example fold
5587  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5588  //   (2xi32 (buildvector x, y)).
5589  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5590      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5591      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5592      N0.getOperand(0).hasOneUse()) {
5593
5594    SDValue BuildVect = N0.getOperand(0);
5595    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5596    EVT TruncVecEltTy = VT.getVectorElementType();
5597
5598    // Check that the element types match.
5599    if (BuildVectEltTy == TruncVecEltTy) {
5600      // Now we only need to compute the offset of the truncated elements.
5601      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5602      unsigned TruncVecNumElts = VT.getVectorNumElements();
5603      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5604
5605      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5606             "Invalid number of elements");
5607
5608      SmallVector<SDValue, 8> Opnds;
5609      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5610        Opnds.push_back(BuildVect.getOperand(i));
5611
5612      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5613                         Opnds.size());
5614    }
5615  }
5616
5617  // See if we can simplify the input to this truncate through knowledge that
5618  // only the low bits are being used.
5619  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5620  // Currently we only perform this optimization on scalars because vectors
5621  // may have different active low bits.
5622  if (!VT.isVector()) {
5623    SDValue Shorter =
5624      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5625                                               VT.getSizeInBits()));
5626    if (Shorter.getNode())
5627      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5628  }
5629  // fold (truncate (load x)) -> (smaller load x)
5630  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5631  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5632    SDValue Reduced = ReduceLoadWidth(N);
5633    if (Reduced.getNode())
5634      return Reduced;
5635  }
5636  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5637  // where ... are all 'undef'.
5638  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5639    SmallVector<EVT, 8> VTs;
5640    SDValue V;
5641    unsigned Idx = 0;
5642    unsigned NumDefs = 0;
5643
5644    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5645      SDValue X = N0.getOperand(i);
5646      if (X.getOpcode() != ISD::UNDEF) {
5647        V = X;
5648        Idx = i;
5649        NumDefs++;
5650      }
5651      // Stop if more than one members are non-undef.
5652      if (NumDefs > 1)
5653        break;
5654      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5655                                     VT.getVectorElementType(),
5656                                     X.getValueType().getVectorNumElements()));
5657    }
5658
5659    if (NumDefs == 0)
5660      return DAG.getUNDEF(VT);
5661
5662    if (NumDefs == 1) {
5663      assert(V.getNode() && "The single defined operand is empty!");
5664      SmallVector<SDValue, 8> Opnds;
5665      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5666        if (i != Idx) {
5667          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5668          continue;
5669        }
5670        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5671        AddToWorkList(NV.getNode());
5672        Opnds.push_back(NV);
5673      }
5674      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5675                         &Opnds[0], Opnds.size());
5676    }
5677  }
5678
5679  // Simplify the operands using demanded-bits information.
5680  if (!VT.isVector() &&
5681      SimplifyDemandedBits(SDValue(N, 0)))
5682    return SDValue(N, 0);
5683
5684  return SDValue();
5685}
5686
5687static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5688  SDValue Elt = N->getOperand(i);
5689  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5690    return Elt.getNode();
5691  return Elt.getOperand(Elt.getResNo()).getNode();
5692}
5693
5694/// CombineConsecutiveLoads - build_pair (load, load) -> load
5695/// if load locations are consecutive.
5696SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5697  assert(N->getOpcode() == ISD::BUILD_PAIR);
5698
5699  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5700  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5701  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5702      LD1->getPointerInfo().getAddrSpace() !=
5703         LD2->getPointerInfo().getAddrSpace())
5704    return SDValue();
5705  EVT LD1VT = LD1->getValueType(0);
5706
5707  if (ISD::isNON_EXTLoad(LD2) &&
5708      LD2->hasOneUse() &&
5709      // If both are volatile this would reduce the number of volatile loads.
5710      // If one is volatile it might be ok, but play conservative and bail out.
5711      !LD1->isVolatile() &&
5712      !LD2->isVolatile() &&
5713      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5714    unsigned Align = LD1->getAlignment();
5715    unsigned NewAlign = TLI.getDataLayout()->
5716      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5717
5718    if (NewAlign <= Align &&
5719        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5720      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5721                         LD1->getBasePtr(), LD1->getPointerInfo(),
5722                         false, false, false, Align);
5723  }
5724
5725  return SDValue();
5726}
5727
5728SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5729  SDValue N0 = N->getOperand(0);
5730  EVT VT = N->getValueType(0);
5731
5732  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5733  // Only do this before legalize, since afterward the target may be depending
5734  // on the bitconvert.
5735  // First check to see if this is all constant.
5736  if (!LegalTypes &&
5737      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5738      VT.isVector()) {
5739    bool isSimple = true;
5740    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5741      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5742          N0.getOperand(i).getOpcode() != ISD::Constant &&
5743          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5744        isSimple = false;
5745        break;
5746      }
5747
5748    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5749    assert(!DestEltVT.isVector() &&
5750           "Element type of vector ValueType must not be vector!");
5751    if (isSimple)
5752      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5753  }
5754
5755  // If the input is a constant, let getNode fold it.
5756  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5757    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5758    if (Res.getNode() != N) {
5759      if (!LegalOperations ||
5760          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5761        return Res;
5762
5763      // Folding it resulted in an illegal node, and it's too late to
5764      // do that. Clean up the old node and forego the transformation.
5765      // Ideally this won't happen very often, because instcombine
5766      // and the earlier dagcombine runs (where illegal nodes are
5767      // permitted) should have folded most of them already.
5768      DAG.DeleteNode(Res.getNode());
5769    }
5770  }
5771
5772  // (conv (conv x, t1), t2) -> (conv x, t2)
5773  if (N0.getOpcode() == ISD::BITCAST)
5774    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5775                       N0.getOperand(0));
5776
5777  // fold (conv (load x)) -> (load (conv*)x)
5778  // If the resultant load doesn't need a higher alignment than the original!
5779  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5780      // Do not change the width of a volatile load.
5781      !cast<LoadSDNode>(N0)->isVolatile() &&
5782      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
5783      TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
5784    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5785    unsigned Align = TLI.getDataLayout()->
5786      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5787    unsigned OrigAlign = LN0->getAlignment();
5788
5789    if (Align <= OrigAlign) {
5790      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5791                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5792                                 LN0->isVolatile(), LN0->isNonTemporal(),
5793                                 LN0->isInvariant(), OrigAlign,
5794                                 LN0->getTBAAInfo());
5795      AddToWorkList(N);
5796      CombineTo(N0.getNode(),
5797                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5798                            N0.getValueType(), Load),
5799                Load.getValue(1));
5800      return Load;
5801    }
5802  }
5803
5804  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5805  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5806  // This often reduces constant pool loads.
5807  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5808       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5809      N0.getNode()->hasOneUse() && VT.isInteger() &&
5810      !VT.isVector() && !N0.getValueType().isVector()) {
5811    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5812                                  N0.getOperand(0));
5813    AddToWorkList(NewConv.getNode());
5814
5815    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5816    if (N0.getOpcode() == ISD::FNEG)
5817      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5818                         NewConv, DAG.getConstant(SignBit, VT));
5819    assert(N0.getOpcode() == ISD::FABS);
5820    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5821                       NewConv, DAG.getConstant(~SignBit, VT));
5822  }
5823
5824  // fold (bitconvert (fcopysign cst, x)) ->
5825  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5826  // Note that we don't handle (copysign x, cst) because this can always be
5827  // folded to an fneg or fabs.
5828  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5829      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5830      VT.isInteger() && !VT.isVector()) {
5831    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5832    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5833    if (isTypeLegal(IntXVT)) {
5834      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5835                              IntXVT, N0.getOperand(1));
5836      AddToWorkList(X.getNode());
5837
5838      // If X has a different width than the result/lhs, sext it or truncate it.
5839      unsigned VTWidth = VT.getSizeInBits();
5840      if (OrigXWidth < VTWidth) {
5841        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5842        AddToWorkList(X.getNode());
5843      } else if (OrigXWidth > VTWidth) {
5844        // To get the sign bit in the right place, we have to shift it right
5845        // before truncating.
5846        X = DAG.getNode(ISD::SRL, SDLoc(X),
5847                        X.getValueType(), X,
5848                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5849        AddToWorkList(X.getNode());
5850        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5851        AddToWorkList(X.getNode());
5852      }
5853
5854      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5855      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5856                      X, DAG.getConstant(SignBit, VT));
5857      AddToWorkList(X.getNode());
5858
5859      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5860                                VT, N0.getOperand(0));
5861      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5862                        Cst, DAG.getConstant(~SignBit, VT));
5863      AddToWorkList(Cst.getNode());
5864
5865      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5866    }
5867  }
5868
5869  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5870  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5871    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5872    if (CombineLD.getNode())
5873      return CombineLD;
5874  }
5875
5876  return SDValue();
5877}
5878
5879SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5880  EVT VT = N->getValueType(0);
5881  return CombineConsecutiveLoads(N, VT);
5882}
5883
5884/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5885/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5886/// destination element value type.
5887SDValue DAGCombiner::
5888ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5889  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5890
5891  // If this is already the right type, we're done.
5892  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5893
5894  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5895  unsigned DstBitSize = DstEltVT.getSizeInBits();
5896
5897  // If this is a conversion of N elements of one type to N elements of another
5898  // type, convert each element.  This handles FP<->INT cases.
5899  if (SrcBitSize == DstBitSize) {
5900    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5901                              BV->getValueType(0).getVectorNumElements());
5902
5903    // Due to the FP element handling below calling this routine recursively,
5904    // we can end up with a scalar-to-vector node here.
5905    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5906      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5907                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5908                                     DstEltVT, BV->getOperand(0)));
5909
5910    SmallVector<SDValue, 8> Ops;
5911    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5912      SDValue Op = BV->getOperand(i);
5913      // If the vector element type is not legal, the BUILD_VECTOR operands
5914      // are promoted and implicitly truncated.  Make that explicit here.
5915      if (Op.getValueType() != SrcEltVT)
5916        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5917      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5918                                DstEltVT, Op));
5919      AddToWorkList(Ops.back().getNode());
5920    }
5921    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5922                       &Ops[0], Ops.size());
5923  }
5924
5925  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5926  // handle annoying details of growing/shrinking FP values, we convert them to
5927  // int first.
5928  if (SrcEltVT.isFloatingPoint()) {
5929    // Convert the input float vector to a int vector where the elements are the
5930    // same sizes.
5931    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5932    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5933    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5934    SrcEltVT = IntVT;
5935  }
5936
5937  // Now we know the input is an integer vector.  If the output is a FP type,
5938  // convert to integer first, then to FP of the right size.
5939  if (DstEltVT.isFloatingPoint()) {
5940    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5941    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5942    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5943
5944    // Next, convert to FP elements of the same size.
5945    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5946  }
5947
5948  // Okay, we know the src/dst types are both integers of differing types.
5949  // Handling growing first.
5950  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5951  if (SrcBitSize < DstBitSize) {
5952    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5953
5954    SmallVector<SDValue, 8> Ops;
5955    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5956         i += NumInputsPerOutput) {
5957      bool isLE = TLI.isLittleEndian();
5958      APInt NewBits = APInt(DstBitSize, 0);
5959      bool EltIsUndef = true;
5960      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5961        // Shift the previously computed bits over.
5962        NewBits <<= SrcBitSize;
5963        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5964        if (Op.getOpcode() == ISD::UNDEF) continue;
5965        EltIsUndef = false;
5966
5967        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5968                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5969      }
5970
5971      if (EltIsUndef)
5972        Ops.push_back(DAG.getUNDEF(DstEltVT));
5973      else
5974        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5975    }
5976
5977    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5978    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5979                       &Ops[0], Ops.size());
5980  }
5981
5982  // Finally, this must be the case where we are shrinking elements: each input
5983  // turns into multiple outputs.
5984  bool isS2V = ISD::isScalarToVector(BV);
5985  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5986  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5987                            NumOutputsPerInput*BV->getNumOperands());
5988  SmallVector<SDValue, 8> Ops;
5989
5990  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5991    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
5992      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
5993        Ops.push_back(DAG.getUNDEF(DstEltVT));
5994      continue;
5995    }
5996
5997    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
5998                  getAPIntValue().zextOrTrunc(SrcBitSize);
5999
6000    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
6001      APInt ThisVal = OpVal.trunc(DstBitSize);
6002      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
6003      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
6004        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
6005        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
6006                           Ops[0]);
6007      OpVal = OpVal.lshr(DstBitSize);
6008    }
6009
6010    // For big endian targets, swap the order of the pieces of each element.
6011    if (TLI.isBigEndian())
6012      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
6013  }
6014
6015  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
6016                     &Ops[0], Ops.size());
6017}
6018
6019SDValue DAGCombiner::visitFADD(SDNode *N) {
6020  SDValue N0 = N->getOperand(0);
6021  SDValue N1 = N->getOperand(1);
6022  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6023  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6024  EVT VT = N->getValueType(0);
6025
6026  // fold vector ops
6027  if (VT.isVector()) {
6028    SDValue FoldedVOp = SimplifyVBinOp(N);
6029    if (FoldedVOp.getNode()) return FoldedVOp;
6030  }
6031
6032  // fold (fadd c1, c2) -> c1 + c2
6033  if (N0CFP && N1CFP)
6034    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
6035  // canonicalize constant to RHS
6036  if (N0CFP && !N1CFP)
6037    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
6038  // fold (fadd A, 0) -> A
6039  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6040      N1CFP->getValueAPF().isZero())
6041    return N0;
6042  // fold (fadd A, (fneg B)) -> (fsub A, B)
6043  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6044    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6045    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6046                       GetNegatedExpression(N1, DAG, LegalOperations));
6047  // fold (fadd (fneg A), B) -> (fsub B, A)
6048  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6049    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6050    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6051                       GetNegatedExpression(N0, DAG, LegalOperations));
6052
6053  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6054  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6055      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6056      isa<ConstantFPSDNode>(N0.getOperand(1)))
6057    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6058                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6059                                   N0.getOperand(1), N1));
6060
6061  // No FP constant should be created after legalization as Instruction
6062  // Selection pass has hard time in dealing with FP constant.
6063  //
6064  // We don't need test this condition for transformation like following, as
6065  // the DAG being transformed implies it is legal to take FP constant as
6066  // operand.
6067  //
6068  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6069  //
6070  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6071
6072  // If allow, fold (fadd (fneg x), x) -> 0.0
6073  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6074      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6075    return DAG.getConstantFP(0.0, VT);
6076
6077    // If allow, fold (fadd x, (fneg x)) -> 0.0
6078  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6079      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6080    return DAG.getConstantFP(0.0, VT);
6081
6082  // In unsafe math mode, we can fold chains of FADD's of the same value
6083  // into multiplications.  This transform is not safe in general because
6084  // we are reducing the number of rounding steps.
6085  if (DAG.getTarget().Options.UnsafeFPMath &&
6086      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6087      !N0CFP && !N1CFP) {
6088    if (N0.getOpcode() == ISD::FMUL) {
6089      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6090      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6091
6092      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6093      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6094        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6095                                     SDValue(CFP00, 0),
6096                                     DAG.getConstantFP(1.0, VT));
6097        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6098                           N1, NewCFP);
6099      }
6100
6101      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6102      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6103        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6104                                     SDValue(CFP01, 0),
6105                                     DAG.getConstantFP(1.0, VT));
6106        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6107                           N1, NewCFP);
6108      }
6109
6110      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6111      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6112          N1.getOperand(0) == N1.getOperand(1) &&
6113          N0.getOperand(1) == N1.getOperand(0)) {
6114        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6115                                     SDValue(CFP00, 0),
6116                                     DAG.getConstantFP(2.0, VT));
6117        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6118                           N0.getOperand(1), NewCFP);
6119      }
6120
6121      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6122      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6123          N1.getOperand(0) == N1.getOperand(1) &&
6124          N0.getOperand(0) == N1.getOperand(0)) {
6125        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6126                                     SDValue(CFP01, 0),
6127                                     DAG.getConstantFP(2.0, VT));
6128        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6129                           N0.getOperand(0), NewCFP);
6130      }
6131    }
6132
6133    if (N1.getOpcode() == ISD::FMUL) {
6134      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6135      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6136
6137      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6138      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6139        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6140                                     SDValue(CFP10, 0),
6141                                     DAG.getConstantFP(1.0, VT));
6142        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6143                           N0, NewCFP);
6144      }
6145
6146      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6147      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6148        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6149                                     SDValue(CFP11, 0),
6150                                     DAG.getConstantFP(1.0, VT));
6151        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6152                           N0, NewCFP);
6153      }
6154
6155
6156      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6157      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6158          N0.getOperand(0) == N0.getOperand(1) &&
6159          N1.getOperand(1) == N0.getOperand(0)) {
6160        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6161                                     SDValue(CFP10, 0),
6162                                     DAG.getConstantFP(2.0, VT));
6163        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6164                           N1.getOperand(1), NewCFP);
6165      }
6166
6167      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6168      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6169          N0.getOperand(0) == N0.getOperand(1) &&
6170          N1.getOperand(0) == N0.getOperand(0)) {
6171        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6172                                     SDValue(CFP11, 0),
6173                                     DAG.getConstantFP(2.0, VT));
6174        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6175                           N1.getOperand(0), NewCFP);
6176      }
6177    }
6178
6179    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6180      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6181      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6182      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6183          (N0.getOperand(0) == N1))
6184        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6185                           N1, DAG.getConstantFP(3.0, VT));
6186    }
6187
6188    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6189      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6190      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6191      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6192          N1.getOperand(0) == N0)
6193        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6194                           N0, DAG.getConstantFP(3.0, VT));
6195    }
6196
6197    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6198    if (AllowNewFpConst &&
6199        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6200        N0.getOperand(0) == N0.getOperand(1) &&
6201        N1.getOperand(0) == N1.getOperand(1) &&
6202        N0.getOperand(0) == N1.getOperand(0))
6203      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6204                         N0.getOperand(0),
6205                         DAG.getConstantFP(4.0, VT));
6206  }
6207
6208  // FADD -> FMA combines:
6209  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6210       DAG.getTarget().Options.UnsafeFPMath) &&
6211      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6212      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6213
6214    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6215    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6216      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6217                         N0.getOperand(0), N0.getOperand(1), N1);
6218
6219    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6220    // Note: Commutes FADD operands.
6221    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6222      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6223                         N1.getOperand(0), N1.getOperand(1), N0);
6224  }
6225
6226  return SDValue();
6227}
6228
6229SDValue DAGCombiner::visitFSUB(SDNode *N) {
6230  SDValue N0 = N->getOperand(0);
6231  SDValue N1 = N->getOperand(1);
6232  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6233  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6234  EVT VT = N->getValueType(0);
6235  SDLoc dl(N);
6236
6237  // fold vector ops
6238  if (VT.isVector()) {
6239    SDValue FoldedVOp = SimplifyVBinOp(N);
6240    if (FoldedVOp.getNode()) return FoldedVOp;
6241  }
6242
6243  // fold (fsub c1, c2) -> c1-c2
6244  if (N0CFP && N1CFP)
6245    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6246  // fold (fsub A, 0) -> A
6247  if (DAG.getTarget().Options.UnsafeFPMath &&
6248      N1CFP && N1CFP->getValueAPF().isZero())
6249    return N0;
6250  // fold (fsub 0, B) -> -B
6251  if (DAG.getTarget().Options.UnsafeFPMath &&
6252      N0CFP && N0CFP->getValueAPF().isZero()) {
6253    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6254      return GetNegatedExpression(N1, DAG, LegalOperations);
6255    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6256      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6257  }
6258  // fold (fsub A, (fneg B)) -> (fadd A, B)
6259  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6260    return DAG.getNode(ISD::FADD, dl, VT, N0,
6261                       GetNegatedExpression(N1, DAG, LegalOperations));
6262
6263  // If 'unsafe math' is enabled, fold
6264  //    (fsub x, x) -> 0.0 &
6265  //    (fsub x, (fadd x, y)) -> (fneg y) &
6266  //    (fsub x, (fadd y, x)) -> (fneg y)
6267  if (DAG.getTarget().Options.UnsafeFPMath) {
6268    if (N0 == N1)
6269      return DAG.getConstantFP(0.0f, VT);
6270
6271    if (N1.getOpcode() == ISD::FADD) {
6272      SDValue N10 = N1->getOperand(0);
6273      SDValue N11 = N1->getOperand(1);
6274
6275      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6276                                          &DAG.getTarget().Options))
6277        return GetNegatedExpression(N11, DAG, LegalOperations);
6278
6279      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6280                                          &DAG.getTarget().Options))
6281        return GetNegatedExpression(N10, DAG, LegalOperations);
6282    }
6283  }
6284
6285  // FSUB -> FMA combines:
6286  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6287       DAG.getTarget().Options.UnsafeFPMath) &&
6288      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6289      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6290
6291    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6292    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6293      return DAG.getNode(ISD::FMA, dl, VT,
6294                         N0.getOperand(0), N0.getOperand(1),
6295                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6296
6297    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6298    // Note: Commutes FSUB operands.
6299    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6300      return DAG.getNode(ISD::FMA, dl, VT,
6301                         DAG.getNode(ISD::FNEG, dl, VT,
6302                         N1.getOperand(0)),
6303                         N1.getOperand(1), N0);
6304
6305    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6306    if (N0.getOpcode() == ISD::FNEG &&
6307        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6308        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6309      SDValue N00 = N0.getOperand(0).getOperand(0);
6310      SDValue N01 = N0.getOperand(0).getOperand(1);
6311      return DAG.getNode(ISD::FMA, dl, VT,
6312                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6313                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6314    }
6315  }
6316
6317  return SDValue();
6318}
6319
6320SDValue DAGCombiner::visitFMUL(SDNode *N) {
6321  SDValue N0 = N->getOperand(0);
6322  SDValue N1 = N->getOperand(1);
6323  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6324  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6325  EVT VT = N->getValueType(0);
6326  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6327
6328  // fold vector ops
6329  if (VT.isVector()) {
6330    SDValue FoldedVOp = SimplifyVBinOp(N);
6331    if (FoldedVOp.getNode()) return FoldedVOp;
6332  }
6333
6334  // fold (fmul c1, c2) -> c1*c2
6335  if (N0CFP && N1CFP)
6336    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6337  // canonicalize constant to RHS
6338  if (N0CFP && !N1CFP)
6339    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6340  // fold (fmul A, 0) -> 0
6341  if (DAG.getTarget().Options.UnsafeFPMath &&
6342      N1CFP && N1CFP->getValueAPF().isZero())
6343    return N1;
6344  // fold (fmul A, 0) -> 0, vector edition.
6345  if (DAG.getTarget().Options.UnsafeFPMath &&
6346      ISD::isBuildVectorAllZeros(N1.getNode()))
6347    return N1;
6348  // fold (fmul A, 1.0) -> A
6349  if (N1CFP && N1CFP->isExactlyValue(1.0))
6350    return N0;
6351  // fold (fmul X, 2.0) -> (fadd X, X)
6352  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6353    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6354  // fold (fmul X, -1.0) -> (fneg X)
6355  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6356    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6357      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6358
6359  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6360  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6361                                       &DAG.getTarget().Options)) {
6362    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6363                                         &DAG.getTarget().Options)) {
6364      // Both can be negated for free, check to see if at least one is cheaper
6365      // negated.
6366      if (LHSNeg == 2 || RHSNeg == 2)
6367        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6368                           GetNegatedExpression(N0, DAG, LegalOperations),
6369                           GetNegatedExpression(N1, DAG, LegalOperations));
6370    }
6371  }
6372
6373  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6374  if (DAG.getTarget().Options.UnsafeFPMath &&
6375      N1CFP && N0.getOpcode() == ISD::FMUL &&
6376      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6377    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6378                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6379                                   N0.getOperand(1), N1));
6380
6381  return SDValue();
6382}
6383
6384SDValue DAGCombiner::visitFMA(SDNode *N) {
6385  SDValue N0 = N->getOperand(0);
6386  SDValue N1 = N->getOperand(1);
6387  SDValue N2 = N->getOperand(2);
6388  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6389  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6390  EVT VT = N->getValueType(0);
6391  SDLoc dl(N);
6392
6393  if (DAG.getTarget().Options.UnsafeFPMath) {
6394    if (N0CFP && N0CFP->isZero())
6395      return N2;
6396    if (N1CFP && N1CFP->isZero())
6397      return N2;
6398  }
6399  if (N0CFP && N0CFP->isExactlyValue(1.0))
6400    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6401  if (N1CFP && N1CFP->isExactlyValue(1.0))
6402    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6403
6404  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6405  if (N0CFP && !N1CFP)
6406    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6407
6408  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6409  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6410      N2.getOpcode() == ISD::FMUL &&
6411      N0 == N2.getOperand(0) &&
6412      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6413    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6414                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6415  }
6416
6417
6418  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6419  if (DAG.getTarget().Options.UnsafeFPMath &&
6420      N0.getOpcode() == ISD::FMUL && N1CFP &&
6421      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6422    return DAG.getNode(ISD::FMA, dl, VT,
6423                       N0.getOperand(0),
6424                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6425                       N2);
6426  }
6427
6428  // (fma x, 1, y) -> (fadd x, y)
6429  // (fma x, -1, y) -> (fadd (fneg x), y)
6430  if (N1CFP) {
6431    if (N1CFP->isExactlyValue(1.0))
6432      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6433
6434    if (N1CFP->isExactlyValue(-1.0) &&
6435        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6436      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6437      AddToWorkList(RHSNeg.getNode());
6438      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6439    }
6440  }
6441
6442  // (fma x, c, x) -> (fmul x, (c+1))
6443  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6444    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6445                       DAG.getNode(ISD::FADD, dl, VT,
6446                                   N1, DAG.getConstantFP(1.0, VT)));
6447
6448  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6449  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6450      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6451    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6452                       DAG.getNode(ISD::FADD, dl, VT,
6453                                   N1, DAG.getConstantFP(-1.0, VT)));
6454
6455
6456  return SDValue();
6457}
6458
6459SDValue DAGCombiner::visitFDIV(SDNode *N) {
6460  SDValue N0 = N->getOperand(0);
6461  SDValue N1 = N->getOperand(1);
6462  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6463  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6464  EVT VT = N->getValueType(0);
6465  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6466
6467  // fold vector ops
6468  if (VT.isVector()) {
6469    SDValue FoldedVOp = SimplifyVBinOp(N);
6470    if (FoldedVOp.getNode()) return FoldedVOp;
6471  }
6472
6473  // fold (fdiv c1, c2) -> c1/c2
6474  if (N0CFP && N1CFP)
6475    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6476
6477  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6478  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6479    // Compute the reciprocal 1.0 / c2.
6480    APFloat N1APF = N1CFP->getValueAPF();
6481    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6482    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6483    // Only do the transform if the reciprocal is a legal fp immediate that
6484    // isn't too nasty (eg NaN, denormal, ...).
6485    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6486        (!LegalOperations ||
6487         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6488         // backend)... we should handle this gracefully after Legalize.
6489         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6490         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6491         TLI.isFPImmLegal(Recip, VT)))
6492      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6493                         DAG.getConstantFP(Recip, VT));
6494  }
6495
6496  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6497  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6498                                       &DAG.getTarget().Options)) {
6499    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6500                                         &DAG.getTarget().Options)) {
6501      // Both can be negated for free, check to see if at least one is cheaper
6502      // negated.
6503      if (LHSNeg == 2 || RHSNeg == 2)
6504        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6505                           GetNegatedExpression(N0, DAG, LegalOperations),
6506                           GetNegatedExpression(N1, DAG, LegalOperations));
6507    }
6508  }
6509
6510  return SDValue();
6511}
6512
6513SDValue DAGCombiner::visitFREM(SDNode *N) {
6514  SDValue N0 = N->getOperand(0);
6515  SDValue N1 = N->getOperand(1);
6516  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6517  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6518  EVT VT = N->getValueType(0);
6519
6520  // fold (frem c1, c2) -> fmod(c1,c2)
6521  if (N0CFP && N1CFP)
6522    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6523
6524  return SDValue();
6525}
6526
6527SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6528  SDValue N0 = N->getOperand(0);
6529  SDValue N1 = N->getOperand(1);
6530  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6531  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6532  EVT VT = N->getValueType(0);
6533
6534  if (N0CFP && N1CFP)  // Constant fold
6535    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6536
6537  if (N1CFP) {
6538    const APFloat& V = N1CFP->getValueAPF();
6539    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6540    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6541    if (!V.isNegative()) {
6542      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6543        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6544    } else {
6545      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6546        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6547                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6548    }
6549  }
6550
6551  // copysign(fabs(x), y) -> copysign(x, y)
6552  // copysign(fneg(x), y) -> copysign(x, y)
6553  // copysign(copysign(x,z), y) -> copysign(x, y)
6554  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6555      N0.getOpcode() == ISD::FCOPYSIGN)
6556    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6557                       N0.getOperand(0), N1);
6558
6559  // copysign(x, abs(y)) -> abs(x)
6560  if (N1.getOpcode() == ISD::FABS)
6561    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6562
6563  // copysign(x, copysign(y,z)) -> copysign(x, z)
6564  if (N1.getOpcode() == ISD::FCOPYSIGN)
6565    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6566                       N0, N1.getOperand(1));
6567
6568  // copysign(x, fp_extend(y)) -> copysign(x, y)
6569  // copysign(x, fp_round(y)) -> copysign(x, y)
6570  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6571    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6572                       N0, N1.getOperand(0));
6573
6574  return SDValue();
6575}
6576
6577SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6578  SDValue N0 = N->getOperand(0);
6579  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6580  EVT VT = N->getValueType(0);
6581  EVT OpVT = N0.getValueType();
6582
6583  // fold (sint_to_fp c1) -> c1fp
6584  if (N0C &&
6585      // ...but only if the target supports immediate floating-point values
6586      (!LegalOperations ||
6587       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6588    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6589
6590  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6591  // but UINT_TO_FP is legal on this target, try to convert.
6592  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6593      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6594    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6595    if (DAG.SignBitIsZero(N0))
6596      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6597  }
6598
6599  // The next optimizations are desireable only if SELECT_CC can be lowered.
6600  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6601  // having to say they don't support SELECT_CC on every type the DAG knows
6602  // about, since there is no way to mark an opcode illegal at all value types
6603  // (See also visitSELECT)
6604  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6605    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6606    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6607        !VT.isVector() &&
6608        (!LegalOperations ||
6609         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6610      SDValue Ops[] =
6611        { N0.getOperand(0), N0.getOperand(1),
6612          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6613          N0.getOperand(2) };
6614      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6615    }
6616
6617    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6618    //      (select_cc x, y, 1.0, 0.0,, cc)
6619    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6620        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6621        (!LegalOperations ||
6622         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6623      SDValue Ops[] =
6624        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6625          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6626          N0.getOperand(0).getOperand(2) };
6627      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6628    }
6629  }
6630
6631  return SDValue();
6632}
6633
6634SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6635  SDValue N0 = N->getOperand(0);
6636  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6637  EVT VT = N->getValueType(0);
6638  EVT OpVT = N0.getValueType();
6639
6640  // fold (uint_to_fp c1) -> c1fp
6641  if (N0C &&
6642      // ...but only if the target supports immediate floating-point values
6643      (!LegalOperations ||
6644       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6645    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6646
6647  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6648  // but SINT_TO_FP is legal on this target, try to convert.
6649  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6650      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6651    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6652    if (DAG.SignBitIsZero(N0))
6653      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6654  }
6655
6656  // The next optimizations are desireable only if SELECT_CC can be lowered.
6657  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6658  // having to say they don't support SELECT_CC on every type the DAG knows
6659  // about, since there is no way to mark an opcode illegal at all value types
6660  // (See also visitSELECT)
6661  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6662    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6663
6664    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6665        (!LegalOperations ||
6666         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6667      SDValue Ops[] =
6668        { N0.getOperand(0), N0.getOperand(1),
6669          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6670          N0.getOperand(2) };
6671      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6672    }
6673  }
6674
6675  return SDValue();
6676}
6677
6678SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6679  SDValue N0 = N->getOperand(0);
6680  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6681  EVT VT = N->getValueType(0);
6682
6683  // fold (fp_to_sint c1fp) -> c1
6684  if (N0CFP)
6685    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6686
6687  return SDValue();
6688}
6689
6690SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6691  SDValue N0 = N->getOperand(0);
6692  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6693  EVT VT = N->getValueType(0);
6694
6695  // fold (fp_to_uint c1fp) -> c1
6696  if (N0CFP)
6697    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6698
6699  return SDValue();
6700}
6701
6702SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6703  SDValue N0 = N->getOperand(0);
6704  SDValue N1 = N->getOperand(1);
6705  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6706  EVT VT = N->getValueType(0);
6707
6708  // fold (fp_round c1fp) -> c1fp
6709  if (N0CFP)
6710    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6711
6712  // fold (fp_round (fp_extend x)) -> x
6713  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6714    return N0.getOperand(0);
6715
6716  // fold (fp_round (fp_round x)) -> (fp_round x)
6717  if (N0.getOpcode() == ISD::FP_ROUND) {
6718    // This is a value preserving truncation if both round's are.
6719    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6720                   N0.getNode()->getConstantOperandVal(1) == 1;
6721    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6722                       DAG.getIntPtrConstant(IsTrunc));
6723  }
6724
6725  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6726  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6727    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6728                              N0.getOperand(0), N1);
6729    AddToWorkList(Tmp.getNode());
6730    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6731                       Tmp, N0.getOperand(1));
6732  }
6733
6734  return SDValue();
6735}
6736
6737SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6738  SDValue N0 = N->getOperand(0);
6739  EVT VT = N->getValueType(0);
6740  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6741  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6742
6743  // fold (fp_round_inreg c1fp) -> c1fp
6744  if (N0CFP && isTypeLegal(EVT)) {
6745    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6746    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6747  }
6748
6749  return SDValue();
6750}
6751
6752SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6753  SDValue N0 = N->getOperand(0);
6754  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6755  EVT VT = N->getValueType(0);
6756
6757  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6758  if (N->hasOneUse() &&
6759      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6760    return SDValue();
6761
6762  // fold (fp_extend c1fp) -> c1fp
6763  if (N0CFP)
6764    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6765
6766  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6767  // value of X.
6768  if (N0.getOpcode() == ISD::FP_ROUND
6769      && N0.getNode()->getConstantOperandVal(1) == 1) {
6770    SDValue In = N0.getOperand(0);
6771    if (In.getValueType() == VT) return In;
6772    if (VT.bitsLT(In.getValueType()))
6773      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6774                         In, N0.getOperand(1));
6775    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6776  }
6777
6778  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6779  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6780      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6781       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6782    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6783    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6784                                     LN0->getChain(),
6785                                     LN0->getBasePtr(), N0.getValueType(),
6786                                     LN0->getMemOperand());
6787    CombineTo(N, ExtLoad);
6788    CombineTo(N0.getNode(),
6789              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6790                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6791              ExtLoad.getValue(1));
6792    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6793  }
6794
6795  return SDValue();
6796}
6797
6798SDValue DAGCombiner::visitFNEG(SDNode *N) {
6799  SDValue N0 = N->getOperand(0);
6800  EVT VT = N->getValueType(0);
6801
6802  if (VT.isVector()) {
6803    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6804    if (FoldedVOp.getNode()) return FoldedVOp;
6805  }
6806
6807  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6808                         &DAG.getTarget().Options))
6809    return GetNegatedExpression(N0, DAG, LegalOperations);
6810
6811  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6812  // constant pool values.
6813  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6814      !VT.isVector() &&
6815      N0.getNode()->hasOneUse() &&
6816      N0.getOperand(0).getValueType().isInteger()) {
6817    SDValue Int = N0.getOperand(0);
6818    EVT IntVT = Int.getValueType();
6819    if (IntVT.isInteger() && !IntVT.isVector()) {
6820      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6821              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6822      AddToWorkList(Int.getNode());
6823      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6824                         VT, Int);
6825    }
6826  }
6827
6828  // (fneg (fmul c, x)) -> (fmul -c, x)
6829  if (N0.getOpcode() == ISD::FMUL) {
6830    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6831    if (CFP1)
6832      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6833                         N0.getOperand(0),
6834                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6835                                     N0.getOperand(1)));
6836  }
6837
6838  return SDValue();
6839}
6840
6841SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6842  SDValue N0 = N->getOperand(0);
6843  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6844  EVT VT = N->getValueType(0);
6845
6846  // fold (fceil c1) -> fceil(c1)
6847  if (N0CFP)
6848    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6849
6850  return SDValue();
6851}
6852
6853SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6854  SDValue N0 = N->getOperand(0);
6855  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6856  EVT VT = N->getValueType(0);
6857
6858  // fold (ftrunc c1) -> ftrunc(c1)
6859  if (N0CFP)
6860    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6861
6862  return SDValue();
6863}
6864
6865SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6866  SDValue N0 = N->getOperand(0);
6867  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6868  EVT VT = N->getValueType(0);
6869
6870  // fold (ffloor c1) -> ffloor(c1)
6871  if (N0CFP)
6872    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6873
6874  return SDValue();
6875}
6876
6877SDValue DAGCombiner::visitFABS(SDNode *N) {
6878  SDValue N0 = N->getOperand(0);
6879  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6880  EVT VT = N->getValueType(0);
6881
6882  if (VT.isVector()) {
6883    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6884    if (FoldedVOp.getNode()) return FoldedVOp;
6885  }
6886
6887  // fold (fabs c1) -> fabs(c1)
6888  if (N0CFP)
6889    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6890  // fold (fabs (fabs x)) -> (fabs x)
6891  if (N0.getOpcode() == ISD::FABS)
6892    return N->getOperand(0);
6893  // fold (fabs (fneg x)) -> (fabs x)
6894  // fold (fabs (fcopysign x, y)) -> (fabs x)
6895  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6896    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6897
6898  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6899  // constant pool values.
6900  if (!TLI.isFAbsFree(VT) &&
6901      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6902      N0.getOperand(0).getValueType().isInteger() &&
6903      !N0.getOperand(0).getValueType().isVector()) {
6904    SDValue Int = N0.getOperand(0);
6905    EVT IntVT = Int.getValueType();
6906    if (IntVT.isInteger() && !IntVT.isVector()) {
6907      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6908             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6909      AddToWorkList(Int.getNode());
6910      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6911                         N->getValueType(0), Int);
6912    }
6913  }
6914
6915  return SDValue();
6916}
6917
6918SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6919  SDValue Chain = N->getOperand(0);
6920  SDValue N1 = N->getOperand(1);
6921  SDValue N2 = N->getOperand(2);
6922
6923  // If N is a constant we could fold this into a fallthrough or unconditional
6924  // branch. However that doesn't happen very often in normal code, because
6925  // Instcombine/SimplifyCFG should have handled the available opportunities.
6926  // If we did this folding here, it would be necessary to update the
6927  // MachineBasicBlock CFG, which is awkward.
6928
6929  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6930  // on the target.
6931  if (N1.getOpcode() == ISD::SETCC &&
6932      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6933                                   N1.getOperand(0).getValueType())) {
6934    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6935                       Chain, N1.getOperand(2),
6936                       N1.getOperand(0), N1.getOperand(1), N2);
6937  }
6938
6939  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6940      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6941       (N1.getOperand(0).hasOneUse() &&
6942        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6943    SDNode *Trunc = 0;
6944    if (N1.getOpcode() == ISD::TRUNCATE) {
6945      // Look pass the truncate.
6946      Trunc = N1.getNode();
6947      N1 = N1.getOperand(0);
6948    }
6949
6950    // Match this pattern so that we can generate simpler code:
6951    //
6952    //   %a = ...
6953    //   %b = and i32 %a, 2
6954    //   %c = srl i32 %b, 1
6955    //   brcond i32 %c ...
6956    //
6957    // into
6958    //
6959    //   %a = ...
6960    //   %b = and i32 %a, 2
6961    //   %c = setcc eq %b, 0
6962    //   brcond %c ...
6963    //
6964    // This applies only when the AND constant value has one bit set and the
6965    // SRL constant is equal to the log2 of the AND constant. The back-end is
6966    // smart enough to convert the result into a TEST/JMP sequence.
6967    SDValue Op0 = N1.getOperand(0);
6968    SDValue Op1 = N1.getOperand(1);
6969
6970    if (Op0.getOpcode() == ISD::AND &&
6971        Op1.getOpcode() == ISD::Constant) {
6972      SDValue AndOp1 = Op0.getOperand(1);
6973
6974      if (AndOp1.getOpcode() == ISD::Constant) {
6975        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6976
6977        if (AndConst.isPowerOf2() &&
6978            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6979          SDValue SetCC =
6980            DAG.getSetCC(SDLoc(N),
6981                         getSetCCResultType(Op0.getValueType()),
6982                         Op0, DAG.getConstant(0, Op0.getValueType()),
6983                         ISD::SETNE);
6984
6985          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6986                                          MVT::Other, Chain, SetCC, N2);
6987          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6988          // will convert it back to (X & C1) >> C2.
6989          CombineTo(N, NewBRCond, false);
6990          // Truncate is dead.
6991          if (Trunc) {
6992            removeFromWorkList(Trunc);
6993            DAG.DeleteNode(Trunc);
6994          }
6995          // Replace the uses of SRL with SETCC
6996          WorkListRemover DeadNodes(*this);
6997          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
6998          removeFromWorkList(N1.getNode());
6999          DAG.DeleteNode(N1.getNode());
7000          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7001        }
7002      }
7003    }
7004
7005    if (Trunc)
7006      // Restore N1 if the above transformation doesn't match.
7007      N1 = N->getOperand(1);
7008  }
7009
7010  // Transform br(xor(x, y)) -> br(x != y)
7011  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
7012  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
7013    SDNode *TheXor = N1.getNode();
7014    SDValue Op0 = TheXor->getOperand(0);
7015    SDValue Op1 = TheXor->getOperand(1);
7016    if (Op0.getOpcode() == Op1.getOpcode()) {
7017      // Avoid missing important xor optimizations.
7018      SDValue Tmp = visitXOR(TheXor);
7019      if (Tmp.getNode()) {
7020        if (Tmp.getNode() != TheXor) {
7021          DEBUG(dbgs() << "\nReplacing.8 ";
7022                TheXor->dump(&DAG);
7023                dbgs() << "\nWith: ";
7024                Tmp.getNode()->dump(&DAG);
7025                dbgs() << '\n');
7026          WorkListRemover DeadNodes(*this);
7027          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
7028          removeFromWorkList(TheXor);
7029          DAG.DeleteNode(TheXor);
7030          return DAG.getNode(ISD::BRCOND, SDLoc(N),
7031                             MVT::Other, Chain, Tmp, N2);
7032        }
7033
7034        // visitXOR has changed XOR's operands or replaced the XOR completely,
7035        // bail out.
7036        return SDValue(N, 0);
7037      }
7038    }
7039
7040    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
7041      bool Equal = false;
7042      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
7043        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
7044            Op0.getOpcode() == ISD::XOR) {
7045          TheXor = Op0.getNode();
7046          Equal = true;
7047        }
7048
7049      EVT SetCCVT = N1.getValueType();
7050      if (LegalTypes)
7051        SetCCVT = getSetCCResultType(SetCCVT);
7052      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7053                                   SetCCVT,
7054                                   Op0, Op1,
7055                                   Equal ? ISD::SETEQ : ISD::SETNE);
7056      // Replace the uses of XOR with SETCC
7057      WorkListRemover DeadNodes(*this);
7058      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7059      removeFromWorkList(N1.getNode());
7060      DAG.DeleteNode(N1.getNode());
7061      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7062                         MVT::Other, Chain, SetCC, N2);
7063    }
7064  }
7065
7066  return SDValue();
7067}
7068
7069// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7070//
7071SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7072  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7073  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7074
7075  // If N is a constant we could fold this into a fallthrough or unconditional
7076  // branch. However that doesn't happen very often in normal code, because
7077  // Instcombine/SimplifyCFG should have handled the available opportunities.
7078  // If we did this folding here, it would be necessary to update the
7079  // MachineBasicBlock CFG, which is awkward.
7080
7081  // Use SimplifySetCC to simplify SETCC's.
7082  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7083                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7084                               false);
7085  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7086
7087  // fold to a simpler setcc
7088  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7089    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7090                       N->getOperand(0), Simp.getOperand(2),
7091                       Simp.getOperand(0), Simp.getOperand(1),
7092                       N->getOperand(4));
7093
7094  return SDValue();
7095}
7096
7097/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7098/// uses N as its base pointer and that N may be folded in the load / store
7099/// addressing mode.
7100static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7101                                    SelectionDAG &DAG,
7102                                    const TargetLowering &TLI) {
7103  EVT VT;
7104  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7105    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7106      return false;
7107    VT = Use->getValueType(0);
7108  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7109    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7110      return false;
7111    VT = ST->getValue().getValueType();
7112  } else
7113    return false;
7114
7115  TargetLowering::AddrMode AM;
7116  if (N->getOpcode() == ISD::ADD) {
7117    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7118    if (Offset)
7119      // [reg +/- imm]
7120      AM.BaseOffs = Offset->getSExtValue();
7121    else
7122      // [reg +/- reg]
7123      AM.Scale = 1;
7124  } else if (N->getOpcode() == ISD::SUB) {
7125    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7126    if (Offset)
7127      // [reg +/- imm]
7128      AM.BaseOffs = -Offset->getSExtValue();
7129    else
7130      // [reg +/- reg]
7131      AM.Scale = 1;
7132  } else
7133    return false;
7134
7135  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7136}
7137
7138/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7139/// pre-indexed load / store when the base pointer is an add or subtract
7140/// and it has other uses besides the load / store. After the
7141/// transformation, the new indexed load / store has effectively folded
7142/// the add / subtract in and all of its other uses are redirected to the
7143/// new load / store.
7144bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7145  if (Level < AfterLegalizeDAG)
7146    return false;
7147
7148  bool isLoad = true;
7149  SDValue Ptr;
7150  EVT VT;
7151  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7152    if (LD->isIndexed())
7153      return false;
7154    VT = LD->getMemoryVT();
7155    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7156        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7157      return false;
7158    Ptr = LD->getBasePtr();
7159  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7160    if (ST->isIndexed())
7161      return false;
7162    VT = ST->getMemoryVT();
7163    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7164        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7165      return false;
7166    Ptr = ST->getBasePtr();
7167    isLoad = false;
7168  } else {
7169    return false;
7170  }
7171
7172  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7173  // out.  There is no reason to make this a preinc/predec.
7174  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7175      Ptr.getNode()->hasOneUse())
7176    return false;
7177
7178  // Ask the target to do addressing mode selection.
7179  SDValue BasePtr;
7180  SDValue Offset;
7181  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7182  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7183    return false;
7184
7185  // Backends without true r+i pre-indexed forms may need to pass a
7186  // constant base with a variable offset so that constant coercion
7187  // will work with the patterns in canonical form.
7188  bool Swapped = false;
7189  if (isa<ConstantSDNode>(BasePtr)) {
7190    std::swap(BasePtr, Offset);
7191    Swapped = true;
7192  }
7193
7194  // Don't create a indexed load / store with zero offset.
7195  if (isa<ConstantSDNode>(Offset) &&
7196      cast<ConstantSDNode>(Offset)->isNullValue())
7197    return false;
7198
7199  // Try turning it into a pre-indexed load / store except when:
7200  // 1) The new base ptr is a frame index.
7201  // 2) If N is a store and the new base ptr is either the same as or is a
7202  //    predecessor of the value being stored.
7203  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7204  //    that would create a cycle.
7205  // 4) All uses are load / store ops that use it as old base ptr.
7206
7207  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7208  // (plus the implicit offset) to a register to preinc anyway.
7209  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7210    return false;
7211
7212  // Check #2.
7213  if (!isLoad) {
7214    SDValue Val = cast<StoreSDNode>(N)->getValue();
7215    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7216      return false;
7217  }
7218
7219  // If the offset is a constant, there may be other adds of constants that
7220  // can be folded with this one. We should do this to avoid having to keep
7221  // a copy of the original base pointer.
7222  SmallVector<SDNode *, 16> OtherUses;
7223  if (isa<ConstantSDNode>(Offset))
7224    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7225         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7226      SDNode *Use = *I;
7227      if (Use == Ptr.getNode())
7228        continue;
7229
7230      if (Use->isPredecessorOf(N))
7231        continue;
7232
7233      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7234        OtherUses.clear();
7235        break;
7236      }
7237
7238      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7239      if (Op1.getNode() == BasePtr.getNode())
7240        std::swap(Op0, Op1);
7241      assert(Op0.getNode() == BasePtr.getNode() &&
7242             "Use of ADD/SUB but not an operand");
7243
7244      if (!isa<ConstantSDNode>(Op1)) {
7245        OtherUses.clear();
7246        break;
7247      }
7248
7249      // FIXME: In some cases, we can be smarter about this.
7250      if (Op1.getValueType() != Offset.getValueType()) {
7251        OtherUses.clear();
7252        break;
7253      }
7254
7255      OtherUses.push_back(Use);
7256    }
7257
7258  if (Swapped)
7259    std::swap(BasePtr, Offset);
7260
7261  // Now check for #3 and #4.
7262  bool RealUse = false;
7263
7264  // Caches for hasPredecessorHelper
7265  SmallPtrSet<const SDNode *, 32> Visited;
7266  SmallVector<const SDNode *, 16> Worklist;
7267
7268  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7269         E = Ptr.getNode()->use_end(); I != E; ++I) {
7270    SDNode *Use = *I;
7271    if (Use == N)
7272      continue;
7273    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7274      return false;
7275
7276    // If Ptr may be folded in addressing mode of other use, then it's
7277    // not profitable to do this transformation.
7278    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7279      RealUse = true;
7280  }
7281
7282  if (!RealUse)
7283    return false;
7284
7285  SDValue Result;
7286  if (isLoad)
7287    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7288                                BasePtr, Offset, AM);
7289  else
7290    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7291                                 BasePtr, Offset, AM);
7292  ++PreIndexedNodes;
7293  ++NodesCombined;
7294  DEBUG(dbgs() << "\nReplacing.4 ";
7295        N->dump(&DAG);
7296        dbgs() << "\nWith: ";
7297        Result.getNode()->dump(&DAG);
7298        dbgs() << '\n');
7299  WorkListRemover DeadNodes(*this);
7300  if (isLoad) {
7301    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7302    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7303  } else {
7304    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7305  }
7306
7307  // Finally, since the node is now dead, remove it from the graph.
7308  DAG.DeleteNode(N);
7309
7310  if (Swapped)
7311    std::swap(BasePtr, Offset);
7312
7313  // Replace other uses of BasePtr that can be updated to use Ptr
7314  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7315    unsigned OffsetIdx = 1;
7316    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7317      OffsetIdx = 0;
7318    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7319           BasePtr.getNode() && "Expected BasePtr operand");
7320
7321    // We need to replace ptr0 in the following expression:
7322    //   x0 * offset0 + y0 * ptr0 = t0
7323    // knowing that
7324    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7325    //
7326    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7327    // indexed load/store and the expresion that needs to be re-written.
7328    //
7329    // Therefore, we have:
7330    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7331
7332    ConstantSDNode *CN =
7333      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7334    int X0, X1, Y0, Y1;
7335    APInt Offset0 = CN->getAPIntValue();
7336    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7337
7338    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7339    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7340    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7341    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7342
7343    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7344
7345    APInt CNV = Offset0;
7346    if (X0 < 0) CNV = -CNV;
7347    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7348    else CNV = CNV - Offset1;
7349
7350    // We can now generate the new expression.
7351    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7352    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7353
7354    SDValue NewUse = DAG.getNode(Opcode,
7355                                 SDLoc(OtherUses[i]),
7356                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7357    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7358    removeFromWorkList(OtherUses[i]);
7359    DAG.DeleteNode(OtherUses[i]);
7360  }
7361
7362  // Replace the uses of Ptr with uses of the updated base value.
7363  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7364  removeFromWorkList(Ptr.getNode());
7365  DAG.DeleteNode(Ptr.getNode());
7366
7367  return true;
7368}
7369
7370/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7371/// add / sub of the base pointer node into a post-indexed load / store.
7372/// The transformation folded the add / subtract into the new indexed
7373/// load / store effectively and all of its uses are redirected to the
7374/// new load / store.
7375bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7376  if (Level < AfterLegalizeDAG)
7377    return false;
7378
7379  bool isLoad = true;
7380  SDValue Ptr;
7381  EVT VT;
7382  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7383    if (LD->isIndexed())
7384      return false;
7385    VT = LD->getMemoryVT();
7386    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7387        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7388      return false;
7389    Ptr = LD->getBasePtr();
7390  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7391    if (ST->isIndexed())
7392      return false;
7393    VT = ST->getMemoryVT();
7394    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7395        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7396      return false;
7397    Ptr = ST->getBasePtr();
7398    isLoad = false;
7399  } else {
7400    return false;
7401  }
7402
7403  if (Ptr.getNode()->hasOneUse())
7404    return false;
7405
7406  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7407         E = Ptr.getNode()->use_end(); I != E; ++I) {
7408    SDNode *Op = *I;
7409    if (Op == N ||
7410        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7411      continue;
7412
7413    SDValue BasePtr;
7414    SDValue Offset;
7415    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7416    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7417      // Don't create a indexed load / store with zero offset.
7418      if (isa<ConstantSDNode>(Offset) &&
7419          cast<ConstantSDNode>(Offset)->isNullValue())
7420        continue;
7421
7422      // Try turning it into a post-indexed load / store except when
7423      // 1) All uses are load / store ops that use it as base ptr (and
7424      //    it may be folded as addressing mmode).
7425      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7426      //    nor a successor of N. Otherwise, if Op is folded that would
7427      //    create a cycle.
7428
7429      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7430        continue;
7431
7432      // Check for #1.
7433      bool TryNext = false;
7434      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7435             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7436        SDNode *Use = *II;
7437        if (Use == Ptr.getNode())
7438          continue;
7439
7440        // If all the uses are load / store addresses, then don't do the
7441        // transformation.
7442        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7443          bool RealUse = false;
7444          for (SDNode::use_iterator III = Use->use_begin(),
7445                 EEE = Use->use_end(); III != EEE; ++III) {
7446            SDNode *UseUse = *III;
7447            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7448              RealUse = true;
7449          }
7450
7451          if (!RealUse) {
7452            TryNext = true;
7453            break;
7454          }
7455        }
7456      }
7457
7458      if (TryNext)
7459        continue;
7460
7461      // Check for #2
7462      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7463        SDValue Result = isLoad
7464          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7465                               BasePtr, Offset, AM)
7466          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7467                                BasePtr, Offset, AM);
7468        ++PostIndexedNodes;
7469        ++NodesCombined;
7470        DEBUG(dbgs() << "\nReplacing.5 ";
7471              N->dump(&DAG);
7472              dbgs() << "\nWith: ";
7473              Result.getNode()->dump(&DAG);
7474              dbgs() << '\n');
7475        WorkListRemover DeadNodes(*this);
7476        if (isLoad) {
7477          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7478          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7479        } else {
7480          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7481        }
7482
7483        // Finally, since the node is now dead, remove it from the graph.
7484        DAG.DeleteNode(N);
7485
7486        // Replace the uses of Use with uses of the updated base value.
7487        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7488                                      Result.getValue(isLoad ? 1 : 0));
7489        removeFromWorkList(Op);
7490        DAG.DeleteNode(Op);
7491        return true;
7492      }
7493    }
7494  }
7495
7496  return false;
7497}
7498
7499SDValue DAGCombiner::visitLOAD(SDNode *N) {
7500  LoadSDNode *LD  = cast<LoadSDNode>(N);
7501  SDValue Chain = LD->getChain();
7502  SDValue Ptr   = LD->getBasePtr();
7503
7504  // If load is not volatile and there are no uses of the loaded value (and
7505  // the updated indexed value in case of indexed loads), change uses of the
7506  // chain value into uses of the chain input (i.e. delete the dead load).
7507  if (!LD->isVolatile()) {
7508    if (N->getValueType(1) == MVT::Other) {
7509      // Unindexed loads.
7510      if (!N->hasAnyUseOfValue(0)) {
7511        // It's not safe to use the two value CombineTo variant here. e.g.
7512        // v1, chain2 = load chain1, loc
7513        // v2, chain3 = load chain2, loc
7514        // v3         = add v2, c
7515        // Now we replace use of chain2 with chain1.  This makes the second load
7516        // isomorphic to the one we are deleting, and thus makes this load live.
7517        DEBUG(dbgs() << "\nReplacing.6 ";
7518              N->dump(&DAG);
7519              dbgs() << "\nWith chain: ";
7520              Chain.getNode()->dump(&DAG);
7521              dbgs() << "\n");
7522        WorkListRemover DeadNodes(*this);
7523        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7524
7525        if (N->use_empty()) {
7526          removeFromWorkList(N);
7527          DAG.DeleteNode(N);
7528        }
7529
7530        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7531      }
7532    } else {
7533      // Indexed loads.
7534      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7535      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7536        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7537        DEBUG(dbgs() << "\nReplacing.7 ";
7538              N->dump(&DAG);
7539              dbgs() << "\nWith: ";
7540              Undef.getNode()->dump(&DAG);
7541              dbgs() << " and 2 other values\n");
7542        WorkListRemover DeadNodes(*this);
7543        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7544        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7545                                      DAG.getUNDEF(N->getValueType(1)));
7546        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7547        removeFromWorkList(N);
7548        DAG.DeleteNode(N);
7549        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7550      }
7551    }
7552  }
7553
7554  // If this load is directly stored, replace the load value with the stored
7555  // value.
7556  // TODO: Handle store large -> read small portion.
7557  // TODO: Handle TRUNCSTORE/LOADEXT
7558  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7559    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7560      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7561      if (PrevST->getBasePtr() == Ptr &&
7562          PrevST->getValue().getValueType() == N->getValueType(0))
7563      return CombineTo(N, Chain.getOperand(1), Chain);
7564    }
7565  }
7566
7567  // Try to infer better alignment information than the load already has.
7568  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7569    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7570      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7571        SDValue NewLoad =
7572               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7573                              LD->getValueType(0),
7574                              Chain, Ptr, LD->getPointerInfo(),
7575                              LD->getMemoryVT(),
7576                              LD->isVolatile(), LD->isNonTemporal(), Align,
7577                              LD->getTBAAInfo());
7578        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7579      }
7580    }
7581  }
7582
7583  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7584    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7585  if (UseAA) {
7586    // Walk up chain skipping non-aliasing memory nodes.
7587    SDValue BetterChain = FindBetterChain(N, Chain);
7588
7589    // If there is a better chain.
7590    if (Chain != BetterChain) {
7591      SDValue ReplLoad;
7592
7593      // Replace the chain to void dependency.
7594      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7595        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7596                               BetterChain, Ptr, LD->getMemOperand());
7597      } else {
7598        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7599                                  LD->getValueType(0),
7600                                  BetterChain, Ptr, LD->getMemoryVT(),
7601                                  LD->getMemOperand());
7602      }
7603
7604      // Create token factor to keep old chain connected.
7605      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7606                                  MVT::Other, Chain, ReplLoad.getValue(1));
7607
7608      // Make sure the new and old chains are cleaned up.
7609      AddToWorkList(Token.getNode());
7610
7611      // Replace uses with load result and token factor. Don't add users
7612      // to work list.
7613      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7614    }
7615  }
7616
7617  // Try transforming N to an indexed load.
7618  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7619    return SDValue(N, 0);
7620
7621  // Try to slice up N to more direct loads if the slices are mapped to
7622  // different register banks or pairing can take place.
7623  if (SliceUpLoad(N))
7624    return SDValue(N, 0);
7625
7626  return SDValue();
7627}
7628
7629namespace {
7630/// \brief Helper structure used to slice a load in smaller loads.
7631/// Basically a slice is obtained from the following sequence:
7632/// Origin = load Ty1, Base
7633/// Shift = srl Ty1 Origin, CstTy Amount
7634/// Inst = trunc Shift to Ty2
7635///
7636/// Then, it will be rewriten into:
7637/// Slice = load SliceTy, Base + SliceOffset
7638/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7639///
7640/// SliceTy is deduced from the number of bits that are actually used to
7641/// build Inst.
7642struct LoadedSlice {
7643  /// \brief Helper structure used to compute the cost of a slice.
7644  struct Cost {
7645    /// Are we optimizing for code size.
7646    bool ForCodeSize;
7647    /// Various cost.
7648    unsigned Loads;
7649    unsigned Truncates;
7650    unsigned CrossRegisterBanksCopies;
7651    unsigned ZExts;
7652    unsigned Shift;
7653
7654    Cost(bool ForCodeSize = false)
7655        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7656          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7657
7658    /// \brief Get the cost of one isolated slice.
7659    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7660        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7661          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7662      EVT TruncType = LS.Inst->getValueType(0);
7663      EVT LoadedType = LS.getLoadedType();
7664      if (TruncType != LoadedType &&
7665          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7666        ZExts = 1;
7667    }
7668
7669    /// \brief Account for slicing gain in the current cost.
7670    /// Slicing provide a few gains like removing a shift or a
7671    /// truncate. This method allows to grow the cost of the original
7672    /// load with the gain from this slice.
7673    void addSliceGain(const LoadedSlice &LS) {
7674      // Each slice saves a truncate.
7675      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7676      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7677                              LS.Inst->getOperand(0).getValueType()))
7678        ++Truncates;
7679      // If there is a shift amount, this slice gets rid of it.
7680      if (LS.Shift)
7681        ++Shift;
7682      // If this slice can merge a cross register bank copy, account for it.
7683      if (LS.canMergeExpensiveCrossRegisterBankCopy())
7684        ++CrossRegisterBanksCopies;
7685    }
7686
7687    Cost &operator+=(const Cost &RHS) {
7688      Loads += RHS.Loads;
7689      Truncates += RHS.Truncates;
7690      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7691      ZExts += RHS.ZExts;
7692      Shift += RHS.Shift;
7693      return *this;
7694    }
7695
7696    bool operator==(const Cost &RHS) const {
7697      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7698             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7699             ZExts == RHS.ZExts && Shift == RHS.Shift;
7700    }
7701
7702    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7703
7704    bool operator<(const Cost &RHS) const {
7705      // Assume cross register banks copies are as expensive as loads.
7706      // FIXME: Do we want some more target hooks?
7707      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7708      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7709      // Unless we are optimizing for code size, consider the
7710      // expensive operation first.
7711      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7712        return ExpensiveOpsLHS < ExpensiveOpsRHS;
7713      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7714             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7715    }
7716
7717    bool operator>(const Cost &RHS) const { return RHS < *this; }
7718
7719    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7720
7721    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7722  };
7723  // The last instruction that represent the slice. This should be a
7724  // truncate instruction.
7725  SDNode *Inst;
7726  // The original load instruction.
7727  LoadSDNode *Origin;
7728  // The right shift amount in bits from the original load.
7729  unsigned Shift;
7730  // The DAG from which Origin came from.
7731  // This is used to get some contextual information about legal types, etc.
7732  SelectionDAG *DAG;
7733
7734  LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7735              unsigned Shift = 0, SelectionDAG *DAG = NULL)
7736      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7737
7738  LoadedSlice(const LoadedSlice &LS)
7739      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7740
7741  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7742  /// \return Result is \p BitWidth and has used bits set to 1 and
7743  ///         not used bits set to 0.
7744  APInt getUsedBits() const {
7745    // Reproduce the trunc(lshr) sequence:
7746    // - Start from the truncated value.
7747    // - Zero extend to the desired bit width.
7748    // - Shift left.
7749    assert(Origin && "No original load to compare against.");
7750    unsigned BitWidth = Origin->getValueSizeInBits(0);
7751    assert(Inst && "This slice is not bound to an instruction");
7752    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7753           "Extracted slice is bigger than the whole type!");
7754    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7755    UsedBits.setAllBits();
7756    UsedBits = UsedBits.zext(BitWidth);
7757    UsedBits <<= Shift;
7758    return UsedBits;
7759  }
7760
7761  /// \brief Get the size of the slice to be loaded in bytes.
7762  unsigned getLoadedSize() const {
7763    unsigned SliceSize = getUsedBits().countPopulation();
7764    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7765    return SliceSize / 8;
7766  }
7767
7768  /// \brief Get the type that will be loaded for this slice.
7769  /// Note: This may not be the final type for the slice.
7770  EVT getLoadedType() const {
7771    assert(DAG && "Missing context");
7772    LLVMContext &Ctxt = *DAG->getContext();
7773    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7774  }
7775
7776  /// \brief Get the alignment of the load used for this slice.
7777  unsigned getAlignment() const {
7778    unsigned Alignment = Origin->getAlignment();
7779    unsigned Offset = getOffsetFromBase();
7780    if (Offset != 0)
7781      Alignment = MinAlign(Alignment, Alignment + Offset);
7782    return Alignment;
7783  }
7784
7785  /// \brief Check if this slice can be rewritten with legal operations.
7786  bool isLegal() const {
7787    // An invalid slice is not legal.
7788    if (!Origin || !Inst || !DAG)
7789      return false;
7790
7791    // Offsets are for indexed load only, we do not handle that.
7792    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7793      return false;
7794
7795    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7796
7797    // Check that the type is legal.
7798    EVT SliceType = getLoadedType();
7799    if (!TLI.isTypeLegal(SliceType))
7800      return false;
7801
7802    // Check that the load is legal for this type.
7803    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7804      return false;
7805
7806    // Check that the offset can be computed.
7807    // 1. Check its type.
7808    EVT PtrType = Origin->getBasePtr().getValueType();
7809    if (PtrType == MVT::Untyped || PtrType.isExtended())
7810      return false;
7811
7812    // 2. Check that it fits in the immediate.
7813    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7814      return false;
7815
7816    // 3. Check that the computation is legal.
7817    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7818      return false;
7819
7820    // Check that the zext is legal if it needs one.
7821    EVT TruncateType = Inst->getValueType(0);
7822    if (TruncateType != SliceType &&
7823        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7824      return false;
7825
7826    return true;
7827  }
7828
7829  /// \brief Get the offset in bytes of this slice in the original chunk of
7830  /// bits.
7831  /// \pre DAG != NULL.
7832  uint64_t getOffsetFromBase() const {
7833    assert(DAG && "Missing context.");
7834    bool IsBigEndian =
7835        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7836    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7837    uint64_t Offset = Shift / 8;
7838    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7839    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7840           "The size of the original loaded type is not a multiple of a"
7841           " byte.");
7842    // If Offset is bigger than TySizeInBytes, it means we are loading all
7843    // zeros. This should have been optimized before in the process.
7844    assert(TySizeInBytes > Offset &&
7845           "Invalid shift amount for given loaded size");
7846    if (IsBigEndian)
7847      Offset = TySizeInBytes - Offset - getLoadedSize();
7848    return Offset;
7849  }
7850
7851  /// \brief Generate the sequence of instructions to load the slice
7852  /// represented by this object and redirect the uses of this slice to
7853  /// this new sequence of instructions.
7854  /// \pre this->Inst && this->Origin are valid Instructions and this
7855  /// object passed the legal check: LoadedSlice::isLegal returned true.
7856  /// \return The last instruction of the sequence used to load the slice.
7857  SDValue loadSlice() const {
7858    assert(Inst && Origin && "Unable to replace a non-existing slice.");
7859    const SDValue &OldBaseAddr = Origin->getBasePtr();
7860    SDValue BaseAddr = OldBaseAddr;
7861    // Get the offset in that chunk of bytes w.r.t. the endianess.
7862    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7863    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7864    if (Offset) {
7865      // BaseAddr = BaseAddr + Offset.
7866      EVT ArithType = BaseAddr.getValueType();
7867      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7868                              DAG->getConstant(Offset, ArithType));
7869    }
7870
7871    // Create the type of the loaded slice according to its size.
7872    EVT SliceType = getLoadedType();
7873
7874    // Create the load for the slice.
7875    SDValue LastInst = DAG->getLoad(
7876        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7877        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7878        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7879    // If the final type is not the same as the loaded type, this means that
7880    // we have to pad with zero. Create a zero extend for that.
7881    EVT FinalType = Inst->getValueType(0);
7882    if (SliceType != FinalType)
7883      LastInst =
7884          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7885    return LastInst;
7886  }
7887
7888  /// \brief Check if this slice can be merged with an expensive cross register
7889  /// bank copy. E.g.,
7890  /// i = load i32
7891  /// f = bitcast i32 i to float
7892  bool canMergeExpensiveCrossRegisterBankCopy() const {
7893    if (!Inst || !Inst->hasOneUse())
7894      return false;
7895    SDNode *Use = *Inst->use_begin();
7896    if (Use->getOpcode() != ISD::BITCAST)
7897      return false;
7898    assert(DAG && "Missing context");
7899    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7900    EVT ResVT = Use->getValueType(0);
7901    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7902    const TargetRegisterClass *ArgRC =
7903        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7904    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7905      return false;
7906
7907    // At this point, we know that we perform a cross-register-bank copy.
7908    // Check if it is expensive.
7909    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7910    // Assume bitcasts are cheap, unless both register classes do not
7911    // explicitly share a common sub class.
7912    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7913      return false;
7914
7915    // Check if it will be merged with the load.
7916    // 1. Check the alignment constraint.
7917    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7918        ResVT.getTypeForEVT(*DAG->getContext()));
7919
7920    if (RequiredAlignment > getAlignment())
7921      return false;
7922
7923    // 2. Check that the load is a legal operation for that type.
7924    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7925      return false;
7926
7927    // 3. Check that we do not have a zext in the way.
7928    if (Inst->getValueType(0) != getLoadedType())
7929      return false;
7930
7931    return true;
7932  }
7933};
7934}
7935
7936/// \brief Sorts LoadedSlice according to their offset.
7937struct LoadedSliceSorter {
7938  bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7939    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7940    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7941  }
7942};
7943
7944/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7945/// \p UsedBits looks like 0..0 1..1 0..0.
7946static bool areUsedBitsDense(const APInt &UsedBits) {
7947  // If all the bits are one, this is dense!
7948  if (UsedBits.isAllOnesValue())
7949    return true;
7950
7951  // Get rid of the unused bits on the right.
7952  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7953  // Get rid of the unused bits on the left.
7954  if (NarrowedUsedBits.countLeadingZeros())
7955    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7956  // Check that the chunk of bits is completely used.
7957  return NarrowedUsedBits.isAllOnesValue();
7958}
7959
7960/// \brief Check whether or not \p First and \p Second are next to each other
7961/// in memory. This means that there is no hole between the bits loaded
7962/// by \p First and the bits loaded by \p Second.
7963static bool areSlicesNextToEachOther(const LoadedSlice &First,
7964                                     const LoadedSlice &Second) {
7965  assert(First.Origin == Second.Origin && First.Origin &&
7966         "Unable to match different memory origins.");
7967  APInt UsedBits = First.getUsedBits();
7968  assert((UsedBits & Second.getUsedBits()) == 0 &&
7969         "Slices are not supposed to overlap.");
7970  UsedBits |= Second.getUsedBits();
7971  return areUsedBitsDense(UsedBits);
7972}
7973
7974/// \brief Adjust the \p GlobalLSCost according to the target
7975/// paring capabilities and the layout of the slices.
7976/// \pre \p GlobalLSCost should account for at least as many loads as
7977/// there is in the slices in \p LoadedSlices.
7978static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7979                                 LoadedSlice::Cost &GlobalLSCost) {
7980  unsigned NumberOfSlices = LoadedSlices.size();
7981  // If there is less than 2 elements, no pairing is possible.
7982  if (NumberOfSlices < 2)
7983    return;
7984
7985  // Sort the slices so that elements that are likely to be next to each
7986  // other in memory are next to each other in the list.
7987  std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7988  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
7989  // First (resp. Second) is the first (resp. Second) potentially candidate
7990  // to be placed in a paired load.
7991  const LoadedSlice *First = NULL;
7992  const LoadedSlice *Second = NULL;
7993  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
7994                // Set the beginning of the pair.
7995                                                           First = Second) {
7996
7997    Second = &LoadedSlices[CurrSlice];
7998
7999    // If First is NULL, it means we start a new pair.
8000    // Get to the next slice.
8001    if (!First)
8002      continue;
8003
8004    EVT LoadedType = First->getLoadedType();
8005
8006    // If the types of the slices are different, we cannot pair them.
8007    if (LoadedType != Second->getLoadedType())
8008      continue;
8009
8010    // Check if the target supplies paired loads for this type.
8011    unsigned RequiredAlignment = 0;
8012    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
8013      // move to the next pair, this type is hopeless.
8014      Second = NULL;
8015      continue;
8016    }
8017    // Check if we meet the alignment requirement.
8018    if (RequiredAlignment > First->getAlignment())
8019      continue;
8020
8021    // Check that both loads are next to each other in memory.
8022    if (!areSlicesNextToEachOther(*First, *Second))
8023      continue;
8024
8025    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
8026    --GlobalLSCost.Loads;
8027    // Move to the next pair.
8028    Second = NULL;
8029  }
8030}
8031
8032/// \brief Check the profitability of all involved LoadedSlice.
8033/// Currently, it is considered profitable if there is exactly two
8034/// involved slices (1) which are (2) next to each other in memory, and
8035/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
8036///
8037/// Note: The order of the elements in \p LoadedSlices may be modified, but not
8038/// the elements themselves.
8039///
8040/// FIXME: When the cost model will be mature enough, we can relax
8041/// constraints (1) and (2).
8042static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8043                                const APInt &UsedBits, bool ForCodeSize) {
8044  unsigned NumberOfSlices = LoadedSlices.size();
8045  if (StressLoadSlicing)
8046    return NumberOfSlices > 1;
8047
8048  // Check (1).
8049  if (NumberOfSlices != 2)
8050    return false;
8051
8052  // Check (2).
8053  if (!areUsedBitsDense(UsedBits))
8054    return false;
8055
8056  // Check (3).
8057  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8058  // The original code has one big load.
8059  OrigCost.Loads = 1;
8060  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8061    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8062    // Accumulate the cost of all the slices.
8063    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8064    GlobalSlicingCost += SliceCost;
8065
8066    // Account as cost in the original configuration the gain obtained
8067    // with the current slices.
8068    OrigCost.addSliceGain(LS);
8069  }
8070
8071  // If the target supports paired load, adjust the cost accordingly.
8072  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8073  return OrigCost > GlobalSlicingCost;
8074}
8075
8076/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8077/// operations, split it in the various pieces being extracted.
8078///
8079/// This sort of thing is introduced by SROA.
8080/// This slicing takes care not to insert overlapping loads.
8081/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8082bool DAGCombiner::SliceUpLoad(SDNode *N) {
8083  if (Level < AfterLegalizeDAG)
8084    return false;
8085
8086  LoadSDNode *LD = cast<LoadSDNode>(N);
8087  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8088      !LD->getValueType(0).isInteger())
8089    return false;
8090
8091  // Keep track of already used bits to detect overlapping values.
8092  // In that case, we will just abort the transformation.
8093  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8094
8095  SmallVector<LoadedSlice, 4> LoadedSlices;
8096
8097  // Check if this load is used as several smaller chunks of bits.
8098  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8099  // of computation for each trunc.
8100  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8101       UI != UIEnd; ++UI) {
8102    // Skip the uses of the chain.
8103    if (UI.getUse().getResNo() != 0)
8104      continue;
8105
8106    SDNode *User = *UI;
8107    unsigned Shift = 0;
8108
8109    // Check if this is a trunc(lshr).
8110    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8111        isa<ConstantSDNode>(User->getOperand(1))) {
8112      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8113      User = *User->use_begin();
8114    }
8115
8116    // At this point, User is a Truncate, iff we encountered, trunc or
8117    // trunc(lshr).
8118    if (User->getOpcode() != ISD::TRUNCATE)
8119      return false;
8120
8121    // The width of the type must be a power of 2 and greater than 8-bits.
8122    // Otherwise the load cannot be represented in LLVM IR.
8123    // Moreover, if we shifted with a non 8-bits multiple, the slice
8124    // will be accross several bytes. We do not support that.
8125    unsigned Width = User->getValueSizeInBits(0);
8126    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8127      return 0;
8128
8129    // Build the slice for this chain of computations.
8130    LoadedSlice LS(User, LD, Shift, &DAG);
8131    APInt CurrentUsedBits = LS.getUsedBits();
8132
8133    // Check if this slice overlaps with another.
8134    if ((CurrentUsedBits & UsedBits) != 0)
8135      return false;
8136    // Update the bits used globally.
8137    UsedBits |= CurrentUsedBits;
8138
8139    // Check if the new slice would be legal.
8140    if (!LS.isLegal())
8141      return false;
8142
8143    // Record the slice.
8144    LoadedSlices.push_back(LS);
8145  }
8146
8147  // Abort slicing if it does not seem to be profitable.
8148  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8149    return false;
8150
8151  ++SlicedLoads;
8152
8153  // Rewrite each chain to use an independent load.
8154  // By construction, each chain can be represented by a unique load.
8155
8156  // Prepare the argument for the new token factor for all the slices.
8157  SmallVector<SDValue, 8> ArgChains;
8158  for (SmallVectorImpl<LoadedSlice>::const_iterator
8159           LSIt = LoadedSlices.begin(),
8160           LSItEnd = LoadedSlices.end();
8161       LSIt != LSItEnd; ++LSIt) {
8162    SDValue SliceInst = LSIt->loadSlice();
8163    CombineTo(LSIt->Inst, SliceInst, true);
8164    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8165      SliceInst = SliceInst.getOperand(0);
8166    assert(SliceInst->getOpcode() == ISD::LOAD &&
8167           "It takes more than a zext to get to the loaded slice!!");
8168    ArgChains.push_back(SliceInst.getValue(1));
8169  }
8170
8171  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8172                              &ArgChains[0], ArgChains.size());
8173  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8174  return true;
8175}
8176
8177/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8178/// load is having specific bytes cleared out.  If so, return the byte size
8179/// being masked out and the shift amount.
8180static std::pair<unsigned, unsigned>
8181CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8182  std::pair<unsigned, unsigned> Result(0, 0);
8183
8184  // Check for the structure we're looking for.
8185  if (V->getOpcode() != ISD::AND ||
8186      !isa<ConstantSDNode>(V->getOperand(1)) ||
8187      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8188    return Result;
8189
8190  // Check the chain and pointer.
8191  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8192  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8193
8194  // The store should be chained directly to the load or be an operand of a
8195  // tokenfactor.
8196  if (LD == Chain.getNode())
8197    ; // ok.
8198  else if (Chain->getOpcode() != ISD::TokenFactor)
8199    return Result; // Fail.
8200  else {
8201    bool isOk = false;
8202    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8203      if (Chain->getOperand(i).getNode() == LD) {
8204        isOk = true;
8205        break;
8206      }
8207    if (!isOk) return Result;
8208  }
8209
8210  // This only handles simple types.
8211  if (V.getValueType() != MVT::i16 &&
8212      V.getValueType() != MVT::i32 &&
8213      V.getValueType() != MVT::i64)
8214    return Result;
8215
8216  // Check the constant mask.  Invert it so that the bits being masked out are
8217  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8218  // follow the sign bit for uniformity.
8219  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8220  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8221  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8222  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8223  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8224  if (NotMaskLZ == 64) return Result;  // All zero mask.
8225
8226  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8227  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8228    return Result;
8229
8230  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8231  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8232    NotMaskLZ -= 64-V.getValueSizeInBits();
8233
8234  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8235  switch (MaskedBytes) {
8236  case 1:
8237  case 2:
8238  case 4: break;
8239  default: return Result; // All one mask, or 5-byte mask.
8240  }
8241
8242  // Verify that the first bit starts at a multiple of mask so that the access
8243  // is aligned the same as the access width.
8244  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8245
8246  Result.first = MaskedBytes;
8247  Result.second = NotMaskTZ/8;
8248  return Result;
8249}
8250
8251
8252/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8253/// provides a value as specified by MaskInfo.  If so, replace the specified
8254/// store with a narrower store of truncated IVal.
8255static SDNode *
8256ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8257                                SDValue IVal, StoreSDNode *St,
8258                                DAGCombiner *DC) {
8259  unsigned NumBytes = MaskInfo.first;
8260  unsigned ByteShift = MaskInfo.second;
8261  SelectionDAG &DAG = DC->getDAG();
8262
8263  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8264  // that uses this.  If not, this is not a replacement.
8265  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8266                                  ByteShift*8, (ByteShift+NumBytes)*8);
8267  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8268
8269  // Check that it is legal on the target to do this.  It is legal if the new
8270  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8271  // legalization.
8272  MVT VT = MVT::getIntegerVT(NumBytes*8);
8273  if (!DC->isTypeLegal(VT))
8274    return 0;
8275
8276  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8277  // shifted by ByteShift and truncated down to NumBytes.
8278  if (ByteShift)
8279    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8280                       DAG.getConstant(ByteShift*8,
8281                                    DC->getShiftAmountTy(IVal.getValueType())));
8282
8283  // Figure out the offset for the store and the alignment of the access.
8284  unsigned StOffset;
8285  unsigned NewAlign = St->getAlignment();
8286
8287  if (DAG.getTargetLoweringInfo().isLittleEndian())
8288    StOffset = ByteShift;
8289  else
8290    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8291
8292  SDValue Ptr = St->getBasePtr();
8293  if (StOffset) {
8294    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8295                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8296    NewAlign = MinAlign(NewAlign, StOffset);
8297  }
8298
8299  // Truncate down to the new size.
8300  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8301
8302  ++OpsNarrowed;
8303  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8304                      St->getPointerInfo().getWithOffset(StOffset),
8305                      false, false, NewAlign).getNode();
8306}
8307
8308
8309/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8310/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8311/// of the loaded bits, try narrowing the load and store if it would end up
8312/// being a win for performance or code size.
8313SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8314  StoreSDNode *ST  = cast<StoreSDNode>(N);
8315  if (ST->isVolatile())
8316    return SDValue();
8317
8318  SDValue Chain = ST->getChain();
8319  SDValue Value = ST->getValue();
8320  SDValue Ptr   = ST->getBasePtr();
8321  EVT VT = Value.getValueType();
8322
8323  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8324    return SDValue();
8325
8326  unsigned Opc = Value.getOpcode();
8327
8328  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8329  // is a byte mask indicating a consecutive number of bytes, check to see if
8330  // Y is known to provide just those bytes.  If so, we try to replace the
8331  // load + replace + store sequence with a single (narrower) store, which makes
8332  // the load dead.
8333  if (Opc == ISD::OR) {
8334    std::pair<unsigned, unsigned> MaskedLoad;
8335    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8336    if (MaskedLoad.first)
8337      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8338                                                  Value.getOperand(1), ST,this))
8339        return SDValue(NewST, 0);
8340
8341    // Or is commutative, so try swapping X and Y.
8342    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8343    if (MaskedLoad.first)
8344      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8345                                                  Value.getOperand(0), ST,this))
8346        return SDValue(NewST, 0);
8347  }
8348
8349  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8350      Value.getOperand(1).getOpcode() != ISD::Constant)
8351    return SDValue();
8352
8353  SDValue N0 = Value.getOperand(0);
8354  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8355      Chain == SDValue(N0.getNode(), 1)) {
8356    LoadSDNode *LD = cast<LoadSDNode>(N0);
8357    if (LD->getBasePtr() != Ptr ||
8358        LD->getPointerInfo().getAddrSpace() !=
8359        ST->getPointerInfo().getAddrSpace())
8360      return SDValue();
8361
8362    // Find the type to narrow it the load / op / store to.
8363    SDValue N1 = Value.getOperand(1);
8364    unsigned BitWidth = N1.getValueSizeInBits();
8365    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8366    if (Opc == ISD::AND)
8367      Imm ^= APInt::getAllOnesValue(BitWidth);
8368    if (Imm == 0 || Imm.isAllOnesValue())
8369      return SDValue();
8370    unsigned ShAmt = Imm.countTrailingZeros();
8371    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8372    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8373    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8374    while (NewBW < BitWidth &&
8375           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8376             TLI.isNarrowingProfitable(VT, NewVT))) {
8377      NewBW = NextPowerOf2(NewBW);
8378      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8379    }
8380    if (NewBW >= BitWidth)
8381      return SDValue();
8382
8383    // If the lsb changed does not start at the type bitwidth boundary,
8384    // start at the previous one.
8385    if (ShAmt % NewBW)
8386      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8387    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8388                                   std::min(BitWidth, ShAmt + NewBW));
8389    if ((Imm & Mask) == Imm) {
8390      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8391      if (Opc == ISD::AND)
8392        NewImm ^= APInt::getAllOnesValue(NewBW);
8393      uint64_t PtrOff = ShAmt / 8;
8394      // For big endian targets, we need to adjust the offset to the pointer to
8395      // load the correct bytes.
8396      if (TLI.isBigEndian())
8397        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8398
8399      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8400      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8401      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8402        return SDValue();
8403
8404      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8405                                   Ptr.getValueType(), Ptr,
8406                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8407      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8408                                  LD->getChain(), NewPtr,
8409                                  LD->getPointerInfo().getWithOffset(PtrOff),
8410                                  LD->isVolatile(), LD->isNonTemporal(),
8411                                  LD->isInvariant(), NewAlign,
8412                                  LD->getTBAAInfo());
8413      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8414                                   DAG.getConstant(NewImm, NewVT));
8415      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8416                                   NewVal, NewPtr,
8417                                   ST->getPointerInfo().getWithOffset(PtrOff),
8418                                   false, false, NewAlign);
8419
8420      AddToWorkList(NewPtr.getNode());
8421      AddToWorkList(NewLD.getNode());
8422      AddToWorkList(NewVal.getNode());
8423      WorkListRemover DeadNodes(*this);
8424      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8425      ++OpsNarrowed;
8426      return NewST;
8427    }
8428  }
8429
8430  return SDValue();
8431}
8432
8433/// TransformFPLoadStorePair - For a given floating point load / store pair,
8434/// if the load value isn't used by any other operations, then consider
8435/// transforming the pair to integer load / store operations if the target
8436/// deems the transformation profitable.
8437SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8438  StoreSDNode *ST  = cast<StoreSDNode>(N);
8439  SDValue Chain = ST->getChain();
8440  SDValue Value = ST->getValue();
8441  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8442      Value.hasOneUse() &&
8443      Chain == SDValue(Value.getNode(), 1)) {
8444    LoadSDNode *LD = cast<LoadSDNode>(Value);
8445    EVT VT = LD->getMemoryVT();
8446    if (!VT.isFloatingPoint() ||
8447        VT != ST->getMemoryVT() ||
8448        LD->isNonTemporal() ||
8449        ST->isNonTemporal() ||
8450        LD->getPointerInfo().getAddrSpace() != 0 ||
8451        ST->getPointerInfo().getAddrSpace() != 0)
8452      return SDValue();
8453
8454    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8455    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8456        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8457        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8458        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8459      return SDValue();
8460
8461    unsigned LDAlign = LD->getAlignment();
8462    unsigned STAlign = ST->getAlignment();
8463    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8464    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8465    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8466      return SDValue();
8467
8468    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8469                                LD->getChain(), LD->getBasePtr(),
8470                                LD->getPointerInfo(),
8471                                false, false, false, LDAlign);
8472
8473    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8474                                 NewLD, ST->getBasePtr(),
8475                                 ST->getPointerInfo(),
8476                                 false, false, STAlign);
8477
8478    AddToWorkList(NewLD.getNode());
8479    AddToWorkList(NewST.getNode());
8480    WorkListRemover DeadNodes(*this);
8481    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8482    ++LdStFP2Int;
8483    return NewST;
8484  }
8485
8486  return SDValue();
8487}
8488
8489/// Helper struct to parse and store a memory address as base + index + offset.
8490/// We ignore sign extensions when it is safe to do so.
8491/// The following two expressions are not equivalent. To differentiate we need
8492/// to store whether there was a sign extension involved in the index
8493/// computation.
8494///  (load (i64 add (i64 copyfromreg %c)
8495///                 (i64 signextend (add (i8 load %index)
8496///                                      (i8 1))))
8497/// vs
8498///
8499/// (load (i64 add (i64 copyfromreg %c)
8500///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8501///                                         (i32 1)))))
8502struct BaseIndexOffset {
8503  SDValue Base;
8504  SDValue Index;
8505  int64_t Offset;
8506  bool IsIndexSignExt;
8507
8508  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8509
8510  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8511                  bool IsIndexSignExt) :
8512    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8513
8514  bool equalBaseIndex(const BaseIndexOffset &Other) {
8515    return Other.Base == Base && Other.Index == Index &&
8516      Other.IsIndexSignExt == IsIndexSignExt;
8517  }
8518
8519  /// Parses tree in Ptr for base, index, offset addresses.
8520  static BaseIndexOffset match(SDValue Ptr) {
8521    bool IsIndexSignExt = false;
8522
8523    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8524    // instruction, then it could be just the BASE or everything else we don't
8525    // know how to handle. Just use Ptr as BASE and give up.
8526    if (Ptr->getOpcode() != ISD::ADD)
8527      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8528
8529    // We know that we have at least an ADD instruction. Try to pattern match
8530    // the simple case of BASE + OFFSET.
8531    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8532      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8533      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8534                              IsIndexSignExt);
8535    }
8536
8537    // Inside a loop the current BASE pointer is calculated using an ADD and a
8538    // MUL instruction. In this case Ptr is the actual BASE pointer.
8539    // (i64 add (i64 %array_ptr)
8540    //          (i64 mul (i64 %induction_var)
8541    //                   (i64 %element_size)))
8542    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8543      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8544
8545    // Look at Base + Index + Offset cases.
8546    SDValue Base = Ptr->getOperand(0);
8547    SDValue IndexOffset = Ptr->getOperand(1);
8548
8549    // Skip signextends.
8550    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8551      IndexOffset = IndexOffset->getOperand(0);
8552      IsIndexSignExt = true;
8553    }
8554
8555    // Either the case of Base + Index (no offset) or something else.
8556    if (IndexOffset->getOpcode() != ISD::ADD)
8557      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8558
8559    // Now we have the case of Base + Index + offset.
8560    SDValue Index = IndexOffset->getOperand(0);
8561    SDValue Offset = IndexOffset->getOperand(1);
8562
8563    if (!isa<ConstantSDNode>(Offset))
8564      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8565
8566    // Ignore signextends.
8567    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8568      Index = Index->getOperand(0);
8569      IsIndexSignExt = true;
8570    } else IsIndexSignExt = false;
8571
8572    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8573    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8574  }
8575};
8576
8577/// Holds a pointer to an LSBaseSDNode as well as information on where it
8578/// is located in a sequence of memory operations connected by a chain.
8579struct MemOpLink {
8580  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8581    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8582  // Ptr to the mem node.
8583  LSBaseSDNode *MemNode;
8584  // Offset from the base ptr.
8585  int64_t OffsetFromBase;
8586  // What is the sequence number of this mem node.
8587  // Lowest mem operand in the DAG starts at zero.
8588  unsigned SequenceNum;
8589};
8590
8591/// Sorts store nodes in a link according to their offset from a shared
8592// base ptr.
8593struct ConsecutiveMemoryChainSorter {
8594  bool operator()(MemOpLink LHS, MemOpLink RHS) {
8595    return LHS.OffsetFromBase < RHS.OffsetFromBase;
8596  }
8597};
8598
8599bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8600  EVT MemVT = St->getMemoryVT();
8601  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8602  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8603    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8604
8605  // Don't merge vectors into wider inputs.
8606  if (MemVT.isVector() || !MemVT.isSimple())
8607    return false;
8608
8609  // Perform an early exit check. Do not bother looking at stored values that
8610  // are not constants or loads.
8611  SDValue StoredVal = St->getValue();
8612  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8613  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8614      !IsLoadSrc)
8615    return false;
8616
8617  // Only look at ends of store sequences.
8618  SDValue Chain = SDValue(St, 1);
8619  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8620    return false;
8621
8622  // This holds the base pointer, index, and the offset in bytes from the base
8623  // pointer.
8624  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8625
8626  // We must have a base and an offset.
8627  if (!BasePtr.Base.getNode())
8628    return false;
8629
8630  // Do not handle stores to undef base pointers.
8631  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8632    return false;
8633
8634  // Save the LoadSDNodes that we find in the chain.
8635  // We need to make sure that these nodes do not interfere with
8636  // any of the store nodes.
8637  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8638
8639  // Save the StoreSDNodes that we find in the chain.
8640  SmallVector<MemOpLink, 8> StoreNodes;
8641
8642  // Walk up the chain and look for nodes with offsets from the same
8643  // base pointer. Stop when reaching an instruction with a different kind
8644  // or instruction which has a different base pointer.
8645  unsigned Seq = 0;
8646  StoreSDNode *Index = St;
8647  while (Index) {
8648    // If the chain has more than one use, then we can't reorder the mem ops.
8649    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8650      break;
8651
8652    // Find the base pointer and offset for this memory node.
8653    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8654
8655    // Check that the base pointer is the same as the original one.
8656    if (!Ptr.equalBaseIndex(BasePtr))
8657      break;
8658
8659    // Check that the alignment is the same.
8660    if (Index->getAlignment() != St->getAlignment())
8661      break;
8662
8663    // The memory operands must not be volatile.
8664    if (Index->isVolatile() || Index->isIndexed())
8665      break;
8666
8667    // No truncation.
8668    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8669      if (St->isTruncatingStore())
8670        break;
8671
8672    // The stored memory type must be the same.
8673    if (Index->getMemoryVT() != MemVT)
8674      break;
8675
8676    // We do not allow unaligned stores because we want to prevent overriding
8677    // stores.
8678    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8679      break;
8680
8681    // We found a potential memory operand to merge.
8682    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8683
8684    // Find the next memory operand in the chain. If the next operand in the
8685    // chain is a store then move up and continue the scan with the next
8686    // memory operand. If the next operand is a load save it and use alias
8687    // information to check if it interferes with anything.
8688    SDNode *NextInChain = Index->getChain().getNode();
8689    while (1) {
8690      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8691        // We found a store node. Use it for the next iteration.
8692        Index = STn;
8693        break;
8694      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8695        // Save the load node for later. Continue the scan.
8696        AliasLoadNodes.push_back(Ldn);
8697        NextInChain = Ldn->getChain().getNode();
8698        continue;
8699      } else {
8700        Index = NULL;
8701        break;
8702      }
8703    }
8704  }
8705
8706  // Check if there is anything to merge.
8707  if (StoreNodes.size() < 2)
8708    return false;
8709
8710  // Sort the memory operands according to their distance from the base pointer.
8711  std::sort(StoreNodes.begin(), StoreNodes.end(),
8712            ConsecutiveMemoryChainSorter());
8713
8714  // Scan the memory operations on the chain and find the first non-consecutive
8715  // store memory address.
8716  unsigned LastConsecutiveStore = 0;
8717  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8718  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8719
8720    // Check that the addresses are consecutive starting from the second
8721    // element in the list of stores.
8722    if (i > 0) {
8723      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8724      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8725        break;
8726    }
8727
8728    bool Alias = false;
8729    // Check if this store interferes with any of the loads that we found.
8730    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8731      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8732        Alias = true;
8733        break;
8734      }
8735    // We found a load that alias with this store. Stop the sequence.
8736    if (Alias)
8737      break;
8738
8739    // Mark this node as useful.
8740    LastConsecutiveStore = i;
8741  }
8742
8743  // The node with the lowest store address.
8744  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8745
8746  // Store the constants into memory as one consecutive store.
8747  if (!IsLoadSrc) {
8748    unsigned LastLegalType = 0;
8749    unsigned LastLegalVectorType = 0;
8750    bool NonZero = false;
8751    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8752      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8753      SDValue StoredVal = St->getValue();
8754
8755      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8756        NonZero |= !C->isNullValue();
8757      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8758        NonZero |= !C->getConstantFPValue()->isNullValue();
8759      } else {
8760        // Non constant.
8761        break;
8762      }
8763
8764      // Find a legal type for the constant store.
8765      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8766      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8767      if (TLI.isTypeLegal(StoreTy))
8768        LastLegalType = i+1;
8769      // Or check whether a truncstore is legal.
8770      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8771               TargetLowering::TypePromoteInteger) {
8772        EVT LegalizedStoredValueTy =
8773          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8774        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8775          LastLegalType = i+1;
8776      }
8777
8778      // Find a legal type for the vector store.
8779      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8780      if (TLI.isTypeLegal(Ty))
8781        LastLegalVectorType = i + 1;
8782    }
8783
8784    // We only use vectors if the constant is known to be zero and the
8785    // function is not marked with the noimplicitfloat attribute.
8786    if (NonZero || NoVectors)
8787      LastLegalVectorType = 0;
8788
8789    // Check if we found a legal integer type to store.
8790    if (LastLegalType == 0 && LastLegalVectorType == 0)
8791      return false;
8792
8793    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8794    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8795
8796    // Make sure we have something to merge.
8797    if (NumElem < 2)
8798      return false;
8799
8800    unsigned EarliestNodeUsed = 0;
8801    for (unsigned i=0; i < NumElem; ++i) {
8802      // Find a chain for the new wide-store operand. Notice that some
8803      // of the store nodes that we found may not be selected for inclusion
8804      // in the wide store. The chain we use needs to be the chain of the
8805      // earliest store node which is *used* and replaced by the wide store.
8806      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8807        EarliestNodeUsed = i;
8808    }
8809
8810    // The earliest Node in the DAG.
8811    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8812    SDLoc DL(StoreNodes[0].MemNode);
8813
8814    SDValue StoredVal;
8815    if (UseVector) {
8816      // Find a legal type for the vector store.
8817      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8818      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8819      StoredVal = DAG.getConstant(0, Ty);
8820    } else {
8821      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8822      APInt StoreInt(StoreBW, 0);
8823
8824      // Construct a single integer constant which is made of the smaller
8825      // constant inputs.
8826      bool IsLE = TLI.isLittleEndian();
8827      for (unsigned i = 0; i < NumElem ; ++i) {
8828        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8829        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8830        SDValue Val = St->getValue();
8831        StoreInt<<=ElementSizeBytes*8;
8832        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8833          StoreInt|=C->getAPIntValue().zext(StoreBW);
8834        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8835          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8836        } else {
8837          assert(false && "Invalid constant element type");
8838        }
8839      }
8840
8841      // Create the new Load and Store operations.
8842      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8843      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8844    }
8845
8846    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8847                                    FirstInChain->getBasePtr(),
8848                                    FirstInChain->getPointerInfo(),
8849                                    false, false,
8850                                    FirstInChain->getAlignment());
8851
8852    // Replace the first store with the new store
8853    CombineTo(EarliestOp, NewStore);
8854    // Erase all other stores.
8855    for (unsigned i = 0; i < NumElem ; ++i) {
8856      if (StoreNodes[i].MemNode == EarliestOp)
8857        continue;
8858      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8859      // ReplaceAllUsesWith will replace all uses that existed when it was
8860      // called, but graph optimizations may cause new ones to appear. For
8861      // example, the case in pr14333 looks like
8862      //
8863      //  St's chain -> St -> another store -> X
8864      //
8865      // And the only difference from St to the other store is the chain.
8866      // When we change it's chain to be St's chain they become identical,
8867      // get CSEed and the net result is that X is now a use of St.
8868      // Since we know that St is redundant, just iterate.
8869      while (!St->use_empty())
8870        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8871      removeFromWorkList(St);
8872      DAG.DeleteNode(St);
8873    }
8874
8875    return true;
8876  }
8877
8878  // Below we handle the case of multiple consecutive stores that
8879  // come from multiple consecutive loads. We merge them into a single
8880  // wide load and a single wide store.
8881
8882  // Look for load nodes which are used by the stored values.
8883  SmallVector<MemOpLink, 8> LoadNodes;
8884
8885  // Find acceptable loads. Loads need to have the same chain (token factor),
8886  // must not be zext, volatile, indexed, and they must be consecutive.
8887  BaseIndexOffset LdBasePtr;
8888  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8889    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8890    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8891    if (!Ld) break;
8892
8893    // Loads must only have one use.
8894    if (!Ld->hasNUsesOfValue(1, 0))
8895      break;
8896
8897    // Check that the alignment is the same as the stores.
8898    if (Ld->getAlignment() != St->getAlignment())
8899      break;
8900
8901    // The memory operands must not be volatile.
8902    if (Ld->isVolatile() || Ld->isIndexed())
8903      break;
8904
8905    // We do not accept ext loads.
8906    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8907      break;
8908
8909    // The stored memory type must be the same.
8910    if (Ld->getMemoryVT() != MemVT)
8911      break;
8912
8913    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8914    // If this is not the first ptr that we check.
8915    if (LdBasePtr.Base.getNode()) {
8916      // The base ptr must be the same.
8917      if (!LdPtr.equalBaseIndex(LdBasePtr))
8918        break;
8919    } else {
8920      // Check that all other base pointers are the same as this one.
8921      LdBasePtr = LdPtr;
8922    }
8923
8924    // We found a potential memory operand to merge.
8925    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8926  }
8927
8928  if (LoadNodes.size() < 2)
8929    return false;
8930
8931  // Scan the memory operations on the chain and find the first non-consecutive
8932  // load memory address. These variables hold the index in the store node
8933  // array.
8934  unsigned LastConsecutiveLoad = 0;
8935  // This variable refers to the size and not index in the array.
8936  unsigned LastLegalVectorType = 0;
8937  unsigned LastLegalIntegerType = 0;
8938  StartAddress = LoadNodes[0].OffsetFromBase;
8939  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8940  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8941    // All loads much share the same chain.
8942    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8943      break;
8944
8945    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8946    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8947      break;
8948    LastConsecutiveLoad = i;
8949
8950    // Find a legal type for the vector store.
8951    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8952    if (TLI.isTypeLegal(StoreTy))
8953      LastLegalVectorType = i + 1;
8954
8955    // Find a legal type for the integer store.
8956    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8957    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8958    if (TLI.isTypeLegal(StoreTy))
8959      LastLegalIntegerType = i + 1;
8960    // Or check whether a truncstore and extload is legal.
8961    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8962             TargetLowering::TypePromoteInteger) {
8963      EVT LegalizedStoredValueTy =
8964        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8965      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8966          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8967          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8968          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8969        LastLegalIntegerType = i+1;
8970    }
8971  }
8972
8973  // Only use vector types if the vector type is larger than the integer type.
8974  // If they are the same, use integers.
8975  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8976  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8977
8978  // We add +1 here because the LastXXX variables refer to location while
8979  // the NumElem refers to array/index size.
8980  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8981  NumElem = std::min(LastLegalType, NumElem);
8982
8983  if (NumElem < 2)
8984    return false;
8985
8986  // The earliest Node in the DAG.
8987  unsigned EarliestNodeUsed = 0;
8988  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8989  for (unsigned i=1; i<NumElem; ++i) {
8990    // Find a chain for the new wide-store operand. Notice that some
8991    // of the store nodes that we found may not be selected for inclusion
8992    // in the wide store. The chain we use needs to be the chain of the
8993    // earliest store node which is *used* and replaced by the wide store.
8994    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8995      EarliestNodeUsed = i;
8996  }
8997
8998  // Find if it is better to use vectors or integers to load and store
8999  // to memory.
9000  EVT JointMemOpVT;
9001  if (UseVectorTy) {
9002    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
9003  } else {
9004    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
9005    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9006  }
9007
9008  SDLoc LoadDL(LoadNodes[0].MemNode);
9009  SDLoc StoreDL(StoreNodes[0].MemNode);
9010
9011  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
9012  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
9013                                FirstLoad->getChain(),
9014                                FirstLoad->getBasePtr(),
9015                                FirstLoad->getPointerInfo(),
9016                                false, false, false,
9017                                FirstLoad->getAlignment());
9018
9019  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
9020                                  FirstInChain->getBasePtr(),
9021                                  FirstInChain->getPointerInfo(), false, false,
9022                                  FirstInChain->getAlignment());
9023
9024  // Replace one of the loads with the new load.
9025  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
9026  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
9027                                SDValue(NewLoad.getNode(), 1));
9028
9029  // Remove the rest of the load chains.
9030  for (unsigned i = 1; i < NumElem ; ++i) {
9031    // Replace all chain users of the old load nodes with the chain of the new
9032    // load node.
9033    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
9034    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
9035  }
9036
9037  // Replace the first store with the new store.
9038  CombineTo(EarliestOp, NewStore);
9039  // Erase all other stores.
9040  for (unsigned i = 0; i < NumElem ; ++i) {
9041    // Remove all Store nodes.
9042    if (StoreNodes[i].MemNode == EarliestOp)
9043      continue;
9044    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9045    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9046    removeFromWorkList(St);
9047    DAG.DeleteNode(St);
9048  }
9049
9050  return true;
9051}
9052
9053SDValue DAGCombiner::visitSTORE(SDNode *N) {
9054  StoreSDNode *ST  = cast<StoreSDNode>(N);
9055  SDValue Chain = ST->getChain();
9056  SDValue Value = ST->getValue();
9057  SDValue Ptr   = ST->getBasePtr();
9058
9059  // If this is a store of a bit convert, store the input value if the
9060  // resultant store does not need a higher alignment than the original.
9061  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9062      ST->isUnindexed()) {
9063    unsigned OrigAlign = ST->getAlignment();
9064    EVT SVT = Value.getOperand(0).getValueType();
9065    unsigned Align = TLI.getDataLayout()->
9066      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9067    if (Align <= OrigAlign &&
9068        ((!LegalOperations && !ST->isVolatile()) ||
9069         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9070      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9071                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9072                          ST->isNonTemporal(), OrigAlign,
9073                          ST->getTBAAInfo());
9074  }
9075
9076  // Turn 'store undef, Ptr' -> nothing.
9077  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9078    return Chain;
9079
9080  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9081  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9082    // NOTE: If the original store is volatile, this transform must not increase
9083    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9084    // processor operation but an i64 (which is not legal) requires two.  So the
9085    // transform should not be done in this case.
9086    if (Value.getOpcode() != ISD::TargetConstantFP) {
9087      SDValue Tmp;
9088      switch (CFP->getSimpleValueType(0).SimpleTy) {
9089      default: llvm_unreachable("Unknown FP type");
9090      case MVT::f16:    // We don't do this for these yet.
9091      case MVT::f80:
9092      case MVT::f128:
9093      case MVT::ppcf128:
9094        break;
9095      case MVT::f32:
9096        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9097            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9098          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9099                              bitcastToAPInt().getZExtValue(), MVT::i32);
9100          return DAG.getStore(Chain, SDLoc(N), Tmp,
9101                              Ptr, ST->getMemOperand());
9102        }
9103        break;
9104      case MVT::f64:
9105        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9106             !ST->isVolatile()) ||
9107            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9108          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9109                                getZExtValue(), MVT::i64);
9110          return DAG.getStore(Chain, SDLoc(N), Tmp,
9111                              Ptr, ST->getMemOperand());
9112        }
9113
9114        if (!ST->isVolatile() &&
9115            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9116          // Many FP stores are not made apparent until after legalize, e.g. for
9117          // argument passing.  Since this is so common, custom legalize the
9118          // 64-bit integer store into two 32-bit stores.
9119          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9120          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9121          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9122          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9123
9124          unsigned Alignment = ST->getAlignment();
9125          bool isVolatile = ST->isVolatile();
9126          bool isNonTemporal = ST->isNonTemporal();
9127          const MDNode *TBAAInfo = ST->getTBAAInfo();
9128
9129          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9130                                     Ptr, ST->getPointerInfo(),
9131                                     isVolatile, isNonTemporal,
9132                                     ST->getAlignment(), TBAAInfo);
9133          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9134                            DAG.getConstant(4, Ptr.getValueType()));
9135          Alignment = MinAlign(Alignment, 4U);
9136          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9137                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9138                                     isVolatile, isNonTemporal,
9139                                     Alignment, TBAAInfo);
9140          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9141                             St0, St1);
9142        }
9143
9144        break;
9145      }
9146    }
9147  }
9148
9149  // Try to infer better alignment information than the store already has.
9150  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9151    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9152      if (Align > ST->getAlignment())
9153        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9154                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9155                                 ST->isVolatile(), ST->isNonTemporal(), Align,
9156                                 ST->getTBAAInfo());
9157    }
9158  }
9159
9160  // Try transforming a pair floating point load / store ops to integer
9161  // load / store ops.
9162  SDValue NewST = TransformFPLoadStorePair(N);
9163  if (NewST.getNode())
9164    return NewST;
9165
9166  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9167    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9168  if (UseAA) {
9169    // Walk up chain skipping non-aliasing memory nodes.
9170    SDValue BetterChain = FindBetterChain(N, Chain);
9171
9172    // If there is a better chain.
9173    if (Chain != BetterChain) {
9174      SDValue ReplStore;
9175
9176      // Replace the chain to avoid dependency.
9177      if (ST->isTruncatingStore()) {
9178        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9179                                      ST->getMemoryVT(), ST->getMemOperand());
9180      } else {
9181        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9182                                 ST->getMemOperand());
9183      }
9184
9185      // Create token to keep both nodes around.
9186      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9187                                  MVT::Other, Chain, ReplStore);
9188
9189      // Make sure the new and old chains are cleaned up.
9190      AddToWorkList(Token.getNode());
9191
9192      // Don't add users to work list.
9193      return CombineTo(N, Token, false);
9194    }
9195  }
9196
9197  // Try transforming N to an indexed store.
9198  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9199    return SDValue(N, 0);
9200
9201  // FIXME: is there such a thing as a truncating indexed store?
9202  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9203      Value.getValueType().isInteger()) {
9204    // See if we can simplify the input to this truncstore with knowledge that
9205    // only the low bits are being used.  For example:
9206    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9207    SDValue Shorter =
9208      GetDemandedBits(Value,
9209                      APInt::getLowBitsSet(
9210                        Value.getValueType().getScalarType().getSizeInBits(),
9211                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9212    AddToWorkList(Value.getNode());
9213    if (Shorter.getNode())
9214      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9215                               Ptr, ST->getMemoryVT(), ST->getMemOperand());
9216
9217    // Otherwise, see if we can simplify the operation with
9218    // SimplifyDemandedBits, which only works if the value has a single use.
9219    if (SimplifyDemandedBits(Value,
9220                        APInt::getLowBitsSet(
9221                          Value.getValueType().getScalarType().getSizeInBits(),
9222                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9223      return SDValue(N, 0);
9224  }
9225
9226  // If this is a load followed by a store to the same location, then the store
9227  // is dead/noop.
9228  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9229    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9230        ST->isUnindexed() && !ST->isVolatile() &&
9231        // There can't be any side effects between the load and store, such as
9232        // a call or store.
9233        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9234      // The store is dead, remove it.
9235      return Chain;
9236    }
9237  }
9238
9239  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9240  // truncating store.  We can do this even if this is already a truncstore.
9241  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9242      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9243      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9244                            ST->getMemoryVT())) {
9245    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9246                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
9247  }
9248
9249  // Only perform this optimization before the types are legal, because we
9250  // don't want to perform this optimization on every DAGCombine invocation.
9251  if (!LegalTypes) {
9252    bool EverChanged = false;
9253
9254    do {
9255      // There can be multiple store sequences on the same chain.
9256      // Keep trying to merge store sequences until we are unable to do so
9257      // or until we merge the last store on the chain.
9258      bool Changed = MergeConsecutiveStores(ST);
9259      EverChanged |= Changed;
9260      if (!Changed) break;
9261    } while (ST->getOpcode() != ISD::DELETED_NODE);
9262
9263    if (EverChanged)
9264      return SDValue(N, 0);
9265  }
9266
9267  return ReduceLoadOpStoreWidth(N);
9268}
9269
9270SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9271  SDValue InVec = N->getOperand(0);
9272  SDValue InVal = N->getOperand(1);
9273  SDValue EltNo = N->getOperand(2);
9274  SDLoc dl(N);
9275
9276  // If the inserted element is an UNDEF, just use the input vector.
9277  if (InVal.getOpcode() == ISD::UNDEF)
9278    return InVec;
9279
9280  EVT VT = InVec.getValueType();
9281
9282  // If we can't generate a legal BUILD_VECTOR, exit
9283  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9284    return SDValue();
9285
9286  // Check that we know which element is being inserted
9287  if (!isa<ConstantSDNode>(EltNo))
9288    return SDValue();
9289  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9290
9291  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9292  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9293  // vector elements.
9294  SmallVector<SDValue, 8> Ops;
9295  // Do not combine these two vectors if the output vector will not replace
9296  // the input vector.
9297  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9298    Ops.append(InVec.getNode()->op_begin(),
9299               InVec.getNode()->op_end());
9300  } else if (InVec.getOpcode() == ISD::UNDEF) {
9301    unsigned NElts = VT.getVectorNumElements();
9302    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9303  } else {
9304    return SDValue();
9305  }
9306
9307  // Insert the element
9308  if (Elt < Ops.size()) {
9309    // All the operands of BUILD_VECTOR must have the same type;
9310    // we enforce that here.
9311    EVT OpVT = Ops[0].getValueType();
9312    if (InVal.getValueType() != OpVT)
9313      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9314                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9315                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9316    Ops[Elt] = InVal;
9317  }
9318
9319  // Return the new vector
9320  return DAG.getNode(ISD::BUILD_VECTOR, dl,
9321                     VT, &Ops[0], Ops.size());
9322}
9323
9324SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9325  // (vextract (scalar_to_vector val, 0) -> val
9326  SDValue InVec = N->getOperand(0);
9327  EVT VT = InVec.getValueType();
9328  EVT NVT = N->getValueType(0);
9329
9330  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9331    // Check if the result type doesn't match the inserted element type. A
9332    // SCALAR_TO_VECTOR may truncate the inserted element and the
9333    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9334    SDValue InOp = InVec.getOperand(0);
9335    if (InOp.getValueType() != NVT) {
9336      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9337      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9338    }
9339    return InOp;
9340  }
9341
9342  SDValue EltNo = N->getOperand(1);
9343  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9344
9345  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9346  // We only perform this optimization before the op legalization phase because
9347  // we may introduce new vector instructions which are not backed by TD
9348  // patterns. For example on AVX, extracting elements from a wide vector
9349  // without using extract_subvector.
9350  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9351      && ConstEltNo && !LegalOperations) {
9352    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9353    int NumElem = VT.getVectorNumElements();
9354    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9355    // Find the new index to extract from.
9356    int OrigElt = SVOp->getMaskElt(Elt);
9357
9358    // Extracting an undef index is undef.
9359    if (OrigElt == -1)
9360      return DAG.getUNDEF(NVT);
9361
9362    // Select the right vector half to extract from.
9363    if (OrigElt < NumElem) {
9364      InVec = InVec->getOperand(0);
9365    } else {
9366      InVec = InVec->getOperand(1);
9367      OrigElt -= NumElem;
9368    }
9369
9370    EVT IndexTy = TLI.getVectorIdxTy();
9371    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9372                       InVec, DAG.getConstant(OrigElt, IndexTy));
9373  }
9374
9375  // Perform only after legalization to ensure build_vector / vector_shuffle
9376  // optimizations have already been done.
9377  if (!LegalOperations) return SDValue();
9378
9379  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9380  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9381  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9382
9383  if (ConstEltNo) {
9384    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9385    bool NewLoad = false;
9386    bool BCNumEltsChanged = false;
9387    EVT ExtVT = VT.getVectorElementType();
9388    EVT LVT = ExtVT;
9389
9390    // If the result of load has to be truncated, then it's not necessarily
9391    // profitable.
9392    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9393      return SDValue();
9394
9395    if (InVec.getOpcode() == ISD::BITCAST) {
9396      // Don't duplicate a load with other uses.
9397      if (!InVec.hasOneUse())
9398        return SDValue();
9399
9400      EVT BCVT = InVec.getOperand(0).getValueType();
9401      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9402        return SDValue();
9403      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9404        BCNumEltsChanged = true;
9405      InVec = InVec.getOperand(0);
9406      ExtVT = BCVT.getVectorElementType();
9407      NewLoad = true;
9408    }
9409
9410    LoadSDNode *LN0 = NULL;
9411    const ShuffleVectorSDNode *SVN = NULL;
9412    if (ISD::isNormalLoad(InVec.getNode())) {
9413      LN0 = cast<LoadSDNode>(InVec);
9414    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9415               InVec.getOperand(0).getValueType() == ExtVT &&
9416               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9417      // Don't duplicate a load with other uses.
9418      if (!InVec.hasOneUse())
9419        return SDValue();
9420
9421      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9422    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9423      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9424      // =>
9425      // (load $addr+1*size)
9426
9427      // Don't duplicate a load with other uses.
9428      if (!InVec.hasOneUse())
9429        return SDValue();
9430
9431      // If the bit convert changed the number of elements, it is unsafe
9432      // to examine the mask.
9433      if (BCNumEltsChanged)
9434        return SDValue();
9435
9436      // Select the input vector, guarding against out of range extract vector.
9437      unsigned NumElems = VT.getVectorNumElements();
9438      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9439      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9440
9441      if (InVec.getOpcode() == ISD::BITCAST) {
9442        // Don't duplicate a load with other uses.
9443        if (!InVec.hasOneUse())
9444          return SDValue();
9445
9446        InVec = InVec.getOperand(0);
9447      }
9448      if (ISD::isNormalLoad(InVec.getNode())) {
9449        LN0 = cast<LoadSDNode>(InVec);
9450        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9451      }
9452    }
9453
9454    // Make sure we found a non-volatile load and the extractelement is
9455    // the only use.
9456    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9457      return SDValue();
9458
9459    // If Idx was -1 above, Elt is going to be -1, so just return undef.
9460    if (Elt == -1)
9461      return DAG.getUNDEF(LVT);
9462
9463    unsigned Align = LN0->getAlignment();
9464    if (NewLoad) {
9465      // Check the resultant load doesn't need a higher alignment than the
9466      // original load.
9467      unsigned NewAlign =
9468        TLI.getDataLayout()
9469            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9470
9471      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9472        return SDValue();
9473
9474      Align = NewAlign;
9475    }
9476
9477    SDValue NewPtr = LN0->getBasePtr();
9478    unsigned PtrOff = 0;
9479
9480    if (Elt) {
9481      PtrOff = LVT.getSizeInBits() * Elt / 8;
9482      EVT PtrType = NewPtr.getValueType();
9483      if (TLI.isBigEndian())
9484        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9485      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9486                           DAG.getConstant(PtrOff, PtrType));
9487    }
9488
9489    // The replacement we need to do here is a little tricky: we need to
9490    // replace an extractelement of a load with a load.
9491    // Use ReplaceAllUsesOfValuesWith to do the replacement.
9492    // Note that this replacement assumes that the extractvalue is the only
9493    // use of the load; that's okay because we don't want to perform this
9494    // transformation in other cases anyway.
9495    SDValue Load;
9496    SDValue Chain;
9497    if (NVT.bitsGT(LVT)) {
9498      // If the result type of vextract is wider than the load, then issue an
9499      // extending load instead.
9500      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9501        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9502      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9503                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9504                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),
9505                            Align, LN0->getTBAAInfo());
9506      Chain = Load.getValue(1);
9507    } else {
9508      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9509                         LN0->getPointerInfo().getWithOffset(PtrOff),
9510                         LN0->isVolatile(), LN0->isNonTemporal(),
9511                         LN0->isInvariant(), Align, LN0->getTBAAInfo());
9512      Chain = Load.getValue(1);
9513      if (NVT.bitsLT(LVT))
9514        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9515      else
9516        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9517    }
9518    WorkListRemover DeadNodes(*this);
9519    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9520    SDValue To[] = { Load, Chain };
9521    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9522    // Since we're explcitly calling ReplaceAllUses, add the new node to the
9523    // worklist explicitly as well.
9524    AddToWorkList(Load.getNode());
9525    AddUsersToWorkList(Load.getNode()); // Add users too
9526    // Make sure to revisit this node to clean it up; it will usually be dead.
9527    AddToWorkList(N);
9528    return SDValue(N, 0);
9529  }
9530
9531  return SDValue();
9532}
9533
9534// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9535SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9536  // We perform this optimization post type-legalization because
9537  // the type-legalizer often scalarizes integer-promoted vectors.
9538  // Performing this optimization before may create bit-casts which
9539  // will be type-legalized to complex code sequences.
9540  // We perform this optimization only before the operation legalizer because we
9541  // may introduce illegal operations.
9542  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9543    return SDValue();
9544
9545  unsigned NumInScalars = N->getNumOperands();
9546  SDLoc dl(N);
9547  EVT VT = N->getValueType(0);
9548
9549  // Check to see if this is a BUILD_VECTOR of a bunch of values
9550  // which come from any_extend or zero_extend nodes. If so, we can create
9551  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9552  // optimizations. We do not handle sign-extend because we can't fill the sign
9553  // using shuffles.
9554  EVT SourceType = MVT::Other;
9555  bool AllAnyExt = true;
9556
9557  for (unsigned i = 0; i != NumInScalars; ++i) {
9558    SDValue In = N->getOperand(i);
9559    // Ignore undef inputs.
9560    if (In.getOpcode() == ISD::UNDEF) continue;
9561
9562    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
9563    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9564
9565    // Abort if the element is not an extension.
9566    if (!ZeroExt && !AnyExt) {
9567      SourceType = MVT::Other;
9568      break;
9569    }
9570
9571    // The input is a ZeroExt or AnyExt. Check the original type.
9572    EVT InTy = In.getOperand(0).getValueType();
9573
9574    // Check that all of the widened source types are the same.
9575    if (SourceType == MVT::Other)
9576      // First time.
9577      SourceType = InTy;
9578    else if (InTy != SourceType) {
9579      // Multiple income types. Abort.
9580      SourceType = MVT::Other;
9581      break;
9582    }
9583
9584    // Check if all of the extends are ANY_EXTENDs.
9585    AllAnyExt &= AnyExt;
9586  }
9587
9588  // In order to have valid types, all of the inputs must be extended from the
9589  // same source type and all of the inputs must be any or zero extend.
9590  // Scalar sizes must be a power of two.
9591  EVT OutScalarTy = VT.getScalarType();
9592  bool ValidTypes = SourceType != MVT::Other &&
9593                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9594                 isPowerOf2_32(SourceType.getSizeInBits());
9595
9596  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9597  // turn into a single shuffle instruction.
9598  if (!ValidTypes)
9599    return SDValue();
9600
9601  bool isLE = TLI.isLittleEndian();
9602  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9603  assert(ElemRatio > 1 && "Invalid element size ratio");
9604  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9605                               DAG.getConstant(0, SourceType);
9606
9607  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9608  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9609
9610  // Populate the new build_vector
9611  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9612    SDValue Cast = N->getOperand(i);
9613    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9614            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9615            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9616    SDValue In;
9617    if (Cast.getOpcode() == ISD::UNDEF)
9618      In = DAG.getUNDEF(SourceType);
9619    else
9620      In = Cast->getOperand(0);
9621    unsigned Index = isLE ? (i * ElemRatio) :
9622                            (i * ElemRatio + (ElemRatio - 1));
9623
9624    assert(Index < Ops.size() && "Invalid index");
9625    Ops[Index] = In;
9626  }
9627
9628  // The type of the new BUILD_VECTOR node.
9629  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9630  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9631         "Invalid vector size");
9632  // Check if the new vector type is legal.
9633  if (!isTypeLegal(VecVT)) return SDValue();
9634
9635  // Make the new BUILD_VECTOR.
9636  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9637
9638  // The new BUILD_VECTOR node has the potential to be further optimized.
9639  AddToWorkList(BV.getNode());
9640  // Bitcast to the desired type.
9641  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9642}
9643
9644SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9645  EVT VT = N->getValueType(0);
9646
9647  unsigned NumInScalars = N->getNumOperands();
9648  SDLoc dl(N);
9649
9650  EVT SrcVT = MVT::Other;
9651  unsigned Opcode = ISD::DELETED_NODE;
9652  unsigned NumDefs = 0;
9653
9654  for (unsigned i = 0; i != NumInScalars; ++i) {
9655    SDValue In = N->getOperand(i);
9656    unsigned Opc = In.getOpcode();
9657
9658    if (Opc == ISD::UNDEF)
9659      continue;
9660
9661    // If all scalar values are floats and converted from integers.
9662    if (Opcode == ISD::DELETED_NODE &&
9663        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9664      Opcode = Opc;
9665    }
9666
9667    if (Opc != Opcode)
9668      return SDValue();
9669
9670    EVT InVT = In.getOperand(0).getValueType();
9671
9672    // If all scalar values are typed differently, bail out. It's chosen to
9673    // simplify BUILD_VECTOR of integer types.
9674    if (SrcVT == MVT::Other)
9675      SrcVT = InVT;
9676    if (SrcVT != InVT)
9677      return SDValue();
9678    NumDefs++;
9679  }
9680
9681  // If the vector has just one element defined, it's not worth to fold it into
9682  // a vectorized one.
9683  if (NumDefs < 2)
9684    return SDValue();
9685
9686  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9687         && "Should only handle conversion from integer to float.");
9688  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9689
9690  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9691
9692  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9693    return SDValue();
9694
9695  SmallVector<SDValue, 8> Opnds;
9696  for (unsigned i = 0; i != NumInScalars; ++i) {
9697    SDValue In = N->getOperand(i);
9698
9699    if (In.getOpcode() == ISD::UNDEF)
9700      Opnds.push_back(DAG.getUNDEF(SrcVT));
9701    else
9702      Opnds.push_back(In.getOperand(0));
9703  }
9704  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9705                           &Opnds[0], Opnds.size());
9706  AddToWorkList(BV.getNode());
9707
9708  return DAG.getNode(Opcode, dl, VT, BV);
9709}
9710
9711SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9712  unsigned NumInScalars = N->getNumOperands();
9713  SDLoc dl(N);
9714  EVT VT = N->getValueType(0);
9715
9716  // A vector built entirely of undefs is undef.
9717  if (ISD::allOperandsUndef(N))
9718    return DAG.getUNDEF(VT);
9719
9720  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9721  if (V.getNode())
9722    return V;
9723
9724  V = reduceBuildVecConvertToConvertBuildVec(N);
9725  if (V.getNode())
9726    return V;
9727
9728  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9729  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9730  // at most two distinct vectors, turn this into a shuffle node.
9731
9732  // May only combine to shuffle after legalize if shuffle is legal.
9733  if (LegalOperations &&
9734      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9735    return SDValue();
9736
9737  SDValue VecIn1, VecIn2;
9738  for (unsigned i = 0; i != NumInScalars; ++i) {
9739    // Ignore undef inputs.
9740    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9741
9742    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9743    // constant index, bail out.
9744    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9745        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9746      VecIn1 = VecIn2 = SDValue(0, 0);
9747      break;
9748    }
9749
9750    // We allow up to two distinct input vectors.
9751    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9752    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9753      continue;
9754
9755    if (VecIn1.getNode() == 0) {
9756      VecIn1 = ExtractedFromVec;
9757    } else if (VecIn2.getNode() == 0) {
9758      VecIn2 = ExtractedFromVec;
9759    } else {
9760      // Too many inputs.
9761      VecIn1 = VecIn2 = SDValue(0, 0);
9762      break;
9763    }
9764  }
9765
9766    // If everything is good, we can make a shuffle operation.
9767  if (VecIn1.getNode()) {
9768    SmallVector<int, 8> Mask;
9769    for (unsigned i = 0; i != NumInScalars; ++i) {
9770      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9771        Mask.push_back(-1);
9772        continue;
9773      }
9774
9775      // If extracting from the first vector, just use the index directly.
9776      SDValue Extract = N->getOperand(i);
9777      SDValue ExtVal = Extract.getOperand(1);
9778      if (Extract.getOperand(0) == VecIn1) {
9779        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9780        if (ExtIndex > VT.getVectorNumElements())
9781          return SDValue();
9782
9783        Mask.push_back(ExtIndex);
9784        continue;
9785      }
9786
9787      // Otherwise, use InIdx + VecSize
9788      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9789      Mask.push_back(Idx+NumInScalars);
9790    }
9791
9792    // We can't generate a shuffle node with mismatched input and output types.
9793    // Attempt to transform a single input vector to the correct type.
9794    if ((VT != VecIn1.getValueType())) {
9795      // We don't support shuffeling between TWO values of different types.
9796      if (VecIn2.getNode() != 0)
9797        return SDValue();
9798
9799      // We only support widening of vectors which are half the size of the
9800      // output registers. For example XMM->YMM widening on X86 with AVX.
9801      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9802        return SDValue();
9803
9804      // If the input vector type has a different base type to the output
9805      // vector type, bail out.
9806      if (VecIn1.getValueType().getVectorElementType() !=
9807          VT.getVectorElementType())
9808        return SDValue();
9809
9810      // Widen the input vector by adding undef values.
9811      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9812                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9813    }
9814
9815    // If VecIn2 is unused then change it to undef.
9816    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9817
9818    // Check that we were able to transform all incoming values to the same
9819    // type.
9820    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9821        VecIn1.getValueType() != VT)
9822          return SDValue();
9823
9824    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9825    if (!isTypeLegal(VT))
9826      return SDValue();
9827
9828    // Return the new VECTOR_SHUFFLE node.
9829    SDValue Ops[2];
9830    Ops[0] = VecIn1;
9831    Ops[1] = VecIn2;
9832    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9833  }
9834
9835  return SDValue();
9836}
9837
9838SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9839  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9840  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9841  // inputs come from at most two distinct vectors, turn this into a shuffle
9842  // node.
9843
9844  // If we only have one input vector, we don't need to do any concatenation.
9845  if (N->getNumOperands() == 1)
9846    return N->getOperand(0);
9847
9848  // Check if all of the operands are undefs.
9849  EVT VT = N->getValueType(0);
9850  if (ISD::allOperandsUndef(N))
9851    return DAG.getUNDEF(VT);
9852
9853  // Optimize concat_vectors where one of the vectors is undef.
9854  if (N->getNumOperands() == 2 &&
9855      N->getOperand(1)->getOpcode() == ISD::UNDEF) {
9856    SDValue In = N->getOperand(0);
9857    assert(In->getValueType(0).isVector() && "Must concat vectors");
9858
9859    // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
9860    if (In->getOpcode() == ISD::BITCAST &&
9861        !In->getOperand(0)->getValueType(0).isVector()) {
9862      SDValue Scalar = In->getOperand(0);
9863      EVT SclTy = Scalar->getValueType(0);
9864
9865      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
9866        return SDValue();
9867
9868      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
9869                                 VT.getSizeInBits() / SclTy.getSizeInBits());
9870      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
9871        return SDValue();
9872
9873      SDLoc dl = SDLoc(N);
9874      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
9875      return DAG.getNode(ISD::BITCAST, dl, VT, Res);
9876    }
9877  }
9878
9879  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9880  // nodes often generate nop CONCAT_VECTOR nodes.
9881  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9882  // place the incoming vectors at the exact same location.
9883  SDValue SingleSource = SDValue();
9884  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9885
9886  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9887    SDValue Op = N->getOperand(i);
9888
9889    if (Op.getOpcode() == ISD::UNDEF)
9890      continue;
9891
9892    // Check if this is the identity extract:
9893    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9894      return SDValue();
9895
9896    // Find the single incoming vector for the extract_subvector.
9897    if (SingleSource.getNode()) {
9898      if (Op.getOperand(0) != SingleSource)
9899        return SDValue();
9900    } else {
9901      SingleSource = Op.getOperand(0);
9902
9903      // Check the source type is the same as the type of the result.
9904      // If not, this concat may extend the vector, so we can not
9905      // optimize it away.
9906      if (SingleSource.getValueType() != N->getValueType(0))
9907        return SDValue();
9908    }
9909
9910    unsigned IdentityIndex = i * PartNumElem;
9911    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9912    // The extract index must be constant.
9913    if (!CS)
9914      return SDValue();
9915
9916    // Check that we are reading from the identity index.
9917    if (CS->getZExtValue() != IdentityIndex)
9918      return SDValue();
9919  }
9920
9921  if (SingleSource.getNode())
9922    return SingleSource;
9923
9924  return SDValue();
9925}
9926
9927SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9928  EVT NVT = N->getValueType(0);
9929  SDValue V = N->getOperand(0);
9930
9931  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9932    // Combine:
9933    //    (extract_subvec (concat V1, V2, ...), i)
9934    // Into:
9935    //    Vi if possible
9936    // Only operand 0 is checked as 'concat' assumes all inputs of the same
9937    // type.
9938    if (V->getOperand(0).getValueType() != NVT)
9939      return SDValue();
9940    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9941    unsigned NumElems = NVT.getVectorNumElements();
9942    assert((Idx % NumElems) == 0 &&
9943           "IDX in concat is not a multiple of the result vector length.");
9944    return V->getOperand(Idx / NumElems);
9945  }
9946
9947  // Skip bitcasting
9948  if (V->getOpcode() == ISD::BITCAST)
9949    V = V.getOperand(0);
9950
9951  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9952    SDLoc dl(N);
9953    // Handle only simple case where vector being inserted and vector
9954    // being extracted are of same type, and are half size of larger vectors.
9955    EVT BigVT = V->getOperand(0).getValueType();
9956    EVT SmallVT = V->getOperand(1).getValueType();
9957    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9958      return SDValue();
9959
9960    // Only handle cases where both indexes are constants with the same type.
9961    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9962    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9963
9964    if (InsIdx && ExtIdx &&
9965        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9966        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9967      // Combine:
9968      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9969      // Into:
9970      //    indices are equal or bit offsets are equal => V1
9971      //    otherwise => (extract_subvec V1, ExtIdx)
9972      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9973          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9974        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9975      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9976                         DAG.getNode(ISD::BITCAST, dl,
9977                                     N->getOperand(0).getValueType(),
9978                                     V->getOperand(0)), N->getOperand(1));
9979    }
9980  }
9981
9982  return SDValue();
9983}
9984
9985// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
9986static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
9987  EVT VT = N->getValueType(0);
9988  unsigned NumElts = VT.getVectorNumElements();
9989
9990  SDValue N0 = N->getOperand(0);
9991  SDValue N1 = N->getOperand(1);
9992  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9993
9994  SmallVector<SDValue, 4> Ops;
9995  EVT ConcatVT = N0.getOperand(0).getValueType();
9996  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
9997  unsigned NumConcats = NumElts / NumElemsPerConcat;
9998
9999  // Look at every vector that's inserted. We're looking for exact
10000  // subvector-sized copies from a concatenated vector
10001  for (unsigned I = 0; I != NumConcats; ++I) {
10002    // Make sure we're dealing with a copy.
10003    unsigned Begin = I * NumElemsPerConcat;
10004    bool AllUndef = true, NoUndef = true;
10005    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
10006      if (SVN->getMaskElt(J) >= 0)
10007        AllUndef = false;
10008      else
10009        NoUndef = false;
10010    }
10011
10012    if (NoUndef) {
10013      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
10014        return SDValue();
10015
10016      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
10017        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
10018          return SDValue();
10019
10020      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
10021      if (FirstElt < N0.getNumOperands())
10022        Ops.push_back(N0.getOperand(FirstElt));
10023      else
10024        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
10025
10026    } else if (AllUndef) {
10027      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
10028    } else { // Mixed with general masks and undefs, can't do optimization.
10029      return SDValue();
10030    }
10031  }
10032
10033  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
10034                     Ops.size());
10035}
10036
10037SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
10038  EVT VT = N->getValueType(0);
10039  unsigned NumElts = VT.getVectorNumElements();
10040
10041  SDValue N0 = N->getOperand(0);
10042  SDValue N1 = N->getOperand(1);
10043
10044  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10045
10046  // Canonicalize shuffle undef, undef -> undef
10047  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10048    return DAG.getUNDEF(VT);
10049
10050  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10051
10052  // Canonicalize shuffle v, v -> v, undef
10053  if (N0 == N1) {
10054    SmallVector<int, 8> NewMask;
10055    for (unsigned i = 0; i != NumElts; ++i) {
10056      int Idx = SVN->getMaskElt(i);
10057      if (Idx >= (int)NumElts) Idx -= NumElts;
10058      NewMask.push_back(Idx);
10059    }
10060    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10061                                &NewMask[0]);
10062  }
10063
10064  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10065  if (N0.getOpcode() == ISD::UNDEF) {
10066    SmallVector<int, 8> NewMask;
10067    for (unsigned i = 0; i != NumElts; ++i) {
10068      int Idx = SVN->getMaskElt(i);
10069      if (Idx >= 0) {
10070        if (Idx >= (int)NumElts)
10071          Idx -= NumElts;
10072        else
10073          Idx = -1; // remove reference to lhs
10074      }
10075      NewMask.push_back(Idx);
10076    }
10077    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10078                                &NewMask[0]);
10079  }
10080
10081  // Remove references to rhs if it is undef
10082  if (N1.getOpcode() == ISD::UNDEF) {
10083    bool Changed = false;
10084    SmallVector<int, 8> NewMask;
10085    for (unsigned i = 0; i != NumElts; ++i) {
10086      int Idx = SVN->getMaskElt(i);
10087      if (Idx >= (int)NumElts) {
10088        Idx = -1;
10089        Changed = true;
10090      }
10091      NewMask.push_back(Idx);
10092    }
10093    if (Changed)
10094      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10095  }
10096
10097  // If it is a splat, check if the argument vector is another splat or a
10098  // build_vector with all scalar elements the same.
10099  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10100    SDNode *V = N0.getNode();
10101
10102    // If this is a bit convert that changes the element type of the vector but
10103    // not the number of vector elements, look through it.  Be careful not to
10104    // look though conversions that change things like v4f32 to v2f64.
10105    if (V->getOpcode() == ISD::BITCAST) {
10106      SDValue ConvInput = V->getOperand(0);
10107      if (ConvInput.getValueType().isVector() &&
10108          ConvInput.getValueType().getVectorNumElements() == NumElts)
10109        V = ConvInput.getNode();
10110    }
10111
10112    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10113      assert(V->getNumOperands() == NumElts &&
10114             "BUILD_VECTOR has wrong number of operands");
10115      SDValue Base;
10116      bool AllSame = true;
10117      for (unsigned i = 0; i != NumElts; ++i) {
10118        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10119          Base = V->getOperand(i);
10120          break;
10121        }
10122      }
10123      // Splat of <u, u, u, u>, return <u, u, u, u>
10124      if (!Base.getNode())
10125        return N0;
10126      for (unsigned i = 0; i != NumElts; ++i) {
10127        if (V->getOperand(i) != Base) {
10128          AllSame = false;
10129          break;
10130        }
10131      }
10132      // Splat of <x, x, x, x>, return <x, x, x, x>
10133      if (AllSame)
10134        return N0;
10135    }
10136  }
10137
10138  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10139      Level < AfterLegalizeVectorOps &&
10140      (N1.getOpcode() == ISD::UNDEF ||
10141      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10142       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10143    SDValue V = partitionShuffleOfConcats(N, DAG);
10144
10145    if (V.getNode())
10146      return V;
10147  }
10148
10149  // If this shuffle node is simply a swizzle of another shuffle node,
10150  // and it reverses the swizzle of the previous shuffle then we can
10151  // optimize shuffle(shuffle(x, undef), undef) -> x.
10152  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10153      N1.getOpcode() == ISD::UNDEF) {
10154
10155    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10156
10157    // Shuffle nodes can only reverse shuffles with a single non-undef value.
10158    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10159      return SDValue();
10160
10161    // The incoming shuffle must be of the same type as the result of the
10162    // current shuffle.
10163    assert(OtherSV->getOperand(0).getValueType() == VT &&
10164           "Shuffle types don't match");
10165
10166    for (unsigned i = 0; i != NumElts; ++i) {
10167      int Idx = SVN->getMaskElt(i);
10168      assert(Idx < (int)NumElts && "Index references undef operand");
10169      // Next, this index comes from the first value, which is the incoming
10170      // shuffle. Adopt the incoming index.
10171      if (Idx >= 0)
10172        Idx = OtherSV->getMaskElt(Idx);
10173
10174      // The combined shuffle must map each index to itself.
10175      if (Idx >= 0 && (unsigned)Idx != i)
10176        return SDValue();
10177    }
10178
10179    return OtherSV->getOperand(0);
10180  }
10181
10182  return SDValue();
10183}
10184
10185/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10186/// an AND to a vector_shuffle with the destination vector and a zero vector.
10187/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10188///      vector_shuffle V, Zero, <0, 4, 2, 4>
10189SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10190  EVT VT = N->getValueType(0);
10191  SDLoc dl(N);
10192  SDValue LHS = N->getOperand(0);
10193  SDValue RHS = N->getOperand(1);
10194  if (N->getOpcode() == ISD::AND) {
10195    if (RHS.getOpcode() == ISD::BITCAST)
10196      RHS = RHS.getOperand(0);
10197    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10198      SmallVector<int, 8> Indices;
10199      unsigned NumElts = RHS.getNumOperands();
10200      for (unsigned i = 0; i != NumElts; ++i) {
10201        SDValue Elt = RHS.getOperand(i);
10202        if (!isa<ConstantSDNode>(Elt))
10203          return SDValue();
10204
10205        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10206          Indices.push_back(i);
10207        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10208          Indices.push_back(NumElts);
10209        else
10210          return SDValue();
10211      }
10212
10213      // Let's see if the target supports this vector_shuffle.
10214      EVT RVT = RHS.getValueType();
10215      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10216        return SDValue();
10217
10218      // Return the new VECTOR_SHUFFLE node.
10219      EVT EltVT = RVT.getVectorElementType();
10220      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10221                                     DAG.getConstant(0, EltVT));
10222      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10223                                 RVT, &ZeroOps[0], ZeroOps.size());
10224      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10225      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10226      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10227    }
10228  }
10229
10230  return SDValue();
10231}
10232
10233/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10234SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10235  assert(N->getValueType(0).isVector() &&
10236         "SimplifyVBinOp only works on vectors!");
10237
10238  SDValue LHS = N->getOperand(0);
10239  SDValue RHS = N->getOperand(1);
10240  SDValue Shuffle = XformToShuffleWithZero(N);
10241  if (Shuffle.getNode()) return Shuffle;
10242
10243  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10244  // this operation.
10245  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10246      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10247    SmallVector<SDValue, 8> Ops;
10248    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10249      SDValue LHSOp = LHS.getOperand(i);
10250      SDValue RHSOp = RHS.getOperand(i);
10251      // If these two elements can't be folded, bail out.
10252      if ((LHSOp.getOpcode() != ISD::UNDEF &&
10253           LHSOp.getOpcode() != ISD::Constant &&
10254           LHSOp.getOpcode() != ISD::ConstantFP) ||
10255          (RHSOp.getOpcode() != ISD::UNDEF &&
10256           RHSOp.getOpcode() != ISD::Constant &&
10257           RHSOp.getOpcode() != ISD::ConstantFP))
10258        break;
10259
10260      // Can't fold divide by zero.
10261      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10262          N->getOpcode() == ISD::FDIV) {
10263        if ((RHSOp.getOpcode() == ISD::Constant &&
10264             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10265            (RHSOp.getOpcode() == ISD::ConstantFP &&
10266             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10267          break;
10268      }
10269
10270      EVT VT = LHSOp.getValueType();
10271      EVT RVT = RHSOp.getValueType();
10272      if (RVT != VT) {
10273        // Integer BUILD_VECTOR operands may have types larger than the element
10274        // size (e.g., when the element type is not legal).  Prior to type
10275        // legalization, the types may not match between the two BUILD_VECTORS.
10276        // Truncate one of the operands to make them match.
10277        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10278          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10279        } else {
10280          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10281          VT = RVT;
10282        }
10283      }
10284      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10285                                   LHSOp, RHSOp);
10286      if (FoldOp.getOpcode() != ISD::UNDEF &&
10287          FoldOp.getOpcode() != ISD::Constant &&
10288          FoldOp.getOpcode() != ISD::ConstantFP)
10289        break;
10290      Ops.push_back(FoldOp);
10291      AddToWorkList(FoldOp.getNode());
10292    }
10293
10294    if (Ops.size() == LHS.getNumOperands())
10295      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10296                         LHS.getValueType(), &Ops[0], Ops.size());
10297  }
10298
10299  return SDValue();
10300}
10301
10302/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10303SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10304  assert(N->getValueType(0).isVector() &&
10305         "SimplifyVUnaryOp only works on vectors!");
10306
10307  SDValue N0 = N->getOperand(0);
10308
10309  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10310    return SDValue();
10311
10312  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10313  SmallVector<SDValue, 8> Ops;
10314  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10315    SDValue Op = N0.getOperand(i);
10316    if (Op.getOpcode() != ISD::UNDEF &&
10317        Op.getOpcode() != ISD::ConstantFP)
10318      break;
10319    EVT EltVT = Op.getValueType();
10320    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10321    if (FoldOp.getOpcode() != ISD::UNDEF &&
10322        FoldOp.getOpcode() != ISD::ConstantFP)
10323      break;
10324    Ops.push_back(FoldOp);
10325    AddToWorkList(FoldOp.getNode());
10326  }
10327
10328  if (Ops.size() != N0.getNumOperands())
10329    return SDValue();
10330
10331  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10332                     N0.getValueType(), &Ops[0], Ops.size());
10333}
10334
10335SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10336                                    SDValue N1, SDValue N2){
10337  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10338
10339  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10340                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10341
10342  // If we got a simplified select_cc node back from SimplifySelectCC, then
10343  // break it down into a new SETCC node, and a new SELECT node, and then return
10344  // the SELECT node, since we were called with a SELECT node.
10345  if (SCC.getNode()) {
10346    // Check to see if we got a select_cc back (to turn into setcc/select).
10347    // Otherwise, just return whatever node we got back, like fabs.
10348    if (SCC.getOpcode() == ISD::SELECT_CC) {
10349      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10350                                  N0.getValueType(),
10351                                  SCC.getOperand(0), SCC.getOperand(1),
10352                                  SCC.getOperand(4));
10353      AddToWorkList(SETCC.getNode());
10354      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10355                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10356    }
10357
10358    return SCC;
10359  }
10360  return SDValue();
10361}
10362
10363/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10364/// are the two values being selected between, see if we can simplify the
10365/// select.  Callers of this should assume that TheSelect is deleted if this
10366/// returns true.  As such, they should return the appropriate thing (e.g. the
10367/// node) back to the top-level of the DAG combiner loop to avoid it being
10368/// looked at.
10369bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10370                                    SDValue RHS) {
10371
10372  // Cannot simplify select with vector condition
10373  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10374
10375  // If this is a select from two identical things, try to pull the operation
10376  // through the select.
10377  if (LHS.getOpcode() != RHS.getOpcode() ||
10378      !LHS.hasOneUse() || !RHS.hasOneUse())
10379    return false;
10380
10381  // If this is a load and the token chain is identical, replace the select
10382  // of two loads with a load through a select of the address to load from.
10383  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10384  // constants have been dropped into the constant pool.
10385  if (LHS.getOpcode() == ISD::LOAD) {
10386    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10387    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10388
10389    // Token chains must be identical.
10390    if (LHS.getOperand(0) != RHS.getOperand(0) ||
10391        // Do not let this transformation reduce the number of volatile loads.
10392        LLD->isVolatile() || RLD->isVolatile() ||
10393        // If this is an EXTLOAD, the VT's must match.
10394        LLD->getMemoryVT() != RLD->getMemoryVT() ||
10395        // If this is an EXTLOAD, the kind of extension must match.
10396        (LLD->getExtensionType() != RLD->getExtensionType() &&
10397         // The only exception is if one of the extensions is anyext.
10398         LLD->getExtensionType() != ISD::EXTLOAD &&
10399         RLD->getExtensionType() != ISD::EXTLOAD) ||
10400        // FIXME: this discards src value information.  This is
10401        // over-conservative. It would be beneficial to be able to remember
10402        // both potential memory locations.  Since we are discarding
10403        // src value info, don't do the transformation if the memory
10404        // locations are not in the default address space.
10405        LLD->getPointerInfo().getAddrSpace() != 0 ||
10406        RLD->getPointerInfo().getAddrSpace() != 0 ||
10407        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10408                                      LLD->getBasePtr().getValueType()))
10409      return false;
10410
10411    // Check that the select condition doesn't reach either load.  If so,
10412    // folding this will induce a cycle into the DAG.  If not, this is safe to
10413    // xform, so create a select of the addresses.
10414    SDValue Addr;
10415    if (TheSelect->getOpcode() == ISD::SELECT) {
10416      SDNode *CondNode = TheSelect->getOperand(0).getNode();
10417      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10418          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10419        return false;
10420      // The loads must not depend on one another.
10421      if (LLD->isPredecessorOf(RLD) ||
10422          RLD->isPredecessorOf(LLD))
10423        return false;
10424      Addr = DAG.getSelect(SDLoc(TheSelect),
10425                           LLD->getBasePtr().getValueType(),
10426                           TheSelect->getOperand(0), LLD->getBasePtr(),
10427                           RLD->getBasePtr());
10428    } else {  // Otherwise SELECT_CC
10429      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10430      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10431
10432      if ((LLD->hasAnyUseOfValue(1) &&
10433           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10434          (RLD->hasAnyUseOfValue(1) &&
10435           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10436        return false;
10437
10438      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10439                         LLD->getBasePtr().getValueType(),
10440                         TheSelect->getOperand(0),
10441                         TheSelect->getOperand(1),
10442                         LLD->getBasePtr(), RLD->getBasePtr(),
10443                         TheSelect->getOperand(4));
10444    }
10445
10446    SDValue Load;
10447    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10448      Load = DAG.getLoad(TheSelect->getValueType(0),
10449                         SDLoc(TheSelect),
10450                         // FIXME: Discards pointer and TBAA info.
10451                         LLD->getChain(), Addr, MachinePointerInfo(),
10452                         LLD->isVolatile(), LLD->isNonTemporal(),
10453                         LLD->isInvariant(), LLD->getAlignment());
10454    } else {
10455      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10456                            RLD->getExtensionType() : LLD->getExtensionType(),
10457                            SDLoc(TheSelect),
10458                            TheSelect->getValueType(0),
10459                            // FIXME: Discards pointer and TBAA info.
10460                            LLD->getChain(), Addr, MachinePointerInfo(),
10461                            LLD->getMemoryVT(), LLD->isVolatile(),
10462                            LLD->isNonTemporal(), LLD->getAlignment());
10463    }
10464
10465    // Users of the select now use the result of the load.
10466    CombineTo(TheSelect, Load);
10467
10468    // Users of the old loads now use the new load's chain.  We know the
10469    // old-load value is dead now.
10470    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10471    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10472    return true;
10473  }
10474
10475  return false;
10476}
10477
10478/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10479/// where 'cond' is the comparison specified by CC.
10480SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10481                                      SDValue N2, SDValue N3,
10482                                      ISD::CondCode CC, bool NotExtCompare) {
10483  // (x ? y : y) -> y.
10484  if (N2 == N3) return N2;
10485
10486  EVT VT = N2.getValueType();
10487  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10488  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10489  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10490
10491  // Determine if the condition we're dealing with is constant
10492  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10493                              N0, N1, CC, DL, false);
10494  if (SCC.getNode()) AddToWorkList(SCC.getNode());
10495  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10496
10497  // fold select_cc true, x, y -> x
10498  if (SCCC && !SCCC->isNullValue())
10499    return N2;
10500  // fold select_cc false, x, y -> y
10501  if (SCCC && SCCC->isNullValue())
10502    return N3;
10503
10504  // Check to see if we can simplify the select into an fabs node
10505  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10506    // Allow either -0.0 or 0.0
10507    if (CFP->getValueAPF().isZero()) {
10508      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10509      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10510          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10511          N2 == N3.getOperand(0))
10512        return DAG.getNode(ISD::FABS, DL, VT, N0);
10513
10514      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10515      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10516          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10517          N2.getOperand(0) == N3)
10518        return DAG.getNode(ISD::FABS, DL, VT, N3);
10519    }
10520  }
10521
10522  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10523  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10524  // in it.  This is a win when the constant is not otherwise available because
10525  // it replaces two constant pool loads with one.  We only do this if the FP
10526  // type is known to be legal, because if it isn't, then we are before legalize
10527  // types an we want the other legalization to happen first (e.g. to avoid
10528  // messing with soft float) and if the ConstantFP is not legal, because if
10529  // it is legal, we may not need to store the FP constant in a constant pool.
10530  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10531    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10532      if (TLI.isTypeLegal(N2.getValueType()) &&
10533          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10534           TargetLowering::Legal) &&
10535          // If both constants have multiple uses, then we won't need to do an
10536          // extra load, they are likely around in registers for other users.
10537          (TV->hasOneUse() || FV->hasOneUse())) {
10538        Constant *Elts[] = {
10539          const_cast<ConstantFP*>(FV->getConstantFPValue()),
10540          const_cast<ConstantFP*>(TV->getConstantFPValue())
10541        };
10542        Type *FPTy = Elts[0]->getType();
10543        const DataLayout &TD = *TLI.getDataLayout();
10544
10545        // Create a ConstantArray of the two constants.
10546        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10547        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10548                                            TD.getPrefTypeAlignment(FPTy));
10549        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10550
10551        // Get the offsets to the 0 and 1 element of the array so that we can
10552        // select between them.
10553        SDValue Zero = DAG.getIntPtrConstant(0);
10554        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10555        SDValue One = DAG.getIntPtrConstant(EltSize);
10556
10557        SDValue Cond = DAG.getSetCC(DL,
10558                                    getSetCCResultType(N0.getValueType()),
10559                                    N0, N1, CC);
10560        AddToWorkList(Cond.getNode());
10561        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10562                                          Cond, One, Zero);
10563        AddToWorkList(CstOffset.getNode());
10564        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10565                            CstOffset);
10566        AddToWorkList(CPIdx.getNode());
10567        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10568                           MachinePointerInfo::getConstantPool(), false,
10569                           false, false, Alignment);
10570
10571      }
10572    }
10573
10574  // Check to see if we can perform the "gzip trick", transforming
10575  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10576  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10577      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
10578       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
10579    EVT XType = N0.getValueType();
10580    EVT AType = N2.getValueType();
10581    if (XType.bitsGE(AType)) {
10582      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10583      // single-bit constant.
10584      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10585        unsigned ShCtV = N2C->getAPIntValue().logBase2();
10586        ShCtV = XType.getSizeInBits()-ShCtV-1;
10587        SDValue ShCt = DAG.getConstant(ShCtV,
10588                                       getShiftAmountTy(N0.getValueType()));
10589        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10590                                    XType, N0, ShCt);
10591        AddToWorkList(Shift.getNode());
10592
10593        if (XType.bitsGT(AType)) {
10594          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10595          AddToWorkList(Shift.getNode());
10596        }
10597
10598        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10599      }
10600
10601      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10602                                  XType, N0,
10603                                  DAG.getConstant(XType.getSizeInBits()-1,
10604                                         getShiftAmountTy(N0.getValueType())));
10605      AddToWorkList(Shift.getNode());
10606
10607      if (XType.bitsGT(AType)) {
10608        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10609        AddToWorkList(Shift.getNode());
10610      }
10611
10612      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10613    }
10614  }
10615
10616  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10617  // where y is has a single bit set.
10618  // A plaintext description would be, we can turn the SELECT_CC into an AND
10619  // when the condition can be materialized as an all-ones register.  Any
10620  // single bit-test can be materialized as an all-ones register with
10621  // shift-left and shift-right-arith.
10622  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10623      N0->getValueType(0) == VT &&
10624      N1C && N1C->isNullValue() &&
10625      N2C && N2C->isNullValue()) {
10626    SDValue AndLHS = N0->getOperand(0);
10627    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10628    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10629      // Shift the tested bit over the sign bit.
10630      APInt AndMask = ConstAndRHS->getAPIntValue();
10631      SDValue ShlAmt =
10632        DAG.getConstant(AndMask.countLeadingZeros(),
10633                        getShiftAmountTy(AndLHS.getValueType()));
10634      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10635
10636      // Now arithmetic right shift it all the way over, so the result is either
10637      // all-ones, or zero.
10638      SDValue ShrAmt =
10639        DAG.getConstant(AndMask.getBitWidth()-1,
10640                        getShiftAmountTy(Shl.getValueType()));
10641      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10642
10643      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10644    }
10645  }
10646
10647  // fold select C, 16, 0 -> shl C, 4
10648  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10649    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10650      TargetLowering::ZeroOrOneBooleanContent) {
10651
10652    // If the caller doesn't want us to simplify this into a zext of a compare,
10653    // don't do it.
10654    if (NotExtCompare && N2C->getAPIntValue() == 1)
10655      return SDValue();
10656
10657    // Get a SetCC of the condition
10658    // NOTE: Don't create a SETCC if it's not legal on this target.
10659    if (!LegalOperations ||
10660        TLI.isOperationLegal(ISD::SETCC,
10661          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10662      SDValue Temp, SCC;
10663      // cast from setcc result type to select result type
10664      if (LegalTypes) {
10665        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10666                            N0, N1, CC);
10667        if (N2.getValueType().bitsLT(SCC.getValueType()))
10668          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10669                                        N2.getValueType());
10670        else
10671          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10672                             N2.getValueType(), SCC);
10673      } else {
10674        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10675        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10676                           N2.getValueType(), SCC);
10677      }
10678
10679      AddToWorkList(SCC.getNode());
10680      AddToWorkList(Temp.getNode());
10681
10682      if (N2C->getAPIntValue() == 1)
10683        return Temp;
10684
10685      // shl setcc result by log2 n2c
10686      return DAG.getNode(
10687          ISD::SHL, DL, N2.getValueType(), Temp,
10688          DAG.getConstant(N2C->getAPIntValue().logBase2(),
10689                          getShiftAmountTy(Temp.getValueType())));
10690    }
10691  }
10692
10693  // Check to see if this is the equivalent of setcc
10694  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10695  // otherwise, go ahead with the folds.
10696  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10697    EVT XType = N0.getValueType();
10698    if (!LegalOperations ||
10699        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10700      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10701      if (Res.getValueType() != VT)
10702        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10703      return Res;
10704    }
10705
10706    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10707    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10708        (!LegalOperations ||
10709         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10710      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10711      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10712                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10713                                       getShiftAmountTy(Ctlz.getValueType())));
10714    }
10715    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10716    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10717      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10718                                  XType, DAG.getConstant(0, XType), N0);
10719      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10720      return DAG.getNode(ISD::SRL, DL, XType,
10721                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10722                         DAG.getConstant(XType.getSizeInBits()-1,
10723                                         getShiftAmountTy(XType)));
10724    }
10725    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10726    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10727      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10728                                 DAG.getConstant(XType.getSizeInBits()-1,
10729                                         getShiftAmountTy(N0.getValueType())));
10730      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10731    }
10732  }
10733
10734  // Check to see if this is an integer abs.
10735  // select_cc setg[te] X,  0,  X, -X ->
10736  // select_cc setgt    X, -1,  X, -X ->
10737  // select_cc setl[te] X,  0, -X,  X ->
10738  // select_cc setlt    X,  1, -X,  X ->
10739  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10740  if (N1C) {
10741    ConstantSDNode *SubC = NULL;
10742    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10743         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10744        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10745      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10746    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10747              (N1C->isOne() && CC == ISD::SETLT)) &&
10748             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10749      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10750
10751    EVT XType = N0.getValueType();
10752    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10753      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10754                                  N0,
10755                                  DAG.getConstant(XType.getSizeInBits()-1,
10756                                         getShiftAmountTy(N0.getValueType())));
10757      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10758                                XType, N0, Shift);
10759      AddToWorkList(Shift.getNode());
10760      AddToWorkList(Add.getNode());
10761      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10762    }
10763  }
10764
10765  return SDValue();
10766}
10767
10768/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10769SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10770                                   SDValue N1, ISD::CondCode Cond,
10771                                   SDLoc DL, bool foldBooleans) {
10772  TargetLowering::DAGCombinerInfo
10773    DagCombineInfo(DAG, Level, false, this);
10774  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10775}
10776
10777/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10778/// return a DAG expression to select that will generate the same value by
10779/// multiplying by a magic number.  See:
10780/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10781SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10782  std::vector<SDNode*> Built;
10783  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10784
10785  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10786       ii != ee; ++ii)
10787    AddToWorkList(*ii);
10788  return S;
10789}
10790
10791/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10792/// return a DAG expression to select that will generate the same value by
10793/// multiplying by a magic number.  See:
10794/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10795SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10796  std::vector<SDNode*> Built;
10797  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10798
10799  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10800       ii != ee; ++ii)
10801    AddToWorkList(*ii);
10802  return S;
10803}
10804
10805/// FindBaseOffset - Return true if base is a frame index, which is known not
10806// to alias with anything but itself.  Provides base object and offset as
10807// results.
10808static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10809                           const GlobalValue *&GV, const void *&CV) {
10810  // Assume it is a primitive operation.
10811  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10812
10813  // If it's an adding a simple constant then integrate the offset.
10814  if (Base.getOpcode() == ISD::ADD) {
10815    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10816      Base = Base.getOperand(0);
10817      Offset += C->getZExtValue();
10818    }
10819  }
10820
10821  // Return the underlying GlobalValue, and update the Offset.  Return false
10822  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10823  // by multiple nodes with different offsets.
10824  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10825    GV = G->getGlobal();
10826    Offset += G->getOffset();
10827    return false;
10828  }
10829
10830  // Return the underlying Constant value, and update the Offset.  Return false
10831  // for ConstantSDNodes since the same constant pool entry may be represented
10832  // by multiple nodes with different offsets.
10833  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10834    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10835                                         : (const void *)C->getConstVal();
10836    Offset += C->getOffset();
10837    return false;
10838  }
10839  // If it's any of the following then it can't alias with anything but itself.
10840  return isa<FrameIndexSDNode>(Base);
10841}
10842
10843/// isAlias - Return true if there is any possibility that the two addresses
10844/// overlap.
10845bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
10846                          const Value *SrcValue1, int SrcValueOffset1,
10847                          unsigned SrcValueAlign1,
10848                          const MDNode *TBAAInfo1,
10849                          SDValue Ptr2, int64_t Size2, bool IsVolatile2,
10850                          const Value *SrcValue2, int SrcValueOffset2,
10851                          unsigned SrcValueAlign2,
10852                          const MDNode *TBAAInfo2) const {
10853  // If they are the same then they must be aliases.
10854  if (Ptr1 == Ptr2) return true;
10855
10856  // If they are both volatile then they cannot be reordered.
10857  if (IsVolatile1 && IsVolatile2) return true;
10858
10859  // Gather base node and offset information.
10860  SDValue Base1, Base2;
10861  int64_t Offset1, Offset2;
10862  const GlobalValue *GV1, *GV2;
10863  const void *CV1, *CV2;
10864  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10865  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10866
10867  // If they have a same base address then check to see if they overlap.
10868  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10869    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10870
10871  // It is possible for different frame indices to alias each other, mostly
10872  // when tail call optimization reuses return address slots for arguments.
10873  // To catch this case, look up the actual index of frame indices to compute
10874  // the real alias relationship.
10875  if (isFrameIndex1 && isFrameIndex2) {
10876    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10877    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10878    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10879    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10880  }
10881
10882  // Otherwise, if we know what the bases are, and they aren't identical, then
10883  // we know they cannot alias.
10884  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10885    return false;
10886
10887  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10888  // compared to the size and offset of the access, we may be able to prove they
10889  // do not alias.  This check is conservative for now to catch cases created by
10890  // splitting vector types.
10891  if ((SrcValueAlign1 == SrcValueAlign2) &&
10892      (SrcValueOffset1 != SrcValueOffset2) &&
10893      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10894    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10895    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10896
10897    // There is no overlap between these relatively aligned accesses of similar
10898    // size, return no alias.
10899    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10900      return false;
10901  }
10902
10903  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10904    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10905  if (UseAA && SrcValue1 && SrcValue2) {
10906    // Use alias analysis information.
10907    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10908    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10909    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10910    AliasAnalysis::AliasResult AAResult =
10911      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10912               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10913    if (AAResult == AliasAnalysis::NoAlias)
10914      return false;
10915  }
10916
10917  // Otherwise we have to assume they alias.
10918  return true;
10919}
10920
10921bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10922  SDValue Ptr0, Ptr1;
10923  int64_t Size0, Size1;
10924  bool IsVolatile0, IsVolatile1;
10925  const Value *SrcValue0, *SrcValue1;
10926  int SrcValueOffset0, SrcValueOffset1;
10927  unsigned SrcValueAlign0, SrcValueAlign1;
10928  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10929  FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10930                SrcValueAlign0, SrcTBAAInfo0);
10931  FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10932                SrcValueAlign1, SrcTBAAInfo1);
10933  return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10934                 SrcValueAlign0, SrcTBAAInfo0,
10935                 Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10936                 SrcValueAlign1, SrcTBAAInfo1);
10937}
10938
10939/// FindAliasInfo - Extracts the relevant alias information from the memory
10940/// node.  Returns true if the operand was a nonvolatile load.
10941bool DAGCombiner::FindAliasInfo(SDNode *N,
10942                                SDValue &Ptr, int64_t &Size, bool &IsVolatile,
10943                                const Value *&SrcValue,
10944                                int &SrcValueOffset,
10945                                unsigned &SrcValueAlign,
10946                                const MDNode *&TBAAInfo) const {
10947  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10948
10949  Ptr = LS->getBasePtr();
10950  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10951  IsVolatile = LS->isVolatile();
10952  SrcValue = LS->getSrcValue();
10953  SrcValueOffset = LS->getSrcValueOffset();
10954  SrcValueAlign = LS->getOriginalAlignment();
10955  TBAAInfo = LS->getTBAAInfo();
10956  return isa<LoadSDNode>(LS) && !IsVolatile;
10957}
10958
10959/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10960/// looking for aliasing nodes and adding them to the Aliases vector.
10961void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10962                                   SmallVectorImpl<SDValue> &Aliases) {
10963  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10964  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10965
10966  // Get alias information for node.
10967  SDValue Ptr;
10968  int64_t Size;
10969  bool IsVolatile;
10970  const Value *SrcValue;
10971  int SrcValueOffset;
10972  unsigned SrcValueAlign;
10973  const MDNode *SrcTBAAInfo;
10974  bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
10975                              SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
10976
10977  // Starting off.
10978  Chains.push_back(OriginalChain);
10979  unsigned Depth = 0;
10980
10981  // Look at each chain and determine if it is an alias.  If so, add it to the
10982  // aliases list.  If not, then continue up the chain looking for the next
10983  // candidate.
10984  while (!Chains.empty()) {
10985    SDValue Chain = Chains.back();
10986    Chains.pop_back();
10987
10988    // For TokenFactor nodes, look at each operand and only continue up the
10989    // chain until we find two aliases.  If we've seen two aliases, assume we'll
10990    // find more and revert to original chain since the xform is unlikely to be
10991    // profitable.
10992    //
10993    // FIXME: The depth check could be made to return the last non-aliasing
10994    // chain we found before we hit a tokenfactor rather than the original
10995    // chain.
10996    if (Depth > 6 || Aliases.size() == 2) {
10997      Aliases.clear();
10998      Aliases.push_back(OriginalChain);
10999      break;
11000    }
11001
11002    // Don't bother if we've been before.
11003    if (!Visited.insert(Chain.getNode()))
11004      continue;
11005
11006    switch (Chain.getOpcode()) {
11007    case ISD::EntryToken:
11008      // Entry token is ideal chain operand, but handled in FindBetterChain.
11009      break;
11010
11011    case ISD::LOAD:
11012    case ISD::STORE: {
11013      // Get alias information for Chain.
11014      SDValue OpPtr;
11015      int64_t OpSize;
11016      bool OpIsVolatile;
11017      const Value *OpSrcValue;
11018      int OpSrcValueOffset;
11019      unsigned OpSrcValueAlign;
11020      const MDNode *OpSrcTBAAInfo;
11021      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
11022                                    OpIsVolatile, OpSrcValue, OpSrcValueOffset,
11023                                    OpSrcValueAlign,
11024                                    OpSrcTBAAInfo);
11025
11026      // If chain is alias then stop here.
11027      if (!(IsLoad && IsOpLoad) &&
11028          isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
11029                  SrcValueAlign, SrcTBAAInfo,
11030                  OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
11031                  OpSrcValueAlign, OpSrcTBAAInfo)) {
11032        Aliases.push_back(Chain);
11033      } else {
11034        // Look further up the chain.
11035        Chains.push_back(Chain.getOperand(0));
11036        ++Depth;
11037      }
11038      break;
11039    }
11040
11041    case ISD::TokenFactor:
11042      // We have to check each of the operands of the token factor for "small"
11043      // token factors, so we queue them up.  Adding the operands to the queue
11044      // (stack) in reverse order maintains the original order and increases the
11045      // likelihood that getNode will find a matching token factor (CSE.)
11046      if (Chain.getNumOperands() > 16) {
11047        Aliases.push_back(Chain);
11048        break;
11049      }
11050      for (unsigned n = Chain.getNumOperands(); n;)
11051        Chains.push_back(Chain.getOperand(--n));
11052      ++Depth;
11053      break;
11054
11055    default:
11056      // For all other instructions we will just have to take what we can get.
11057      Aliases.push_back(Chain);
11058      break;
11059    }
11060  }
11061}
11062
11063/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11064/// for a better chain (aliasing node.)
11065SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11066  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11067
11068  // Accumulate all the aliases to this node.
11069  GatherAllAliases(N, OldChain, Aliases);
11070
11071  // If no operands then chain to entry token.
11072  if (Aliases.size() == 0)
11073    return DAG.getEntryNode();
11074
11075  // If a single operand then chain to it.  We don't need to revisit it.
11076  if (Aliases.size() == 1)
11077    return Aliases[0];
11078
11079  // Construct a custom tailored token factor.
11080  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11081                     &Aliases[0], Aliases.size());
11082}
11083
11084// SelectionDAG::Combine - This is the entry point for the file.
11085//
11086void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11087                           CodeGenOpt::Level OptLevel) {
11088  /// run - This is the main entry point to this class.
11089  ///
11090  DAGCombiner(*this, AA, OptLevel).Run(Level);
11091}
11092