DAGCombiner.cpp revision e1679735d6df98bd71808f3c34a32599de0f40a1
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "dagcombine"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NodesCombined   , "Number of dag nodes combined");
44STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
45STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
46STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
47STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
48STATISTIC(SlicedLoads, "Number of load sliced");
49
50namespace {
51  static cl::opt<bool>
52    CombinerAA("combiner-alias-analysis", cl::Hidden,
53               cl::desc("Turn on alias analysis during testing"));
54
55  static cl::opt<bool>
56    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
57               cl::desc("Include global information in alias analysis"));
58
59  /// Hidden option to stress test load slicing, i.e., when this option
60  /// is enabled, load slicing bypasses most of its profitability guards.
61  static cl::opt<bool>
62  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
63                    cl::desc("Bypass the profitability model of load "
64                             "slicing"),
65                    cl::init(false));
66
67//------------------------------ DAGCombiner ---------------------------------//
68
69  class DAGCombiner {
70    SelectionDAG &DAG;
71    const TargetLowering &TLI;
72    CombineLevel Level;
73    CodeGenOpt::Level OptLevel;
74    bool LegalOperations;
75    bool LegalTypes;
76    bool ForCodeSize;
77
78    // Worklist of all of the nodes that need to be simplified.
79    //
80    // This has the semantics that when adding to the worklist,
81    // the item added must be next to be processed. It should
82    // also only appear once. The naive approach to this takes
83    // linear time.
84    //
85    // To reduce the insert/remove time to logarithmic, we use
86    // a set and a vector to maintain our worklist.
87    //
88    // The set contains the items on the worklist, but does not
89    // maintain the order they should be visited.
90    //
91    // The vector maintains the order nodes should be visited, but may
92    // contain duplicate or removed nodes. When choosing a node to
93    // visit, we pop off the order stack until we find an item that is
94    // also in the contents set. All operations are O(log N).
95    SmallPtrSet<SDNode*, 64> WorkListContents;
96    SmallVector<SDNode*, 64> WorkListOrder;
97
98    // AA - Used for DAG load/store alias analysis.
99    AliasAnalysis &AA;
100
101    /// AddUsersToWorkList - When an instruction is simplified, add all users of
102    /// the instruction to the work lists because they might get more simplified
103    /// now.
104    ///
105    void AddUsersToWorkList(SDNode *N) {
106      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
107           UI != UE; ++UI)
108        AddToWorkList(*UI);
109    }
110
111    /// visit - call the node-specific routine that knows how to fold each
112    /// particular type of node.
113    SDValue visit(SDNode *N);
114
115  public:
116    /// AddToWorkList - Add to the work list making sure its instance is at the
117    /// back (next to be processed.)
118    void AddToWorkList(SDNode *N) {
119      WorkListContents.insert(N);
120      WorkListOrder.push_back(N);
121    }
122
123    /// removeFromWorkList - remove all instances of N from the worklist.
124    ///
125    void removeFromWorkList(SDNode *N) {
126      WorkListContents.erase(N);
127    }
128
129    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
130                      bool AddTo = true);
131
132    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
133      return CombineTo(N, &Res, 1, AddTo);
134    }
135
136    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
137                      bool AddTo = true) {
138      SDValue To[] = { Res0, Res1 };
139      return CombineTo(N, To, 2, AddTo);
140    }
141
142    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
143
144  private:
145
146    /// SimplifyDemandedBits - Check the specified integer node value to see if
147    /// it can be simplified or if things it uses can be simplified by bit
148    /// propagation.  If so, return true.
149    bool SimplifyDemandedBits(SDValue Op) {
150      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
151      APInt Demanded = APInt::getAllOnesValue(BitWidth);
152      return SimplifyDemandedBits(Op, Demanded);
153    }
154
155    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
156
157    bool CombineToPreIndexedLoadStore(SDNode *N);
158    bool CombineToPostIndexedLoadStore(SDNode *N);
159    bool SliceUpLoad(SDNode *N);
160
161    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
162    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
163    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
164    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
165    SDValue PromoteIntBinOp(SDValue Op);
166    SDValue PromoteIntShiftOp(SDValue Op);
167    SDValue PromoteExtend(SDValue Op);
168    bool PromoteLoad(SDValue Op);
169
170    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
171                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
172                         ISD::NodeType ExtType);
173
174    /// combine - call the node-specific routine that knows how to fold each
175    /// particular type of node. If that doesn't do anything, try the
176    /// target-specific DAG combines.
177    SDValue combine(SDNode *N);
178
179    // Visitation implementation - Implement dag node combining for different
180    // node types.  The semantics are as follows:
181    // Return Value:
182    //   SDValue.getNode() == 0 - No change was made
183    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
184    //   otherwise              - N should be replaced by the returned Operand.
185    //
186    SDValue visitTokenFactor(SDNode *N);
187    SDValue visitMERGE_VALUES(SDNode *N);
188    SDValue visitADD(SDNode *N);
189    SDValue visitSUB(SDNode *N);
190    SDValue visitADDC(SDNode *N);
191    SDValue visitSUBC(SDNode *N);
192    SDValue visitADDE(SDNode *N);
193    SDValue visitSUBE(SDNode *N);
194    SDValue visitMUL(SDNode *N);
195    SDValue visitSDIV(SDNode *N);
196    SDValue visitUDIV(SDNode *N);
197    SDValue visitSREM(SDNode *N);
198    SDValue visitUREM(SDNode *N);
199    SDValue visitMULHU(SDNode *N);
200    SDValue visitMULHS(SDNode *N);
201    SDValue visitSMUL_LOHI(SDNode *N);
202    SDValue visitUMUL_LOHI(SDNode *N);
203    SDValue visitSMULO(SDNode *N);
204    SDValue visitUMULO(SDNode *N);
205    SDValue visitSDIVREM(SDNode *N);
206    SDValue visitUDIVREM(SDNode *N);
207    SDValue visitAND(SDNode *N);
208    SDValue visitOR(SDNode *N);
209    SDValue visitXOR(SDNode *N);
210    SDValue SimplifyVBinOp(SDNode *N);
211    SDValue SimplifyVUnaryOp(SDNode *N);
212    SDValue visitSHL(SDNode *N);
213    SDValue visitSRA(SDNode *N);
214    SDValue visitSRL(SDNode *N);
215    SDValue visitCTLZ(SDNode *N);
216    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
217    SDValue visitCTTZ(SDNode *N);
218    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
219    SDValue visitCTPOP(SDNode *N);
220    SDValue visitSELECT(SDNode *N);
221    SDValue visitVSELECT(SDNode *N);
222    SDValue visitSELECT_CC(SDNode *N);
223    SDValue visitSETCC(SDNode *N);
224    SDValue visitSIGN_EXTEND(SDNode *N);
225    SDValue visitZERO_EXTEND(SDNode *N);
226    SDValue visitANY_EXTEND(SDNode *N);
227    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
228    SDValue visitTRUNCATE(SDNode *N);
229    SDValue visitBITCAST(SDNode *N);
230    SDValue visitBUILD_PAIR(SDNode *N);
231    SDValue visitFADD(SDNode *N);
232    SDValue visitFSUB(SDNode *N);
233    SDValue visitFMUL(SDNode *N);
234    SDValue visitFMA(SDNode *N);
235    SDValue visitFDIV(SDNode *N);
236    SDValue visitFREM(SDNode *N);
237    SDValue visitFCOPYSIGN(SDNode *N);
238    SDValue visitSINT_TO_FP(SDNode *N);
239    SDValue visitUINT_TO_FP(SDNode *N);
240    SDValue visitFP_TO_SINT(SDNode *N);
241    SDValue visitFP_TO_UINT(SDNode *N);
242    SDValue visitFP_ROUND(SDNode *N);
243    SDValue visitFP_ROUND_INREG(SDNode *N);
244    SDValue visitFP_EXTEND(SDNode *N);
245    SDValue visitFNEG(SDNode *N);
246    SDValue visitFABS(SDNode *N);
247    SDValue visitFCEIL(SDNode *N);
248    SDValue visitFTRUNC(SDNode *N);
249    SDValue visitFFLOOR(SDNode *N);
250    SDValue visitBRCOND(SDNode *N);
251    SDValue visitBR_CC(SDNode *N);
252    SDValue visitLOAD(SDNode *N);
253    SDValue visitSTORE(SDNode *N);
254    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
255    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
256    SDValue visitBUILD_VECTOR(SDNode *N);
257    SDValue visitCONCAT_VECTORS(SDNode *N);
258    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
259    SDValue visitVECTOR_SHUFFLE(SDNode *N);
260
261    SDValue XformToShuffleWithZero(SDNode *N);
262    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
263
264    SDValue visitShiftByConstant(SDNode *N, unsigned Amt);
265
266    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
267    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
268    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
269    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
270                             SDValue N3, ISD::CondCode CC,
271                             bool NotExtCompare = false);
272    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
273                          SDLoc DL, bool foldBooleans = true);
274    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
275                                         unsigned HiOp);
276    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
277    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
278    SDValue BuildSDIV(SDNode *N);
279    SDValue BuildUDIV(SDNode *N);
280    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
281                               bool DemandHighBits = true);
282    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
283    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
284    SDValue ReduceLoadWidth(SDNode *N);
285    SDValue ReduceLoadOpStoreWidth(SDNode *N);
286    SDValue TransformFPLoadStorePair(SDNode *N);
287    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
288    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
289
290    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
291
292    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
293    /// looking for aliasing nodes and adding them to the Aliases vector.
294    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
295                          SmallVectorImpl<SDValue> &Aliases);
296
297    /// isAlias - Return true if there is any possibility that the two addresses
298    /// overlap.
299    bool isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
300                 const Value *SrcValue1, int SrcValueOffset1,
301                 unsigned SrcValueAlign1,
302                 const MDNode *TBAAInfo1,
303                 SDValue Ptr2, int64_t Size2, bool IsVolatile2,
304                 const Value *SrcValue2, int SrcValueOffset2,
305                 unsigned SrcValueAlign2,
306                 const MDNode *TBAAInfo2) const;
307
308    /// isAlias - Return true if there is any possibility that the two addresses
309    /// overlap.
310    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1);
311
312    /// FindAliasInfo - Extracts the relevant alias information from the memory
313    /// node.  Returns true if the operand was a load.
314    bool FindAliasInfo(SDNode *N,
315                       SDValue &Ptr, int64_t &Size, bool &IsVolatile,
316                       const Value *&SrcValue, int &SrcValueOffset,
317                       unsigned &SrcValueAlignment,
318                       const MDNode *&TBAAInfo) const;
319
320    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
321    /// looking for a better chain (aliasing node.)
322    SDValue FindBetterChain(SDNode *N, SDValue Chain);
323
324    /// Merge consecutive store operations into a wide store.
325    /// This optimization uses wide integers or vectors when possible.
326    /// \return True if some memory operations were changed.
327    bool MergeConsecutiveStores(StoreSDNode *N);
328
329  public:
330    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
331        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
332          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
333      AttributeSet FnAttrs =
334          DAG.getMachineFunction().getFunction()->getAttributes();
335      ForCodeSize =
336          FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
337                               Attribute::OptimizeForSize) ||
338          FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
339    }
340
341    /// Run - runs the dag combiner on all nodes in the work list
342    void Run(CombineLevel AtLevel);
343
344    SelectionDAG &getDAG() const { return DAG; }
345
346    /// getShiftAmountTy - Returns a type large enough to hold any valid
347    /// shift amount - before type legalization these can be huge.
348    EVT getShiftAmountTy(EVT LHSTy) {
349      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
350      if (LHSTy.isVector())
351        return LHSTy;
352      return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
353                        : TLI.getPointerTy();
354    }
355
356    /// isTypeLegal - This method returns true if we are running before type
357    /// legalization or if the specified VT is legal.
358    bool isTypeLegal(const EVT &VT) {
359      if (!LegalTypes) return true;
360      return TLI.isTypeLegal(VT);
361    }
362
363    /// getSetCCResultType - Convenience wrapper around
364    /// TargetLowering::getSetCCResultType
365    EVT getSetCCResultType(EVT VT) const {
366      return TLI.getSetCCResultType(*DAG.getContext(), VT);
367    }
368  };
369}
370
371
372namespace {
373/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
374/// nodes from the worklist.
375class WorkListRemover : public SelectionDAG::DAGUpdateListener {
376  DAGCombiner &DC;
377public:
378  explicit WorkListRemover(DAGCombiner &dc)
379    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
380
381  virtual void NodeDeleted(SDNode *N, SDNode *E) {
382    DC.removeFromWorkList(N);
383  }
384};
385}
386
387//===----------------------------------------------------------------------===//
388//  TargetLowering::DAGCombinerInfo implementation
389//===----------------------------------------------------------------------===//
390
391void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
392  ((DAGCombiner*)DC)->AddToWorkList(N);
393}
394
395void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
396  ((DAGCombiner*)DC)->removeFromWorkList(N);
397}
398
399SDValue TargetLowering::DAGCombinerInfo::
400CombineTo(SDNode *N, const std::vector<SDValue> &To, bool AddTo) {
401  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
402}
403
404SDValue TargetLowering::DAGCombinerInfo::
405CombineTo(SDNode *N, SDValue Res, bool AddTo) {
406  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
407}
408
409
410SDValue TargetLowering::DAGCombinerInfo::
411CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
412  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
413}
414
415void TargetLowering::DAGCombinerInfo::
416CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
417  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
418}
419
420//===----------------------------------------------------------------------===//
421// Helper Functions
422//===----------------------------------------------------------------------===//
423
424/// isNegatibleForFree - Return 1 if we can compute the negated form of the
425/// specified expression for the same cost as the expression itself, or 2 if we
426/// can compute the negated form more cheaply than the expression itself.
427static char isNegatibleForFree(SDValue Op, bool LegalOperations,
428                               const TargetLowering &TLI,
429                               const TargetOptions *Options,
430                               unsigned Depth = 0) {
431  // fneg is removable even if it has multiple uses.
432  if (Op.getOpcode() == ISD::FNEG) return 2;
433
434  // Don't allow anything with multiple uses.
435  if (!Op.hasOneUse()) return 0;
436
437  // Don't recurse exponentially.
438  if (Depth > 6) return 0;
439
440  switch (Op.getOpcode()) {
441  default: return false;
442  case ISD::ConstantFP:
443    // Don't invert constant FP values after legalize.  The negated constant
444    // isn't necessarily legal.
445    return LegalOperations ? 0 : 1;
446  case ISD::FADD:
447    // FIXME: determine better conditions for this xform.
448    if (!Options->UnsafeFPMath) return 0;
449
450    // After operation legalization, it might not be legal to create new FSUBs.
451    if (LegalOperations &&
452        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
453      return 0;
454
455    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
456    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
457                                    Options, Depth + 1))
458      return V;
459    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
460    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
461                              Depth + 1);
462  case ISD::FSUB:
463    // We can't turn -(A-B) into B-A when we honor signed zeros.
464    if (!Options->UnsafeFPMath) return 0;
465
466    // fold (fneg (fsub A, B)) -> (fsub B, A)
467    return 1;
468
469  case ISD::FMUL:
470  case ISD::FDIV:
471    if (Options->HonorSignDependentRoundingFPMath()) return 0;
472
473    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
474    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
475                                    Options, Depth + 1))
476      return V;
477
478    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
479                              Depth + 1);
480
481  case ISD::FP_EXTEND:
482  case ISD::FP_ROUND:
483  case ISD::FSIN:
484    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
485                              Depth + 1);
486  }
487}
488
489/// GetNegatedExpression - If isNegatibleForFree returns true, this function
490/// returns the newly negated expression.
491static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
492                                    bool LegalOperations, unsigned Depth = 0) {
493  // fneg is removable even if it has multiple uses.
494  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
495
496  // Don't allow anything with multiple uses.
497  assert(Op.hasOneUse() && "Unknown reuse!");
498
499  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
500  switch (Op.getOpcode()) {
501  default: llvm_unreachable("Unknown code");
502  case ISD::ConstantFP: {
503    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
504    V.changeSign();
505    return DAG.getConstantFP(V, Op.getValueType());
506  }
507  case ISD::FADD:
508    // FIXME: determine better conditions for this xform.
509    assert(DAG.getTarget().Options.UnsafeFPMath);
510
511    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
512    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
513                           DAG.getTargetLoweringInfo(),
514                           &DAG.getTarget().Options, Depth+1))
515      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
516                         GetNegatedExpression(Op.getOperand(0), DAG,
517                                              LegalOperations, Depth+1),
518                         Op.getOperand(1));
519    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
520    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
521                       GetNegatedExpression(Op.getOperand(1), DAG,
522                                            LegalOperations, Depth+1),
523                       Op.getOperand(0));
524  case ISD::FSUB:
525    // We can't turn -(A-B) into B-A when we honor signed zeros.
526    assert(DAG.getTarget().Options.UnsafeFPMath);
527
528    // fold (fneg (fsub 0, B)) -> B
529    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
530      if (N0CFP->getValueAPF().isZero())
531        return Op.getOperand(1);
532
533    // fold (fneg (fsub A, B)) -> (fsub B, A)
534    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
535                       Op.getOperand(1), Op.getOperand(0));
536
537  case ISD::FMUL:
538  case ISD::FDIV:
539    assert(!DAG.getTarget().Options.HonorSignDependentRoundingFPMath());
540
541    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
542    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
543                           DAG.getTargetLoweringInfo(),
544                           &DAG.getTarget().Options, Depth+1))
545      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
546                         GetNegatedExpression(Op.getOperand(0), DAG,
547                                              LegalOperations, Depth+1),
548                         Op.getOperand(1));
549
550    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
551    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
552                       Op.getOperand(0),
553                       GetNegatedExpression(Op.getOperand(1), DAG,
554                                            LegalOperations, Depth+1));
555
556  case ISD::FP_EXTEND:
557  case ISD::FSIN:
558    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
559                       GetNegatedExpression(Op.getOperand(0), DAG,
560                                            LegalOperations, Depth+1));
561  case ISD::FP_ROUND:
562      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
563                         GetNegatedExpression(Op.getOperand(0), DAG,
564                                              LegalOperations, Depth+1),
565                         Op.getOperand(1));
566  }
567}
568
569
570// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
571// that selects between the values 1 and 0, making it equivalent to a setcc.
572// Also, set the incoming LHS, RHS, and CC references to the appropriate
573// nodes based on the type of node we are checking.  This simplifies life a
574// bit for the callers.
575static bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
576                              SDValue &CC) {
577  if (N.getOpcode() == ISD::SETCC) {
578    LHS = N.getOperand(0);
579    RHS = N.getOperand(1);
580    CC  = N.getOperand(2);
581    return true;
582  }
583  if (N.getOpcode() == ISD::SELECT_CC &&
584      N.getOperand(2).getOpcode() == ISD::Constant &&
585      N.getOperand(3).getOpcode() == ISD::Constant &&
586      cast<ConstantSDNode>(N.getOperand(2))->getAPIntValue() == 1 &&
587      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
588    LHS = N.getOperand(0);
589    RHS = N.getOperand(1);
590    CC  = N.getOperand(4);
591    return true;
592  }
593  return false;
594}
595
596// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
597// one use.  If this is true, it allows the users to invert the operation for
598// free when it is profitable to do so.
599static bool isOneUseSetCC(SDValue N) {
600  SDValue N0, N1, N2;
601  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
602    return true;
603  return false;
604}
605
606SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
607                                    SDValue N0, SDValue N1) {
608  EVT VT = N0.getValueType();
609  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
610    if (isa<ConstantSDNode>(N1)) {
611      // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
612      SDValue OpNode =
613        DAG.FoldConstantArithmetic(Opc, VT,
614                                   cast<ConstantSDNode>(N0.getOperand(1)),
615                                   cast<ConstantSDNode>(N1));
616      return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
617    }
618    if (N0.hasOneUse()) {
619      // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
620      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
621                                   N0.getOperand(0), N1);
622      AddToWorkList(OpNode.getNode());
623      return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
624    }
625  }
626
627  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
628    if (isa<ConstantSDNode>(N0)) {
629      // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
630      SDValue OpNode =
631        DAG.FoldConstantArithmetic(Opc, VT,
632                                   cast<ConstantSDNode>(N1.getOperand(1)),
633                                   cast<ConstantSDNode>(N0));
634      return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
635    }
636    if (N1.hasOneUse()) {
637      // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
638      SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT,
639                                   N1.getOperand(0), N0);
640      AddToWorkList(OpNode.getNode());
641      return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
642    }
643  }
644
645  return SDValue();
646}
647
648SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
649                               bool AddTo) {
650  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
651  ++NodesCombined;
652  DEBUG(dbgs() << "\nReplacing.1 ";
653        N->dump(&DAG);
654        dbgs() << "\nWith: ";
655        To[0].getNode()->dump(&DAG);
656        dbgs() << " and " << NumTo-1 << " other values\n";
657        for (unsigned i = 0, e = NumTo; i != e; ++i)
658          assert((!To[i].getNode() ||
659                  N->getValueType(i) == To[i].getValueType()) &&
660                 "Cannot combine value to value of different type!"));
661  WorkListRemover DeadNodes(*this);
662  DAG.ReplaceAllUsesWith(N, To);
663  if (AddTo) {
664    // Push the new nodes and any users onto the worklist
665    for (unsigned i = 0, e = NumTo; i != e; ++i) {
666      if (To[i].getNode()) {
667        AddToWorkList(To[i].getNode());
668        AddUsersToWorkList(To[i].getNode());
669      }
670    }
671  }
672
673  // Finally, if the node is now dead, remove it from the graph.  The node
674  // may not be dead if the replacement process recursively simplified to
675  // something else needing this node.
676  if (N->use_empty()) {
677    // Nodes can be reintroduced into the worklist.  Make sure we do not
678    // process a node that has been replaced.
679    removeFromWorkList(N);
680
681    // Finally, since the node is now dead, remove it from the graph.
682    DAG.DeleteNode(N);
683  }
684  return SDValue(N, 0);
685}
686
687void DAGCombiner::
688CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
689  // Replace all uses.  If any nodes become isomorphic to other nodes and
690  // are deleted, make sure to remove them from our worklist.
691  WorkListRemover DeadNodes(*this);
692  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
693
694  // Push the new node and any (possibly new) users onto the worklist.
695  AddToWorkList(TLO.New.getNode());
696  AddUsersToWorkList(TLO.New.getNode());
697
698  // Finally, if the node is now dead, remove it from the graph.  The node
699  // may not be dead if the replacement process recursively simplified to
700  // something else needing this node.
701  if (TLO.Old.getNode()->use_empty()) {
702    removeFromWorkList(TLO.Old.getNode());
703
704    // If the operands of this node are only used by the node, they will now
705    // be dead.  Make sure to visit them first to delete dead nodes early.
706    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); i != e; ++i)
707      if (TLO.Old.getNode()->getOperand(i).getNode()->hasOneUse())
708        AddToWorkList(TLO.Old.getNode()->getOperand(i).getNode());
709
710    DAG.DeleteNode(TLO.Old.getNode());
711  }
712}
713
714/// SimplifyDemandedBits - Check the specified integer node value to see if
715/// it can be simplified or if things it uses can be simplified by bit
716/// propagation.  If so, return true.
717bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
718  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
719  APInt KnownZero, KnownOne;
720  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
721    return false;
722
723  // Revisit the node.
724  AddToWorkList(Op.getNode());
725
726  // Replace the old value with the new one.
727  ++NodesCombined;
728  DEBUG(dbgs() << "\nReplacing.2 ";
729        TLO.Old.getNode()->dump(&DAG);
730        dbgs() << "\nWith: ";
731        TLO.New.getNode()->dump(&DAG);
732        dbgs() << '\n');
733
734  CommitTargetLoweringOpt(TLO);
735  return true;
736}
737
738void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
739  SDLoc dl(Load);
740  EVT VT = Load->getValueType(0);
741  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
742
743  DEBUG(dbgs() << "\nReplacing.9 ";
744        Load->dump(&DAG);
745        dbgs() << "\nWith: ";
746        Trunc.getNode()->dump(&DAG);
747        dbgs() << '\n');
748  WorkListRemover DeadNodes(*this);
749  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
750  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
751  removeFromWorkList(Load);
752  DAG.DeleteNode(Load);
753  AddToWorkList(Trunc.getNode());
754}
755
756SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
757  Replace = false;
758  SDLoc dl(Op);
759  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
760    EVT MemVT = LD->getMemoryVT();
761    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
762      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
763                                                  : ISD::EXTLOAD)
764      : LD->getExtensionType();
765    Replace = true;
766    return DAG.getExtLoad(ExtType, dl, PVT,
767                          LD->getChain(), LD->getBasePtr(),
768                          MemVT, LD->getMemOperand());
769  }
770
771  unsigned Opc = Op.getOpcode();
772  switch (Opc) {
773  default: break;
774  case ISD::AssertSext:
775    return DAG.getNode(ISD::AssertSext, dl, PVT,
776                       SExtPromoteOperand(Op.getOperand(0), PVT),
777                       Op.getOperand(1));
778  case ISD::AssertZext:
779    return DAG.getNode(ISD::AssertZext, dl, PVT,
780                       ZExtPromoteOperand(Op.getOperand(0), PVT),
781                       Op.getOperand(1));
782  case ISD::Constant: {
783    unsigned ExtOpc =
784      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
785    return DAG.getNode(ExtOpc, dl, PVT, Op);
786  }
787  }
788
789  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
790    return SDValue();
791  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
792}
793
794SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
795  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
796    return SDValue();
797  EVT OldVT = Op.getValueType();
798  SDLoc dl(Op);
799  bool Replace = false;
800  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
801  if (NewOp.getNode() == 0)
802    return SDValue();
803  AddToWorkList(NewOp.getNode());
804
805  if (Replace)
806    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
807  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
808                     DAG.getValueType(OldVT));
809}
810
811SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
812  EVT OldVT = Op.getValueType();
813  SDLoc dl(Op);
814  bool Replace = false;
815  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
816  if (NewOp.getNode() == 0)
817    return SDValue();
818  AddToWorkList(NewOp.getNode());
819
820  if (Replace)
821    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
822  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
823}
824
825/// PromoteIntBinOp - Promote the specified integer binary operation if the
826/// target indicates it is beneficial. e.g. On x86, it's usually better to
827/// promote i16 operations to i32 since i16 instructions are longer.
828SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
829  if (!LegalOperations)
830    return SDValue();
831
832  EVT VT = Op.getValueType();
833  if (VT.isVector() || !VT.isInteger())
834    return SDValue();
835
836  // If operation type is 'undesirable', e.g. i16 on x86, consider
837  // promoting it.
838  unsigned Opc = Op.getOpcode();
839  if (TLI.isTypeDesirableForOp(Opc, VT))
840    return SDValue();
841
842  EVT PVT = VT;
843  // Consult target whether it is a good idea to promote this operation and
844  // what's the right type to promote it to.
845  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
846    assert(PVT != VT && "Don't know what type to promote to!");
847
848    bool Replace0 = false;
849    SDValue N0 = Op.getOperand(0);
850    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
851    if (NN0.getNode() == 0)
852      return SDValue();
853
854    bool Replace1 = false;
855    SDValue N1 = Op.getOperand(1);
856    SDValue NN1;
857    if (N0 == N1)
858      NN1 = NN0;
859    else {
860      NN1 = PromoteOperand(N1, PVT, Replace1);
861      if (NN1.getNode() == 0)
862        return SDValue();
863    }
864
865    AddToWorkList(NN0.getNode());
866    if (NN1.getNode())
867      AddToWorkList(NN1.getNode());
868
869    if (Replace0)
870      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
871    if (Replace1)
872      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
873
874    DEBUG(dbgs() << "\nPromoting ";
875          Op.getNode()->dump(&DAG));
876    SDLoc dl(Op);
877    return DAG.getNode(ISD::TRUNCATE, dl, VT,
878                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
879  }
880  return SDValue();
881}
882
883/// PromoteIntShiftOp - Promote the specified integer shift operation if the
884/// target indicates it is beneficial. e.g. On x86, it's usually better to
885/// promote i16 operations to i32 since i16 instructions are longer.
886SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
887  if (!LegalOperations)
888    return SDValue();
889
890  EVT VT = Op.getValueType();
891  if (VT.isVector() || !VT.isInteger())
892    return SDValue();
893
894  // If operation type is 'undesirable', e.g. i16 on x86, consider
895  // promoting it.
896  unsigned Opc = Op.getOpcode();
897  if (TLI.isTypeDesirableForOp(Opc, VT))
898    return SDValue();
899
900  EVT PVT = VT;
901  // Consult target whether it is a good idea to promote this operation and
902  // what's the right type to promote it to.
903  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
904    assert(PVT != VT && "Don't know what type to promote to!");
905
906    bool Replace = false;
907    SDValue N0 = Op.getOperand(0);
908    if (Opc == ISD::SRA)
909      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
910    else if (Opc == ISD::SRL)
911      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
912    else
913      N0 = PromoteOperand(N0, PVT, Replace);
914    if (N0.getNode() == 0)
915      return SDValue();
916
917    AddToWorkList(N0.getNode());
918    if (Replace)
919      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
920
921    DEBUG(dbgs() << "\nPromoting ";
922          Op.getNode()->dump(&DAG));
923    SDLoc dl(Op);
924    return DAG.getNode(ISD::TRUNCATE, dl, VT,
925                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
926  }
927  return SDValue();
928}
929
930SDValue DAGCombiner::PromoteExtend(SDValue Op) {
931  if (!LegalOperations)
932    return SDValue();
933
934  EVT VT = Op.getValueType();
935  if (VT.isVector() || !VT.isInteger())
936    return SDValue();
937
938  // If operation type is 'undesirable', e.g. i16 on x86, consider
939  // promoting it.
940  unsigned Opc = Op.getOpcode();
941  if (TLI.isTypeDesirableForOp(Opc, VT))
942    return SDValue();
943
944  EVT PVT = VT;
945  // Consult target whether it is a good idea to promote this operation and
946  // what's the right type to promote it to.
947  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
948    assert(PVT != VT && "Don't know what type to promote to!");
949    // fold (aext (aext x)) -> (aext x)
950    // fold (aext (zext x)) -> (zext x)
951    // fold (aext (sext x)) -> (sext x)
952    DEBUG(dbgs() << "\nPromoting ";
953          Op.getNode()->dump(&DAG));
954    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
955  }
956  return SDValue();
957}
958
959bool DAGCombiner::PromoteLoad(SDValue Op) {
960  if (!LegalOperations)
961    return false;
962
963  EVT VT = Op.getValueType();
964  if (VT.isVector() || !VT.isInteger())
965    return false;
966
967  // If operation type is 'undesirable', e.g. i16 on x86, consider
968  // promoting it.
969  unsigned Opc = Op.getOpcode();
970  if (TLI.isTypeDesirableForOp(Opc, VT))
971    return false;
972
973  EVT PVT = VT;
974  // Consult target whether it is a good idea to promote this operation and
975  // what's the right type to promote it to.
976  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
977    assert(PVT != VT && "Don't know what type to promote to!");
978
979    SDLoc dl(Op);
980    SDNode *N = Op.getNode();
981    LoadSDNode *LD = cast<LoadSDNode>(N);
982    EVT MemVT = LD->getMemoryVT();
983    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
984      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT) ? ISD::ZEXTLOAD
985                                                  : ISD::EXTLOAD)
986      : LD->getExtensionType();
987    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
988                                   LD->getChain(), LD->getBasePtr(),
989                                   MemVT, LD->getMemOperand());
990    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
991
992    DEBUG(dbgs() << "\nPromoting ";
993          N->dump(&DAG);
994          dbgs() << "\nTo: ";
995          Result.getNode()->dump(&DAG);
996          dbgs() << '\n');
997    WorkListRemover DeadNodes(*this);
998    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
999    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1000    removeFromWorkList(N);
1001    DAG.DeleteNode(N);
1002    AddToWorkList(Result.getNode());
1003    return true;
1004  }
1005  return false;
1006}
1007
1008
1009//===----------------------------------------------------------------------===//
1010//  Main DAG Combiner implementation
1011//===----------------------------------------------------------------------===//
1012
1013void DAGCombiner::Run(CombineLevel AtLevel) {
1014  // set the instance variables, so that the various visit routines may use it.
1015  Level = AtLevel;
1016  LegalOperations = Level >= AfterLegalizeVectorOps;
1017  LegalTypes = Level >= AfterLegalizeTypes;
1018
1019  // Add all the dag nodes to the worklist.
1020  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
1021       E = DAG.allnodes_end(); I != E; ++I)
1022    AddToWorkList(I);
1023
1024  // Create a dummy node (which is not added to allnodes), that adds a reference
1025  // to the root node, preventing it from being deleted, and tracking any
1026  // changes of the root.
1027  HandleSDNode Dummy(DAG.getRoot());
1028
1029  // The root of the dag may dangle to deleted nodes until the dag combiner is
1030  // done.  Set it to null to avoid confusion.
1031  DAG.setRoot(SDValue());
1032
1033  // while the worklist isn't empty, find a node and
1034  // try and combine it.
1035  while (!WorkListContents.empty()) {
1036    SDNode *N;
1037    // The WorkListOrder holds the SDNodes in order, but it may contain
1038    // duplicates.
1039    // In order to avoid a linear scan, we use a set (O(log N)) to hold what the
1040    // worklist *should* contain, and check the node we want to visit is should
1041    // actually be visited.
1042    do {
1043      N = WorkListOrder.pop_back_val();
1044    } while (!WorkListContents.erase(N));
1045
1046    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1047    // N is deleted from the DAG, since they too may now be dead or may have a
1048    // reduced number of uses, allowing other xforms.
1049    if (N->use_empty() && N != &Dummy) {
1050      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1051        AddToWorkList(N->getOperand(i).getNode());
1052
1053      DAG.DeleteNode(N);
1054      continue;
1055    }
1056
1057    SDValue RV = combine(N);
1058
1059    if (RV.getNode() == 0)
1060      continue;
1061
1062    ++NodesCombined;
1063
1064    // If we get back the same node we passed in, rather than a new node or
1065    // zero, we know that the node must have defined multiple values and
1066    // CombineTo was used.  Since CombineTo takes care of the worklist
1067    // mechanics for us, we have no work to do in this case.
1068    if (RV.getNode() == N)
1069      continue;
1070
1071    assert(N->getOpcode() != ISD::DELETED_NODE &&
1072           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1073           "Node was deleted but visit returned new node!");
1074
1075    DEBUG(dbgs() << "\nReplacing.3 ";
1076          N->dump(&DAG);
1077          dbgs() << "\nWith: ";
1078          RV.getNode()->dump(&DAG);
1079          dbgs() << '\n');
1080
1081    // Transfer debug value.
1082    DAG.TransferDbgValues(SDValue(N, 0), RV);
1083    WorkListRemover DeadNodes(*this);
1084    if (N->getNumValues() == RV.getNode()->getNumValues())
1085      DAG.ReplaceAllUsesWith(N, RV.getNode());
1086    else {
1087      assert(N->getValueType(0) == RV.getValueType() &&
1088             N->getNumValues() == 1 && "Type mismatch");
1089      SDValue OpV = RV;
1090      DAG.ReplaceAllUsesWith(N, &OpV);
1091    }
1092
1093    // Push the new node and any users onto the worklist
1094    AddToWorkList(RV.getNode());
1095    AddUsersToWorkList(RV.getNode());
1096
1097    // Add any uses of the old node to the worklist in case this node is the
1098    // last one that uses them.  They may become dead after this node is
1099    // deleted.
1100    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1101      AddToWorkList(N->getOperand(i).getNode());
1102
1103    // Finally, if the node is now dead, remove it from the graph.  The node
1104    // may not be dead if the replacement process recursively simplified to
1105    // something else needing this node.
1106    if (N->use_empty()) {
1107      // Nodes can be reintroduced into the worklist.  Make sure we do not
1108      // process a node that has been replaced.
1109      removeFromWorkList(N);
1110
1111      // Finally, since the node is now dead, remove it from the graph.
1112      DAG.DeleteNode(N);
1113    }
1114  }
1115
1116  // If the root changed (e.g. it was a dead load, update the root).
1117  DAG.setRoot(Dummy.getValue());
1118  DAG.RemoveDeadNodes();
1119}
1120
1121SDValue DAGCombiner::visit(SDNode *N) {
1122  switch (N->getOpcode()) {
1123  default: break;
1124  case ISD::TokenFactor:        return visitTokenFactor(N);
1125  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1126  case ISD::ADD:                return visitADD(N);
1127  case ISD::SUB:                return visitSUB(N);
1128  case ISD::ADDC:               return visitADDC(N);
1129  case ISD::SUBC:               return visitSUBC(N);
1130  case ISD::ADDE:               return visitADDE(N);
1131  case ISD::SUBE:               return visitSUBE(N);
1132  case ISD::MUL:                return visitMUL(N);
1133  case ISD::SDIV:               return visitSDIV(N);
1134  case ISD::UDIV:               return visitUDIV(N);
1135  case ISD::SREM:               return visitSREM(N);
1136  case ISD::UREM:               return visitUREM(N);
1137  case ISD::MULHU:              return visitMULHU(N);
1138  case ISD::MULHS:              return visitMULHS(N);
1139  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1140  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1141  case ISD::SMULO:              return visitSMULO(N);
1142  case ISD::UMULO:              return visitUMULO(N);
1143  case ISD::SDIVREM:            return visitSDIVREM(N);
1144  case ISD::UDIVREM:            return visitUDIVREM(N);
1145  case ISD::AND:                return visitAND(N);
1146  case ISD::OR:                 return visitOR(N);
1147  case ISD::XOR:                return visitXOR(N);
1148  case ISD::SHL:                return visitSHL(N);
1149  case ISD::SRA:                return visitSRA(N);
1150  case ISD::SRL:                return visitSRL(N);
1151  case ISD::CTLZ:               return visitCTLZ(N);
1152  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1153  case ISD::CTTZ:               return visitCTTZ(N);
1154  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1155  case ISD::CTPOP:              return visitCTPOP(N);
1156  case ISD::SELECT:             return visitSELECT(N);
1157  case ISD::VSELECT:            return visitVSELECT(N);
1158  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1159  case ISD::SETCC:              return visitSETCC(N);
1160  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1161  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1162  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1163  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1164  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1165  case ISD::BITCAST:            return visitBITCAST(N);
1166  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1167  case ISD::FADD:               return visitFADD(N);
1168  case ISD::FSUB:               return visitFSUB(N);
1169  case ISD::FMUL:               return visitFMUL(N);
1170  case ISD::FMA:                return visitFMA(N);
1171  case ISD::FDIV:               return visitFDIV(N);
1172  case ISD::FREM:               return visitFREM(N);
1173  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1174  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1175  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1176  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1177  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1178  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1179  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1180  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1181  case ISD::FNEG:               return visitFNEG(N);
1182  case ISD::FABS:               return visitFABS(N);
1183  case ISD::FFLOOR:             return visitFFLOOR(N);
1184  case ISD::FCEIL:              return visitFCEIL(N);
1185  case ISD::FTRUNC:             return visitFTRUNC(N);
1186  case ISD::BRCOND:             return visitBRCOND(N);
1187  case ISD::BR_CC:              return visitBR_CC(N);
1188  case ISD::LOAD:               return visitLOAD(N);
1189  case ISD::STORE:              return visitSTORE(N);
1190  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1191  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1192  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1193  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1194  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1195  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1196  }
1197  return SDValue();
1198}
1199
1200SDValue DAGCombiner::combine(SDNode *N) {
1201  SDValue RV = visit(N);
1202
1203  // If nothing happened, try a target-specific DAG combine.
1204  if (RV.getNode() == 0) {
1205    assert(N->getOpcode() != ISD::DELETED_NODE &&
1206           "Node was deleted but visit returned NULL!");
1207
1208    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1209        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1210
1211      // Expose the DAG combiner to the target combiner impls.
1212      TargetLowering::DAGCombinerInfo
1213        DagCombineInfo(DAG, Level, false, this);
1214
1215      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1216    }
1217  }
1218
1219  // If nothing happened still, try promoting the operation.
1220  if (RV.getNode() == 0) {
1221    switch (N->getOpcode()) {
1222    default: break;
1223    case ISD::ADD:
1224    case ISD::SUB:
1225    case ISD::MUL:
1226    case ISD::AND:
1227    case ISD::OR:
1228    case ISD::XOR:
1229      RV = PromoteIntBinOp(SDValue(N, 0));
1230      break;
1231    case ISD::SHL:
1232    case ISD::SRA:
1233    case ISD::SRL:
1234      RV = PromoteIntShiftOp(SDValue(N, 0));
1235      break;
1236    case ISD::SIGN_EXTEND:
1237    case ISD::ZERO_EXTEND:
1238    case ISD::ANY_EXTEND:
1239      RV = PromoteExtend(SDValue(N, 0));
1240      break;
1241    case ISD::LOAD:
1242      if (PromoteLoad(SDValue(N, 0)))
1243        RV = SDValue(N, 0);
1244      break;
1245    }
1246  }
1247
1248  // If N is a commutative binary node, try commuting it to enable more
1249  // sdisel CSE.
1250  if (RV.getNode() == 0 &&
1251      SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1252      N->getNumValues() == 1) {
1253    SDValue N0 = N->getOperand(0);
1254    SDValue N1 = N->getOperand(1);
1255
1256    // Constant operands are canonicalized to RHS.
1257    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1258      SDValue Ops[] = { N1, N0 };
1259      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(),
1260                                            Ops, 2);
1261      if (CSENode)
1262        return SDValue(CSENode, 0);
1263    }
1264  }
1265
1266  return RV;
1267}
1268
1269/// getInputChainForNode - Given a node, return its input chain if it has one,
1270/// otherwise return a null sd operand.
1271static SDValue getInputChainForNode(SDNode *N) {
1272  if (unsigned NumOps = N->getNumOperands()) {
1273    if (N->getOperand(0).getValueType() == MVT::Other)
1274      return N->getOperand(0);
1275    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1276      return N->getOperand(NumOps-1);
1277    for (unsigned i = 1; i < NumOps-1; ++i)
1278      if (N->getOperand(i).getValueType() == MVT::Other)
1279        return N->getOperand(i);
1280  }
1281  return SDValue();
1282}
1283
1284SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1285  // If N has two operands, where one has an input chain equal to the other,
1286  // the 'other' chain is redundant.
1287  if (N->getNumOperands() == 2) {
1288    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1289      return N->getOperand(0);
1290    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1291      return N->getOperand(1);
1292  }
1293
1294  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1295  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1296  SmallPtrSet<SDNode*, 16> SeenOps;
1297  bool Changed = false;             // If we should replace this token factor.
1298
1299  // Start out with this token factor.
1300  TFs.push_back(N);
1301
1302  // Iterate through token factors.  The TFs grows when new token factors are
1303  // encountered.
1304  for (unsigned i = 0; i < TFs.size(); ++i) {
1305    SDNode *TF = TFs[i];
1306
1307    // Check each of the operands.
1308    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
1309      SDValue Op = TF->getOperand(i);
1310
1311      switch (Op.getOpcode()) {
1312      case ISD::EntryToken:
1313        // Entry tokens don't need to be added to the list. They are
1314        // rededundant.
1315        Changed = true;
1316        break;
1317
1318      case ISD::TokenFactor:
1319        if (Op.hasOneUse() &&
1320            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1321          // Queue up for processing.
1322          TFs.push_back(Op.getNode());
1323          // Clean up in case the token factor is removed.
1324          AddToWorkList(Op.getNode());
1325          Changed = true;
1326          break;
1327        }
1328        // Fall thru
1329
1330      default:
1331        // Only add if it isn't already in the list.
1332        if (SeenOps.insert(Op.getNode()))
1333          Ops.push_back(Op);
1334        else
1335          Changed = true;
1336        break;
1337      }
1338    }
1339  }
1340
1341  SDValue Result;
1342
1343  // If we've change things around then replace token factor.
1344  if (Changed) {
1345    if (Ops.empty()) {
1346      // The entry token is the only possible outcome.
1347      Result = DAG.getEntryNode();
1348    } else {
1349      // New and improved token factor.
1350      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N),
1351                           MVT::Other, &Ops[0], Ops.size());
1352    }
1353
1354    // Don't add users to work list.
1355    return CombineTo(N, Result, false);
1356  }
1357
1358  return Result;
1359}
1360
1361/// MERGE_VALUES can always be eliminated.
1362SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1363  WorkListRemover DeadNodes(*this);
1364  // Replacing results may cause a different MERGE_VALUES to suddenly
1365  // be CSE'd with N, and carry its uses with it. Iterate until no
1366  // uses remain, to ensure that the node can be safely deleted.
1367  // First add the users of this node to the work list so that they
1368  // can be tried again once they have new operands.
1369  AddUsersToWorkList(N);
1370  do {
1371    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1372      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1373  } while (!N->use_empty());
1374  removeFromWorkList(N);
1375  DAG.DeleteNode(N);
1376  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1377}
1378
1379static
1380SDValue combineShlAddConstant(SDLoc DL, SDValue N0, SDValue N1,
1381                              SelectionDAG &DAG) {
1382  EVT VT = N0.getValueType();
1383  SDValue N00 = N0.getOperand(0);
1384  SDValue N01 = N0.getOperand(1);
1385  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
1386
1387  if (N01C && N00.getOpcode() == ISD::ADD && N00.getNode()->hasOneUse() &&
1388      isa<ConstantSDNode>(N00.getOperand(1))) {
1389    // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1390    N0 = DAG.getNode(ISD::ADD, SDLoc(N0), VT,
1391                     DAG.getNode(ISD::SHL, SDLoc(N00), VT,
1392                                 N00.getOperand(0), N01),
1393                     DAG.getNode(ISD::SHL, SDLoc(N01), VT,
1394                                 N00.getOperand(1), N01));
1395    return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
1396  }
1397
1398  return SDValue();
1399}
1400
1401SDValue DAGCombiner::visitADD(SDNode *N) {
1402  SDValue N0 = N->getOperand(0);
1403  SDValue N1 = N->getOperand(1);
1404  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1406  EVT VT = N0.getValueType();
1407
1408  // fold vector ops
1409  if (VT.isVector()) {
1410    SDValue FoldedVOp = SimplifyVBinOp(N);
1411    if (FoldedVOp.getNode()) return FoldedVOp;
1412
1413    // fold (add x, 0) -> x, vector edition
1414    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1415      return N0;
1416    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1417      return N1;
1418  }
1419
1420  // fold (add x, undef) -> undef
1421  if (N0.getOpcode() == ISD::UNDEF)
1422    return N0;
1423  if (N1.getOpcode() == ISD::UNDEF)
1424    return N1;
1425  // fold (add c1, c2) -> c1+c2
1426  if (N0C && N1C)
1427    return DAG.FoldConstantArithmetic(ISD::ADD, VT, N0C, N1C);
1428  // canonicalize constant to RHS
1429  if (N0C && !N1C)
1430    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1431  // fold (add x, 0) -> x
1432  if (N1C && N1C->isNullValue())
1433    return N0;
1434  // fold (add Sym, c) -> Sym+c
1435  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1436    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1437        GA->getOpcode() == ISD::GlobalAddress)
1438      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1439                                  GA->getOffset() +
1440                                    (uint64_t)N1C->getSExtValue());
1441  // fold ((c1-A)+c2) -> (c1+c2)-A
1442  if (N1C && N0.getOpcode() == ISD::SUB)
1443    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
1444      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1445                         DAG.getConstant(N1C->getAPIntValue()+
1446                                         N0C->getAPIntValue(), VT),
1447                         N0.getOperand(1));
1448  // reassociate add
1449  SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1);
1450  if (RADD.getNode() != 0)
1451    return RADD;
1452  // fold ((0-A) + B) -> B-A
1453  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
1454      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
1455    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1456  // fold (A + (0-B)) -> A-B
1457  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
1458      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
1459    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1460  // fold (A+(B-A)) -> B
1461  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1462    return N1.getOperand(0);
1463  // fold ((B-A)+A) -> B
1464  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1465    return N0.getOperand(0);
1466  // fold (A+(B-(A+C))) to (B-C)
1467  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1468      N0 == N1.getOperand(1).getOperand(0))
1469    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1470                       N1.getOperand(1).getOperand(1));
1471  // fold (A+(B-(C+A))) to (B-C)
1472  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1473      N0 == N1.getOperand(1).getOperand(1))
1474    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1475                       N1.getOperand(1).getOperand(0));
1476  // fold (A+((B-A)+or-C)) to (B+or-C)
1477  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1478      N1.getOperand(0).getOpcode() == ISD::SUB &&
1479      N0 == N1.getOperand(0).getOperand(1))
1480    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1481                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1482
1483  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1484  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1485    SDValue N00 = N0.getOperand(0);
1486    SDValue N01 = N0.getOperand(1);
1487    SDValue N10 = N1.getOperand(0);
1488    SDValue N11 = N1.getOperand(1);
1489
1490    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1491      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1492                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1493                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1494  }
1495
1496  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1497    return SDValue(N, 0);
1498
1499  // fold (a+b) -> (a|b) iff a and b share no bits.
1500  if (VT.isInteger() && !VT.isVector()) {
1501    APInt LHSZero, LHSOne;
1502    APInt RHSZero, RHSOne;
1503    DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1504
1505    if (LHSZero.getBoolValue()) {
1506      DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1507
1508      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1509      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1510      if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1511        return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1512    }
1513  }
1514
1515  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
1516  if (N0.getOpcode() == ISD::SHL && N0.getNode()->hasOneUse()) {
1517    SDValue Result = combineShlAddConstant(SDLoc(N), N0, N1, DAG);
1518    if (Result.getNode()) return Result;
1519  }
1520  if (N1.getOpcode() == ISD::SHL && N1.getNode()->hasOneUse()) {
1521    SDValue Result = combineShlAddConstant(SDLoc(N), N1, N0, DAG);
1522    if (Result.getNode()) return Result;
1523  }
1524
1525  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1526  if (N1.getOpcode() == ISD::SHL &&
1527      N1.getOperand(0).getOpcode() == ISD::SUB)
1528    if (ConstantSDNode *C =
1529          dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(0)))
1530      if (C->getAPIntValue() == 0)
1531        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1532                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1533                                       N1.getOperand(0).getOperand(1),
1534                                       N1.getOperand(1)));
1535  if (N0.getOpcode() == ISD::SHL &&
1536      N0.getOperand(0).getOpcode() == ISD::SUB)
1537    if (ConstantSDNode *C =
1538          dyn_cast<ConstantSDNode>(N0.getOperand(0).getOperand(0)))
1539      if (C->getAPIntValue() == 0)
1540        return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1541                           DAG.getNode(ISD::SHL, SDLoc(N), VT,
1542                                       N0.getOperand(0).getOperand(1),
1543                                       N0.getOperand(1)));
1544
1545  if (N1.getOpcode() == ISD::AND) {
1546    SDValue AndOp0 = N1.getOperand(0);
1547    ConstantSDNode *AndOp1 = dyn_cast<ConstantSDNode>(N1->getOperand(1));
1548    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1549    unsigned DestBits = VT.getScalarType().getSizeInBits();
1550
1551    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1552    // and similar xforms where the inner op is either ~0 or 0.
1553    if (NumSignBits == DestBits && AndOp1 && AndOp1->isOne()) {
1554      SDLoc DL(N);
1555      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1556    }
1557  }
1558
1559  // add (sext i1), X -> sub X, (zext i1)
1560  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1561      N0.getOperand(0).getValueType() == MVT::i1 &&
1562      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1563    SDLoc DL(N);
1564    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1565    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1566  }
1567
1568  return SDValue();
1569}
1570
1571SDValue DAGCombiner::visitADDC(SDNode *N) {
1572  SDValue N0 = N->getOperand(0);
1573  SDValue N1 = N->getOperand(1);
1574  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1575  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1576  EVT VT = N0.getValueType();
1577
1578  // If the flag result is dead, turn this into an ADD.
1579  if (!N->hasAnyUseOfValue(1))
1580    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1581                     DAG.getNode(ISD::CARRY_FALSE,
1582                                 SDLoc(N), MVT::Glue));
1583
1584  // canonicalize constant to RHS.
1585  if (N0C && !N1C)
1586    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1587
1588  // fold (addc x, 0) -> x + no carry out
1589  if (N1C && N1C->isNullValue())
1590    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1591                                        SDLoc(N), MVT::Glue));
1592
1593  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1594  APInt LHSZero, LHSOne;
1595  APInt RHSZero, RHSOne;
1596  DAG.ComputeMaskedBits(N0, LHSZero, LHSOne);
1597
1598  if (LHSZero.getBoolValue()) {
1599    DAG.ComputeMaskedBits(N1, RHSZero, RHSOne);
1600
1601    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1602    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1603    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1604      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1605                       DAG.getNode(ISD::CARRY_FALSE,
1606                                   SDLoc(N), MVT::Glue));
1607  }
1608
1609  return SDValue();
1610}
1611
1612SDValue DAGCombiner::visitADDE(SDNode *N) {
1613  SDValue N0 = N->getOperand(0);
1614  SDValue N1 = N->getOperand(1);
1615  SDValue CarryIn = N->getOperand(2);
1616  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1617  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1618
1619  // canonicalize constant to RHS
1620  if (N0C && !N1C)
1621    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1622                       N1, N0, CarryIn);
1623
1624  // fold (adde x, y, false) -> (addc x, y)
1625  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1626    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1627
1628  return SDValue();
1629}
1630
1631// Since it may not be valid to emit a fold to zero for vector initializers
1632// check if we can before folding.
1633static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1634                             SelectionDAG &DAG,
1635                             bool LegalOperations, bool LegalTypes) {
1636  if (!VT.isVector())
1637    return DAG.getConstant(0, VT);
1638  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1639    // Produce a vector of zeros.
1640    EVT ElemTy = VT.getVectorElementType();
1641    if (LegalTypes && TLI.getTypeAction(*DAG.getContext(), ElemTy) ==
1642                      TargetLowering::TypePromoteInteger)
1643      ElemTy = TLI.getTypeToTransformTo(*DAG.getContext(), ElemTy);
1644    assert((!LegalTypes || TLI.isTypeLegal(ElemTy)) &&
1645           "Type for zero vector elements is not legal");
1646    SDValue El = DAG.getConstant(0, ElemTy);
1647    std::vector<SDValue> Ops(VT.getVectorNumElements(), El);
1648    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
1649      &Ops[0], Ops.size());
1650  }
1651  return SDValue();
1652}
1653
1654SDValue DAGCombiner::visitSUB(SDNode *N) {
1655  SDValue N0 = N->getOperand(0);
1656  SDValue N1 = N->getOperand(1);
1657  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1658  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1659  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? 0 :
1660    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1661  EVT VT = N0.getValueType();
1662
1663  // fold vector ops
1664  if (VT.isVector()) {
1665    SDValue FoldedVOp = SimplifyVBinOp(N);
1666    if (FoldedVOp.getNode()) return FoldedVOp;
1667
1668    // fold (sub x, 0) -> x, vector edition
1669    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1670      return N0;
1671  }
1672
1673  // fold (sub x, x) -> 0
1674  // FIXME: Refactor this and xor and other similar operations together.
1675  if (N0 == N1)
1676    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1677  // fold (sub c1, c2) -> c1-c2
1678  if (N0C && N1C)
1679    return DAG.FoldConstantArithmetic(ISD::SUB, VT, N0C, N1C);
1680  // fold (sub x, c) -> (add x, -c)
1681  if (N1C)
1682    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0,
1683                       DAG.getConstant(-N1C->getAPIntValue(), VT));
1684  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1685  if (N0C && N0C->isAllOnesValue())
1686    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1687  // fold A-(A-B) -> B
1688  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1689    return N1.getOperand(1);
1690  // fold (A+B)-A -> B
1691  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1692    return N0.getOperand(1);
1693  // fold (A+B)-B -> A
1694  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1695    return N0.getOperand(0);
1696  // fold C2-(A+C1) -> (C2-C1)-A
1697  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1698    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1699                                   VT);
1700    return DAG.getNode(ISD::SUB, SDLoc(N), VT, NewC,
1701                       N1.getOperand(0));
1702  }
1703  // fold ((A+(B+or-C))-B) -> A+or-C
1704  if (N0.getOpcode() == ISD::ADD &&
1705      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1706       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1707      N0.getOperand(1).getOperand(0) == N1)
1708    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1709                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1710  // fold ((A+(C+B))-B) -> A+C
1711  if (N0.getOpcode() == ISD::ADD &&
1712      N0.getOperand(1).getOpcode() == ISD::ADD &&
1713      N0.getOperand(1).getOperand(1) == N1)
1714    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1715                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1716  // fold ((A-(B-C))-C) -> A-B
1717  if (N0.getOpcode() == ISD::SUB &&
1718      N0.getOperand(1).getOpcode() == ISD::SUB &&
1719      N0.getOperand(1).getOperand(1) == N1)
1720    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1721                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1722
1723  // If either operand of a sub is undef, the result is undef
1724  if (N0.getOpcode() == ISD::UNDEF)
1725    return N0;
1726  if (N1.getOpcode() == ISD::UNDEF)
1727    return N1;
1728
1729  // If the relocation model supports it, consider symbol offsets.
1730  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1731    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1732      // fold (sub Sym, c) -> Sym-c
1733      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1734        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1735                                    GA->getOffset() -
1736                                      (uint64_t)N1C->getSExtValue());
1737      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1738      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1739        if (GA->getGlobal() == GB->getGlobal())
1740          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1741                                 VT);
1742    }
1743
1744  return SDValue();
1745}
1746
1747SDValue DAGCombiner::visitSUBC(SDNode *N) {
1748  SDValue N0 = N->getOperand(0);
1749  SDValue N1 = N->getOperand(1);
1750  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1751  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1752  EVT VT = N0.getValueType();
1753
1754  // If the flag result is dead, turn this into an SUB.
1755  if (!N->hasAnyUseOfValue(1))
1756    return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
1757                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1758                                 MVT::Glue));
1759
1760  // fold (subc x, x) -> 0 + no borrow
1761  if (N0 == N1)
1762    return CombineTo(N, DAG.getConstant(0, VT),
1763                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1764                                 MVT::Glue));
1765
1766  // fold (subc x, 0) -> x + no borrow
1767  if (N1C && N1C->isNullValue())
1768    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1769                                        MVT::Glue));
1770
1771  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1772  if (N0C && N0C->isAllOnesValue())
1773    return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
1774                     DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
1775                                 MVT::Glue));
1776
1777  return SDValue();
1778}
1779
1780SDValue DAGCombiner::visitSUBE(SDNode *N) {
1781  SDValue N0 = N->getOperand(0);
1782  SDValue N1 = N->getOperand(1);
1783  SDValue CarryIn = N->getOperand(2);
1784
1785  // fold (sube x, y, false) -> (subc x, y)
1786  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1787    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
1788
1789  return SDValue();
1790}
1791
1792/// isConstantSplatVector - Returns true if N is a BUILD_VECTOR node whose
1793/// elements are all the same constant or undefined.
1794static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
1795  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
1796  if (!C)
1797    return false;
1798
1799  APInt SplatUndef;
1800  unsigned SplatBitSize;
1801  bool HasAnyUndefs;
1802  EVT EltVT = N->getValueType(0).getVectorElementType();
1803  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1804                             HasAnyUndefs) &&
1805          EltVT.getSizeInBits() >= SplatBitSize);
1806}
1807
1808SDValue DAGCombiner::visitMUL(SDNode *N) {
1809  SDValue N0 = N->getOperand(0);
1810  SDValue N1 = N->getOperand(1);
1811  EVT VT = N0.getValueType();
1812
1813  // fold (mul x, undef) -> 0
1814  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1815    return DAG.getConstant(0, VT);
1816
1817  bool N0IsConst = false;
1818  bool N1IsConst = false;
1819  APInt ConstValue0, ConstValue1;
1820  // fold vector ops
1821  if (VT.isVector()) {
1822    SDValue FoldedVOp = SimplifyVBinOp(N);
1823    if (FoldedVOp.getNode()) return FoldedVOp;
1824
1825    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
1826    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
1827  } else {
1828    N0IsConst = dyn_cast<ConstantSDNode>(N0) != 0;
1829    ConstValue0 = N0IsConst ? (dyn_cast<ConstantSDNode>(N0))->getAPIntValue()
1830                            : APInt();
1831    N1IsConst = dyn_cast<ConstantSDNode>(N1) != 0;
1832    ConstValue1 = N1IsConst ? (dyn_cast<ConstantSDNode>(N1))->getAPIntValue()
1833                            : APInt();
1834  }
1835
1836  // fold (mul c1, c2) -> c1*c2
1837  if (N0IsConst && N1IsConst)
1838    return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0.getNode(), N1.getNode());
1839
1840  // canonicalize constant to RHS
1841  if (N0IsConst && !N1IsConst)
1842    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
1843  // fold (mul x, 0) -> 0
1844  if (N1IsConst && ConstValue1 == 0)
1845    return N1;
1846  // We require a splat of the entire scalar bit width for non-contiguous
1847  // bit patterns.
1848  bool IsFullSplat =
1849    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
1850  // fold (mul x, 1) -> x
1851  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
1852    return N0;
1853  // fold (mul x, -1) -> 0-x
1854  if (N1IsConst && ConstValue1.isAllOnesValue())
1855    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1856                       DAG.getConstant(0, VT), N0);
1857  // fold (mul x, (1 << c)) -> x << c
1858  if (N1IsConst && ConstValue1.isPowerOf2() && IsFullSplat)
1859    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1860                       DAG.getConstant(ConstValue1.logBase2(),
1861                                       getShiftAmountTy(N0.getValueType())));
1862  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1863  if (N1IsConst && (-ConstValue1).isPowerOf2() && IsFullSplat) {
1864    unsigned Log2Val = (-ConstValue1).logBase2();
1865    // FIXME: If the input is something that is easily negated (e.g. a
1866    // single-use add), we should put the negate there.
1867    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1868                       DAG.getConstant(0, VT),
1869                       DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
1870                            DAG.getConstant(Log2Val,
1871                                      getShiftAmountTy(N0.getValueType()))));
1872  }
1873
1874  APInt Val;
1875  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1876  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
1877      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1878                     isa<ConstantSDNode>(N0.getOperand(1)))) {
1879    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
1880                             N1, N0.getOperand(1));
1881    AddToWorkList(C3.getNode());
1882    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
1883                       N0.getOperand(0), C3);
1884  }
1885
1886  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1887  // use.
1888  {
1889    SDValue Sh(0,0), Y(0,0);
1890    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1891    if (N0.getOpcode() == ISD::SHL &&
1892        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1893                       isa<ConstantSDNode>(N0.getOperand(1))) &&
1894        N0.getNode()->hasOneUse()) {
1895      Sh = N0; Y = N1;
1896    } else if (N1.getOpcode() == ISD::SHL &&
1897               isa<ConstantSDNode>(N1.getOperand(1)) &&
1898               N1.getNode()->hasOneUse()) {
1899      Sh = N1; Y = N0;
1900    }
1901
1902    if (Sh.getNode()) {
1903      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
1904                                Sh.getOperand(0), Y);
1905      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
1906                         Mul, Sh.getOperand(1));
1907    }
1908  }
1909
1910  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1911  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
1912      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
1913                     isa<ConstantSDNode>(N0.getOperand(1))))
1914    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1915                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
1916                                   N0.getOperand(0), N1),
1917                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
1918                                   N0.getOperand(1), N1));
1919
1920  // reassociate mul
1921  SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1);
1922  if (RMUL.getNode() != 0)
1923    return RMUL;
1924
1925  return SDValue();
1926}
1927
1928SDValue DAGCombiner::visitSDIV(SDNode *N) {
1929  SDValue N0 = N->getOperand(0);
1930  SDValue N1 = N->getOperand(1);
1931  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
1932  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
1933  EVT VT = N->getValueType(0);
1934
1935  // fold vector ops
1936  if (VT.isVector()) {
1937    SDValue FoldedVOp = SimplifyVBinOp(N);
1938    if (FoldedVOp.getNode()) return FoldedVOp;
1939  }
1940
1941  // fold (sdiv c1, c2) -> c1/c2
1942  if (N0C && N1C && !N1C->isNullValue())
1943    return DAG.FoldConstantArithmetic(ISD::SDIV, VT, N0C, N1C);
1944  // fold (sdiv X, 1) -> X
1945  if (N1C && N1C->getAPIntValue() == 1LL)
1946    return N0;
1947  // fold (sdiv X, -1) -> 0-X
1948  if (N1C && N1C->isAllOnesValue())
1949    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1950                       DAG.getConstant(0, VT), N0);
1951  // If we know the sign bits of both operands are zero, strength reduce to a
1952  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1953  if (!VT.isVector()) {
1954    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
1955      return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
1956                         N0, N1);
1957  }
1958  // fold (sdiv X, pow2) -> simple ops after legalize
1959  if (N1C && !N1C->isNullValue() &&
1960      (N1C->getAPIntValue().isPowerOf2() ||
1961       (-N1C->getAPIntValue()).isPowerOf2())) {
1962    // If dividing by powers of two is cheap, then don't perform the following
1963    // fold.
1964    if (TLI.isPow2DivCheap())
1965      return SDValue();
1966
1967    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
1968
1969    // Splat the sign bit into the register
1970    SDValue SGN = DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
1971                              DAG.getConstant(VT.getSizeInBits()-1,
1972                                       getShiftAmountTy(N0.getValueType())));
1973    AddToWorkList(SGN.getNode());
1974
1975    // Add (N0 < 0) ? abs2 - 1 : 0;
1976    SDValue SRL = DAG.getNode(ISD::SRL, SDLoc(N), VT, SGN,
1977                              DAG.getConstant(VT.getSizeInBits() - lg2,
1978                                       getShiftAmountTy(SGN.getValueType())));
1979    SDValue ADD = DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, SRL);
1980    AddToWorkList(SRL.getNode());
1981    AddToWorkList(ADD.getNode());    // Divide by pow2
1982    SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), VT, ADD,
1983                  DAG.getConstant(lg2, getShiftAmountTy(ADD.getValueType())));
1984
1985    // If we're dividing by a positive value, we're done.  Otherwise, we must
1986    // negate the result.
1987    if (N1C->getAPIntValue().isNonNegative())
1988      return SRA;
1989
1990    AddToWorkList(SRA.getNode());
1991    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1992                       DAG.getConstant(0, VT), SRA);
1993  }
1994
1995  // if integer divide is expensive and we satisfy the requirements, emit an
1996  // alternate sequence.
1997  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
1998    SDValue Op = BuildSDIV(N);
1999    if (Op.getNode()) return Op;
2000  }
2001
2002  // undef / X -> 0
2003  if (N0.getOpcode() == ISD::UNDEF)
2004    return DAG.getConstant(0, VT);
2005  // X / undef -> undef
2006  if (N1.getOpcode() == ISD::UNDEF)
2007    return N1;
2008
2009  return SDValue();
2010}
2011
2012SDValue DAGCombiner::visitUDIV(SDNode *N) {
2013  SDValue N0 = N->getOperand(0);
2014  SDValue N1 = N->getOperand(1);
2015  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getNode());
2016  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2017  EVT VT = N->getValueType(0);
2018
2019  // fold vector ops
2020  if (VT.isVector()) {
2021    SDValue FoldedVOp = SimplifyVBinOp(N);
2022    if (FoldedVOp.getNode()) return FoldedVOp;
2023  }
2024
2025  // fold (udiv c1, c2) -> c1/c2
2026  if (N0C && N1C && !N1C->isNullValue())
2027    return DAG.FoldConstantArithmetic(ISD::UDIV, VT, N0C, N1C);
2028  // fold (udiv x, (1 << c)) -> x >>u c
2029  if (N1C && N1C->getAPIntValue().isPowerOf2())
2030    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
2031                       DAG.getConstant(N1C->getAPIntValue().logBase2(),
2032                                       getShiftAmountTy(N0.getValueType())));
2033  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2034  if (N1.getOpcode() == ISD::SHL) {
2035    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2036      if (SHC->getAPIntValue().isPowerOf2()) {
2037        EVT ADDVT = N1.getOperand(1).getValueType();
2038        SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N), ADDVT,
2039                                  N1.getOperand(1),
2040                                  DAG.getConstant(SHC->getAPIntValue()
2041                                                                  .logBase2(),
2042                                                  ADDVT));
2043        AddToWorkList(Add.getNode());
2044        return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, Add);
2045      }
2046    }
2047  }
2048  // fold (udiv x, c) -> alternate
2049  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap()) {
2050    SDValue Op = BuildUDIV(N);
2051    if (Op.getNode()) return Op;
2052  }
2053
2054  // undef / X -> 0
2055  if (N0.getOpcode() == ISD::UNDEF)
2056    return DAG.getConstant(0, VT);
2057  // X / undef -> undef
2058  if (N1.getOpcode() == ISD::UNDEF)
2059    return N1;
2060
2061  return SDValue();
2062}
2063
2064SDValue DAGCombiner::visitSREM(SDNode *N) {
2065  SDValue N0 = N->getOperand(0);
2066  SDValue N1 = N->getOperand(1);
2067  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2068  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2069  EVT VT = N->getValueType(0);
2070
2071  // fold (srem c1, c2) -> c1%c2
2072  if (N0C && N1C && !N1C->isNullValue())
2073    return DAG.FoldConstantArithmetic(ISD::SREM, VT, N0C, N1C);
2074  // If we know the sign bits of both operands are zero, strength reduce to a
2075  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2076  if (!VT.isVector()) {
2077    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2078      return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
2079  }
2080
2081  // If X/C can be simplified by the division-by-constant logic, lower
2082  // X%C to the equivalent of X-X/C*C.
2083  if (N1C && !N1C->isNullValue()) {
2084    SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
2085    AddToWorkList(Div.getNode());
2086    SDValue OptimizedDiv = combine(Div.getNode());
2087    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2088      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2089                                OptimizedDiv, N1);
2090      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2091      AddToWorkList(Mul.getNode());
2092      return Sub;
2093    }
2094  }
2095
2096  // undef % X -> 0
2097  if (N0.getOpcode() == ISD::UNDEF)
2098    return DAG.getConstant(0, VT);
2099  // X % undef -> undef
2100  if (N1.getOpcode() == ISD::UNDEF)
2101    return N1;
2102
2103  return SDValue();
2104}
2105
2106SDValue DAGCombiner::visitUREM(SDNode *N) {
2107  SDValue N0 = N->getOperand(0);
2108  SDValue N1 = N->getOperand(1);
2109  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2110  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2111  EVT VT = N->getValueType(0);
2112
2113  // fold (urem c1, c2) -> c1%c2
2114  if (N0C && N1C && !N1C->isNullValue())
2115    return DAG.FoldConstantArithmetic(ISD::UREM, VT, N0C, N1C);
2116  // fold (urem x, pow2) -> (and x, pow2-1)
2117  if (N1C && !N1C->isNullValue() && N1C->getAPIntValue().isPowerOf2())
2118    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0,
2119                       DAG.getConstant(N1C->getAPIntValue()-1,VT));
2120  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2121  if (N1.getOpcode() == ISD::SHL) {
2122    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
2123      if (SHC->getAPIntValue().isPowerOf2()) {
2124        SDValue Add =
2125          DAG.getNode(ISD::ADD, SDLoc(N), VT, N1,
2126                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()),
2127                                 VT));
2128        AddToWorkList(Add.getNode());
2129        return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, Add);
2130      }
2131    }
2132  }
2133
2134  // If X/C can be simplified by the division-by-constant logic, lower
2135  // X%C to the equivalent of X-X/C*C.
2136  if (N1C && !N1C->isNullValue()) {
2137    SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
2138    AddToWorkList(Div.getNode());
2139    SDValue OptimizedDiv = combine(Div.getNode());
2140    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2141      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2142                                OptimizedDiv, N1);
2143      SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
2144      AddToWorkList(Mul.getNode());
2145      return Sub;
2146    }
2147  }
2148
2149  // undef % X -> 0
2150  if (N0.getOpcode() == ISD::UNDEF)
2151    return DAG.getConstant(0, VT);
2152  // X % undef -> undef
2153  if (N1.getOpcode() == ISD::UNDEF)
2154    return N1;
2155
2156  return SDValue();
2157}
2158
2159SDValue DAGCombiner::visitMULHS(SDNode *N) {
2160  SDValue N0 = N->getOperand(0);
2161  SDValue N1 = N->getOperand(1);
2162  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2163  EVT VT = N->getValueType(0);
2164  SDLoc DL(N);
2165
2166  // fold (mulhs x, 0) -> 0
2167  if (N1C && N1C->isNullValue())
2168    return N1;
2169  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2170  if (N1C && N1C->getAPIntValue() == 1)
2171    return DAG.getNode(ISD::SRA, SDLoc(N), N0.getValueType(), N0,
2172                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2173                                       getShiftAmountTy(N0.getValueType())));
2174  // fold (mulhs x, undef) -> 0
2175  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2176    return DAG.getConstant(0, VT);
2177
2178  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2179  // plus a shift.
2180  if (VT.isSimple() && !VT.isVector()) {
2181    MVT Simple = VT.getSimpleVT();
2182    unsigned SimpleSize = Simple.getSizeInBits();
2183    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2184    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2185      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2186      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2187      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2188      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2189            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2190      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2191    }
2192  }
2193
2194  return SDValue();
2195}
2196
2197SDValue DAGCombiner::visitMULHU(SDNode *N) {
2198  SDValue N0 = N->getOperand(0);
2199  SDValue N1 = N->getOperand(1);
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2201  EVT VT = N->getValueType(0);
2202  SDLoc DL(N);
2203
2204  // fold (mulhu x, 0) -> 0
2205  if (N1C && N1C->isNullValue())
2206    return N1;
2207  // fold (mulhu x, 1) -> 0
2208  if (N1C && N1C->getAPIntValue() == 1)
2209    return DAG.getConstant(0, N0.getValueType());
2210  // fold (mulhu x, undef) -> 0
2211  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2212    return DAG.getConstant(0, VT);
2213
2214  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2215  // plus a shift.
2216  if (VT.isSimple() && !VT.isVector()) {
2217    MVT Simple = VT.getSimpleVT();
2218    unsigned SimpleSize = Simple.getSizeInBits();
2219    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2220    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2221      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2222      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2223      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2224      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2225            DAG.getConstant(SimpleSize, getShiftAmountTy(N1.getValueType())));
2226      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2227    }
2228  }
2229
2230  return SDValue();
2231}
2232
2233/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
2234/// compute two values. LoOp and HiOp give the opcodes for the two computations
2235/// that are being performed. Return true if a simplification was made.
2236///
2237SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2238                                                unsigned HiOp) {
2239  // If the high half is not needed, just compute the low half.
2240  bool HiExists = N->hasAnyUseOfValue(1);
2241  if (!HiExists &&
2242      (!LegalOperations ||
2243       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
2244    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2245                              N->op_begin(), N->getNumOperands());
2246    return CombineTo(N, Res, Res);
2247  }
2248
2249  // If the low half is not needed, just compute the high half.
2250  bool LoExists = N->hasAnyUseOfValue(0);
2251  if (!LoExists &&
2252      (!LegalOperations ||
2253       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2254    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2255                              N->op_begin(), N->getNumOperands());
2256    return CombineTo(N, Res, Res);
2257  }
2258
2259  // If both halves are used, return as it is.
2260  if (LoExists && HiExists)
2261    return SDValue();
2262
2263  // If the two computed results can be simplified separately, separate them.
2264  if (LoExists) {
2265    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0),
2266                             N->op_begin(), N->getNumOperands());
2267    AddToWorkList(Lo.getNode());
2268    SDValue LoOpt = combine(Lo.getNode());
2269    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2270        (!LegalOperations ||
2271         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2272      return CombineTo(N, LoOpt, LoOpt);
2273  }
2274
2275  if (HiExists) {
2276    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1),
2277                             N->op_begin(), N->getNumOperands());
2278    AddToWorkList(Hi.getNode());
2279    SDValue HiOpt = combine(Hi.getNode());
2280    if (HiOpt.getNode() && HiOpt != Hi &&
2281        (!LegalOperations ||
2282         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2283      return CombineTo(N, HiOpt, HiOpt);
2284  }
2285
2286  return SDValue();
2287}
2288
2289SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2290  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
2291  if (Res.getNode()) return Res;
2292
2293  EVT VT = N->getValueType(0);
2294  SDLoc DL(N);
2295
2296  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2297  // plus a shift.
2298  if (VT.isSimple() && !VT.isVector()) {
2299    MVT Simple = VT.getSimpleVT();
2300    unsigned SimpleSize = Simple.getSizeInBits();
2301    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2302    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2303      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2304      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2305      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2306      // Compute the high part as N1.
2307      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2308            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2309      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2310      // Compute the low part as N0.
2311      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2312      return CombineTo(N, Lo, Hi);
2313    }
2314  }
2315
2316  return SDValue();
2317}
2318
2319SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2320  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
2321  if (Res.getNode()) return Res;
2322
2323  EVT VT = N->getValueType(0);
2324  SDLoc DL(N);
2325
2326  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2327  // plus a shift.
2328  if (VT.isSimple() && !VT.isVector()) {
2329    MVT Simple = VT.getSimpleVT();
2330    unsigned SimpleSize = Simple.getSizeInBits();
2331    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2332    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2333      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2334      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2335      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2336      // Compute the high part as N1.
2337      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2338            DAG.getConstant(SimpleSize, getShiftAmountTy(Lo.getValueType())));
2339      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2340      // Compute the low part as N0.
2341      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2342      return CombineTo(N, Lo, Hi);
2343    }
2344  }
2345
2346  return SDValue();
2347}
2348
2349SDValue DAGCombiner::visitSMULO(SDNode *N) {
2350  // (smulo x, 2) -> (saddo x, x)
2351  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2352    if (C2->getAPIntValue() == 2)
2353      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2354                         N->getOperand(0), N->getOperand(0));
2355
2356  return SDValue();
2357}
2358
2359SDValue DAGCombiner::visitUMULO(SDNode *N) {
2360  // (umulo x, 2) -> (uaddo x, x)
2361  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2362    if (C2->getAPIntValue() == 2)
2363      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2364                         N->getOperand(0), N->getOperand(0));
2365
2366  return SDValue();
2367}
2368
2369SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
2370  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
2371  if (Res.getNode()) return Res;
2372
2373  return SDValue();
2374}
2375
2376SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
2377  SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
2378  if (Res.getNode()) return Res;
2379
2380  return SDValue();
2381}
2382
2383/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
2384/// two operands of the same opcode, try to simplify it.
2385SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2386  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2387  EVT VT = N0.getValueType();
2388  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2389
2390  // Bail early if none of these transforms apply.
2391  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2392
2393  // For each of OP in AND/OR/XOR:
2394  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2395  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2396  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2397  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2398  //
2399  // do not sink logical op inside of a vector extend, since it may combine
2400  // into a vsetcc.
2401  EVT Op0VT = N0.getOperand(0).getValueType();
2402  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2403       N0.getOpcode() == ISD::SIGN_EXTEND ||
2404       // Avoid infinite looping with PromoteIntBinOp.
2405       (N0.getOpcode() == ISD::ANY_EXTEND &&
2406        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2407       (N0.getOpcode() == ISD::TRUNCATE &&
2408        (!TLI.isZExtFree(VT, Op0VT) ||
2409         !TLI.isTruncateFree(Op0VT, VT)) &&
2410        TLI.isTypeLegal(Op0VT))) &&
2411      !VT.isVector() &&
2412      Op0VT == N1.getOperand(0).getValueType() &&
2413      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2414    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2415                                 N0.getOperand(0).getValueType(),
2416                                 N0.getOperand(0), N1.getOperand(0));
2417    AddToWorkList(ORNode.getNode());
2418    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2419  }
2420
2421  // For each of OP in SHL/SRL/SRA/AND...
2422  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2423  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2424  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2425  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2426       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2427      N0.getOperand(1) == N1.getOperand(1)) {
2428    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2429                                 N0.getOperand(0).getValueType(),
2430                                 N0.getOperand(0), N1.getOperand(0));
2431    AddToWorkList(ORNode.getNode());
2432    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2433                       ORNode, N0.getOperand(1));
2434  }
2435
2436  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2437  // Only perform this optimization after type legalization and before
2438  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2439  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2440  // we don't want to undo this promotion.
2441  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2442  // on scalars.
2443  if ((N0.getOpcode() == ISD::BITCAST ||
2444       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2445      Level == AfterLegalizeTypes) {
2446    SDValue In0 = N0.getOperand(0);
2447    SDValue In1 = N1.getOperand(0);
2448    EVT In0Ty = In0.getValueType();
2449    EVT In1Ty = In1.getValueType();
2450    SDLoc DL(N);
2451    // If both incoming values are integers, and the original types are the
2452    // same.
2453    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2454      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2455      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2456      AddToWorkList(Op.getNode());
2457      return BC;
2458    }
2459  }
2460
2461  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2462  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2463  // If both shuffles use the same mask, and both shuffle within a single
2464  // vector, then it is worthwhile to move the swizzle after the operation.
2465  // The type-legalizer generates this pattern when loading illegal
2466  // vector types from memory. In many cases this allows additional shuffle
2467  // optimizations.
2468  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
2469      N0.getOperand(1).getOpcode() == ISD::UNDEF &&
2470      N1.getOperand(1).getOpcode() == ISD::UNDEF) {
2471    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2472    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2473
2474    assert(N0.getOperand(0).getValueType() == N1.getOperand(1).getValueType() &&
2475           "Inputs to shuffles are not the same type");
2476
2477    unsigned NumElts = VT.getVectorNumElements();
2478
2479    // Check that both shuffles use the same mask. The masks are known to be of
2480    // the same length because the result vector type is the same.
2481    bool SameMask = true;
2482    for (unsigned i = 0; i != NumElts; ++i) {
2483      int Idx0 = SVN0->getMaskElt(i);
2484      int Idx1 = SVN1->getMaskElt(i);
2485      if (Idx0 != Idx1) {
2486        SameMask = false;
2487        break;
2488      }
2489    }
2490
2491    if (SameMask) {
2492      SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2493                               N0.getOperand(0), N1.getOperand(0));
2494      AddToWorkList(Op.getNode());
2495      return DAG.getVectorShuffle(VT, SDLoc(N), Op,
2496                                  DAG.getUNDEF(VT), &SVN0->getMask()[0]);
2497    }
2498  }
2499
2500  return SDValue();
2501}
2502
2503SDValue DAGCombiner::visitAND(SDNode *N) {
2504  SDValue N0 = N->getOperand(0);
2505  SDValue N1 = N->getOperand(1);
2506  SDValue LL, LR, RL, RR, CC0, CC1;
2507  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2508  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2509  EVT VT = N1.getValueType();
2510  unsigned BitWidth = VT.getScalarType().getSizeInBits();
2511
2512  // fold vector ops
2513  if (VT.isVector()) {
2514    SDValue FoldedVOp = SimplifyVBinOp(N);
2515    if (FoldedVOp.getNode()) return FoldedVOp;
2516
2517    // fold (and x, 0) -> 0, vector edition
2518    if (ISD::isBuildVectorAllZeros(N0.getNode()))
2519      return N0;
2520    if (ISD::isBuildVectorAllZeros(N1.getNode()))
2521      return N1;
2522
2523    // fold (and x, -1) -> x, vector edition
2524    if (ISD::isBuildVectorAllOnes(N0.getNode()))
2525      return N1;
2526    if (ISD::isBuildVectorAllOnes(N1.getNode()))
2527      return N0;
2528  }
2529
2530  // fold (and x, undef) -> 0
2531  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2532    return DAG.getConstant(0, VT);
2533  // fold (and c1, c2) -> c1&c2
2534  if (N0C && N1C)
2535    return DAG.FoldConstantArithmetic(ISD::AND, VT, N0C, N1C);
2536  // canonicalize constant to RHS
2537  if (N0C && !N1C)
2538    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
2539  // fold (and x, -1) -> x
2540  if (N1C && N1C->isAllOnesValue())
2541    return N0;
2542  // if (and x, c) is known to be zero, return 0
2543  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
2544                                   APInt::getAllOnesValue(BitWidth)))
2545    return DAG.getConstant(0, VT);
2546  // reassociate and
2547  SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1);
2548  if (RAND.getNode() != 0)
2549    return RAND;
2550  // fold (and (or x, C), D) -> D if (C & D) == D
2551  if (N1C && N0.getOpcode() == ISD::OR)
2552    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
2553      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
2554        return N1;
2555  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
2556  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2557    SDValue N0Op0 = N0.getOperand(0);
2558    APInt Mask = ~N1C->getAPIntValue();
2559    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
2560    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
2561      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
2562                                 N0.getValueType(), N0Op0);
2563
2564      // Replace uses of the AND with uses of the Zero extend node.
2565      CombineTo(N, Zext);
2566
2567      // We actually want to replace all uses of the any_extend with the
2568      // zero_extend, to avoid duplicating things.  This will later cause this
2569      // AND to be folded.
2570      CombineTo(N0.getNode(), Zext);
2571      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2572    }
2573  }
2574  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
2575  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
2576  // already be zero by virtue of the width of the base type of the load.
2577  //
2578  // the 'X' node here can either be nothing or an extract_vector_elt to catch
2579  // more cases.
2580  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
2581       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
2582      N0.getOpcode() == ISD::LOAD) {
2583    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
2584                                         N0 : N0.getOperand(0) );
2585
2586    // Get the constant (if applicable) the zero'th operand is being ANDed with.
2587    // This can be a pure constant or a vector splat, in which case we treat the
2588    // vector as a scalar and use the splat value.
2589    APInt Constant = APInt::getNullValue(1);
2590    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2591      Constant = C->getAPIntValue();
2592    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
2593      APInt SplatValue, SplatUndef;
2594      unsigned SplatBitSize;
2595      bool HasAnyUndefs;
2596      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
2597                                             SplatBitSize, HasAnyUndefs);
2598      if (IsSplat) {
2599        // Undef bits can contribute to a possible optimisation if set, so
2600        // set them.
2601        SplatValue |= SplatUndef;
2602
2603        // The splat value may be something like "0x00FFFFFF", which means 0 for
2604        // the first vector value and FF for the rest, repeating. We need a mask
2605        // that will apply equally to all members of the vector, so AND all the
2606        // lanes of the constant together.
2607        EVT VT = Vector->getValueType(0);
2608        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
2609
2610        // If the splat value has been compressed to a bitlength lower
2611        // than the size of the vector lane, we need to re-expand it to
2612        // the lane size.
2613        if (BitWidth > SplatBitSize)
2614          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
2615               SplatBitSize < BitWidth;
2616               SplatBitSize = SplatBitSize * 2)
2617            SplatValue |= SplatValue.shl(SplatBitSize);
2618
2619        Constant = APInt::getAllOnesValue(BitWidth);
2620        for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
2621          Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
2622      }
2623    }
2624
2625    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
2626    // actually legal and isn't going to get expanded, else this is a false
2627    // optimisation.
2628    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
2629                                                    Load->getMemoryVT());
2630
2631    // Resize the constant to the same size as the original memory access before
2632    // extension. If it is still the AllOnesValue then this AND is completely
2633    // unneeded.
2634    Constant =
2635      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
2636
2637    bool B;
2638    switch (Load->getExtensionType()) {
2639    default: B = false; break;
2640    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
2641    case ISD::ZEXTLOAD:
2642    case ISD::NON_EXTLOAD: B = true; break;
2643    }
2644
2645    if (B && Constant.isAllOnesValue()) {
2646      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
2647      // preserve semantics once we get rid of the AND.
2648      SDValue NewLoad(Load, 0);
2649      if (Load->getExtensionType() == ISD::EXTLOAD) {
2650        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
2651                              Load->getValueType(0), SDLoc(Load),
2652                              Load->getChain(), Load->getBasePtr(),
2653                              Load->getOffset(), Load->getMemoryVT(),
2654                              Load->getMemOperand());
2655        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
2656        if (Load->getNumValues() == 3) {
2657          // PRE/POST_INC loads have 3 values.
2658          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
2659                           NewLoad.getValue(2) };
2660          CombineTo(Load, To, 3, true);
2661        } else {
2662          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
2663        }
2664      }
2665
2666      // Fold the AND away, taking care not to fold to the old load node if we
2667      // replaced it.
2668      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
2669
2670      return SDValue(N, 0); // Return N so it doesn't get rechecked!
2671    }
2672  }
2673  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2674  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2675    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2676    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2677
2678    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2679        LL.getValueType().isInteger()) {
2680      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2681      if (cast<ConstantSDNode>(LR)->isNullValue() && Op1 == ISD::SETEQ) {
2682        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2683                                     LR.getValueType(), LL, RL);
2684        AddToWorkList(ORNode.getNode());
2685        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2686      }
2687      // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2688      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
2689        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2690                                      LR.getValueType(), LL, RL);
2691        AddToWorkList(ANDNode.getNode());
2692        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
2693      }
2694      // fold (and (setgt X,  -1), (setgt Y,  -1)) -> (setgt (or X, Y), -1)
2695      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
2696        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2697                                     LR.getValueType(), LL, RL);
2698        AddToWorkList(ORNode.getNode());
2699        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
2700      }
2701    }
2702    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2703    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2704        Op0 == Op1 && LL.getValueType().isInteger() &&
2705      Op0 == ISD::SETNE && ((cast<ConstantSDNode>(LR)->isNullValue() &&
2706                                 cast<ConstantSDNode>(RR)->isAllOnesValue()) ||
2707                                (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
2708                                 cast<ConstantSDNode>(RR)->isNullValue()))) {
2709      SDValue ADDNode = DAG.getNode(ISD::ADD, SDLoc(N0), LL.getValueType(),
2710                                    LL, DAG.getConstant(1, LL.getValueType()));
2711      AddToWorkList(ADDNode.getNode());
2712      return DAG.getSetCC(SDLoc(N), VT, ADDNode,
2713                          DAG.getConstant(2, LL.getValueType()), ISD::SETUGE);
2714    }
2715    // canonicalize equivalent to ll == rl
2716    if (LL == RR && LR == RL) {
2717      Op1 = ISD::getSetCCSwappedOperands(Op1);
2718      std::swap(RL, RR);
2719    }
2720    if (LL == RL && LR == RR) {
2721      bool isInteger = LL.getValueType().isInteger();
2722      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2723      if (Result != ISD::SETCC_INVALID &&
2724          (!LegalOperations ||
2725           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2726            TLI.isOperationLegal(ISD::SETCC,
2727                            getSetCCResultType(N0.getSimpleValueType())))))
2728        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
2729                            LL, LR, Result);
2730    }
2731  }
2732
2733  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
2734  if (N0.getOpcode() == N1.getOpcode()) {
2735    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2736    if (Tmp.getNode()) return Tmp;
2737  }
2738
2739  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
2740  // fold (and (sra)) -> (and (srl)) when possible.
2741  if (!VT.isVector() &&
2742      SimplifyDemandedBits(SDValue(N, 0)))
2743    return SDValue(N, 0);
2744
2745  // fold (zext_inreg (extload x)) -> (zextload x)
2746  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
2747    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2748    EVT MemVT = LN0->getMemoryVT();
2749    // If we zero all the possible extended bits, then we can turn this into
2750    // a zextload if we are running before legalize or the operation is legal.
2751    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2752    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2753                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2754        ((!LegalOperations && !LN0->isVolatile()) ||
2755         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2756      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2757                                       LN0->getChain(), LN0->getBasePtr(),
2758                                       MemVT, LN0->getMemOperand());
2759      AddToWorkList(N);
2760      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2761      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2762    }
2763  }
2764  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
2765  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
2766      N0.hasOneUse()) {
2767    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2768    EVT MemVT = LN0->getMemoryVT();
2769    // If we zero all the possible extended bits, then we can turn this into
2770    // a zextload if we are running before legalize or the operation is legal.
2771    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
2772    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
2773                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
2774        ((!LegalOperations && !LN0->isVolatile()) ||
2775         TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT))) {
2776      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
2777                                       LN0->getChain(), LN0->getBasePtr(),
2778                                       MemVT, LN0->getMemOperand());
2779      AddToWorkList(N);
2780      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
2781      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2782    }
2783  }
2784
2785  // fold (and (load x), 255) -> (zextload x, i8)
2786  // fold (and (extload x, i16), 255) -> (zextload x, i8)
2787  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
2788  if (N1C && (N0.getOpcode() == ISD::LOAD ||
2789              (N0.getOpcode() == ISD::ANY_EXTEND &&
2790               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
2791    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
2792    LoadSDNode *LN0 = HasAnyExt
2793      ? cast<LoadSDNode>(N0.getOperand(0))
2794      : cast<LoadSDNode>(N0);
2795    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
2796        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
2797      uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
2798      if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
2799        EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2800        EVT LoadedVT = LN0->getMemoryVT();
2801
2802        if (ExtVT == LoadedVT &&
2803            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2804          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2805
2806          SDValue NewLoad =
2807            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2808                           LN0->getChain(), LN0->getBasePtr(), ExtVT,
2809                           LN0->getMemOperand());
2810          AddToWorkList(N);
2811          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
2812          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2813        }
2814
2815        // Do not change the width of a volatile load.
2816        // Do not generate loads of non-round integer types since these can
2817        // be expensive (and would be wrong if the type is not byte sized).
2818        if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
2819            (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT))) {
2820          EVT PtrType = LN0->getOperand(1).getValueType();
2821
2822          unsigned Alignment = LN0->getAlignment();
2823          SDValue NewPtr = LN0->getBasePtr();
2824
2825          // For big endian targets, we need to add an offset to the pointer
2826          // to load the correct bytes.  For little endian systems, we merely
2827          // need to read fewer bytes from the same pointer.
2828          if (TLI.isBigEndian()) {
2829            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
2830            unsigned EVTStoreBytes = ExtVT.getStoreSize();
2831            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
2832            NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0), PtrType,
2833                                 NewPtr, DAG.getConstant(PtrOff, PtrType));
2834            Alignment = MinAlign(Alignment, PtrOff);
2835          }
2836
2837          AddToWorkList(NewPtr.getNode());
2838
2839          EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
2840          SDValue Load =
2841            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
2842                           LN0->getChain(), NewPtr,
2843                           LN0->getPointerInfo(),
2844                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
2845                           Alignment, LN0->getTBAAInfo());
2846          AddToWorkList(N);
2847          CombineTo(LN0, Load, Load.getValue(1));
2848          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
2849        }
2850      }
2851    }
2852  }
2853
2854  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2855      VT.getSizeInBits() <= 64) {
2856    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2857      APInt ADDC = ADDI->getAPIntValue();
2858      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2859        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2860        // immediate for an add, but it is legal if its top c2 bits are set,
2861        // transform the ADD so the immediate doesn't need to be materialized
2862        // in a register.
2863        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2864          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2865                                             SRLI->getZExtValue());
2866          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2867            ADDC |= Mask;
2868            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2869              SDValue NewAdd =
2870                DAG.getNode(ISD::ADD, SDLoc(N0), VT,
2871                            N0.getOperand(0), DAG.getConstant(ADDC, VT));
2872              CombineTo(N0.getNode(), NewAdd);
2873              return SDValue(N, 0); // Return N so it doesn't get rechecked!
2874            }
2875          }
2876        }
2877      }
2878    }
2879  }
2880
2881  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
2882  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
2883    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
2884                                       N0.getOperand(1), false);
2885    if (BSwap.getNode())
2886      return BSwap;
2887  }
2888
2889  return SDValue();
2890}
2891
2892/// MatchBSwapHWord - Match (a >> 8) | (a << 8) as (bswap a) >> 16
2893///
2894SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
2895                                        bool DemandHighBits) {
2896  if (!LegalOperations)
2897    return SDValue();
2898
2899  EVT VT = N->getValueType(0);
2900  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
2901    return SDValue();
2902  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
2903    return SDValue();
2904
2905  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
2906  bool LookPassAnd0 = false;
2907  bool LookPassAnd1 = false;
2908  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
2909      std::swap(N0, N1);
2910  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
2911      std::swap(N0, N1);
2912  if (N0.getOpcode() == ISD::AND) {
2913    if (!N0.getNode()->hasOneUse())
2914      return SDValue();
2915    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2916    if (!N01C || N01C->getZExtValue() != 0xFF00)
2917      return SDValue();
2918    N0 = N0.getOperand(0);
2919    LookPassAnd0 = true;
2920  }
2921
2922  if (N1.getOpcode() == ISD::AND) {
2923    if (!N1.getNode()->hasOneUse())
2924      return SDValue();
2925    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2926    if (!N11C || N11C->getZExtValue() != 0xFF)
2927      return SDValue();
2928    N1 = N1.getOperand(0);
2929    LookPassAnd1 = true;
2930  }
2931
2932  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
2933    std::swap(N0, N1);
2934  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
2935    return SDValue();
2936  if (!N0.getNode()->hasOneUse() ||
2937      !N1.getNode()->hasOneUse())
2938    return SDValue();
2939
2940  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2941  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
2942  if (!N01C || !N11C)
2943    return SDValue();
2944  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
2945    return SDValue();
2946
2947  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
2948  SDValue N00 = N0->getOperand(0);
2949  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
2950    if (!N00.getNode()->hasOneUse())
2951      return SDValue();
2952    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
2953    if (!N001C || N001C->getZExtValue() != 0xFF)
2954      return SDValue();
2955    N00 = N00.getOperand(0);
2956    LookPassAnd0 = true;
2957  }
2958
2959  SDValue N10 = N1->getOperand(0);
2960  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
2961    if (!N10.getNode()->hasOneUse())
2962      return SDValue();
2963    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
2964    if (!N101C || N101C->getZExtValue() != 0xFF00)
2965      return SDValue();
2966    N10 = N10.getOperand(0);
2967    LookPassAnd1 = true;
2968  }
2969
2970  if (N00 != N10)
2971    return SDValue();
2972
2973  // Make sure everything beyond the low halfword gets set to zero since the SRL
2974  // 16 will clear the top bits.
2975  unsigned OpSizeInBits = VT.getSizeInBits();
2976  if (DemandHighBits && OpSizeInBits > 16) {
2977    // If the left-shift isn't masked out then the only way this is a bswap is
2978    // if all bits beyond the low 8 are 0. In that case the entire pattern
2979    // reduces to a left shift anyway: leave it for other parts of the combiner.
2980    if (!LookPassAnd0)
2981      return SDValue();
2982
2983    // However, if the right shift isn't masked out then it might be because
2984    // it's not needed. See if we can spot that too.
2985    if (!LookPassAnd1 &&
2986        !DAG.MaskedValueIsZero(
2987            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
2988      return SDValue();
2989  }
2990
2991  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
2992  if (OpSizeInBits > 16)
2993    Res = DAG.getNode(ISD::SRL, SDLoc(N), VT, Res,
2994                      DAG.getConstant(OpSizeInBits-16, getShiftAmountTy(VT)));
2995  return Res;
2996}
2997
2998/// isBSwapHWordElement - Return true if the specified node is an element
2999/// that makes up a 32-bit packed halfword byteswap. i.e.
3000/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3001static bool isBSwapHWordElement(SDValue N, SmallVectorImpl<SDNode *> &Parts) {
3002  if (!N.getNode()->hasOneUse())
3003    return false;
3004
3005  unsigned Opc = N.getOpcode();
3006  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3007    return false;
3008
3009  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3010  if (!N1C)
3011    return false;
3012
3013  unsigned Num;
3014  switch (N1C->getZExtValue()) {
3015  default:
3016    return false;
3017  case 0xFF:       Num = 0; break;
3018  case 0xFF00:     Num = 1; break;
3019  case 0xFF0000:   Num = 2; break;
3020  case 0xFF000000: Num = 3; break;
3021  }
3022
3023  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3024  SDValue N0 = N.getOperand(0);
3025  if (Opc == ISD::AND) {
3026    if (Num == 0 || Num == 2) {
3027      // (x >> 8) & 0xff
3028      // (x >> 8) & 0xff0000
3029      if (N0.getOpcode() != ISD::SRL)
3030        return false;
3031      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3032      if (!C || C->getZExtValue() != 8)
3033        return false;
3034    } else {
3035      // (x << 8) & 0xff00
3036      // (x << 8) & 0xff000000
3037      if (N0.getOpcode() != ISD::SHL)
3038        return false;
3039      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3040      if (!C || C->getZExtValue() != 8)
3041        return false;
3042    }
3043  } else if (Opc == ISD::SHL) {
3044    // (x & 0xff) << 8
3045    // (x & 0xff0000) << 8
3046    if (Num != 0 && Num != 2)
3047      return false;
3048    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3049    if (!C || C->getZExtValue() != 8)
3050      return false;
3051  } else { // Opc == ISD::SRL
3052    // (x & 0xff00) >> 8
3053    // (x & 0xff000000) >> 8
3054    if (Num != 1 && Num != 3)
3055      return false;
3056    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3057    if (!C || C->getZExtValue() != 8)
3058      return false;
3059  }
3060
3061  if (Parts[Num])
3062    return false;
3063
3064  Parts[Num] = N0.getOperand(0).getNode();
3065  return true;
3066}
3067
3068/// MatchBSwapHWord - Match a 32-bit packed halfword bswap. That is
3069/// ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0x00ff0000)<<8)|((x&0xff000000)>>8)
3070/// => (rotl (bswap x), 16)
3071SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3072  if (!LegalOperations)
3073    return SDValue();
3074
3075  EVT VT = N->getValueType(0);
3076  if (VT != MVT::i32)
3077    return SDValue();
3078  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3079    return SDValue();
3080
3081  SmallVector<SDNode*,4> Parts(4, (SDNode*)0);
3082  // Look for either
3083  // (or (or (and), (and)), (or (and), (and)))
3084  // (or (or (or (and), (and)), (and)), (and))
3085  if (N0.getOpcode() != ISD::OR)
3086    return SDValue();
3087  SDValue N00 = N0.getOperand(0);
3088  SDValue N01 = N0.getOperand(1);
3089
3090  if (N1.getOpcode() == ISD::OR &&
3091      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3092    // (or (or (and), (and)), (or (and), (and)))
3093    SDValue N000 = N00.getOperand(0);
3094    if (!isBSwapHWordElement(N000, Parts))
3095      return SDValue();
3096
3097    SDValue N001 = N00.getOperand(1);
3098    if (!isBSwapHWordElement(N001, Parts))
3099      return SDValue();
3100    SDValue N010 = N01.getOperand(0);
3101    if (!isBSwapHWordElement(N010, Parts))
3102      return SDValue();
3103    SDValue N011 = N01.getOperand(1);
3104    if (!isBSwapHWordElement(N011, Parts))
3105      return SDValue();
3106  } else {
3107    // (or (or (or (and), (and)), (and)), (and))
3108    if (!isBSwapHWordElement(N1, Parts))
3109      return SDValue();
3110    if (!isBSwapHWordElement(N01, Parts))
3111      return SDValue();
3112    if (N00.getOpcode() != ISD::OR)
3113      return SDValue();
3114    SDValue N000 = N00.getOperand(0);
3115    if (!isBSwapHWordElement(N000, Parts))
3116      return SDValue();
3117    SDValue N001 = N00.getOperand(1);
3118    if (!isBSwapHWordElement(N001, Parts))
3119      return SDValue();
3120  }
3121
3122  // Make sure the parts are all coming from the same node.
3123  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3124    return SDValue();
3125
3126  SDValue BSwap = DAG.getNode(ISD::BSWAP, SDLoc(N), VT,
3127                              SDValue(Parts[0],0));
3128
3129  // Result of the bswap should be rotated by 16. If it's not legal, then
3130  // do  (x << 16) | (x >> 16).
3131  SDValue ShAmt = DAG.getConstant(16, getShiftAmountTy(VT));
3132  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3133    return DAG.getNode(ISD::ROTL, SDLoc(N), VT, BSwap, ShAmt);
3134  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3135    return DAG.getNode(ISD::ROTR, SDLoc(N), VT, BSwap, ShAmt);
3136  return DAG.getNode(ISD::OR, SDLoc(N), VT,
3137                     DAG.getNode(ISD::SHL, SDLoc(N), VT, BSwap, ShAmt),
3138                     DAG.getNode(ISD::SRL, SDLoc(N), VT, BSwap, ShAmt));
3139}
3140
3141SDValue DAGCombiner::visitOR(SDNode *N) {
3142  SDValue N0 = N->getOperand(0);
3143  SDValue N1 = N->getOperand(1);
3144  SDValue LL, LR, RL, RR, CC0, CC1;
3145  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3146  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3147  EVT VT = N1.getValueType();
3148
3149  // fold vector ops
3150  if (VT.isVector()) {
3151    SDValue FoldedVOp = SimplifyVBinOp(N);
3152    if (FoldedVOp.getNode()) return FoldedVOp;
3153
3154    // fold (or x, 0) -> x, vector edition
3155    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3156      return N1;
3157    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3158      return N0;
3159
3160    // fold (or x, -1) -> -1, vector edition
3161    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3162      return N0;
3163    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3164      return N1;
3165  }
3166
3167  // fold (or x, undef) -> -1
3168  if (!LegalOperations &&
3169      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3170    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3171    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
3172  }
3173  // fold (or c1, c2) -> c1|c2
3174  if (N0C && N1C)
3175    return DAG.FoldConstantArithmetic(ISD::OR, VT, N0C, N1C);
3176  // canonicalize constant to RHS
3177  if (N0C && !N1C)
3178    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3179  // fold (or x, 0) -> x
3180  if (N1C && N1C->isNullValue())
3181    return N0;
3182  // fold (or x, -1) -> -1
3183  if (N1C && N1C->isAllOnesValue())
3184    return N1;
3185  // fold (or x, c) -> c iff (x & ~c) == 0
3186  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3187    return N1;
3188
3189  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3190  SDValue BSwap = MatchBSwapHWord(N, N0, N1);
3191  if (BSwap.getNode() != 0)
3192    return BSwap;
3193  BSwap = MatchBSwapHWordLow(N, N0, N1);
3194  if (BSwap.getNode() != 0)
3195    return BSwap;
3196
3197  // reassociate or
3198  SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1);
3199  if (ROR.getNode() != 0)
3200    return ROR;
3201  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3202  // iff (c1 & c2) == 0.
3203  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3204             isa<ConstantSDNode>(N0.getOperand(1))) {
3205    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3206    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0)
3207      return DAG.getNode(ISD::AND, SDLoc(N), VT,
3208                         DAG.getNode(ISD::OR, SDLoc(N0), VT,
3209                                     N0.getOperand(0), N1),
3210                         DAG.FoldConstantArithmetic(ISD::OR, VT, N1C, C1));
3211  }
3212  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3213  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3214    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3215    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3216
3217    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
3218        LL.getValueType().isInteger()) {
3219      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3220      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3221      if (cast<ConstantSDNode>(LR)->isNullValue() &&
3222          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3223        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3224                                     LR.getValueType(), LL, RL);
3225        AddToWorkList(ORNode.getNode());
3226        return DAG.getSetCC(SDLoc(N), VT, ORNode, LR, Op1);
3227      }
3228      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3229      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3230      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
3231          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3232        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3233                                      LR.getValueType(), LL, RL);
3234        AddToWorkList(ANDNode.getNode());
3235        return DAG.getSetCC(SDLoc(N), VT, ANDNode, LR, Op1);
3236      }
3237    }
3238    // canonicalize equivalent to ll == rl
3239    if (LL == RR && LR == RL) {
3240      Op1 = ISD::getSetCCSwappedOperands(Op1);
3241      std::swap(RL, RR);
3242    }
3243    if (LL == RL && LR == RR) {
3244      bool isInteger = LL.getValueType().isInteger();
3245      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3246      if (Result != ISD::SETCC_INVALID &&
3247          (!LegalOperations ||
3248           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3249            TLI.isOperationLegal(ISD::SETCC,
3250              getSetCCResultType(N0.getValueType())))))
3251        return DAG.getSetCC(SDLoc(N), N0.getValueType(),
3252                            LL, LR, Result);
3253    }
3254  }
3255
3256  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3257  if (N0.getOpcode() == N1.getOpcode()) {
3258    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3259    if (Tmp.getNode()) return Tmp;
3260  }
3261
3262  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3263  if (N0.getOpcode() == ISD::AND &&
3264      N1.getOpcode() == ISD::AND &&
3265      N0.getOperand(1).getOpcode() == ISD::Constant &&
3266      N1.getOperand(1).getOpcode() == ISD::Constant &&
3267      // Don't increase # computations.
3268      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3269    // We can only do this xform if we know that bits from X that are set in C2
3270    // but not in C1 are already zero.  Likewise for Y.
3271    const APInt &LHSMask =
3272      cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
3273    const APInt &RHSMask =
3274      cast<ConstantSDNode>(N1.getOperand(1))->getAPIntValue();
3275
3276    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3277        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3278      SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3279                              N0.getOperand(0), N1.getOperand(0));
3280      return DAG.getNode(ISD::AND, SDLoc(N), VT, X,
3281                         DAG.getConstant(LHSMask | RHSMask, VT));
3282    }
3283  }
3284
3285  // See if this is some rotate idiom.
3286  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3287    return SDValue(Rot, 0);
3288
3289  // Simplify the operands using demanded-bits information.
3290  if (!VT.isVector() &&
3291      SimplifyDemandedBits(SDValue(N, 0)))
3292    return SDValue(N, 0);
3293
3294  return SDValue();
3295}
3296
3297/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
3298static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3299  if (Op.getOpcode() == ISD::AND) {
3300    if (isa<ConstantSDNode>(Op.getOperand(1))) {
3301      Mask = Op.getOperand(1);
3302      Op = Op.getOperand(0);
3303    } else {
3304      return false;
3305    }
3306  }
3307
3308  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3309    Shift = Op;
3310    return true;
3311  }
3312
3313  return false;
3314}
3315
3316// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3317// idioms for rotate, and if the target supports rotation instructions, generate
3318// a rot[lr].
3319SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3320  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3321  EVT VT = LHS.getValueType();
3322  if (!TLI.isTypeLegal(VT)) return 0;
3323
3324  // The target must have at least one rotate flavor.
3325  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3326  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3327  if (!HasROTL && !HasROTR) return 0;
3328
3329  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3330  SDValue LHSShift;   // The shift.
3331  SDValue LHSMask;    // AND value if any.
3332  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3333    return 0; // Not part of a rotate.
3334
3335  SDValue RHSShift;   // The shift.
3336  SDValue RHSMask;    // AND value if any.
3337  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3338    return 0; // Not part of a rotate.
3339
3340  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3341    return 0;   // Not shifting the same value.
3342
3343  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3344    return 0;   // Shifts must disagree.
3345
3346  // Canonicalize shl to left side in a shl/srl pair.
3347  if (RHSShift.getOpcode() == ISD::SHL) {
3348    std::swap(LHS, RHS);
3349    std::swap(LHSShift, RHSShift);
3350    std::swap(LHSMask , RHSMask );
3351  }
3352
3353  unsigned OpSizeInBits = VT.getSizeInBits();
3354  SDValue LHSShiftArg = LHSShift.getOperand(0);
3355  SDValue LHSShiftAmt = LHSShift.getOperand(1);
3356  SDValue RHSShiftArg = RHSShift.getOperand(0);
3357  SDValue RHSShiftAmt = RHSShift.getOperand(1);
3358
3359  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
3360  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
3361  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
3362      RHSShiftAmt.getOpcode() == ISD::Constant) {
3363    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
3364    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
3365    if ((LShVal + RShVal) != OpSizeInBits)
3366      return 0;
3367
3368    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
3369                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3370
3371    // If there is an AND of either shifted operand, apply it to the result.
3372    if (LHSMask.getNode() || RHSMask.getNode()) {
3373      APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
3374
3375      if (LHSMask.getNode()) {
3376        APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
3377        Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
3378      }
3379      if (RHSMask.getNode()) {
3380        APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
3381        Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
3382      }
3383
3384      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, VT));
3385    }
3386
3387    return Rot.getNode();
3388  }
3389
3390  // If there is a mask here, and we have a variable shift, we can't be sure
3391  // that we're masking out the right stuff.
3392  if (LHSMask.getNode() || RHSMask.getNode())
3393    return 0;
3394
3395  // If the shift amount is sign/zext/any-extended just peel it off.
3396  SDValue LExtOp0 = LHSShiftAmt;
3397  SDValue RExtOp0 = RHSShiftAmt;
3398  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3399       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3400       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3401       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
3402      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
3403       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
3404       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
3405       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
3406    LExtOp0 = LHSShiftAmt.getOperand(0);
3407    RExtOp0 = RHSShiftAmt.getOperand(0);
3408  }
3409
3410  if (RExtOp0.getOpcode() == ISD::SUB && RExtOp0.getOperand(1) == LExtOp0) {
3411    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3412    //   (rotl x, y)
3413    // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
3414    //   (rotr x, (sub 32, y))
3415    if (ConstantSDNode *SUBC =
3416            dyn_cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
3417      if (SUBC->getAPIntValue() == OpSizeInBits) {
3418        return DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
3419                           HasROTL ? LHSShiftAmt : RHSShiftAmt).getNode();
3420      } else if (LHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3421                 LHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3422        // fold (or (shl (*ext x), (*ext y)),
3423        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3424        //   (*ext (rotl x, y))
3425        // fold (or (shl (*ext x), (*ext y)),
3426        //          (srl (*ext x), (*ext (sub 32, y)))) ->
3427        //   (*ext (rotr x, (sub 32, y)))
3428        SDValue LArgExtOp0 = LHSShiftArg.getOperand(0);
3429        EVT LArgVT = LArgExtOp0.getValueType();
3430        bool HasROTRWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTR, LArgVT);
3431        bool HasROTLWithLArg = TLI.isOperationLegalOrCustom(ISD::ROTL, LArgVT);
3432        if (HasROTRWithLArg || HasROTLWithLArg) {
3433          if (LArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3434            SDValue V =
3435                DAG.getNode(HasROTLWithLArg ? ISD::ROTL : ISD::ROTR, DL, LArgVT,
3436                            LArgExtOp0, HasROTL ? LHSShiftAmt : RHSShiftAmt);
3437            return DAG.getNode(LHSShiftArg.getOpcode(), DL, VT, V).getNode();
3438          }
3439        }
3440      }
3441    }
3442  } else if (LExtOp0.getOpcode() == ISD::SUB &&
3443             RExtOp0 == LExtOp0.getOperand(1)) {
3444    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3445    //   (rotr x, y)
3446    // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext y))) ->
3447    //   (rotl x, (sub 32, y))
3448    if (ConstantSDNode *SUBC =
3449            dyn_cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
3450      if (SUBC->getAPIntValue() == OpSizeInBits) {
3451        return DAG.getNode(HasROTR ? ISD::ROTR : ISD::ROTL, DL, VT, LHSShiftArg,
3452                           HasROTR ? RHSShiftAmt : LHSShiftAmt).getNode();
3453      } else if (RHSShiftArg.getOpcode() == ISD::ZERO_EXTEND ||
3454                 RHSShiftArg.getOpcode() == ISD::ANY_EXTEND) {
3455        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3456        //          (srl (*ext x), (*ext y))) ->
3457        //   (*ext (rotl x, y))
3458        // fold (or (shl (*ext x), (*ext (sub 32, y))),
3459        //          (srl (*ext x), (*ext y))) ->
3460        //   (*ext (rotr x, (sub 32, y)))
3461        SDValue RArgExtOp0 = RHSShiftArg.getOperand(0);
3462        EVT RArgVT = RArgExtOp0.getValueType();
3463        bool HasROTRWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTR, RArgVT);
3464        bool HasROTLWithRArg = TLI.isOperationLegalOrCustom(ISD::ROTL, RArgVT);
3465        if (HasROTRWithRArg || HasROTLWithRArg) {
3466          if (RArgVT.getSizeInBits() == SUBC->getAPIntValue()) {
3467            SDValue V =
3468                DAG.getNode(HasROTRWithRArg ? ISD::ROTR : ISD::ROTL, DL, RArgVT,
3469                            RArgExtOp0, HasROTR ? RHSShiftAmt : LHSShiftAmt);
3470            return DAG.getNode(RHSShiftArg.getOpcode(), DL, VT, V).getNode();
3471          }
3472        }
3473      }
3474    }
3475  }
3476
3477  return 0;
3478}
3479
3480SDValue DAGCombiner::visitXOR(SDNode *N) {
3481  SDValue N0 = N->getOperand(0);
3482  SDValue N1 = N->getOperand(1);
3483  SDValue LHS, RHS, CC;
3484  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3485  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3486  EVT VT = N0.getValueType();
3487
3488  // fold vector ops
3489  if (VT.isVector()) {
3490    SDValue FoldedVOp = SimplifyVBinOp(N);
3491    if (FoldedVOp.getNode()) return FoldedVOp;
3492
3493    // fold (xor x, 0) -> x, vector edition
3494    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3495      return N1;
3496    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3497      return N0;
3498  }
3499
3500  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
3501  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
3502    return DAG.getConstant(0, VT);
3503  // fold (xor x, undef) -> undef
3504  if (N0.getOpcode() == ISD::UNDEF)
3505    return N0;
3506  if (N1.getOpcode() == ISD::UNDEF)
3507    return N1;
3508  // fold (xor c1, c2) -> c1^c2
3509  if (N0C && N1C)
3510    return DAG.FoldConstantArithmetic(ISD::XOR, VT, N0C, N1C);
3511  // canonicalize constant to RHS
3512  if (N0C && !N1C)
3513    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
3514  // fold (xor x, 0) -> x
3515  if (N1C && N1C->isNullValue())
3516    return N0;
3517  // reassociate xor
3518  SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1);
3519  if (RXOR.getNode() != 0)
3520    return RXOR;
3521
3522  // fold !(x cc y) -> (x !cc y)
3523  if (N1C && N1C->getAPIntValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
3524    bool isInt = LHS.getValueType().isInteger();
3525    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
3526                                               isInt);
3527
3528    if (!LegalOperations ||
3529        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
3530      switch (N0.getOpcode()) {
3531      default:
3532        llvm_unreachable("Unhandled SetCC Equivalent!");
3533      case ISD::SETCC:
3534        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
3535      case ISD::SELECT_CC:
3536        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
3537                               N0.getOperand(3), NotCC);
3538      }
3539    }
3540  }
3541
3542  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
3543  if (N1C && N1C->getAPIntValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
3544      N0.getNode()->hasOneUse() &&
3545      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
3546    SDValue V = N0.getOperand(0);
3547    V = DAG.getNode(ISD::XOR, SDLoc(N0), V.getValueType(), V,
3548                    DAG.getConstant(1, V.getValueType()));
3549    AddToWorkList(V.getNode());
3550    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
3551  }
3552
3553  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
3554  if (N1C && N1C->getAPIntValue() == 1 && VT == MVT::i1 &&
3555      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3556    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3557    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
3558      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3559      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3560      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3561      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3562      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3563    }
3564  }
3565  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
3566  if (N1C && N1C->isAllOnesValue() &&
3567      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
3568    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
3569    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
3570      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
3571      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
3572      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
3573      AddToWorkList(LHS.getNode()); AddToWorkList(RHS.getNode());
3574      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
3575    }
3576  }
3577  // fold (xor (and x, y), y) -> (and (not x), y)
3578  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3579      N0->getOperand(1) == N1) {
3580    SDValue X = N0->getOperand(0);
3581    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
3582    AddToWorkList(NotX.getNode());
3583    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
3584  }
3585  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
3586  if (N1C && N0.getOpcode() == ISD::XOR) {
3587    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
3588    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3589    if (N00C)
3590      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(1),
3591                         DAG.getConstant(N1C->getAPIntValue() ^
3592                                         N00C->getAPIntValue(), VT));
3593    if (N01C)
3594      return DAG.getNode(ISD::XOR, SDLoc(N), VT, N0.getOperand(0),
3595                         DAG.getConstant(N1C->getAPIntValue() ^
3596                                         N01C->getAPIntValue(), VT));
3597  }
3598  // fold (xor x, x) -> 0
3599  if (N0 == N1)
3600    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
3601
3602  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
3603  if (N0.getOpcode() == N1.getOpcode()) {
3604    SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
3605    if (Tmp.getNode()) return Tmp;
3606  }
3607
3608  // Simplify the expression using non-local knowledge.
3609  if (!VT.isVector() &&
3610      SimplifyDemandedBits(SDValue(N, 0)))
3611    return SDValue(N, 0);
3612
3613  return SDValue();
3614}
3615
3616/// visitShiftByConstant - Handle transforms common to the three shifts, when
3617/// the shift amount is a constant.
3618SDValue DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
3619  SDNode *LHS = N->getOperand(0).getNode();
3620  if (!LHS->hasOneUse()) return SDValue();
3621
3622  // We want to pull some binops through shifts, so that we have (and (shift))
3623  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
3624  // thing happens with address calculations, so it's important to canonicalize
3625  // it.
3626  bool HighBitSet = false;  // Can we transform this if the high bit is set?
3627
3628  switch (LHS->getOpcode()) {
3629  default: return SDValue();
3630  case ISD::OR:
3631  case ISD::XOR:
3632    HighBitSet = false; // We can only transform sra if the high bit is clear.
3633    break;
3634  case ISD::AND:
3635    HighBitSet = true;  // We can only transform sra if the high bit is set.
3636    break;
3637  case ISD::ADD:
3638    if (N->getOpcode() != ISD::SHL)
3639      return SDValue(); // only shl(add) not sr[al](add).
3640    HighBitSet = false; // We can only transform sra if the high bit is clear.
3641    break;
3642  }
3643
3644  // We require the RHS of the binop to be a constant as well.
3645  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
3646  if (!BinOpCst) return SDValue();
3647
3648  // FIXME: disable this unless the input to the binop is a shift by a constant.
3649  // If it is not a shift, it pessimizes some common cases like:
3650  //
3651  //    void foo(int *X, int i) { X[i & 1235] = 1; }
3652  //    int bar(int *X, int i) { return X[i & 255]; }
3653  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
3654  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
3655       BinOpLHSVal->getOpcode() != ISD::SRA &&
3656       BinOpLHSVal->getOpcode() != ISD::SRL) ||
3657      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
3658    return SDValue();
3659
3660  EVT VT = N->getValueType(0);
3661
3662  // If this is a signed shift right, and the high bit is modified by the
3663  // logical operation, do not perform the transformation. The highBitSet
3664  // boolean indicates the value of the high bit of the constant which would
3665  // cause it to be modified for this operation.
3666  if (N->getOpcode() == ISD::SRA) {
3667    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
3668    if (BinOpRHSSignSet != HighBitSet)
3669      return SDValue();
3670  }
3671
3672  // Fold the constants, shifting the binop RHS by the shift amount.
3673  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
3674                               N->getValueType(0),
3675                               LHS->getOperand(1), N->getOperand(1));
3676
3677  // Create the new shift.
3678  SDValue NewShift = DAG.getNode(N->getOpcode(),
3679                                 SDLoc(LHS->getOperand(0)),
3680                                 VT, LHS->getOperand(0), N->getOperand(1));
3681
3682  // Create the new binop.
3683  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
3684}
3685
3686SDValue DAGCombiner::visitSHL(SDNode *N) {
3687  SDValue N0 = N->getOperand(0);
3688  SDValue N1 = N->getOperand(1);
3689  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3690  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3691  EVT VT = N0.getValueType();
3692  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3693
3694  // fold vector ops
3695  if (VT.isVector()) {
3696    SDValue FoldedVOp = SimplifyVBinOp(N);
3697    if (FoldedVOp.getNode()) return FoldedVOp;
3698  }
3699
3700  // fold (shl c1, c2) -> c1<<c2
3701  if (N0C && N1C)
3702    return DAG.FoldConstantArithmetic(ISD::SHL, VT, N0C, N1C);
3703  // fold (shl 0, x) -> 0
3704  if (N0C && N0C->isNullValue())
3705    return N0;
3706  // fold (shl x, c >= size(x)) -> undef
3707  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3708    return DAG.getUNDEF(VT);
3709  // fold (shl x, 0) -> x
3710  if (N1C && N1C->isNullValue())
3711    return N0;
3712  // fold (shl undef, x) -> 0
3713  if (N0.getOpcode() == ISD::UNDEF)
3714    return DAG.getConstant(0, VT);
3715  // if (shl x, c) is known to be zero, return 0
3716  if (DAG.MaskedValueIsZero(SDValue(N, 0),
3717                            APInt::getAllOnesValue(OpSizeInBits)))
3718    return DAG.getConstant(0, VT);
3719  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
3720  if (N1.getOpcode() == ISD::TRUNCATE &&
3721      N1.getOperand(0).getOpcode() == ISD::AND &&
3722      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3723    SDValue N101 = N1.getOperand(0).getOperand(1);
3724    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3725      EVT TruncVT = N1.getValueType();
3726      SDValue N100 = N1.getOperand(0).getOperand(0);
3727      APInt TruncC = N101C->getAPIntValue();
3728      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
3729      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
3730                         DAG.getNode(ISD::AND, SDLoc(N), TruncVT,
3731                                     DAG.getNode(ISD::TRUNCATE,
3732                                                 SDLoc(N),
3733                                                 TruncVT, N100),
3734                                     DAG.getConstant(TruncC, TruncVT)));
3735    }
3736  }
3737
3738  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3739    return SDValue(N, 0);
3740
3741  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
3742  if (N1C && N0.getOpcode() == ISD::SHL &&
3743      N0.getOperand(1).getOpcode() == ISD::Constant) {
3744    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3745    uint64_t c2 = N1C->getZExtValue();
3746    if (c1 + c2 >= OpSizeInBits)
3747      return DAG.getConstant(0, VT);
3748    return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3749                       DAG.getConstant(c1 + c2, N1.getValueType()));
3750  }
3751
3752  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
3753  // For this to be valid, the second form must not preserve any of the bits
3754  // that are shifted out by the inner shift in the first form.  This means
3755  // the outer shift size must be >= the number of bits added by the ext.
3756  // As a corollary, we don't care what kind of ext it is.
3757  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
3758              N0.getOpcode() == ISD::ANY_EXTEND ||
3759              N0.getOpcode() == ISD::SIGN_EXTEND) &&
3760      N0.getOperand(0).getOpcode() == ISD::SHL &&
3761      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3762    uint64_t c1 =
3763      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3764    uint64_t c2 = N1C->getZExtValue();
3765    EVT InnerShiftVT = N0.getOperand(0).getValueType();
3766    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
3767    if (c2 >= OpSizeInBits - InnerShiftSize) {
3768      if (c1 + c2 >= OpSizeInBits)
3769        return DAG.getConstant(0, VT);
3770      return DAG.getNode(ISD::SHL, SDLoc(N0), VT,
3771                         DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
3772                                     N0.getOperand(0)->getOperand(0)),
3773                         DAG.getConstant(c1 + c2, N1.getValueType()));
3774    }
3775  }
3776
3777  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
3778  // Only fold this if the inner zext has no other uses to avoid increasing
3779  // the total number of instructions.
3780  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
3781      N0.getOperand(0).getOpcode() == ISD::SRL &&
3782      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
3783    uint64_t c1 =
3784      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
3785    if (c1 < VT.getSizeInBits()) {
3786      uint64_t c2 = N1C->getZExtValue();
3787      if (c1 == c2) {
3788        SDValue NewOp0 = N0.getOperand(0);
3789        EVT CountVT = NewOp0.getOperand(1).getValueType();
3790        SDValue NewSHL = DAG.getNode(ISD::SHL, SDLoc(N), NewOp0.getValueType(),
3791                                     NewOp0, DAG.getConstant(c2, CountVT));
3792        AddToWorkList(NewSHL.getNode());
3793        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
3794      }
3795    }
3796  }
3797
3798  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
3799  //                               (and (srl x, (sub c1, c2), MASK)
3800  // Only fold this if the inner shift has no other uses -- if it does, folding
3801  // this will increase the total number of instructions.
3802  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
3803      N0.getOperand(1).getOpcode() == ISD::Constant) {
3804    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
3805    if (c1 < VT.getSizeInBits()) {
3806      uint64_t c2 = N1C->getZExtValue();
3807      APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
3808                                         VT.getSizeInBits() - c1);
3809      SDValue Shift;
3810      if (c2 > c1) {
3811        Mask = Mask.shl(c2-c1);
3812        Shift = DAG.getNode(ISD::SHL, SDLoc(N), VT, N0.getOperand(0),
3813                            DAG.getConstant(c2-c1, N1.getValueType()));
3814      } else {
3815        Mask = Mask.lshr(c1-c2);
3816        Shift = DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
3817                            DAG.getConstant(c1-c2, N1.getValueType()));
3818      }
3819      return DAG.getNode(ISD::AND, SDLoc(N0), VT, Shift,
3820                         DAG.getConstant(Mask, VT));
3821    }
3822  }
3823  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
3824  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
3825    SDValue HiBitsMask =
3826      DAG.getConstant(APInt::getHighBitsSet(VT.getSizeInBits(),
3827                                            VT.getSizeInBits() -
3828                                              N1C->getZExtValue()),
3829                      VT);
3830    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
3831                       HiBitsMask);
3832  }
3833
3834  if (N1C) {
3835    SDValue NewSHL = visitShiftByConstant(N, N1C->getZExtValue());
3836    if (NewSHL.getNode())
3837      return NewSHL;
3838  }
3839
3840  return SDValue();
3841}
3842
3843SDValue DAGCombiner::visitSRA(SDNode *N) {
3844  SDValue N0 = N->getOperand(0);
3845  SDValue N1 = N->getOperand(1);
3846  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3847  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3848  EVT VT = N0.getValueType();
3849  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
3850
3851  // fold vector ops
3852  if (VT.isVector()) {
3853    SDValue FoldedVOp = SimplifyVBinOp(N);
3854    if (FoldedVOp.getNode()) return FoldedVOp;
3855  }
3856
3857  // fold (sra c1, c2) -> (sra c1, c2)
3858  if (N0C && N1C)
3859    return DAG.FoldConstantArithmetic(ISD::SRA, VT, N0C, N1C);
3860  // fold (sra 0, x) -> 0
3861  if (N0C && N0C->isNullValue())
3862    return N0;
3863  // fold (sra -1, x) -> -1
3864  if (N0C && N0C->isAllOnesValue())
3865    return N0;
3866  // fold (sra x, (setge c, size(x))) -> undef
3867  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
3868    return DAG.getUNDEF(VT);
3869  // fold (sra x, 0) -> x
3870  if (N1C && N1C->isNullValue())
3871    return N0;
3872  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
3873  // sext_inreg.
3874  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
3875    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
3876    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
3877    if (VT.isVector())
3878      ExtVT = EVT::getVectorVT(*DAG.getContext(),
3879                               ExtVT, VT.getVectorNumElements());
3880    if ((!LegalOperations ||
3881         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
3882      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
3883                         N0.getOperand(0), DAG.getValueType(ExtVT));
3884  }
3885
3886  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
3887  if (N1C && N0.getOpcode() == ISD::SRA) {
3888    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3889      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
3890      if (Sum >= OpSizeInBits) Sum = OpSizeInBits-1;
3891      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
3892                         DAG.getConstant(Sum, N1C->getValueType(0)));
3893    }
3894  }
3895
3896  // fold (sra (shl X, m), (sub result_size, n))
3897  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
3898  // result_size - n != m.
3899  // If truncate is free for the target sext(shl) is likely to result in better
3900  // code.
3901  if (N0.getOpcode() == ISD::SHL) {
3902    // Get the two constanst of the shifts, CN0 = m, CN = n.
3903    const ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3904    if (N01C && N1C) {
3905      // Determine what the truncate's result bitsize and type would be.
3906      EVT TruncVT =
3907        EVT::getIntegerVT(*DAG.getContext(),
3908                          OpSizeInBits - N1C->getZExtValue());
3909      // Determine the residual right-shift amount.
3910      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
3911
3912      // If the shift is not a no-op (in which case this should be just a sign
3913      // extend already), the truncated to type is legal, sign_extend is legal
3914      // on that type, and the truncate to that type is both legal and free,
3915      // perform the transform.
3916      if ((ShiftAmt > 0) &&
3917          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
3918          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
3919          TLI.isTruncateFree(VT, TruncVT)) {
3920
3921          SDValue Amt = DAG.getConstant(ShiftAmt,
3922              getShiftAmountTy(N0.getOperand(0).getValueType()));
3923          SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0), VT,
3924                                      N0.getOperand(0), Amt);
3925          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), TruncVT,
3926                                      Shift);
3927          return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N),
3928                             N->getValueType(0), Trunc);
3929      }
3930    }
3931  }
3932
3933  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
3934  if (N1.getOpcode() == ISD::TRUNCATE &&
3935      N1.getOperand(0).getOpcode() == ISD::AND &&
3936      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
3937    SDValue N101 = N1.getOperand(0).getOperand(1);
3938    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
3939      EVT TruncVT = N1.getValueType();
3940      SDValue N100 = N1.getOperand(0).getOperand(0);
3941      APInt TruncC = N101C->getAPIntValue();
3942      TruncC = TruncC.trunc(TruncVT.getScalarType().getSizeInBits());
3943      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0,
3944                         DAG.getNode(ISD::AND, SDLoc(N),
3945                                     TruncVT,
3946                                     DAG.getNode(ISD::TRUNCATE,
3947                                                 SDLoc(N),
3948                                                 TruncVT, N100),
3949                                     DAG.getConstant(TruncC, TruncVT)));
3950    }
3951  }
3952
3953  // fold (sra (trunc (sr x, c1)), c2) -> (trunc (sra x, c1+c2))
3954  //      if c1 is equal to the number of bits the trunc removes
3955  if (N0.getOpcode() == ISD::TRUNCATE &&
3956      (N0.getOperand(0).getOpcode() == ISD::SRL ||
3957       N0.getOperand(0).getOpcode() == ISD::SRA) &&
3958      N0.getOperand(0).hasOneUse() &&
3959      N0.getOperand(0).getOperand(1).hasOneUse() &&
3960      N1C && isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
3961    EVT LargeVT = N0.getOperand(0).getValueType();
3962    ConstantSDNode *LargeShiftAmt =
3963      cast<ConstantSDNode>(N0.getOperand(0).getOperand(1));
3964
3965    if (LargeVT.getScalarType().getSizeInBits() - OpSizeInBits ==
3966        LargeShiftAmt->getZExtValue()) {
3967      SDValue Amt =
3968        DAG.getConstant(LargeShiftAmt->getZExtValue() + N1C->getZExtValue(),
3969              getShiftAmountTy(N0.getOperand(0).getOperand(0).getValueType()));
3970      SDValue SRA = DAG.getNode(ISD::SRA, SDLoc(N), LargeVT,
3971                                N0.getOperand(0).getOperand(0), Amt);
3972      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, SRA);
3973    }
3974  }
3975
3976  // Simplify, based on bits shifted out of the LHS.
3977  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
3978    return SDValue(N, 0);
3979
3980
3981  // If the sign bit is known to be zero, switch this to a SRL.
3982  if (DAG.SignBitIsZero(N0))
3983    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
3984
3985  if (N1C) {
3986    SDValue NewSRA = visitShiftByConstant(N, N1C->getZExtValue());
3987    if (NewSRA.getNode())
3988      return NewSRA;
3989  }
3990
3991  return SDValue();
3992}
3993
3994SDValue DAGCombiner::visitSRL(SDNode *N) {
3995  SDValue N0 = N->getOperand(0);
3996  SDValue N1 = N->getOperand(1);
3997  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3998  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3999  EVT VT = N0.getValueType();
4000  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4001
4002  // fold vector ops
4003  if (VT.isVector()) {
4004    SDValue FoldedVOp = SimplifyVBinOp(N);
4005    if (FoldedVOp.getNode()) return FoldedVOp;
4006  }
4007
4008  // fold (srl c1, c2) -> c1 >>u c2
4009  if (N0C && N1C)
4010    return DAG.FoldConstantArithmetic(ISD::SRL, VT, N0C, N1C);
4011  // fold (srl 0, x) -> 0
4012  if (N0C && N0C->isNullValue())
4013    return N0;
4014  // fold (srl x, c >= size(x)) -> undef
4015  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4016    return DAG.getUNDEF(VT);
4017  // fold (srl x, 0) -> x
4018  if (N1C && N1C->isNullValue())
4019    return N0;
4020  // if (srl x, c) is known to be zero, return 0
4021  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4022                                   APInt::getAllOnesValue(OpSizeInBits)))
4023    return DAG.getConstant(0, VT);
4024
4025  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4026  if (N1C && N0.getOpcode() == ISD::SRL &&
4027      N0.getOperand(1).getOpcode() == ISD::Constant) {
4028    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
4029    uint64_t c2 = N1C->getZExtValue();
4030    if (c1 + c2 >= OpSizeInBits)
4031      return DAG.getConstant(0, VT);
4032    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0),
4033                       DAG.getConstant(c1 + c2, N1.getValueType()));
4034  }
4035
4036  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4037  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4038      N0.getOperand(0).getOpcode() == ISD::SRL &&
4039      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4040    uint64_t c1 =
4041      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4042    uint64_t c2 = N1C->getZExtValue();
4043    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4044    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4045    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4046    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4047    if (c1 + OpSizeInBits == InnerShiftSize) {
4048      if (c1 + c2 >= InnerShiftSize)
4049        return DAG.getConstant(0, VT);
4050      return DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT,
4051                         DAG.getNode(ISD::SRL, SDLoc(N0), InnerShiftVT,
4052                                     N0.getOperand(0)->getOperand(0),
4053                                     DAG.getConstant(c1 + c2, ShiftCountVT)));
4054    }
4055  }
4056
4057  // fold (srl (shl x, c), c) -> (and x, cst2)
4058  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
4059      N0.getValueSizeInBits() <= 64) {
4060    uint64_t ShAmt = N1C->getZExtValue()+64-N0.getValueSizeInBits();
4061    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0.getOperand(0),
4062                       DAG.getConstant(~0ULL >> ShAmt, VT));
4063  }
4064
4065  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4066  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4067    // Shifting in all undef bits?
4068    EVT SmallVT = N0.getOperand(0).getValueType();
4069    if (N1C->getZExtValue() >= SmallVT.getSizeInBits())
4070      return DAG.getUNDEF(VT);
4071
4072    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4073      uint64_t ShiftAmt = N1C->getZExtValue();
4074      SDValue SmallShift = DAG.getNode(ISD::SRL, SDLoc(N0), SmallVT,
4075                                       N0.getOperand(0),
4076                          DAG.getConstant(ShiftAmt, getShiftAmountTy(SmallVT)));
4077      AddToWorkList(SmallShift.getNode());
4078      APInt Mask = APInt::getAllOnesValue(VT.getSizeInBits()).lshr(ShiftAmt);
4079      return DAG.getNode(ISD::AND, SDLoc(N), VT,
4080                         DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SmallShift),
4081                         DAG.getConstant(Mask, VT));
4082    }
4083  }
4084
4085  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4086  // bit, which is unmodified by sra.
4087  if (N1C && N1C->getZExtValue() + 1 == VT.getSizeInBits()) {
4088    if (N0.getOpcode() == ISD::SRA)
4089      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4090  }
4091
4092  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4093  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4094      N1C->getAPIntValue() == Log2_32(VT.getSizeInBits())) {
4095    APInt KnownZero, KnownOne;
4096    DAG.ComputeMaskedBits(N0.getOperand(0), KnownZero, KnownOne);
4097
4098    // If any of the input bits are KnownOne, then the input couldn't be all
4099    // zeros, thus the result of the srl will always be zero.
4100    if (KnownOne.getBoolValue()) return DAG.getConstant(0, VT);
4101
4102    // If all of the bits input the to ctlz node are known to be zero, then
4103    // the result of the ctlz is "32" and the result of the shift is one.
4104    APInt UnknownBits = ~KnownZero;
4105    if (UnknownBits == 0) return DAG.getConstant(1, VT);
4106
4107    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4108    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4109      // Okay, we know that only that the single bit specified by UnknownBits
4110      // could be set on input to the CTLZ node. If this bit is set, the SRL
4111      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4112      // to an SRL/XOR pair, which is likely to simplify more.
4113      unsigned ShAmt = UnknownBits.countTrailingZeros();
4114      SDValue Op = N0.getOperand(0);
4115
4116      if (ShAmt) {
4117        Op = DAG.getNode(ISD::SRL, SDLoc(N0), VT, Op,
4118                  DAG.getConstant(ShAmt, getShiftAmountTy(Op.getValueType())));
4119        AddToWorkList(Op.getNode());
4120      }
4121
4122      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
4123                         Op, DAG.getConstant(1, VT));
4124    }
4125  }
4126
4127  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4128  if (N1.getOpcode() == ISD::TRUNCATE &&
4129      N1.getOperand(0).getOpcode() == ISD::AND &&
4130      N1.hasOneUse() && N1.getOperand(0).hasOneUse()) {
4131    SDValue N101 = N1.getOperand(0).getOperand(1);
4132    if (ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N101)) {
4133      EVT TruncVT = N1.getValueType();
4134      SDValue N100 = N1.getOperand(0).getOperand(0);
4135      APInt TruncC = N101C->getAPIntValue();
4136      TruncC = TruncC.trunc(TruncVT.getSizeInBits());
4137      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0,
4138                         DAG.getNode(ISD::AND, SDLoc(N),
4139                                     TruncVT,
4140                                     DAG.getNode(ISD::TRUNCATE,
4141                                                 SDLoc(N),
4142                                                 TruncVT, N100),
4143                                     DAG.getConstant(TruncC, TruncVT)));
4144    }
4145  }
4146
4147  // fold operands of srl based on knowledge that the low bits are not
4148  // demanded.
4149  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4150    return SDValue(N, 0);
4151
4152  if (N1C) {
4153    SDValue NewSRL = visitShiftByConstant(N, N1C->getZExtValue());
4154    if (NewSRL.getNode())
4155      return NewSRL;
4156  }
4157
4158  // Attempt to convert a srl of a load into a narrower zero-extending load.
4159  SDValue NarrowLoad = ReduceLoadWidth(N);
4160  if (NarrowLoad.getNode())
4161    return NarrowLoad;
4162
4163  // Here is a common situation. We want to optimize:
4164  //
4165  //   %a = ...
4166  //   %b = and i32 %a, 2
4167  //   %c = srl i32 %b, 1
4168  //   brcond i32 %c ...
4169  //
4170  // into
4171  //
4172  //   %a = ...
4173  //   %b = and %a, 2
4174  //   %c = setcc eq %b, 0
4175  //   brcond %c ...
4176  //
4177  // However when after the source operand of SRL is optimized into AND, the SRL
4178  // itself may not be optimized further. Look for it and add the BRCOND into
4179  // the worklist.
4180  if (N->hasOneUse()) {
4181    SDNode *Use = *N->use_begin();
4182    if (Use->getOpcode() == ISD::BRCOND)
4183      AddToWorkList(Use);
4184    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4185      // Also look pass the truncate.
4186      Use = *Use->use_begin();
4187      if (Use->getOpcode() == ISD::BRCOND)
4188        AddToWorkList(Use);
4189    }
4190  }
4191
4192  return SDValue();
4193}
4194
4195SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4196  SDValue N0 = N->getOperand(0);
4197  EVT VT = N->getValueType(0);
4198
4199  // fold (ctlz c1) -> c2
4200  if (isa<ConstantSDNode>(N0))
4201    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4202  return SDValue();
4203}
4204
4205SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4206  SDValue N0 = N->getOperand(0);
4207  EVT VT = N->getValueType(0);
4208
4209  // fold (ctlz_zero_undef c1) -> c2
4210  if (isa<ConstantSDNode>(N0))
4211    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4212  return SDValue();
4213}
4214
4215SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4216  SDValue N0 = N->getOperand(0);
4217  EVT VT = N->getValueType(0);
4218
4219  // fold (cttz c1) -> c2
4220  if (isa<ConstantSDNode>(N0))
4221    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4222  return SDValue();
4223}
4224
4225SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4226  SDValue N0 = N->getOperand(0);
4227  EVT VT = N->getValueType(0);
4228
4229  // fold (cttz_zero_undef c1) -> c2
4230  if (isa<ConstantSDNode>(N0))
4231    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4232  return SDValue();
4233}
4234
4235SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4236  SDValue N0 = N->getOperand(0);
4237  EVT VT = N->getValueType(0);
4238
4239  // fold (ctpop c1) -> c2
4240  if (isa<ConstantSDNode>(N0))
4241    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4242  return SDValue();
4243}
4244
4245SDValue DAGCombiner::visitSELECT(SDNode *N) {
4246  SDValue N0 = N->getOperand(0);
4247  SDValue N1 = N->getOperand(1);
4248  SDValue N2 = N->getOperand(2);
4249  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
4250  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4251  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
4252  EVT VT = N->getValueType(0);
4253  EVT VT0 = N0.getValueType();
4254
4255  // fold (select C, X, X) -> X
4256  if (N1 == N2)
4257    return N1;
4258  // fold (select true, X, Y) -> X
4259  if (N0C && !N0C->isNullValue())
4260    return N1;
4261  // fold (select false, X, Y) -> Y
4262  if (N0C && N0C->isNullValue())
4263    return N2;
4264  // fold (select C, 1, X) -> (or C, X)
4265  if (VT == MVT::i1 && N1C && N1C->getAPIntValue() == 1)
4266    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4267  // fold (select C, 0, 1) -> (xor C, 1)
4268  if (VT.isInteger() &&
4269      (VT0 == MVT::i1 ||
4270       (VT0.isInteger() &&
4271        TLI.getBooleanContents(false) ==
4272        TargetLowering::ZeroOrOneBooleanContent)) &&
4273      N1C && N2C && N1C->isNullValue() && N2C->getAPIntValue() == 1) {
4274    SDValue XORNode;
4275    if (VT == VT0)
4276      return DAG.getNode(ISD::XOR, SDLoc(N), VT0,
4277                         N0, DAG.getConstant(1, VT0));
4278    XORNode = DAG.getNode(ISD::XOR, SDLoc(N0), VT0,
4279                          N0, DAG.getConstant(1, VT0));
4280    AddToWorkList(XORNode.getNode());
4281    if (VT.bitsGT(VT0))
4282      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
4283    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
4284  }
4285  // fold (select C, 0, X) -> (and (not C), X)
4286  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
4287    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4288    AddToWorkList(NOTNode.getNode());
4289    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
4290  }
4291  // fold (select C, X, 1) -> (or (not C), X)
4292  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getAPIntValue() == 1) {
4293    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
4294    AddToWorkList(NOTNode.getNode());
4295    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
4296  }
4297  // fold (select C, X, 0) -> (and C, X)
4298  if (VT == MVT::i1 && N2C && N2C->isNullValue())
4299    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4300  // fold (select X, X, Y) -> (or X, Y)
4301  // fold (select X, 1, Y) -> (or X, Y)
4302  if (VT == MVT::i1 && (N0 == N1 || (N1C && N1C->getAPIntValue() == 1)))
4303    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
4304  // fold (select X, Y, X) -> (and X, Y)
4305  // fold (select X, Y, 0) -> (and X, Y)
4306  if (VT == MVT::i1 && (N0 == N2 || (N2C && N2C->getAPIntValue() == 0)))
4307    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
4308
4309  // If we can fold this based on the true/false value, do so.
4310  if (SimplifySelectOps(N, N1, N2))
4311    return SDValue(N, 0);  // Don't revisit N.
4312
4313  // fold selects based on a setcc into other things, such as min/max/abs
4314  if (N0.getOpcode() == ISD::SETCC) {
4315    // FIXME:
4316    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
4317    // having to say they don't support SELECT_CC on every type the DAG knows
4318    // about, since there is no way to mark an opcode illegal at all value types
4319    if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other) &&
4320        TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))
4321      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
4322                         N0.getOperand(0), N0.getOperand(1),
4323                         N1, N2, N0.getOperand(2));
4324    return SimplifySelect(SDLoc(N), N0, N1, N2);
4325  }
4326
4327  return SDValue();
4328}
4329
4330static
4331std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
4332  SDLoc DL(N);
4333  EVT LoVT, HiVT;
4334  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
4335
4336  // Split the inputs.
4337  SDValue Lo, Hi, LL, LH, RL, RH;
4338  llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
4339  llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
4340
4341  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
4342  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
4343
4344  return std::make_pair(Lo, Hi);
4345}
4346
4347SDValue DAGCombiner::visitVSELECT(SDNode *N) {
4348  SDValue N0 = N->getOperand(0);
4349  SDValue N1 = N->getOperand(1);
4350  SDValue N2 = N->getOperand(2);
4351  SDLoc DL(N);
4352
4353  // Canonicalize integer abs.
4354  // vselect (setg[te] X,  0),  X, -X ->
4355  // vselect (setgt    X, -1),  X, -X ->
4356  // vselect (setl[te] X,  0), -X,  X ->
4357  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4358  if (N0.getOpcode() == ISD::SETCC) {
4359    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4360    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4361    bool isAbs = false;
4362    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
4363
4364    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
4365         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
4366        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
4367      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
4368    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
4369             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
4370      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
4371
4372    if (isAbs) {
4373      EVT VT = LHS.getValueType();
4374      SDValue Shift = DAG.getNode(
4375          ISD::SRA, DL, VT, LHS,
4376          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, VT));
4377      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
4378      AddToWorkList(Shift.getNode());
4379      AddToWorkList(Add.getNode());
4380      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
4381    }
4382  }
4383
4384  // If the VSELECT result requires splitting and the mask is provided by a
4385  // SETCC, then split both nodes and its operands before legalization. This
4386  // prevents the type legalizer from unrolling SETCC into scalar comparisons
4387  // and enables future optimizations (e.g. min/max pattern matching on X86).
4388  if (N0.getOpcode() == ISD::SETCC) {
4389    EVT VT = N->getValueType(0);
4390
4391    // Check if any splitting is required.
4392    if (TLI.getTypeAction(*DAG.getContext(), VT) !=
4393        TargetLowering::TypeSplitVector)
4394      return SDValue();
4395
4396    SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
4397    llvm::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
4398    llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
4399    llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
4400
4401    Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
4402    Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
4403
4404    // Add the new VSELECT nodes to the work list in case they need to be split
4405    // again.
4406    AddToWorkList(Lo.getNode());
4407    AddToWorkList(Hi.getNode());
4408
4409    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
4410  }
4411
4412  return SDValue();
4413}
4414
4415SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
4416  SDValue N0 = N->getOperand(0);
4417  SDValue N1 = N->getOperand(1);
4418  SDValue N2 = N->getOperand(2);
4419  SDValue N3 = N->getOperand(3);
4420  SDValue N4 = N->getOperand(4);
4421  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
4422
4423  // fold select_cc lhs, rhs, x, x, cc -> x
4424  if (N2 == N3)
4425    return N2;
4426
4427  // Determine if the condition we're dealing with is constant
4428  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
4429                              N0, N1, CC, SDLoc(N), false);
4430  if (SCC.getNode()) {
4431    AddToWorkList(SCC.getNode());
4432
4433    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
4434      if (!SCCC->isNullValue())
4435        return N2;    // cond always true -> true val
4436      else
4437        return N3;    // cond always false -> false val
4438    }
4439
4440    // Fold to a simpler select_cc
4441    if (SCC.getOpcode() == ISD::SETCC)
4442      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
4443                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
4444                         SCC.getOperand(2));
4445  }
4446
4447  // If we can fold this based on the true/false value, do so.
4448  if (SimplifySelectOps(N, N2, N3))
4449    return SDValue(N, 0);  // Don't revisit N.
4450
4451  // fold select_cc into other things, such as min/max/abs
4452  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
4453}
4454
4455SDValue DAGCombiner::visitSETCC(SDNode *N) {
4456  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
4457                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
4458                       SDLoc(N));
4459}
4460
4461// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
4462// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
4463// transformation. Returns true if extension are possible and the above
4464// mentioned transformation is profitable.
4465static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
4466                                    unsigned ExtOpc,
4467                                    SmallVectorImpl<SDNode *> &ExtendNodes,
4468                                    const TargetLowering &TLI) {
4469  bool HasCopyToRegUses = false;
4470  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
4471  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4472                            UE = N0.getNode()->use_end();
4473       UI != UE; ++UI) {
4474    SDNode *User = *UI;
4475    if (User == N)
4476      continue;
4477    if (UI.getUse().getResNo() != N0.getResNo())
4478      continue;
4479    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
4480    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
4481      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
4482      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
4483        // Sign bits will be lost after a zext.
4484        return false;
4485      bool Add = false;
4486      for (unsigned i = 0; i != 2; ++i) {
4487        SDValue UseOp = User->getOperand(i);
4488        if (UseOp == N0)
4489          continue;
4490        if (!isa<ConstantSDNode>(UseOp))
4491          return false;
4492        Add = true;
4493      }
4494      if (Add)
4495        ExtendNodes.push_back(User);
4496      continue;
4497    }
4498    // If truncates aren't free and there are users we can't
4499    // extend, it isn't worthwhile.
4500    if (!isTruncFree)
4501      return false;
4502    // Remember if this value is live-out.
4503    if (User->getOpcode() == ISD::CopyToReg)
4504      HasCopyToRegUses = true;
4505  }
4506
4507  if (HasCopyToRegUses) {
4508    bool BothLiveOut = false;
4509    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4510         UI != UE; ++UI) {
4511      SDUse &Use = UI.getUse();
4512      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
4513        BothLiveOut = true;
4514        break;
4515      }
4516    }
4517    if (BothLiveOut)
4518      // Both unextended and extended values are live out. There had better be
4519      // a good reason for the transformation.
4520      return ExtendNodes.size();
4521  }
4522  return true;
4523}
4524
4525void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
4526                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
4527                                  ISD::NodeType ExtType) {
4528  // Extend SetCC uses if necessary.
4529  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
4530    SDNode *SetCC = SetCCs[i];
4531    SmallVector<SDValue, 4> Ops;
4532
4533    for (unsigned j = 0; j != 2; ++j) {
4534      SDValue SOp = SetCC->getOperand(j);
4535      if (SOp == Trunc)
4536        Ops.push_back(ExtLoad);
4537      else
4538        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
4539    }
4540
4541    Ops.push_back(SetCC->getOperand(2));
4542    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0),
4543                                 &Ops[0], Ops.size()));
4544  }
4545}
4546
4547SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
4548  SDValue N0 = N->getOperand(0);
4549  EVT VT = N->getValueType(0);
4550
4551  // fold (sext c1) -> c1
4552  if (isa<ConstantSDNode>(N0))
4553    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N0);
4554
4555  // fold (sext (sext x)) -> (sext x)
4556  // fold (sext (aext x)) -> (sext x)
4557  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4558    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
4559                       N0.getOperand(0));
4560
4561  if (N0.getOpcode() == ISD::TRUNCATE) {
4562    // fold (sext (truncate (load x))) -> (sext (smaller load x))
4563    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
4564    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4565    if (NarrowLoad.getNode()) {
4566      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4567      if (NarrowLoad.getNode() != N0.getNode()) {
4568        CombineTo(N0.getNode(), NarrowLoad);
4569        // CombineTo deleted the truncate, if needed, but not what's under it.
4570        AddToWorkList(oye);
4571      }
4572      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4573    }
4574
4575    // See if the value being truncated is already sign extended.  If so, just
4576    // eliminate the trunc/sext pair.
4577    SDValue Op = N0.getOperand(0);
4578    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
4579    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
4580    unsigned DestBits = VT.getScalarType().getSizeInBits();
4581    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
4582
4583    if (OpBits == DestBits) {
4584      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
4585      // bits, it is already ready.
4586      if (NumSignBits > DestBits-MidBits)
4587        return Op;
4588    } else if (OpBits < DestBits) {
4589      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
4590      // bits, just sext from i32.
4591      if (NumSignBits > OpBits-MidBits)
4592        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
4593    } else {
4594      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
4595      // bits, just truncate to i32.
4596      if (NumSignBits > OpBits-MidBits)
4597        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4598    }
4599
4600    // fold (sext (truncate x)) -> (sextinreg x).
4601    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
4602                                                 N0.getValueType())) {
4603      if (OpBits < DestBits)
4604        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
4605      else if (OpBits > DestBits)
4606        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
4607      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
4608                         DAG.getValueType(N0.getValueType()));
4609    }
4610  }
4611
4612  // fold (sext (load x)) -> (sext (truncate (sextload x)))
4613  // None of the supported targets knows how to perform load and sign extend
4614  // on vectors in one instruction.  We only perform this transformation on
4615  // scalars.
4616  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4617      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4618       TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()))) {
4619    bool DoXform = true;
4620    SmallVector<SDNode*, 4> SetCCs;
4621    if (!N0.hasOneUse())
4622      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
4623    if (DoXform) {
4624      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4625      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4626                                       LN0->getChain(),
4627                                       LN0->getBasePtr(), N0.getValueType(),
4628                                       LN0->getMemOperand());
4629      CombineTo(N, ExtLoad);
4630      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4631                                  N0.getValueType(), ExtLoad);
4632      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4633      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4634                      ISD::SIGN_EXTEND);
4635      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4636    }
4637  }
4638
4639  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
4640  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
4641  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4642      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4643    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4644    EVT MemVT = LN0->getMemoryVT();
4645    if ((!LegalOperations && !LN0->isVolatile()) ||
4646        TLI.isLoadExtLegal(ISD::SEXTLOAD, MemVT)) {
4647      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
4648                                       LN0->getChain(),
4649                                       LN0->getBasePtr(), MemVT,
4650                                       LN0->getMemOperand());
4651      CombineTo(N, ExtLoad);
4652      CombineTo(N0.getNode(),
4653                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4654                            N0.getValueType(), ExtLoad),
4655                ExtLoad.getValue(1));
4656      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4657    }
4658  }
4659
4660  // fold (sext (and/or/xor (load x), cst)) ->
4661  //      (and/or/xor (sextload x), (sext cst))
4662  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4663       N0.getOpcode() == ISD::XOR) &&
4664      isa<LoadSDNode>(N0.getOperand(0)) &&
4665      N0.getOperand(1).getOpcode() == ISD::Constant &&
4666      TLI.isLoadExtLegal(ISD::SEXTLOAD, N0.getValueType()) &&
4667      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4668    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4669    if (LN0->getExtensionType() != ISD::ZEXTLOAD) {
4670      bool DoXform = true;
4671      SmallVector<SDNode*, 4> SetCCs;
4672      if (!N0.hasOneUse())
4673        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
4674                                          SetCCs, TLI);
4675      if (DoXform) {
4676        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
4677                                         LN0->getChain(), LN0->getBasePtr(),
4678                                         LN0->getMemoryVT(),
4679                                         LN0->getMemOperand());
4680        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4681        Mask = Mask.sext(VT.getSizeInBits());
4682        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4683                                  ExtLoad, DAG.getConstant(Mask, VT));
4684        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4685                                    SDLoc(N0.getOperand(0)),
4686                                    N0.getOperand(0).getValueType(), ExtLoad);
4687        CombineTo(N, And);
4688        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4689        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4690                        ISD::SIGN_EXTEND);
4691        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4692      }
4693    }
4694  }
4695
4696  if (N0.getOpcode() == ISD::SETCC) {
4697    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
4698    // Only do this before legalize for now.
4699    if (VT.isVector() && !LegalOperations &&
4700        TLI.getBooleanContents(true) ==
4701          TargetLowering::ZeroOrNegativeOneBooleanContent) {
4702      EVT N0VT = N0.getOperand(0).getValueType();
4703      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
4704      // of the same size as the compared operands. Only optimize sext(setcc())
4705      // if this is the case.
4706      EVT SVT = getSetCCResultType(N0VT);
4707
4708      // We know that the # elements of the results is the same as the
4709      // # elements of the compare (and the # elements of the compare result
4710      // for that matter).  Check to see that they are the same size.  If so,
4711      // we know that the element size of the sext'd result matches the
4712      // element size of the compare operands.
4713      if (VT.getSizeInBits() == SVT.getSizeInBits())
4714        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4715                             N0.getOperand(1),
4716                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
4717
4718      // If the desired elements are smaller or larger than the source
4719      // elements we can use a matching integer vector type and then
4720      // truncate/sign extend
4721      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
4722      if (SVT == MatchingVectorType) {
4723        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
4724                               N0.getOperand(0), N0.getOperand(1),
4725                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
4726        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
4727      }
4728    }
4729
4730    // sext(setcc x, y, cc) -> (select_cc x, y, -1, 0, cc)
4731    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
4732    SDValue NegOne =
4733      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), VT);
4734    SDValue SCC =
4735      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
4736                       NegOne, DAG.getConstant(0, VT),
4737                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
4738    if (SCC.getNode()) return SCC;
4739    if (!VT.isVector() &&
4740        (!LegalOperations ||
4741         TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(VT)))) {
4742      return DAG.getSelect(SDLoc(N), VT,
4743                           DAG.getSetCC(SDLoc(N),
4744                           getSetCCResultType(VT),
4745                           N0.getOperand(0), N0.getOperand(1),
4746                           cast<CondCodeSDNode>(N0.getOperand(2))->get()),
4747                           NegOne, DAG.getConstant(0, VT));
4748    }
4749  }
4750
4751  // fold (sext x) -> (zext x) if the sign bit is known zero.
4752  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
4753      DAG.SignBitIsZero(N0))
4754    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4755
4756  return SDValue();
4757}
4758
4759// isTruncateOf - If N is a truncate of some other value, return true, record
4760// the value being truncated in Op and which of Op's bits are zero in KnownZero.
4761// This function computes KnownZero to avoid a duplicated call to
4762// ComputeMaskedBits in the caller.
4763static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
4764                         APInt &KnownZero) {
4765  APInt KnownOne;
4766  if (N->getOpcode() == ISD::TRUNCATE) {
4767    Op = N->getOperand(0);
4768    DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4769    return true;
4770  }
4771
4772  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
4773      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
4774    return false;
4775
4776  SDValue Op0 = N->getOperand(0);
4777  SDValue Op1 = N->getOperand(1);
4778  assert(Op0.getValueType() == Op1.getValueType());
4779
4780  ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
4781  ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
4782  if (COp0 && COp0->isNullValue())
4783    Op = Op1;
4784  else if (COp1 && COp1->isNullValue())
4785    Op = Op0;
4786  else
4787    return false;
4788
4789  DAG.ComputeMaskedBits(Op, KnownZero, KnownOne);
4790
4791  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
4792    return false;
4793
4794  return true;
4795}
4796
4797SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
4798  SDValue N0 = N->getOperand(0);
4799  EVT VT = N->getValueType(0);
4800
4801  // fold (zext c1) -> c1
4802  if (isa<ConstantSDNode>(N0))
4803    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
4804  // fold (zext (zext x)) -> (zext x)
4805  // fold (zext (aext x)) -> (zext x)
4806  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
4807    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
4808                       N0.getOperand(0));
4809
4810  // fold (zext (truncate x)) -> (zext x) or
4811  //      (zext (truncate x)) -> (truncate x)
4812  // This is valid when the truncated bits of x are already zero.
4813  // FIXME: We should extend this to work for vectors too.
4814  SDValue Op;
4815  APInt KnownZero;
4816  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
4817    APInt TruncatedBits =
4818      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
4819      APInt(Op.getValueSizeInBits(), 0) :
4820      APInt::getBitsSet(Op.getValueSizeInBits(),
4821                        N0.getValueSizeInBits(),
4822                        std::min(Op.getValueSizeInBits(),
4823                                 VT.getSizeInBits()));
4824    if (TruncatedBits == (KnownZero & TruncatedBits)) {
4825      if (VT.bitsGT(Op.getValueType()))
4826        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
4827      if (VT.bitsLT(Op.getValueType()))
4828        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4829
4830      return Op;
4831    }
4832  }
4833
4834  // fold (zext (truncate (load x))) -> (zext (smaller load x))
4835  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
4836  if (N0.getOpcode() == ISD::TRUNCATE) {
4837    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4838    if (NarrowLoad.getNode()) {
4839      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4840      if (NarrowLoad.getNode() != N0.getNode()) {
4841        CombineTo(N0.getNode(), NarrowLoad);
4842        // CombineTo deleted the truncate, if needed, but not what's under it.
4843        AddToWorkList(oye);
4844      }
4845      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4846    }
4847  }
4848
4849  // fold (zext (truncate x)) -> (and x, mask)
4850  if (N0.getOpcode() == ISD::TRUNCATE &&
4851      (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
4852
4853    // fold (zext (truncate (load x))) -> (zext (smaller load x))
4854    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
4855    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
4856    if (NarrowLoad.getNode()) {
4857      SDNode* oye = N0.getNode()->getOperand(0).getNode();
4858      if (NarrowLoad.getNode() != N0.getNode()) {
4859        CombineTo(N0.getNode(), NarrowLoad);
4860        // CombineTo deleted the truncate, if needed, but not what's under it.
4861        AddToWorkList(oye);
4862      }
4863      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4864    }
4865
4866    SDValue Op = N0.getOperand(0);
4867    if (Op.getValueType().bitsLT(VT)) {
4868      Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
4869      AddToWorkList(Op.getNode());
4870    } else if (Op.getValueType().bitsGT(VT)) {
4871      Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
4872      AddToWorkList(Op.getNode());
4873    }
4874    return DAG.getZeroExtendInReg(Op, SDLoc(N),
4875                                  N0.getValueType().getScalarType());
4876  }
4877
4878  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
4879  // if either of the casts is not free.
4880  if (N0.getOpcode() == ISD::AND &&
4881      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
4882      N0.getOperand(1).getOpcode() == ISD::Constant &&
4883      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
4884                           N0.getValueType()) ||
4885       !TLI.isZExtFree(N0.getValueType(), VT))) {
4886    SDValue X = N0.getOperand(0).getOperand(0);
4887    if (X.getValueType().bitsLT(VT)) {
4888      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
4889    } else if (X.getValueType().bitsGT(VT)) {
4890      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
4891    }
4892    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4893    Mask = Mask.zext(VT.getSizeInBits());
4894    return DAG.getNode(ISD::AND, SDLoc(N), VT,
4895                       X, DAG.getConstant(Mask, VT));
4896  }
4897
4898  // fold (zext (load x)) -> (zext (truncate (zextload x)))
4899  // None of the supported targets knows how to perform load and vector_zext
4900  // on vectors in one instruction.  We only perform this transformation on
4901  // scalars.
4902  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
4903      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
4904       TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
4905    bool DoXform = true;
4906    SmallVector<SDNode*, 4> SetCCs;
4907    if (!N0.hasOneUse())
4908      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
4909    if (DoXform) {
4910      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4911      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4912                                       LN0->getChain(),
4913                                       LN0->getBasePtr(), N0.getValueType(),
4914                                       LN0->getMemOperand());
4915      CombineTo(N, ExtLoad);
4916      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
4917                                  N0.getValueType(), ExtLoad);
4918      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
4919
4920      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4921                      ISD::ZERO_EXTEND);
4922      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4923    }
4924  }
4925
4926  // fold (zext (and/or/xor (load x), cst)) ->
4927  //      (and/or/xor (zextload x), (zext cst))
4928  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
4929       N0.getOpcode() == ISD::XOR) &&
4930      isa<LoadSDNode>(N0.getOperand(0)) &&
4931      N0.getOperand(1).getOpcode() == ISD::Constant &&
4932      TLI.isLoadExtLegal(ISD::ZEXTLOAD, N0.getValueType()) &&
4933      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
4934    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
4935    if (LN0->getExtensionType() != ISD::SEXTLOAD) {
4936      bool DoXform = true;
4937      SmallVector<SDNode*, 4> SetCCs;
4938      if (!N0.hasOneUse())
4939        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
4940                                          SetCCs, TLI);
4941      if (DoXform) {
4942        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
4943                                         LN0->getChain(), LN0->getBasePtr(),
4944                                         LN0->getMemoryVT(),
4945                                         LN0->getMemOperand());
4946        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
4947        Mask = Mask.zext(VT.getSizeInBits());
4948        SDValue And = DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
4949                                  ExtLoad, DAG.getConstant(Mask, VT));
4950        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
4951                                    SDLoc(N0.getOperand(0)),
4952                                    N0.getOperand(0).getValueType(), ExtLoad);
4953        CombineTo(N, And);
4954        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
4955        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
4956                        ISD::ZERO_EXTEND);
4957        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4958      }
4959    }
4960  }
4961
4962  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
4963  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
4964  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
4965      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
4966    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
4967    EVT MemVT = LN0->getMemoryVT();
4968    if ((!LegalOperations && !LN0->isVolatile()) ||
4969        TLI.isLoadExtLegal(ISD::ZEXTLOAD, MemVT)) {
4970      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
4971                                       LN0->getChain(),
4972                                       LN0->getBasePtr(), MemVT,
4973                                       LN0->getMemOperand());
4974      CombineTo(N, ExtLoad);
4975      CombineTo(N0.getNode(),
4976                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
4977                            ExtLoad),
4978                ExtLoad.getValue(1));
4979      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
4980    }
4981  }
4982
4983  if (N0.getOpcode() == ISD::SETCC) {
4984    if (!LegalOperations && VT.isVector()) {
4985      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
4986      // Only do this before legalize for now.
4987      EVT N0VT = N0.getOperand(0).getValueType();
4988      EVT EltVT = VT.getVectorElementType();
4989      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
4990                                    DAG.getConstant(1, EltVT));
4991      if (VT.getSizeInBits() == N0VT.getSizeInBits())
4992        // We know that the # elements of the results is the same as the
4993        // # elements of the compare (and the # elements of the compare result
4994        // for that matter).  Check to see that they are the same size.  If so,
4995        // we know that the element size of the sext'd result matches the
4996        // element size of the compare operands.
4997        return DAG.getNode(ISD::AND, SDLoc(N), VT,
4998                           DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
4999                                         N0.getOperand(1),
5000                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
5001                           DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
5002                                       &OneOps[0], OneOps.size()));
5003
5004      // If the desired elements are smaller or larger than the source
5005      // elements we can use a matching integer vector type and then
5006      // truncate/sign extend
5007      EVT MatchingElementType =
5008        EVT::getIntegerVT(*DAG.getContext(),
5009                          N0VT.getScalarType().getSizeInBits());
5010      EVT MatchingVectorType =
5011        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5012                         N0VT.getVectorNumElements());
5013      SDValue VsetCC =
5014        DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5015                      N0.getOperand(1),
5016                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
5017      return DAG.getNode(ISD::AND, SDLoc(N), VT,
5018                         DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT),
5019                         DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT,
5020                                     &OneOps[0], OneOps.size()));
5021    }
5022
5023    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5024    SDValue SCC =
5025      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5026                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5027                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5028    if (SCC.getNode()) return SCC;
5029  }
5030
5031  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
5032  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
5033      isa<ConstantSDNode>(N0.getOperand(1)) &&
5034      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
5035      N0.hasOneUse()) {
5036    SDValue ShAmt = N0.getOperand(1);
5037    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
5038    if (N0.getOpcode() == ISD::SHL) {
5039      SDValue InnerZExt = N0.getOperand(0);
5040      // If the original shl may be shifting out bits, do not perform this
5041      // transformation.
5042      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
5043        InnerZExt.getOperand(0).getValueType().getSizeInBits();
5044      if (ShAmtVal > KnownZeroBits)
5045        return SDValue();
5046    }
5047
5048    SDLoc DL(N);
5049
5050    // Ensure that the shift amount is wide enough for the shifted value.
5051    if (VT.getSizeInBits() >= 256)
5052      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
5053
5054    return DAG.getNode(N0.getOpcode(), DL, VT,
5055                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
5056                       ShAmt);
5057  }
5058
5059  return SDValue();
5060}
5061
5062SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
5063  SDValue N0 = N->getOperand(0);
5064  EVT VT = N->getValueType(0);
5065
5066  // fold (aext c1) -> c1
5067  if (isa<ConstantSDNode>(N0))
5068    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, N0);
5069  // fold (aext (aext x)) -> (aext x)
5070  // fold (aext (zext x)) -> (zext x)
5071  // fold (aext (sext x)) -> (sext x)
5072  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
5073      N0.getOpcode() == ISD::ZERO_EXTEND ||
5074      N0.getOpcode() == ISD::SIGN_EXTEND)
5075    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
5076
5077  // fold (aext (truncate (load x))) -> (aext (smaller load x))
5078  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
5079  if (N0.getOpcode() == ISD::TRUNCATE) {
5080    SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
5081    if (NarrowLoad.getNode()) {
5082      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5083      if (NarrowLoad.getNode() != N0.getNode()) {
5084        CombineTo(N0.getNode(), NarrowLoad);
5085        // CombineTo deleted the truncate, if needed, but not what's under it.
5086        AddToWorkList(oye);
5087      }
5088      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5089    }
5090  }
5091
5092  // fold (aext (truncate x))
5093  if (N0.getOpcode() == ISD::TRUNCATE) {
5094    SDValue TruncOp = N0.getOperand(0);
5095    if (TruncOp.getValueType() == VT)
5096      return TruncOp; // x iff x size == zext size.
5097    if (TruncOp.getValueType().bitsGT(VT))
5098      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
5099    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
5100  }
5101
5102  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
5103  // if the trunc is not free.
5104  if (N0.getOpcode() == ISD::AND &&
5105      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
5106      N0.getOperand(1).getOpcode() == ISD::Constant &&
5107      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
5108                          N0.getValueType())) {
5109    SDValue X = N0.getOperand(0).getOperand(0);
5110    if (X.getValueType().bitsLT(VT)) {
5111      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
5112    } else if (X.getValueType().bitsGT(VT)) {
5113      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
5114    }
5115    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
5116    Mask = Mask.zext(VT.getSizeInBits());
5117    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5118                       X, DAG.getConstant(Mask, VT));
5119  }
5120
5121  // fold (aext (load x)) -> (aext (truncate (extload x)))
5122  // None of the supported targets knows how to perform load and any_ext
5123  // on vectors in one instruction.  We only perform this transformation on
5124  // scalars.
5125  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
5126      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5127       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
5128    bool DoXform = true;
5129    SmallVector<SDNode*, 4> SetCCs;
5130    if (!N0.hasOneUse())
5131      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
5132    if (DoXform) {
5133      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5134      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
5135                                       LN0->getChain(),
5136                                       LN0->getBasePtr(), N0.getValueType(),
5137                                       LN0->getMemOperand());
5138      CombineTo(N, ExtLoad);
5139      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5140                                  N0.getValueType(), ExtLoad);
5141      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
5142      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
5143                      ISD::ANY_EXTEND);
5144      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5145    }
5146  }
5147
5148  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
5149  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
5150  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
5151  if (N0.getOpcode() == ISD::LOAD &&
5152      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5153      N0.hasOneUse()) {
5154    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5155    EVT MemVT = LN0->getMemoryVT();
5156    SDValue ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(N),
5157                                     VT, LN0->getChain(), LN0->getBasePtr(),
5158                                     MemVT, LN0->getMemOperand());
5159    CombineTo(N, ExtLoad);
5160    CombineTo(N0.getNode(),
5161              DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
5162                          N0.getValueType(), ExtLoad),
5163              ExtLoad.getValue(1));
5164    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5165  }
5166
5167  if (N0.getOpcode() == ISD::SETCC) {
5168    // aext(setcc) -> sext_in_reg(vsetcc) for vectors.
5169    // Only do this before legalize for now.
5170    if (VT.isVector() && !LegalOperations) {
5171      EVT N0VT = N0.getOperand(0).getValueType();
5172        // We know that the # elements of the results is the same as the
5173        // # elements of the compare (and the # elements of the compare result
5174        // for that matter).  Check to see that they are the same size.  If so,
5175        // we know that the element size of the sext'd result matches the
5176        // element size of the compare operands.
5177      if (VT.getSizeInBits() == N0VT.getSizeInBits())
5178        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
5179                             N0.getOperand(1),
5180                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
5181      // If the desired elements are smaller or larger than the source
5182      // elements we can use a matching integer vector type and then
5183      // truncate/sign extend
5184      else {
5185        EVT MatchingElementType =
5186          EVT::getIntegerVT(*DAG.getContext(),
5187                            N0VT.getScalarType().getSizeInBits());
5188        EVT MatchingVectorType =
5189          EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
5190                           N0VT.getVectorNumElements());
5191        SDValue VsetCC =
5192          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
5193                        N0.getOperand(1),
5194                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
5195        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
5196      }
5197    }
5198
5199    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
5200    SDValue SCC =
5201      SimplifySelectCC(SDLoc(N), N0.getOperand(0), N0.getOperand(1),
5202                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
5203                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
5204    if (SCC.getNode())
5205      return SCC;
5206  }
5207
5208  return SDValue();
5209}
5210
5211/// GetDemandedBits - See if the specified operand can be simplified with the
5212/// knowledge that only the bits specified by Mask are used.  If so, return the
5213/// simpler operand, otherwise return a null SDValue.
5214SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
5215  switch (V.getOpcode()) {
5216  default: break;
5217  case ISD::Constant: {
5218    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
5219    assert(CV != 0 && "Const value should be ConstSDNode.");
5220    const APInt &CVal = CV->getAPIntValue();
5221    APInt NewVal = CVal & Mask;
5222    if (NewVal != CVal)
5223      return DAG.getConstant(NewVal, V.getValueType());
5224    break;
5225  }
5226  case ISD::OR:
5227  case ISD::XOR:
5228    // If the LHS or RHS don't contribute bits to the or, drop them.
5229    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
5230      return V.getOperand(1);
5231    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
5232      return V.getOperand(0);
5233    break;
5234  case ISD::SRL:
5235    // Only look at single-use SRLs.
5236    if (!V.getNode()->hasOneUse())
5237      break;
5238    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
5239      // See if we can recursively simplify the LHS.
5240      unsigned Amt = RHSC->getZExtValue();
5241
5242      // Watch out for shift count overflow though.
5243      if (Amt >= Mask.getBitWidth()) break;
5244      APInt NewMask = Mask << Amt;
5245      SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
5246      if (SimplifyLHS.getNode())
5247        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
5248                           SimplifyLHS, V.getOperand(1));
5249    }
5250  }
5251  return SDValue();
5252}
5253
5254/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
5255/// bits and then truncated to a narrower type and where N is a multiple
5256/// of number of bits of the narrower type, transform it to a narrower load
5257/// from address + N / num of bits of new type. If the result is to be
5258/// extended, also fold the extension to form a extending load.
5259SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
5260  unsigned Opc = N->getOpcode();
5261
5262  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
5263  SDValue N0 = N->getOperand(0);
5264  EVT VT = N->getValueType(0);
5265  EVT ExtVT = VT;
5266
5267  // This transformation isn't valid for vector loads.
5268  if (VT.isVector())
5269    return SDValue();
5270
5271  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
5272  // extended to VT.
5273  if (Opc == ISD::SIGN_EXTEND_INREG) {
5274    ExtType = ISD::SEXTLOAD;
5275    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5276  } else if (Opc == ISD::SRL) {
5277    // Another special-case: SRL is basically zero-extending a narrower value.
5278    ExtType = ISD::ZEXTLOAD;
5279    N0 = SDValue(N, 0);
5280    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5281    if (!N01) return SDValue();
5282    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
5283                              VT.getSizeInBits() - N01->getZExtValue());
5284  }
5285  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, ExtVT))
5286    return SDValue();
5287
5288  unsigned EVTBits = ExtVT.getSizeInBits();
5289
5290  // Do not generate loads of non-round integer types since these can
5291  // be expensive (and would be wrong if the type is not byte sized).
5292  if (!ExtVT.isRound())
5293    return SDValue();
5294
5295  unsigned ShAmt = 0;
5296  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
5297    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5298      ShAmt = N01->getZExtValue();
5299      // Is the shift amount a multiple of size of VT?
5300      if ((ShAmt & (EVTBits-1)) == 0) {
5301        N0 = N0.getOperand(0);
5302        // Is the load width a multiple of size of VT?
5303        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
5304          return SDValue();
5305      }
5306
5307      // At this point, we must have a load or else we can't do the transform.
5308      if (!isa<LoadSDNode>(N0)) return SDValue();
5309
5310      // Because a SRL must be assumed to *need* to zero-extend the high bits
5311      // (as opposed to anyext the high bits), we can't combine the zextload
5312      // lowering of SRL and an sextload.
5313      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
5314        return SDValue();
5315
5316      // If the shift amount is larger than the input type then we're not
5317      // accessing any of the loaded bytes.  If the load was a zextload/extload
5318      // then the result of the shift+trunc is zero/undef (handled elsewhere).
5319      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
5320        return SDValue();
5321    }
5322  }
5323
5324  // If the load is shifted left (and the result isn't shifted back right),
5325  // we can fold the truncate through the shift.
5326  unsigned ShLeftAmt = 0;
5327  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
5328      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
5329    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
5330      ShLeftAmt = N01->getZExtValue();
5331      N0 = N0.getOperand(0);
5332    }
5333  }
5334
5335  // If we haven't found a load, we can't narrow it.  Don't transform one with
5336  // multiple uses, this would require adding a new load.
5337  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
5338    return SDValue();
5339
5340  // Don't change the width of a volatile load.
5341  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5342  if (LN0->isVolatile())
5343    return SDValue();
5344
5345  // Verify that we are actually reducing a load width here.
5346  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
5347    return SDValue();
5348
5349  // For the transform to be legal, the load must produce only two values
5350  // (the value loaded and the chain).  Don't transform a pre-increment
5351  // load, for example, which produces an extra value.  Otherwise the
5352  // transformation is not equivalent, and the downstream logic to replace
5353  // uses gets things wrong.
5354  if (LN0->getNumValues() > 2)
5355    return SDValue();
5356
5357  // If the load that we're shrinking is an extload and we're not just
5358  // discarding the extension we can't simply shrink the load. Bail.
5359  // TODO: It would be possible to merge the extensions in some cases.
5360  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
5361      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
5362    return SDValue();
5363
5364  EVT PtrType = N0.getOperand(1).getValueType();
5365
5366  if (PtrType == MVT::Untyped || PtrType.isExtended())
5367    // It's not possible to generate a constant of extended or untyped type.
5368    return SDValue();
5369
5370  // For big endian targets, we need to adjust the offset to the pointer to
5371  // load the correct bytes.
5372  if (TLI.isBigEndian()) {
5373    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
5374    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
5375    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
5376  }
5377
5378  uint64_t PtrOff = ShAmt / 8;
5379  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
5380  SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LN0),
5381                               PtrType, LN0->getBasePtr(),
5382                               DAG.getConstant(PtrOff, PtrType));
5383  AddToWorkList(NewPtr.getNode());
5384
5385  SDValue Load;
5386  if (ExtType == ISD::NON_EXTLOAD)
5387    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
5388                        LN0->getPointerInfo().getWithOffset(PtrOff),
5389                        LN0->isVolatile(), LN0->isNonTemporal(),
5390                        LN0->isInvariant(), NewAlign, LN0->getTBAAInfo());
5391  else
5392    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
5393                          LN0->getPointerInfo().getWithOffset(PtrOff),
5394                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
5395                          NewAlign, LN0->getTBAAInfo());
5396
5397  // Replace the old load's chain with the new load's chain.
5398  WorkListRemover DeadNodes(*this);
5399  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
5400
5401  // Shift the result left, if we've swallowed a left shift.
5402  SDValue Result = Load;
5403  if (ShLeftAmt != 0) {
5404    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
5405    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
5406      ShImmTy = VT;
5407    // If the shift amount is as large as the result size (but, presumably,
5408    // no larger than the source) then the useful bits of the result are
5409    // zero; we can't simply return the shortened shift, because the result
5410    // of that operation is undefined.
5411    if (ShLeftAmt >= VT.getSizeInBits())
5412      Result = DAG.getConstant(0, VT);
5413    else
5414      Result = DAG.getNode(ISD::SHL, SDLoc(N0), VT,
5415                          Result, DAG.getConstant(ShLeftAmt, ShImmTy));
5416  }
5417
5418  // Return the new loaded value.
5419  return Result;
5420}
5421
5422SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
5423  SDValue N0 = N->getOperand(0);
5424  SDValue N1 = N->getOperand(1);
5425  EVT VT = N->getValueType(0);
5426  EVT EVT = cast<VTSDNode>(N1)->getVT();
5427  unsigned VTBits = VT.getScalarType().getSizeInBits();
5428  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
5429
5430  // fold (sext_in_reg c1) -> c1
5431  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
5432    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
5433
5434  // If the input is already sign extended, just drop the extension.
5435  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
5436    return N0;
5437
5438  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
5439  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5440      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
5441    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5442                       N0.getOperand(0), N1);
5443
5444  // fold (sext_in_reg (sext x)) -> (sext x)
5445  // fold (sext_in_reg (aext x)) -> (sext x)
5446  // if x is small enough.
5447  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
5448    SDValue N00 = N0.getOperand(0);
5449    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
5450        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
5451      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
5452  }
5453
5454  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
5455  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
5456    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
5457
5458  // fold operands of sext_in_reg based on knowledge that the top bits are not
5459  // demanded.
5460  if (SimplifyDemandedBits(SDValue(N, 0)))
5461    return SDValue(N, 0);
5462
5463  // fold (sext_in_reg (load x)) -> (smaller sextload x)
5464  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
5465  SDValue NarrowLoad = ReduceLoadWidth(N);
5466  if (NarrowLoad.getNode())
5467    return NarrowLoad;
5468
5469  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
5470  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
5471  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
5472  if (N0.getOpcode() == ISD::SRL) {
5473    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
5474      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
5475        // We can turn this into an SRA iff the input to the SRL is already sign
5476        // extended enough.
5477        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
5478        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
5479          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
5480                             N0.getOperand(0), N0.getOperand(1));
5481      }
5482  }
5483
5484  // fold (sext_inreg (extload x)) -> (sextload x)
5485  if (ISD::isEXTLoad(N0.getNode()) &&
5486      ISD::isUNINDEXEDLoad(N0.getNode()) &&
5487      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5488      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5489       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5490    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5491    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5492                                     LN0->getChain(),
5493                                     LN0->getBasePtr(), EVT,
5494                                     LN0->getMemOperand());
5495    CombineTo(N, ExtLoad);
5496    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5497    AddToWorkList(ExtLoad.getNode());
5498    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5499  }
5500  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
5501  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
5502      N0.hasOneUse() &&
5503      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
5504      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
5505       TLI.isLoadExtLegal(ISD::SEXTLOAD, EVT))) {
5506    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5507    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
5508                                     LN0->getChain(),
5509                                     LN0->getBasePtr(), EVT,
5510                                     LN0->getMemOperand());
5511    CombineTo(N, ExtLoad);
5512    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
5513    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5514  }
5515
5516  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
5517  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
5518    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
5519                                       N0.getOperand(1), false);
5520    if (BSwap.getNode() != 0)
5521      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
5522                         BSwap, N1);
5523  }
5524
5525  return SDValue();
5526}
5527
5528SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
5529  SDValue N0 = N->getOperand(0);
5530  EVT VT = N->getValueType(0);
5531  bool isLE = TLI.isLittleEndian();
5532
5533  // noop truncate
5534  if (N0.getValueType() == N->getValueType(0))
5535    return N0;
5536  // fold (truncate c1) -> c1
5537  if (isa<ConstantSDNode>(N0))
5538    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
5539  // fold (truncate (truncate x)) -> (truncate x)
5540  if (N0.getOpcode() == ISD::TRUNCATE)
5541    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5542  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
5543  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
5544      N0.getOpcode() == ISD::SIGN_EXTEND ||
5545      N0.getOpcode() == ISD::ANY_EXTEND) {
5546    if (N0.getOperand(0).getValueType().bitsLT(VT))
5547      // if the source is smaller than the dest, we still need an extend
5548      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
5549                         N0.getOperand(0));
5550    if (N0.getOperand(0).getValueType().bitsGT(VT))
5551      // if the source is larger than the dest, than we just need the truncate
5552      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
5553    // if the source and dest are the same type, we can drop both the extend
5554    // and the truncate.
5555    return N0.getOperand(0);
5556  }
5557
5558  // Fold extract-and-trunc into a narrow extract. For example:
5559  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
5560  //   i32 y = TRUNCATE(i64 x)
5561  //        -- becomes --
5562  //   v16i8 b = BITCAST (v2i64 val)
5563  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
5564  //
5565  // Note: We only run this optimization after type legalization (which often
5566  // creates this pattern) and before operation legalization after which
5567  // we need to be more careful about the vector instructions that we generate.
5568  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5569      LegalTypes && !LegalOperations && N0->hasOneUse()) {
5570
5571    EVT VecTy = N0.getOperand(0).getValueType();
5572    EVT ExTy = N0.getValueType();
5573    EVT TrTy = N->getValueType(0);
5574
5575    unsigned NumElem = VecTy.getVectorNumElements();
5576    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
5577
5578    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
5579    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
5580
5581    SDValue EltNo = N0->getOperand(1);
5582    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
5583      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5584      EVT IndexTy = TLI.getVectorIdxTy();
5585      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
5586
5587      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
5588                              NVT, N0.getOperand(0));
5589
5590      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
5591                         SDLoc(N), TrTy, V,
5592                         DAG.getConstant(Index, IndexTy));
5593    }
5594  }
5595
5596  // Fold a series of buildvector, bitcast, and truncate if possible.
5597  // For example fold
5598  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
5599  //   (2xi32 (buildvector x, y)).
5600  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
5601      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
5602      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
5603      N0.getOperand(0).hasOneUse()) {
5604
5605    SDValue BuildVect = N0.getOperand(0);
5606    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
5607    EVT TruncVecEltTy = VT.getVectorElementType();
5608
5609    // Check that the element types match.
5610    if (BuildVectEltTy == TruncVecEltTy) {
5611      // Now we only need to compute the offset of the truncated elements.
5612      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
5613      unsigned TruncVecNumElts = VT.getVectorNumElements();
5614      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
5615
5616      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
5617             "Invalid number of elements");
5618
5619      SmallVector<SDValue, 8> Opnds;
5620      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
5621        Opnds.push_back(BuildVect.getOperand(i));
5622
5623      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, &Opnds[0],
5624                         Opnds.size());
5625    }
5626  }
5627
5628  // See if we can simplify the input to this truncate through knowledge that
5629  // only the low bits are being used.
5630  // For example "trunc (or (shl x, 8), y)" // -> trunc y
5631  // Currently we only perform this optimization on scalars because vectors
5632  // may have different active low bits.
5633  if (!VT.isVector()) {
5634    SDValue Shorter =
5635      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
5636                                               VT.getSizeInBits()));
5637    if (Shorter.getNode())
5638      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
5639  }
5640  // fold (truncate (load x)) -> (smaller load x)
5641  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
5642  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
5643    SDValue Reduced = ReduceLoadWidth(N);
5644    if (Reduced.getNode())
5645      return Reduced;
5646  }
5647  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
5648  // where ... are all 'undef'.
5649  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
5650    SmallVector<EVT, 8> VTs;
5651    SDValue V;
5652    unsigned Idx = 0;
5653    unsigned NumDefs = 0;
5654
5655    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
5656      SDValue X = N0.getOperand(i);
5657      if (X.getOpcode() != ISD::UNDEF) {
5658        V = X;
5659        Idx = i;
5660        NumDefs++;
5661      }
5662      // Stop if more than one members are non-undef.
5663      if (NumDefs > 1)
5664        break;
5665      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
5666                                     VT.getVectorElementType(),
5667                                     X.getValueType().getVectorNumElements()));
5668    }
5669
5670    if (NumDefs == 0)
5671      return DAG.getUNDEF(VT);
5672
5673    if (NumDefs == 1) {
5674      assert(V.getNode() && "The single defined operand is empty!");
5675      SmallVector<SDValue, 8> Opnds;
5676      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
5677        if (i != Idx) {
5678          Opnds.push_back(DAG.getUNDEF(VTs[i]));
5679          continue;
5680        }
5681        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
5682        AddToWorkList(NV.getNode());
5683        Opnds.push_back(NV);
5684      }
5685      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
5686                         &Opnds[0], Opnds.size());
5687    }
5688  }
5689
5690  // Simplify the operands using demanded-bits information.
5691  if (!VT.isVector() &&
5692      SimplifyDemandedBits(SDValue(N, 0)))
5693    return SDValue(N, 0);
5694
5695  return SDValue();
5696}
5697
5698static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
5699  SDValue Elt = N->getOperand(i);
5700  if (Elt.getOpcode() != ISD::MERGE_VALUES)
5701    return Elt.getNode();
5702  return Elt.getOperand(Elt.getResNo()).getNode();
5703}
5704
5705/// CombineConsecutiveLoads - build_pair (load, load) -> load
5706/// if load locations are consecutive.
5707SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
5708  assert(N->getOpcode() == ISD::BUILD_PAIR);
5709
5710  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
5711  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
5712  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
5713      LD1->getPointerInfo().getAddrSpace() !=
5714         LD2->getPointerInfo().getAddrSpace())
5715    return SDValue();
5716  EVT LD1VT = LD1->getValueType(0);
5717
5718  if (ISD::isNON_EXTLoad(LD2) &&
5719      LD2->hasOneUse() &&
5720      // If both are volatile this would reduce the number of volatile loads.
5721      // If one is volatile it might be ok, but play conservative and bail out.
5722      !LD1->isVolatile() &&
5723      !LD2->isVolatile() &&
5724      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
5725    unsigned Align = LD1->getAlignment();
5726    unsigned NewAlign = TLI.getDataLayout()->
5727      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5728
5729    if (NewAlign <= Align &&
5730        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
5731      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
5732                         LD1->getBasePtr(), LD1->getPointerInfo(),
5733                         false, false, false, Align);
5734  }
5735
5736  return SDValue();
5737}
5738
5739SDValue DAGCombiner::visitBITCAST(SDNode *N) {
5740  SDValue N0 = N->getOperand(0);
5741  EVT VT = N->getValueType(0);
5742
5743  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
5744  // Only do this before legalize, since afterward the target may be depending
5745  // on the bitconvert.
5746  // First check to see if this is all constant.
5747  if (!LegalTypes &&
5748      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
5749      VT.isVector()) {
5750    bool isSimple = true;
5751    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
5752      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
5753          N0.getOperand(i).getOpcode() != ISD::Constant &&
5754          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
5755        isSimple = false;
5756        break;
5757      }
5758
5759    EVT DestEltVT = N->getValueType(0).getVectorElementType();
5760    assert(!DestEltVT.isVector() &&
5761           "Element type of vector ValueType must not be vector!");
5762    if (isSimple)
5763      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
5764  }
5765
5766  // If the input is a constant, let getNode fold it.
5767  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
5768    SDValue Res = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
5769    if (Res.getNode() != N) {
5770      if (!LegalOperations ||
5771          TLI.isOperationLegal(Res.getNode()->getOpcode(), VT))
5772        return Res;
5773
5774      // Folding it resulted in an illegal node, and it's too late to
5775      // do that. Clean up the old node and forego the transformation.
5776      // Ideally this won't happen very often, because instcombine
5777      // and the earlier dagcombine runs (where illegal nodes are
5778      // permitted) should have folded most of them already.
5779      DAG.DeleteNode(Res.getNode());
5780    }
5781  }
5782
5783  // (conv (conv x, t1), t2) -> (conv x, t2)
5784  if (N0.getOpcode() == ISD::BITCAST)
5785    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
5786                       N0.getOperand(0));
5787
5788  // fold (conv (load x)) -> (load (conv*)x)
5789  // If the resultant load doesn't need a higher alignment than the original!
5790  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
5791      // Do not change the width of a volatile load.
5792      !cast<LoadSDNode>(N0)->isVolatile() &&
5793      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
5794      TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
5795    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5796    unsigned Align = TLI.getDataLayout()->
5797      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
5798    unsigned OrigAlign = LN0->getAlignment();
5799
5800    if (Align <= OrigAlign) {
5801      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
5802                                 LN0->getBasePtr(), LN0->getPointerInfo(),
5803                                 LN0->isVolatile(), LN0->isNonTemporal(),
5804                                 LN0->isInvariant(), OrigAlign,
5805                                 LN0->getTBAAInfo());
5806      AddToWorkList(N);
5807      CombineTo(N0.getNode(),
5808                DAG.getNode(ISD::BITCAST, SDLoc(N0),
5809                            N0.getValueType(), Load),
5810                Load.getValue(1));
5811      return Load;
5812    }
5813  }
5814
5815  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5816  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5817  // This often reduces constant pool loads.
5818  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
5819       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
5820      N0.getNode()->hasOneUse() && VT.isInteger() &&
5821      !VT.isVector() && !N0.getValueType().isVector()) {
5822    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
5823                                  N0.getOperand(0));
5824    AddToWorkList(NewConv.getNode());
5825
5826    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5827    if (N0.getOpcode() == ISD::FNEG)
5828      return DAG.getNode(ISD::XOR, SDLoc(N), VT,
5829                         NewConv, DAG.getConstant(SignBit, VT));
5830    assert(N0.getOpcode() == ISD::FABS);
5831    return DAG.getNode(ISD::AND, SDLoc(N), VT,
5832                       NewConv, DAG.getConstant(~SignBit, VT));
5833  }
5834
5835  // fold (bitconvert (fcopysign cst, x)) ->
5836  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
5837  // Note that we don't handle (copysign x, cst) because this can always be
5838  // folded to an fneg or fabs.
5839  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
5840      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
5841      VT.isInteger() && !VT.isVector()) {
5842    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
5843    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
5844    if (isTypeLegal(IntXVT)) {
5845      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5846                              IntXVT, N0.getOperand(1));
5847      AddToWorkList(X.getNode());
5848
5849      // If X has a different width than the result/lhs, sext it or truncate it.
5850      unsigned VTWidth = VT.getSizeInBits();
5851      if (OrigXWidth < VTWidth) {
5852        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
5853        AddToWorkList(X.getNode());
5854      } else if (OrigXWidth > VTWidth) {
5855        // To get the sign bit in the right place, we have to shift it right
5856        // before truncating.
5857        X = DAG.getNode(ISD::SRL, SDLoc(X),
5858                        X.getValueType(), X,
5859                        DAG.getConstant(OrigXWidth-VTWidth, X.getValueType()));
5860        AddToWorkList(X.getNode());
5861        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
5862        AddToWorkList(X.getNode());
5863      }
5864
5865      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
5866      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
5867                      X, DAG.getConstant(SignBit, VT));
5868      AddToWorkList(X.getNode());
5869
5870      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
5871                                VT, N0.getOperand(0));
5872      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
5873                        Cst, DAG.getConstant(~SignBit, VT));
5874      AddToWorkList(Cst.getNode());
5875
5876      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
5877    }
5878  }
5879
5880  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
5881  if (N0.getOpcode() == ISD::BUILD_PAIR) {
5882    SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
5883    if (CombineLD.getNode())
5884      return CombineLD;
5885  }
5886
5887  return SDValue();
5888}
5889
5890SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
5891  EVT VT = N->getValueType(0);
5892  return CombineConsecutiveLoads(N, VT);
5893}
5894
5895/// ConstantFoldBITCASTofBUILD_VECTOR - We know that BV is a build_vector
5896/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
5897/// destination element value type.
5898SDValue DAGCombiner::
5899ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
5900  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
5901
5902  // If this is already the right type, we're done.
5903  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
5904
5905  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
5906  unsigned DstBitSize = DstEltVT.getSizeInBits();
5907
5908  // If this is a conversion of N elements of one type to N elements of another
5909  // type, convert each element.  This handles FP<->INT cases.
5910  if (SrcBitSize == DstBitSize) {
5911    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5912                              BV->getValueType(0).getVectorNumElements());
5913
5914    // Due to the FP element handling below calling this routine recursively,
5915    // we can end up with a scalar-to-vector node here.
5916    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
5917      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
5918                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
5919                                     DstEltVT, BV->getOperand(0)));
5920
5921    SmallVector<SDValue, 8> Ops;
5922    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
5923      SDValue Op = BV->getOperand(i);
5924      // If the vector element type is not legal, the BUILD_VECTOR operands
5925      // are promoted and implicitly truncated.  Make that explicit here.
5926      if (Op.getValueType() != SrcEltVT)
5927        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
5928      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
5929                                DstEltVT, Op));
5930      AddToWorkList(Ops.back().getNode());
5931    }
5932    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5933                       &Ops[0], Ops.size());
5934  }
5935
5936  // Otherwise, we're growing or shrinking the elements.  To avoid having to
5937  // handle annoying details of growing/shrinking FP values, we convert them to
5938  // int first.
5939  if (SrcEltVT.isFloatingPoint()) {
5940    // Convert the input float vector to a int vector where the elements are the
5941    // same sizes.
5942    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
5943    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
5944    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
5945    SrcEltVT = IntVT;
5946  }
5947
5948  // Now we know the input is an integer vector.  If the output is a FP type,
5949  // convert to integer first, then to FP of the right size.
5950  if (DstEltVT.isFloatingPoint()) {
5951    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
5952    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
5953    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
5954
5955    // Next, convert to FP elements of the same size.
5956    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
5957  }
5958
5959  // Okay, we know the src/dst types are both integers of differing types.
5960  // Handling growing first.
5961  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
5962  if (SrcBitSize < DstBitSize) {
5963    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
5964
5965    SmallVector<SDValue, 8> Ops;
5966    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
5967         i += NumInputsPerOutput) {
5968      bool isLE = TLI.isLittleEndian();
5969      APInt NewBits = APInt(DstBitSize, 0);
5970      bool EltIsUndef = true;
5971      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
5972        // Shift the previously computed bits over.
5973        NewBits <<= SrcBitSize;
5974        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
5975        if (Op.getOpcode() == ISD::UNDEF) continue;
5976        EltIsUndef = false;
5977
5978        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
5979                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
5980      }
5981
5982      if (EltIsUndef)
5983        Ops.push_back(DAG.getUNDEF(DstEltVT));
5984      else
5985        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
5986    }
5987
5988    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
5989    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
5990                       &Ops[0], Ops.size());
5991  }
5992
5993  // Finally, this must be the case where we are shrinking elements: each input
5994  // turns into multiple outputs.
5995  bool isS2V = ISD::isScalarToVector(BV);
5996  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
5997  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
5998                            NumOutputsPerInput*BV->getNumOperands());
5999  SmallVector<SDValue, 8> Ops;
6000
6001  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
6002    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
6003      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
6004        Ops.push_back(DAG.getUNDEF(DstEltVT));
6005      continue;
6006    }
6007
6008    APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
6009                  getAPIntValue().zextOrTrunc(SrcBitSize);
6010
6011    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
6012      APInt ThisVal = OpVal.trunc(DstBitSize);
6013      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
6014      if (isS2V && i == 0 && j == 0 && ThisVal.zext(SrcBitSize) == OpVal)
6015        // Simply turn this into a SCALAR_TO_VECTOR of the new type.
6016        return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
6017                           Ops[0]);
6018      OpVal = OpVal.lshr(DstBitSize);
6019    }
6020
6021    // For big endian targets, swap the order of the pieces of each element.
6022    if (TLI.isBigEndian())
6023      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
6024  }
6025
6026  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT,
6027                     &Ops[0], Ops.size());
6028}
6029
6030SDValue DAGCombiner::visitFADD(SDNode *N) {
6031  SDValue N0 = N->getOperand(0);
6032  SDValue N1 = N->getOperand(1);
6033  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6034  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6035  EVT VT = N->getValueType(0);
6036
6037  // fold vector ops
6038  if (VT.isVector()) {
6039    SDValue FoldedVOp = SimplifyVBinOp(N);
6040    if (FoldedVOp.getNode()) return FoldedVOp;
6041  }
6042
6043  // fold (fadd c1, c2) -> c1 + c2
6044  if (N0CFP && N1CFP)
6045    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N1);
6046  // canonicalize constant to RHS
6047  if (N0CFP && !N1CFP)
6048    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N0);
6049  // fold (fadd A, 0) -> A
6050  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6051      N1CFP->getValueAPF().isZero())
6052    return N0;
6053  // fold (fadd A, (fneg B)) -> (fsub A, B)
6054  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6055    isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6056    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0,
6057                       GetNegatedExpression(N1, DAG, LegalOperations));
6058  // fold (fadd (fneg A), B) -> (fsub B, A)
6059  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
6060    isNegatibleForFree(N0, LegalOperations, TLI, &DAG.getTarget().Options) == 2)
6061    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N1,
6062                       GetNegatedExpression(N0, DAG, LegalOperations));
6063
6064  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
6065  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6066      N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
6067      isa<ConstantFPSDNode>(N0.getOperand(1)))
6068    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0.getOperand(0),
6069                       DAG.getNode(ISD::FADD, SDLoc(N), VT,
6070                                   N0.getOperand(1), N1));
6071
6072  // No FP constant should be created after legalization as Instruction
6073  // Selection pass has hard time in dealing with FP constant.
6074  //
6075  // We don't need test this condition for transformation like following, as
6076  // the DAG being transformed implies it is legal to take FP constant as
6077  // operand.
6078  //
6079  //  (fadd (fmul c, x), x) -> (fmul c+1, x)
6080  //
6081  bool AllowNewFpConst = (Level < AfterLegalizeDAG);
6082
6083  // If allow, fold (fadd (fneg x), x) -> 0.0
6084  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6085      N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
6086    return DAG.getConstantFP(0.0, VT);
6087
6088    // If allow, fold (fadd x, (fneg x)) -> 0.0
6089  if (AllowNewFpConst && DAG.getTarget().Options.UnsafeFPMath &&
6090      N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
6091    return DAG.getConstantFP(0.0, VT);
6092
6093  // In unsafe math mode, we can fold chains of FADD's of the same value
6094  // into multiplications.  This transform is not safe in general because
6095  // we are reducing the number of rounding steps.
6096  if (DAG.getTarget().Options.UnsafeFPMath &&
6097      TLI.isOperationLegalOrCustom(ISD::FMUL, VT) &&
6098      !N0CFP && !N1CFP) {
6099    if (N0.getOpcode() == ISD::FMUL) {
6100      ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6101      ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6102
6103      // (fadd (fmul c, x), x) -> (fmul x, c+1)
6104      if (CFP00 && !CFP01 && N0.getOperand(1) == N1) {
6105        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6106                                     SDValue(CFP00, 0),
6107                                     DAG.getConstantFP(1.0, VT));
6108        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6109                           N1, NewCFP);
6110      }
6111
6112      // (fadd (fmul x, c), x) -> (fmul x, c+1)
6113      if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
6114        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6115                                     SDValue(CFP01, 0),
6116                                     DAG.getConstantFP(1.0, VT));
6117        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6118                           N1, NewCFP);
6119      }
6120
6121      // (fadd (fmul c, x), (fadd x, x)) -> (fmul x, c+2)
6122      if (CFP00 && !CFP01 && N1.getOpcode() == ISD::FADD &&
6123          N1.getOperand(0) == N1.getOperand(1) &&
6124          N0.getOperand(1) == N1.getOperand(0)) {
6125        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6126                                     SDValue(CFP00, 0),
6127                                     DAG.getConstantFP(2.0, VT));
6128        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6129                           N0.getOperand(1), NewCFP);
6130      }
6131
6132      // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
6133      if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
6134          N1.getOperand(0) == N1.getOperand(1) &&
6135          N0.getOperand(0) == N1.getOperand(0)) {
6136        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6137                                     SDValue(CFP01, 0),
6138                                     DAG.getConstantFP(2.0, VT));
6139        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6140                           N0.getOperand(0), NewCFP);
6141      }
6142    }
6143
6144    if (N1.getOpcode() == ISD::FMUL) {
6145      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6146      ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
6147
6148      // (fadd x, (fmul c, x)) -> (fmul x, c+1)
6149      if (CFP10 && !CFP11 && N1.getOperand(1) == N0) {
6150        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6151                                     SDValue(CFP10, 0),
6152                                     DAG.getConstantFP(1.0, VT));
6153        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6154                           N0, NewCFP);
6155      }
6156
6157      // (fadd x, (fmul x, c)) -> (fmul x, c+1)
6158      if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
6159        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6160                                     SDValue(CFP11, 0),
6161                                     DAG.getConstantFP(1.0, VT));
6162        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6163                           N0, NewCFP);
6164      }
6165
6166
6167      // (fadd (fadd x, x), (fmul c, x)) -> (fmul x, c+2)
6168      if (CFP10 && !CFP11 && N0.getOpcode() == ISD::FADD &&
6169          N0.getOperand(0) == N0.getOperand(1) &&
6170          N1.getOperand(1) == N0.getOperand(0)) {
6171        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6172                                     SDValue(CFP10, 0),
6173                                     DAG.getConstantFP(2.0, VT));
6174        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6175                           N1.getOperand(1), NewCFP);
6176      }
6177
6178      // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
6179      if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
6180          N0.getOperand(0) == N0.getOperand(1) &&
6181          N1.getOperand(0) == N0.getOperand(0)) {
6182        SDValue NewCFP = DAG.getNode(ISD::FADD, SDLoc(N), VT,
6183                                     SDValue(CFP11, 0),
6184                                     DAG.getConstantFP(2.0, VT));
6185        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6186                           N1.getOperand(0), NewCFP);
6187      }
6188    }
6189
6190    if (N0.getOpcode() == ISD::FADD && AllowNewFpConst) {
6191      ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
6192      // (fadd (fadd x, x), x) -> (fmul x, 3.0)
6193      if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
6194          (N0.getOperand(0) == N1))
6195        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6196                           N1, DAG.getConstantFP(3.0, VT));
6197    }
6198
6199    if (N1.getOpcode() == ISD::FADD && AllowNewFpConst) {
6200      ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
6201      // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
6202      if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
6203          N1.getOperand(0) == N0)
6204        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6205                           N0, DAG.getConstantFP(3.0, VT));
6206    }
6207
6208    // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
6209    if (AllowNewFpConst &&
6210        N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
6211        N0.getOperand(0) == N0.getOperand(1) &&
6212        N1.getOperand(0) == N1.getOperand(1) &&
6213        N0.getOperand(0) == N1.getOperand(0))
6214      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6215                         N0.getOperand(0),
6216                         DAG.getConstantFP(4.0, VT));
6217  }
6218
6219  // FADD -> FMA combines:
6220  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6221       DAG.getTarget().Options.UnsafeFPMath) &&
6222      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6223      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6224
6225    // fold (fadd (fmul x, y), z) -> (fma x, y, z)
6226    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6227      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6228                         N0.getOperand(0), N0.getOperand(1), N1);
6229
6230    // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
6231    // Note: Commutes FADD operands.
6232    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6233      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
6234                         N1.getOperand(0), N1.getOperand(1), N0);
6235  }
6236
6237  return SDValue();
6238}
6239
6240SDValue DAGCombiner::visitFSUB(SDNode *N) {
6241  SDValue N0 = N->getOperand(0);
6242  SDValue N1 = N->getOperand(1);
6243  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6244  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6245  EVT VT = N->getValueType(0);
6246  SDLoc dl(N);
6247
6248  // fold vector ops
6249  if (VT.isVector()) {
6250    SDValue FoldedVOp = SimplifyVBinOp(N);
6251    if (FoldedVOp.getNode()) return FoldedVOp;
6252  }
6253
6254  // fold (fsub c1, c2) -> c1-c2
6255  if (N0CFP && N1CFP)
6256    return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0, N1);
6257  // fold (fsub A, 0) -> A
6258  if (DAG.getTarget().Options.UnsafeFPMath &&
6259      N1CFP && N1CFP->getValueAPF().isZero())
6260    return N0;
6261  // fold (fsub 0, B) -> -B
6262  if (DAG.getTarget().Options.UnsafeFPMath &&
6263      N0CFP && N0CFP->getValueAPF().isZero()) {
6264    if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6265      return GetNegatedExpression(N1, DAG, LegalOperations);
6266    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6267      return DAG.getNode(ISD::FNEG, dl, VT, N1);
6268  }
6269  // fold (fsub A, (fneg B)) -> (fadd A, B)
6270  if (isNegatibleForFree(N1, LegalOperations, TLI, &DAG.getTarget().Options))
6271    return DAG.getNode(ISD::FADD, dl, VT, N0,
6272                       GetNegatedExpression(N1, DAG, LegalOperations));
6273
6274  // If 'unsafe math' is enabled, fold
6275  //    (fsub x, x) -> 0.0 &
6276  //    (fsub x, (fadd x, y)) -> (fneg y) &
6277  //    (fsub x, (fadd y, x)) -> (fneg y)
6278  if (DAG.getTarget().Options.UnsafeFPMath) {
6279    if (N0 == N1)
6280      return DAG.getConstantFP(0.0f, VT);
6281
6282    if (N1.getOpcode() == ISD::FADD) {
6283      SDValue N10 = N1->getOperand(0);
6284      SDValue N11 = N1->getOperand(1);
6285
6286      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI,
6287                                          &DAG.getTarget().Options))
6288        return GetNegatedExpression(N11, DAG, LegalOperations);
6289
6290      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI,
6291                                          &DAG.getTarget().Options))
6292        return GetNegatedExpression(N10, DAG, LegalOperations);
6293    }
6294  }
6295
6296  // FSUB -> FMA combines:
6297  if ((DAG.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast ||
6298       DAG.getTarget().Options.UnsafeFPMath) &&
6299      DAG.getTarget().getTargetLowering()->isFMAFasterThanFMulAndFAdd(VT) &&
6300      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT))) {
6301
6302    // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
6303    if (N0.getOpcode() == ISD::FMUL && N0->hasOneUse())
6304      return DAG.getNode(ISD::FMA, dl, VT,
6305                         N0.getOperand(0), N0.getOperand(1),
6306                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6307
6308    // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
6309    // Note: Commutes FSUB operands.
6310    if (N1.getOpcode() == ISD::FMUL && N1->hasOneUse())
6311      return DAG.getNode(ISD::FMA, dl, VT,
6312                         DAG.getNode(ISD::FNEG, dl, VT,
6313                         N1.getOperand(0)),
6314                         N1.getOperand(1), N0);
6315
6316    // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
6317    if (N0.getOpcode() == ISD::FNEG &&
6318        N0.getOperand(0).getOpcode() == ISD::FMUL &&
6319        N0->hasOneUse() && N0.getOperand(0).hasOneUse()) {
6320      SDValue N00 = N0.getOperand(0).getOperand(0);
6321      SDValue N01 = N0.getOperand(0).getOperand(1);
6322      return DAG.getNode(ISD::FMA, dl, VT,
6323                         DAG.getNode(ISD::FNEG, dl, VT, N00), N01,
6324                         DAG.getNode(ISD::FNEG, dl, VT, N1));
6325    }
6326  }
6327
6328  return SDValue();
6329}
6330
6331SDValue DAGCombiner::visitFMUL(SDNode *N) {
6332  SDValue N0 = N->getOperand(0);
6333  SDValue N1 = N->getOperand(1);
6334  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6335  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6336  EVT VT = N->getValueType(0);
6337  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6338
6339  // fold vector ops
6340  if (VT.isVector()) {
6341    SDValue FoldedVOp = SimplifyVBinOp(N);
6342    if (FoldedVOp.getNode()) return FoldedVOp;
6343  }
6344
6345  // fold (fmul c1, c2) -> c1*c2
6346  if (N0CFP && N1CFP)
6347    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0, N1);
6348  // canonicalize constant to RHS
6349  if (N0CFP && !N1CFP)
6350    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N1, N0);
6351  // fold (fmul A, 0) -> 0
6352  if (DAG.getTarget().Options.UnsafeFPMath &&
6353      N1CFP && N1CFP->getValueAPF().isZero())
6354    return N1;
6355  // fold (fmul A, 0) -> 0, vector edition.
6356  if (DAG.getTarget().Options.UnsafeFPMath &&
6357      ISD::isBuildVectorAllZeros(N1.getNode()))
6358    return N1;
6359  // fold (fmul A, 1.0) -> A
6360  if (N1CFP && N1CFP->isExactlyValue(1.0))
6361    return N0;
6362  // fold (fmul X, 2.0) -> (fadd X, X)
6363  if (N1CFP && N1CFP->isExactlyValue(+2.0))
6364    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N0);
6365  // fold (fmul X, -1.0) -> (fneg X)
6366  if (N1CFP && N1CFP->isExactlyValue(-1.0))
6367    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6368      return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
6369
6370  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
6371  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6372                                       &DAG.getTarget().Options)) {
6373    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6374                                         &DAG.getTarget().Options)) {
6375      // Both can be negated for free, check to see if at least one is cheaper
6376      // negated.
6377      if (LHSNeg == 2 || RHSNeg == 2)
6378        return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6379                           GetNegatedExpression(N0, DAG, LegalOperations),
6380                           GetNegatedExpression(N1, DAG, LegalOperations));
6381    }
6382  }
6383
6384  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
6385  if (DAG.getTarget().Options.UnsafeFPMath &&
6386      N1CFP && N0.getOpcode() == ISD::FMUL &&
6387      N0.getNode()->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
6388    return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
6389                       DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6390                                   N0.getOperand(1), N1));
6391
6392  return SDValue();
6393}
6394
6395SDValue DAGCombiner::visitFMA(SDNode *N) {
6396  SDValue N0 = N->getOperand(0);
6397  SDValue N1 = N->getOperand(1);
6398  SDValue N2 = N->getOperand(2);
6399  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6400  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6401  EVT VT = N->getValueType(0);
6402  SDLoc dl(N);
6403
6404  if (DAG.getTarget().Options.UnsafeFPMath) {
6405    if (N0CFP && N0CFP->isZero())
6406      return N2;
6407    if (N1CFP && N1CFP->isZero())
6408      return N2;
6409  }
6410  if (N0CFP && N0CFP->isExactlyValue(1.0))
6411    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
6412  if (N1CFP && N1CFP->isExactlyValue(1.0))
6413    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
6414
6415  // Canonicalize (fma c, x, y) -> (fma x, c, y)
6416  if (N0CFP && !N1CFP)
6417    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
6418
6419  // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
6420  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6421      N2.getOpcode() == ISD::FMUL &&
6422      N0 == N2.getOperand(0) &&
6423      N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
6424    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6425                       DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
6426  }
6427
6428
6429  // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
6430  if (DAG.getTarget().Options.UnsafeFPMath &&
6431      N0.getOpcode() == ISD::FMUL && N1CFP &&
6432      N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
6433    return DAG.getNode(ISD::FMA, dl, VT,
6434                       N0.getOperand(0),
6435                       DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
6436                       N2);
6437  }
6438
6439  // (fma x, 1, y) -> (fadd x, y)
6440  // (fma x, -1, y) -> (fadd (fneg x), y)
6441  if (N1CFP) {
6442    if (N1CFP->isExactlyValue(1.0))
6443      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
6444
6445    if (N1CFP->isExactlyValue(-1.0) &&
6446        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
6447      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
6448      AddToWorkList(RHSNeg.getNode());
6449      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
6450    }
6451  }
6452
6453  // (fma x, c, x) -> (fmul x, (c+1))
6454  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP && N0 == N2)
6455    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6456                       DAG.getNode(ISD::FADD, dl, VT,
6457                                   N1, DAG.getConstantFP(1.0, VT)));
6458
6459  // (fma x, c, (fneg x)) -> (fmul x, (c-1))
6460  if (DAG.getTarget().Options.UnsafeFPMath && N1CFP &&
6461      N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
6462    return DAG.getNode(ISD::FMUL, dl, VT, N0,
6463                       DAG.getNode(ISD::FADD, dl, VT,
6464                                   N1, DAG.getConstantFP(-1.0, VT)));
6465
6466
6467  return SDValue();
6468}
6469
6470SDValue DAGCombiner::visitFDIV(SDNode *N) {
6471  SDValue N0 = N->getOperand(0);
6472  SDValue N1 = N->getOperand(1);
6473  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6474  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6475  EVT VT = N->getValueType(0);
6476  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6477
6478  // fold vector ops
6479  if (VT.isVector()) {
6480    SDValue FoldedVOp = SimplifyVBinOp(N);
6481    if (FoldedVOp.getNode()) return FoldedVOp;
6482  }
6483
6484  // fold (fdiv c1, c2) -> c1/c2
6485  if (N0CFP && N1CFP)
6486    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
6487
6488  // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
6489  if (N1CFP && DAG.getTarget().Options.UnsafeFPMath) {
6490    // Compute the reciprocal 1.0 / c2.
6491    APFloat N1APF = N1CFP->getValueAPF();
6492    APFloat Recip(N1APF.getSemantics(), 1); // 1.0
6493    APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
6494    // Only do the transform if the reciprocal is a legal fp immediate that
6495    // isn't too nasty (eg NaN, denormal, ...).
6496    if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
6497        (!LegalOperations ||
6498         // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
6499         // backend)... we should handle this gracefully after Legalize.
6500         // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
6501         TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
6502         TLI.isFPImmLegal(Recip, VT)))
6503      return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0,
6504                         DAG.getConstantFP(Recip, VT));
6505  }
6506
6507  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
6508  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI,
6509                                       &DAG.getTarget().Options)) {
6510    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI,
6511                                         &DAG.getTarget().Options)) {
6512      // Both can be negated for free, check to see if at least one is cheaper
6513      // negated.
6514      if (LHSNeg == 2 || RHSNeg == 2)
6515        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
6516                           GetNegatedExpression(N0, DAG, LegalOperations),
6517                           GetNegatedExpression(N1, DAG, LegalOperations));
6518    }
6519  }
6520
6521  return SDValue();
6522}
6523
6524SDValue DAGCombiner::visitFREM(SDNode *N) {
6525  SDValue N0 = N->getOperand(0);
6526  SDValue N1 = N->getOperand(1);
6527  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6528  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6529  EVT VT = N->getValueType(0);
6530
6531  // fold (frem c1, c2) -> fmod(c1,c2)
6532  if (N0CFP && N1CFP)
6533    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
6534
6535  return SDValue();
6536}
6537
6538SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
6539  SDValue N0 = N->getOperand(0);
6540  SDValue N1 = N->getOperand(1);
6541  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6542  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
6543  EVT VT = N->getValueType(0);
6544
6545  if (N0CFP && N1CFP)  // Constant fold
6546    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
6547
6548  if (N1CFP) {
6549    const APFloat& V = N1CFP->getValueAPF();
6550    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
6551    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
6552    if (!V.isNegative()) {
6553      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
6554        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6555    } else {
6556      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
6557        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6558                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
6559    }
6560  }
6561
6562  // copysign(fabs(x), y) -> copysign(x, y)
6563  // copysign(fneg(x), y) -> copysign(x, y)
6564  // copysign(copysign(x,z), y) -> copysign(x, y)
6565  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
6566      N0.getOpcode() == ISD::FCOPYSIGN)
6567    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6568                       N0.getOperand(0), N1);
6569
6570  // copysign(x, abs(y)) -> abs(x)
6571  if (N1.getOpcode() == ISD::FABS)
6572    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6573
6574  // copysign(x, copysign(y,z)) -> copysign(x, z)
6575  if (N1.getOpcode() == ISD::FCOPYSIGN)
6576    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6577                       N0, N1.getOperand(1));
6578
6579  // copysign(x, fp_extend(y)) -> copysign(x, y)
6580  // copysign(x, fp_round(y)) -> copysign(x, y)
6581  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
6582    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6583                       N0, N1.getOperand(0));
6584
6585  return SDValue();
6586}
6587
6588SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
6589  SDValue N0 = N->getOperand(0);
6590  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6591  EVT VT = N->getValueType(0);
6592  EVT OpVT = N0.getValueType();
6593
6594  // fold (sint_to_fp c1) -> c1fp
6595  if (N0C &&
6596      // ...but only if the target supports immediate floating-point values
6597      (!LegalOperations ||
6598       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6599    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6600
6601  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
6602  // but UINT_TO_FP is legal on this target, try to convert.
6603  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
6604      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
6605    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
6606    if (DAG.SignBitIsZero(N0))
6607      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6608  }
6609
6610  // The next optimizations are desireable only if SELECT_CC can be lowered.
6611  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6612  // having to say they don't support SELECT_CC on every type the DAG knows
6613  // about, since there is no way to mark an opcode illegal at all value types
6614  // (See also visitSELECT)
6615  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6616    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6617    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
6618        !VT.isVector() &&
6619        (!LegalOperations ||
6620         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6621      SDValue Ops[] =
6622        { N0.getOperand(0), N0.getOperand(1),
6623          DAG.getConstantFP(-1.0, VT) , DAG.getConstantFP(0.0, VT),
6624          N0.getOperand(2) };
6625      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6626    }
6627
6628    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
6629    //      (select_cc x, y, 1.0, 0.0,, cc)
6630    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
6631        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
6632        (!LegalOperations ||
6633         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6634      SDValue Ops[] =
6635        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
6636          DAG.getConstantFP(1.0, VT) , DAG.getConstantFP(0.0, VT),
6637          N0.getOperand(0).getOperand(2) };
6638      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6639    }
6640  }
6641
6642  return SDValue();
6643}
6644
6645SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
6646  SDValue N0 = N->getOperand(0);
6647  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
6648  EVT VT = N->getValueType(0);
6649  EVT OpVT = N0.getValueType();
6650
6651  // fold (uint_to_fp c1) -> c1fp
6652  if (N0C &&
6653      // ...but only if the target supports immediate floating-point values
6654      (!LegalOperations ||
6655       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
6656    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
6657
6658  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
6659  // but SINT_TO_FP is legal on this target, try to convert.
6660  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
6661      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
6662    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
6663    if (DAG.SignBitIsZero(N0))
6664      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
6665  }
6666
6667  // The next optimizations are desireable only if SELECT_CC can be lowered.
6668  // Check against MVT::Other for SELECT_CC, which is a workaround for targets
6669  // having to say they don't support SELECT_CC on every type the DAG knows
6670  // about, since there is no way to mark an opcode illegal at all value types
6671  // (See also visitSELECT)
6672  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, MVT::Other)) {
6673    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
6674
6675    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
6676        (!LegalOperations ||
6677         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
6678      SDValue Ops[] =
6679        { N0.getOperand(0), N0.getOperand(1),
6680          DAG.getConstantFP(1.0, VT),  DAG.getConstantFP(0.0, VT),
6681          N0.getOperand(2) };
6682      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT, Ops, 5);
6683    }
6684  }
6685
6686  return SDValue();
6687}
6688
6689SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
6690  SDValue N0 = N->getOperand(0);
6691  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6692  EVT VT = N->getValueType(0);
6693
6694  // fold (fp_to_sint c1fp) -> c1
6695  if (N0CFP)
6696    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
6697
6698  return SDValue();
6699}
6700
6701SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
6702  SDValue N0 = N->getOperand(0);
6703  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6704  EVT VT = N->getValueType(0);
6705
6706  // fold (fp_to_uint c1fp) -> c1
6707  if (N0CFP)
6708    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
6709
6710  return SDValue();
6711}
6712
6713SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
6714  SDValue N0 = N->getOperand(0);
6715  SDValue N1 = N->getOperand(1);
6716  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6717  EVT VT = N->getValueType(0);
6718
6719  // fold (fp_round c1fp) -> c1fp
6720  if (N0CFP)
6721    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
6722
6723  // fold (fp_round (fp_extend x)) -> x
6724  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
6725    return N0.getOperand(0);
6726
6727  // fold (fp_round (fp_round x)) -> (fp_round x)
6728  if (N0.getOpcode() == ISD::FP_ROUND) {
6729    // This is a value preserving truncation if both round's are.
6730    bool IsTrunc = N->getConstantOperandVal(1) == 1 &&
6731                   N0.getNode()->getConstantOperandVal(1) == 1;
6732    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0.getOperand(0),
6733                       DAG.getIntPtrConstant(IsTrunc));
6734  }
6735
6736  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
6737  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
6738    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
6739                              N0.getOperand(0), N1);
6740    AddToWorkList(Tmp.getNode());
6741    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
6742                       Tmp, N0.getOperand(1));
6743  }
6744
6745  return SDValue();
6746}
6747
6748SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
6749  SDValue N0 = N->getOperand(0);
6750  EVT VT = N->getValueType(0);
6751  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6752  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6753
6754  // fold (fp_round_inreg c1fp) -> c1fp
6755  if (N0CFP && isTypeLegal(EVT)) {
6756    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), EVT);
6757    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, Round);
6758  }
6759
6760  return SDValue();
6761}
6762
6763SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
6764  SDValue N0 = N->getOperand(0);
6765  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6766  EVT VT = N->getValueType(0);
6767
6768  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
6769  if (N->hasOneUse() &&
6770      N->use_begin()->getOpcode() == ISD::FP_ROUND)
6771    return SDValue();
6772
6773  // fold (fp_extend c1fp) -> c1fp
6774  if (N0CFP)
6775    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
6776
6777  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
6778  // value of X.
6779  if (N0.getOpcode() == ISD::FP_ROUND
6780      && N0.getNode()->getConstantOperandVal(1) == 1) {
6781    SDValue In = N0.getOperand(0);
6782    if (In.getValueType() == VT) return In;
6783    if (VT.bitsLT(In.getValueType()))
6784      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
6785                         In, N0.getOperand(1));
6786    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
6787  }
6788
6789  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
6790  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
6791      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6792       TLI.isLoadExtLegal(ISD::EXTLOAD, N0.getValueType()))) {
6793    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6794    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6795                                     LN0->getChain(),
6796                                     LN0->getBasePtr(), N0.getValueType(),
6797                                     LN0->getMemOperand());
6798    CombineTo(N, ExtLoad);
6799    CombineTo(N0.getNode(),
6800              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
6801                          N0.getValueType(), ExtLoad, DAG.getIntPtrConstant(1)),
6802              ExtLoad.getValue(1));
6803    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6804  }
6805
6806  return SDValue();
6807}
6808
6809SDValue DAGCombiner::visitFNEG(SDNode *N) {
6810  SDValue N0 = N->getOperand(0);
6811  EVT VT = N->getValueType(0);
6812
6813  if (VT.isVector()) {
6814    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6815    if (FoldedVOp.getNode()) return FoldedVOp;
6816  }
6817
6818  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
6819                         &DAG.getTarget().Options))
6820    return GetNegatedExpression(N0, DAG, LegalOperations);
6821
6822  // Transform fneg(bitconvert(x)) -> bitconvert(x^sign) to avoid loading
6823  // constant pool values.
6824  if (!TLI.isFNegFree(VT) && N0.getOpcode() == ISD::BITCAST &&
6825      !VT.isVector() &&
6826      N0.getNode()->hasOneUse() &&
6827      N0.getOperand(0).getValueType().isInteger()) {
6828    SDValue Int = N0.getOperand(0);
6829    EVT IntVT = Int.getValueType();
6830    if (IntVT.isInteger() && !IntVT.isVector()) {
6831      Int = DAG.getNode(ISD::XOR, SDLoc(N0), IntVT, Int,
6832              DAG.getConstant(APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6833      AddToWorkList(Int.getNode());
6834      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6835                         VT, Int);
6836    }
6837  }
6838
6839  // (fneg (fmul c, x)) -> (fmul -c, x)
6840  if (N0.getOpcode() == ISD::FMUL) {
6841    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
6842    if (CFP1)
6843      return DAG.getNode(ISD::FMUL, SDLoc(N), VT,
6844                         N0.getOperand(0),
6845                         DAG.getNode(ISD::FNEG, SDLoc(N), VT,
6846                                     N0.getOperand(1)));
6847  }
6848
6849  return SDValue();
6850}
6851
6852SDValue DAGCombiner::visitFCEIL(SDNode *N) {
6853  SDValue N0 = N->getOperand(0);
6854  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6855  EVT VT = N->getValueType(0);
6856
6857  // fold (fceil c1) -> fceil(c1)
6858  if (N0CFP)
6859    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
6860
6861  return SDValue();
6862}
6863
6864SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
6865  SDValue N0 = N->getOperand(0);
6866  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6867  EVT VT = N->getValueType(0);
6868
6869  // fold (ftrunc c1) -> ftrunc(c1)
6870  if (N0CFP)
6871    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
6872
6873  return SDValue();
6874}
6875
6876SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
6877  SDValue N0 = N->getOperand(0);
6878  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6879  EVT VT = N->getValueType(0);
6880
6881  // fold (ffloor c1) -> ffloor(c1)
6882  if (N0CFP)
6883    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
6884
6885  return SDValue();
6886}
6887
6888SDValue DAGCombiner::visitFABS(SDNode *N) {
6889  SDValue N0 = N->getOperand(0);
6890  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
6891  EVT VT = N->getValueType(0);
6892
6893  if (VT.isVector()) {
6894    SDValue FoldedVOp = SimplifyVUnaryOp(N);
6895    if (FoldedVOp.getNode()) return FoldedVOp;
6896  }
6897
6898  // fold (fabs c1) -> fabs(c1)
6899  if (N0CFP)
6900    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
6901  // fold (fabs (fabs x)) -> (fabs x)
6902  if (N0.getOpcode() == ISD::FABS)
6903    return N->getOperand(0);
6904  // fold (fabs (fneg x)) -> (fabs x)
6905  // fold (fabs (fcopysign x, y)) -> (fabs x)
6906  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
6907    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
6908
6909  // Transform fabs(bitconvert(x)) -> bitconvert(x&~sign) to avoid loading
6910  // constant pool values.
6911  if (!TLI.isFAbsFree(VT) &&
6912      N0.getOpcode() == ISD::BITCAST && N0.getNode()->hasOneUse() &&
6913      N0.getOperand(0).getValueType().isInteger() &&
6914      !N0.getOperand(0).getValueType().isVector()) {
6915    SDValue Int = N0.getOperand(0);
6916    EVT IntVT = Int.getValueType();
6917    if (IntVT.isInteger() && !IntVT.isVector()) {
6918      Int = DAG.getNode(ISD::AND, SDLoc(N0), IntVT, Int,
6919             DAG.getConstant(~APInt::getSignBit(IntVT.getSizeInBits()), IntVT));
6920      AddToWorkList(Int.getNode());
6921      return DAG.getNode(ISD::BITCAST, SDLoc(N),
6922                         N->getValueType(0), Int);
6923    }
6924  }
6925
6926  return SDValue();
6927}
6928
6929SDValue DAGCombiner::visitBRCOND(SDNode *N) {
6930  SDValue Chain = N->getOperand(0);
6931  SDValue N1 = N->getOperand(1);
6932  SDValue N2 = N->getOperand(2);
6933
6934  // If N is a constant we could fold this into a fallthrough or unconditional
6935  // branch. However that doesn't happen very often in normal code, because
6936  // Instcombine/SimplifyCFG should have handled the available opportunities.
6937  // If we did this folding here, it would be necessary to update the
6938  // MachineBasicBlock CFG, which is awkward.
6939
6940  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
6941  // on the target.
6942  if (N1.getOpcode() == ISD::SETCC &&
6943      TLI.isOperationLegalOrCustom(ISD::BR_CC,
6944                                   N1.getOperand(0).getValueType())) {
6945    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
6946                       Chain, N1.getOperand(2),
6947                       N1.getOperand(0), N1.getOperand(1), N2);
6948  }
6949
6950  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
6951      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
6952       (N1.getOperand(0).hasOneUse() &&
6953        N1.getOperand(0).getOpcode() == ISD::SRL))) {
6954    SDNode *Trunc = 0;
6955    if (N1.getOpcode() == ISD::TRUNCATE) {
6956      // Look pass the truncate.
6957      Trunc = N1.getNode();
6958      N1 = N1.getOperand(0);
6959    }
6960
6961    // Match this pattern so that we can generate simpler code:
6962    //
6963    //   %a = ...
6964    //   %b = and i32 %a, 2
6965    //   %c = srl i32 %b, 1
6966    //   brcond i32 %c ...
6967    //
6968    // into
6969    //
6970    //   %a = ...
6971    //   %b = and i32 %a, 2
6972    //   %c = setcc eq %b, 0
6973    //   brcond %c ...
6974    //
6975    // This applies only when the AND constant value has one bit set and the
6976    // SRL constant is equal to the log2 of the AND constant. The back-end is
6977    // smart enough to convert the result into a TEST/JMP sequence.
6978    SDValue Op0 = N1.getOperand(0);
6979    SDValue Op1 = N1.getOperand(1);
6980
6981    if (Op0.getOpcode() == ISD::AND &&
6982        Op1.getOpcode() == ISD::Constant) {
6983      SDValue AndOp1 = Op0.getOperand(1);
6984
6985      if (AndOp1.getOpcode() == ISD::Constant) {
6986        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
6987
6988        if (AndConst.isPowerOf2() &&
6989            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
6990          SDValue SetCC =
6991            DAG.getSetCC(SDLoc(N),
6992                         getSetCCResultType(Op0.getValueType()),
6993                         Op0, DAG.getConstant(0, Op0.getValueType()),
6994                         ISD::SETNE);
6995
6996          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, SDLoc(N),
6997                                          MVT::Other, Chain, SetCC, N2);
6998          // Don't add the new BRCond into the worklist or else SimplifySelectCC
6999          // will convert it back to (X & C1) >> C2.
7000          CombineTo(N, NewBRCond, false);
7001          // Truncate is dead.
7002          if (Trunc) {
7003            removeFromWorkList(Trunc);
7004            DAG.DeleteNode(Trunc);
7005          }
7006          // Replace the uses of SRL with SETCC
7007          WorkListRemover DeadNodes(*this);
7008          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7009          removeFromWorkList(N1.getNode());
7010          DAG.DeleteNode(N1.getNode());
7011          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7012        }
7013      }
7014    }
7015
7016    if (Trunc)
7017      // Restore N1 if the above transformation doesn't match.
7018      N1 = N->getOperand(1);
7019  }
7020
7021  // Transform br(xor(x, y)) -> br(x != y)
7022  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
7023  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
7024    SDNode *TheXor = N1.getNode();
7025    SDValue Op0 = TheXor->getOperand(0);
7026    SDValue Op1 = TheXor->getOperand(1);
7027    if (Op0.getOpcode() == Op1.getOpcode()) {
7028      // Avoid missing important xor optimizations.
7029      SDValue Tmp = visitXOR(TheXor);
7030      if (Tmp.getNode()) {
7031        if (Tmp.getNode() != TheXor) {
7032          DEBUG(dbgs() << "\nReplacing.8 ";
7033                TheXor->dump(&DAG);
7034                dbgs() << "\nWith: ";
7035                Tmp.getNode()->dump(&DAG);
7036                dbgs() << '\n');
7037          WorkListRemover DeadNodes(*this);
7038          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
7039          removeFromWorkList(TheXor);
7040          DAG.DeleteNode(TheXor);
7041          return DAG.getNode(ISD::BRCOND, SDLoc(N),
7042                             MVT::Other, Chain, Tmp, N2);
7043        }
7044
7045        // visitXOR has changed XOR's operands or replaced the XOR completely,
7046        // bail out.
7047        return SDValue(N, 0);
7048      }
7049    }
7050
7051    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
7052      bool Equal = false;
7053      if (ConstantSDNode *RHSCI = dyn_cast<ConstantSDNode>(Op0))
7054        if (RHSCI->getAPIntValue() == 1 && Op0.hasOneUse() &&
7055            Op0.getOpcode() == ISD::XOR) {
7056          TheXor = Op0.getNode();
7057          Equal = true;
7058        }
7059
7060      EVT SetCCVT = N1.getValueType();
7061      if (LegalTypes)
7062        SetCCVT = getSetCCResultType(SetCCVT);
7063      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
7064                                   SetCCVT,
7065                                   Op0, Op1,
7066                                   Equal ? ISD::SETEQ : ISD::SETNE);
7067      // Replace the uses of XOR with SETCC
7068      WorkListRemover DeadNodes(*this);
7069      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
7070      removeFromWorkList(N1.getNode());
7071      DAG.DeleteNode(N1.getNode());
7072      return DAG.getNode(ISD::BRCOND, SDLoc(N),
7073                         MVT::Other, Chain, SetCC, N2);
7074    }
7075  }
7076
7077  return SDValue();
7078}
7079
7080// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
7081//
7082SDValue DAGCombiner::visitBR_CC(SDNode *N) {
7083  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
7084  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
7085
7086  // If N is a constant we could fold this into a fallthrough or unconditional
7087  // branch. However that doesn't happen very often in normal code, because
7088  // Instcombine/SimplifyCFG should have handled the available opportunities.
7089  // If we did this folding here, it would be necessary to update the
7090  // MachineBasicBlock CFG, which is awkward.
7091
7092  // Use SimplifySetCC to simplify SETCC's.
7093  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
7094                               CondLHS, CondRHS, CC->get(), SDLoc(N),
7095                               false);
7096  if (Simp.getNode()) AddToWorkList(Simp.getNode());
7097
7098  // fold to a simpler setcc
7099  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
7100    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
7101                       N->getOperand(0), Simp.getOperand(2),
7102                       Simp.getOperand(0), Simp.getOperand(1),
7103                       N->getOperand(4));
7104
7105  return SDValue();
7106}
7107
7108/// canFoldInAddressingMode - Return true if 'Use' is a load or a store that
7109/// uses N as its base pointer and that N may be folded in the load / store
7110/// addressing mode.
7111static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
7112                                    SelectionDAG &DAG,
7113                                    const TargetLowering &TLI) {
7114  EVT VT;
7115  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
7116    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
7117      return false;
7118    VT = Use->getValueType(0);
7119  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
7120    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
7121      return false;
7122    VT = ST->getValue().getValueType();
7123  } else
7124    return false;
7125
7126  TargetLowering::AddrMode AM;
7127  if (N->getOpcode() == ISD::ADD) {
7128    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7129    if (Offset)
7130      // [reg +/- imm]
7131      AM.BaseOffs = Offset->getSExtValue();
7132    else
7133      // [reg +/- reg]
7134      AM.Scale = 1;
7135  } else if (N->getOpcode() == ISD::SUB) {
7136    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
7137    if (Offset)
7138      // [reg +/- imm]
7139      AM.BaseOffs = -Offset->getSExtValue();
7140    else
7141      // [reg +/- reg]
7142      AM.Scale = 1;
7143  } else
7144    return false;
7145
7146  return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()));
7147}
7148
7149/// CombineToPreIndexedLoadStore - Try turning a load / store into a
7150/// pre-indexed load / store when the base pointer is an add or subtract
7151/// and it has other uses besides the load / store. After the
7152/// transformation, the new indexed load / store has effectively folded
7153/// the add / subtract in and all of its other uses are redirected to the
7154/// new load / store.
7155bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
7156  if (Level < AfterLegalizeDAG)
7157    return false;
7158
7159  bool isLoad = true;
7160  SDValue Ptr;
7161  EVT VT;
7162  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7163    if (LD->isIndexed())
7164      return false;
7165    VT = LD->getMemoryVT();
7166    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
7167        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
7168      return false;
7169    Ptr = LD->getBasePtr();
7170  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7171    if (ST->isIndexed())
7172      return false;
7173    VT = ST->getMemoryVT();
7174    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
7175        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
7176      return false;
7177    Ptr = ST->getBasePtr();
7178    isLoad = false;
7179  } else {
7180    return false;
7181  }
7182
7183  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
7184  // out.  There is no reason to make this a preinc/predec.
7185  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
7186      Ptr.getNode()->hasOneUse())
7187    return false;
7188
7189  // Ask the target to do addressing mode selection.
7190  SDValue BasePtr;
7191  SDValue Offset;
7192  ISD::MemIndexedMode AM = ISD::UNINDEXED;
7193  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
7194    return false;
7195
7196  // Backends without true r+i pre-indexed forms may need to pass a
7197  // constant base with a variable offset so that constant coercion
7198  // will work with the patterns in canonical form.
7199  bool Swapped = false;
7200  if (isa<ConstantSDNode>(BasePtr)) {
7201    std::swap(BasePtr, Offset);
7202    Swapped = true;
7203  }
7204
7205  // Don't create a indexed load / store with zero offset.
7206  if (isa<ConstantSDNode>(Offset) &&
7207      cast<ConstantSDNode>(Offset)->isNullValue())
7208    return false;
7209
7210  // Try turning it into a pre-indexed load / store except when:
7211  // 1) The new base ptr is a frame index.
7212  // 2) If N is a store and the new base ptr is either the same as or is a
7213  //    predecessor of the value being stored.
7214  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
7215  //    that would create a cycle.
7216  // 4) All uses are load / store ops that use it as old base ptr.
7217
7218  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
7219  // (plus the implicit offset) to a register to preinc anyway.
7220  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7221    return false;
7222
7223  // Check #2.
7224  if (!isLoad) {
7225    SDValue Val = cast<StoreSDNode>(N)->getValue();
7226    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
7227      return false;
7228  }
7229
7230  // If the offset is a constant, there may be other adds of constants that
7231  // can be folded with this one. We should do this to avoid having to keep
7232  // a copy of the original base pointer.
7233  SmallVector<SDNode *, 16> OtherUses;
7234  if (isa<ConstantSDNode>(Offset))
7235    for (SDNode::use_iterator I = BasePtr.getNode()->use_begin(),
7236         E = BasePtr.getNode()->use_end(); I != E; ++I) {
7237      SDNode *Use = *I;
7238      if (Use == Ptr.getNode())
7239        continue;
7240
7241      if (Use->isPredecessorOf(N))
7242        continue;
7243
7244      if (Use->getOpcode() != ISD::ADD && Use->getOpcode() != ISD::SUB) {
7245        OtherUses.clear();
7246        break;
7247      }
7248
7249      SDValue Op0 = Use->getOperand(0), Op1 = Use->getOperand(1);
7250      if (Op1.getNode() == BasePtr.getNode())
7251        std::swap(Op0, Op1);
7252      assert(Op0.getNode() == BasePtr.getNode() &&
7253             "Use of ADD/SUB but not an operand");
7254
7255      if (!isa<ConstantSDNode>(Op1)) {
7256        OtherUses.clear();
7257        break;
7258      }
7259
7260      // FIXME: In some cases, we can be smarter about this.
7261      if (Op1.getValueType() != Offset.getValueType()) {
7262        OtherUses.clear();
7263        break;
7264      }
7265
7266      OtherUses.push_back(Use);
7267    }
7268
7269  if (Swapped)
7270    std::swap(BasePtr, Offset);
7271
7272  // Now check for #3 and #4.
7273  bool RealUse = false;
7274
7275  // Caches for hasPredecessorHelper
7276  SmallPtrSet<const SDNode *, 32> Visited;
7277  SmallVector<const SDNode *, 16> Worklist;
7278
7279  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7280         E = Ptr.getNode()->use_end(); I != E; ++I) {
7281    SDNode *Use = *I;
7282    if (Use == N)
7283      continue;
7284    if (N->hasPredecessorHelper(Use, Visited, Worklist))
7285      return false;
7286
7287    // If Ptr may be folded in addressing mode of other use, then it's
7288    // not profitable to do this transformation.
7289    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
7290      RealUse = true;
7291  }
7292
7293  if (!RealUse)
7294    return false;
7295
7296  SDValue Result;
7297  if (isLoad)
7298    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7299                                BasePtr, Offset, AM);
7300  else
7301    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7302                                 BasePtr, Offset, AM);
7303  ++PreIndexedNodes;
7304  ++NodesCombined;
7305  DEBUG(dbgs() << "\nReplacing.4 ";
7306        N->dump(&DAG);
7307        dbgs() << "\nWith: ";
7308        Result.getNode()->dump(&DAG);
7309        dbgs() << '\n');
7310  WorkListRemover DeadNodes(*this);
7311  if (isLoad) {
7312    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7313    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7314  } else {
7315    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7316  }
7317
7318  // Finally, since the node is now dead, remove it from the graph.
7319  DAG.DeleteNode(N);
7320
7321  if (Swapped)
7322    std::swap(BasePtr, Offset);
7323
7324  // Replace other uses of BasePtr that can be updated to use Ptr
7325  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
7326    unsigned OffsetIdx = 1;
7327    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
7328      OffsetIdx = 0;
7329    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
7330           BasePtr.getNode() && "Expected BasePtr operand");
7331
7332    // We need to replace ptr0 in the following expression:
7333    //   x0 * offset0 + y0 * ptr0 = t0
7334    // knowing that
7335    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
7336    //
7337    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
7338    // indexed load/store and the expresion that needs to be re-written.
7339    //
7340    // Therefore, we have:
7341    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
7342
7343    ConstantSDNode *CN =
7344      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
7345    int X0, X1, Y0, Y1;
7346    APInt Offset0 = CN->getAPIntValue();
7347    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
7348
7349    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
7350    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
7351    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
7352    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
7353
7354    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
7355
7356    APInt CNV = Offset0;
7357    if (X0 < 0) CNV = -CNV;
7358    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
7359    else CNV = CNV - Offset1;
7360
7361    // We can now generate the new expression.
7362    SDValue NewOp1 = DAG.getConstant(CNV, CN->getValueType(0));
7363    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
7364
7365    SDValue NewUse = DAG.getNode(Opcode,
7366                                 SDLoc(OtherUses[i]),
7367                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
7368    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
7369    removeFromWorkList(OtherUses[i]);
7370    DAG.DeleteNode(OtherUses[i]);
7371  }
7372
7373  // Replace the uses of Ptr with uses of the updated base value.
7374  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
7375  removeFromWorkList(Ptr.getNode());
7376  DAG.DeleteNode(Ptr.getNode());
7377
7378  return true;
7379}
7380
7381/// CombineToPostIndexedLoadStore - Try to combine a load / store with a
7382/// add / sub of the base pointer node into a post-indexed load / store.
7383/// The transformation folded the add / subtract into the new indexed
7384/// load / store effectively and all of its uses are redirected to the
7385/// new load / store.
7386bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
7387  if (Level < AfterLegalizeDAG)
7388    return false;
7389
7390  bool isLoad = true;
7391  SDValue Ptr;
7392  EVT VT;
7393  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
7394    if (LD->isIndexed())
7395      return false;
7396    VT = LD->getMemoryVT();
7397    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
7398        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
7399      return false;
7400    Ptr = LD->getBasePtr();
7401  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
7402    if (ST->isIndexed())
7403      return false;
7404    VT = ST->getMemoryVT();
7405    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
7406        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
7407      return false;
7408    Ptr = ST->getBasePtr();
7409    isLoad = false;
7410  } else {
7411    return false;
7412  }
7413
7414  if (Ptr.getNode()->hasOneUse())
7415    return false;
7416
7417  for (SDNode::use_iterator I = Ptr.getNode()->use_begin(),
7418         E = Ptr.getNode()->use_end(); I != E; ++I) {
7419    SDNode *Op = *I;
7420    if (Op == N ||
7421        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
7422      continue;
7423
7424    SDValue BasePtr;
7425    SDValue Offset;
7426    ISD::MemIndexedMode AM = ISD::UNINDEXED;
7427    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
7428      // Don't create a indexed load / store with zero offset.
7429      if (isa<ConstantSDNode>(Offset) &&
7430          cast<ConstantSDNode>(Offset)->isNullValue())
7431        continue;
7432
7433      // Try turning it into a post-indexed load / store except when
7434      // 1) All uses are load / store ops that use it as base ptr (and
7435      //    it may be folded as addressing mmode).
7436      // 2) Op must be independent of N, i.e. Op is neither a predecessor
7437      //    nor a successor of N. Otherwise, if Op is folded that would
7438      //    create a cycle.
7439
7440      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
7441        continue;
7442
7443      // Check for #1.
7444      bool TryNext = false;
7445      for (SDNode::use_iterator II = BasePtr.getNode()->use_begin(),
7446             EE = BasePtr.getNode()->use_end(); II != EE; ++II) {
7447        SDNode *Use = *II;
7448        if (Use == Ptr.getNode())
7449          continue;
7450
7451        // If all the uses are load / store addresses, then don't do the
7452        // transformation.
7453        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
7454          bool RealUse = false;
7455          for (SDNode::use_iterator III = Use->use_begin(),
7456                 EEE = Use->use_end(); III != EEE; ++III) {
7457            SDNode *UseUse = *III;
7458            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
7459              RealUse = true;
7460          }
7461
7462          if (!RealUse) {
7463            TryNext = true;
7464            break;
7465          }
7466        }
7467      }
7468
7469      if (TryNext)
7470        continue;
7471
7472      // Check for #2
7473      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
7474        SDValue Result = isLoad
7475          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
7476                               BasePtr, Offset, AM)
7477          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
7478                                BasePtr, Offset, AM);
7479        ++PostIndexedNodes;
7480        ++NodesCombined;
7481        DEBUG(dbgs() << "\nReplacing.5 ";
7482              N->dump(&DAG);
7483              dbgs() << "\nWith: ";
7484              Result.getNode()->dump(&DAG);
7485              dbgs() << '\n');
7486        WorkListRemover DeadNodes(*this);
7487        if (isLoad) {
7488          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
7489          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
7490        } else {
7491          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
7492        }
7493
7494        // Finally, since the node is now dead, remove it from the graph.
7495        DAG.DeleteNode(N);
7496
7497        // Replace the uses of Use with uses of the updated base value.
7498        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
7499                                      Result.getValue(isLoad ? 1 : 0));
7500        removeFromWorkList(Op);
7501        DAG.DeleteNode(Op);
7502        return true;
7503      }
7504    }
7505  }
7506
7507  return false;
7508}
7509
7510SDValue DAGCombiner::visitLOAD(SDNode *N) {
7511  LoadSDNode *LD  = cast<LoadSDNode>(N);
7512  SDValue Chain = LD->getChain();
7513  SDValue Ptr   = LD->getBasePtr();
7514
7515  // If load is not volatile and there are no uses of the loaded value (and
7516  // the updated indexed value in case of indexed loads), change uses of the
7517  // chain value into uses of the chain input (i.e. delete the dead load).
7518  if (!LD->isVolatile()) {
7519    if (N->getValueType(1) == MVT::Other) {
7520      // Unindexed loads.
7521      if (!N->hasAnyUseOfValue(0)) {
7522        // It's not safe to use the two value CombineTo variant here. e.g.
7523        // v1, chain2 = load chain1, loc
7524        // v2, chain3 = load chain2, loc
7525        // v3         = add v2, c
7526        // Now we replace use of chain2 with chain1.  This makes the second load
7527        // isomorphic to the one we are deleting, and thus makes this load live.
7528        DEBUG(dbgs() << "\nReplacing.6 ";
7529              N->dump(&DAG);
7530              dbgs() << "\nWith chain: ";
7531              Chain.getNode()->dump(&DAG);
7532              dbgs() << "\n");
7533        WorkListRemover DeadNodes(*this);
7534        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
7535
7536        if (N->use_empty()) {
7537          removeFromWorkList(N);
7538          DAG.DeleteNode(N);
7539        }
7540
7541        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7542      }
7543    } else {
7544      // Indexed loads.
7545      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
7546      if (!N->hasAnyUseOfValue(0) && !N->hasAnyUseOfValue(1)) {
7547        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
7548        DEBUG(dbgs() << "\nReplacing.7 ";
7549              N->dump(&DAG);
7550              dbgs() << "\nWith: ";
7551              Undef.getNode()->dump(&DAG);
7552              dbgs() << " and 2 other values\n");
7553        WorkListRemover DeadNodes(*this);
7554        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
7555        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1),
7556                                      DAG.getUNDEF(N->getValueType(1)));
7557        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
7558        removeFromWorkList(N);
7559        DAG.DeleteNode(N);
7560        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
7561      }
7562    }
7563  }
7564
7565  // If this load is directly stored, replace the load value with the stored
7566  // value.
7567  // TODO: Handle store large -> read small portion.
7568  // TODO: Handle TRUNCSTORE/LOADEXT
7569  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
7570    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
7571      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
7572      if (PrevST->getBasePtr() == Ptr &&
7573          PrevST->getValue().getValueType() == N->getValueType(0))
7574      return CombineTo(N, Chain.getOperand(1), Chain);
7575    }
7576  }
7577
7578  // Try to infer better alignment information than the load already has.
7579  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
7580    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
7581      if (Align > LD->getMemOperand()->getBaseAlignment()) {
7582        SDValue NewLoad =
7583               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
7584                              LD->getValueType(0),
7585                              Chain, Ptr, LD->getPointerInfo(),
7586                              LD->getMemoryVT(),
7587                              LD->isVolatile(), LD->isNonTemporal(), Align,
7588                              LD->getTBAAInfo());
7589        return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
7590      }
7591    }
7592  }
7593
7594  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
7595    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
7596  if (UseAA) {
7597    // Walk up chain skipping non-aliasing memory nodes.
7598    SDValue BetterChain = FindBetterChain(N, Chain);
7599
7600    // If there is a better chain.
7601    if (Chain != BetterChain) {
7602      SDValue ReplLoad;
7603
7604      // Replace the chain to void dependency.
7605      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
7606        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
7607                               BetterChain, Ptr, LD->getMemOperand());
7608      } else {
7609        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
7610                                  LD->getValueType(0),
7611                                  BetterChain, Ptr, LD->getMemoryVT(),
7612                                  LD->getMemOperand());
7613      }
7614
7615      // Create token factor to keep old chain connected.
7616      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
7617                                  MVT::Other, Chain, ReplLoad.getValue(1));
7618
7619      // Make sure the new and old chains are cleaned up.
7620      AddToWorkList(Token.getNode());
7621
7622      // Replace uses with load result and token factor. Don't add users
7623      // to work list.
7624      return CombineTo(N, ReplLoad.getValue(0), Token, false);
7625    }
7626  }
7627
7628  // Try transforming N to an indexed load.
7629  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
7630    return SDValue(N, 0);
7631
7632  // Try to slice up N to more direct loads if the slices are mapped to
7633  // different register banks or pairing can take place.
7634  if (SliceUpLoad(N))
7635    return SDValue(N, 0);
7636
7637  return SDValue();
7638}
7639
7640namespace {
7641/// \brief Helper structure used to slice a load in smaller loads.
7642/// Basically a slice is obtained from the following sequence:
7643/// Origin = load Ty1, Base
7644/// Shift = srl Ty1 Origin, CstTy Amount
7645/// Inst = trunc Shift to Ty2
7646///
7647/// Then, it will be rewriten into:
7648/// Slice = load SliceTy, Base + SliceOffset
7649/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
7650///
7651/// SliceTy is deduced from the number of bits that are actually used to
7652/// build Inst.
7653struct LoadedSlice {
7654  /// \brief Helper structure used to compute the cost of a slice.
7655  struct Cost {
7656    /// Are we optimizing for code size.
7657    bool ForCodeSize;
7658    /// Various cost.
7659    unsigned Loads;
7660    unsigned Truncates;
7661    unsigned CrossRegisterBanksCopies;
7662    unsigned ZExts;
7663    unsigned Shift;
7664
7665    Cost(bool ForCodeSize = false)
7666        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
7667          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
7668
7669    /// \brief Get the cost of one isolated slice.
7670    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
7671        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
7672          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
7673      EVT TruncType = LS.Inst->getValueType(0);
7674      EVT LoadedType = LS.getLoadedType();
7675      if (TruncType != LoadedType &&
7676          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
7677        ZExts = 1;
7678    }
7679
7680    /// \brief Account for slicing gain in the current cost.
7681    /// Slicing provide a few gains like removing a shift or a
7682    /// truncate. This method allows to grow the cost of the original
7683    /// load with the gain from this slice.
7684    void addSliceGain(const LoadedSlice &LS) {
7685      // Each slice saves a truncate.
7686      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
7687      if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
7688                              LS.Inst->getOperand(0).getValueType()))
7689        ++Truncates;
7690      // If there is a shift amount, this slice gets rid of it.
7691      if (LS.Shift)
7692        ++Shift;
7693      // If this slice can merge a cross register bank copy, account for it.
7694      if (LS.canMergeExpensiveCrossRegisterBankCopy())
7695        ++CrossRegisterBanksCopies;
7696    }
7697
7698    Cost &operator+=(const Cost &RHS) {
7699      Loads += RHS.Loads;
7700      Truncates += RHS.Truncates;
7701      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
7702      ZExts += RHS.ZExts;
7703      Shift += RHS.Shift;
7704      return *this;
7705    }
7706
7707    bool operator==(const Cost &RHS) const {
7708      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
7709             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
7710             ZExts == RHS.ZExts && Shift == RHS.Shift;
7711    }
7712
7713    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
7714
7715    bool operator<(const Cost &RHS) const {
7716      // Assume cross register banks copies are as expensive as loads.
7717      // FIXME: Do we want some more target hooks?
7718      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
7719      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
7720      // Unless we are optimizing for code size, consider the
7721      // expensive operation first.
7722      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
7723        return ExpensiveOpsLHS < ExpensiveOpsRHS;
7724      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
7725             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
7726    }
7727
7728    bool operator>(const Cost &RHS) const { return RHS < *this; }
7729
7730    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
7731
7732    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
7733  };
7734  // The last instruction that represent the slice. This should be a
7735  // truncate instruction.
7736  SDNode *Inst;
7737  // The original load instruction.
7738  LoadSDNode *Origin;
7739  // The right shift amount in bits from the original load.
7740  unsigned Shift;
7741  // The DAG from which Origin came from.
7742  // This is used to get some contextual information about legal types, etc.
7743  SelectionDAG *DAG;
7744
7745  LoadedSlice(SDNode *Inst = NULL, LoadSDNode *Origin = NULL,
7746              unsigned Shift = 0, SelectionDAG *DAG = NULL)
7747      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
7748
7749  LoadedSlice(const LoadedSlice &LS)
7750      : Inst(LS.Inst), Origin(LS.Origin), Shift(LS.Shift), DAG(LS.DAG) {}
7751
7752  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
7753  /// \return Result is \p BitWidth and has used bits set to 1 and
7754  ///         not used bits set to 0.
7755  APInt getUsedBits() const {
7756    // Reproduce the trunc(lshr) sequence:
7757    // - Start from the truncated value.
7758    // - Zero extend to the desired bit width.
7759    // - Shift left.
7760    assert(Origin && "No original load to compare against.");
7761    unsigned BitWidth = Origin->getValueSizeInBits(0);
7762    assert(Inst && "This slice is not bound to an instruction");
7763    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
7764           "Extracted slice is bigger than the whole type!");
7765    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
7766    UsedBits.setAllBits();
7767    UsedBits = UsedBits.zext(BitWidth);
7768    UsedBits <<= Shift;
7769    return UsedBits;
7770  }
7771
7772  /// \brief Get the size of the slice to be loaded in bytes.
7773  unsigned getLoadedSize() const {
7774    unsigned SliceSize = getUsedBits().countPopulation();
7775    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
7776    return SliceSize / 8;
7777  }
7778
7779  /// \brief Get the type that will be loaded for this slice.
7780  /// Note: This may not be the final type for the slice.
7781  EVT getLoadedType() const {
7782    assert(DAG && "Missing context");
7783    LLVMContext &Ctxt = *DAG->getContext();
7784    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
7785  }
7786
7787  /// \brief Get the alignment of the load used for this slice.
7788  unsigned getAlignment() const {
7789    unsigned Alignment = Origin->getAlignment();
7790    unsigned Offset = getOffsetFromBase();
7791    if (Offset != 0)
7792      Alignment = MinAlign(Alignment, Alignment + Offset);
7793    return Alignment;
7794  }
7795
7796  /// \brief Check if this slice can be rewritten with legal operations.
7797  bool isLegal() const {
7798    // An invalid slice is not legal.
7799    if (!Origin || !Inst || !DAG)
7800      return false;
7801
7802    // Offsets are for indexed load only, we do not handle that.
7803    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
7804      return false;
7805
7806    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7807
7808    // Check that the type is legal.
7809    EVT SliceType = getLoadedType();
7810    if (!TLI.isTypeLegal(SliceType))
7811      return false;
7812
7813    // Check that the load is legal for this type.
7814    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
7815      return false;
7816
7817    // Check that the offset can be computed.
7818    // 1. Check its type.
7819    EVT PtrType = Origin->getBasePtr().getValueType();
7820    if (PtrType == MVT::Untyped || PtrType.isExtended())
7821      return false;
7822
7823    // 2. Check that it fits in the immediate.
7824    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
7825      return false;
7826
7827    // 3. Check that the computation is legal.
7828    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
7829      return false;
7830
7831    // Check that the zext is legal if it needs one.
7832    EVT TruncateType = Inst->getValueType(0);
7833    if (TruncateType != SliceType &&
7834        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
7835      return false;
7836
7837    return true;
7838  }
7839
7840  /// \brief Get the offset in bytes of this slice in the original chunk of
7841  /// bits.
7842  /// \pre DAG != NULL.
7843  uint64_t getOffsetFromBase() const {
7844    assert(DAG && "Missing context.");
7845    bool IsBigEndian =
7846        DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
7847    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
7848    uint64_t Offset = Shift / 8;
7849    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
7850    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
7851           "The size of the original loaded type is not a multiple of a"
7852           " byte.");
7853    // If Offset is bigger than TySizeInBytes, it means we are loading all
7854    // zeros. This should have been optimized before in the process.
7855    assert(TySizeInBytes > Offset &&
7856           "Invalid shift amount for given loaded size");
7857    if (IsBigEndian)
7858      Offset = TySizeInBytes - Offset - getLoadedSize();
7859    return Offset;
7860  }
7861
7862  /// \brief Generate the sequence of instructions to load the slice
7863  /// represented by this object and redirect the uses of this slice to
7864  /// this new sequence of instructions.
7865  /// \pre this->Inst && this->Origin are valid Instructions and this
7866  /// object passed the legal check: LoadedSlice::isLegal returned true.
7867  /// \return The last instruction of the sequence used to load the slice.
7868  SDValue loadSlice() const {
7869    assert(Inst && Origin && "Unable to replace a non-existing slice.");
7870    const SDValue &OldBaseAddr = Origin->getBasePtr();
7871    SDValue BaseAddr = OldBaseAddr;
7872    // Get the offset in that chunk of bytes w.r.t. the endianess.
7873    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
7874    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
7875    if (Offset) {
7876      // BaseAddr = BaseAddr + Offset.
7877      EVT ArithType = BaseAddr.getValueType();
7878      BaseAddr = DAG->getNode(ISD::ADD, SDLoc(Origin), ArithType, BaseAddr,
7879                              DAG->getConstant(Offset, ArithType));
7880    }
7881
7882    // Create the type of the loaded slice according to its size.
7883    EVT SliceType = getLoadedType();
7884
7885    // Create the load for the slice.
7886    SDValue LastInst = DAG->getLoad(
7887        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
7888        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
7889        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
7890    // If the final type is not the same as the loaded type, this means that
7891    // we have to pad with zero. Create a zero extend for that.
7892    EVT FinalType = Inst->getValueType(0);
7893    if (SliceType != FinalType)
7894      LastInst =
7895          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
7896    return LastInst;
7897  }
7898
7899  /// \brief Check if this slice can be merged with an expensive cross register
7900  /// bank copy. E.g.,
7901  /// i = load i32
7902  /// f = bitcast i32 i to float
7903  bool canMergeExpensiveCrossRegisterBankCopy() const {
7904    if (!Inst || !Inst->hasOneUse())
7905      return false;
7906    SDNode *Use = *Inst->use_begin();
7907    if (Use->getOpcode() != ISD::BITCAST)
7908      return false;
7909    assert(DAG && "Missing context");
7910    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
7911    EVT ResVT = Use->getValueType(0);
7912    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
7913    const TargetRegisterClass *ArgRC =
7914        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
7915    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
7916      return false;
7917
7918    // At this point, we know that we perform a cross-register-bank copy.
7919    // Check if it is expensive.
7920    const TargetRegisterInfo *TRI = TLI.getTargetMachine().getRegisterInfo();
7921    // Assume bitcasts are cheap, unless both register classes do not
7922    // explicitly share a common sub class.
7923    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
7924      return false;
7925
7926    // Check if it will be merged with the load.
7927    // 1. Check the alignment constraint.
7928    unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
7929        ResVT.getTypeForEVT(*DAG->getContext()));
7930
7931    if (RequiredAlignment > getAlignment())
7932      return false;
7933
7934    // 2. Check that the load is a legal operation for that type.
7935    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
7936      return false;
7937
7938    // 3. Check that we do not have a zext in the way.
7939    if (Inst->getValueType(0) != getLoadedType())
7940      return false;
7941
7942    return true;
7943  }
7944};
7945}
7946
7947/// \brief Sorts LoadedSlice according to their offset.
7948struct LoadedSliceSorter {
7949  bool operator()(const LoadedSlice &LHS, const LoadedSlice &RHS) {
7950    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
7951    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
7952  }
7953};
7954
7955/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
7956/// \p UsedBits looks like 0..0 1..1 0..0.
7957static bool areUsedBitsDense(const APInt &UsedBits) {
7958  // If all the bits are one, this is dense!
7959  if (UsedBits.isAllOnesValue())
7960    return true;
7961
7962  // Get rid of the unused bits on the right.
7963  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
7964  // Get rid of the unused bits on the left.
7965  if (NarrowedUsedBits.countLeadingZeros())
7966    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
7967  // Check that the chunk of bits is completely used.
7968  return NarrowedUsedBits.isAllOnesValue();
7969}
7970
7971/// \brief Check whether or not \p First and \p Second are next to each other
7972/// in memory. This means that there is no hole between the bits loaded
7973/// by \p First and the bits loaded by \p Second.
7974static bool areSlicesNextToEachOther(const LoadedSlice &First,
7975                                     const LoadedSlice &Second) {
7976  assert(First.Origin == Second.Origin && First.Origin &&
7977         "Unable to match different memory origins.");
7978  APInt UsedBits = First.getUsedBits();
7979  assert((UsedBits & Second.getUsedBits()) == 0 &&
7980         "Slices are not supposed to overlap.");
7981  UsedBits |= Second.getUsedBits();
7982  return areUsedBitsDense(UsedBits);
7983}
7984
7985/// \brief Adjust the \p GlobalLSCost according to the target
7986/// paring capabilities and the layout of the slices.
7987/// \pre \p GlobalLSCost should account for at least as many loads as
7988/// there is in the slices in \p LoadedSlices.
7989static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
7990                                 LoadedSlice::Cost &GlobalLSCost) {
7991  unsigned NumberOfSlices = LoadedSlices.size();
7992  // If there is less than 2 elements, no pairing is possible.
7993  if (NumberOfSlices < 2)
7994    return;
7995
7996  // Sort the slices so that elements that are likely to be next to each
7997  // other in memory are next to each other in the list.
7998  std::sort(LoadedSlices.begin(), LoadedSlices.end(), LoadedSliceSorter());
7999  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
8000  // First (resp. Second) is the first (resp. Second) potentially candidate
8001  // to be placed in a paired load.
8002  const LoadedSlice *First = NULL;
8003  const LoadedSlice *Second = NULL;
8004  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
8005                // Set the beginning of the pair.
8006                                                           First = Second) {
8007
8008    Second = &LoadedSlices[CurrSlice];
8009
8010    // If First is NULL, it means we start a new pair.
8011    // Get to the next slice.
8012    if (!First)
8013      continue;
8014
8015    EVT LoadedType = First->getLoadedType();
8016
8017    // If the types of the slices are different, we cannot pair them.
8018    if (LoadedType != Second->getLoadedType())
8019      continue;
8020
8021    // Check if the target supplies paired loads for this type.
8022    unsigned RequiredAlignment = 0;
8023    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
8024      // move to the next pair, this type is hopeless.
8025      Second = NULL;
8026      continue;
8027    }
8028    // Check if we meet the alignment requirement.
8029    if (RequiredAlignment > First->getAlignment())
8030      continue;
8031
8032    // Check that both loads are next to each other in memory.
8033    if (!areSlicesNextToEachOther(*First, *Second))
8034      continue;
8035
8036    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
8037    --GlobalLSCost.Loads;
8038    // Move to the next pair.
8039    Second = NULL;
8040  }
8041}
8042
8043/// \brief Check the profitability of all involved LoadedSlice.
8044/// Currently, it is considered profitable if there is exactly two
8045/// involved slices (1) which are (2) next to each other in memory, and
8046/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
8047///
8048/// Note: The order of the elements in \p LoadedSlices may be modified, but not
8049/// the elements themselves.
8050///
8051/// FIXME: When the cost model will be mature enough, we can relax
8052/// constraints (1) and (2).
8053static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
8054                                const APInt &UsedBits, bool ForCodeSize) {
8055  unsigned NumberOfSlices = LoadedSlices.size();
8056  if (StressLoadSlicing)
8057    return NumberOfSlices > 1;
8058
8059  // Check (1).
8060  if (NumberOfSlices != 2)
8061    return false;
8062
8063  // Check (2).
8064  if (!areUsedBitsDense(UsedBits))
8065    return false;
8066
8067  // Check (3).
8068  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
8069  // The original code has one big load.
8070  OrigCost.Loads = 1;
8071  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
8072    const LoadedSlice &LS = LoadedSlices[CurrSlice];
8073    // Accumulate the cost of all the slices.
8074    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
8075    GlobalSlicingCost += SliceCost;
8076
8077    // Account as cost in the original configuration the gain obtained
8078    // with the current slices.
8079    OrigCost.addSliceGain(LS);
8080  }
8081
8082  // If the target supports paired load, adjust the cost accordingly.
8083  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
8084  return OrigCost > GlobalSlicingCost;
8085}
8086
8087/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
8088/// operations, split it in the various pieces being extracted.
8089///
8090/// This sort of thing is introduced by SROA.
8091/// This slicing takes care not to insert overlapping loads.
8092/// \pre LI is a simple load (i.e., not an atomic or volatile load).
8093bool DAGCombiner::SliceUpLoad(SDNode *N) {
8094  if (Level < AfterLegalizeDAG)
8095    return false;
8096
8097  LoadSDNode *LD = cast<LoadSDNode>(N);
8098  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
8099      !LD->getValueType(0).isInteger())
8100    return false;
8101
8102  // Keep track of already used bits to detect overlapping values.
8103  // In that case, we will just abort the transformation.
8104  APInt UsedBits(LD->getValueSizeInBits(0), 0);
8105
8106  SmallVector<LoadedSlice, 4> LoadedSlices;
8107
8108  // Check if this load is used as several smaller chunks of bits.
8109  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
8110  // of computation for each trunc.
8111  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
8112       UI != UIEnd; ++UI) {
8113    // Skip the uses of the chain.
8114    if (UI.getUse().getResNo() != 0)
8115      continue;
8116
8117    SDNode *User = *UI;
8118    unsigned Shift = 0;
8119
8120    // Check if this is a trunc(lshr).
8121    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
8122        isa<ConstantSDNode>(User->getOperand(1))) {
8123      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
8124      User = *User->use_begin();
8125    }
8126
8127    // At this point, User is a Truncate, iff we encountered, trunc or
8128    // trunc(lshr).
8129    if (User->getOpcode() != ISD::TRUNCATE)
8130      return false;
8131
8132    // The width of the type must be a power of 2 and greater than 8-bits.
8133    // Otherwise the load cannot be represented in LLVM IR.
8134    // Moreover, if we shifted with a non 8-bits multiple, the slice
8135    // will be accross several bytes. We do not support that.
8136    unsigned Width = User->getValueSizeInBits(0);
8137    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
8138      return 0;
8139
8140    // Build the slice for this chain of computations.
8141    LoadedSlice LS(User, LD, Shift, &DAG);
8142    APInt CurrentUsedBits = LS.getUsedBits();
8143
8144    // Check if this slice overlaps with another.
8145    if ((CurrentUsedBits & UsedBits) != 0)
8146      return false;
8147    // Update the bits used globally.
8148    UsedBits |= CurrentUsedBits;
8149
8150    // Check if the new slice would be legal.
8151    if (!LS.isLegal())
8152      return false;
8153
8154    // Record the slice.
8155    LoadedSlices.push_back(LS);
8156  }
8157
8158  // Abort slicing if it does not seem to be profitable.
8159  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
8160    return false;
8161
8162  ++SlicedLoads;
8163
8164  // Rewrite each chain to use an independent load.
8165  // By construction, each chain can be represented by a unique load.
8166
8167  // Prepare the argument for the new token factor for all the slices.
8168  SmallVector<SDValue, 8> ArgChains;
8169  for (SmallVectorImpl<LoadedSlice>::const_iterator
8170           LSIt = LoadedSlices.begin(),
8171           LSItEnd = LoadedSlices.end();
8172       LSIt != LSItEnd; ++LSIt) {
8173    SDValue SliceInst = LSIt->loadSlice();
8174    CombineTo(LSIt->Inst, SliceInst, true);
8175    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
8176      SliceInst = SliceInst.getOperand(0);
8177    assert(SliceInst->getOpcode() == ISD::LOAD &&
8178           "It takes more than a zext to get to the loaded slice!!");
8179    ArgChains.push_back(SliceInst.getValue(1));
8180  }
8181
8182  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
8183                              &ArgChains[0], ArgChains.size());
8184  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
8185  return true;
8186}
8187
8188/// CheckForMaskedLoad - Check to see if V is (and load (ptr), imm), where the
8189/// load is having specific bytes cleared out.  If so, return the byte size
8190/// being masked out and the shift amount.
8191static std::pair<unsigned, unsigned>
8192CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
8193  std::pair<unsigned, unsigned> Result(0, 0);
8194
8195  // Check for the structure we're looking for.
8196  if (V->getOpcode() != ISD::AND ||
8197      !isa<ConstantSDNode>(V->getOperand(1)) ||
8198      !ISD::isNormalLoad(V->getOperand(0).getNode()))
8199    return Result;
8200
8201  // Check the chain and pointer.
8202  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
8203  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
8204
8205  // The store should be chained directly to the load or be an operand of a
8206  // tokenfactor.
8207  if (LD == Chain.getNode())
8208    ; // ok.
8209  else if (Chain->getOpcode() != ISD::TokenFactor)
8210    return Result; // Fail.
8211  else {
8212    bool isOk = false;
8213    for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
8214      if (Chain->getOperand(i).getNode() == LD) {
8215        isOk = true;
8216        break;
8217      }
8218    if (!isOk) return Result;
8219  }
8220
8221  // This only handles simple types.
8222  if (V.getValueType() != MVT::i16 &&
8223      V.getValueType() != MVT::i32 &&
8224      V.getValueType() != MVT::i64)
8225    return Result;
8226
8227  // Check the constant mask.  Invert it so that the bits being masked out are
8228  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
8229  // follow the sign bit for uniformity.
8230  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
8231  unsigned NotMaskLZ = countLeadingZeros(NotMask);
8232  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
8233  unsigned NotMaskTZ = countTrailingZeros(NotMask);
8234  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
8235  if (NotMaskLZ == 64) return Result;  // All zero mask.
8236
8237  // See if we have a continuous run of bits.  If so, we have 0*1+0*
8238  if (CountTrailingOnes_64(NotMask >> NotMaskTZ)+NotMaskTZ+NotMaskLZ != 64)
8239    return Result;
8240
8241  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
8242  if (V.getValueType() != MVT::i64 && NotMaskLZ)
8243    NotMaskLZ -= 64-V.getValueSizeInBits();
8244
8245  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
8246  switch (MaskedBytes) {
8247  case 1:
8248  case 2:
8249  case 4: break;
8250  default: return Result; // All one mask, or 5-byte mask.
8251  }
8252
8253  // Verify that the first bit starts at a multiple of mask so that the access
8254  // is aligned the same as the access width.
8255  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
8256
8257  Result.first = MaskedBytes;
8258  Result.second = NotMaskTZ/8;
8259  return Result;
8260}
8261
8262
8263/// ShrinkLoadReplaceStoreWithStore - Check to see if IVal is something that
8264/// provides a value as specified by MaskInfo.  If so, replace the specified
8265/// store with a narrower store of truncated IVal.
8266static SDNode *
8267ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
8268                                SDValue IVal, StoreSDNode *St,
8269                                DAGCombiner *DC) {
8270  unsigned NumBytes = MaskInfo.first;
8271  unsigned ByteShift = MaskInfo.second;
8272  SelectionDAG &DAG = DC->getDAG();
8273
8274  // Check to see if IVal is all zeros in the part being masked in by the 'or'
8275  // that uses this.  If not, this is not a replacement.
8276  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
8277                                  ByteShift*8, (ByteShift+NumBytes)*8);
8278  if (!DAG.MaskedValueIsZero(IVal, Mask)) return 0;
8279
8280  // Check that it is legal on the target to do this.  It is legal if the new
8281  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
8282  // legalization.
8283  MVT VT = MVT::getIntegerVT(NumBytes*8);
8284  if (!DC->isTypeLegal(VT))
8285    return 0;
8286
8287  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
8288  // shifted by ByteShift and truncated down to NumBytes.
8289  if (ByteShift)
8290    IVal = DAG.getNode(ISD::SRL, SDLoc(IVal), IVal.getValueType(), IVal,
8291                       DAG.getConstant(ByteShift*8,
8292                                    DC->getShiftAmountTy(IVal.getValueType())));
8293
8294  // Figure out the offset for the store and the alignment of the access.
8295  unsigned StOffset;
8296  unsigned NewAlign = St->getAlignment();
8297
8298  if (DAG.getTargetLoweringInfo().isLittleEndian())
8299    StOffset = ByteShift;
8300  else
8301    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
8302
8303  SDValue Ptr = St->getBasePtr();
8304  if (StOffset) {
8305    Ptr = DAG.getNode(ISD::ADD, SDLoc(IVal), Ptr.getValueType(),
8306                      Ptr, DAG.getConstant(StOffset, Ptr.getValueType()));
8307    NewAlign = MinAlign(NewAlign, StOffset);
8308  }
8309
8310  // Truncate down to the new size.
8311  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
8312
8313  ++OpsNarrowed;
8314  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
8315                      St->getPointerInfo().getWithOffset(StOffset),
8316                      false, false, NewAlign).getNode();
8317}
8318
8319
8320/// ReduceLoadOpStoreWidth - Look for sequence of load / op / store where op is
8321/// one of 'or', 'xor', and 'and' of immediates. If 'op' is only touching some
8322/// of the loaded bits, try narrowing the load and store if it would end up
8323/// being a win for performance or code size.
8324SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
8325  StoreSDNode *ST  = cast<StoreSDNode>(N);
8326  if (ST->isVolatile())
8327    return SDValue();
8328
8329  SDValue Chain = ST->getChain();
8330  SDValue Value = ST->getValue();
8331  SDValue Ptr   = ST->getBasePtr();
8332  EVT VT = Value.getValueType();
8333
8334  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
8335    return SDValue();
8336
8337  unsigned Opc = Value.getOpcode();
8338
8339  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
8340  // is a byte mask indicating a consecutive number of bytes, check to see if
8341  // Y is known to provide just those bytes.  If so, we try to replace the
8342  // load + replace + store sequence with a single (narrower) store, which makes
8343  // the load dead.
8344  if (Opc == ISD::OR) {
8345    std::pair<unsigned, unsigned> MaskedLoad;
8346    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
8347    if (MaskedLoad.first)
8348      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8349                                                  Value.getOperand(1), ST,this))
8350        return SDValue(NewST, 0);
8351
8352    // Or is commutative, so try swapping X and Y.
8353    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
8354    if (MaskedLoad.first)
8355      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
8356                                                  Value.getOperand(0), ST,this))
8357        return SDValue(NewST, 0);
8358  }
8359
8360  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
8361      Value.getOperand(1).getOpcode() != ISD::Constant)
8362    return SDValue();
8363
8364  SDValue N0 = Value.getOperand(0);
8365  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
8366      Chain == SDValue(N0.getNode(), 1)) {
8367    LoadSDNode *LD = cast<LoadSDNode>(N0);
8368    if (LD->getBasePtr() != Ptr ||
8369        LD->getPointerInfo().getAddrSpace() !=
8370        ST->getPointerInfo().getAddrSpace())
8371      return SDValue();
8372
8373    // Find the type to narrow it the load / op / store to.
8374    SDValue N1 = Value.getOperand(1);
8375    unsigned BitWidth = N1.getValueSizeInBits();
8376    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
8377    if (Opc == ISD::AND)
8378      Imm ^= APInt::getAllOnesValue(BitWidth);
8379    if (Imm == 0 || Imm.isAllOnesValue())
8380      return SDValue();
8381    unsigned ShAmt = Imm.countTrailingZeros();
8382    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
8383    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
8384    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8385    while (NewBW < BitWidth &&
8386           !(TLI.isOperationLegalOrCustom(Opc, NewVT) &&
8387             TLI.isNarrowingProfitable(VT, NewVT))) {
8388      NewBW = NextPowerOf2(NewBW);
8389      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
8390    }
8391    if (NewBW >= BitWidth)
8392      return SDValue();
8393
8394    // If the lsb changed does not start at the type bitwidth boundary,
8395    // start at the previous one.
8396    if (ShAmt % NewBW)
8397      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
8398    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
8399                                   std::min(BitWidth, ShAmt + NewBW));
8400    if ((Imm & Mask) == Imm) {
8401      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
8402      if (Opc == ISD::AND)
8403        NewImm ^= APInt::getAllOnesValue(NewBW);
8404      uint64_t PtrOff = ShAmt / 8;
8405      // For big endian targets, we need to adjust the offset to the pointer to
8406      // load the correct bytes.
8407      if (TLI.isBigEndian())
8408        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
8409
8410      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
8411      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
8412      if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
8413        return SDValue();
8414
8415      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
8416                                   Ptr.getValueType(), Ptr,
8417                                   DAG.getConstant(PtrOff, Ptr.getValueType()));
8418      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
8419                                  LD->getChain(), NewPtr,
8420                                  LD->getPointerInfo().getWithOffset(PtrOff),
8421                                  LD->isVolatile(), LD->isNonTemporal(),
8422                                  LD->isInvariant(), NewAlign,
8423                                  LD->getTBAAInfo());
8424      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
8425                                   DAG.getConstant(NewImm, NewVT));
8426      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
8427                                   NewVal, NewPtr,
8428                                   ST->getPointerInfo().getWithOffset(PtrOff),
8429                                   false, false, NewAlign);
8430
8431      AddToWorkList(NewPtr.getNode());
8432      AddToWorkList(NewLD.getNode());
8433      AddToWorkList(NewVal.getNode());
8434      WorkListRemover DeadNodes(*this);
8435      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
8436      ++OpsNarrowed;
8437      return NewST;
8438    }
8439  }
8440
8441  return SDValue();
8442}
8443
8444/// TransformFPLoadStorePair - For a given floating point load / store pair,
8445/// if the load value isn't used by any other operations, then consider
8446/// transforming the pair to integer load / store operations if the target
8447/// deems the transformation profitable.
8448SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
8449  StoreSDNode *ST  = cast<StoreSDNode>(N);
8450  SDValue Chain = ST->getChain();
8451  SDValue Value = ST->getValue();
8452  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
8453      Value.hasOneUse() &&
8454      Chain == SDValue(Value.getNode(), 1)) {
8455    LoadSDNode *LD = cast<LoadSDNode>(Value);
8456    EVT VT = LD->getMemoryVT();
8457    if (!VT.isFloatingPoint() ||
8458        VT != ST->getMemoryVT() ||
8459        LD->isNonTemporal() ||
8460        ST->isNonTemporal() ||
8461        LD->getPointerInfo().getAddrSpace() != 0 ||
8462        ST->getPointerInfo().getAddrSpace() != 0)
8463      return SDValue();
8464
8465    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8466    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
8467        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
8468        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
8469        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
8470      return SDValue();
8471
8472    unsigned LDAlign = LD->getAlignment();
8473    unsigned STAlign = ST->getAlignment();
8474    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
8475    unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
8476    if (LDAlign < ABIAlign || STAlign < ABIAlign)
8477      return SDValue();
8478
8479    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
8480                                LD->getChain(), LD->getBasePtr(),
8481                                LD->getPointerInfo(),
8482                                false, false, false, LDAlign);
8483
8484    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
8485                                 NewLD, ST->getBasePtr(),
8486                                 ST->getPointerInfo(),
8487                                 false, false, STAlign);
8488
8489    AddToWorkList(NewLD.getNode());
8490    AddToWorkList(NewST.getNode());
8491    WorkListRemover DeadNodes(*this);
8492    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
8493    ++LdStFP2Int;
8494    return NewST;
8495  }
8496
8497  return SDValue();
8498}
8499
8500/// Helper struct to parse and store a memory address as base + index + offset.
8501/// We ignore sign extensions when it is safe to do so.
8502/// The following two expressions are not equivalent. To differentiate we need
8503/// to store whether there was a sign extension involved in the index
8504/// computation.
8505///  (load (i64 add (i64 copyfromreg %c)
8506///                 (i64 signextend (add (i8 load %index)
8507///                                      (i8 1))))
8508/// vs
8509///
8510/// (load (i64 add (i64 copyfromreg %c)
8511///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
8512///                                         (i32 1)))))
8513struct BaseIndexOffset {
8514  SDValue Base;
8515  SDValue Index;
8516  int64_t Offset;
8517  bool IsIndexSignExt;
8518
8519  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
8520
8521  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
8522                  bool IsIndexSignExt) :
8523    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
8524
8525  bool equalBaseIndex(const BaseIndexOffset &Other) {
8526    return Other.Base == Base && Other.Index == Index &&
8527      Other.IsIndexSignExt == IsIndexSignExt;
8528  }
8529
8530  /// Parses tree in Ptr for base, index, offset addresses.
8531  static BaseIndexOffset match(SDValue Ptr) {
8532    bool IsIndexSignExt = false;
8533
8534    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
8535    // instruction, then it could be just the BASE or everything else we don't
8536    // know how to handle. Just use Ptr as BASE and give up.
8537    if (Ptr->getOpcode() != ISD::ADD)
8538      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8539
8540    // We know that we have at least an ADD instruction. Try to pattern match
8541    // the simple case of BASE + OFFSET.
8542    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
8543      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
8544      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
8545                              IsIndexSignExt);
8546    }
8547
8548    // Inside a loop the current BASE pointer is calculated using an ADD and a
8549    // MUL instruction. In this case Ptr is the actual BASE pointer.
8550    // (i64 add (i64 %array_ptr)
8551    //          (i64 mul (i64 %induction_var)
8552    //                   (i64 %element_size)))
8553    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
8554      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8555
8556    // Look at Base + Index + Offset cases.
8557    SDValue Base = Ptr->getOperand(0);
8558    SDValue IndexOffset = Ptr->getOperand(1);
8559
8560    // Skip signextends.
8561    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
8562      IndexOffset = IndexOffset->getOperand(0);
8563      IsIndexSignExt = true;
8564    }
8565
8566    // Either the case of Base + Index (no offset) or something else.
8567    if (IndexOffset->getOpcode() != ISD::ADD)
8568      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
8569
8570    // Now we have the case of Base + Index + offset.
8571    SDValue Index = IndexOffset->getOperand(0);
8572    SDValue Offset = IndexOffset->getOperand(1);
8573
8574    if (!isa<ConstantSDNode>(Offset))
8575      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
8576
8577    // Ignore signextends.
8578    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
8579      Index = Index->getOperand(0);
8580      IsIndexSignExt = true;
8581    } else IsIndexSignExt = false;
8582
8583    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
8584    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
8585  }
8586};
8587
8588/// Holds a pointer to an LSBaseSDNode as well as information on where it
8589/// is located in a sequence of memory operations connected by a chain.
8590struct MemOpLink {
8591  MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
8592    MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
8593  // Ptr to the mem node.
8594  LSBaseSDNode *MemNode;
8595  // Offset from the base ptr.
8596  int64_t OffsetFromBase;
8597  // What is the sequence number of this mem node.
8598  // Lowest mem operand in the DAG starts at zero.
8599  unsigned SequenceNum;
8600};
8601
8602/// Sorts store nodes in a link according to their offset from a shared
8603// base ptr.
8604struct ConsecutiveMemoryChainSorter {
8605  bool operator()(MemOpLink LHS, MemOpLink RHS) {
8606    return LHS.OffsetFromBase < RHS.OffsetFromBase;
8607  }
8608};
8609
8610bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
8611  EVT MemVT = St->getMemoryVT();
8612  int64_t ElementSizeBytes = MemVT.getSizeInBits()/8;
8613  bool NoVectors = DAG.getMachineFunction().getFunction()->getAttributes().
8614    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
8615
8616  // Don't merge vectors into wider inputs.
8617  if (MemVT.isVector() || !MemVT.isSimple())
8618    return false;
8619
8620  // Perform an early exit check. Do not bother looking at stored values that
8621  // are not constants or loads.
8622  SDValue StoredVal = St->getValue();
8623  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
8624  if (!isa<ConstantSDNode>(StoredVal) && !isa<ConstantFPSDNode>(StoredVal) &&
8625      !IsLoadSrc)
8626    return false;
8627
8628  // Only look at ends of store sequences.
8629  SDValue Chain = SDValue(St, 1);
8630  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
8631    return false;
8632
8633  // This holds the base pointer, index, and the offset in bytes from the base
8634  // pointer.
8635  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
8636
8637  // We must have a base and an offset.
8638  if (!BasePtr.Base.getNode())
8639    return false;
8640
8641  // Do not handle stores to undef base pointers.
8642  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
8643    return false;
8644
8645  // Save the LoadSDNodes that we find in the chain.
8646  // We need to make sure that these nodes do not interfere with
8647  // any of the store nodes.
8648  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
8649
8650  // Save the StoreSDNodes that we find in the chain.
8651  SmallVector<MemOpLink, 8> StoreNodes;
8652
8653  // Walk up the chain and look for nodes with offsets from the same
8654  // base pointer. Stop when reaching an instruction with a different kind
8655  // or instruction which has a different base pointer.
8656  unsigned Seq = 0;
8657  StoreSDNode *Index = St;
8658  while (Index) {
8659    // If the chain has more than one use, then we can't reorder the mem ops.
8660    if (Index != St && !SDValue(Index, 1)->hasOneUse())
8661      break;
8662
8663    // Find the base pointer and offset for this memory node.
8664    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
8665
8666    // Check that the base pointer is the same as the original one.
8667    if (!Ptr.equalBaseIndex(BasePtr))
8668      break;
8669
8670    // Check that the alignment is the same.
8671    if (Index->getAlignment() != St->getAlignment())
8672      break;
8673
8674    // The memory operands must not be volatile.
8675    if (Index->isVolatile() || Index->isIndexed())
8676      break;
8677
8678    // No truncation.
8679    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
8680      if (St->isTruncatingStore())
8681        break;
8682
8683    // The stored memory type must be the same.
8684    if (Index->getMemoryVT() != MemVT)
8685      break;
8686
8687    // We do not allow unaligned stores because we want to prevent overriding
8688    // stores.
8689    if (Index->getAlignment()*8 != MemVT.getSizeInBits())
8690      break;
8691
8692    // We found a potential memory operand to merge.
8693    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
8694
8695    // Find the next memory operand in the chain. If the next operand in the
8696    // chain is a store then move up and continue the scan with the next
8697    // memory operand. If the next operand is a load save it and use alias
8698    // information to check if it interferes with anything.
8699    SDNode *NextInChain = Index->getChain().getNode();
8700    while (1) {
8701      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
8702        // We found a store node. Use it for the next iteration.
8703        Index = STn;
8704        break;
8705      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
8706        if (Ldn->isVolatile()) {
8707          Index = NULL;
8708          break;
8709        }
8710
8711        // Save the load node for later. Continue the scan.
8712        AliasLoadNodes.push_back(Ldn);
8713        NextInChain = Ldn->getChain().getNode();
8714        continue;
8715      } else {
8716        Index = NULL;
8717        break;
8718      }
8719    }
8720  }
8721
8722  // Check if there is anything to merge.
8723  if (StoreNodes.size() < 2)
8724    return false;
8725
8726  // Sort the memory operands according to their distance from the base pointer.
8727  std::sort(StoreNodes.begin(), StoreNodes.end(),
8728            ConsecutiveMemoryChainSorter());
8729
8730  // Scan the memory operations on the chain and find the first non-consecutive
8731  // store memory address.
8732  unsigned LastConsecutiveStore = 0;
8733  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
8734  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
8735
8736    // Check that the addresses are consecutive starting from the second
8737    // element in the list of stores.
8738    if (i > 0) {
8739      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
8740      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8741        break;
8742    }
8743
8744    bool Alias = false;
8745    // Check if this store interferes with any of the loads that we found.
8746    for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
8747      if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
8748        Alias = true;
8749        break;
8750      }
8751    // We found a load that alias with this store. Stop the sequence.
8752    if (Alias)
8753      break;
8754
8755    // Mark this node as useful.
8756    LastConsecutiveStore = i;
8757  }
8758
8759  // The node with the lowest store address.
8760  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
8761
8762  // Store the constants into memory as one consecutive store.
8763  if (!IsLoadSrc) {
8764    unsigned LastLegalType = 0;
8765    unsigned LastLegalVectorType = 0;
8766    bool NonZero = false;
8767    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8768      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8769      SDValue StoredVal = St->getValue();
8770
8771      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
8772        NonZero |= !C->isNullValue();
8773      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
8774        NonZero |= !C->getConstantFPValue()->isNullValue();
8775      } else {
8776        // Non constant.
8777        break;
8778      }
8779
8780      // Find a legal type for the constant store.
8781      unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8782      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8783      if (TLI.isTypeLegal(StoreTy))
8784        LastLegalType = i+1;
8785      // Or check whether a truncstore is legal.
8786      else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8787               TargetLowering::TypePromoteInteger) {
8788        EVT LegalizedStoredValueTy =
8789          TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
8790        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy))
8791          LastLegalType = i+1;
8792      }
8793
8794      // Find a legal type for the vector store.
8795      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8796      if (TLI.isTypeLegal(Ty))
8797        LastLegalVectorType = i + 1;
8798    }
8799
8800    // We only use vectors if the constant is known to be zero and the
8801    // function is not marked with the noimplicitfloat attribute.
8802    if (NonZero || NoVectors)
8803      LastLegalVectorType = 0;
8804
8805    // Check if we found a legal integer type to store.
8806    if (LastLegalType == 0 && LastLegalVectorType == 0)
8807      return false;
8808
8809    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
8810    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
8811
8812    // Make sure we have something to merge.
8813    if (NumElem < 2)
8814      return false;
8815
8816    unsigned EarliestNodeUsed = 0;
8817    for (unsigned i=0; i < NumElem; ++i) {
8818      // Find a chain for the new wide-store operand. Notice that some
8819      // of the store nodes that we found may not be selected for inclusion
8820      // in the wide store. The chain we use needs to be the chain of the
8821      // earliest store node which is *used* and replaced by the wide store.
8822      if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
8823        EarliestNodeUsed = i;
8824    }
8825
8826    // The earliest Node in the DAG.
8827    LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
8828    SDLoc DL(StoreNodes[0].MemNode);
8829
8830    SDValue StoredVal;
8831    if (UseVector) {
8832      // Find a legal type for the vector store.
8833      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
8834      assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
8835      StoredVal = DAG.getConstant(0, Ty);
8836    } else {
8837      unsigned StoreBW = NumElem * ElementSizeBytes * 8;
8838      APInt StoreInt(StoreBW, 0);
8839
8840      // Construct a single integer constant which is made of the smaller
8841      // constant inputs.
8842      bool IsLE = TLI.isLittleEndian();
8843      for (unsigned i = 0; i < NumElem ; ++i) {
8844        unsigned Idx = IsLE ?(NumElem - 1 - i) : i;
8845        StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
8846        SDValue Val = St->getValue();
8847        StoreInt<<=ElementSizeBytes*8;
8848        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
8849          StoreInt|=C->getAPIntValue().zext(StoreBW);
8850        } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
8851          StoreInt|= C->getValueAPF().bitcastToAPInt().zext(StoreBW);
8852        } else {
8853          assert(false && "Invalid constant element type");
8854        }
8855      }
8856
8857      // Create the new Load and Store operations.
8858      EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8859      StoredVal = DAG.getConstant(StoreInt, StoreTy);
8860    }
8861
8862    SDValue NewStore = DAG.getStore(EarliestOp->getChain(), DL, StoredVal,
8863                                    FirstInChain->getBasePtr(),
8864                                    FirstInChain->getPointerInfo(),
8865                                    false, false,
8866                                    FirstInChain->getAlignment());
8867
8868    // Replace the first store with the new store
8869    CombineTo(EarliestOp, NewStore);
8870    // Erase all other stores.
8871    for (unsigned i = 0; i < NumElem ; ++i) {
8872      if (StoreNodes[i].MemNode == EarliestOp)
8873        continue;
8874      StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
8875      // ReplaceAllUsesWith will replace all uses that existed when it was
8876      // called, but graph optimizations may cause new ones to appear. For
8877      // example, the case in pr14333 looks like
8878      //
8879      //  St's chain -> St -> another store -> X
8880      //
8881      // And the only difference from St to the other store is the chain.
8882      // When we change it's chain to be St's chain they become identical,
8883      // get CSEed and the net result is that X is now a use of St.
8884      // Since we know that St is redundant, just iterate.
8885      while (!St->use_empty())
8886        DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
8887      removeFromWorkList(St);
8888      DAG.DeleteNode(St);
8889    }
8890
8891    return true;
8892  }
8893
8894  // Below we handle the case of multiple consecutive stores that
8895  // come from multiple consecutive loads. We merge them into a single
8896  // wide load and a single wide store.
8897
8898  // Look for load nodes which are used by the stored values.
8899  SmallVector<MemOpLink, 8> LoadNodes;
8900
8901  // Find acceptable loads. Loads need to have the same chain (token factor),
8902  // must not be zext, volatile, indexed, and they must be consecutive.
8903  BaseIndexOffset LdBasePtr;
8904  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
8905    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
8906    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
8907    if (!Ld) break;
8908
8909    // Loads must only have one use.
8910    if (!Ld->hasNUsesOfValue(1, 0))
8911      break;
8912
8913    // Check that the alignment is the same as the stores.
8914    if (Ld->getAlignment() != St->getAlignment())
8915      break;
8916
8917    // The memory operands must not be volatile.
8918    if (Ld->isVolatile() || Ld->isIndexed())
8919      break;
8920
8921    // We do not accept ext loads.
8922    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
8923      break;
8924
8925    // The stored memory type must be the same.
8926    if (Ld->getMemoryVT() != MemVT)
8927      break;
8928
8929    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
8930    // If this is not the first ptr that we check.
8931    if (LdBasePtr.Base.getNode()) {
8932      // The base ptr must be the same.
8933      if (!LdPtr.equalBaseIndex(LdBasePtr))
8934        break;
8935    } else {
8936      // Check that all other base pointers are the same as this one.
8937      LdBasePtr = LdPtr;
8938    }
8939
8940    // We found a potential memory operand to merge.
8941    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
8942  }
8943
8944  if (LoadNodes.size() < 2)
8945    return false;
8946
8947  // Scan the memory operations on the chain and find the first non-consecutive
8948  // load memory address. These variables hold the index in the store node
8949  // array.
8950  unsigned LastConsecutiveLoad = 0;
8951  // This variable refers to the size and not index in the array.
8952  unsigned LastLegalVectorType = 0;
8953  unsigned LastLegalIntegerType = 0;
8954  StartAddress = LoadNodes[0].OffsetFromBase;
8955  SDValue FirstChain = LoadNodes[0].MemNode->getChain();
8956  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
8957    // All loads much share the same chain.
8958    if (LoadNodes[i].MemNode->getChain() != FirstChain)
8959      break;
8960
8961    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
8962    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
8963      break;
8964    LastConsecutiveLoad = i;
8965
8966    // Find a legal type for the vector store.
8967    EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
8968    if (TLI.isTypeLegal(StoreTy))
8969      LastLegalVectorType = i + 1;
8970
8971    // Find a legal type for the integer store.
8972    unsigned StoreBW = (i+1) * ElementSizeBytes * 8;
8973    StoreTy = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
8974    if (TLI.isTypeLegal(StoreTy))
8975      LastLegalIntegerType = i + 1;
8976    // Or check whether a truncstore and extload is legal.
8977    else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
8978             TargetLowering::TypePromoteInteger) {
8979      EVT LegalizedStoredValueTy =
8980        TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
8981      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
8982          TLI.isLoadExtLegal(ISD::ZEXTLOAD, StoreTy) &&
8983          TLI.isLoadExtLegal(ISD::SEXTLOAD, StoreTy) &&
8984          TLI.isLoadExtLegal(ISD::EXTLOAD, StoreTy))
8985        LastLegalIntegerType = i+1;
8986    }
8987  }
8988
8989  // Only use vector types if the vector type is larger than the integer type.
8990  // If they are the same, use integers.
8991  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
8992  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
8993
8994  // We add +1 here because the LastXXX variables refer to location while
8995  // the NumElem refers to array/index size.
8996  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
8997  NumElem = std::min(LastLegalType, NumElem);
8998
8999  if (NumElem < 2)
9000    return false;
9001
9002  // The earliest Node in the DAG.
9003  unsigned EarliestNodeUsed = 0;
9004  LSBaseSDNode *EarliestOp = StoreNodes[EarliestNodeUsed].MemNode;
9005  for (unsigned i=1; i<NumElem; ++i) {
9006    // Find a chain for the new wide-store operand. Notice that some
9007    // of the store nodes that we found may not be selected for inclusion
9008    // in the wide store. The chain we use needs to be the chain of the
9009    // earliest store node which is *used* and replaced by the wide store.
9010    if (StoreNodes[i].SequenceNum > StoreNodes[EarliestNodeUsed].SequenceNum)
9011      EarliestNodeUsed = i;
9012  }
9013
9014  // Find if it is better to use vectors or integers to load and store
9015  // to memory.
9016  EVT JointMemOpVT;
9017  if (UseVectorTy) {
9018    JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
9019  } else {
9020    unsigned StoreBW = NumElem * ElementSizeBytes * 8;
9021    JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), StoreBW);
9022  }
9023
9024  SDLoc LoadDL(LoadNodes[0].MemNode);
9025  SDLoc StoreDL(StoreNodes[0].MemNode);
9026
9027  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
9028  SDValue NewLoad = DAG.getLoad(JointMemOpVT, LoadDL,
9029                                FirstLoad->getChain(),
9030                                FirstLoad->getBasePtr(),
9031                                FirstLoad->getPointerInfo(),
9032                                false, false, false,
9033                                FirstLoad->getAlignment());
9034
9035  SDValue NewStore = DAG.getStore(EarliestOp->getChain(), StoreDL, NewLoad,
9036                                  FirstInChain->getBasePtr(),
9037                                  FirstInChain->getPointerInfo(), false, false,
9038                                  FirstInChain->getAlignment());
9039
9040  // Replace one of the loads with the new load.
9041  LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
9042  DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
9043                                SDValue(NewLoad.getNode(), 1));
9044
9045  // Remove the rest of the load chains.
9046  for (unsigned i = 1; i < NumElem ; ++i) {
9047    // Replace all chain users of the old load nodes with the chain of the new
9048    // load node.
9049    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
9050    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
9051  }
9052
9053  // Replace the first store with the new store.
9054  CombineTo(EarliestOp, NewStore);
9055  // Erase all other stores.
9056  for (unsigned i = 0; i < NumElem ; ++i) {
9057    // Remove all Store nodes.
9058    if (StoreNodes[i].MemNode == EarliestOp)
9059      continue;
9060    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
9061    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
9062    removeFromWorkList(St);
9063    DAG.DeleteNode(St);
9064  }
9065
9066  return true;
9067}
9068
9069SDValue DAGCombiner::visitSTORE(SDNode *N) {
9070  StoreSDNode *ST  = cast<StoreSDNode>(N);
9071  SDValue Chain = ST->getChain();
9072  SDValue Value = ST->getValue();
9073  SDValue Ptr   = ST->getBasePtr();
9074
9075  // If this is a store of a bit convert, store the input value if the
9076  // resultant store does not need a higher alignment than the original.
9077  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
9078      ST->isUnindexed()) {
9079    unsigned OrigAlign = ST->getAlignment();
9080    EVT SVT = Value.getOperand(0).getValueType();
9081    unsigned Align = TLI.getDataLayout()->
9082      getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
9083    if (Align <= OrigAlign &&
9084        ((!LegalOperations && !ST->isVolatile()) ||
9085         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
9086      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
9087                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
9088                          ST->isNonTemporal(), OrigAlign,
9089                          ST->getTBAAInfo());
9090  }
9091
9092  // Turn 'store undef, Ptr' -> nothing.
9093  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
9094    return Chain;
9095
9096  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
9097  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
9098    // NOTE: If the original store is volatile, this transform must not increase
9099    // the number of stores.  For example, on x86-32 an f64 can be stored in one
9100    // processor operation but an i64 (which is not legal) requires two.  So the
9101    // transform should not be done in this case.
9102    if (Value.getOpcode() != ISD::TargetConstantFP) {
9103      SDValue Tmp;
9104      switch (CFP->getSimpleValueType(0).SimpleTy) {
9105      default: llvm_unreachable("Unknown FP type");
9106      case MVT::f16:    // We don't do this for these yet.
9107      case MVT::f80:
9108      case MVT::f128:
9109      case MVT::ppcf128:
9110        break;
9111      case MVT::f32:
9112        if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
9113            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9114          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
9115                              bitcastToAPInt().getZExtValue(), MVT::i32);
9116          return DAG.getStore(Chain, SDLoc(N), Tmp,
9117                              Ptr, ST->getMemOperand());
9118        }
9119        break;
9120      case MVT::f64:
9121        if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
9122             !ST->isVolatile()) ||
9123            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
9124          Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
9125                                getZExtValue(), MVT::i64);
9126          return DAG.getStore(Chain, SDLoc(N), Tmp,
9127                              Ptr, ST->getMemOperand());
9128        }
9129
9130        if (!ST->isVolatile() &&
9131            TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
9132          // Many FP stores are not made apparent until after legalize, e.g. for
9133          // argument passing.  Since this is so common, custom legalize the
9134          // 64-bit integer store into two 32-bit stores.
9135          uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
9136          SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
9137          SDValue Hi = DAG.getConstant(Val >> 32, MVT::i32);
9138          if (TLI.isBigEndian()) std::swap(Lo, Hi);
9139
9140          unsigned Alignment = ST->getAlignment();
9141          bool isVolatile = ST->isVolatile();
9142          bool isNonTemporal = ST->isNonTemporal();
9143          const MDNode *TBAAInfo = ST->getTBAAInfo();
9144
9145          SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
9146                                     Ptr, ST->getPointerInfo(),
9147                                     isVolatile, isNonTemporal,
9148                                     ST->getAlignment(), TBAAInfo);
9149          Ptr = DAG.getNode(ISD::ADD, SDLoc(N), Ptr.getValueType(), Ptr,
9150                            DAG.getConstant(4, Ptr.getValueType()));
9151          Alignment = MinAlign(Alignment, 4U);
9152          SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
9153                                     Ptr, ST->getPointerInfo().getWithOffset(4),
9154                                     isVolatile, isNonTemporal,
9155                                     Alignment, TBAAInfo);
9156          return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
9157                             St0, St1);
9158        }
9159
9160        break;
9161      }
9162    }
9163  }
9164
9165  // Try to infer better alignment information than the store already has.
9166  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
9167    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9168      if (Align > ST->getAlignment())
9169        return DAG.getTruncStore(Chain, SDLoc(N), Value,
9170                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
9171                                 ST->isVolatile(), ST->isNonTemporal(), Align,
9172                                 ST->getTBAAInfo());
9173    }
9174  }
9175
9176  // Try transforming a pair floating point load / store ops to integer
9177  // load / store ops.
9178  SDValue NewST = TransformFPLoadStorePair(N);
9179  if (NewST.getNode())
9180    return NewST;
9181
9182  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA :
9183    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
9184  if (UseAA) {
9185    // Walk up chain skipping non-aliasing memory nodes.
9186    SDValue BetterChain = FindBetterChain(N, Chain);
9187
9188    // If there is a better chain.
9189    if (Chain != BetterChain) {
9190      SDValue ReplStore;
9191
9192      // Replace the chain to avoid dependency.
9193      if (ST->isTruncatingStore()) {
9194        ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
9195                                      ST->getMemoryVT(), ST->getMemOperand());
9196      } else {
9197        ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
9198                                 ST->getMemOperand());
9199      }
9200
9201      // Create token to keep both nodes around.
9202      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
9203                                  MVT::Other, Chain, ReplStore);
9204
9205      // Make sure the new and old chains are cleaned up.
9206      AddToWorkList(Token.getNode());
9207
9208      // Don't add users to work list.
9209      return CombineTo(N, Token, false);
9210    }
9211  }
9212
9213  // Try transforming N to an indexed store.
9214  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
9215    return SDValue(N, 0);
9216
9217  // FIXME: is there such a thing as a truncating indexed store?
9218  if (ST->isTruncatingStore() && ST->isUnindexed() &&
9219      Value.getValueType().isInteger()) {
9220    // See if we can simplify the input to this truncstore with knowledge that
9221    // only the low bits are being used.  For example:
9222    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
9223    SDValue Shorter =
9224      GetDemandedBits(Value,
9225                      APInt::getLowBitsSet(
9226                        Value.getValueType().getScalarType().getSizeInBits(),
9227                        ST->getMemoryVT().getScalarType().getSizeInBits()));
9228    AddToWorkList(Value.getNode());
9229    if (Shorter.getNode())
9230      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
9231                               Ptr, ST->getMemoryVT(), ST->getMemOperand());
9232
9233    // Otherwise, see if we can simplify the operation with
9234    // SimplifyDemandedBits, which only works if the value has a single use.
9235    if (SimplifyDemandedBits(Value,
9236                        APInt::getLowBitsSet(
9237                          Value.getValueType().getScalarType().getSizeInBits(),
9238                          ST->getMemoryVT().getScalarType().getSizeInBits())))
9239      return SDValue(N, 0);
9240  }
9241
9242  // If this is a load followed by a store to the same location, then the store
9243  // is dead/noop.
9244  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
9245    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
9246        ST->isUnindexed() && !ST->isVolatile() &&
9247        // There can't be any side effects between the load and store, such as
9248        // a call or store.
9249        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
9250      // The store is dead, remove it.
9251      return Chain;
9252    }
9253  }
9254
9255  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
9256  // truncating store.  We can do this even if this is already a truncstore.
9257  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
9258      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
9259      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
9260                            ST->getMemoryVT())) {
9261    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
9262                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
9263  }
9264
9265  // Only perform this optimization before the types are legal, because we
9266  // don't want to perform this optimization on every DAGCombine invocation.
9267  if (!LegalTypes) {
9268    bool EverChanged = false;
9269
9270    do {
9271      // There can be multiple store sequences on the same chain.
9272      // Keep trying to merge store sequences until we are unable to do so
9273      // or until we merge the last store on the chain.
9274      bool Changed = MergeConsecutiveStores(ST);
9275      EverChanged |= Changed;
9276      if (!Changed) break;
9277    } while (ST->getOpcode() != ISD::DELETED_NODE);
9278
9279    if (EverChanged)
9280      return SDValue(N, 0);
9281  }
9282
9283  return ReduceLoadOpStoreWidth(N);
9284}
9285
9286SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
9287  SDValue InVec = N->getOperand(0);
9288  SDValue InVal = N->getOperand(1);
9289  SDValue EltNo = N->getOperand(2);
9290  SDLoc dl(N);
9291
9292  // If the inserted element is an UNDEF, just use the input vector.
9293  if (InVal.getOpcode() == ISD::UNDEF)
9294    return InVec;
9295
9296  EVT VT = InVec.getValueType();
9297
9298  // If we can't generate a legal BUILD_VECTOR, exit
9299  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
9300    return SDValue();
9301
9302  // Check that we know which element is being inserted
9303  if (!isa<ConstantSDNode>(EltNo))
9304    return SDValue();
9305  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9306
9307  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
9308  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
9309  // vector elements.
9310  SmallVector<SDValue, 8> Ops;
9311  // Do not combine these two vectors if the output vector will not replace
9312  // the input vector.
9313  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
9314    Ops.append(InVec.getNode()->op_begin(),
9315               InVec.getNode()->op_end());
9316  } else if (InVec.getOpcode() == ISD::UNDEF) {
9317    unsigned NElts = VT.getVectorNumElements();
9318    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
9319  } else {
9320    return SDValue();
9321  }
9322
9323  // Insert the element
9324  if (Elt < Ops.size()) {
9325    // All the operands of BUILD_VECTOR must have the same type;
9326    // we enforce that here.
9327    EVT OpVT = Ops[0].getValueType();
9328    if (InVal.getValueType() != OpVT)
9329      InVal = OpVT.bitsGT(InVal.getValueType()) ?
9330                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
9331                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
9332    Ops[Elt] = InVal;
9333  }
9334
9335  // Return the new vector
9336  return DAG.getNode(ISD::BUILD_VECTOR, dl,
9337                     VT, &Ops[0], Ops.size());
9338}
9339
9340SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
9341  // (vextract (scalar_to_vector val, 0) -> val
9342  SDValue InVec = N->getOperand(0);
9343  EVT VT = InVec.getValueType();
9344  EVT NVT = N->getValueType(0);
9345
9346  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
9347    // Check if the result type doesn't match the inserted element type. A
9348    // SCALAR_TO_VECTOR may truncate the inserted element and the
9349    // EXTRACT_VECTOR_ELT may widen the extracted vector.
9350    SDValue InOp = InVec.getOperand(0);
9351    if (InOp.getValueType() != NVT) {
9352      assert(InOp.getValueType().isInteger() && NVT.isInteger());
9353      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
9354    }
9355    return InOp;
9356  }
9357
9358  SDValue EltNo = N->getOperand(1);
9359  bool ConstEltNo = isa<ConstantSDNode>(EltNo);
9360
9361  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
9362  // We only perform this optimization before the op legalization phase because
9363  // we may introduce new vector instructions which are not backed by TD
9364  // patterns. For example on AVX, extracting elements from a wide vector
9365  // without using extract_subvector.
9366  if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
9367      && ConstEltNo && !LegalOperations) {
9368    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9369    int NumElem = VT.getVectorNumElements();
9370    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
9371    // Find the new index to extract from.
9372    int OrigElt = SVOp->getMaskElt(Elt);
9373
9374    // Extracting an undef index is undef.
9375    if (OrigElt == -1)
9376      return DAG.getUNDEF(NVT);
9377
9378    // Select the right vector half to extract from.
9379    if (OrigElt < NumElem) {
9380      InVec = InVec->getOperand(0);
9381    } else {
9382      InVec = InVec->getOperand(1);
9383      OrigElt -= NumElem;
9384    }
9385
9386    EVT IndexTy = TLI.getVectorIdxTy();
9387    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT,
9388                       InVec, DAG.getConstant(OrigElt, IndexTy));
9389  }
9390
9391  // Perform only after legalization to ensure build_vector / vector_shuffle
9392  // optimizations have already been done.
9393  if (!LegalOperations) return SDValue();
9394
9395  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
9396  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
9397  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
9398
9399  if (ConstEltNo) {
9400    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
9401    bool NewLoad = false;
9402    bool BCNumEltsChanged = false;
9403    EVT ExtVT = VT.getVectorElementType();
9404    EVT LVT = ExtVT;
9405
9406    // If the result of load has to be truncated, then it's not necessarily
9407    // profitable.
9408    if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
9409      return SDValue();
9410
9411    if (InVec.getOpcode() == ISD::BITCAST) {
9412      // Don't duplicate a load with other uses.
9413      if (!InVec.hasOneUse())
9414        return SDValue();
9415
9416      EVT BCVT = InVec.getOperand(0).getValueType();
9417      if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
9418        return SDValue();
9419      if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
9420        BCNumEltsChanged = true;
9421      InVec = InVec.getOperand(0);
9422      ExtVT = BCVT.getVectorElementType();
9423      NewLoad = true;
9424    }
9425
9426    LoadSDNode *LN0 = NULL;
9427    const ShuffleVectorSDNode *SVN = NULL;
9428    if (ISD::isNormalLoad(InVec.getNode())) {
9429      LN0 = cast<LoadSDNode>(InVec);
9430    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
9431               InVec.getOperand(0).getValueType() == ExtVT &&
9432               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
9433      // Don't duplicate a load with other uses.
9434      if (!InVec.hasOneUse())
9435        return SDValue();
9436
9437      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
9438    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
9439      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
9440      // =>
9441      // (load $addr+1*size)
9442
9443      // Don't duplicate a load with other uses.
9444      if (!InVec.hasOneUse())
9445        return SDValue();
9446
9447      // If the bit convert changed the number of elements, it is unsafe
9448      // to examine the mask.
9449      if (BCNumEltsChanged)
9450        return SDValue();
9451
9452      // Select the input vector, guarding against out of range extract vector.
9453      unsigned NumElems = VT.getVectorNumElements();
9454      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
9455      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
9456
9457      if (InVec.getOpcode() == ISD::BITCAST) {
9458        // Don't duplicate a load with other uses.
9459        if (!InVec.hasOneUse())
9460          return SDValue();
9461
9462        InVec = InVec.getOperand(0);
9463      }
9464      if (ISD::isNormalLoad(InVec.getNode())) {
9465        LN0 = cast<LoadSDNode>(InVec);
9466        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
9467      }
9468    }
9469
9470    // Make sure we found a non-volatile load and the extractelement is
9471    // the only use.
9472    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
9473      return SDValue();
9474
9475    // If Idx was -1 above, Elt is going to be -1, so just return undef.
9476    if (Elt == -1)
9477      return DAG.getUNDEF(LVT);
9478
9479    unsigned Align = LN0->getAlignment();
9480    if (NewLoad) {
9481      // Check the resultant load doesn't need a higher alignment than the
9482      // original load.
9483      unsigned NewAlign =
9484        TLI.getDataLayout()
9485            ->getABITypeAlignment(LVT.getTypeForEVT(*DAG.getContext()));
9486
9487      if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, LVT))
9488        return SDValue();
9489
9490      Align = NewAlign;
9491    }
9492
9493    SDValue NewPtr = LN0->getBasePtr();
9494    unsigned PtrOff = 0;
9495
9496    if (Elt) {
9497      PtrOff = LVT.getSizeInBits() * Elt / 8;
9498      EVT PtrType = NewPtr.getValueType();
9499      if (TLI.isBigEndian())
9500        PtrOff = VT.getSizeInBits() / 8 - PtrOff;
9501      NewPtr = DAG.getNode(ISD::ADD, SDLoc(N), PtrType, NewPtr,
9502                           DAG.getConstant(PtrOff, PtrType));
9503    }
9504
9505    // The replacement we need to do here is a little tricky: we need to
9506    // replace an extractelement of a load with a load.
9507    // Use ReplaceAllUsesOfValuesWith to do the replacement.
9508    // Note that this replacement assumes that the extractvalue is the only
9509    // use of the load; that's okay because we don't want to perform this
9510    // transformation in other cases anyway.
9511    SDValue Load;
9512    SDValue Chain;
9513    if (NVT.bitsGT(LVT)) {
9514      // If the result type of vextract is wider than the load, then issue an
9515      // extending load instead.
9516      ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, LVT)
9517        ? ISD::ZEXTLOAD : ISD::EXTLOAD;
9518      Load = DAG.getExtLoad(ExtType, SDLoc(N), NVT, LN0->getChain(),
9519                            NewPtr, LN0->getPointerInfo().getWithOffset(PtrOff),
9520                            LVT, LN0->isVolatile(), LN0->isNonTemporal(),
9521                            Align, LN0->getTBAAInfo());
9522      Chain = Load.getValue(1);
9523    } else {
9524      Load = DAG.getLoad(LVT, SDLoc(N), LN0->getChain(), NewPtr,
9525                         LN0->getPointerInfo().getWithOffset(PtrOff),
9526                         LN0->isVolatile(), LN0->isNonTemporal(),
9527                         LN0->isInvariant(), Align, LN0->getTBAAInfo());
9528      Chain = Load.getValue(1);
9529      if (NVT.bitsLT(LVT))
9530        Load = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NVT, Load);
9531      else
9532        Load = DAG.getNode(ISD::BITCAST, SDLoc(N), NVT, Load);
9533    }
9534    WorkListRemover DeadNodes(*this);
9535    SDValue From[] = { SDValue(N, 0), SDValue(LN0,1) };
9536    SDValue To[] = { Load, Chain };
9537    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9538    // Since we're explcitly calling ReplaceAllUses, add the new node to the
9539    // worklist explicitly as well.
9540    AddToWorkList(Load.getNode());
9541    AddUsersToWorkList(Load.getNode()); // Add users too
9542    // Make sure to revisit this node to clean it up; it will usually be dead.
9543    AddToWorkList(N);
9544    return SDValue(N, 0);
9545  }
9546
9547  return SDValue();
9548}
9549
9550// Simplify (build_vec (ext )) to (bitcast (build_vec ))
9551SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
9552  // We perform this optimization post type-legalization because
9553  // the type-legalizer often scalarizes integer-promoted vectors.
9554  // Performing this optimization before may create bit-casts which
9555  // will be type-legalized to complex code sequences.
9556  // We perform this optimization only before the operation legalizer because we
9557  // may introduce illegal operations.
9558  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
9559    return SDValue();
9560
9561  unsigned NumInScalars = N->getNumOperands();
9562  SDLoc dl(N);
9563  EVT VT = N->getValueType(0);
9564
9565  // Check to see if this is a BUILD_VECTOR of a bunch of values
9566  // which come from any_extend or zero_extend nodes. If so, we can create
9567  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
9568  // optimizations. We do not handle sign-extend because we can't fill the sign
9569  // using shuffles.
9570  EVT SourceType = MVT::Other;
9571  bool AllAnyExt = true;
9572
9573  for (unsigned i = 0; i != NumInScalars; ++i) {
9574    SDValue In = N->getOperand(i);
9575    // Ignore undef inputs.
9576    if (In.getOpcode() == ISD::UNDEF) continue;
9577
9578    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
9579    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
9580
9581    // Abort if the element is not an extension.
9582    if (!ZeroExt && !AnyExt) {
9583      SourceType = MVT::Other;
9584      break;
9585    }
9586
9587    // The input is a ZeroExt or AnyExt. Check the original type.
9588    EVT InTy = In.getOperand(0).getValueType();
9589
9590    // Check that all of the widened source types are the same.
9591    if (SourceType == MVT::Other)
9592      // First time.
9593      SourceType = InTy;
9594    else if (InTy != SourceType) {
9595      // Multiple income types. Abort.
9596      SourceType = MVT::Other;
9597      break;
9598    }
9599
9600    // Check if all of the extends are ANY_EXTENDs.
9601    AllAnyExt &= AnyExt;
9602  }
9603
9604  // In order to have valid types, all of the inputs must be extended from the
9605  // same source type and all of the inputs must be any or zero extend.
9606  // Scalar sizes must be a power of two.
9607  EVT OutScalarTy = VT.getScalarType();
9608  bool ValidTypes = SourceType != MVT::Other &&
9609                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
9610                 isPowerOf2_32(SourceType.getSizeInBits());
9611
9612  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
9613  // turn into a single shuffle instruction.
9614  if (!ValidTypes)
9615    return SDValue();
9616
9617  bool isLE = TLI.isLittleEndian();
9618  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
9619  assert(ElemRatio > 1 && "Invalid element size ratio");
9620  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
9621                               DAG.getConstant(0, SourceType);
9622
9623  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
9624  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
9625
9626  // Populate the new build_vector
9627  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9628    SDValue Cast = N->getOperand(i);
9629    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
9630            Cast.getOpcode() == ISD::ZERO_EXTEND ||
9631            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
9632    SDValue In;
9633    if (Cast.getOpcode() == ISD::UNDEF)
9634      In = DAG.getUNDEF(SourceType);
9635    else
9636      In = Cast->getOperand(0);
9637    unsigned Index = isLE ? (i * ElemRatio) :
9638                            (i * ElemRatio + (ElemRatio - 1));
9639
9640    assert(Index < Ops.size() && "Invalid index");
9641    Ops[Index] = In;
9642  }
9643
9644  // The type of the new BUILD_VECTOR node.
9645  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
9646  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
9647         "Invalid vector size");
9648  // Check if the new vector type is legal.
9649  if (!isTypeLegal(VecVT)) return SDValue();
9650
9651  // Make the new BUILD_VECTOR.
9652  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], Ops.size());
9653
9654  // The new BUILD_VECTOR node has the potential to be further optimized.
9655  AddToWorkList(BV.getNode());
9656  // Bitcast to the desired type.
9657  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9658}
9659
9660SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
9661  EVT VT = N->getValueType(0);
9662
9663  unsigned NumInScalars = N->getNumOperands();
9664  SDLoc dl(N);
9665
9666  EVT SrcVT = MVT::Other;
9667  unsigned Opcode = ISD::DELETED_NODE;
9668  unsigned NumDefs = 0;
9669
9670  for (unsigned i = 0; i != NumInScalars; ++i) {
9671    SDValue In = N->getOperand(i);
9672    unsigned Opc = In.getOpcode();
9673
9674    if (Opc == ISD::UNDEF)
9675      continue;
9676
9677    // If all scalar values are floats and converted from integers.
9678    if (Opcode == ISD::DELETED_NODE &&
9679        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
9680      Opcode = Opc;
9681    }
9682
9683    if (Opc != Opcode)
9684      return SDValue();
9685
9686    EVT InVT = In.getOperand(0).getValueType();
9687
9688    // If all scalar values are typed differently, bail out. It's chosen to
9689    // simplify BUILD_VECTOR of integer types.
9690    if (SrcVT == MVT::Other)
9691      SrcVT = InVT;
9692    if (SrcVT != InVT)
9693      return SDValue();
9694    NumDefs++;
9695  }
9696
9697  // If the vector has just one element defined, it's not worth to fold it into
9698  // a vectorized one.
9699  if (NumDefs < 2)
9700    return SDValue();
9701
9702  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
9703         && "Should only handle conversion from integer to float.");
9704  assert(SrcVT != MVT::Other && "Cannot determine source type!");
9705
9706  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
9707
9708  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
9709    return SDValue();
9710
9711  SmallVector<SDValue, 8> Opnds;
9712  for (unsigned i = 0; i != NumInScalars; ++i) {
9713    SDValue In = N->getOperand(i);
9714
9715    if (In.getOpcode() == ISD::UNDEF)
9716      Opnds.push_back(DAG.getUNDEF(SrcVT));
9717    else
9718      Opnds.push_back(In.getOperand(0));
9719  }
9720  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT,
9721                           &Opnds[0], Opnds.size());
9722  AddToWorkList(BV.getNode());
9723
9724  return DAG.getNode(Opcode, dl, VT, BV);
9725}
9726
9727SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
9728  unsigned NumInScalars = N->getNumOperands();
9729  SDLoc dl(N);
9730  EVT VT = N->getValueType(0);
9731
9732  // A vector built entirely of undefs is undef.
9733  if (ISD::allOperandsUndef(N))
9734    return DAG.getUNDEF(VT);
9735
9736  SDValue V = reduceBuildVecExtToExtBuildVec(N);
9737  if (V.getNode())
9738    return V;
9739
9740  V = reduceBuildVecConvertToConvertBuildVec(N);
9741  if (V.getNode())
9742    return V;
9743
9744  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
9745  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
9746  // at most two distinct vectors, turn this into a shuffle node.
9747
9748  // May only combine to shuffle after legalize if shuffle is legal.
9749  if (LegalOperations &&
9750      !TLI.isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))
9751    return SDValue();
9752
9753  SDValue VecIn1, VecIn2;
9754  for (unsigned i = 0; i != NumInScalars; ++i) {
9755    // Ignore undef inputs.
9756    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
9757
9758    // If this input is something other than a EXTRACT_VECTOR_ELT with a
9759    // constant index, bail out.
9760    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9761        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
9762      VecIn1 = VecIn2 = SDValue(0, 0);
9763      break;
9764    }
9765
9766    // We allow up to two distinct input vectors.
9767    SDValue ExtractedFromVec = N->getOperand(i).getOperand(0);
9768    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
9769      continue;
9770
9771    if (VecIn1.getNode() == 0) {
9772      VecIn1 = ExtractedFromVec;
9773    } else if (VecIn2.getNode() == 0) {
9774      VecIn2 = ExtractedFromVec;
9775    } else {
9776      // Too many inputs.
9777      VecIn1 = VecIn2 = SDValue(0, 0);
9778      break;
9779    }
9780  }
9781
9782    // If everything is good, we can make a shuffle operation.
9783  if (VecIn1.getNode()) {
9784    SmallVector<int, 8> Mask;
9785    for (unsigned i = 0; i != NumInScalars; ++i) {
9786      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
9787        Mask.push_back(-1);
9788        continue;
9789      }
9790
9791      // If extracting from the first vector, just use the index directly.
9792      SDValue Extract = N->getOperand(i);
9793      SDValue ExtVal = Extract.getOperand(1);
9794      if (Extract.getOperand(0) == VecIn1) {
9795        unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9796        if (ExtIndex > VT.getVectorNumElements())
9797          return SDValue();
9798
9799        Mask.push_back(ExtIndex);
9800        continue;
9801      }
9802
9803      // Otherwise, use InIdx + VecSize
9804      unsigned Idx = cast<ConstantSDNode>(ExtVal)->getZExtValue();
9805      Mask.push_back(Idx+NumInScalars);
9806    }
9807
9808    // We can't generate a shuffle node with mismatched input and output types.
9809    // Attempt to transform a single input vector to the correct type.
9810    if ((VT != VecIn1.getValueType())) {
9811      // We don't support shuffeling between TWO values of different types.
9812      if (VecIn2.getNode() != 0)
9813        return SDValue();
9814
9815      // We only support widening of vectors which are half the size of the
9816      // output registers. For example XMM->YMM widening on X86 with AVX.
9817      if (VecIn1.getValueType().getSizeInBits()*2 != VT.getSizeInBits())
9818        return SDValue();
9819
9820      // If the input vector type has a different base type to the output
9821      // vector type, bail out.
9822      if (VecIn1.getValueType().getVectorElementType() !=
9823          VT.getVectorElementType())
9824        return SDValue();
9825
9826      // Widen the input vector by adding undef values.
9827      VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9828                           VecIn1, DAG.getUNDEF(VecIn1.getValueType()));
9829    }
9830
9831    // If VecIn2 is unused then change it to undef.
9832    VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
9833
9834    // Check that we were able to transform all incoming values to the same
9835    // type.
9836    if (VecIn2.getValueType() != VecIn1.getValueType() ||
9837        VecIn1.getValueType() != VT)
9838          return SDValue();
9839
9840    // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
9841    if (!isTypeLegal(VT))
9842      return SDValue();
9843
9844    // Return the new VECTOR_SHUFFLE node.
9845    SDValue Ops[2];
9846    Ops[0] = VecIn1;
9847    Ops[1] = VecIn2;
9848    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
9849  }
9850
9851  return SDValue();
9852}
9853
9854SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
9855  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
9856  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
9857  // inputs come from at most two distinct vectors, turn this into a shuffle
9858  // node.
9859
9860  // If we only have one input vector, we don't need to do any concatenation.
9861  if (N->getNumOperands() == 1)
9862    return N->getOperand(0);
9863
9864  // Check if all of the operands are undefs.
9865  EVT VT = N->getValueType(0);
9866  if (ISD::allOperandsUndef(N))
9867    return DAG.getUNDEF(VT);
9868
9869  // Optimize concat_vectors where one of the vectors is undef.
9870  if (N->getNumOperands() == 2 &&
9871      N->getOperand(1)->getOpcode() == ISD::UNDEF) {
9872    SDValue In = N->getOperand(0);
9873    assert(In->getValueType(0).isVector() && "Must concat vectors");
9874
9875    // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
9876    if (In->getOpcode() == ISD::BITCAST &&
9877        !In->getOperand(0)->getValueType(0).isVector()) {
9878      SDValue Scalar = In->getOperand(0);
9879      EVT SclTy = Scalar->getValueType(0);
9880
9881      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
9882        return SDValue();
9883
9884      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
9885                                 VT.getSizeInBits() / SclTy.getSizeInBits());
9886      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
9887        return SDValue();
9888
9889      SDLoc dl = SDLoc(N);
9890      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
9891      return DAG.getNode(ISD::BITCAST, dl, VT, Res);
9892    }
9893  }
9894
9895  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
9896  // nodes often generate nop CONCAT_VECTOR nodes.
9897  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
9898  // place the incoming vectors at the exact same location.
9899  SDValue SingleSource = SDValue();
9900  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
9901
9902  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9903    SDValue Op = N->getOperand(i);
9904
9905    if (Op.getOpcode() == ISD::UNDEF)
9906      continue;
9907
9908    // Check if this is the identity extract:
9909    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
9910      return SDValue();
9911
9912    // Find the single incoming vector for the extract_subvector.
9913    if (SingleSource.getNode()) {
9914      if (Op.getOperand(0) != SingleSource)
9915        return SDValue();
9916    } else {
9917      SingleSource = Op.getOperand(0);
9918
9919      // Check the source type is the same as the type of the result.
9920      // If not, this concat may extend the vector, so we can not
9921      // optimize it away.
9922      if (SingleSource.getValueType() != N->getValueType(0))
9923        return SDValue();
9924    }
9925
9926    unsigned IdentityIndex = i * PartNumElem;
9927    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9928    // The extract index must be constant.
9929    if (!CS)
9930      return SDValue();
9931
9932    // Check that we are reading from the identity index.
9933    if (CS->getZExtValue() != IdentityIndex)
9934      return SDValue();
9935  }
9936
9937  if (SingleSource.getNode())
9938    return SingleSource;
9939
9940  return SDValue();
9941}
9942
9943SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
9944  EVT NVT = N->getValueType(0);
9945  SDValue V = N->getOperand(0);
9946
9947  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
9948    // Combine:
9949    //    (extract_subvec (concat V1, V2, ...), i)
9950    // Into:
9951    //    Vi if possible
9952    // Only operand 0 is checked as 'concat' assumes all inputs of the same
9953    // type.
9954    if (V->getOperand(0).getValueType() != NVT)
9955      return SDValue();
9956    unsigned Idx = dyn_cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9957    unsigned NumElems = NVT.getVectorNumElements();
9958    assert((Idx % NumElems) == 0 &&
9959           "IDX in concat is not a multiple of the result vector length.");
9960    return V->getOperand(Idx / NumElems);
9961  }
9962
9963  // Skip bitcasting
9964  if (V->getOpcode() == ISD::BITCAST)
9965    V = V.getOperand(0);
9966
9967  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
9968    SDLoc dl(N);
9969    // Handle only simple case where vector being inserted and vector
9970    // being extracted are of same type, and are half size of larger vectors.
9971    EVT BigVT = V->getOperand(0).getValueType();
9972    EVT SmallVT = V->getOperand(1).getValueType();
9973    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
9974      return SDValue();
9975
9976    // Only handle cases where both indexes are constants with the same type.
9977    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9978    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
9979
9980    if (InsIdx && ExtIdx &&
9981        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
9982        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
9983      // Combine:
9984      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
9985      // Into:
9986      //    indices are equal or bit offsets are equal => V1
9987      //    otherwise => (extract_subvec V1, ExtIdx)
9988      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
9989          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
9990        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
9991      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
9992                         DAG.getNode(ISD::BITCAST, dl,
9993                                     N->getOperand(0).getValueType(),
9994                                     V->getOperand(0)), N->getOperand(1));
9995    }
9996  }
9997
9998  return SDValue();
9999}
10000
10001// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat.
10002static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
10003  EVT VT = N->getValueType(0);
10004  unsigned NumElts = VT.getVectorNumElements();
10005
10006  SDValue N0 = N->getOperand(0);
10007  SDValue N1 = N->getOperand(1);
10008  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10009
10010  SmallVector<SDValue, 4> Ops;
10011  EVT ConcatVT = N0.getOperand(0).getValueType();
10012  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
10013  unsigned NumConcats = NumElts / NumElemsPerConcat;
10014
10015  // Look at every vector that's inserted. We're looking for exact
10016  // subvector-sized copies from a concatenated vector
10017  for (unsigned I = 0; I != NumConcats; ++I) {
10018    // Make sure we're dealing with a copy.
10019    unsigned Begin = I * NumElemsPerConcat;
10020    bool AllUndef = true, NoUndef = true;
10021    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
10022      if (SVN->getMaskElt(J) >= 0)
10023        AllUndef = false;
10024      else
10025        NoUndef = false;
10026    }
10027
10028    if (NoUndef) {
10029      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
10030        return SDValue();
10031
10032      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
10033        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
10034          return SDValue();
10035
10036      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
10037      if (FirstElt < N0.getNumOperands())
10038        Ops.push_back(N0.getOperand(FirstElt));
10039      else
10040        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
10041
10042    } else if (AllUndef) {
10043      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
10044    } else { // Mixed with general masks and undefs, can't do optimization.
10045      return SDValue();
10046    }
10047  }
10048
10049  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops.data(),
10050                     Ops.size());
10051}
10052
10053SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
10054  EVT VT = N->getValueType(0);
10055  unsigned NumElts = VT.getVectorNumElements();
10056
10057  SDValue N0 = N->getOperand(0);
10058  SDValue N1 = N->getOperand(1);
10059
10060  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
10061
10062  // Canonicalize shuffle undef, undef -> undef
10063  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
10064    return DAG.getUNDEF(VT);
10065
10066  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
10067
10068  // Canonicalize shuffle v, v -> v, undef
10069  if (N0 == N1) {
10070    SmallVector<int, 8> NewMask;
10071    for (unsigned i = 0; i != NumElts; ++i) {
10072      int Idx = SVN->getMaskElt(i);
10073      if (Idx >= (int)NumElts) Idx -= NumElts;
10074      NewMask.push_back(Idx);
10075    }
10076    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
10077                                &NewMask[0]);
10078  }
10079
10080  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
10081  if (N0.getOpcode() == ISD::UNDEF) {
10082    SmallVector<int, 8> NewMask;
10083    for (unsigned i = 0; i != NumElts; ++i) {
10084      int Idx = SVN->getMaskElt(i);
10085      if (Idx >= 0) {
10086        if (Idx >= (int)NumElts)
10087          Idx -= NumElts;
10088        else
10089          Idx = -1; // remove reference to lhs
10090      }
10091      NewMask.push_back(Idx);
10092    }
10093    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
10094                                &NewMask[0]);
10095  }
10096
10097  // Remove references to rhs if it is undef
10098  if (N1.getOpcode() == ISD::UNDEF) {
10099    bool Changed = false;
10100    SmallVector<int, 8> NewMask;
10101    for (unsigned i = 0; i != NumElts; ++i) {
10102      int Idx = SVN->getMaskElt(i);
10103      if (Idx >= (int)NumElts) {
10104        Idx = -1;
10105        Changed = true;
10106      }
10107      NewMask.push_back(Idx);
10108    }
10109    if (Changed)
10110      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
10111  }
10112
10113  // If it is a splat, check if the argument vector is another splat or a
10114  // build_vector with all scalar elements the same.
10115  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
10116    SDNode *V = N0.getNode();
10117
10118    // If this is a bit convert that changes the element type of the vector but
10119    // not the number of vector elements, look through it.  Be careful not to
10120    // look though conversions that change things like v4f32 to v2f64.
10121    if (V->getOpcode() == ISD::BITCAST) {
10122      SDValue ConvInput = V->getOperand(0);
10123      if (ConvInput.getValueType().isVector() &&
10124          ConvInput.getValueType().getVectorNumElements() == NumElts)
10125        V = ConvInput.getNode();
10126    }
10127
10128    if (V->getOpcode() == ISD::BUILD_VECTOR) {
10129      assert(V->getNumOperands() == NumElts &&
10130             "BUILD_VECTOR has wrong number of operands");
10131      SDValue Base;
10132      bool AllSame = true;
10133      for (unsigned i = 0; i != NumElts; ++i) {
10134        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
10135          Base = V->getOperand(i);
10136          break;
10137        }
10138      }
10139      // Splat of <u, u, u, u>, return <u, u, u, u>
10140      if (!Base.getNode())
10141        return N0;
10142      for (unsigned i = 0; i != NumElts; ++i) {
10143        if (V->getOperand(i) != Base) {
10144          AllSame = false;
10145          break;
10146        }
10147      }
10148      // Splat of <x, x, x, x>, return <x, x, x, x>
10149      if (AllSame)
10150        return N0;
10151    }
10152  }
10153
10154  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
10155      Level < AfterLegalizeVectorOps &&
10156      (N1.getOpcode() == ISD::UNDEF ||
10157      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
10158       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
10159    SDValue V = partitionShuffleOfConcats(N, DAG);
10160
10161    if (V.getNode())
10162      return V;
10163  }
10164
10165  // If this shuffle node is simply a swizzle of another shuffle node,
10166  // and it reverses the swizzle of the previous shuffle then we can
10167  // optimize shuffle(shuffle(x, undef), undef) -> x.
10168  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
10169      N1.getOpcode() == ISD::UNDEF) {
10170
10171    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
10172
10173    // Shuffle nodes can only reverse shuffles with a single non-undef value.
10174    if (N0.getOperand(1).getOpcode() != ISD::UNDEF)
10175      return SDValue();
10176
10177    // The incoming shuffle must be of the same type as the result of the
10178    // current shuffle.
10179    assert(OtherSV->getOperand(0).getValueType() == VT &&
10180           "Shuffle types don't match");
10181
10182    for (unsigned i = 0; i != NumElts; ++i) {
10183      int Idx = SVN->getMaskElt(i);
10184      assert(Idx < (int)NumElts && "Index references undef operand");
10185      // Next, this index comes from the first value, which is the incoming
10186      // shuffle. Adopt the incoming index.
10187      if (Idx >= 0)
10188        Idx = OtherSV->getMaskElt(Idx);
10189
10190      // The combined shuffle must map each index to itself.
10191      if (Idx >= 0 && (unsigned)Idx != i)
10192        return SDValue();
10193    }
10194
10195    return OtherSV->getOperand(0);
10196  }
10197
10198  return SDValue();
10199}
10200
10201/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
10202/// an AND to a vector_shuffle with the destination vector and a zero vector.
10203/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
10204///      vector_shuffle V, Zero, <0, 4, 2, 4>
10205SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
10206  EVT VT = N->getValueType(0);
10207  SDLoc dl(N);
10208  SDValue LHS = N->getOperand(0);
10209  SDValue RHS = N->getOperand(1);
10210  if (N->getOpcode() == ISD::AND) {
10211    if (RHS.getOpcode() == ISD::BITCAST)
10212      RHS = RHS.getOperand(0);
10213    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
10214      SmallVector<int, 8> Indices;
10215      unsigned NumElts = RHS.getNumOperands();
10216      for (unsigned i = 0; i != NumElts; ++i) {
10217        SDValue Elt = RHS.getOperand(i);
10218        if (!isa<ConstantSDNode>(Elt))
10219          return SDValue();
10220
10221        if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
10222          Indices.push_back(i);
10223        else if (cast<ConstantSDNode>(Elt)->isNullValue())
10224          Indices.push_back(NumElts);
10225        else
10226          return SDValue();
10227      }
10228
10229      // Let's see if the target supports this vector_shuffle.
10230      EVT RVT = RHS.getValueType();
10231      if (!TLI.isVectorClearMaskLegal(Indices, RVT))
10232        return SDValue();
10233
10234      // Return the new VECTOR_SHUFFLE node.
10235      EVT EltVT = RVT.getVectorElementType();
10236      SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
10237                                     DAG.getConstant(0, EltVT));
10238      SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10239                                 RVT, &ZeroOps[0], ZeroOps.size());
10240      LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
10241      SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
10242      return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
10243    }
10244  }
10245
10246  return SDValue();
10247}
10248
10249/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
10250SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
10251  assert(N->getValueType(0).isVector() &&
10252         "SimplifyVBinOp only works on vectors!");
10253
10254  SDValue LHS = N->getOperand(0);
10255  SDValue RHS = N->getOperand(1);
10256  SDValue Shuffle = XformToShuffleWithZero(N);
10257  if (Shuffle.getNode()) return Shuffle;
10258
10259  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
10260  // this operation.
10261  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
10262      RHS.getOpcode() == ISD::BUILD_VECTOR) {
10263    SmallVector<SDValue, 8> Ops;
10264    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
10265      SDValue LHSOp = LHS.getOperand(i);
10266      SDValue RHSOp = RHS.getOperand(i);
10267      // If these two elements can't be folded, bail out.
10268      if ((LHSOp.getOpcode() != ISD::UNDEF &&
10269           LHSOp.getOpcode() != ISD::Constant &&
10270           LHSOp.getOpcode() != ISD::ConstantFP) ||
10271          (RHSOp.getOpcode() != ISD::UNDEF &&
10272           RHSOp.getOpcode() != ISD::Constant &&
10273           RHSOp.getOpcode() != ISD::ConstantFP))
10274        break;
10275
10276      // Can't fold divide by zero.
10277      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
10278          N->getOpcode() == ISD::FDIV) {
10279        if ((RHSOp.getOpcode() == ISD::Constant &&
10280             cast<ConstantSDNode>(RHSOp.getNode())->isNullValue()) ||
10281            (RHSOp.getOpcode() == ISD::ConstantFP &&
10282             cast<ConstantFPSDNode>(RHSOp.getNode())->getValueAPF().isZero()))
10283          break;
10284      }
10285
10286      EVT VT = LHSOp.getValueType();
10287      EVT RVT = RHSOp.getValueType();
10288      if (RVT != VT) {
10289        // Integer BUILD_VECTOR operands may have types larger than the element
10290        // size (e.g., when the element type is not legal).  Prior to type
10291        // legalization, the types may not match between the two BUILD_VECTORS.
10292        // Truncate one of the operands to make them match.
10293        if (RVT.getSizeInBits() > VT.getSizeInBits()) {
10294          RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
10295        } else {
10296          LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
10297          VT = RVT;
10298        }
10299      }
10300      SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
10301                                   LHSOp, RHSOp);
10302      if (FoldOp.getOpcode() != ISD::UNDEF &&
10303          FoldOp.getOpcode() != ISD::Constant &&
10304          FoldOp.getOpcode() != ISD::ConstantFP)
10305        break;
10306      Ops.push_back(FoldOp);
10307      AddToWorkList(FoldOp.getNode());
10308    }
10309
10310    if (Ops.size() == LHS.getNumOperands())
10311      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10312                         LHS.getValueType(), &Ops[0], Ops.size());
10313  }
10314
10315  return SDValue();
10316}
10317
10318/// SimplifyVUnaryOp - Visit a binary vector operation, like FABS/FNEG.
10319SDValue DAGCombiner::SimplifyVUnaryOp(SDNode *N) {
10320  assert(N->getValueType(0).isVector() &&
10321         "SimplifyVUnaryOp only works on vectors!");
10322
10323  SDValue N0 = N->getOperand(0);
10324
10325  if (N0.getOpcode() != ISD::BUILD_VECTOR)
10326    return SDValue();
10327
10328  // Operand is a BUILD_VECTOR node, see if we can constant fold it.
10329  SmallVector<SDValue, 8> Ops;
10330  for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
10331    SDValue Op = N0.getOperand(i);
10332    if (Op.getOpcode() != ISD::UNDEF &&
10333        Op.getOpcode() != ISD::ConstantFP)
10334      break;
10335    EVT EltVT = Op.getValueType();
10336    SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(N0), EltVT, Op);
10337    if (FoldOp.getOpcode() != ISD::UNDEF &&
10338        FoldOp.getOpcode() != ISD::ConstantFP)
10339      break;
10340    Ops.push_back(FoldOp);
10341    AddToWorkList(FoldOp.getNode());
10342  }
10343
10344  if (Ops.size() != N0.getNumOperands())
10345    return SDValue();
10346
10347  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
10348                     N0.getValueType(), &Ops[0], Ops.size());
10349}
10350
10351SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
10352                                    SDValue N1, SDValue N2){
10353  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
10354
10355  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
10356                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10357
10358  // If we got a simplified select_cc node back from SimplifySelectCC, then
10359  // break it down into a new SETCC node, and a new SELECT node, and then return
10360  // the SELECT node, since we were called with a SELECT node.
10361  if (SCC.getNode()) {
10362    // Check to see if we got a select_cc back (to turn into setcc/select).
10363    // Otherwise, just return whatever node we got back, like fabs.
10364    if (SCC.getOpcode() == ISD::SELECT_CC) {
10365      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
10366                                  N0.getValueType(),
10367                                  SCC.getOperand(0), SCC.getOperand(1),
10368                                  SCC.getOperand(4));
10369      AddToWorkList(SETCC.getNode());
10370      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(),
10371                           SCC.getOperand(2), SCC.getOperand(3), SETCC);
10372    }
10373
10374    return SCC;
10375  }
10376  return SDValue();
10377}
10378
10379/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
10380/// are the two values being selected between, see if we can simplify the
10381/// select.  Callers of this should assume that TheSelect is deleted if this
10382/// returns true.  As such, they should return the appropriate thing (e.g. the
10383/// node) back to the top-level of the DAG combiner loop to avoid it being
10384/// looked at.
10385bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
10386                                    SDValue RHS) {
10387
10388  // Cannot simplify select with vector condition
10389  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
10390
10391  // If this is a select from two identical things, try to pull the operation
10392  // through the select.
10393  if (LHS.getOpcode() != RHS.getOpcode() ||
10394      !LHS.hasOneUse() || !RHS.hasOneUse())
10395    return false;
10396
10397  // If this is a load and the token chain is identical, replace the select
10398  // of two loads with a load through a select of the address to load from.
10399  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
10400  // constants have been dropped into the constant pool.
10401  if (LHS.getOpcode() == ISD::LOAD) {
10402    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
10403    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
10404
10405    // Token chains must be identical.
10406    if (LHS.getOperand(0) != RHS.getOperand(0) ||
10407        // Do not let this transformation reduce the number of volatile loads.
10408        LLD->isVolatile() || RLD->isVolatile() ||
10409        // If this is an EXTLOAD, the VT's must match.
10410        LLD->getMemoryVT() != RLD->getMemoryVT() ||
10411        // If this is an EXTLOAD, the kind of extension must match.
10412        (LLD->getExtensionType() != RLD->getExtensionType() &&
10413         // The only exception is if one of the extensions is anyext.
10414         LLD->getExtensionType() != ISD::EXTLOAD &&
10415         RLD->getExtensionType() != ISD::EXTLOAD) ||
10416        // FIXME: this discards src value information.  This is
10417        // over-conservative. It would be beneficial to be able to remember
10418        // both potential memory locations.  Since we are discarding
10419        // src value info, don't do the transformation if the memory
10420        // locations are not in the default address space.
10421        LLD->getPointerInfo().getAddrSpace() != 0 ||
10422        RLD->getPointerInfo().getAddrSpace() != 0 ||
10423        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
10424                                      LLD->getBasePtr().getValueType()))
10425      return false;
10426
10427    // Check that the select condition doesn't reach either load.  If so,
10428    // folding this will induce a cycle into the DAG.  If not, this is safe to
10429    // xform, so create a select of the addresses.
10430    SDValue Addr;
10431    if (TheSelect->getOpcode() == ISD::SELECT) {
10432      SDNode *CondNode = TheSelect->getOperand(0).getNode();
10433      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
10434          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
10435        return false;
10436      // The loads must not depend on one another.
10437      if (LLD->isPredecessorOf(RLD) ||
10438          RLD->isPredecessorOf(LLD))
10439        return false;
10440      Addr = DAG.getSelect(SDLoc(TheSelect),
10441                           LLD->getBasePtr().getValueType(),
10442                           TheSelect->getOperand(0), LLD->getBasePtr(),
10443                           RLD->getBasePtr());
10444    } else {  // Otherwise SELECT_CC
10445      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
10446      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
10447
10448      if ((LLD->hasAnyUseOfValue(1) &&
10449           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
10450          (RLD->hasAnyUseOfValue(1) &&
10451           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
10452        return false;
10453
10454      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
10455                         LLD->getBasePtr().getValueType(),
10456                         TheSelect->getOperand(0),
10457                         TheSelect->getOperand(1),
10458                         LLD->getBasePtr(), RLD->getBasePtr(),
10459                         TheSelect->getOperand(4));
10460    }
10461
10462    SDValue Load;
10463    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
10464      Load = DAG.getLoad(TheSelect->getValueType(0),
10465                         SDLoc(TheSelect),
10466                         // FIXME: Discards pointer and TBAA info.
10467                         LLD->getChain(), Addr, MachinePointerInfo(),
10468                         LLD->isVolatile(), LLD->isNonTemporal(),
10469                         LLD->isInvariant(), LLD->getAlignment());
10470    } else {
10471      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
10472                            RLD->getExtensionType() : LLD->getExtensionType(),
10473                            SDLoc(TheSelect),
10474                            TheSelect->getValueType(0),
10475                            // FIXME: Discards pointer and TBAA info.
10476                            LLD->getChain(), Addr, MachinePointerInfo(),
10477                            LLD->getMemoryVT(), LLD->isVolatile(),
10478                            LLD->isNonTemporal(), LLD->getAlignment());
10479    }
10480
10481    // Users of the select now use the result of the load.
10482    CombineTo(TheSelect, Load);
10483
10484    // Users of the old loads now use the new load's chain.  We know the
10485    // old-load value is dead now.
10486    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
10487    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
10488    return true;
10489  }
10490
10491  return false;
10492}
10493
10494/// SimplifySelectCC - Simplify an expression of the form (N0 cond N1) ? N2 : N3
10495/// where 'cond' is the comparison specified by CC.
10496SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
10497                                      SDValue N2, SDValue N3,
10498                                      ISD::CondCode CC, bool NotExtCompare) {
10499  // (x ? y : y) -> y.
10500  if (N2 == N3) return N2;
10501
10502  EVT VT = N2.getValueType();
10503  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
10504  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
10505  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
10506
10507  // Determine if the condition we're dealing with is constant
10508  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
10509                              N0, N1, CC, DL, false);
10510  if (SCC.getNode()) AddToWorkList(SCC.getNode());
10511  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode());
10512
10513  // fold select_cc true, x, y -> x
10514  if (SCCC && !SCCC->isNullValue())
10515    return N2;
10516  // fold select_cc false, x, y -> y
10517  if (SCCC && SCCC->isNullValue())
10518    return N3;
10519
10520  // Check to see if we can simplify the select into an fabs node
10521  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
10522    // Allow either -0.0 or 0.0
10523    if (CFP->getValueAPF().isZero()) {
10524      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
10525      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
10526          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
10527          N2 == N3.getOperand(0))
10528        return DAG.getNode(ISD::FABS, DL, VT, N0);
10529
10530      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
10531      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
10532          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
10533          N2.getOperand(0) == N3)
10534        return DAG.getNode(ISD::FABS, DL, VT, N3);
10535    }
10536  }
10537
10538  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
10539  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
10540  // in it.  This is a win when the constant is not otherwise available because
10541  // it replaces two constant pool loads with one.  We only do this if the FP
10542  // type is known to be legal, because if it isn't, then we are before legalize
10543  // types an we want the other legalization to happen first (e.g. to avoid
10544  // messing with soft float) and if the ConstantFP is not legal, because if
10545  // it is legal, we may not need to store the FP constant in a constant pool.
10546  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
10547    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
10548      if (TLI.isTypeLegal(N2.getValueType()) &&
10549          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
10550           TargetLowering::Legal) &&
10551          // If both constants have multiple uses, then we won't need to do an
10552          // extra load, they are likely around in registers for other users.
10553          (TV->hasOneUse() || FV->hasOneUse())) {
10554        Constant *Elts[] = {
10555          const_cast<ConstantFP*>(FV->getConstantFPValue()),
10556          const_cast<ConstantFP*>(TV->getConstantFPValue())
10557        };
10558        Type *FPTy = Elts[0]->getType();
10559        const DataLayout &TD = *TLI.getDataLayout();
10560
10561        // Create a ConstantArray of the two constants.
10562        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
10563        SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
10564                                            TD.getPrefTypeAlignment(FPTy));
10565        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
10566
10567        // Get the offsets to the 0 and 1 element of the array so that we can
10568        // select between them.
10569        SDValue Zero = DAG.getIntPtrConstant(0);
10570        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
10571        SDValue One = DAG.getIntPtrConstant(EltSize);
10572
10573        SDValue Cond = DAG.getSetCC(DL,
10574                                    getSetCCResultType(N0.getValueType()),
10575                                    N0, N1, CC);
10576        AddToWorkList(Cond.getNode());
10577        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
10578                                          Cond, One, Zero);
10579        AddToWorkList(CstOffset.getNode());
10580        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
10581                            CstOffset);
10582        AddToWorkList(CPIdx.getNode());
10583        return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
10584                           MachinePointerInfo::getConstantPool(), false,
10585                           false, false, Alignment);
10586
10587      }
10588    }
10589
10590  // Check to see if we can perform the "gzip trick", transforming
10591  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
10592  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
10593      (N1C->isNullValue() ||                         // (a < 0) ? b : 0
10594       (N1C->getAPIntValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
10595    EVT XType = N0.getValueType();
10596    EVT AType = N2.getValueType();
10597    if (XType.bitsGE(AType)) {
10598      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
10599      // single-bit constant.
10600      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue()-1)) == 0)) {
10601        unsigned ShCtV = N2C->getAPIntValue().logBase2();
10602        ShCtV = XType.getSizeInBits()-ShCtV-1;
10603        SDValue ShCt = DAG.getConstant(ShCtV,
10604                                       getShiftAmountTy(N0.getValueType()));
10605        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
10606                                    XType, N0, ShCt);
10607        AddToWorkList(Shift.getNode());
10608
10609        if (XType.bitsGT(AType)) {
10610          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10611          AddToWorkList(Shift.getNode());
10612        }
10613
10614        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10615      }
10616
10617      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
10618                                  XType, N0,
10619                                  DAG.getConstant(XType.getSizeInBits()-1,
10620                                         getShiftAmountTy(N0.getValueType())));
10621      AddToWorkList(Shift.getNode());
10622
10623      if (XType.bitsGT(AType)) {
10624        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
10625        AddToWorkList(Shift.getNode());
10626      }
10627
10628      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
10629    }
10630  }
10631
10632  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
10633  // where y is has a single bit set.
10634  // A plaintext description would be, we can turn the SELECT_CC into an AND
10635  // when the condition can be materialized as an all-ones register.  Any
10636  // single bit-test can be materialized as an all-ones register with
10637  // shift-left and shift-right-arith.
10638  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
10639      N0->getValueType(0) == VT &&
10640      N1C && N1C->isNullValue() &&
10641      N2C && N2C->isNullValue()) {
10642    SDValue AndLHS = N0->getOperand(0);
10643    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10644    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
10645      // Shift the tested bit over the sign bit.
10646      APInt AndMask = ConstAndRHS->getAPIntValue();
10647      SDValue ShlAmt =
10648        DAG.getConstant(AndMask.countLeadingZeros(),
10649                        getShiftAmountTy(AndLHS.getValueType()));
10650      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
10651
10652      // Now arithmetic right shift it all the way over, so the result is either
10653      // all-ones, or zero.
10654      SDValue ShrAmt =
10655        DAG.getConstant(AndMask.getBitWidth()-1,
10656                        getShiftAmountTy(Shl.getValueType()));
10657      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
10658
10659      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
10660    }
10661  }
10662
10663  // fold select C, 16, 0 -> shl C, 4
10664  if (N2C && N3C && N3C->isNullValue() && N2C->getAPIntValue().isPowerOf2() &&
10665    TLI.getBooleanContents(N0.getValueType().isVector()) ==
10666      TargetLowering::ZeroOrOneBooleanContent) {
10667
10668    // If the caller doesn't want us to simplify this into a zext of a compare,
10669    // don't do it.
10670    if (NotExtCompare && N2C->getAPIntValue() == 1)
10671      return SDValue();
10672
10673    // Get a SetCC of the condition
10674    // NOTE: Don't create a SETCC if it's not legal on this target.
10675    if (!LegalOperations ||
10676        TLI.isOperationLegal(ISD::SETCC,
10677          LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
10678      SDValue Temp, SCC;
10679      // cast from setcc result type to select result type
10680      if (LegalTypes) {
10681        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
10682                            N0, N1, CC);
10683        if (N2.getValueType().bitsLT(SCC.getValueType()))
10684          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
10685                                        N2.getValueType());
10686        else
10687          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10688                             N2.getValueType(), SCC);
10689      } else {
10690        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
10691        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
10692                           N2.getValueType(), SCC);
10693      }
10694
10695      AddToWorkList(SCC.getNode());
10696      AddToWorkList(Temp.getNode());
10697
10698      if (N2C->getAPIntValue() == 1)
10699        return Temp;
10700
10701      // shl setcc result by log2 n2c
10702      return DAG.getNode(
10703          ISD::SHL, DL, N2.getValueType(), Temp,
10704          DAG.getConstant(N2C->getAPIntValue().logBase2(),
10705                          getShiftAmountTy(Temp.getValueType())));
10706    }
10707  }
10708
10709  // Check to see if this is the equivalent of setcc
10710  // FIXME: Turn all of these into setcc if setcc if setcc is legal
10711  // otherwise, go ahead with the folds.
10712  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getAPIntValue() == 1ULL)) {
10713    EVT XType = N0.getValueType();
10714    if (!LegalOperations ||
10715        TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
10716      SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
10717      if (Res.getValueType() != VT)
10718        Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
10719      return Res;
10720    }
10721
10722    // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
10723    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
10724        (!LegalOperations ||
10725         TLI.isOperationLegal(ISD::CTLZ, XType))) {
10726      SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
10727      return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
10728                         DAG.getConstant(Log2_32(XType.getSizeInBits()),
10729                                       getShiftAmountTy(Ctlz.getValueType())));
10730    }
10731    // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
10732    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
10733      SDValue NegN0 = DAG.getNode(ISD::SUB, SDLoc(N0),
10734                                  XType, DAG.getConstant(0, XType), N0);
10735      SDValue NotN0 = DAG.getNOT(SDLoc(N0), N0, XType);
10736      return DAG.getNode(ISD::SRL, DL, XType,
10737                         DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
10738                         DAG.getConstant(XType.getSizeInBits()-1,
10739                                         getShiftAmountTy(XType)));
10740    }
10741    // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
10742    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
10743      SDValue Sign = DAG.getNode(ISD::SRL, SDLoc(N0), XType, N0,
10744                                 DAG.getConstant(XType.getSizeInBits()-1,
10745                                         getShiftAmountTy(N0.getValueType())));
10746      return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, XType));
10747    }
10748  }
10749
10750  // Check to see if this is an integer abs.
10751  // select_cc setg[te] X,  0,  X, -X ->
10752  // select_cc setgt    X, -1,  X, -X ->
10753  // select_cc setl[te] X,  0, -X,  X ->
10754  // select_cc setlt    X,  1, -X,  X ->
10755  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
10756  if (N1C) {
10757    ConstantSDNode *SubC = NULL;
10758    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
10759         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
10760        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
10761      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
10762    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
10763              (N1C->isOne() && CC == ISD::SETLT)) &&
10764             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
10765      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
10766
10767    EVT XType = N0.getValueType();
10768    if (SubC && SubC->isNullValue() && XType.isInteger()) {
10769      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0), XType,
10770                                  N0,
10771                                  DAG.getConstant(XType.getSizeInBits()-1,
10772                                         getShiftAmountTy(N0.getValueType())));
10773      SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0),
10774                                XType, N0, Shift);
10775      AddToWorkList(Shift.getNode());
10776      AddToWorkList(Add.getNode());
10777      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
10778    }
10779  }
10780
10781  return SDValue();
10782}
10783
10784/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
10785SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
10786                                   SDValue N1, ISD::CondCode Cond,
10787                                   SDLoc DL, bool foldBooleans) {
10788  TargetLowering::DAGCombinerInfo
10789    DagCombineInfo(DAG, Level, false, this);
10790  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
10791}
10792
10793/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
10794/// return a DAG expression to select that will generate the same value by
10795/// multiplying by a magic number.  See:
10796/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10797SDValue DAGCombiner::BuildSDIV(SDNode *N) {
10798  std::vector<SDNode*> Built;
10799  SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, &Built);
10800
10801  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10802       ii != ee; ++ii)
10803    AddToWorkList(*ii);
10804  return S;
10805}
10806
10807/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
10808/// return a DAG expression to select that will generate the same value by
10809/// multiplying by a magic number.  See:
10810/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
10811SDValue DAGCombiner::BuildUDIV(SDNode *N) {
10812  std::vector<SDNode*> Built;
10813  SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, &Built);
10814
10815  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
10816       ii != ee; ++ii)
10817    AddToWorkList(*ii);
10818  return S;
10819}
10820
10821/// FindBaseOffset - Return true if base is a frame index, which is known not
10822// to alias with anything but itself.  Provides base object and offset as
10823// results.
10824static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
10825                           const GlobalValue *&GV, const void *&CV) {
10826  // Assume it is a primitive operation.
10827  Base = Ptr; Offset = 0; GV = 0; CV = 0;
10828
10829  // If it's an adding a simple constant then integrate the offset.
10830  if (Base.getOpcode() == ISD::ADD) {
10831    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
10832      Base = Base.getOperand(0);
10833      Offset += C->getZExtValue();
10834    }
10835  }
10836
10837  // Return the underlying GlobalValue, and update the Offset.  Return false
10838  // for GlobalAddressSDNode since the same GlobalAddress may be represented
10839  // by multiple nodes with different offsets.
10840  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
10841    GV = G->getGlobal();
10842    Offset += G->getOffset();
10843    return false;
10844  }
10845
10846  // Return the underlying Constant value, and update the Offset.  Return false
10847  // for ConstantSDNodes since the same constant pool entry may be represented
10848  // by multiple nodes with different offsets.
10849  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
10850    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
10851                                         : (const void *)C->getConstVal();
10852    Offset += C->getOffset();
10853    return false;
10854  }
10855  // If it's any of the following then it can't alias with anything but itself.
10856  return isa<FrameIndexSDNode>(Base);
10857}
10858
10859/// isAlias - Return true if there is any possibility that the two addresses
10860/// overlap.
10861bool DAGCombiner::isAlias(SDValue Ptr1, int64_t Size1, bool IsVolatile1,
10862                          const Value *SrcValue1, int SrcValueOffset1,
10863                          unsigned SrcValueAlign1,
10864                          const MDNode *TBAAInfo1,
10865                          SDValue Ptr2, int64_t Size2, bool IsVolatile2,
10866                          const Value *SrcValue2, int SrcValueOffset2,
10867                          unsigned SrcValueAlign2,
10868                          const MDNode *TBAAInfo2) const {
10869  // If they are the same then they must be aliases.
10870  if (Ptr1 == Ptr2) return true;
10871
10872  // If they are both volatile then they cannot be reordered.
10873  if (IsVolatile1 && IsVolatile2) return true;
10874
10875  // Gather base node and offset information.
10876  SDValue Base1, Base2;
10877  int64_t Offset1, Offset2;
10878  const GlobalValue *GV1, *GV2;
10879  const void *CV1, *CV2;
10880  bool isFrameIndex1 = FindBaseOffset(Ptr1, Base1, Offset1, GV1, CV1);
10881  bool isFrameIndex2 = FindBaseOffset(Ptr2, Base2, Offset2, GV2, CV2);
10882
10883  // If they have a same base address then check to see if they overlap.
10884  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
10885    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10886
10887  // It is possible for different frame indices to alias each other, mostly
10888  // when tail call optimization reuses return address slots for arguments.
10889  // To catch this case, look up the actual index of frame indices to compute
10890  // the real alias relationship.
10891  if (isFrameIndex1 && isFrameIndex2) {
10892    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10893    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
10894    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
10895    return !((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
10896  }
10897
10898  // Otherwise, if we know what the bases are, and they aren't identical, then
10899  // we know they cannot alias.
10900  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
10901    return false;
10902
10903  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
10904  // compared to the size and offset of the access, we may be able to prove they
10905  // do not alias.  This check is conservative for now to catch cases created by
10906  // splitting vector types.
10907  if ((SrcValueAlign1 == SrcValueAlign2) &&
10908      (SrcValueOffset1 != SrcValueOffset2) &&
10909      (Size1 == Size2) && (SrcValueAlign1 > Size1)) {
10910    int64_t OffAlign1 = SrcValueOffset1 % SrcValueAlign1;
10911    int64_t OffAlign2 = SrcValueOffset2 % SrcValueAlign1;
10912
10913    // There is no overlap between these relatively aligned accesses of similar
10914    // size, return no alias.
10915    if ((OffAlign1 + Size1) <= OffAlign2 || (OffAlign2 + Size2) <= OffAlign1)
10916      return false;
10917  }
10918
10919  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 ? CombinerGlobalAA :
10920    TLI.getTargetMachine().getSubtarget<TargetSubtargetInfo>().useAA();
10921  if (UseAA && SrcValue1 && SrcValue2) {
10922    // Use alias analysis information.
10923    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
10924    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
10925    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
10926    AliasAnalysis::AliasResult AAResult =
10927      AA.alias(AliasAnalysis::Location(SrcValue1, Overlap1, TBAAInfo1),
10928               AliasAnalysis::Location(SrcValue2, Overlap2, TBAAInfo2));
10929    if (AAResult == AliasAnalysis::NoAlias)
10930      return false;
10931  }
10932
10933  // Otherwise we have to assume they alias.
10934  return true;
10935}
10936
10937bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) {
10938  SDValue Ptr0, Ptr1;
10939  int64_t Size0, Size1;
10940  bool IsVolatile0, IsVolatile1;
10941  const Value *SrcValue0, *SrcValue1;
10942  int SrcValueOffset0, SrcValueOffset1;
10943  unsigned SrcValueAlign0, SrcValueAlign1;
10944  const MDNode *SrcTBAAInfo0, *SrcTBAAInfo1;
10945  FindAliasInfo(Op0, Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10946                SrcValueAlign0, SrcTBAAInfo0);
10947  FindAliasInfo(Op1, Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10948                SrcValueAlign1, SrcTBAAInfo1);
10949  return isAlias(Ptr0, Size0, IsVolatile0, SrcValue0, SrcValueOffset0,
10950                 SrcValueAlign0, SrcTBAAInfo0,
10951                 Ptr1, Size1, IsVolatile1, SrcValue1, SrcValueOffset1,
10952                 SrcValueAlign1, SrcTBAAInfo1);
10953}
10954
10955/// FindAliasInfo - Extracts the relevant alias information from the memory
10956/// node.  Returns true if the operand was a nonvolatile load.
10957bool DAGCombiner::FindAliasInfo(SDNode *N,
10958                                SDValue &Ptr, int64_t &Size, bool &IsVolatile,
10959                                const Value *&SrcValue,
10960                                int &SrcValueOffset,
10961                                unsigned &SrcValueAlign,
10962                                const MDNode *&TBAAInfo) const {
10963  LSBaseSDNode *LS = cast<LSBaseSDNode>(N);
10964
10965  Ptr = LS->getBasePtr();
10966  Size = LS->getMemoryVT().getSizeInBits() >> 3;
10967  IsVolatile = LS->isVolatile();
10968  SrcValue = LS->getSrcValue();
10969  SrcValueOffset = LS->getSrcValueOffset();
10970  SrcValueAlign = LS->getOriginalAlignment();
10971  TBAAInfo = LS->getTBAAInfo();
10972  return isa<LoadSDNode>(LS) && !IsVolatile;
10973}
10974
10975/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
10976/// looking for aliasing nodes and adding them to the Aliases vector.
10977void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
10978                                   SmallVectorImpl<SDValue> &Aliases) {
10979  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
10980  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
10981
10982  // Get alias information for node.
10983  SDValue Ptr;
10984  int64_t Size;
10985  bool IsVolatile;
10986  const Value *SrcValue;
10987  int SrcValueOffset;
10988  unsigned SrcValueAlign;
10989  const MDNode *SrcTBAAInfo;
10990  bool IsLoad = FindAliasInfo(N, Ptr, Size, IsVolatile, SrcValue,
10991                              SrcValueOffset, SrcValueAlign, SrcTBAAInfo);
10992
10993  // Starting off.
10994  Chains.push_back(OriginalChain);
10995  unsigned Depth = 0;
10996
10997  // Look at each chain and determine if it is an alias.  If so, add it to the
10998  // aliases list.  If not, then continue up the chain looking for the next
10999  // candidate.
11000  while (!Chains.empty()) {
11001    SDValue Chain = Chains.back();
11002    Chains.pop_back();
11003
11004    // For TokenFactor nodes, look at each operand and only continue up the
11005    // chain until we find two aliases.  If we've seen two aliases, assume we'll
11006    // find more and revert to original chain since the xform is unlikely to be
11007    // profitable.
11008    //
11009    // FIXME: The depth check could be made to return the last non-aliasing
11010    // chain we found before we hit a tokenfactor rather than the original
11011    // chain.
11012    if (Depth > 6 || Aliases.size() == 2) {
11013      Aliases.clear();
11014      Aliases.push_back(OriginalChain);
11015      break;
11016    }
11017
11018    // Don't bother if we've been before.
11019    if (!Visited.insert(Chain.getNode()))
11020      continue;
11021
11022    switch (Chain.getOpcode()) {
11023    case ISD::EntryToken:
11024      // Entry token is ideal chain operand, but handled in FindBetterChain.
11025      break;
11026
11027    case ISD::LOAD:
11028    case ISD::STORE: {
11029      // Get alias information for Chain.
11030      SDValue OpPtr;
11031      int64_t OpSize;
11032      bool OpIsVolatile;
11033      const Value *OpSrcValue;
11034      int OpSrcValueOffset;
11035      unsigned OpSrcValueAlign;
11036      const MDNode *OpSrcTBAAInfo;
11037      bool IsOpLoad = FindAliasInfo(Chain.getNode(), OpPtr, OpSize,
11038                                    OpIsVolatile, OpSrcValue, OpSrcValueOffset,
11039                                    OpSrcValueAlign,
11040                                    OpSrcTBAAInfo);
11041
11042      // If chain is alias then stop here.
11043      if (!(IsLoad && IsOpLoad) &&
11044          isAlias(Ptr, Size, IsVolatile, SrcValue, SrcValueOffset,
11045                  SrcValueAlign, SrcTBAAInfo,
11046                  OpPtr, OpSize, OpIsVolatile, OpSrcValue, OpSrcValueOffset,
11047                  OpSrcValueAlign, OpSrcTBAAInfo)) {
11048        Aliases.push_back(Chain);
11049      } else {
11050        // Look further up the chain.
11051        Chains.push_back(Chain.getOperand(0));
11052        ++Depth;
11053      }
11054      break;
11055    }
11056
11057    case ISD::TokenFactor:
11058      // We have to check each of the operands of the token factor for "small"
11059      // token factors, so we queue them up.  Adding the operands to the queue
11060      // (stack) in reverse order maintains the original order and increases the
11061      // likelihood that getNode will find a matching token factor (CSE.)
11062      if (Chain.getNumOperands() > 16) {
11063        Aliases.push_back(Chain);
11064        break;
11065      }
11066      for (unsigned n = Chain.getNumOperands(); n;)
11067        Chains.push_back(Chain.getOperand(--n));
11068      ++Depth;
11069      break;
11070
11071    default:
11072      // For all other instructions we will just have to take what we can get.
11073      Aliases.push_back(Chain);
11074      break;
11075    }
11076  }
11077}
11078
11079/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
11080/// for a better chain (aliasing node.)
11081SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
11082  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
11083
11084  // Accumulate all the aliases to this node.
11085  GatherAllAliases(N, OldChain, Aliases);
11086
11087  // If no operands then chain to entry token.
11088  if (Aliases.size() == 0)
11089    return DAG.getEntryNode();
11090
11091  // If a single operand then chain to it.  We don't need to revisit it.
11092  if (Aliases.size() == 1)
11093    return Aliases[0];
11094
11095  // Construct a custom tailored token factor.
11096  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other,
11097                     &Aliases[0], Aliases.size());
11098}
11099
11100// SelectionDAG::Combine - This is the entry point for the file.
11101//
11102void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
11103                           CodeGenOpt::Level OptLevel) {
11104  /// run - This is the main entry point to this class.
11105  ///
11106  DAGCombiner(*this, AA, OptLevel).Run(Level);
11107}
11108