DAGCombiner.cpp revision e8b886aa842369e1e1d5ab25c16e05690adbaa33
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "dagcombine"
16#include "llvm/CodeGen/SelectionDAG.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Target/TargetLowering.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetOptions.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/MathExtras.h"
28#include <algorithm>
29using namespace llvm;
30
31STATISTIC(NodesCombined   , "Number of dag nodes combined");
32STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
33STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
34
35namespace {
36#ifndef NDEBUG
37  static cl::opt<bool>
38    ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
39                    cl::desc("Pop up a window to show dags before the first "
40                             "dag combine pass"));
41  static cl::opt<bool>
42    ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
43                    cl::desc("Pop up a window to show dags before the second "
44                             "dag combine pass"));
45#else
46  static const bool ViewDAGCombine1 = false;
47  static const bool ViewDAGCombine2 = false;
48#endif
49
50  static cl::opt<bool>
51    CombinerAA("combiner-alias-analysis", cl::Hidden,
52               cl::desc("Turn on alias analysis during testing"));
53
54  static cl::opt<bool>
55    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
56               cl::desc("Include global information in alias analysis"));
57
58//------------------------------ DAGCombiner ---------------------------------//
59
60  class VISIBILITY_HIDDEN DAGCombiner {
61    SelectionDAG &DAG;
62    TargetLowering &TLI;
63    bool AfterLegalize;
64
65    // Worklist of all of the nodes that need to be simplified.
66    std::vector<SDNode*> WorkList;
67
68    // AA - Used for DAG load/store alias analysis.
69    AliasAnalysis &AA;
70
71    /// AddUsersToWorkList - When an instruction is simplified, add all users of
72    /// the instruction to the work lists because they might get more simplified
73    /// now.
74    ///
75    void AddUsersToWorkList(SDNode *N) {
76      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
77           UI != UE; ++UI)
78        AddToWorkList(*UI);
79    }
80
81    /// removeFromWorkList - remove all instances of N from the worklist.
82    ///
83    void removeFromWorkList(SDNode *N) {
84      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
85                     WorkList.end());
86    }
87
88    /// visit - call the node-specific routine that knows how to fold each
89    /// particular type of node.
90    SDOperand visit(SDNode *N);
91
92  public:
93    /// AddToWorkList - Add to the work list making sure it's instance is at the
94    /// the back (next to be processed.)
95    void AddToWorkList(SDNode *N) {
96      removeFromWorkList(N);
97      WorkList.push_back(N);
98    }
99
100    SDOperand CombineTo(SDNode *N, const SDOperand *To, unsigned NumTo,
101                        bool AddTo = true) {
102      assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
103      ++NodesCombined;
104      DOUT << "\nReplacing.1 "; DEBUG(N->dump(&DAG));
105      DOUT << "\nWith: "; DEBUG(To[0].Val->dump(&DAG));
106      DOUT << " and " << NumTo-1 << " other values\n";
107      std::vector<SDNode*> NowDead;
108      DAG.ReplaceAllUsesWith(N, To, &NowDead);
109
110      if (AddTo) {
111        // Push the new nodes and any users onto the worklist
112        for (unsigned i = 0, e = NumTo; i != e; ++i) {
113          AddToWorkList(To[i].Val);
114          AddUsersToWorkList(To[i].Val);
115        }
116      }
117
118      // Nodes can be reintroduced into the worklist.  Make sure we do not
119      // process a node that has been replaced.
120      removeFromWorkList(N);
121      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
122        removeFromWorkList(NowDead[i]);
123
124      // Finally, since the node is now dead, remove it from the graph.
125      DAG.DeleteNode(N);
126      return SDOperand(N, 0);
127    }
128
129    SDOperand CombineTo(SDNode *N, SDOperand Res, bool AddTo = true) {
130      return CombineTo(N, &Res, 1, AddTo);
131    }
132
133    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1,
134                        bool AddTo = true) {
135      SDOperand To[] = { Res0, Res1 };
136      return CombineTo(N, To, 2, AddTo);
137    }
138  private:
139
140    /// SimplifyDemandedBits - Check the specified integer node value to see if
141    /// it can be simplified or if things it uses can be simplified by bit
142    /// propagation.  If so, return true.
143    bool SimplifyDemandedBits(SDOperand Op, uint64_t Demanded = ~0ULL) {
144      TargetLowering::TargetLoweringOpt TLO(DAG, AfterLegalize);
145      uint64_t KnownZero, KnownOne;
146      Demanded &= MVT::getIntVTBitMask(Op.getValueType());
147      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
148        return false;
149
150      // Revisit the node.
151      AddToWorkList(Op.Val);
152
153      // Replace the old value with the new one.
154      ++NodesCombined;
155      DOUT << "\nReplacing.2 "; DEBUG(TLO.Old.Val->dump(&DAG));
156      DOUT << "\nWith: "; DEBUG(TLO.New.Val->dump(&DAG));
157      DOUT << '\n';
158
159      std::vector<SDNode*> NowDead;
160      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &NowDead);
161
162      // Push the new node and any (possibly new) users onto the worklist.
163      AddToWorkList(TLO.New.Val);
164      AddUsersToWorkList(TLO.New.Val);
165
166      // Nodes can end up on the worklist more than once.  Make sure we do
167      // not process a node that has been replaced.
168      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
169        removeFromWorkList(NowDead[i]);
170
171      // Finally, if the node is now dead, remove it from the graph.  The node
172      // may not be dead if the replacement process recursively simplified to
173      // something else needing this node.
174      if (TLO.Old.Val->use_empty()) {
175        removeFromWorkList(TLO.Old.Val);
176
177        // If the operands of this node are only used by the node, they will now
178        // be dead.  Make sure to visit them first to delete dead nodes early.
179        for (unsigned i = 0, e = TLO.Old.Val->getNumOperands(); i != e; ++i)
180          if (TLO.Old.Val->getOperand(i).Val->hasOneUse())
181            AddToWorkList(TLO.Old.Val->getOperand(i).Val);
182
183        DAG.DeleteNode(TLO.Old.Val);
184      }
185      return true;
186    }
187
188    bool CombineToPreIndexedLoadStore(SDNode *N);
189    bool CombineToPostIndexedLoadStore(SDNode *N);
190
191
192    /// combine - call the node-specific routine that knows how to fold each
193    /// particular type of node. If that doesn't do anything, try the
194    /// target-specific DAG combines.
195    SDOperand combine(SDNode *N);
196
197    // Visitation implementation - Implement dag node combining for different
198    // node types.  The semantics are as follows:
199    // Return Value:
200    //   SDOperand.Val == 0   - No change was made
201    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
202    //   otherwise            - N should be replaced by the returned Operand.
203    //
204    SDOperand visitTokenFactor(SDNode *N);
205    SDOperand visitADD(SDNode *N);
206    SDOperand visitSUB(SDNode *N);
207    SDOperand visitADDC(SDNode *N);
208    SDOperand visitADDE(SDNode *N);
209    SDOperand visitMUL(SDNode *N);
210    SDOperand visitSDIV(SDNode *N);
211    SDOperand visitUDIV(SDNode *N);
212    SDOperand visitSREM(SDNode *N);
213    SDOperand visitUREM(SDNode *N);
214    SDOperand visitMULHU(SDNode *N);
215    SDOperand visitMULHS(SDNode *N);
216    SDOperand visitSMUL_LOHI(SDNode *N);
217    SDOperand visitUMUL_LOHI(SDNode *N);
218    SDOperand visitSDIVREM(SDNode *N);
219    SDOperand visitUDIVREM(SDNode *N);
220    SDOperand visitAND(SDNode *N);
221    SDOperand visitOR(SDNode *N);
222    SDOperand visitXOR(SDNode *N);
223    SDOperand SimplifyVBinOp(SDNode *N);
224    SDOperand visitSHL(SDNode *N);
225    SDOperand visitSRA(SDNode *N);
226    SDOperand visitSRL(SDNode *N);
227    SDOperand visitCTLZ(SDNode *N);
228    SDOperand visitCTTZ(SDNode *N);
229    SDOperand visitCTPOP(SDNode *N);
230    SDOperand visitSELECT(SDNode *N);
231    SDOperand visitSELECT_CC(SDNode *N);
232    SDOperand visitSETCC(SDNode *N);
233    SDOperand visitSIGN_EXTEND(SDNode *N);
234    SDOperand visitZERO_EXTEND(SDNode *N);
235    SDOperand visitANY_EXTEND(SDNode *N);
236    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
237    SDOperand visitTRUNCATE(SDNode *N);
238    SDOperand visitBIT_CONVERT(SDNode *N);
239    SDOperand visitFADD(SDNode *N);
240    SDOperand visitFSUB(SDNode *N);
241    SDOperand visitFMUL(SDNode *N);
242    SDOperand visitFDIV(SDNode *N);
243    SDOperand visitFREM(SDNode *N);
244    SDOperand visitFCOPYSIGN(SDNode *N);
245    SDOperand visitSINT_TO_FP(SDNode *N);
246    SDOperand visitUINT_TO_FP(SDNode *N);
247    SDOperand visitFP_TO_SINT(SDNode *N);
248    SDOperand visitFP_TO_UINT(SDNode *N);
249    SDOperand visitFP_ROUND(SDNode *N);
250    SDOperand visitFP_ROUND_INREG(SDNode *N);
251    SDOperand visitFP_EXTEND(SDNode *N);
252    SDOperand visitFNEG(SDNode *N);
253    SDOperand visitFABS(SDNode *N);
254    SDOperand visitBRCOND(SDNode *N);
255    SDOperand visitBR_CC(SDNode *N);
256    SDOperand visitLOAD(SDNode *N);
257    SDOperand visitSTORE(SDNode *N);
258    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
259    SDOperand visitEXTRACT_VECTOR_ELT(SDNode *N);
260    SDOperand visitBUILD_VECTOR(SDNode *N);
261    SDOperand visitCONCAT_VECTORS(SDNode *N);
262    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
263
264    SDOperand XformToShuffleWithZero(SDNode *N);
265    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
266
267    SDOperand visitShiftByConstant(SDNode *N, unsigned Amt);
268
269    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
270    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
271    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
272    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
273                               SDOperand N3, ISD::CondCode CC,
274                               bool NotExtCompare = false);
275    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
276                            ISD::CondCode Cond, bool foldBooleans = true);
277    bool SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, unsigned HiOp);
278    SDOperand ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *, MVT::ValueType);
279    SDOperand BuildSDIV(SDNode *N);
280    SDOperand BuildUDIV(SDNode *N);
281    SDNode *MatchRotate(SDOperand LHS, SDOperand RHS);
282    SDOperand ReduceLoadWidth(SDNode *N);
283
284    SDOperand GetDemandedBits(SDOperand V, uint64_t Mask);
285
286    /// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
287    /// looking for aliasing nodes and adding them to the Aliases vector.
288    void GatherAllAliases(SDNode *N, SDOperand OriginalChain,
289                          SmallVector<SDOperand, 8> &Aliases);
290
291    /// isAlias - Return true if there is any possibility that the two addresses
292    /// overlap.
293    bool isAlias(SDOperand Ptr1, int64_t Size1,
294                 const Value *SrcValue1, int SrcValueOffset1,
295                 SDOperand Ptr2, int64_t Size2,
296                 const Value *SrcValue2, int SrcValueOffset2);
297
298    /// FindAliasInfo - Extracts the relevant alias information from the memory
299    /// node.  Returns true if the operand was a load.
300    bool FindAliasInfo(SDNode *N,
301                       SDOperand &Ptr, int64_t &Size,
302                       const Value *&SrcValue, int &SrcValueOffset);
303
304    /// FindBetterChain - Walk up chain skipping non-aliasing memory nodes,
305    /// looking for a better chain (aliasing node.)
306    SDOperand FindBetterChain(SDNode *N, SDOperand Chain);
307
308public:
309    DAGCombiner(SelectionDAG &D, AliasAnalysis &A)
310      : DAG(D),
311        TLI(D.getTargetLoweringInfo()),
312        AfterLegalize(false),
313        AA(A) {}
314
315    /// Run - runs the dag combiner on all nodes in the work list
316    void Run(bool RunningAfterLegalize);
317  };
318}
319
320//===----------------------------------------------------------------------===//
321//  TargetLowering::DAGCombinerInfo implementation
322//===----------------------------------------------------------------------===//
323
324void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
325  ((DAGCombiner*)DC)->AddToWorkList(N);
326}
327
328SDOperand TargetLowering::DAGCombinerInfo::
329CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
330  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size());
331}
332
333SDOperand TargetLowering::DAGCombinerInfo::
334CombineTo(SDNode *N, SDOperand Res) {
335  return ((DAGCombiner*)DC)->CombineTo(N, Res);
336}
337
338
339SDOperand TargetLowering::DAGCombinerInfo::
340CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
341  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
342}
343
344
345//===----------------------------------------------------------------------===//
346// Helper Functions
347//===----------------------------------------------------------------------===//
348
349/// isNegatibleForFree - Return 1 if we can compute the negated form of the
350/// specified expression for the same cost as the expression itself, or 2 if we
351/// can compute the negated form more cheaply than the expression itself.
352static char isNegatibleForFree(SDOperand Op, unsigned Depth = 0) {
353  // No compile time optimizations on this type.
354  if (Op.getValueType() == MVT::ppcf128)
355    return 0;
356
357  // fneg is removable even if it has multiple uses.
358  if (Op.getOpcode() == ISD::FNEG) return 2;
359
360  // Don't allow anything with multiple uses.
361  if (!Op.hasOneUse()) return 0;
362
363  // Don't recurse exponentially.
364  if (Depth > 6) return 0;
365
366  switch (Op.getOpcode()) {
367  default: return false;
368  case ISD::ConstantFP:
369    return 1;
370  case ISD::FADD:
371    // FIXME: determine better conditions for this xform.
372    if (!UnsafeFPMath) return 0;
373
374    // -(A+B) -> -A - B
375    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
376      return V;
377    // -(A+B) -> -B - A
378    return isNegatibleForFree(Op.getOperand(1), Depth+1);
379  case ISD::FSUB:
380    // We can't turn -(A-B) into B-A when we honor signed zeros.
381    if (!UnsafeFPMath) return 0;
382
383    // -(A-B) -> B-A
384    return 1;
385
386  case ISD::FMUL:
387  case ISD::FDIV:
388    if (HonorSignDependentRoundingFPMath()) return 0;
389
390    // -(X*Y) -> (-X * Y) or (X*-Y)
391    if (char V = isNegatibleForFree(Op.getOperand(0), Depth+1))
392      return V;
393
394    return isNegatibleForFree(Op.getOperand(1), Depth+1);
395
396  case ISD::FP_EXTEND:
397  case ISD::FP_ROUND:
398  case ISD::FSIN:
399    return isNegatibleForFree(Op.getOperand(0), Depth+1);
400  }
401}
402
403/// GetNegatedExpression - If isNegatibleForFree returns true, this function
404/// returns the newly negated expression.
405static SDOperand GetNegatedExpression(SDOperand Op, SelectionDAG &DAG,
406                                      unsigned Depth = 0) {
407  // fneg is removable even if it has multiple uses.
408  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
409
410  // Don't allow anything with multiple uses.
411  assert(Op.hasOneUse() && "Unknown reuse!");
412
413  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
414  switch (Op.getOpcode()) {
415  default: assert(0 && "Unknown code");
416  case ISD::ConstantFP: {
417    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
418    V.changeSign();
419    return DAG.getConstantFP(V, Op.getValueType());
420  }
421  case ISD::FADD:
422    // FIXME: determine better conditions for this xform.
423    assert(UnsafeFPMath);
424
425    // -(A+B) -> -A - B
426    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
427      return DAG.getNode(ISD::FSUB, Op.getValueType(),
428                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
429                         Op.getOperand(1));
430    // -(A+B) -> -B - A
431    return DAG.getNode(ISD::FSUB, Op.getValueType(),
432                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1),
433                       Op.getOperand(0));
434  case ISD::FSUB:
435    // We can't turn -(A-B) into B-A when we honor signed zeros.
436    assert(UnsafeFPMath);
437
438    // -(0-B) -> B
439    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
440      if (N0CFP->getValueAPF().isZero())
441        return Op.getOperand(1);
442
443    // -(A-B) -> B-A
444    return DAG.getNode(ISD::FSUB, Op.getValueType(), Op.getOperand(1),
445                       Op.getOperand(0));
446
447  case ISD::FMUL:
448  case ISD::FDIV:
449    assert(!HonorSignDependentRoundingFPMath());
450
451    // -(X*Y) -> -X * Y
452    if (isNegatibleForFree(Op.getOperand(0), Depth+1))
453      return DAG.getNode(Op.getOpcode(), Op.getValueType(),
454                         GetNegatedExpression(Op.getOperand(0), DAG, Depth+1),
455                         Op.getOperand(1));
456
457    // -(X*Y) -> X * -Y
458    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
459                       Op.getOperand(0),
460                       GetNegatedExpression(Op.getOperand(1), DAG, Depth+1));
461
462  case ISD::FP_EXTEND:
463  case ISD::FP_ROUND:
464  case ISD::FSIN:
465    return DAG.getNode(Op.getOpcode(), Op.getValueType(),
466                       GetNegatedExpression(Op.getOperand(0), DAG, Depth+1));
467  }
468}
469
470
471// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
472// that selects between the values 1 and 0, making it equivalent to a setcc.
473// Also, set the incoming LHS, RHS, and CC references to the appropriate
474// nodes based on the type of node we are checking.  This simplifies life a
475// bit for the callers.
476static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
477                              SDOperand &CC) {
478  if (N.getOpcode() == ISD::SETCC) {
479    LHS = N.getOperand(0);
480    RHS = N.getOperand(1);
481    CC  = N.getOperand(2);
482    return true;
483  }
484  if (N.getOpcode() == ISD::SELECT_CC &&
485      N.getOperand(2).getOpcode() == ISD::Constant &&
486      N.getOperand(3).getOpcode() == ISD::Constant &&
487      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
488      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
489    LHS = N.getOperand(0);
490    RHS = N.getOperand(1);
491    CC  = N.getOperand(4);
492    return true;
493  }
494  return false;
495}
496
497// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
498// one use.  If this is true, it allows the users to invert the operation for
499// free when it is profitable to do so.
500static bool isOneUseSetCC(SDOperand N) {
501  SDOperand N0, N1, N2;
502  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
503    return true;
504  return false;
505}
506
507SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
508  MVT::ValueType VT = N0.getValueType();
509  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
510  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
511  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
512    if (isa<ConstantSDNode>(N1)) {
513      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
514      AddToWorkList(OpNode.Val);
515      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
516    } else if (N0.hasOneUse()) {
517      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
518      AddToWorkList(OpNode.Val);
519      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
520    }
521  }
522  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
523  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
524  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
525    if (isa<ConstantSDNode>(N0)) {
526      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
527      AddToWorkList(OpNode.Val);
528      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
529    } else if (N1.hasOneUse()) {
530      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
531      AddToWorkList(OpNode.Val);
532      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
533    }
534  }
535  return SDOperand();
536}
537
538//===----------------------------------------------------------------------===//
539//  Main DAG Combiner implementation
540//===----------------------------------------------------------------------===//
541
542void DAGCombiner::Run(bool RunningAfterLegalize) {
543  // set the instance variable, so that the various visit routines may use it.
544  AfterLegalize = RunningAfterLegalize;
545
546  // Add all the dag nodes to the worklist.
547  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
548       E = DAG.allnodes_end(); I != E; ++I)
549    WorkList.push_back(I);
550
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted, and tracking any
553  // changes of the root.
554  HandleSDNode Dummy(DAG.getRoot());
555
556  // The root of the dag may dangle to deleted nodes until the dag combiner is
557  // done.  Set it to null to avoid confusion.
558  DAG.setRoot(SDOperand());
559
560  // while the worklist isn't empty, inspect the node on the end of it and
561  // try and combine it.
562  while (!WorkList.empty()) {
563    SDNode *N = WorkList.back();
564    WorkList.pop_back();
565
566    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
567    // N is deleted from the DAG, since they too may now be dead or may have a
568    // reduced number of uses, allowing other xforms.
569    if (N->use_empty() && N != &Dummy) {
570      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
571        AddToWorkList(N->getOperand(i).Val);
572
573      DAG.DeleteNode(N);
574      continue;
575    }
576
577    SDOperand RV = combine(N);
578
579    if (RV.Val) {
580      ++NodesCombined;
581      // If we get back the same node we passed in, rather than a new node or
582      // zero, we know that the node must have defined multiple values and
583      // CombineTo was used.  Since CombineTo takes care of the worklist
584      // mechanics for us, we have no work to do in this case.
585      if (RV.Val != N) {
586        assert(N->getOpcode() != ISD::DELETED_NODE &&
587               RV.Val->getOpcode() != ISD::DELETED_NODE &&
588               "Node was deleted but visit returned new node!");
589
590        DOUT << "\nReplacing.3 "; DEBUG(N->dump(&DAG));
591        DOUT << "\nWith: "; DEBUG(RV.Val->dump(&DAG));
592        DOUT << '\n';
593        std::vector<SDNode*> NowDead;
594        if (N->getNumValues() == RV.Val->getNumValues())
595          DAG.ReplaceAllUsesWith(N, RV.Val, &NowDead);
596        else {
597          assert(N->getValueType(0) == RV.getValueType() && "Type mismatch");
598          SDOperand OpV = RV;
599          DAG.ReplaceAllUsesWith(N, &OpV, &NowDead);
600        }
601
602        // Push the new node and any users onto the worklist
603        AddToWorkList(RV.Val);
604        AddUsersToWorkList(RV.Val);
605
606        // Nodes can be reintroduced into the worklist.  Make sure we do not
607        // process a node that has been replaced.
608        removeFromWorkList(N);
609        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
610          removeFromWorkList(NowDead[i]);
611
612        // Finally, since the node is now dead, remove it from the graph.
613        DAG.DeleteNode(N);
614      }
615    }
616  }
617
618  // If the root changed (e.g. it was a dead load, update the root).
619  DAG.setRoot(Dummy.getValue());
620}
621
622SDOperand DAGCombiner::visit(SDNode *N) {
623  switch(N->getOpcode()) {
624  default: break;
625  case ISD::TokenFactor:        return visitTokenFactor(N);
626  case ISD::ADD:                return visitADD(N);
627  case ISD::SUB:                return visitSUB(N);
628  case ISD::ADDC:               return visitADDC(N);
629  case ISD::ADDE:               return visitADDE(N);
630  case ISD::MUL:                return visitMUL(N);
631  case ISD::SDIV:               return visitSDIV(N);
632  case ISD::UDIV:               return visitUDIV(N);
633  case ISD::SREM:               return visitSREM(N);
634  case ISD::UREM:               return visitUREM(N);
635  case ISD::MULHU:              return visitMULHU(N);
636  case ISD::MULHS:              return visitMULHS(N);
637  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
638  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
639  case ISD::SDIVREM:            return visitSDIVREM(N);
640  case ISD::UDIVREM:            return visitUDIVREM(N);
641  case ISD::AND:                return visitAND(N);
642  case ISD::OR:                 return visitOR(N);
643  case ISD::XOR:                return visitXOR(N);
644  case ISD::SHL:                return visitSHL(N);
645  case ISD::SRA:                return visitSRA(N);
646  case ISD::SRL:                return visitSRL(N);
647  case ISD::CTLZ:               return visitCTLZ(N);
648  case ISD::CTTZ:               return visitCTTZ(N);
649  case ISD::CTPOP:              return visitCTPOP(N);
650  case ISD::SELECT:             return visitSELECT(N);
651  case ISD::SELECT_CC:          return visitSELECT_CC(N);
652  case ISD::SETCC:              return visitSETCC(N);
653  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
654  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
655  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
656  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
657  case ISD::TRUNCATE:           return visitTRUNCATE(N);
658  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
659  case ISD::FADD:               return visitFADD(N);
660  case ISD::FSUB:               return visitFSUB(N);
661  case ISD::FMUL:               return visitFMUL(N);
662  case ISD::FDIV:               return visitFDIV(N);
663  case ISD::FREM:               return visitFREM(N);
664  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
665  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
666  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
667  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
668  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
669  case ISD::FP_ROUND:           return visitFP_ROUND(N);
670  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
671  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
672  case ISD::FNEG:               return visitFNEG(N);
673  case ISD::FABS:               return visitFABS(N);
674  case ISD::BRCOND:             return visitBRCOND(N);
675  case ISD::BR_CC:              return visitBR_CC(N);
676  case ISD::LOAD:               return visitLOAD(N);
677  case ISD::STORE:              return visitSTORE(N);
678  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
679  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
680  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
681  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
682  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
683  }
684  return SDOperand();
685}
686
687SDOperand DAGCombiner::combine(SDNode *N) {
688
689  SDOperand RV = visit(N);
690
691  // If nothing happened, try a target-specific DAG combine.
692  if (RV.Val == 0) {
693    assert(N->getOpcode() != ISD::DELETED_NODE &&
694           "Node was deleted but visit returned NULL!");
695
696    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
697        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
698
699      // Expose the DAG combiner to the target combiner impls.
700      TargetLowering::DAGCombinerInfo
701        DagCombineInfo(DAG, !AfterLegalize, false, this);
702
703      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
704    }
705  }
706
707  return RV;
708}
709
710/// getInputChainForNode - Given a node, return its input chain if it has one,
711/// otherwise return a null sd operand.
712static SDOperand getInputChainForNode(SDNode *N) {
713  if (unsigned NumOps = N->getNumOperands()) {
714    if (N->getOperand(0).getValueType() == MVT::Other)
715      return N->getOperand(0);
716    else if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
717      return N->getOperand(NumOps-1);
718    for (unsigned i = 1; i < NumOps-1; ++i)
719      if (N->getOperand(i).getValueType() == MVT::Other)
720        return N->getOperand(i);
721  }
722  return SDOperand(0, 0);
723}
724
725SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
726  // If N has two operands, where one has an input chain equal to the other,
727  // the 'other' chain is redundant.
728  if (N->getNumOperands() == 2) {
729    if (getInputChainForNode(N->getOperand(0).Val) == N->getOperand(1))
730      return N->getOperand(0);
731    if (getInputChainForNode(N->getOperand(1).Val) == N->getOperand(0))
732      return N->getOperand(1);
733  }
734
735  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
736  SmallVector<SDOperand, 8> Ops;    // Ops for replacing token factor.
737  SmallPtrSet<SDNode*, 16> SeenOps;
738  bool Changed = false;             // If we should replace this token factor.
739
740  // Start out with this token factor.
741  TFs.push_back(N);
742
743  // Iterate through token factors.  The TFs grows when new token factors are
744  // encountered.
745  for (unsigned i = 0; i < TFs.size(); ++i) {
746    SDNode *TF = TFs[i];
747
748    // Check each of the operands.
749    for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
750      SDOperand Op = TF->getOperand(i);
751
752      switch (Op.getOpcode()) {
753      case ISD::EntryToken:
754        // Entry tokens don't need to be added to the list. They are
755        // rededundant.
756        Changed = true;
757        break;
758
759      case ISD::TokenFactor:
760        if ((CombinerAA || Op.hasOneUse()) &&
761            std::find(TFs.begin(), TFs.end(), Op.Val) == TFs.end()) {
762          // Queue up for processing.
763          TFs.push_back(Op.Val);
764          // Clean up in case the token factor is removed.
765          AddToWorkList(Op.Val);
766          Changed = true;
767          break;
768        }
769        // Fall thru
770
771      default:
772        // Only add if it isn't already in the list.
773        if (SeenOps.insert(Op.Val))
774          Ops.push_back(Op);
775        else
776          Changed = true;
777        break;
778      }
779    }
780  }
781
782  SDOperand Result;
783
784  // If we've change things around then replace token factor.
785  if (Changed) {
786    if (Ops.size() == 0) {
787      // The entry token is the only possible outcome.
788      Result = DAG.getEntryNode();
789    } else {
790      // New and improved token factor.
791      Result = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], Ops.size());
792    }
793
794    // Don't add users to work list.
795    return CombineTo(N, Result, false);
796  }
797
798  return Result;
799}
800
801static
802SDOperand combineShlAddConstant(SDOperand N0, SDOperand N1, SelectionDAG &DAG) {
803  MVT::ValueType VT = N0.getValueType();
804  SDOperand N00 = N0.getOperand(0);
805  SDOperand N01 = N0.getOperand(1);
806  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N01);
807  if (N01C && N00.getOpcode() == ISD::ADD && N00.Val->hasOneUse() &&
808      isa<ConstantSDNode>(N00.getOperand(1))) {
809    N0 = DAG.getNode(ISD::ADD, VT,
810                     DAG.getNode(ISD::SHL, VT, N00.getOperand(0), N01),
811                     DAG.getNode(ISD::SHL, VT, N00.getOperand(1), N01));
812    return DAG.getNode(ISD::ADD, VT, N0, N1);
813  }
814  return SDOperand();
815}
816
817static
818SDOperand combineSelectAndUse(SDNode *N, SDOperand Slct, SDOperand OtherOp,
819                              SelectionDAG &DAG) {
820  MVT::ValueType VT = N->getValueType(0);
821  unsigned Opc = N->getOpcode();
822  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
823  SDOperand LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
824  SDOperand RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
825  ISD::CondCode CC = ISD::SETCC_INVALID;
826  if (isSlctCC)
827    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
828  else {
829    SDOperand CCOp = Slct.getOperand(0);
830    if (CCOp.getOpcode() == ISD::SETCC)
831      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
832  }
833
834  bool DoXform = false;
835  bool InvCC = false;
836  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
837          "Bad input!");
838  if (LHS.getOpcode() == ISD::Constant &&
839      cast<ConstantSDNode>(LHS)->isNullValue())
840    DoXform = true;
841  else if (CC != ISD::SETCC_INVALID &&
842           RHS.getOpcode() == ISD::Constant &&
843           cast<ConstantSDNode>(RHS)->isNullValue()) {
844    std::swap(LHS, RHS);
845    bool isInt = MVT::isInteger(isSlctCC ? Slct.getOperand(0).getValueType()
846                                : Slct.getOperand(0).getOperand(0).getValueType());
847    CC = ISD::getSetCCInverse(CC, isInt);
848    DoXform = true;
849    InvCC = true;
850  }
851
852  if (DoXform) {
853    SDOperand Result = DAG.getNode(Opc, VT, OtherOp, RHS);
854    if (isSlctCC)
855      return DAG.getSelectCC(OtherOp, Result,
856                             Slct.getOperand(0), Slct.getOperand(1), CC);
857    SDOperand CCOp = Slct.getOperand(0);
858    if (InvCC)
859      CCOp = DAG.getSetCC(CCOp.getValueType(), CCOp.getOperand(0),
860                          CCOp.getOperand(1), CC);
861    return DAG.getNode(ISD::SELECT, VT, CCOp, OtherOp, Result);
862  }
863  return SDOperand();
864}
865
866SDOperand DAGCombiner::visitADD(SDNode *N) {
867  SDOperand N0 = N->getOperand(0);
868  SDOperand N1 = N->getOperand(1);
869  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
870  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
871  MVT::ValueType VT = N0.getValueType();
872
873  // fold vector ops
874  if (MVT::isVector(VT)) {
875    SDOperand FoldedVOp = SimplifyVBinOp(N);
876    if (FoldedVOp.Val) return FoldedVOp;
877  }
878
879  // fold (add x, undef) -> undef
880  if (N0.getOpcode() == ISD::UNDEF)
881    return N0;
882  if (N1.getOpcode() == ISD::UNDEF)
883    return N1;
884  // fold (add c1, c2) -> c1+c2
885  if (N0C && N1C)
886    return DAG.getNode(ISD::ADD, VT, N0, N1);
887  // canonicalize constant to RHS
888  if (N0C && !N1C)
889    return DAG.getNode(ISD::ADD, VT, N1, N0);
890  // fold (add x, 0) -> x
891  if (N1C && N1C->isNullValue())
892    return N0;
893  // fold ((c1-A)+c2) -> (c1+c2)-A
894  if (N1C && N0.getOpcode() == ISD::SUB)
895    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
896      return DAG.getNode(ISD::SUB, VT,
897                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
898                         N0.getOperand(1));
899  // reassociate add
900  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
901  if (RADD.Val != 0)
902    return RADD;
903  // fold ((0-A) + B) -> B-A
904  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
905      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
906    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
907  // fold (A + (0-B)) -> A-B
908  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
909      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
910    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
911  // fold (A+(B-A)) -> B
912  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
913    return N1.getOperand(0);
914
915  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
916    return SDOperand(N, 0);
917
918  // fold (a+b) -> (a|b) iff a and b share no bits.
919  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
920    uint64_t LHSZero, LHSOne;
921    uint64_t RHSZero, RHSOne;
922    uint64_t Mask = MVT::getIntVTBitMask(VT);
923    DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
924    if (LHSZero) {
925      DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
926
927      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
928      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
929      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
930          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
931        return DAG.getNode(ISD::OR, VT, N0, N1);
932    }
933  }
934
935  // fold (add (shl (add x, c1), c2), ) -> (add (add (shl x, c2), c1<<c2), )
936  if (N0.getOpcode() == ISD::SHL && N0.Val->hasOneUse()) {
937    SDOperand Result = combineShlAddConstant(N0, N1, DAG);
938    if (Result.Val) return Result;
939  }
940  if (N1.getOpcode() == ISD::SHL && N1.Val->hasOneUse()) {
941    SDOperand Result = combineShlAddConstant(N1, N0, DAG);
942    if (Result.Val) return Result;
943  }
944
945  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
946  if (N0.getOpcode() == ISD::SELECT && N0.Val->hasOneUse()) {
947    SDOperand Result = combineSelectAndUse(N, N0, N1, DAG);
948    if (Result.Val) return Result;
949  }
950  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
951    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
952    if (Result.Val) return Result;
953  }
954
955  return SDOperand();
956}
957
958SDOperand DAGCombiner::visitADDC(SDNode *N) {
959  SDOperand N0 = N->getOperand(0);
960  SDOperand N1 = N->getOperand(1);
961  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
962  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
963  MVT::ValueType VT = N0.getValueType();
964
965  // If the flag result is dead, turn this into an ADD.
966  if (N->hasNUsesOfValue(0, 1))
967    return CombineTo(N, DAG.getNode(ISD::ADD, VT, N1, N0),
968                     DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
969
970  // canonicalize constant to RHS.
971  if (N0C && !N1C) {
972    SDOperand Ops[] = { N1, N0 };
973    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
974  }
975
976  // fold (addc x, 0) -> x + no carry out
977  if (N1C && N1C->isNullValue())
978    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
979
980  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
981  uint64_t LHSZero, LHSOne;
982  uint64_t RHSZero, RHSOne;
983  uint64_t Mask = MVT::getIntVTBitMask(VT);
984  DAG.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
985  if (LHSZero) {
986    DAG.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
987
988    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
989    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
990    if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
991        (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
992      return CombineTo(N, DAG.getNode(ISD::OR, VT, N0, N1),
993                       DAG.getNode(ISD::CARRY_FALSE, MVT::Flag));
994  }
995
996  return SDOperand();
997}
998
999SDOperand DAGCombiner::visitADDE(SDNode *N) {
1000  SDOperand N0 = N->getOperand(0);
1001  SDOperand N1 = N->getOperand(1);
1002  SDOperand CarryIn = N->getOperand(2);
1003  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1004  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1005  //MVT::ValueType VT = N0.getValueType();
1006
1007  // canonicalize constant to RHS
1008  if (N0C && !N1C) {
1009    SDOperand Ops[] = { N1, N0, CarryIn };
1010    return DAG.getNode(ISD::ADDE, N->getVTList(), Ops, 3);
1011  }
1012
1013  // fold (adde x, y, false) -> (addc x, y)
1014  if (CarryIn.getOpcode() == ISD::CARRY_FALSE) {
1015    SDOperand Ops[] = { N1, N0 };
1016    return DAG.getNode(ISD::ADDC, N->getVTList(), Ops, 2);
1017  }
1018
1019  return SDOperand();
1020}
1021
1022
1023
1024SDOperand DAGCombiner::visitSUB(SDNode *N) {
1025  SDOperand N0 = N->getOperand(0);
1026  SDOperand N1 = N->getOperand(1);
1027  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1028  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1029  MVT::ValueType VT = N0.getValueType();
1030
1031  // fold vector ops
1032  if (MVT::isVector(VT)) {
1033    SDOperand FoldedVOp = SimplifyVBinOp(N);
1034    if (FoldedVOp.Val) return FoldedVOp;
1035  }
1036
1037  // fold (sub x, x) -> 0
1038  if (N0 == N1)
1039    return DAG.getConstant(0, N->getValueType(0));
1040  // fold (sub c1, c2) -> c1-c2
1041  if (N0C && N1C)
1042    return DAG.getNode(ISD::SUB, VT, N0, N1);
1043  // fold (sub x, c) -> (add x, -c)
1044  if (N1C)
1045    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
1046  // fold (A+B)-A -> B
1047  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1048    return N0.getOperand(1);
1049  // fold (A+B)-B -> A
1050  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1051    return N0.getOperand(0);
1052  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1053  if (N1.getOpcode() == ISD::SELECT && N1.Val->hasOneUse()) {
1054    SDOperand Result = combineSelectAndUse(N, N1, N0, DAG);
1055    if (Result.Val) return Result;
1056  }
1057  // If either operand of a sub is undef, the result is undef
1058  if (N0.getOpcode() == ISD::UNDEF)
1059    return N0;
1060  if (N1.getOpcode() == ISD::UNDEF)
1061    return N1;
1062
1063  return SDOperand();
1064}
1065
1066SDOperand DAGCombiner::visitMUL(SDNode *N) {
1067  SDOperand N0 = N->getOperand(0);
1068  SDOperand N1 = N->getOperand(1);
1069  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1070  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1071  MVT::ValueType VT = N0.getValueType();
1072
1073  // fold vector ops
1074  if (MVT::isVector(VT)) {
1075    SDOperand FoldedVOp = SimplifyVBinOp(N);
1076    if (FoldedVOp.Val) return FoldedVOp;
1077  }
1078
1079  // fold (mul x, undef) -> 0
1080  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1081    return DAG.getConstant(0, VT);
1082  // fold (mul c1, c2) -> c1*c2
1083  if (N0C && N1C)
1084    return DAG.getNode(ISD::MUL, VT, N0, N1);
1085  // canonicalize constant to RHS
1086  if (N0C && !N1C)
1087    return DAG.getNode(ISD::MUL, VT, N1, N0);
1088  // fold (mul x, 0) -> 0
1089  if (N1C && N1C->isNullValue())
1090    return N1;
1091  // fold (mul x, -1) -> 0-x
1092  if (N1C && N1C->isAllOnesValue())
1093    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1094  // fold (mul x, (1 << c)) -> x << c
1095  if (N1C && isPowerOf2_64(N1C->getValue()))
1096    return DAG.getNode(ISD::SHL, VT, N0,
1097                       DAG.getConstant(Log2_64(N1C->getValue()),
1098                                       TLI.getShiftAmountTy()));
1099  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
1100  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
1101    // FIXME: If the input is something that is easily negated (e.g. a
1102    // single-use add), we should put the negate there.
1103    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
1104                       DAG.getNode(ISD::SHL, VT, N0,
1105                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
1106                                            TLI.getShiftAmountTy())));
1107  }
1108
1109  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
1110  if (N1C && N0.getOpcode() == ISD::SHL &&
1111      isa<ConstantSDNode>(N0.getOperand(1))) {
1112    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
1113    AddToWorkList(C3.Val);
1114    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
1115  }
1116
1117  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
1118  // use.
1119  {
1120    SDOperand Sh(0,0), Y(0,0);
1121    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
1122    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
1123        N0.Val->hasOneUse()) {
1124      Sh = N0; Y = N1;
1125    } else if (N1.getOpcode() == ISD::SHL &&
1126               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
1127      Sh = N1; Y = N0;
1128    }
1129    if (Sh.Val) {
1130      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
1131      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
1132    }
1133  }
1134  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
1135  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1136      isa<ConstantSDNode>(N0.getOperand(1))) {
1137    return DAG.getNode(ISD::ADD, VT,
1138                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
1139                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
1140  }
1141
1142  // reassociate mul
1143  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
1144  if (RMUL.Val != 0)
1145    return RMUL;
1146
1147  return SDOperand();
1148}
1149
1150SDOperand DAGCombiner::visitSDIV(SDNode *N) {
1151  SDOperand N0 = N->getOperand(0);
1152  SDOperand N1 = N->getOperand(1);
1153  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1154  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1155  MVT::ValueType VT = N->getValueType(0);
1156
1157  // fold vector ops
1158  if (MVT::isVector(VT)) {
1159    SDOperand FoldedVOp = SimplifyVBinOp(N);
1160    if (FoldedVOp.Val) return FoldedVOp;
1161  }
1162
1163  // fold (sdiv c1, c2) -> c1/c2
1164  if (N0C && N1C && !N1C->isNullValue())
1165    return DAG.getNode(ISD::SDIV, VT, N0, N1);
1166  // fold (sdiv X, 1) -> X
1167  if (N1C && N1C->getSignExtended() == 1LL)
1168    return N0;
1169  // fold (sdiv X, -1) -> 0-X
1170  if (N1C && N1C->isAllOnesValue())
1171    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
1172  // If we know the sign bits of both operands are zero, strength reduce to a
1173  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
1174  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1175  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1176      DAG.MaskedValueIsZero(N0, SignBit))
1177    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
1178  // fold (sdiv X, pow2) -> simple ops after legalize
1179  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
1180      (isPowerOf2_64(N1C->getSignExtended()) ||
1181       isPowerOf2_64(-N1C->getSignExtended()))) {
1182    // If dividing by powers of two is cheap, then don't perform the following
1183    // fold.
1184    if (TLI.isPow2DivCheap())
1185      return SDOperand();
1186    int64_t pow2 = N1C->getSignExtended();
1187    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
1188    unsigned lg2 = Log2_64(abs2);
1189    // Splat the sign bit into the register
1190    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
1191                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
1192                                                TLI.getShiftAmountTy()));
1193    AddToWorkList(SGN.Val);
1194    // Add (N0 < 0) ? abs2 - 1 : 0;
1195    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
1196                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
1197                                                TLI.getShiftAmountTy()));
1198    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
1199    AddToWorkList(SRL.Val);
1200    AddToWorkList(ADD.Val);    // Divide by pow2
1201    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
1202                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
1203    // If we're dividing by a positive value, we're done.  Otherwise, we must
1204    // negate the result.
1205    if (pow2 > 0)
1206      return SRA;
1207    AddToWorkList(SRA.Val);
1208    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
1209  }
1210  // if integer divide is expensive and we satisfy the requirements, emit an
1211  // alternate sequence.
1212  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
1213      !TLI.isIntDivCheap()) {
1214    SDOperand Op = BuildSDIV(N);
1215    if (Op.Val) return Op;
1216  }
1217
1218  // undef / X -> 0
1219  if (N0.getOpcode() == ISD::UNDEF)
1220    return DAG.getConstant(0, VT);
1221  // X / undef -> undef
1222  if (N1.getOpcode() == ISD::UNDEF)
1223    return N1;
1224
1225  return SDOperand();
1226}
1227
1228SDOperand DAGCombiner::visitUDIV(SDNode *N) {
1229  SDOperand N0 = N->getOperand(0);
1230  SDOperand N1 = N->getOperand(1);
1231  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
1232  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1233  MVT::ValueType VT = N->getValueType(0);
1234
1235  // fold vector ops
1236  if (MVT::isVector(VT)) {
1237    SDOperand FoldedVOp = SimplifyVBinOp(N);
1238    if (FoldedVOp.Val) return FoldedVOp;
1239  }
1240
1241  // fold (udiv c1, c2) -> c1/c2
1242  if (N0C && N1C && !N1C->isNullValue())
1243    return DAG.getNode(ISD::UDIV, VT, N0, N1);
1244  // fold (udiv x, (1 << c)) -> x >>u c
1245  if (N1C && isPowerOf2_64(N1C->getValue()))
1246    return DAG.getNode(ISD::SRL, VT, N0,
1247                       DAG.getConstant(Log2_64(N1C->getValue()),
1248                                       TLI.getShiftAmountTy()));
1249  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1250  if (N1.getOpcode() == ISD::SHL) {
1251    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1252      if (isPowerOf2_64(SHC->getValue())) {
1253        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
1254        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
1255                                    DAG.getConstant(Log2_64(SHC->getValue()),
1256                                                    ADDVT));
1257        AddToWorkList(Add.Val);
1258        return DAG.getNode(ISD::SRL, VT, N0, Add);
1259      }
1260    }
1261  }
1262  // fold (udiv x, c) -> alternate
1263  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
1264    SDOperand Op = BuildUDIV(N);
1265    if (Op.Val) return Op;
1266  }
1267
1268  // undef / X -> 0
1269  if (N0.getOpcode() == ISD::UNDEF)
1270    return DAG.getConstant(0, VT);
1271  // X / undef -> undef
1272  if (N1.getOpcode() == ISD::UNDEF)
1273    return N1;
1274
1275  return SDOperand();
1276}
1277
1278SDOperand DAGCombiner::visitSREM(SDNode *N) {
1279  SDOperand N0 = N->getOperand(0);
1280  SDOperand N1 = N->getOperand(1);
1281  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1282  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1283  MVT::ValueType VT = N->getValueType(0);
1284
1285  // fold (srem c1, c2) -> c1%c2
1286  if (N0C && N1C && !N1C->isNullValue())
1287    return DAG.getNode(ISD::SREM, VT, N0, N1);
1288  // If we know the sign bits of both operands are zero, strength reduce to a
1289  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
1290  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
1291  if (DAG.MaskedValueIsZero(N1, SignBit) &&
1292      DAG.MaskedValueIsZero(N0, SignBit))
1293    return DAG.getNode(ISD::UREM, VT, N0, N1);
1294
1295  // If X/C can be simplified by the division-by-constant logic, lower
1296  // X%C to the equivalent of X-X/C*C.
1297  if (N1C && !N1C->isNullValue()) {
1298    SDOperand Div = DAG.getNode(ISD::SDIV, VT, N0, N1);
1299    SDOperand OptimizedDiv = combine(Div.Val);
1300    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1301      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1302      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1303      AddToWorkList(Mul.Val);
1304      return Sub;
1305    }
1306  }
1307
1308  // undef % X -> 0
1309  if (N0.getOpcode() == ISD::UNDEF)
1310    return DAG.getConstant(0, VT);
1311  // X % undef -> undef
1312  if (N1.getOpcode() == ISD::UNDEF)
1313    return N1;
1314
1315  return SDOperand();
1316}
1317
1318SDOperand DAGCombiner::visitUREM(SDNode *N) {
1319  SDOperand N0 = N->getOperand(0);
1320  SDOperand N1 = N->getOperand(1);
1321  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1322  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1323  MVT::ValueType VT = N->getValueType(0);
1324
1325  // fold (urem c1, c2) -> c1%c2
1326  if (N0C && N1C && !N1C->isNullValue())
1327    return DAG.getNode(ISD::UREM, VT, N0, N1);
1328  // fold (urem x, pow2) -> (and x, pow2-1)
1329  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1330    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1331  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1332  if (N1.getOpcode() == ISD::SHL) {
1333    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1334      if (isPowerOf2_64(SHC->getValue())) {
1335        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1336        AddToWorkList(Add.Val);
1337        return DAG.getNode(ISD::AND, VT, N0, Add);
1338      }
1339    }
1340  }
1341
1342  // If X/C can be simplified by the division-by-constant logic, lower
1343  // X%C to the equivalent of X-X/C*C.
1344  if (N1C && !N1C->isNullValue()) {
1345    SDOperand Div = DAG.getNode(ISD::UDIV, VT, N0, N1);
1346    SDOperand OptimizedDiv = combine(Div.Val);
1347    if (OptimizedDiv.Val && OptimizedDiv.Val != Div.Val) {
1348      SDOperand Mul = DAG.getNode(ISD::MUL, VT, OptimizedDiv, N1);
1349      SDOperand Sub = DAG.getNode(ISD::SUB, VT, N0, Mul);
1350      AddToWorkList(Mul.Val);
1351      return Sub;
1352    }
1353  }
1354
1355  // undef % X -> 0
1356  if (N0.getOpcode() == ISD::UNDEF)
1357    return DAG.getConstant(0, VT);
1358  // X % undef -> undef
1359  if (N1.getOpcode() == ISD::UNDEF)
1360    return N1;
1361
1362  return SDOperand();
1363}
1364
1365SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1366  SDOperand N0 = N->getOperand(0);
1367  SDOperand N1 = N->getOperand(1);
1368  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1369  MVT::ValueType VT = N->getValueType(0);
1370
1371  // fold (mulhs x, 0) -> 0
1372  if (N1C && N1C->isNullValue())
1373    return N1;
1374  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1375  if (N1C && N1C->getValue() == 1)
1376    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1377                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1378                                       TLI.getShiftAmountTy()));
1379  // fold (mulhs x, undef) -> 0
1380  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1381    return DAG.getConstant(0, VT);
1382
1383  return SDOperand();
1384}
1385
1386SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1387  SDOperand N0 = N->getOperand(0);
1388  SDOperand N1 = N->getOperand(1);
1389  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1390  MVT::ValueType VT = N->getValueType(0);
1391
1392  // fold (mulhu x, 0) -> 0
1393  if (N1C && N1C->isNullValue())
1394    return N1;
1395  // fold (mulhu x, 1) -> 0
1396  if (N1C && N1C->getValue() == 1)
1397    return DAG.getConstant(0, N0.getValueType());
1398  // fold (mulhu x, undef) -> 0
1399  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1400    return DAG.getConstant(0, VT);
1401
1402  return SDOperand();
1403}
1404
1405/// SimplifyNodeWithTwoResults - Perform optimizations common to nodes that
1406/// compute two values. LoOp and HiOp give the opcodes for the two computations
1407/// that are being performed. Return true if a simplification was made.
1408///
1409bool DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N,
1410                                             unsigned LoOp, unsigned HiOp) {
1411  // If the high half is not needed, just compute the low half.
1412  bool HiExists = N->hasAnyUseOfValue(1);
1413  if (!HiExists &&
1414      (!AfterLegalize ||
1415       TLI.isOperationLegal(LoOp, N->getValueType(0)))) {
1416    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0),
1417                                  DAG.getNode(LoOp, N->getValueType(0),
1418                                              N->op_begin(),
1419                                              N->getNumOperands()));
1420    return true;
1421  }
1422
1423  // If the low half is not needed, just compute the high half.
1424  bool LoExists = N->hasAnyUseOfValue(0);
1425  if (!LoExists &&
1426      (!AfterLegalize ||
1427       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
1428    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
1429                                  DAG.getNode(HiOp, N->getValueType(1),
1430                                              N->op_begin(),
1431                                              N->getNumOperands()));
1432    return true;
1433  }
1434
1435  // If both halves are used, return as it is.
1436  if (LoExists && HiExists)
1437    return false;
1438
1439  // If the two computed results can be simplified separately, separate them.
1440  bool RetVal = false;
1441  if (LoExists) {
1442    SDOperand Lo = DAG.getNode(LoOp, N->getValueType(0),
1443                               N->op_begin(), N->getNumOperands());
1444    SDOperand LoOpt = combine(Lo.Val);
1445    if (LoOpt.Val && LoOpt != Lo &&
1446        TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())) {
1447      RetVal = true;
1448      DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), LoOpt);
1449    } else
1450      DAG.DeleteNode(Lo.Val);
1451  }
1452
1453  if (HiExists) {
1454    SDOperand Hi = DAG.getNode(HiOp, N->getValueType(1),
1455                               N->op_begin(), N->getNumOperands());
1456    SDOperand HiOpt = combine(Hi.Val);
1457    if (HiOpt.Val && HiOpt != Hi &&
1458        TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())) {
1459      RetVal = true;
1460      DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), HiOpt);
1461    } else
1462      DAG.DeleteNode(Hi.Val);
1463  }
1464
1465  return RetVal;
1466}
1467
1468SDOperand DAGCombiner::visitSMUL_LOHI(SDNode *N) {
1469
1470  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
1471    return SDOperand();
1472
1473  return SDOperand();
1474}
1475
1476SDOperand DAGCombiner::visitUMUL_LOHI(SDNode *N) {
1477
1478  if (SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
1479    return SDOperand();
1480
1481  return SDOperand();
1482}
1483
1484SDOperand DAGCombiner::visitSDIVREM(SDNode *N) {
1485
1486  if (SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM))
1487    return SDOperand();
1488
1489  return SDOperand();
1490}
1491
1492SDOperand DAGCombiner::visitUDIVREM(SDNode *N) {
1493
1494  if (SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM))
1495    return SDOperand();
1496
1497  return SDOperand();
1498}
1499
1500/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1501/// two operands of the same opcode, try to simplify it.
1502SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1503  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1504  MVT::ValueType VT = N0.getValueType();
1505  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1506
1507  // For each of OP in AND/OR/XOR:
1508  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1509  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1510  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1511  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1512  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1513       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1514      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1515    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1516                                   N0.getOperand(0).getValueType(),
1517                                   N0.getOperand(0), N1.getOperand(0));
1518    AddToWorkList(ORNode.Val);
1519    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1520  }
1521
1522  // For each of OP in SHL/SRL/SRA/AND...
1523  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1524  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1525  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1526  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1527       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1528      N0.getOperand(1) == N1.getOperand(1)) {
1529    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1530                                   N0.getOperand(0).getValueType(),
1531                                   N0.getOperand(0), N1.getOperand(0));
1532    AddToWorkList(ORNode.Val);
1533    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1534  }
1535
1536  return SDOperand();
1537}
1538
1539SDOperand DAGCombiner::visitAND(SDNode *N) {
1540  SDOperand N0 = N->getOperand(0);
1541  SDOperand N1 = N->getOperand(1);
1542  SDOperand LL, LR, RL, RR, CC0, CC1;
1543  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1544  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1545  MVT::ValueType VT = N1.getValueType();
1546
1547  // fold vector ops
1548  if (MVT::isVector(VT)) {
1549    SDOperand FoldedVOp = SimplifyVBinOp(N);
1550    if (FoldedVOp.Val) return FoldedVOp;
1551  }
1552
1553  // fold (and x, undef) -> 0
1554  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1555    return DAG.getConstant(0, VT);
1556  // fold (and c1, c2) -> c1&c2
1557  if (N0C && N1C)
1558    return DAG.getNode(ISD::AND, VT, N0, N1);
1559  // canonicalize constant to RHS
1560  if (N0C && !N1C)
1561    return DAG.getNode(ISD::AND, VT, N1, N0);
1562  // fold (and x, -1) -> x
1563  if (N1C && N1C->isAllOnesValue())
1564    return N0;
1565  // if (and x, c) is known to be zero, return 0
1566  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1567    return DAG.getConstant(0, VT);
1568  // reassociate and
1569  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1570  if (RAND.Val != 0)
1571    return RAND;
1572  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1573  if (N1C && N0.getOpcode() == ISD::OR)
1574    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1575      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1576        return N1;
1577  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1578  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1579    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1580    if (DAG.MaskedValueIsZero(N0.getOperand(0),
1581                              ~N1C->getValue() & InMask)) {
1582      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1583                                   N0.getOperand(0));
1584
1585      // Replace uses of the AND with uses of the Zero extend node.
1586      CombineTo(N, Zext);
1587
1588      // We actually want to replace all uses of the any_extend with the
1589      // zero_extend, to avoid duplicating things.  This will later cause this
1590      // AND to be folded.
1591      CombineTo(N0.Val, Zext);
1592      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1593    }
1594  }
1595  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1596  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1597    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1598    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1599
1600    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1601        MVT::isInteger(LL.getValueType())) {
1602      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1603      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1604        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1605        AddToWorkList(ORNode.Val);
1606        return DAG.getSetCC(VT, ORNode, LR, Op1);
1607      }
1608      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1609      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1610        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1611        AddToWorkList(ANDNode.Val);
1612        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1613      }
1614      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1615      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1616        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1617        AddToWorkList(ORNode.Val);
1618        return DAG.getSetCC(VT, ORNode, LR, Op1);
1619      }
1620    }
1621    // canonicalize equivalent to ll == rl
1622    if (LL == RR && LR == RL) {
1623      Op1 = ISD::getSetCCSwappedOperands(Op1);
1624      std::swap(RL, RR);
1625    }
1626    if (LL == RL && LR == RR) {
1627      bool isInteger = MVT::isInteger(LL.getValueType());
1628      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1629      if (Result != ISD::SETCC_INVALID)
1630        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1631    }
1632  }
1633
1634  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1635  if (N0.getOpcode() == N1.getOpcode()) {
1636    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1637    if (Tmp.Val) return Tmp;
1638  }
1639
1640  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1641  // fold (and (sra)) -> (and (srl)) when possible.
1642  if (!MVT::isVector(VT) &&
1643      SimplifyDemandedBits(SDOperand(N, 0)))
1644    return SDOperand(N, 0);
1645  // fold (zext_inreg (extload x)) -> (zextload x)
1646  if (ISD::isEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val)) {
1647    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1648    MVT::ValueType EVT = LN0->getLoadedVT();
1649    // If we zero all the possible extended bits, then we can turn this into
1650    // a zextload if we are running before legalize or the operation is legal.
1651    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1652        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1653      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1654                                         LN0->getBasePtr(), LN0->getSrcValue(),
1655                                         LN0->getSrcValueOffset(), EVT,
1656                                         LN0->isVolatile(),
1657                                         LN0->getAlignment());
1658      AddToWorkList(N);
1659      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1660      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1661    }
1662  }
1663  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1664  if (ISD::isSEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
1665      N0.hasOneUse()) {
1666    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1667    MVT::ValueType EVT = LN0->getLoadedVT();
1668    // If we zero all the possible extended bits, then we can turn this into
1669    // a zextload if we are running before legalize or the operation is legal.
1670    if (DAG.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1671        (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1672      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
1673                                         LN0->getBasePtr(), LN0->getSrcValue(),
1674                                         LN0->getSrcValueOffset(), EVT,
1675                                         LN0->isVolatile(),
1676                                         LN0->getAlignment());
1677      AddToWorkList(N);
1678      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1679      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1680    }
1681  }
1682
1683  // fold (and (load x), 255) -> (zextload x, i8)
1684  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1685  if (N1C && N0.getOpcode() == ISD::LOAD) {
1686    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
1687    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
1688        LN0->getAddressingMode() == ISD::UNINDEXED &&
1689        N0.hasOneUse()) {
1690      MVT::ValueType EVT, LoadedVT;
1691      if (N1C->getValue() == 255)
1692        EVT = MVT::i8;
1693      else if (N1C->getValue() == 65535)
1694        EVT = MVT::i16;
1695      else if (N1C->getValue() == ~0U)
1696        EVT = MVT::i32;
1697      else
1698        EVT = MVT::Other;
1699
1700      LoadedVT = LN0->getLoadedVT();
1701      if (EVT != MVT::Other && LoadedVT > EVT &&
1702          (!AfterLegalize || TLI.isLoadXLegal(ISD::ZEXTLOAD, EVT))) {
1703        MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1704        // For big endian targets, we need to add an offset to the pointer to
1705        // load the correct bytes.  For little endian systems, we merely need to
1706        // read fewer bytes from the same pointer.
1707        unsigned LVTStoreBytes = MVT::getStoreSizeInBits(LoadedVT)/8;
1708        unsigned EVTStoreBytes = MVT::getStoreSizeInBits(EVT)/8;
1709        unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
1710        unsigned Alignment = LN0->getAlignment();
1711        SDOperand NewPtr = LN0->getBasePtr();
1712        if (!TLI.isLittleEndian()) {
1713          NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1714                               DAG.getConstant(PtrOff, PtrType));
1715          Alignment = MinAlign(Alignment, PtrOff);
1716        }
1717        AddToWorkList(NewPtr.Val);
1718        SDOperand Load =
1719          DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(), NewPtr,
1720                         LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
1721                         LN0->isVolatile(), Alignment);
1722        AddToWorkList(N);
1723        CombineTo(N0.Val, Load, Load.getValue(1));
1724        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1725      }
1726    }
1727  }
1728
1729  return SDOperand();
1730}
1731
1732SDOperand DAGCombiner::visitOR(SDNode *N) {
1733  SDOperand N0 = N->getOperand(0);
1734  SDOperand N1 = N->getOperand(1);
1735  SDOperand LL, LR, RL, RR, CC0, CC1;
1736  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1737  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1738  MVT::ValueType VT = N1.getValueType();
1739  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1740
1741  // fold vector ops
1742  if (MVT::isVector(VT)) {
1743    SDOperand FoldedVOp = SimplifyVBinOp(N);
1744    if (FoldedVOp.Val) return FoldedVOp;
1745  }
1746
1747  // fold (or x, undef) -> -1
1748  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
1749    return DAG.getConstant(~0ULL, VT);
1750  // fold (or c1, c2) -> c1|c2
1751  if (N0C && N1C)
1752    return DAG.getNode(ISD::OR, VT, N0, N1);
1753  // canonicalize constant to RHS
1754  if (N0C && !N1C)
1755    return DAG.getNode(ISD::OR, VT, N1, N0);
1756  // fold (or x, 0) -> x
1757  if (N1C && N1C->isNullValue())
1758    return N0;
1759  // fold (or x, -1) -> -1
1760  if (N1C && N1C->isAllOnesValue())
1761    return N1;
1762  // fold (or x, c) -> c iff (x & ~c) == 0
1763  if (N1C &&
1764      DAG.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1765    return N1;
1766  // reassociate or
1767  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1768  if (ROR.Val != 0)
1769    return ROR;
1770  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1771  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1772             isa<ConstantSDNode>(N0.getOperand(1))) {
1773    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1774    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1775                                                 N1),
1776                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1777  }
1778  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1779  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1780    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1781    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1782
1783    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1784        MVT::isInteger(LL.getValueType())) {
1785      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1786      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1787      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1788          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1789        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1790        AddToWorkList(ORNode.Val);
1791        return DAG.getSetCC(VT, ORNode, LR, Op1);
1792      }
1793      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1794      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1795      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1796          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1797        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1798        AddToWorkList(ANDNode.Val);
1799        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1800      }
1801    }
1802    // canonicalize equivalent to ll == rl
1803    if (LL == RR && LR == RL) {
1804      Op1 = ISD::getSetCCSwappedOperands(Op1);
1805      std::swap(RL, RR);
1806    }
1807    if (LL == RL && LR == RR) {
1808      bool isInteger = MVT::isInteger(LL.getValueType());
1809      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1810      if (Result != ISD::SETCC_INVALID)
1811        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1812    }
1813  }
1814
1815  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1816  if (N0.getOpcode() == N1.getOpcode()) {
1817    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1818    if (Tmp.Val) return Tmp;
1819  }
1820
1821  // (X & C1) | (Y & C2)  -> (X|Y) & C3  if possible.
1822  if (N0.getOpcode() == ISD::AND &&
1823      N1.getOpcode() == ISD::AND &&
1824      N0.getOperand(1).getOpcode() == ISD::Constant &&
1825      N1.getOperand(1).getOpcode() == ISD::Constant &&
1826      // Don't increase # computations.
1827      (N0.Val->hasOneUse() || N1.Val->hasOneUse())) {
1828    // We can only do this xform if we know that bits from X that are set in C2
1829    // but not in C1 are already zero.  Likewise for Y.
1830    uint64_t LHSMask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1831    uint64_t RHSMask = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1832
1833    if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
1834        DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
1835      SDOperand X =DAG.getNode(ISD::OR, VT, N0.getOperand(0), N1.getOperand(0));
1836      return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(LHSMask|RHSMask, VT));
1837    }
1838  }
1839
1840
1841  // See if this is some rotate idiom.
1842  if (SDNode *Rot = MatchRotate(N0, N1))
1843    return SDOperand(Rot, 0);
1844
1845  return SDOperand();
1846}
1847
1848
1849/// MatchRotateHalf - Match "(X shl/srl V1) & V2" where V2 may not be present.
1850static bool MatchRotateHalf(SDOperand Op, SDOperand &Shift, SDOperand &Mask) {
1851  if (Op.getOpcode() == ISD::AND) {
1852    if (isa<ConstantSDNode>(Op.getOperand(1))) {
1853      Mask = Op.getOperand(1);
1854      Op = Op.getOperand(0);
1855    } else {
1856      return false;
1857    }
1858  }
1859
1860  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
1861    Shift = Op;
1862    return true;
1863  }
1864  return false;
1865}
1866
1867
1868// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
1869// idioms for rotate, and if the target supports rotation instructions, generate
1870// a rot[lr].
1871SDNode *DAGCombiner::MatchRotate(SDOperand LHS, SDOperand RHS) {
1872  // Must be a legal type.  Expanded an promoted things won't work with rotates.
1873  MVT::ValueType VT = LHS.getValueType();
1874  if (!TLI.isTypeLegal(VT)) return 0;
1875
1876  // The target must have at least one rotate flavor.
1877  bool HasROTL = TLI.isOperationLegal(ISD::ROTL, VT);
1878  bool HasROTR = TLI.isOperationLegal(ISD::ROTR, VT);
1879  if (!HasROTL && !HasROTR) return 0;
1880
1881  // Match "(X shl/srl V1) & V2" where V2 may not be present.
1882  SDOperand LHSShift;   // The shift.
1883  SDOperand LHSMask;    // AND value if any.
1884  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
1885    return 0; // Not part of a rotate.
1886
1887  SDOperand RHSShift;   // The shift.
1888  SDOperand RHSMask;    // AND value if any.
1889  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
1890    return 0; // Not part of a rotate.
1891
1892  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
1893    return 0;   // Not shifting the same value.
1894
1895  if (LHSShift.getOpcode() == RHSShift.getOpcode())
1896    return 0;   // Shifts must disagree.
1897
1898  // Canonicalize shl to left side in a shl/srl pair.
1899  if (RHSShift.getOpcode() == ISD::SHL) {
1900    std::swap(LHS, RHS);
1901    std::swap(LHSShift, RHSShift);
1902    std::swap(LHSMask , RHSMask );
1903  }
1904
1905  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1906  SDOperand LHSShiftArg = LHSShift.getOperand(0);
1907  SDOperand LHSShiftAmt = LHSShift.getOperand(1);
1908  SDOperand RHSShiftAmt = RHSShift.getOperand(1);
1909
1910  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1911  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
1912  if (LHSShiftAmt.getOpcode() == ISD::Constant &&
1913      RHSShiftAmt.getOpcode() == ISD::Constant) {
1914    uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getValue();
1915    uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getValue();
1916    if ((LShVal + RShVal) != OpSizeInBits)
1917      return 0;
1918
1919    SDOperand Rot;
1920    if (HasROTL)
1921      Rot = DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt);
1922    else
1923      Rot = DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt);
1924
1925    // If there is an AND of either shifted operand, apply it to the result.
1926    if (LHSMask.Val || RHSMask.Val) {
1927      uint64_t Mask = MVT::getIntVTBitMask(VT);
1928
1929      if (LHSMask.Val) {
1930        uint64_t RHSBits = (1ULL << LShVal)-1;
1931        Mask &= cast<ConstantSDNode>(LHSMask)->getValue() | RHSBits;
1932      }
1933      if (RHSMask.Val) {
1934        uint64_t LHSBits = ~((1ULL << (OpSizeInBits-RShVal))-1);
1935        Mask &= cast<ConstantSDNode>(RHSMask)->getValue() | LHSBits;
1936      }
1937
1938      Rot = DAG.getNode(ISD::AND, VT, Rot, DAG.getConstant(Mask, VT));
1939    }
1940
1941    return Rot.Val;
1942  }
1943
1944  // If there is a mask here, and we have a variable shift, we can't be sure
1945  // that we're masking out the right stuff.
1946  if (LHSMask.Val || RHSMask.Val)
1947    return 0;
1948
1949  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1950  // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotr x, (sub 32, y))
1951  if (RHSShiftAmt.getOpcode() == ISD::SUB &&
1952      LHSShiftAmt == RHSShiftAmt.getOperand(1)) {
1953    if (ConstantSDNode *SUBC =
1954          dyn_cast<ConstantSDNode>(RHSShiftAmt.getOperand(0))) {
1955      if (SUBC->getValue() == OpSizeInBits)
1956        if (HasROTL)
1957          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1958        else
1959          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1960    }
1961  }
1962
1963  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1964  // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotl x, (sub 32, y))
1965  if (LHSShiftAmt.getOpcode() == ISD::SUB &&
1966      RHSShiftAmt == LHSShiftAmt.getOperand(1)) {
1967    if (ConstantSDNode *SUBC =
1968          dyn_cast<ConstantSDNode>(LHSShiftAmt.getOperand(0))) {
1969      if (SUBC->getValue() == OpSizeInBits)
1970        if (HasROTL)
1971          return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1972        else
1973          return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1974    }
1975  }
1976
1977  // Look for sign/zext/any-extended cases:
1978  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1979       || LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1980       || LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND) &&
1981      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND
1982       || RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND
1983       || RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND)) {
1984    SDOperand LExtOp0 = LHSShiftAmt.getOperand(0);
1985    SDOperand RExtOp0 = RHSShiftAmt.getOperand(0);
1986    if (RExtOp0.getOpcode() == ISD::SUB &&
1987        RExtOp0.getOperand(1) == LExtOp0) {
1988      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1989      //   (rotr x, y)
1990      // fold (or (shl x, (*ext y)), (srl x, (*ext (sub 32, y)))) ->
1991      //   (rotl x, (sub 32, y))
1992      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(RExtOp0.getOperand(0))) {
1993        if (SUBC->getValue() == OpSizeInBits) {
1994          if (HasROTL)
1995            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
1996          else
1997            return DAG.getNode(ISD::ROTR, VT, LHSShiftArg, RHSShiftAmt).Val;
1998        }
1999      }
2000    } else if (LExtOp0.getOpcode() == ISD::SUB &&
2001               RExtOp0 == LExtOp0.getOperand(1)) {
2002      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2003      //   (rotl x, y)
2004      // fold (or (shl x, (*ext (sub 32, y))), (srl x, (*ext r))) ->
2005      //   (rotr x, (sub 32, y))
2006      if (ConstantSDNode *SUBC = cast<ConstantSDNode>(LExtOp0.getOperand(0))) {
2007        if (SUBC->getValue() == OpSizeInBits) {
2008          if (HasROTL)
2009            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, RHSShiftAmt).Val;
2010          else
2011            return DAG.getNode(ISD::ROTL, VT, LHSShiftArg, LHSShiftAmt).Val;
2012        }
2013      }
2014    }
2015  }
2016
2017  return 0;
2018}
2019
2020
2021SDOperand DAGCombiner::visitXOR(SDNode *N) {
2022  SDOperand N0 = N->getOperand(0);
2023  SDOperand N1 = N->getOperand(1);
2024  SDOperand LHS, RHS, CC;
2025  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2026  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2027  MVT::ValueType VT = N0.getValueType();
2028
2029  // fold vector ops
2030  if (MVT::isVector(VT)) {
2031    SDOperand FoldedVOp = SimplifyVBinOp(N);
2032    if (FoldedVOp.Val) return FoldedVOp;
2033  }
2034
2035  // fold (xor x, undef) -> undef
2036  if (N0.getOpcode() == ISD::UNDEF)
2037    return N0;
2038  if (N1.getOpcode() == ISD::UNDEF)
2039    return N1;
2040  // fold (xor c1, c2) -> c1^c2
2041  if (N0C && N1C)
2042    return DAG.getNode(ISD::XOR, VT, N0, N1);
2043  // canonicalize constant to RHS
2044  if (N0C && !N1C)
2045    return DAG.getNode(ISD::XOR, VT, N1, N0);
2046  // fold (xor x, 0) -> x
2047  if (N1C && N1C->isNullValue())
2048    return N0;
2049  // reassociate xor
2050  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
2051  if (RXOR.Val != 0)
2052    return RXOR;
2053  // fold !(x cc y) -> (x !cc y)
2054  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
2055    bool isInt = MVT::isInteger(LHS.getValueType());
2056    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
2057                                               isInt);
2058    if (N0.getOpcode() == ISD::SETCC)
2059      return DAG.getSetCC(VT, LHS, RHS, NotCC);
2060    if (N0.getOpcode() == ISD::SELECT_CC)
2061      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
2062    assert(0 && "Unhandled SetCC Equivalent!");
2063    abort();
2064  }
2065  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
2066  if (N1C && N1C->getValue() == 1 && N0.getOpcode() == ISD::ZERO_EXTEND &&
2067      N0.Val->hasOneUse() && isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
2068    SDOperand V = N0.getOperand(0);
2069    V = DAG.getNode(ISD::XOR, V.getValueType(), V,
2070                    DAG.getConstant(1, V.getValueType()));
2071    AddToWorkList(V.Val);
2072    return DAG.getNode(ISD::ZERO_EXTEND, VT, V);
2073  }
2074
2075  // fold !(x or y) -> (!x and !y) iff x or y are setcc
2076  if (N1C && N1C->getValue() == 1 && VT == MVT::i1 &&
2077      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2078    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2079    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
2080      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2081      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2082      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2083      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2084      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2085    }
2086  }
2087  // fold !(x or y) -> (!x and !y) iff x or y are constants
2088  if (N1C && N1C->isAllOnesValue() &&
2089      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
2090    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
2091    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
2092      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
2093      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
2094      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
2095      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
2096      return DAG.getNode(NewOpcode, VT, LHS, RHS);
2097    }
2098  }
2099  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
2100  if (N1C && N0.getOpcode() == ISD::XOR) {
2101    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
2102    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2103    if (N00C)
2104      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
2105                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
2106    if (N01C)
2107      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
2108                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
2109  }
2110  // fold (xor x, x) -> 0
2111  if (N0 == N1) {
2112    if (!MVT::isVector(VT)) {
2113      return DAG.getConstant(0, VT);
2114    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
2115      // Produce a vector of zeros.
2116      SDOperand El = DAG.getConstant(0, MVT::getVectorElementType(VT));
2117      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
2118      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
2119    }
2120  }
2121
2122  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
2123  if (N0.getOpcode() == N1.getOpcode()) {
2124    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
2125    if (Tmp.Val) return Tmp;
2126  }
2127
2128  // Simplify the expression using non-local knowledge.
2129  if (!MVT::isVector(VT) &&
2130      SimplifyDemandedBits(SDOperand(N, 0)))
2131    return SDOperand(N, 0);
2132
2133  return SDOperand();
2134}
2135
2136/// visitShiftByConstant - Handle transforms common to the three shifts, when
2137/// the shift amount is a constant.
2138SDOperand DAGCombiner::visitShiftByConstant(SDNode *N, unsigned Amt) {
2139  SDNode *LHS = N->getOperand(0).Val;
2140  if (!LHS->hasOneUse()) return SDOperand();
2141
2142  // We want to pull some binops through shifts, so that we have (and (shift))
2143  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
2144  // thing happens with address calculations, so it's important to canonicalize
2145  // it.
2146  bool HighBitSet = false;  // Can we transform this if the high bit is set?
2147
2148  switch (LHS->getOpcode()) {
2149  default: return SDOperand();
2150  case ISD::OR:
2151  case ISD::XOR:
2152    HighBitSet = false; // We can only transform sra if the high bit is clear.
2153    break;
2154  case ISD::AND:
2155    HighBitSet = true;  // We can only transform sra if the high bit is set.
2156    break;
2157  case ISD::ADD:
2158    if (N->getOpcode() != ISD::SHL)
2159      return SDOperand(); // only shl(add) not sr[al](add).
2160    HighBitSet = false; // We can only transform sra if the high bit is clear.
2161    break;
2162  }
2163
2164  // We require the RHS of the binop to be a constant as well.
2165  ConstantSDNode *BinOpCst = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
2166  if (!BinOpCst) return SDOperand();
2167
2168
2169  // FIXME: disable this for unless the input to the binop is a shift by a
2170  // constant.  If it is not a shift, it pessimizes some common cases like:
2171  //
2172  //void foo(int *X, int i) { X[i & 1235] = 1; }
2173  //int bar(int *X, int i) { return X[i & 255]; }
2174  SDNode *BinOpLHSVal = LHS->getOperand(0).Val;
2175  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
2176       BinOpLHSVal->getOpcode() != ISD::SRA &&
2177       BinOpLHSVal->getOpcode() != ISD::SRL) ||
2178      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
2179    return SDOperand();
2180
2181  MVT::ValueType VT = N->getValueType(0);
2182
2183  // If this is a signed shift right, and the high bit is modified
2184  // by the logical operation, do not perform the transformation.
2185  // The highBitSet boolean indicates the value of the high bit of
2186  // the constant which would cause it to be modified for this
2187  // operation.
2188  if (N->getOpcode() == ISD::SRA) {
2189    uint64_t BinOpRHSSign = BinOpCst->getValue() >> MVT::getSizeInBits(VT)-1;
2190    if ((bool)BinOpRHSSign != HighBitSet)
2191      return SDOperand();
2192  }
2193
2194  // Fold the constants, shifting the binop RHS by the shift amount.
2195  SDOperand NewRHS = DAG.getNode(N->getOpcode(), N->getValueType(0),
2196                                 LHS->getOperand(1), N->getOperand(1));
2197
2198  // Create the new shift.
2199  SDOperand NewShift = DAG.getNode(N->getOpcode(), VT, LHS->getOperand(0),
2200                                   N->getOperand(1));
2201
2202  // Create the new binop.
2203  return DAG.getNode(LHS->getOpcode(), VT, NewShift, NewRHS);
2204}
2205
2206
2207SDOperand DAGCombiner::visitSHL(SDNode *N) {
2208  SDOperand N0 = N->getOperand(0);
2209  SDOperand N1 = N->getOperand(1);
2210  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2211  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2212  MVT::ValueType VT = N0.getValueType();
2213  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2214
2215  // fold (shl c1, c2) -> c1<<c2
2216  if (N0C && N1C)
2217    return DAG.getNode(ISD::SHL, VT, N0, N1);
2218  // fold (shl 0, x) -> 0
2219  if (N0C && N0C->isNullValue())
2220    return N0;
2221  // fold (shl x, c >= size(x)) -> undef
2222  if (N1C && N1C->getValue() >= OpSizeInBits)
2223    return DAG.getNode(ISD::UNDEF, VT);
2224  // fold (shl x, 0) -> x
2225  if (N1C && N1C->isNullValue())
2226    return N0;
2227  // if (shl x, c) is known to be zero, return 0
2228  if (DAG.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
2229    return DAG.getConstant(0, VT);
2230  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2231    return SDOperand(N, 0);
2232  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
2233  if (N1C && N0.getOpcode() == ISD::SHL &&
2234      N0.getOperand(1).getOpcode() == ISD::Constant) {
2235    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2236    uint64_t c2 = N1C->getValue();
2237    if (c1 + c2 > OpSizeInBits)
2238      return DAG.getConstant(0, VT);
2239    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
2240                       DAG.getConstant(c1 + c2, N1.getValueType()));
2241  }
2242  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
2243  //                               (srl (and x, -1 << c1), c1-c2)
2244  if (N1C && N0.getOpcode() == ISD::SRL &&
2245      N0.getOperand(1).getOpcode() == ISD::Constant) {
2246    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2247    uint64_t c2 = N1C->getValue();
2248    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2249                                 DAG.getConstant(~0ULL << c1, VT));
2250    if (c2 > c1)
2251      return DAG.getNode(ISD::SHL, VT, Mask,
2252                         DAG.getConstant(c2-c1, N1.getValueType()));
2253    else
2254      return DAG.getNode(ISD::SRL, VT, Mask,
2255                         DAG.getConstant(c1-c2, N1.getValueType()));
2256  }
2257  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
2258  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
2259    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
2260                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
2261
2262  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2263}
2264
2265SDOperand DAGCombiner::visitSRA(SDNode *N) {
2266  SDOperand N0 = N->getOperand(0);
2267  SDOperand N1 = N->getOperand(1);
2268  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2269  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2270  MVT::ValueType VT = N0.getValueType();
2271
2272  // fold (sra c1, c2) -> c1>>c2
2273  if (N0C && N1C)
2274    return DAG.getNode(ISD::SRA, VT, N0, N1);
2275  // fold (sra 0, x) -> 0
2276  if (N0C && N0C->isNullValue())
2277    return N0;
2278  // fold (sra -1, x) -> -1
2279  if (N0C && N0C->isAllOnesValue())
2280    return N0;
2281  // fold (sra x, c >= size(x)) -> undef
2282  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
2283    return DAG.getNode(ISD::UNDEF, VT);
2284  // fold (sra x, 0) -> x
2285  if (N1C && N1C->isNullValue())
2286    return N0;
2287  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
2288  // sext_inreg.
2289  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
2290    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
2291    MVT::ValueType EVT;
2292    switch (LowBits) {
2293    default: EVT = MVT::Other; break;
2294    case  1: EVT = MVT::i1;    break;
2295    case  8: EVT = MVT::i8;    break;
2296    case 16: EVT = MVT::i16;   break;
2297    case 32: EVT = MVT::i32;   break;
2298    }
2299    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
2300      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
2301                         DAG.getValueType(EVT));
2302  }
2303
2304  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
2305  if (N1C && N0.getOpcode() == ISD::SRA) {
2306    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2307      unsigned Sum = N1C->getValue() + C1->getValue();
2308      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
2309      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
2310                         DAG.getConstant(Sum, N1C->getValueType(0)));
2311    }
2312  }
2313
2314  // Simplify, based on bits shifted out of the LHS.
2315  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2316    return SDOperand(N, 0);
2317
2318
2319  // If the sign bit is known to be zero, switch this to a SRL.
2320  if (DAG.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
2321    return DAG.getNode(ISD::SRL, VT, N0, N1);
2322
2323  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2324}
2325
2326SDOperand DAGCombiner::visitSRL(SDNode *N) {
2327  SDOperand N0 = N->getOperand(0);
2328  SDOperand N1 = N->getOperand(1);
2329  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2330  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2331  MVT::ValueType VT = N0.getValueType();
2332  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
2333
2334  // fold (srl c1, c2) -> c1 >>u c2
2335  if (N0C && N1C)
2336    return DAG.getNode(ISD::SRL, VT, N0, N1);
2337  // fold (srl 0, x) -> 0
2338  if (N0C && N0C->isNullValue())
2339    return N0;
2340  // fold (srl x, c >= size(x)) -> undef
2341  if (N1C && N1C->getValue() >= OpSizeInBits)
2342    return DAG.getNode(ISD::UNDEF, VT);
2343  // fold (srl x, 0) -> x
2344  if (N1C && N1C->isNullValue())
2345    return N0;
2346  // if (srl x, c) is known to be zero, return 0
2347  if (N1C && DAG.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
2348    return DAG.getConstant(0, VT);
2349
2350  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
2351  if (N1C && N0.getOpcode() == ISD::SRL &&
2352      N0.getOperand(1).getOpcode() == ISD::Constant) {
2353    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2354    uint64_t c2 = N1C->getValue();
2355    if (c1 + c2 > OpSizeInBits)
2356      return DAG.getConstant(0, VT);
2357    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
2358                       DAG.getConstant(c1 + c2, N1.getValueType()));
2359  }
2360
2361  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
2362  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
2363    // Shifting in all undef bits?
2364    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
2365    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
2366      return DAG.getNode(ISD::UNDEF, VT);
2367
2368    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
2369    AddToWorkList(SmallShift.Val);
2370    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
2371  }
2372
2373  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
2374  // bit, which is unmodified by sra.
2375  if (N1C && N1C->getValue()+1 == MVT::getSizeInBits(VT)) {
2376    if (N0.getOpcode() == ISD::SRA)
2377      return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), N1);
2378  }
2379
2380  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
2381  if (N1C && N0.getOpcode() == ISD::CTLZ &&
2382      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
2383    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
2384    DAG.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
2385
2386    // If any of the input bits are KnownOne, then the input couldn't be all
2387    // zeros, thus the result of the srl will always be zero.
2388    if (KnownOne) return DAG.getConstant(0, VT);
2389
2390    // If all of the bits input the to ctlz node are known to be zero, then
2391    // the result of the ctlz is "32" and the result of the shift is one.
2392    uint64_t UnknownBits = ~KnownZero & Mask;
2393    if (UnknownBits == 0) return DAG.getConstant(1, VT);
2394
2395    // Otherwise, check to see if there is exactly one bit input to the ctlz.
2396    if ((UnknownBits & (UnknownBits-1)) == 0) {
2397      // Okay, we know that only that the single bit specified by UnknownBits
2398      // could be set on input to the CTLZ node.  If this bit is set, the SRL
2399      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
2400      // to an SRL,XOR pair, which is likely to simplify more.
2401      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
2402      SDOperand Op = N0.getOperand(0);
2403      if (ShAmt) {
2404        Op = DAG.getNode(ISD::SRL, VT, Op,
2405                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
2406        AddToWorkList(Op.Val);
2407      }
2408      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
2409    }
2410  }
2411
2412  // fold operands of srl based on knowledge that the low bits are not
2413  // demanded.
2414  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
2415    return SDOperand(N, 0);
2416
2417  return N1C ? visitShiftByConstant(N, N1C->getValue()) : SDOperand();
2418}
2419
2420SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
2421  SDOperand N0 = N->getOperand(0);
2422  MVT::ValueType VT = N->getValueType(0);
2423
2424  // fold (ctlz c1) -> c2
2425  if (isa<ConstantSDNode>(N0))
2426    return DAG.getNode(ISD::CTLZ, VT, N0);
2427  return SDOperand();
2428}
2429
2430SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
2431  SDOperand N0 = N->getOperand(0);
2432  MVT::ValueType VT = N->getValueType(0);
2433
2434  // fold (cttz c1) -> c2
2435  if (isa<ConstantSDNode>(N0))
2436    return DAG.getNode(ISD::CTTZ, VT, N0);
2437  return SDOperand();
2438}
2439
2440SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
2441  SDOperand N0 = N->getOperand(0);
2442  MVT::ValueType VT = N->getValueType(0);
2443
2444  // fold (ctpop c1) -> c2
2445  if (isa<ConstantSDNode>(N0))
2446    return DAG.getNode(ISD::CTPOP, VT, N0);
2447  return SDOperand();
2448}
2449
2450SDOperand DAGCombiner::visitSELECT(SDNode *N) {
2451  SDOperand N0 = N->getOperand(0);
2452  SDOperand N1 = N->getOperand(1);
2453  SDOperand N2 = N->getOperand(2);
2454  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2455  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2456  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2457  MVT::ValueType VT = N->getValueType(0);
2458  MVT::ValueType VT0 = N0.getValueType();
2459
2460  // fold select C, X, X -> X
2461  if (N1 == N2)
2462    return N1;
2463  // fold select true, X, Y -> X
2464  if (N0C && !N0C->isNullValue())
2465    return N1;
2466  // fold select false, X, Y -> Y
2467  if (N0C && N0C->isNullValue())
2468    return N2;
2469  // fold select C, 1, X -> C | X
2470  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
2471    return DAG.getNode(ISD::OR, VT, N0, N2);
2472  // fold select C, 0, 1 -> ~C
2473  if (MVT::isInteger(VT) && MVT::isInteger(VT0) &&
2474      N1C && N2C && N1C->isNullValue() && N2C->getValue() == 1) {
2475    SDOperand XORNode = DAG.getNode(ISD::XOR, VT0, N0, DAG.getConstant(1, VT0));
2476    if (VT == VT0)
2477      return XORNode;
2478    AddToWorkList(XORNode.Val);
2479    if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(VT0))
2480      return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode);
2481    return DAG.getNode(ISD::TRUNCATE, VT, XORNode);
2482  }
2483  // fold select C, 0, X -> ~C & X
2484  if (VT == VT0 && VT == MVT::i1 && N1C && N1C->isNullValue()) {
2485    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2486    AddToWorkList(XORNode.Val);
2487    return DAG.getNode(ISD::AND, VT, XORNode, N2);
2488  }
2489  // fold select C, X, 1 -> ~C | X
2490  if (VT == VT0 && VT == MVT::i1 && N2C && N2C->getValue() == 1) {
2491    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
2492    AddToWorkList(XORNode.Val);
2493    return DAG.getNode(ISD::OR, VT, XORNode, N1);
2494  }
2495  // fold select C, X, 0 -> C & X
2496  // FIXME: this should check for C type == X type, not i1?
2497  if (MVT::i1 == VT && N2C && N2C->isNullValue())
2498    return DAG.getNode(ISD::AND, VT, N0, N1);
2499  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
2500  if (MVT::i1 == VT && N0 == N1)
2501    return DAG.getNode(ISD::OR, VT, N0, N2);
2502  // fold X ? Y : X --> X ? Y : 0 --> X & Y
2503  if (MVT::i1 == VT && N0 == N2)
2504    return DAG.getNode(ISD::AND, VT, N0, N1);
2505
2506  // If we can fold this based on the true/false value, do so.
2507  if (SimplifySelectOps(N, N1, N2))
2508    return SDOperand(N, 0);  // Don't revisit N.
2509
2510  // fold selects based on a setcc into other things, such as min/max/abs
2511  if (N0.getOpcode() == ISD::SETCC)
2512    // FIXME:
2513    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
2514    // having to say they don't support SELECT_CC on every type the DAG knows
2515    // about, since there is no way to mark an opcode illegal at all value types
2516    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
2517      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
2518                         N1, N2, N0.getOperand(2));
2519    else
2520      return SimplifySelect(N0, N1, N2);
2521  return SDOperand();
2522}
2523
2524SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
2525  SDOperand N0 = N->getOperand(0);
2526  SDOperand N1 = N->getOperand(1);
2527  SDOperand N2 = N->getOperand(2);
2528  SDOperand N3 = N->getOperand(3);
2529  SDOperand N4 = N->getOperand(4);
2530  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
2531
2532  // fold select_cc lhs, rhs, x, x, cc -> x
2533  if (N2 == N3)
2534    return N2;
2535
2536  // Determine if the condition we're dealing with is constant
2537  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
2538  if (SCC.Val) AddToWorkList(SCC.Val);
2539
2540  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val)) {
2541    if (SCCC->getValue())
2542      return N2;    // cond always true -> true val
2543    else
2544      return N3;    // cond always false -> false val
2545  }
2546
2547  // Fold to a simpler select_cc
2548  if (SCC.Val && SCC.getOpcode() == ISD::SETCC)
2549    return DAG.getNode(ISD::SELECT_CC, N2.getValueType(),
2550                       SCC.getOperand(0), SCC.getOperand(1), N2, N3,
2551                       SCC.getOperand(2));
2552
2553  // If we can fold this based on the true/false value, do so.
2554  if (SimplifySelectOps(N, N2, N3))
2555    return SDOperand(N, 0);  // Don't revisit N.
2556
2557  // fold select_cc into other things, such as min/max/abs
2558  return SimplifySelectCC(N0, N1, N2, N3, CC);
2559}
2560
2561SDOperand DAGCombiner::visitSETCC(SDNode *N) {
2562  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
2563                       cast<CondCodeSDNode>(N->getOperand(2))->get());
2564}
2565
2566// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
2567// "fold ({s|z}ext (load x)) -> ({s|z}ext (truncate ({s|z}extload x)))"
2568// transformation. Returns true if extension are possible and the above
2569// mentioned transformation is profitable.
2570static bool ExtendUsesToFormExtLoad(SDNode *N, SDOperand N0,
2571                                    unsigned ExtOpc,
2572                                    SmallVector<SDNode*, 4> &ExtendNodes,
2573                                    TargetLowering &TLI) {
2574  bool HasCopyToRegUses = false;
2575  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
2576  for (SDNode::use_iterator UI = N0.Val->use_begin(), UE = N0.Val->use_end();
2577       UI != UE; ++UI) {
2578    SDNode *User = *UI;
2579    if (User == N)
2580      continue;
2581    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
2582    if (User->getOpcode() == ISD::SETCC) {
2583      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
2584      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
2585        // Sign bits will be lost after a zext.
2586        return false;
2587      bool Add = false;
2588      for (unsigned i = 0; i != 2; ++i) {
2589        SDOperand UseOp = User->getOperand(i);
2590        if (UseOp == N0)
2591          continue;
2592        if (!isa<ConstantSDNode>(UseOp))
2593          return false;
2594        Add = true;
2595      }
2596      if (Add)
2597        ExtendNodes.push_back(User);
2598    } else {
2599      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2600        SDOperand UseOp = User->getOperand(i);
2601        if (UseOp == N0) {
2602          // If truncate from extended type to original load type is free
2603          // on this target, then it's ok to extend a CopyToReg.
2604          if (isTruncFree && User->getOpcode() == ISD::CopyToReg)
2605            HasCopyToRegUses = true;
2606          else
2607            return false;
2608        }
2609      }
2610    }
2611  }
2612
2613  if (HasCopyToRegUses) {
2614    bool BothLiveOut = false;
2615    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
2616         UI != UE; ++UI) {
2617      SDNode *User = *UI;
2618      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2619        SDOperand UseOp = User->getOperand(i);
2620        if (UseOp.Val == N && UseOp.ResNo == 0) {
2621          BothLiveOut = true;
2622          break;
2623        }
2624      }
2625    }
2626    if (BothLiveOut)
2627      // Both unextended and extended values are live out. There had better be
2628      // good a reason for the transformation.
2629      return ExtendNodes.size();
2630  }
2631  return true;
2632}
2633
2634SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
2635  SDOperand N0 = N->getOperand(0);
2636  MVT::ValueType VT = N->getValueType(0);
2637
2638  // fold (sext c1) -> c1
2639  if (isa<ConstantSDNode>(N0))
2640    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
2641
2642  // fold (sext (sext x)) -> (sext x)
2643  // fold (sext (aext x)) -> (sext x)
2644  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2645    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
2646
2647  // fold (sext (truncate (load x))) -> (sext (smaller load x))
2648  // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
2649  if (N0.getOpcode() == ISD::TRUNCATE) {
2650    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2651    if (NarrowLoad.Val) {
2652      if (NarrowLoad.Val != N0.Val)
2653        CombineTo(N0.Val, NarrowLoad);
2654      return DAG.getNode(ISD::SIGN_EXTEND, VT, NarrowLoad);
2655    }
2656  }
2657
2658  // See if the value being truncated is already sign extended.  If so, just
2659  // eliminate the trunc/sext pair.
2660  if (N0.getOpcode() == ISD::TRUNCATE) {
2661    SDOperand Op = N0.getOperand(0);
2662    unsigned OpBits   = MVT::getSizeInBits(Op.getValueType());
2663    unsigned MidBits  = MVT::getSizeInBits(N0.getValueType());
2664    unsigned DestBits = MVT::getSizeInBits(VT);
2665    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
2666
2667    if (OpBits == DestBits) {
2668      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
2669      // bits, it is already ready.
2670      if (NumSignBits > DestBits-MidBits)
2671        return Op;
2672    } else if (OpBits < DestBits) {
2673      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
2674      // bits, just sext from i32.
2675      if (NumSignBits > OpBits-MidBits)
2676        return DAG.getNode(ISD::SIGN_EXTEND, VT, Op);
2677    } else {
2678      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
2679      // bits, just truncate to i32.
2680      if (NumSignBits > OpBits-MidBits)
2681        return DAG.getNode(ISD::TRUNCATE, VT, Op);
2682    }
2683
2684    // fold (sext (truncate x)) -> (sextinreg x).
2685    if (!AfterLegalize || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
2686                                               N0.getValueType())) {
2687      if (Op.getValueType() < VT)
2688        Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2689      else if (Op.getValueType() > VT)
2690        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2691      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, Op,
2692                         DAG.getValueType(N0.getValueType()));
2693    }
2694  }
2695
2696  // fold (sext (load x)) -> (sext (truncate (sextload x)))
2697  if (ISD::isNON_EXTLoad(N0.Val) &&
2698      (!AfterLegalize||TLI.isLoadXLegal(ISD::SEXTLOAD, N0.getValueType()))){
2699    bool DoXform = true;
2700    SmallVector<SDNode*, 4> SetCCs;
2701    if (!N0.hasOneUse())
2702      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
2703    if (DoXform) {
2704      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2705      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2706                                         LN0->getBasePtr(), LN0->getSrcValue(),
2707                                         LN0->getSrcValueOffset(),
2708                                         N0.getValueType(),
2709                                         LN0->isVolatile(),
2710                                         LN0->getAlignment());
2711      CombineTo(N, ExtLoad);
2712      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2713      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2714      // Extend SetCC uses if necessary.
2715      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2716        SDNode *SetCC = SetCCs[i];
2717        SmallVector<SDOperand, 4> Ops;
2718        for (unsigned j = 0; j != 2; ++j) {
2719          SDOperand SOp = SetCC->getOperand(j);
2720          if (SOp == Trunc)
2721            Ops.push_back(ExtLoad);
2722          else
2723            Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, VT, SOp));
2724          }
2725        Ops.push_back(SetCC->getOperand(2));
2726        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2727                                     &Ops[0], Ops.size()));
2728      }
2729      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2730    }
2731  }
2732
2733  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
2734  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
2735  if ((ISD::isSEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2736      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2737    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2738    MVT::ValueType EVT = LN0->getLoadedVT();
2739    if (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT)) {
2740      SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
2741                                         LN0->getBasePtr(), LN0->getSrcValue(),
2742                                         LN0->getSrcValueOffset(), EVT,
2743                                         LN0->isVolatile(),
2744                                         LN0->getAlignment());
2745      CombineTo(N, ExtLoad);
2746      CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2747                ExtLoad.getValue(1));
2748      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2749    }
2750  }
2751
2752  // sext(setcc x,y,cc) -> select_cc x, y, -1, 0, cc
2753  if (N0.getOpcode() == ISD::SETCC) {
2754    SDOperand SCC =
2755      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2756                       DAG.getConstant(~0ULL, VT), DAG.getConstant(0, VT),
2757                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2758    if (SCC.Val) return SCC;
2759  }
2760
2761  return SDOperand();
2762}
2763
2764SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
2765  SDOperand N0 = N->getOperand(0);
2766  MVT::ValueType VT = N->getValueType(0);
2767
2768  // fold (zext c1) -> c1
2769  if (isa<ConstantSDNode>(N0))
2770    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
2771  // fold (zext (zext x)) -> (zext x)
2772  // fold (zext (aext x)) -> (zext x)
2773  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
2774    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
2775
2776  // fold (zext (truncate (load x))) -> (zext (smaller load x))
2777  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
2778  if (N0.getOpcode() == ISD::TRUNCATE) {
2779    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2780    if (NarrowLoad.Val) {
2781      if (NarrowLoad.Val != N0.Val)
2782        CombineTo(N0.Val, NarrowLoad);
2783      return DAG.getNode(ISD::ZERO_EXTEND, VT, NarrowLoad);
2784    }
2785  }
2786
2787  // fold (zext (truncate x)) -> (and x, mask)
2788  if (N0.getOpcode() == ISD::TRUNCATE &&
2789      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, VT))) {
2790    SDOperand Op = N0.getOperand(0);
2791    if (Op.getValueType() < VT) {
2792      Op = DAG.getNode(ISD::ANY_EXTEND, VT, Op);
2793    } else if (Op.getValueType() > VT) {
2794      Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2795    }
2796    return DAG.getZeroExtendInReg(Op, N0.getValueType());
2797  }
2798
2799  // fold (zext (and (trunc x), cst)) -> (and x, cst).
2800  if (N0.getOpcode() == ISD::AND &&
2801      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2802      N0.getOperand(1).getOpcode() == ISD::Constant) {
2803    SDOperand X = N0.getOperand(0).getOperand(0);
2804    if (X.getValueType() < VT) {
2805      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2806    } else if (X.getValueType() > VT) {
2807      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2808    }
2809    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2810    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2811  }
2812
2813  // fold (zext (load x)) -> (zext (truncate (zextload x)))
2814  if (ISD::isNON_EXTLoad(N0.Val) &&
2815      (!AfterLegalize||TLI.isLoadXLegal(ISD::ZEXTLOAD, N0.getValueType()))) {
2816    bool DoXform = true;
2817    SmallVector<SDNode*, 4> SetCCs;
2818    if (!N0.hasOneUse())
2819      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
2820    if (DoXform) {
2821      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2822      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2823                                         LN0->getBasePtr(), LN0->getSrcValue(),
2824                                         LN0->getSrcValueOffset(),
2825                                         N0.getValueType(),
2826                                         LN0->isVolatile(),
2827                                         LN0->getAlignment());
2828      CombineTo(N, ExtLoad);
2829      SDOperand Trunc = DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad);
2830      CombineTo(N0.Val, Trunc, ExtLoad.getValue(1));
2831      // Extend SetCC uses if necessary.
2832      for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
2833        SDNode *SetCC = SetCCs[i];
2834        SmallVector<SDOperand, 4> Ops;
2835        for (unsigned j = 0; j != 2; ++j) {
2836          SDOperand SOp = SetCC->getOperand(j);
2837          if (SOp == Trunc)
2838            Ops.push_back(ExtLoad);
2839          else
2840            Ops.push_back(DAG.getNode(ISD::ZERO_EXTEND, VT, SOp));
2841          }
2842        Ops.push_back(SetCC->getOperand(2));
2843        CombineTo(SetCC, DAG.getNode(ISD::SETCC, SetCC->getValueType(0),
2844                                     &Ops[0], Ops.size()));
2845      }
2846      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2847    }
2848  }
2849
2850  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
2851  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
2852  if ((ISD::isZEXTLoad(N0.Val) || ISD::isEXTLoad(N0.Val)) &&
2853      ISD::isUNINDEXEDLoad(N0.Val) && N0.hasOneUse()) {
2854    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2855    MVT::ValueType EVT = LN0->getLoadedVT();
2856    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, LN0->getChain(),
2857                                       LN0->getBasePtr(), LN0->getSrcValue(),
2858                                       LN0->getSrcValueOffset(), EVT,
2859                                       LN0->isVolatile(),
2860                                       LN0->getAlignment());
2861    CombineTo(N, ExtLoad);
2862    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2863              ExtLoad.getValue(1));
2864    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2865  }
2866
2867  // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2868  if (N0.getOpcode() == ISD::SETCC) {
2869    SDOperand SCC =
2870      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2871                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2872                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2873    if (SCC.Val) return SCC;
2874  }
2875
2876  return SDOperand();
2877}
2878
2879SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
2880  SDOperand N0 = N->getOperand(0);
2881  MVT::ValueType VT = N->getValueType(0);
2882
2883  // fold (aext c1) -> c1
2884  if (isa<ConstantSDNode>(N0))
2885    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
2886  // fold (aext (aext x)) -> (aext x)
2887  // fold (aext (zext x)) -> (zext x)
2888  // fold (aext (sext x)) -> (sext x)
2889  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
2890      N0.getOpcode() == ISD::ZERO_EXTEND ||
2891      N0.getOpcode() == ISD::SIGN_EXTEND)
2892    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2893
2894  // fold (aext (truncate (load x))) -> (aext (smaller load x))
2895  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
2896  if (N0.getOpcode() == ISD::TRUNCATE) {
2897    SDOperand NarrowLoad = ReduceLoadWidth(N0.Val);
2898    if (NarrowLoad.Val) {
2899      if (NarrowLoad.Val != N0.Val)
2900        CombineTo(N0.Val, NarrowLoad);
2901      return DAG.getNode(ISD::ANY_EXTEND, VT, NarrowLoad);
2902    }
2903  }
2904
2905  // fold (aext (truncate x))
2906  if (N0.getOpcode() == ISD::TRUNCATE) {
2907    SDOperand TruncOp = N0.getOperand(0);
2908    if (TruncOp.getValueType() == VT)
2909      return TruncOp; // x iff x size == zext size.
2910    if (TruncOp.getValueType() > VT)
2911      return DAG.getNode(ISD::TRUNCATE, VT, TruncOp);
2912    return DAG.getNode(ISD::ANY_EXTEND, VT, TruncOp);
2913  }
2914
2915  // fold (aext (and (trunc x), cst)) -> (and x, cst).
2916  if (N0.getOpcode() == ISD::AND &&
2917      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
2918      N0.getOperand(1).getOpcode() == ISD::Constant) {
2919    SDOperand X = N0.getOperand(0).getOperand(0);
2920    if (X.getValueType() < VT) {
2921      X = DAG.getNode(ISD::ANY_EXTEND, VT, X);
2922    } else if (X.getValueType() > VT) {
2923      X = DAG.getNode(ISD::TRUNCATE, VT, X);
2924    }
2925    uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
2926    return DAG.getNode(ISD::AND, VT, X, DAG.getConstant(Mask, VT));
2927  }
2928
2929  // fold (aext (load x)) -> (aext (truncate (extload x)))
2930  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
2931      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
2932    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2933    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
2934                                       LN0->getBasePtr(), LN0->getSrcValue(),
2935                                       LN0->getSrcValueOffset(),
2936                                       N0.getValueType(),
2937                                       LN0->isVolatile(),
2938                                       LN0->getAlignment());
2939    CombineTo(N, ExtLoad);
2940    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2941              ExtLoad.getValue(1));
2942    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2943  }
2944
2945  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
2946  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
2947  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
2948  if (N0.getOpcode() == ISD::LOAD &&
2949      !ISD::isNON_EXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
2950      N0.hasOneUse()) {
2951    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
2952    MVT::ValueType EVT = LN0->getLoadedVT();
2953    SDOperand ExtLoad = DAG.getExtLoad(LN0->getExtensionType(), VT,
2954                                       LN0->getChain(), LN0->getBasePtr(),
2955                                       LN0->getSrcValue(),
2956                                       LN0->getSrcValueOffset(), EVT,
2957                                       LN0->isVolatile(),
2958                                       LN0->getAlignment());
2959    CombineTo(N, ExtLoad);
2960    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
2961              ExtLoad.getValue(1));
2962    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2963  }
2964
2965  // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
2966  if (N0.getOpcode() == ISD::SETCC) {
2967    SDOperand SCC =
2968      SimplifySelectCC(N0.getOperand(0), N0.getOperand(1),
2969                       DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2970                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
2971    if (SCC.Val)
2972      return SCC;
2973  }
2974
2975  return SDOperand();
2976}
2977
2978/// GetDemandedBits - See if the specified operand can be simplified with the
2979/// knowledge that only the bits specified by Mask are used.  If so, return the
2980/// simpler operand, otherwise return a null SDOperand.
2981SDOperand DAGCombiner::GetDemandedBits(SDOperand V, uint64_t Mask) {
2982  switch (V.getOpcode()) {
2983  default: break;
2984  case ISD::OR:
2985  case ISD::XOR:
2986    // If the LHS or RHS don't contribute bits to the or, drop them.
2987    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
2988      return V.getOperand(1);
2989    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
2990      return V.getOperand(0);
2991    break;
2992  case ISD::SRL:
2993    // Only look at single-use SRLs.
2994    if (!V.Val->hasOneUse())
2995      break;
2996    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2997      // See if we can recursively simplify the LHS.
2998      unsigned Amt = RHSC->getValue();
2999      Mask = (Mask << Amt) & MVT::getIntVTBitMask(V.getValueType());
3000      SDOperand SimplifyLHS = GetDemandedBits(V.getOperand(0), Mask);
3001      if (SimplifyLHS.Val) {
3002        return DAG.getNode(ISD::SRL, V.getValueType(),
3003                           SimplifyLHS, V.getOperand(1));
3004      }
3005    }
3006  }
3007  return SDOperand();
3008}
3009
3010/// ReduceLoadWidth - If the result of a wider load is shifted to right of N
3011/// bits and then truncated to a narrower type and where N is a multiple
3012/// of number of bits of the narrower type, transform it to a narrower load
3013/// from address + N / num of bits of new type. If the result is to be
3014/// extended, also fold the extension to form a extending load.
3015SDOperand DAGCombiner::ReduceLoadWidth(SDNode *N) {
3016  unsigned Opc = N->getOpcode();
3017  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
3018  SDOperand N0 = N->getOperand(0);
3019  MVT::ValueType VT = N->getValueType(0);
3020  MVT::ValueType EVT = N->getValueType(0);
3021
3022  // Special case: SIGN_EXTEND_INREG is basically truncating to EVT then
3023  // extended to VT.
3024  if (Opc == ISD::SIGN_EXTEND_INREG) {
3025    ExtType = ISD::SEXTLOAD;
3026    EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3027    if (AfterLegalize && !TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))
3028      return SDOperand();
3029  }
3030
3031  unsigned EVTBits = MVT::getSizeInBits(EVT);
3032  unsigned ShAmt = 0;
3033  bool CombineSRL =  false;
3034  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
3035    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3036      ShAmt = N01->getValue();
3037      // Is the shift amount a multiple of size of VT?
3038      if ((ShAmt & (EVTBits-1)) == 0) {
3039        N0 = N0.getOperand(0);
3040        if (MVT::getSizeInBits(N0.getValueType()) <= EVTBits)
3041          return SDOperand();
3042        CombineSRL = true;
3043      }
3044    }
3045  }
3046
3047  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3048      // Do not allow folding to i1 here.  i1 is implicitly stored in memory in
3049      // zero extended form: by shrinking the load, we lose track of the fact
3050      // that it is already zero extended.
3051      // FIXME: This should be reevaluated.
3052      VT != MVT::i1) {
3053    assert(MVT::getSizeInBits(N0.getValueType()) > EVTBits &&
3054           "Cannot truncate to larger type!");
3055    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3056    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
3057    // For big endian targets, we need to adjust the offset to the pointer to
3058    // load the correct bytes.
3059    if (!TLI.isLittleEndian()) {
3060      unsigned LVTStoreBits = MVT::getStoreSizeInBits(N0.getValueType());
3061      unsigned EVTStoreBits = MVT::getStoreSizeInBits(EVT);
3062      ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
3063    }
3064    uint64_t PtrOff =  ShAmt / 8;
3065    unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
3066    SDOperand NewPtr = DAG.getNode(ISD::ADD, PtrType, LN0->getBasePtr(),
3067                                   DAG.getConstant(PtrOff, PtrType));
3068    AddToWorkList(NewPtr.Val);
3069    SDOperand Load = (ExtType == ISD::NON_EXTLOAD)
3070      ? DAG.getLoad(VT, LN0->getChain(), NewPtr,
3071                    LN0->getSrcValue(), LN0->getSrcValueOffset(),
3072                    LN0->isVolatile(), NewAlign)
3073      : DAG.getExtLoad(ExtType, VT, LN0->getChain(), NewPtr,
3074                       LN0->getSrcValue(), LN0->getSrcValueOffset(), EVT,
3075                       LN0->isVolatile(), NewAlign);
3076    AddToWorkList(N);
3077    if (CombineSRL) {
3078      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
3079      CombineTo(N->getOperand(0).Val, Load);
3080    } else
3081      CombineTo(N0.Val, Load, Load.getValue(1));
3082    if (ShAmt) {
3083      if (Opc == ISD::SIGN_EXTEND_INREG)
3084        return DAG.getNode(Opc, VT, Load, N->getOperand(1));
3085      else
3086        return DAG.getNode(Opc, VT, Load);
3087    }
3088    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3089  }
3090
3091  return SDOperand();
3092}
3093
3094
3095SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
3096  SDOperand N0 = N->getOperand(0);
3097  SDOperand N1 = N->getOperand(1);
3098  MVT::ValueType VT = N->getValueType(0);
3099  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
3100  unsigned EVTBits = MVT::getSizeInBits(EVT);
3101
3102  // fold (sext_in_reg c1) -> c1
3103  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
3104    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
3105
3106  // If the input is already sign extended, just drop the extension.
3107  if (DAG.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
3108    return N0;
3109
3110  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
3111  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3112      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
3113    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
3114  }
3115
3116  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
3117  if (DAG.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
3118    return DAG.getZeroExtendInReg(N0, EVT);
3119
3120  // fold operands of sext_in_reg based on knowledge that the top bits are not
3121  // demanded.
3122  if (SimplifyDemandedBits(SDOperand(N, 0)))
3123    return SDOperand(N, 0);
3124
3125  // fold (sext_in_reg (load x)) -> (smaller sextload x)
3126  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
3127  SDOperand NarrowLoad = ReduceLoadWidth(N);
3128  if (NarrowLoad.Val)
3129    return NarrowLoad;
3130
3131  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
3132  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
3133  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
3134  if (N0.getOpcode() == ISD::SRL) {
3135    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3136      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
3137        // We can turn this into an SRA iff the input to the SRL is already sign
3138        // extended enough.
3139        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
3140        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
3141          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
3142      }
3143  }
3144
3145  // fold (sext_inreg (extload x)) -> (sextload x)
3146  if (ISD::isEXTLoad(N0.Val) &&
3147      ISD::isUNINDEXEDLoad(N0.Val) &&
3148      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
3149      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3150    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3151    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3152                                       LN0->getBasePtr(), LN0->getSrcValue(),
3153                                       LN0->getSrcValueOffset(), EVT,
3154                                       LN0->isVolatile(),
3155                                       LN0->getAlignment());
3156    CombineTo(N, ExtLoad);
3157    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3158    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3159  }
3160  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
3161  if (ISD::isZEXTLoad(N0.Val) && ISD::isUNINDEXEDLoad(N0.Val) &&
3162      N0.hasOneUse() &&
3163      EVT == cast<LoadSDNode>(N0)->getLoadedVT() &&
3164      (!AfterLegalize || TLI.isLoadXLegal(ISD::SEXTLOAD, EVT))) {
3165    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3166    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, LN0->getChain(),
3167                                       LN0->getBasePtr(), LN0->getSrcValue(),
3168                                       LN0->getSrcValueOffset(), EVT,
3169                                       LN0->isVolatile(),
3170                                       LN0->getAlignment());
3171    CombineTo(N, ExtLoad);
3172    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
3173    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3174  }
3175  return SDOperand();
3176}
3177
3178SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
3179  SDOperand N0 = N->getOperand(0);
3180  MVT::ValueType VT = N->getValueType(0);
3181
3182  // noop truncate
3183  if (N0.getValueType() == N->getValueType(0))
3184    return N0;
3185  // fold (truncate c1) -> c1
3186  if (isa<ConstantSDNode>(N0))
3187    return DAG.getNode(ISD::TRUNCATE, VT, N0);
3188  // fold (truncate (truncate x)) -> (truncate x)
3189  if (N0.getOpcode() == ISD::TRUNCATE)
3190    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3191  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
3192  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
3193      N0.getOpcode() == ISD::ANY_EXTEND) {
3194    if (N0.getOperand(0).getValueType() < VT)
3195      // if the source is smaller than the dest, we still need an extend
3196      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
3197    else if (N0.getOperand(0).getValueType() > VT)
3198      // if the source is larger than the dest, than we just need the truncate
3199      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
3200    else
3201      // if the source and dest are the same type, we can drop both the extend
3202      // and the truncate
3203      return N0.getOperand(0);
3204  }
3205
3206  // See if we can simplify the input to this truncate through knowledge that
3207  // only the low bits are being used.  For example "trunc (or (shl x, 8), y)"
3208  // -> trunc y
3209  SDOperand Shorter = GetDemandedBits(N0, MVT::getIntVTBitMask(VT));
3210  if (Shorter.Val)
3211    return DAG.getNode(ISD::TRUNCATE, VT, Shorter);
3212
3213  // fold (truncate (load x)) -> (smaller load x)
3214  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
3215  return ReduceLoadWidth(N);
3216}
3217
3218SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
3219  SDOperand N0 = N->getOperand(0);
3220  MVT::ValueType VT = N->getValueType(0);
3221
3222  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
3223  // Only do this before legalize, since afterward the target may be depending
3224  // on the bitconvert.
3225  // First check to see if this is all constant.
3226  if (!AfterLegalize &&
3227      N0.getOpcode() == ISD::BUILD_VECTOR && N0.Val->hasOneUse() &&
3228      MVT::isVector(VT)) {
3229    bool isSimple = true;
3230    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i)
3231      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
3232          N0.getOperand(i).getOpcode() != ISD::Constant &&
3233          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
3234        isSimple = false;
3235        break;
3236      }
3237
3238    MVT::ValueType DestEltVT = MVT::getVectorElementType(N->getValueType(0));
3239    assert(!MVT::isVector(DestEltVT) &&
3240           "Element type of vector ValueType must not be vector!");
3241    if (isSimple) {
3242      return ConstantFoldBIT_CONVERTofBUILD_VECTOR(N0.Val, DestEltVT);
3243    }
3244  }
3245
3246  // If the input is a constant, let getNode() fold it.
3247  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
3248    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3249    if (Res.Val != N) return Res;
3250  }
3251
3252  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
3253    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
3254
3255  // fold (conv (load x)) -> (load (conv*)x)
3256  // If the resultant load doesn't need a higher alignment than the original!
3257  if (ISD::isNormalLoad(N0.Val) && N0.hasOneUse() &&
3258      TLI.isOperationLegal(ISD::LOAD, VT)) {
3259    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3260    unsigned Align = TLI.getTargetMachine().getTargetData()->
3261      getABITypeAlignment(MVT::getTypeForValueType(VT));
3262    unsigned OrigAlign = LN0->getAlignment();
3263    if (Align <= OrigAlign) {
3264      SDOperand Load = DAG.getLoad(VT, LN0->getChain(), LN0->getBasePtr(),
3265                                   LN0->getSrcValue(), LN0->getSrcValueOffset(),
3266                                   LN0->isVolatile(), Align);
3267      AddToWorkList(N);
3268      CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
3269                Load.getValue(1));
3270      return Load;
3271    }
3272  }
3273
3274  return SDOperand();
3275}
3276
3277/// ConstantFoldBIT_CONVERTofBUILD_VECTOR - We know that BV is a build_vector
3278/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
3279/// destination element value type.
3280SDOperand DAGCombiner::
3281ConstantFoldBIT_CONVERTofBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
3282  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
3283
3284  // If this is already the right type, we're done.
3285  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
3286
3287  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
3288  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
3289
3290  // If this is a conversion of N elements of one type to N elements of another
3291  // type, convert each element.  This handles FP<->INT cases.
3292  if (SrcBitSize == DstBitSize) {
3293    SmallVector<SDOperand, 8> Ops;
3294    for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3295      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
3296      AddToWorkList(Ops.back().Val);
3297    }
3298    MVT::ValueType VT =
3299      MVT::getVectorType(DstEltVT,
3300                         MVT::getVectorNumElements(BV->getValueType(0)));
3301    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3302  }
3303
3304  // Otherwise, we're growing or shrinking the elements.  To avoid having to
3305  // handle annoying details of growing/shrinking FP values, we convert them to
3306  // int first.
3307  if (MVT::isFloatingPoint(SrcEltVT)) {
3308    // Convert the input float vector to a int vector where the elements are the
3309    // same sizes.
3310    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
3311    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3312    BV = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, IntVT).Val;
3313    SrcEltVT = IntVT;
3314  }
3315
3316  // Now we know the input is an integer vector.  If the output is a FP type,
3317  // convert to integer first, then to FP of the right size.
3318  if (MVT::isFloatingPoint(DstEltVT)) {
3319    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
3320    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
3321    SDNode *Tmp = ConstantFoldBIT_CONVERTofBUILD_VECTOR(BV, TmpVT).Val;
3322
3323    // Next, convert to FP elements of the same size.
3324    return ConstantFoldBIT_CONVERTofBUILD_VECTOR(Tmp, DstEltVT);
3325  }
3326
3327  // Okay, we know the src/dst types are both integers of differing types.
3328  // Handling growing first.
3329  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
3330  if (SrcBitSize < DstBitSize) {
3331    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
3332
3333    SmallVector<SDOperand, 8> Ops;
3334    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
3335         i += NumInputsPerOutput) {
3336      bool isLE = TLI.isLittleEndian();
3337      uint64_t NewBits = 0;
3338      bool EltIsUndef = true;
3339      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
3340        // Shift the previously computed bits over.
3341        NewBits <<= SrcBitSize;
3342        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
3343        if (Op.getOpcode() == ISD::UNDEF) continue;
3344        EltIsUndef = false;
3345
3346        NewBits |= cast<ConstantSDNode>(Op)->getValue();
3347      }
3348
3349      if (EltIsUndef)
3350        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3351      else
3352        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
3353    }
3354
3355    MVT::ValueType VT = MVT::getVectorType(DstEltVT,
3356                                           Ops.size());
3357    return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3358  }
3359
3360  // Finally, this must be the case where we are shrinking elements: each input
3361  // turns into multiple outputs.
3362  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
3363  SmallVector<SDOperand, 8> Ops;
3364  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3365    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
3366      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
3367        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
3368      continue;
3369    }
3370    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
3371
3372    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
3373      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
3374      OpVal >>= DstBitSize;
3375      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
3376    }
3377
3378    // For big endian targets, swap the order of the pieces of each element.
3379    if (!TLI.isLittleEndian())
3380      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
3381  }
3382  MVT::ValueType VT = MVT::getVectorType(DstEltVT, Ops.size());
3383  return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
3384}
3385
3386
3387
3388SDOperand DAGCombiner::visitFADD(SDNode *N) {
3389  SDOperand N0 = N->getOperand(0);
3390  SDOperand N1 = N->getOperand(1);
3391  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3392  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3393  MVT::ValueType VT = N->getValueType(0);
3394
3395  // fold vector ops
3396  if (MVT::isVector(VT)) {
3397    SDOperand FoldedVOp = SimplifyVBinOp(N);
3398    if (FoldedVOp.Val) return FoldedVOp;
3399  }
3400
3401  // fold (fadd c1, c2) -> c1+c2
3402  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3403    return DAG.getNode(ISD::FADD, VT, N0, N1);
3404  // canonicalize constant to RHS
3405  if (N0CFP && !N1CFP)
3406    return DAG.getNode(ISD::FADD, VT, N1, N0);
3407  // fold (A + (-B)) -> A-B
3408  if (isNegatibleForFree(N1) == 2)
3409    return DAG.getNode(ISD::FSUB, VT, N0, GetNegatedExpression(N1, DAG));
3410  // fold ((-A) + B) -> B-A
3411  if (isNegatibleForFree(N0) == 2)
3412    return DAG.getNode(ISD::FSUB, VT, N1, GetNegatedExpression(N0, DAG));
3413
3414  // If allowed, fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
3415  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FADD &&
3416      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3417    return DAG.getNode(ISD::FADD, VT, N0.getOperand(0),
3418                       DAG.getNode(ISD::FADD, VT, N0.getOperand(1), N1));
3419
3420  return SDOperand();
3421}
3422
3423SDOperand DAGCombiner::visitFSUB(SDNode *N) {
3424  SDOperand N0 = N->getOperand(0);
3425  SDOperand N1 = N->getOperand(1);
3426  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3427  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3428  MVT::ValueType VT = N->getValueType(0);
3429
3430  // fold vector ops
3431  if (MVT::isVector(VT)) {
3432    SDOperand FoldedVOp = SimplifyVBinOp(N);
3433    if (FoldedVOp.Val) return FoldedVOp;
3434  }
3435
3436  // fold (fsub c1, c2) -> c1-c2
3437  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3438    return DAG.getNode(ISD::FSUB, VT, N0, N1);
3439  // fold (0-B) -> -B
3440  if (UnsafeFPMath && N0CFP && N0CFP->getValueAPF().isZero()) {
3441    if (isNegatibleForFree(N1))
3442      return GetNegatedExpression(N1, DAG);
3443    return DAG.getNode(ISD::FNEG, VT, N1);
3444  }
3445  // fold (A-(-B)) -> A+B
3446  if (isNegatibleForFree(N1))
3447    return DAG.getNode(ISD::FADD, VT, N0, GetNegatedExpression(N1, DAG));
3448
3449  return SDOperand();
3450}
3451
3452SDOperand DAGCombiner::visitFMUL(SDNode *N) {
3453  SDOperand N0 = N->getOperand(0);
3454  SDOperand N1 = N->getOperand(1);
3455  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3456  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3457  MVT::ValueType VT = N->getValueType(0);
3458
3459  // fold vector ops
3460  if (MVT::isVector(VT)) {
3461    SDOperand FoldedVOp = SimplifyVBinOp(N);
3462    if (FoldedVOp.Val) return FoldedVOp;
3463  }
3464
3465  // fold (fmul c1, c2) -> c1*c2
3466  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3467    return DAG.getNode(ISD::FMUL, VT, N0, N1);
3468  // canonicalize constant to RHS
3469  if (N0CFP && !N1CFP)
3470    return DAG.getNode(ISD::FMUL, VT, N1, N0);
3471  // fold (fmul X, 2.0) -> (fadd X, X)
3472  if (N1CFP && N1CFP->isExactlyValue(+2.0))
3473    return DAG.getNode(ISD::FADD, VT, N0, N0);
3474  // fold (fmul X, -1.0) -> (fneg X)
3475  if (N1CFP && N1CFP->isExactlyValue(-1.0))
3476    return DAG.getNode(ISD::FNEG, VT, N0);
3477
3478  // -X * -Y -> X*Y
3479  if (char LHSNeg = isNegatibleForFree(N0)) {
3480    if (char RHSNeg = isNegatibleForFree(N1)) {
3481      // Both can be negated for free, check to see if at least one is cheaper
3482      // negated.
3483      if (LHSNeg == 2 || RHSNeg == 2)
3484        return DAG.getNode(ISD::FMUL, VT, GetNegatedExpression(N0, DAG),
3485                           GetNegatedExpression(N1, DAG));
3486    }
3487  }
3488
3489  // If allowed, fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
3490  if (UnsafeFPMath && N1CFP && N0.getOpcode() == ISD::FMUL &&
3491      N0.Val->hasOneUse() && isa<ConstantFPSDNode>(N0.getOperand(1)))
3492    return DAG.getNode(ISD::FMUL, VT, N0.getOperand(0),
3493                       DAG.getNode(ISD::FMUL, VT, N0.getOperand(1), N1));
3494
3495  return SDOperand();
3496}
3497
3498SDOperand DAGCombiner::visitFDIV(SDNode *N) {
3499  SDOperand N0 = N->getOperand(0);
3500  SDOperand N1 = N->getOperand(1);
3501  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3502  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3503  MVT::ValueType VT = N->getValueType(0);
3504
3505  // fold vector ops
3506  if (MVT::isVector(VT)) {
3507    SDOperand FoldedVOp = SimplifyVBinOp(N);
3508    if (FoldedVOp.Val) return FoldedVOp;
3509  }
3510
3511  // fold (fdiv c1, c2) -> c1/c2
3512  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3513    return DAG.getNode(ISD::FDIV, VT, N0, N1);
3514
3515
3516  // -X / -Y -> X*Y
3517  if (char LHSNeg = isNegatibleForFree(N0)) {
3518    if (char RHSNeg = isNegatibleForFree(N1)) {
3519      // Both can be negated for free, check to see if at least one is cheaper
3520      // negated.
3521      if (LHSNeg == 2 || RHSNeg == 2)
3522        return DAG.getNode(ISD::FDIV, VT, GetNegatedExpression(N0, DAG),
3523                           GetNegatedExpression(N1, DAG));
3524    }
3525  }
3526
3527  return SDOperand();
3528}
3529
3530SDOperand DAGCombiner::visitFREM(SDNode *N) {
3531  SDOperand N0 = N->getOperand(0);
3532  SDOperand N1 = N->getOperand(1);
3533  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3534  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3535  MVT::ValueType VT = N->getValueType(0);
3536
3537  // fold (frem c1, c2) -> fmod(c1,c2)
3538  if (N0CFP && N1CFP && VT != MVT::ppcf128)
3539    return DAG.getNode(ISD::FREM, VT, N0, N1);
3540
3541  return SDOperand();
3542}
3543
3544SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
3545  SDOperand N0 = N->getOperand(0);
3546  SDOperand N1 = N->getOperand(1);
3547  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3548  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
3549  MVT::ValueType VT = N->getValueType(0);
3550
3551  if (N0CFP && N1CFP && VT != MVT::ppcf128)  // Constant fold
3552    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
3553
3554  if (N1CFP) {
3555    const APFloat& V = N1CFP->getValueAPF();
3556    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
3557    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
3558    if (!V.isNegative())
3559      return DAG.getNode(ISD::FABS, VT, N0);
3560    else
3561      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
3562  }
3563
3564  // copysign(fabs(x), y) -> copysign(x, y)
3565  // copysign(fneg(x), y) -> copysign(x, y)
3566  // copysign(copysign(x,z), y) -> copysign(x, y)
3567  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
3568      N0.getOpcode() == ISD::FCOPYSIGN)
3569    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
3570
3571  // copysign(x, abs(y)) -> abs(x)
3572  if (N1.getOpcode() == ISD::FABS)
3573    return DAG.getNode(ISD::FABS, VT, N0);
3574
3575  // copysign(x, copysign(y,z)) -> copysign(x, z)
3576  if (N1.getOpcode() == ISD::FCOPYSIGN)
3577    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
3578
3579  // copysign(x, fp_extend(y)) -> copysign(x, y)
3580  // copysign(x, fp_round(y)) -> copysign(x, y)
3581  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
3582    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
3583
3584  return SDOperand();
3585}
3586
3587
3588
3589SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
3590  SDOperand N0 = N->getOperand(0);
3591  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3592  MVT::ValueType VT = N->getValueType(0);
3593
3594  // fold (sint_to_fp c1) -> c1fp
3595  if (N0C && N0.getValueType() != MVT::ppcf128)
3596    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
3597  return SDOperand();
3598}
3599
3600SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
3601  SDOperand N0 = N->getOperand(0);
3602  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3603  MVT::ValueType VT = N->getValueType(0);
3604
3605  // fold (uint_to_fp c1) -> c1fp
3606  if (N0C && N0.getValueType() != MVT::ppcf128)
3607    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
3608  return SDOperand();
3609}
3610
3611SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
3612  SDOperand N0 = N->getOperand(0);
3613  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3614  MVT::ValueType VT = N->getValueType(0);
3615
3616  // fold (fp_to_sint c1fp) -> c1
3617  if (N0CFP)
3618    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
3619  return SDOperand();
3620}
3621
3622SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
3623  SDOperand N0 = N->getOperand(0);
3624  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3625  MVT::ValueType VT = N->getValueType(0);
3626
3627  // fold (fp_to_uint c1fp) -> c1
3628  if (N0CFP && VT != MVT::ppcf128)
3629    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
3630  return SDOperand();
3631}
3632
3633SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
3634  SDOperand N0 = N->getOperand(0);
3635  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3636  MVT::ValueType VT = N->getValueType(0);
3637
3638  // fold (fp_round c1fp) -> c1fp
3639  if (N0CFP && N0.getValueType() != MVT::ppcf128)
3640    return DAG.getNode(ISD::FP_ROUND, VT, N0);
3641
3642  // fold (fp_round (fp_extend x)) -> x
3643  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
3644    return N0.getOperand(0);
3645
3646  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
3647  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
3648    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
3649    AddToWorkList(Tmp.Val);
3650    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
3651  }
3652
3653  return SDOperand();
3654}
3655
3656SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
3657  SDOperand N0 = N->getOperand(0);
3658  MVT::ValueType VT = N->getValueType(0);
3659  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
3660  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3661
3662  // fold (fp_round_inreg c1fp) -> c1fp
3663  if (N0CFP) {
3664    SDOperand Round = DAG.getConstantFP(N0CFP->getValueAPF(), EVT);
3665    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
3666  }
3667  return SDOperand();
3668}
3669
3670SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
3671  SDOperand N0 = N->getOperand(0);
3672  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3673  MVT::ValueType VT = N->getValueType(0);
3674
3675  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
3676  if (N->hasOneUse() && (*N->use_begin())->getOpcode() == ISD::FP_ROUND)
3677    return SDOperand();
3678
3679  // fold (fp_extend c1fp) -> c1fp
3680  if (N0CFP && VT != MVT::ppcf128)
3681    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
3682
3683  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
3684  if (ISD::isNON_EXTLoad(N0.Val) && N0.hasOneUse() &&
3685      (!AfterLegalize||TLI.isLoadXLegal(ISD::EXTLOAD, N0.getValueType()))) {
3686    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3687    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, LN0->getChain(),
3688                                       LN0->getBasePtr(), LN0->getSrcValue(),
3689                                       LN0->getSrcValueOffset(),
3690                                       N0.getValueType(),
3691                                       LN0->isVolatile(),
3692                                       LN0->getAlignment());
3693    CombineTo(N, ExtLoad);
3694    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
3695              ExtLoad.getValue(1));
3696    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
3697  }
3698
3699
3700  return SDOperand();
3701}
3702
3703SDOperand DAGCombiner::visitFNEG(SDNode *N) {
3704  SDOperand N0 = N->getOperand(0);
3705
3706  if (isNegatibleForFree(N0))
3707    return GetNegatedExpression(N0, DAG);
3708
3709  return SDOperand();
3710}
3711
3712SDOperand DAGCombiner::visitFABS(SDNode *N) {
3713  SDOperand N0 = N->getOperand(0);
3714  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
3715  MVT::ValueType VT = N->getValueType(0);
3716
3717  // fold (fabs c1) -> fabs(c1)
3718  if (N0CFP && VT != MVT::ppcf128)
3719    return DAG.getNode(ISD::FABS, VT, N0);
3720  // fold (fabs (fabs x)) -> (fabs x)
3721  if (N0.getOpcode() == ISD::FABS)
3722    return N->getOperand(0);
3723  // fold (fabs (fneg x)) -> (fabs x)
3724  // fold (fabs (fcopysign x, y)) -> (fabs x)
3725  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
3726    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
3727
3728  return SDOperand();
3729}
3730
3731SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
3732  SDOperand Chain = N->getOperand(0);
3733  SDOperand N1 = N->getOperand(1);
3734  SDOperand N2 = N->getOperand(2);
3735  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3736
3737  // never taken branch, fold to chain
3738  if (N1C && N1C->isNullValue())
3739    return Chain;
3740  // unconditional branch
3741  if (N1C && N1C->getValue() == 1)
3742    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
3743  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
3744  // on the target.
3745  if (N1.getOpcode() == ISD::SETCC &&
3746      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
3747    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
3748                       N1.getOperand(0), N1.getOperand(1), N2);
3749  }
3750  return SDOperand();
3751}
3752
3753// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
3754//
3755SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
3756  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
3757  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
3758
3759  // Use SimplifySetCC  to simplify SETCC's.
3760  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
3761  if (Simp.Val) AddToWorkList(Simp.Val);
3762
3763  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
3764
3765  // fold br_cc true, dest -> br dest (unconditional branch)
3766  if (SCCC && SCCC->getValue())
3767    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
3768                       N->getOperand(4));
3769  // fold br_cc false, dest -> unconditional fall through
3770  if (SCCC && SCCC->isNullValue())
3771    return N->getOperand(0);
3772
3773  // fold to a simpler setcc
3774  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
3775    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
3776                       Simp.getOperand(2), Simp.getOperand(0),
3777                       Simp.getOperand(1), N->getOperand(4));
3778  return SDOperand();
3779}
3780
3781
3782/// CombineToPreIndexedLoadStore - Try turning a load / store and a
3783/// pre-indexed load / store when the base pointer is a add or subtract
3784/// and it has other uses besides the load / store. After the
3785/// transformation, the new indexed load / store has effectively folded
3786/// the add / subtract in and all of its other uses are redirected to the
3787/// new load / store.
3788bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
3789  if (!AfterLegalize)
3790    return false;
3791
3792  bool isLoad = true;
3793  SDOperand Ptr;
3794  MVT::ValueType VT;
3795  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3796    if (LD->getAddressingMode() != ISD::UNINDEXED)
3797      return false;
3798    VT = LD->getLoadedVT();
3799    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
3800        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
3801      return false;
3802    Ptr = LD->getBasePtr();
3803  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3804    if (ST->getAddressingMode() != ISD::UNINDEXED)
3805      return false;
3806    VT = ST->getStoredVT();
3807    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
3808        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
3809      return false;
3810    Ptr = ST->getBasePtr();
3811    isLoad = false;
3812  } else
3813    return false;
3814
3815  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
3816  // out.  There is no reason to make this a preinc/predec.
3817  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
3818      Ptr.Val->hasOneUse())
3819    return false;
3820
3821  // Ask the target to do addressing mode selection.
3822  SDOperand BasePtr;
3823  SDOperand Offset;
3824  ISD::MemIndexedMode AM = ISD::UNINDEXED;
3825  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
3826    return false;
3827  // Don't create a indexed load / store with zero offset.
3828  if (isa<ConstantSDNode>(Offset) &&
3829      cast<ConstantSDNode>(Offset)->getValue() == 0)
3830    return false;
3831
3832  // Try turning it into a pre-indexed load / store except when:
3833  // 1) The new base ptr is a frame index.
3834  // 2) If N is a store and the new base ptr is either the same as or is a
3835  //    predecessor of the value being stored.
3836  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
3837  //    that would create a cycle.
3838  // 4) All uses are load / store ops that use it as old base ptr.
3839
3840  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
3841  // (plus the implicit offset) to a register to preinc anyway.
3842  if (isa<FrameIndexSDNode>(BasePtr))
3843    return false;
3844
3845  // Check #2.
3846  if (!isLoad) {
3847    SDOperand Val = cast<StoreSDNode>(N)->getValue();
3848    if (Val == BasePtr || BasePtr.Val->isPredecessor(Val.Val))
3849      return false;
3850  }
3851
3852  // Now check for #3 and #4.
3853  bool RealUse = false;
3854  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3855         E = Ptr.Val->use_end(); I != E; ++I) {
3856    SDNode *Use = *I;
3857    if (Use == N)
3858      continue;
3859    if (Use->isPredecessor(N))
3860      return false;
3861
3862    if (!((Use->getOpcode() == ISD::LOAD &&
3863           cast<LoadSDNode>(Use)->getBasePtr() == Ptr) ||
3864          (Use->getOpcode() == ISD::STORE) &&
3865          cast<StoreSDNode>(Use)->getBasePtr() == Ptr))
3866      RealUse = true;
3867  }
3868  if (!RealUse)
3869    return false;
3870
3871  SDOperand Result;
3872  if (isLoad)
3873    Result = DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM);
3874  else
3875    Result = DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
3876  ++PreIndexedNodes;
3877  ++NodesCombined;
3878  DOUT << "\nReplacing.4 "; DEBUG(N->dump(&DAG));
3879  DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
3880  DOUT << '\n';
3881  std::vector<SDNode*> NowDead;
3882  if (isLoad) {
3883    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
3884                                  &NowDead);
3885    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
3886                                  &NowDead);
3887  } else {
3888    DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
3889                                  &NowDead);
3890  }
3891
3892  // Nodes can end up on the worklist more than once.  Make sure we do
3893  // not process a node that has been replaced.
3894  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3895    removeFromWorkList(NowDead[i]);
3896  // Finally, since the node is now dead, remove it from the graph.
3897  DAG.DeleteNode(N);
3898
3899  // Replace the uses of Ptr with uses of the updated base value.
3900  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0),
3901                                &NowDead);
3902  removeFromWorkList(Ptr.Val);
3903  for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
3904    removeFromWorkList(NowDead[i]);
3905  DAG.DeleteNode(Ptr.Val);
3906
3907  return true;
3908}
3909
3910/// CombineToPostIndexedLoadStore - Try combine a load / store with a
3911/// add / sub of the base pointer node into a post-indexed load / store.
3912/// The transformation folded the add / subtract into the new indexed
3913/// load / store effectively and all of its uses are redirected to the
3914/// new load / store.
3915bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
3916  if (!AfterLegalize)
3917    return false;
3918
3919  bool isLoad = true;
3920  SDOperand Ptr;
3921  MVT::ValueType VT;
3922  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
3923    if (LD->getAddressingMode() != ISD::UNINDEXED)
3924      return false;
3925    VT = LD->getLoadedVT();
3926    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
3927        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
3928      return false;
3929    Ptr = LD->getBasePtr();
3930  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
3931    if (ST->getAddressingMode() != ISD::UNINDEXED)
3932      return false;
3933    VT = ST->getStoredVT();
3934    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
3935        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
3936      return false;
3937    Ptr = ST->getBasePtr();
3938    isLoad = false;
3939  } else
3940    return false;
3941
3942  if (Ptr.Val->hasOneUse())
3943    return false;
3944
3945  for (SDNode::use_iterator I = Ptr.Val->use_begin(),
3946         E = Ptr.Val->use_end(); I != E; ++I) {
3947    SDNode *Op = *I;
3948    if (Op == N ||
3949        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
3950      continue;
3951
3952    SDOperand BasePtr;
3953    SDOperand Offset;
3954    ISD::MemIndexedMode AM = ISD::UNINDEXED;
3955    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
3956      if (Ptr == Offset)
3957        std::swap(BasePtr, Offset);
3958      if (Ptr != BasePtr)
3959        continue;
3960      // Don't create a indexed load / store with zero offset.
3961      if (isa<ConstantSDNode>(Offset) &&
3962          cast<ConstantSDNode>(Offset)->getValue() == 0)
3963        continue;
3964
3965      // Try turning it into a post-indexed load / store except when
3966      // 1) All uses are load / store ops that use it as base ptr.
3967      // 2) Op must be independent of N, i.e. Op is neither a predecessor
3968      //    nor a successor of N. Otherwise, if Op is folded that would
3969      //    create a cycle.
3970
3971      // Check for #1.
3972      bool TryNext = false;
3973      for (SDNode::use_iterator II = BasePtr.Val->use_begin(),
3974             EE = BasePtr.Val->use_end(); II != EE; ++II) {
3975        SDNode *Use = *II;
3976        if (Use == Ptr.Val)
3977          continue;
3978
3979        // If all the uses are load / store addresses, then don't do the
3980        // transformation.
3981        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
3982          bool RealUse = false;
3983          for (SDNode::use_iterator III = Use->use_begin(),
3984                 EEE = Use->use_end(); III != EEE; ++III) {
3985            SDNode *UseUse = *III;
3986            if (!((UseUse->getOpcode() == ISD::LOAD &&
3987                   cast<LoadSDNode>(UseUse)->getBasePtr().Val == Use) ||
3988                  (UseUse->getOpcode() == ISD::STORE) &&
3989                  cast<StoreSDNode>(UseUse)->getBasePtr().Val == Use))
3990              RealUse = true;
3991          }
3992
3993          if (!RealUse) {
3994            TryNext = true;
3995            break;
3996          }
3997        }
3998      }
3999      if (TryNext)
4000        continue;
4001
4002      // Check for #2
4003      if (!Op->isPredecessor(N) && !N->isPredecessor(Op)) {
4004        SDOperand Result = isLoad
4005          ? DAG.getIndexedLoad(SDOperand(N,0), BasePtr, Offset, AM)
4006          : DAG.getIndexedStore(SDOperand(N,0), BasePtr, Offset, AM);
4007        ++PostIndexedNodes;
4008        ++NodesCombined;
4009        DOUT << "\nReplacing.5 "; DEBUG(N->dump(&DAG));
4010        DOUT << "\nWith: "; DEBUG(Result.Val->dump(&DAG));
4011        DOUT << '\n';
4012        std::vector<SDNode*> NowDead;
4013        if (isLoad) {
4014          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(0),
4015                                        &NowDead);
4016          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Result.getValue(2),
4017                                        &NowDead);
4018        } else {
4019          DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Result.getValue(1),
4020                                        &NowDead);
4021        }
4022
4023        // Nodes can end up on the worklist more than once.  Make sure we do
4024        // not process a node that has been replaced.
4025        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4026          removeFromWorkList(NowDead[i]);
4027        // Finally, since the node is now dead, remove it from the graph.
4028        DAG.DeleteNode(N);
4029
4030        // Replace the uses of Use with uses of the updated base value.
4031        DAG.ReplaceAllUsesOfValueWith(SDOperand(Op, 0),
4032                                      Result.getValue(isLoad ? 1 : 0),
4033                                      &NowDead);
4034        removeFromWorkList(Op);
4035        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4036          removeFromWorkList(NowDead[i]);
4037        DAG.DeleteNode(Op);
4038
4039        return true;
4040      }
4041    }
4042  }
4043  return false;
4044}
4045
4046
4047SDOperand DAGCombiner::visitLOAD(SDNode *N) {
4048  LoadSDNode *LD  = cast<LoadSDNode>(N);
4049  SDOperand Chain = LD->getChain();
4050  SDOperand Ptr   = LD->getBasePtr();
4051
4052  // If load is not volatile and there are no uses of the loaded value (and
4053  // the updated indexed value in case of indexed loads), change uses of the
4054  // chain value into uses of the chain input (i.e. delete the dead load).
4055  if (!LD->isVolatile()) {
4056    if (N->getValueType(1) == MVT::Other) {
4057      // Unindexed loads.
4058      if (N->hasNUsesOfValue(0, 0)) {
4059        // It's not safe to use the two value CombineTo variant here. e.g.
4060        // v1, chain2 = load chain1, loc
4061        // v2, chain3 = load chain2, loc
4062        // v3         = add v2, c
4063        // Now we replace use of v1 with undef, use of chain2 with chain1.
4064        // ReplaceAllUsesWith() will iterate through uses of the first load and
4065        // update operands:
4066        // v1, chain2 = load chain1, loc
4067        // v2, chain3 = load chain1, loc
4068        // v3         = add v2, c
4069        // Now the second load is the same as the first load, SelectionDAG cse
4070        // will ensure the use of second load is replaced with the first load.
4071        // v1, chain2 = load chain1, loc
4072        // v3         = add v1, c
4073        // Then v1 is replaced with undef and bad things happen.
4074        std::vector<SDNode*> NowDead;
4075        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4076        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4077        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4078        DOUT << " and 1 other value\n";
4079        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &NowDead);
4080        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1), Chain, &NowDead);
4081        removeFromWorkList(N);
4082        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4083          removeFromWorkList(NowDead[i]);
4084        DAG.DeleteNode(N);
4085        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4086      }
4087    } else {
4088      // Indexed loads.
4089      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
4090      if (N->hasNUsesOfValue(0, 0) && N->hasNUsesOfValue(0, 1)) {
4091        std::vector<SDNode*> NowDead;
4092        SDOperand Undef = DAG.getNode(ISD::UNDEF, N->getValueType(0));
4093        DOUT << "\nReplacing.6 "; DEBUG(N->dump(&DAG));
4094        DOUT << "\nWith: "; DEBUG(Undef.Val->dump(&DAG));
4095        DOUT << " and 2 other values\n";
4096        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 0), Undef, &NowDead);
4097        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 1),
4098                                      DAG.getNode(ISD::UNDEF, N->getValueType(1)),
4099                                      &NowDead);
4100        DAG.ReplaceAllUsesOfValueWith(SDOperand(N, 2), Chain, &NowDead);
4101        removeFromWorkList(N);
4102        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
4103          removeFromWorkList(NowDead[i]);
4104        DAG.DeleteNode(N);
4105        return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
4106      }
4107    }
4108  }
4109
4110  // If this load is directly stored, replace the load value with the stored
4111  // value.
4112  // TODO: Handle store large -> read small portion.
4113  // TODO: Handle TRUNCSTORE/LOADEXT
4114  if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4115    if (ISD::isNON_TRUNCStore(Chain.Val)) {
4116      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
4117      if (PrevST->getBasePtr() == Ptr &&
4118          PrevST->getValue().getValueType() == N->getValueType(0))
4119      return CombineTo(N, Chain.getOperand(1), Chain);
4120    }
4121  }
4122
4123  if (CombinerAA) {
4124    // Walk up chain skipping non-aliasing memory nodes.
4125    SDOperand BetterChain = FindBetterChain(N, Chain);
4126
4127    // If there is a better chain.
4128    if (Chain != BetterChain) {
4129      SDOperand ReplLoad;
4130
4131      // Replace the chain to void dependency.
4132      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
4133        ReplLoad = DAG.getLoad(N->getValueType(0), BetterChain, Ptr,
4134                               LD->getSrcValue(), LD->getSrcValueOffset(),
4135                               LD->isVolatile(), LD->getAlignment());
4136      } else {
4137        ReplLoad = DAG.getExtLoad(LD->getExtensionType(),
4138                                  LD->getValueType(0),
4139                                  BetterChain, Ptr, LD->getSrcValue(),
4140                                  LD->getSrcValueOffset(),
4141                                  LD->getLoadedVT(),
4142                                  LD->isVolatile(),
4143                                  LD->getAlignment());
4144      }
4145
4146      // Create token factor to keep old chain connected.
4147      SDOperand Token = DAG.getNode(ISD::TokenFactor, MVT::Other,
4148                                    Chain, ReplLoad.getValue(1));
4149
4150      // Replace uses with load result and token factor. Don't add users
4151      // to work list.
4152      return CombineTo(N, ReplLoad.getValue(0), Token, false);
4153    }
4154  }
4155
4156  // Try transforming N to an indexed load.
4157  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4158    return SDOperand(N, 0);
4159
4160  return SDOperand();
4161}
4162
4163
4164SDOperand DAGCombiner::visitSTORE(SDNode *N) {
4165  StoreSDNode *ST  = cast<StoreSDNode>(N);
4166  SDOperand Chain = ST->getChain();
4167  SDOperand Value = ST->getValue();
4168  SDOperand Ptr   = ST->getBasePtr();
4169
4170  // If this is a store of a bit convert, store the input value if the
4171  // resultant store does not need a higher alignment than the original.
4172  if (Value.getOpcode() == ISD::BIT_CONVERT && !ST->isTruncatingStore() &&
4173      ST->getAddressingMode() == ISD::UNINDEXED) {
4174    unsigned Align = ST->getAlignment();
4175    MVT::ValueType SVT = Value.getOperand(0).getValueType();
4176    unsigned OrigAlign = TLI.getTargetMachine().getTargetData()->
4177      getABITypeAlignment(MVT::getTypeForValueType(SVT));
4178    if (Align <= OrigAlign && TLI.isOperationLegal(ISD::STORE, SVT))
4179      return DAG.getStore(Chain, Value.getOperand(0), Ptr, ST->getSrcValue(),
4180                          ST->getSrcValueOffset(), ST->isVolatile(), Align);
4181  }
4182
4183  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
4184  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
4185    if (Value.getOpcode() != ISD::TargetConstantFP) {
4186      SDOperand Tmp;
4187      switch (CFP->getValueType(0)) {
4188      default: assert(0 && "Unknown FP type");
4189      case MVT::f80:    // We don't do this for these yet.
4190      case MVT::f128:
4191      case MVT::ppcf128:
4192        break;
4193      case MVT::f32:
4194        if (!AfterLegalize || TLI.isTypeLegal(MVT::i32)) {
4195          Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
4196                              convertToAPInt().getZExtValue(), MVT::i32);
4197          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4198                              ST->getSrcValueOffset(), ST->isVolatile(),
4199                              ST->getAlignment());
4200        }
4201        break;
4202      case MVT::f64:
4203        if (!AfterLegalize || TLI.isTypeLegal(MVT::i64)) {
4204          Tmp = DAG.getConstant(CFP->getValueAPF().convertToAPInt().
4205                                  getZExtValue(), MVT::i64);
4206          return DAG.getStore(Chain, Tmp, Ptr, ST->getSrcValue(),
4207                              ST->getSrcValueOffset(), ST->isVolatile(),
4208                              ST->getAlignment());
4209        } else if (TLI.isTypeLegal(MVT::i32)) {
4210          // Many FP stores are not made apparent until after legalize, e.g. for
4211          // argument passing.  Since this is so common, custom legalize the
4212          // 64-bit integer store into two 32-bit stores.
4213          uint64_t Val = CFP->getValueAPF().convertToAPInt().getZExtValue();
4214          SDOperand Lo = DAG.getConstant(Val & 0xFFFFFFFF, MVT::i32);
4215          SDOperand Hi = DAG.getConstant(Val >> 32, MVT::i32);
4216          if (!TLI.isLittleEndian()) std::swap(Lo, Hi);
4217
4218          int SVOffset = ST->getSrcValueOffset();
4219          unsigned Alignment = ST->getAlignment();
4220          bool isVolatile = ST->isVolatile();
4221
4222          SDOperand St0 = DAG.getStore(Chain, Lo, Ptr, ST->getSrcValue(),
4223                                       ST->getSrcValueOffset(),
4224                                       isVolatile, ST->getAlignment());
4225          Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
4226                            DAG.getConstant(4, Ptr.getValueType()));
4227          SVOffset += 4;
4228          Alignment = MinAlign(Alignment, 4U);
4229          SDOperand St1 = DAG.getStore(Chain, Hi, Ptr, ST->getSrcValue(),
4230                                       SVOffset, isVolatile, Alignment);
4231          return DAG.getNode(ISD::TokenFactor, MVT::Other, St0, St1);
4232        }
4233        break;
4234      }
4235    }
4236  }
4237
4238  if (CombinerAA) {
4239    // Walk up chain skipping non-aliasing memory nodes.
4240    SDOperand BetterChain = FindBetterChain(N, Chain);
4241
4242    // If there is a better chain.
4243    if (Chain != BetterChain) {
4244      // Replace the chain to avoid dependency.
4245      SDOperand ReplStore;
4246      if (ST->isTruncatingStore()) {
4247        ReplStore = DAG.getTruncStore(BetterChain, Value, Ptr,
4248          ST->getSrcValue(), ST->getSrcValueOffset(), ST->getStoredVT(),
4249          ST->isVolatile(), ST->getAlignment());
4250      } else {
4251        ReplStore = DAG.getStore(BetterChain, Value, Ptr,
4252          ST->getSrcValue(), ST->getSrcValueOffset(),
4253          ST->isVolatile(), ST->getAlignment());
4254      }
4255
4256      // Create token to keep both nodes around.
4257      SDOperand Token =
4258        DAG.getNode(ISD::TokenFactor, MVT::Other, Chain, ReplStore);
4259
4260      // Don't add users to work list.
4261      return CombineTo(N, Token, false);
4262    }
4263  }
4264
4265  // Try transforming N to an indexed store.
4266  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
4267    return SDOperand(N, 0);
4268
4269  // FIXME: is there such a thing as a truncating indexed store?
4270  if (ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED &&
4271      MVT::isInteger(Value.getValueType())) {
4272    // See if we can simplify the input to this truncstore with knowledge that
4273    // only the low bits are being used.  For example:
4274    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
4275    SDOperand Shorter =
4276      GetDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT()));
4277    AddToWorkList(Value.Val);
4278    if (Shorter.Val)
4279      return DAG.getTruncStore(Chain, Shorter, Ptr, ST->getSrcValue(),
4280                               ST->getSrcValueOffset(), ST->getStoredVT(),
4281                               ST->isVolatile(), ST->getAlignment());
4282
4283    // Otherwise, see if we can simplify the operation with
4284    // SimplifyDemandedBits, which only works if the value has a single use.
4285    if (SimplifyDemandedBits(Value, MVT::getIntVTBitMask(ST->getStoredVT())))
4286      return SDOperand(N, 0);
4287  }
4288
4289  // If this is a load followed by a store to the same location, then the store
4290  // is dead/noop.
4291  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
4292    if (Ld->getBasePtr() == Ptr && ST->getStoredVT() == Ld->getLoadedVT() &&
4293        ST->getAddressingMode() == ISD::UNINDEXED &&
4294        !ST->isVolatile() &&
4295        // There can't be any side effects between the load and store, such as
4296        // a call or store.
4297        Chain.reachesChainWithoutSideEffects(SDOperand(Ld, 1))) {
4298      // The store is dead, remove it.
4299      return Chain;
4300    }
4301  }
4302
4303  return SDOperand();
4304}
4305
4306SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
4307  SDOperand InVec = N->getOperand(0);
4308  SDOperand InVal = N->getOperand(1);
4309  SDOperand EltNo = N->getOperand(2);
4310
4311  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
4312  // vector with the inserted element.
4313  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
4314    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4315    SmallVector<SDOperand, 8> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
4316    if (Elt < Ops.size())
4317      Ops[Elt] = InVal;
4318    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(),
4319                       &Ops[0], Ops.size());
4320  }
4321
4322  return SDOperand();
4323}
4324
4325SDOperand DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
4326  SDOperand InVec = N->getOperand(0);
4327  SDOperand EltNo = N->getOperand(1);
4328
4329  // (vextract (v4f32 s2v (f32 load $addr)), 0) -> (f32 load $addr)
4330  // (vextract (v4i32 bc (v4f32 s2v (f32 load $addr))), 0) -> (i32 load $addr)
4331  if (isa<ConstantSDNode>(EltNo)) {
4332    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
4333    bool NewLoad = false;
4334    if (Elt == 0) {
4335      MVT::ValueType VT = InVec.getValueType();
4336      MVT::ValueType EVT = MVT::getVectorElementType(VT);
4337      MVT::ValueType LVT = EVT;
4338      unsigned NumElts = MVT::getVectorNumElements(VT);
4339      if (InVec.getOpcode() == ISD::BIT_CONVERT) {
4340        MVT::ValueType BCVT = InVec.getOperand(0).getValueType();
4341        if (!MVT::isVector(BCVT) ||
4342            NumElts != MVT::getVectorNumElements(BCVT))
4343          return SDOperand();
4344        InVec = InVec.getOperand(0);
4345        EVT = MVT::getVectorElementType(BCVT);
4346        NewLoad = true;
4347      }
4348      if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4349          InVec.getOperand(0).getValueType() == EVT &&
4350          ISD::isNormalLoad(InVec.getOperand(0).Val) &&
4351          InVec.getOperand(0).hasOneUse()) {
4352        LoadSDNode *LN0 = cast<LoadSDNode>(InVec.getOperand(0));
4353        unsigned Align = LN0->getAlignment();
4354        if (NewLoad) {
4355          // Check the resultant load doesn't need a higher alignment than the
4356          // original load.
4357          unsigned NewAlign = TLI.getTargetMachine().getTargetData()->
4358            getABITypeAlignment(MVT::getTypeForValueType(LVT));
4359          if (!TLI.isOperationLegal(ISD::LOAD, LVT) || NewAlign > Align)
4360            return SDOperand();
4361          Align = NewAlign;
4362        }
4363
4364        return DAG.getLoad(LVT, LN0->getChain(), LN0->getBasePtr(),
4365                           LN0->getSrcValue(), LN0->getSrcValueOffset(),
4366                           LN0->isVolatile(), Align);
4367      }
4368    }
4369  }
4370  return SDOperand();
4371}
4372
4373
4374SDOperand DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
4375  unsigned NumInScalars = N->getNumOperands();
4376  MVT::ValueType VT = N->getValueType(0);
4377  unsigned NumElts = MVT::getVectorNumElements(VT);
4378  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4379
4380  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
4381  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
4382  // at most two distinct vectors, turn this into a shuffle node.
4383  SDOperand VecIn1, VecIn2;
4384  for (unsigned i = 0; i != NumInScalars; ++i) {
4385    // Ignore undef inputs.
4386    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
4387
4388    // If this input is something other than a EXTRACT_VECTOR_ELT with a
4389    // constant index, bail out.
4390    if (N->getOperand(i).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4391        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
4392      VecIn1 = VecIn2 = SDOperand(0, 0);
4393      break;
4394    }
4395
4396    // If the input vector type disagrees with the result of the build_vector,
4397    // we can't make a shuffle.
4398    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
4399    if (ExtractedFromVec.getValueType() != VT) {
4400      VecIn1 = VecIn2 = SDOperand(0, 0);
4401      break;
4402    }
4403
4404    // Otherwise, remember this.  We allow up to two distinct input vectors.
4405    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
4406      continue;
4407
4408    if (VecIn1.Val == 0) {
4409      VecIn1 = ExtractedFromVec;
4410    } else if (VecIn2.Val == 0) {
4411      VecIn2 = ExtractedFromVec;
4412    } else {
4413      // Too many inputs.
4414      VecIn1 = VecIn2 = SDOperand(0, 0);
4415      break;
4416    }
4417  }
4418
4419  // If everything is good, we can make a shuffle operation.
4420  if (VecIn1.Val) {
4421    SmallVector<SDOperand, 8> BuildVecIndices;
4422    for (unsigned i = 0; i != NumInScalars; ++i) {
4423      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
4424        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, TLI.getPointerTy()));
4425        continue;
4426      }
4427
4428      SDOperand Extract = N->getOperand(i);
4429
4430      // If extracting from the first vector, just use the index directly.
4431      if (Extract.getOperand(0) == VecIn1) {
4432        BuildVecIndices.push_back(Extract.getOperand(1));
4433        continue;
4434      }
4435
4436      // Otherwise, use InIdx + VecSize
4437      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
4438      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars,
4439                                                TLI.getPointerTy()));
4440    }
4441
4442    // Add count and size info.
4443    MVT::ValueType BuildVecVT =
4444      MVT::getVectorType(TLI.getPointerTy(), NumElts);
4445
4446    // Return the new VECTOR_SHUFFLE node.
4447    SDOperand Ops[5];
4448    Ops[0] = VecIn1;
4449    if (VecIn2.Val) {
4450      Ops[1] = VecIn2;
4451    } else {
4452      // Use an undef build_vector as input for the second operand.
4453      std::vector<SDOperand> UnOps(NumInScalars,
4454                                   DAG.getNode(ISD::UNDEF,
4455                                               EltType));
4456      Ops[1] = DAG.getNode(ISD::BUILD_VECTOR, VT,
4457                           &UnOps[0], UnOps.size());
4458      AddToWorkList(Ops[1].Val);
4459    }
4460    Ops[2] = DAG.getNode(ISD::BUILD_VECTOR, BuildVecVT,
4461                         &BuildVecIndices[0], BuildVecIndices.size());
4462    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Ops, 3);
4463  }
4464
4465  return SDOperand();
4466}
4467
4468SDOperand DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
4469  // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
4470  // EXTRACT_SUBVECTOR operations.  If so, and if the EXTRACT_SUBVECTOR vector
4471  // inputs come from at most two distinct vectors, turn this into a shuffle
4472  // node.
4473
4474  // If we only have one input vector, we don't need to do any concatenation.
4475  if (N->getNumOperands() == 1) {
4476    return N->getOperand(0);
4477  }
4478
4479  return SDOperand();
4480}
4481
4482SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
4483  SDOperand ShufMask = N->getOperand(2);
4484  unsigned NumElts = ShufMask.getNumOperands();
4485
4486  // If the shuffle mask is an identity operation on the LHS, return the LHS.
4487  bool isIdentity = true;
4488  for (unsigned i = 0; i != NumElts; ++i) {
4489    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4490        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
4491      isIdentity = false;
4492      break;
4493    }
4494  }
4495  if (isIdentity) return N->getOperand(0);
4496
4497  // If the shuffle mask is an identity operation on the RHS, return the RHS.
4498  isIdentity = true;
4499  for (unsigned i = 0; i != NumElts; ++i) {
4500    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
4501        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
4502      isIdentity = false;
4503      break;
4504    }
4505  }
4506  if (isIdentity) return N->getOperand(1);
4507
4508  // Check if the shuffle is a unary shuffle, i.e. one of the vectors is not
4509  // needed at all.
4510  bool isUnary = true;
4511  bool isSplat = true;
4512  int VecNum = -1;
4513  unsigned BaseIdx = 0;
4514  for (unsigned i = 0; i != NumElts; ++i)
4515    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF) {
4516      unsigned Idx = cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue();
4517      int V = (Idx < NumElts) ? 0 : 1;
4518      if (VecNum == -1) {
4519        VecNum = V;
4520        BaseIdx = Idx;
4521      } else {
4522        if (BaseIdx != Idx)
4523          isSplat = false;
4524        if (VecNum != V) {
4525          isUnary = false;
4526          break;
4527        }
4528      }
4529    }
4530
4531  SDOperand N0 = N->getOperand(0);
4532  SDOperand N1 = N->getOperand(1);
4533  // Normalize unary shuffle so the RHS is undef.
4534  if (isUnary && VecNum == 1)
4535    std::swap(N0, N1);
4536
4537  // If it is a splat, check if the argument vector is a build_vector with
4538  // all scalar elements the same.
4539  if (isSplat) {
4540    SDNode *V = N0.Val;
4541
4542    // If this is a bit convert that changes the element type of the vector but
4543    // not the number of vector elements, look through it.  Be careful not to
4544    // look though conversions that change things like v4f32 to v2f64.
4545    if (V->getOpcode() == ISD::BIT_CONVERT) {
4546      SDOperand ConvInput = V->getOperand(0);
4547      if (MVT::getVectorNumElements(ConvInput.getValueType()) == NumElts)
4548        V = ConvInput.Val;
4549    }
4550
4551    if (V->getOpcode() == ISD::BUILD_VECTOR) {
4552      unsigned NumElems = V->getNumOperands();
4553      if (NumElems > BaseIdx) {
4554        SDOperand Base;
4555        bool AllSame = true;
4556        for (unsigned i = 0; i != NumElems; ++i) {
4557          if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
4558            Base = V->getOperand(i);
4559            break;
4560          }
4561        }
4562        // Splat of <u, u, u, u>, return <u, u, u, u>
4563        if (!Base.Val)
4564          return N0;
4565        for (unsigned i = 0; i != NumElems; ++i) {
4566          if (V->getOperand(i) != Base) {
4567            AllSame = false;
4568            break;
4569          }
4570        }
4571        // Splat of <x, x, x, x>, return <x, x, x, x>
4572        if (AllSame)
4573          return N0;
4574      }
4575    }
4576  }
4577
4578  // If it is a unary or the LHS and the RHS are the same node, turn the RHS
4579  // into an undef.
4580  if (isUnary || N0 == N1) {
4581    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
4582    // first operand.
4583    SmallVector<SDOperand, 8> MappedOps;
4584    for (unsigned i = 0; i != NumElts; ++i) {
4585      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
4586          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
4587        MappedOps.push_back(ShufMask.getOperand(i));
4588      } else {
4589        unsigned NewIdx =
4590          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
4591        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
4592      }
4593    }
4594    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
4595                           &MappedOps[0], MappedOps.size());
4596    AddToWorkList(ShufMask.Val);
4597    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
4598                       N0,
4599                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
4600                       ShufMask);
4601  }
4602
4603  return SDOperand();
4604}
4605
4606/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
4607/// an AND to a vector_shuffle with the destination vector and a zero vector.
4608/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
4609///      vector_shuffle V, Zero, <0, 4, 2, 4>
4610SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
4611  SDOperand LHS = N->getOperand(0);
4612  SDOperand RHS = N->getOperand(1);
4613  if (N->getOpcode() == ISD::AND) {
4614    if (RHS.getOpcode() == ISD::BIT_CONVERT)
4615      RHS = RHS.getOperand(0);
4616    if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
4617      std::vector<SDOperand> IdxOps;
4618      unsigned NumOps = RHS.getNumOperands();
4619      unsigned NumElts = NumOps;
4620      MVT::ValueType EVT = MVT::getVectorElementType(RHS.getValueType());
4621      for (unsigned i = 0; i != NumElts; ++i) {
4622        SDOperand Elt = RHS.getOperand(i);
4623        if (!isa<ConstantSDNode>(Elt))
4624          return SDOperand();
4625        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
4626          IdxOps.push_back(DAG.getConstant(i, EVT));
4627        else if (cast<ConstantSDNode>(Elt)->isNullValue())
4628          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
4629        else
4630          return SDOperand();
4631      }
4632
4633      // Let's see if the target supports this vector_shuffle.
4634      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
4635        return SDOperand();
4636
4637      // Return the new VECTOR_SHUFFLE node.
4638      MVT::ValueType VT = MVT::getVectorType(EVT, NumElts);
4639      std::vector<SDOperand> Ops;
4640      LHS = DAG.getNode(ISD::BIT_CONVERT, VT, LHS);
4641      Ops.push_back(LHS);
4642      AddToWorkList(LHS.Val);
4643      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
4644      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4645                                &ZeroOps[0], ZeroOps.size()));
4646      Ops.push_back(DAG.getNode(ISD::BUILD_VECTOR, VT,
4647                                &IdxOps[0], IdxOps.size()));
4648      SDOperand Result = DAG.getNode(ISD::VECTOR_SHUFFLE, VT,
4649                                     &Ops[0], Ops.size());
4650      if (VT != LHS.getValueType()) {
4651        Result = DAG.getNode(ISD::BIT_CONVERT, LHS.getValueType(), Result);
4652      }
4653      return Result;
4654    }
4655  }
4656  return SDOperand();
4657}
4658
4659/// SimplifyVBinOp - Visit a binary vector operation, like ADD.
4660SDOperand DAGCombiner::SimplifyVBinOp(SDNode *N) {
4661  // After legalize, the target may be depending on adds and other
4662  // binary ops to provide legal ways to construct constants or other
4663  // things. Simplifying them may result in a loss of legality.
4664  if (AfterLegalize) return SDOperand();
4665
4666  MVT::ValueType VT = N->getValueType(0);
4667  assert(MVT::isVector(VT) && "SimplifyVBinOp only works on vectors!");
4668
4669  MVT::ValueType EltType = MVT::getVectorElementType(VT);
4670  SDOperand LHS = N->getOperand(0);
4671  SDOperand RHS = N->getOperand(1);
4672  SDOperand Shuffle = XformToShuffleWithZero(N);
4673  if (Shuffle.Val) return Shuffle;
4674
4675  // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
4676  // this operation.
4677  if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
4678      RHS.getOpcode() == ISD::BUILD_VECTOR) {
4679    SmallVector<SDOperand, 8> Ops;
4680    for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
4681      SDOperand LHSOp = LHS.getOperand(i);
4682      SDOperand RHSOp = RHS.getOperand(i);
4683      // If these two elements can't be folded, bail out.
4684      if ((LHSOp.getOpcode() != ISD::UNDEF &&
4685           LHSOp.getOpcode() != ISD::Constant &&
4686           LHSOp.getOpcode() != ISD::ConstantFP) ||
4687          (RHSOp.getOpcode() != ISD::UNDEF &&
4688           RHSOp.getOpcode() != ISD::Constant &&
4689           RHSOp.getOpcode() != ISD::ConstantFP))
4690        break;
4691      // Can't fold divide by zero.
4692      if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
4693          N->getOpcode() == ISD::FDIV) {
4694        if ((RHSOp.getOpcode() == ISD::Constant &&
4695             cast<ConstantSDNode>(RHSOp.Val)->isNullValue()) ||
4696            (RHSOp.getOpcode() == ISD::ConstantFP &&
4697             cast<ConstantFPSDNode>(RHSOp.Val)->getValueAPF().isZero()))
4698          break;
4699      }
4700      Ops.push_back(DAG.getNode(N->getOpcode(), EltType, LHSOp, RHSOp));
4701      AddToWorkList(Ops.back().Val);
4702      assert((Ops.back().getOpcode() == ISD::UNDEF ||
4703              Ops.back().getOpcode() == ISD::Constant ||
4704              Ops.back().getOpcode() == ISD::ConstantFP) &&
4705             "Scalar binop didn't fold!");
4706    }
4707
4708    if (Ops.size() == LHS.getNumOperands()) {
4709      MVT::ValueType VT = LHS.getValueType();
4710      return DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
4711    }
4712  }
4713
4714  return SDOperand();
4715}
4716
4717SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
4718  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
4719
4720  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
4721                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
4722  // If we got a simplified select_cc node back from SimplifySelectCC, then
4723  // break it down into a new SETCC node, and a new SELECT node, and then return
4724  // the SELECT node, since we were called with a SELECT node.
4725  if (SCC.Val) {
4726    // Check to see if we got a select_cc back (to turn into setcc/select).
4727    // Otherwise, just return whatever node we got back, like fabs.
4728    if (SCC.getOpcode() == ISD::SELECT_CC) {
4729      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
4730                                    SCC.getOperand(0), SCC.getOperand(1),
4731                                    SCC.getOperand(4));
4732      AddToWorkList(SETCC.Val);
4733      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
4734                         SCC.getOperand(3), SETCC);
4735    }
4736    return SCC;
4737  }
4738  return SDOperand();
4739}
4740
4741/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
4742/// are the two values being selected between, see if we can simplify the
4743/// select.  Callers of this should assume that TheSelect is deleted if this
4744/// returns true.  As such, they should return the appropriate thing (e.g. the
4745/// node) back to the top-level of the DAG combiner loop to avoid it being
4746/// looked at.
4747///
4748bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
4749                                    SDOperand RHS) {
4750
4751  // If this is a select from two identical things, try to pull the operation
4752  // through the select.
4753  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
4754    // If this is a load and the token chain is identical, replace the select
4755    // of two loads with a load through a select of the address to load from.
4756    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
4757    // constants have been dropped into the constant pool.
4758    if (LHS.getOpcode() == ISD::LOAD &&
4759        // Token chains must be identical.
4760        LHS.getOperand(0) == RHS.getOperand(0)) {
4761      LoadSDNode *LLD = cast<LoadSDNode>(LHS);
4762      LoadSDNode *RLD = cast<LoadSDNode>(RHS);
4763
4764      // If this is an EXTLOAD, the VT's must match.
4765      if (LLD->getLoadedVT() == RLD->getLoadedVT()) {
4766        // FIXME: this conflates two src values, discarding one.  This is not
4767        // the right thing to do, but nothing uses srcvalues now.  When they do,
4768        // turn SrcValue into a list of locations.
4769        SDOperand Addr;
4770        if (TheSelect->getOpcode() == ISD::SELECT) {
4771          // Check that the condition doesn't reach either load.  If so, folding
4772          // this will induce a cycle into the DAG.
4773          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4774              !RLD->isPredecessor(TheSelect->getOperand(0).Val)) {
4775            Addr = DAG.getNode(ISD::SELECT, LLD->getBasePtr().getValueType(),
4776                               TheSelect->getOperand(0), LLD->getBasePtr(),
4777                               RLD->getBasePtr());
4778          }
4779        } else {
4780          // Check that the condition doesn't reach either load.  If so, folding
4781          // this will induce a cycle into the DAG.
4782          if (!LLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4783              !RLD->isPredecessor(TheSelect->getOperand(0).Val) &&
4784              !LLD->isPredecessor(TheSelect->getOperand(1).Val) &&
4785              !RLD->isPredecessor(TheSelect->getOperand(1).Val)) {
4786            Addr = DAG.getNode(ISD::SELECT_CC, LLD->getBasePtr().getValueType(),
4787                             TheSelect->getOperand(0),
4788                             TheSelect->getOperand(1),
4789                             LLD->getBasePtr(), RLD->getBasePtr(),
4790                             TheSelect->getOperand(4));
4791          }
4792        }
4793
4794        if (Addr.Val) {
4795          SDOperand Load;
4796          if (LLD->getExtensionType() == ISD::NON_EXTLOAD)
4797            Load = DAG.getLoad(TheSelect->getValueType(0), LLD->getChain(),
4798                               Addr,LLD->getSrcValue(),
4799                               LLD->getSrcValueOffset(),
4800                               LLD->isVolatile(),
4801                               LLD->getAlignment());
4802          else {
4803            Load = DAG.getExtLoad(LLD->getExtensionType(),
4804                                  TheSelect->getValueType(0),
4805                                  LLD->getChain(), Addr, LLD->getSrcValue(),
4806                                  LLD->getSrcValueOffset(),
4807                                  LLD->getLoadedVT(),
4808                                  LLD->isVolatile(),
4809                                  LLD->getAlignment());
4810          }
4811          // Users of the select now use the result of the load.
4812          CombineTo(TheSelect, Load);
4813
4814          // Users of the old loads now use the new load's chain.  We know the
4815          // old-load value is dead now.
4816          CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
4817          CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
4818          return true;
4819        }
4820      }
4821    }
4822  }
4823
4824  return false;
4825}
4826
4827SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
4828                                        SDOperand N2, SDOperand N3,
4829                                        ISD::CondCode CC, bool NotExtCompare) {
4830
4831  MVT::ValueType VT = N2.getValueType();
4832  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
4833  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
4834  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
4835
4836  // Determine if the condition we're dealing with is constant
4837  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
4838  if (SCC.Val) AddToWorkList(SCC.Val);
4839  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
4840
4841  // fold select_cc true, x, y -> x
4842  if (SCCC && SCCC->getValue())
4843    return N2;
4844  // fold select_cc false, x, y -> y
4845  if (SCCC && SCCC->getValue() == 0)
4846    return N3;
4847
4848  // Check to see if we can simplify the select into an fabs node
4849  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
4850    // Allow either -0.0 or 0.0
4851    if (CFP->getValueAPF().isZero()) {
4852      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
4853      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
4854          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
4855          N2 == N3.getOperand(0))
4856        return DAG.getNode(ISD::FABS, VT, N0);
4857
4858      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
4859      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
4860          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
4861          N2.getOperand(0) == N3)
4862        return DAG.getNode(ISD::FABS, VT, N3);
4863    }
4864  }
4865
4866  // Check to see if we can perform the "gzip trick", transforming
4867  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
4868  if (N1C && N3C && N3C->isNullValue() && CC == ISD::SETLT &&
4869      MVT::isInteger(N0.getValueType()) &&
4870      MVT::isInteger(N2.getValueType()) &&
4871      (N1C->isNullValue() ||                    // (a < 0) ? b : 0
4872       (N1C->getValue() == 1 && N0 == N2))) {   // (a < 1) ? a : 0
4873    MVT::ValueType XType = N0.getValueType();
4874    MVT::ValueType AType = N2.getValueType();
4875    if (XType >= AType) {
4876      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
4877      // single-bit constant.
4878      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
4879        unsigned ShCtV = Log2_64(N2C->getValue());
4880        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
4881        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
4882        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
4883        AddToWorkList(Shift.Val);
4884        if (XType > AType) {
4885          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4886          AddToWorkList(Shift.Val);
4887        }
4888        return DAG.getNode(ISD::AND, AType, Shift, N2);
4889      }
4890      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4891                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
4892                                                    TLI.getShiftAmountTy()));
4893      AddToWorkList(Shift.Val);
4894      if (XType > AType) {
4895        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
4896        AddToWorkList(Shift.Val);
4897      }
4898      return DAG.getNode(ISD::AND, AType, Shift, N2);
4899    }
4900  }
4901
4902  // fold select C, 16, 0 -> shl C, 4
4903  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
4904      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
4905
4906    // If the caller doesn't want us to simplify this into a zext of a compare,
4907    // don't do it.
4908    if (NotExtCompare && N2C->getValue() == 1)
4909      return SDOperand();
4910
4911    // Get a SetCC of the condition
4912    // FIXME: Should probably make sure that setcc is legal if we ever have a
4913    // target where it isn't.
4914    SDOperand Temp, SCC;
4915    // cast from setcc result type to select result type
4916    if (AfterLegalize) {
4917      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4918      if (N2.getValueType() < SCC.getValueType())
4919        Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
4920      else
4921        Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4922    } else {
4923      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
4924      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
4925    }
4926    AddToWorkList(SCC.Val);
4927    AddToWorkList(Temp.Val);
4928
4929    if (N2C->getValue() == 1)
4930      return Temp;
4931    // shl setcc result by log2 n2c
4932    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
4933                       DAG.getConstant(Log2_64(N2C->getValue()),
4934                                       TLI.getShiftAmountTy()));
4935  }
4936
4937  // Check to see if this is the equivalent of setcc
4938  // FIXME: Turn all of these into setcc if setcc if setcc is legal
4939  // otherwise, go ahead with the folds.
4940  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
4941    MVT::ValueType XType = N0.getValueType();
4942    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
4943      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
4944      if (Res.getValueType() != VT)
4945        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
4946      return Res;
4947    }
4948
4949    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
4950    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
4951        TLI.isOperationLegal(ISD::CTLZ, XType)) {
4952      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
4953      return DAG.getNode(ISD::SRL, XType, Ctlz,
4954                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
4955                                         TLI.getShiftAmountTy()));
4956    }
4957    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
4958    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
4959      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
4960                                    N0);
4961      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
4962                                    DAG.getConstant(~0ULL, XType));
4963      return DAG.getNode(ISD::SRL, XType,
4964                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
4965                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
4966                                         TLI.getShiftAmountTy()));
4967    }
4968    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
4969    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
4970      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
4971                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
4972                                                   TLI.getShiftAmountTy()));
4973      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
4974    }
4975  }
4976
4977  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
4978  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4979  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
4980      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1) &&
4981      N2.getOperand(0) == N1 && MVT::isInteger(N0.getValueType())) {
4982    MVT::ValueType XType = N0.getValueType();
4983    SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4984                                  DAG.getConstant(MVT::getSizeInBits(XType)-1,
4985                                                  TLI.getShiftAmountTy()));
4986    SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
4987    AddToWorkList(Shift.Val);
4988    AddToWorkList(Add.Val);
4989    return DAG.getNode(ISD::XOR, XType, Add, Shift);
4990  }
4991  // Check to see if this is an integer abs. select_cc setgt X, -1, X, -X ->
4992  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
4993  if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT &&
4994      N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1)) {
4995    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) {
4996      MVT::ValueType XType = N0.getValueType();
4997      if (SubC->isNullValue() && MVT::isInteger(XType)) {
4998        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
4999                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
5000                                                      TLI.getShiftAmountTy()));
5001        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
5002        AddToWorkList(Shift.Val);
5003        AddToWorkList(Add.Val);
5004        return DAG.getNode(ISD::XOR, XType, Add, Shift);
5005      }
5006    }
5007  }
5008
5009  return SDOperand();
5010}
5011
5012/// SimplifySetCC - This is a stub for TargetLowering::SimplifySetCC.
5013SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
5014                                     SDOperand N1, ISD::CondCode Cond,
5015                                     bool foldBooleans) {
5016  TargetLowering::DAGCombinerInfo
5017    DagCombineInfo(DAG, !AfterLegalize, false, this);
5018  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo);
5019}
5020
5021/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
5022/// return a DAG expression to select that will generate the same value by
5023/// multiplying by a magic number.  See:
5024/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5025SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
5026  std::vector<SDNode*> Built;
5027  SDOperand S = TLI.BuildSDIV(N, DAG, &Built);
5028
5029  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5030       ii != ee; ++ii)
5031    AddToWorkList(*ii);
5032  return S;
5033}
5034
5035/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
5036/// return a DAG expression to select that will generate the same value by
5037/// multiplying by a magic number.  See:
5038/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
5039SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
5040  std::vector<SDNode*> Built;
5041  SDOperand S = TLI.BuildUDIV(N, DAG, &Built);
5042
5043  for (std::vector<SDNode*>::iterator ii = Built.begin(), ee = Built.end();
5044       ii != ee; ++ii)
5045    AddToWorkList(*ii);
5046  return S;
5047}
5048
5049/// FindBaseOffset - Return true if base is known not to alias with anything
5050/// but itself.  Provides base object and offset as results.
5051static bool FindBaseOffset(SDOperand Ptr, SDOperand &Base, int64_t &Offset) {
5052  // Assume it is a primitive operation.
5053  Base = Ptr; Offset = 0;
5054
5055  // If it's an adding a simple constant then integrate the offset.
5056  if (Base.getOpcode() == ISD::ADD) {
5057    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
5058      Base = Base.getOperand(0);
5059      Offset += C->getValue();
5060    }
5061  }
5062
5063  // If it's any of the following then it can't alias with anything but itself.
5064  return isa<FrameIndexSDNode>(Base) ||
5065         isa<ConstantPoolSDNode>(Base) ||
5066         isa<GlobalAddressSDNode>(Base);
5067}
5068
5069/// isAlias - Return true if there is any possibility that the two addresses
5070/// overlap.
5071bool DAGCombiner::isAlias(SDOperand Ptr1, int64_t Size1,
5072                          const Value *SrcValue1, int SrcValueOffset1,
5073                          SDOperand Ptr2, int64_t Size2,
5074                          const Value *SrcValue2, int SrcValueOffset2)
5075{
5076  // If they are the same then they must be aliases.
5077  if (Ptr1 == Ptr2) return true;
5078
5079  // Gather base node and offset information.
5080  SDOperand Base1, Base2;
5081  int64_t Offset1, Offset2;
5082  bool KnownBase1 = FindBaseOffset(Ptr1, Base1, Offset1);
5083  bool KnownBase2 = FindBaseOffset(Ptr2, Base2, Offset2);
5084
5085  // If they have a same base address then...
5086  if (Base1 == Base2) {
5087    // Check to see if the addresses overlap.
5088    return!((Offset1 + Size1) <= Offset2 || (Offset2 + Size2) <= Offset1);
5089  }
5090
5091  // If we know both bases then they can't alias.
5092  if (KnownBase1 && KnownBase2) return false;
5093
5094  if (CombinerGlobalAA) {
5095    // Use alias analysis information.
5096    int64_t MinOffset = std::min(SrcValueOffset1, SrcValueOffset2);
5097    int64_t Overlap1 = Size1 + SrcValueOffset1 - MinOffset;
5098    int64_t Overlap2 = Size2 + SrcValueOffset2 - MinOffset;
5099    AliasAnalysis::AliasResult AAResult =
5100                             AA.alias(SrcValue1, Overlap1, SrcValue2, Overlap2);
5101    if (AAResult == AliasAnalysis::NoAlias)
5102      return false;
5103  }
5104
5105  // Otherwise we have to assume they alias.
5106  return true;
5107}
5108
5109/// FindAliasInfo - Extracts the relevant alias information from the memory
5110/// node.  Returns true if the operand was a load.
5111bool DAGCombiner::FindAliasInfo(SDNode *N,
5112                        SDOperand &Ptr, int64_t &Size,
5113                        const Value *&SrcValue, int &SrcValueOffset) {
5114  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5115    Ptr = LD->getBasePtr();
5116    Size = MVT::getSizeInBits(LD->getLoadedVT()) >> 3;
5117    SrcValue = LD->getSrcValue();
5118    SrcValueOffset = LD->getSrcValueOffset();
5119    return true;
5120  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5121    Ptr = ST->getBasePtr();
5122    Size = MVT::getSizeInBits(ST->getStoredVT()) >> 3;
5123    SrcValue = ST->getSrcValue();
5124    SrcValueOffset = ST->getSrcValueOffset();
5125  } else {
5126    assert(0 && "FindAliasInfo expected a memory operand");
5127  }
5128
5129  return false;
5130}
5131
5132/// GatherAllAliases - Walk up chain skipping non-aliasing memory nodes,
5133/// looking for aliasing nodes and adding them to the Aliases vector.
5134void DAGCombiner::GatherAllAliases(SDNode *N, SDOperand OriginalChain,
5135                                   SmallVector<SDOperand, 8> &Aliases) {
5136  SmallVector<SDOperand, 8> Chains;     // List of chains to visit.
5137  std::set<SDNode *> Visited;           // Visited node set.
5138
5139  // Get alias information for node.
5140  SDOperand Ptr;
5141  int64_t Size;
5142  const Value *SrcValue;
5143  int SrcValueOffset;
5144  bool IsLoad = FindAliasInfo(N, Ptr, Size, SrcValue, SrcValueOffset);
5145
5146  // Starting off.
5147  Chains.push_back(OriginalChain);
5148
5149  // Look at each chain and determine if it is an alias.  If so, add it to the
5150  // aliases list.  If not, then continue up the chain looking for the next
5151  // candidate.
5152  while (!Chains.empty()) {
5153    SDOperand Chain = Chains.back();
5154    Chains.pop_back();
5155
5156     // Don't bother if we've been before.
5157    if (Visited.find(Chain.Val) != Visited.end()) continue;
5158    Visited.insert(Chain.Val);
5159
5160    switch (Chain.getOpcode()) {
5161    case ISD::EntryToken:
5162      // Entry token is ideal chain operand, but handled in FindBetterChain.
5163      break;
5164
5165    case ISD::LOAD:
5166    case ISD::STORE: {
5167      // Get alias information for Chain.
5168      SDOperand OpPtr;
5169      int64_t OpSize;
5170      const Value *OpSrcValue;
5171      int OpSrcValueOffset;
5172      bool IsOpLoad = FindAliasInfo(Chain.Val, OpPtr, OpSize,
5173                                    OpSrcValue, OpSrcValueOffset);
5174
5175      // If chain is alias then stop here.
5176      if (!(IsLoad && IsOpLoad) &&
5177          isAlias(Ptr, Size, SrcValue, SrcValueOffset,
5178                  OpPtr, OpSize, OpSrcValue, OpSrcValueOffset)) {
5179        Aliases.push_back(Chain);
5180      } else {
5181        // Look further up the chain.
5182        Chains.push_back(Chain.getOperand(0));
5183        // Clean up old chain.
5184        AddToWorkList(Chain.Val);
5185      }
5186      break;
5187    }
5188
5189    case ISD::TokenFactor:
5190      // We have to check each of the operands of the token factor, so we queue
5191      // then up.  Adding the  operands to the queue (stack) in reverse order
5192      // maintains the original order and increases the likelihood that getNode
5193      // will find a matching token factor (CSE.)
5194      for (unsigned n = Chain.getNumOperands(); n;)
5195        Chains.push_back(Chain.getOperand(--n));
5196      // Eliminate the token factor if we can.
5197      AddToWorkList(Chain.Val);
5198      break;
5199
5200    default:
5201      // For all other instructions we will just have to take what we can get.
5202      Aliases.push_back(Chain);
5203      break;
5204    }
5205  }
5206}
5207
5208/// FindBetterChain - Walk up chain skipping non-aliasing memory nodes, looking
5209/// for a better chain (aliasing node.)
5210SDOperand DAGCombiner::FindBetterChain(SDNode *N, SDOperand OldChain) {
5211  SmallVector<SDOperand, 8> Aliases;  // Ops for replacing token factor.
5212
5213  // Accumulate all the aliases to this node.
5214  GatherAllAliases(N, OldChain, Aliases);
5215
5216  if (Aliases.size() == 0) {
5217    // If no operands then chain to entry token.
5218    return DAG.getEntryNode();
5219  } else if (Aliases.size() == 1) {
5220    // If a single operand then chain to it.  We don't need to revisit it.
5221    return Aliases[0];
5222  }
5223
5224  // Construct a custom tailored token factor.
5225  SDOperand NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5226                                   &Aliases[0], Aliases.size());
5227
5228  // Make sure the old chain gets cleaned up.
5229  if (NewChain != OldChain) AddToWorkList(OldChain.Val);
5230
5231  return NewChain;
5232}
5233
5234// SelectionDAG::Combine - This is the entry point for the file.
5235//
5236void SelectionDAG::Combine(bool RunningAfterLegalize, AliasAnalysis &AA) {
5237  if (!RunningAfterLegalize && ViewDAGCombine1)
5238    viewGraph();
5239  if (RunningAfterLegalize && ViewDAGCombine2)
5240    viewGraph();
5241  /// run - This is the main entry point to this class.
5242  ///
5243  DAGCombiner(*this, AA).Run(RunningAfterLegalize);
5244}
5245