1//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a linear scan register allocator.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "regalloc"
15#include "LiveDebugVariables.h"
16#include "LiveRangeEdit.h"
17#include "VirtRegMap.h"
18#include "VirtRegRewriter.h"
19#include "RegisterClassInfo.h"
20#include "Spiller.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Function.h"
23#include "llvm/CodeGen/CalcSpillWeights.h"
24#include "llvm/CodeGen/LiveIntervalAnalysis.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/RegAllocRegistry.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/ADT/EquivalenceClasses.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43#include <queue>
44#include <memory>
45#include <cmath>
46
47using namespace llvm;
48
49STATISTIC(NumIters     , "Number of iterations performed");
50STATISTIC(NumBacktracks, "Number of times we had to backtrack");
51STATISTIC(NumCoalesce,   "Number of copies coalesced");
52STATISTIC(NumDowngrade,  "Number of registers downgraded");
53
54static cl::opt<bool>
55NewHeuristic("new-spilling-heuristic",
56             cl::desc("Use new spilling heuristic"),
57             cl::init(false), cl::Hidden);
58
59static cl::opt<bool>
60TrivCoalesceEnds("trivial-coalesce-ends",
61                  cl::desc("Attempt trivial coalescing of interval ends"),
62                  cl::init(false), cl::Hidden);
63
64static cl::opt<bool>
65AvoidWAWHazard("avoid-waw-hazard",
66               cl::desc("Avoid write-write hazards for some register classes"),
67               cl::init(false), cl::Hidden);
68
69static RegisterRegAlloc
70linearscanRegAlloc("linearscan", "linear scan register allocator",
71                   createLinearScanRegisterAllocator);
72
73namespace {
74  // When we allocate a register, add it to a fixed-size queue of
75  // registers to skip in subsequent allocations. This trades a small
76  // amount of register pressure and increased spills for flexibility in
77  // the post-pass scheduler.
78  //
79  // Note that in a the number of registers used for reloading spills
80  // will be one greater than the value of this option.
81  //
82  // One big limitation of this is that it doesn't differentiate between
83  // different register classes. So on x86-64, if there is xmm register
84  // pressure, it can caused fewer GPRs to be held in the queue.
85  static cl::opt<unsigned>
86  NumRecentlyUsedRegs("linearscan-skip-count",
87                      cl::desc("Number of registers for linearscan to remember"
88                               "to skip."),
89                      cl::init(0),
90                      cl::Hidden);
91
92  struct RALinScan : public MachineFunctionPass {
93    static char ID;
94    RALinScan() : MachineFunctionPass(ID) {
95      initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
96      initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97      initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
98      initializeRegisterCoalescerPass(
99        *PassRegistry::getPassRegistry());
100      initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
101      initializeLiveStacksPass(*PassRegistry::getPassRegistry());
102      initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
103      initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
104      initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
105      initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
106
107      // Initialize the queue to record recently-used registers.
108      if (NumRecentlyUsedRegs > 0)
109        RecentRegs.resize(NumRecentlyUsedRegs, 0);
110      RecentNext = RecentRegs.begin();
111      avoidWAW_ = 0;
112    }
113
114    typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
115    typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
116  private:
117    /// RelatedRegClasses - This structure is built the first time a function is
118    /// compiled, and keeps track of which register classes have registers that
119    /// belong to multiple classes or have aliases that are in other classes.
120    EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
121    DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
122
123    // NextReloadMap - For each register in the map, it maps to the another
124    // register which is defined by a reload from the same stack slot and
125    // both reloads are in the same basic block.
126    DenseMap<unsigned, unsigned> NextReloadMap;
127
128    // DowngradedRegs - A set of registers which are being "downgraded", i.e.
129    // un-favored for allocation.
130    SmallSet<unsigned, 8> DowngradedRegs;
131
132    // DowngradeMap - A map from virtual registers to physical registers being
133    // downgraded for the virtual registers.
134    DenseMap<unsigned, unsigned> DowngradeMap;
135
136    MachineFunction* mf_;
137    MachineRegisterInfo* mri_;
138    const TargetMachine* tm_;
139    const TargetRegisterInfo* tri_;
140    const TargetInstrInfo* tii_;
141    BitVector allocatableRegs_;
142    BitVector reservedRegs_;
143    LiveIntervals* li_;
144    MachineLoopInfo *loopInfo;
145    RegisterClassInfo RegClassInfo;
146
147    /// handled_ - Intervals are added to the handled_ set in the order of their
148    /// start value.  This is uses for backtracking.
149    std::vector<LiveInterval*> handled_;
150
151    /// fixed_ - Intervals that correspond to machine registers.
152    ///
153    IntervalPtrs fixed_;
154
155    /// active_ - Intervals that are currently being processed, and which have a
156    /// live range active for the current point.
157    IntervalPtrs active_;
158
159    /// inactive_ - Intervals that are currently being processed, but which have
160    /// a hold at the current point.
161    IntervalPtrs inactive_;
162
163    typedef std::priority_queue<LiveInterval*,
164                                SmallVector<LiveInterval*, 64>,
165                                greater_ptr<LiveInterval> > IntervalHeap;
166    IntervalHeap unhandled_;
167
168    /// regUse_ - Tracks register usage.
169    SmallVector<unsigned, 32> regUse_;
170    SmallVector<unsigned, 32> regUseBackUp_;
171
172    /// vrm_ - Tracks register assignments.
173    VirtRegMap* vrm_;
174
175    std::auto_ptr<VirtRegRewriter> rewriter_;
176
177    std::auto_ptr<Spiller> spiller_;
178
179    // The queue of recently-used registers.
180    SmallVector<unsigned, 4> RecentRegs;
181    SmallVector<unsigned, 4>::iterator RecentNext;
182
183    // Last write-after-write register written.
184    unsigned avoidWAW_;
185
186    // Record that we just picked this register.
187    void recordRecentlyUsed(unsigned reg) {
188      assert(reg != 0 && "Recently used register is NOREG!");
189      if (!RecentRegs.empty()) {
190        *RecentNext++ = reg;
191        if (RecentNext == RecentRegs.end())
192          RecentNext = RecentRegs.begin();
193      }
194    }
195
196  public:
197    virtual const char* getPassName() const {
198      return "Linear Scan Register Allocator";
199    }
200
201    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
202      AU.setPreservesCFG();
203      AU.addRequired<AliasAnalysis>();
204      AU.addPreserved<AliasAnalysis>();
205      AU.addRequired<LiveIntervals>();
206      AU.addPreserved<SlotIndexes>();
207      if (StrongPHIElim)
208        AU.addRequiredID(StrongPHIEliminationID);
209      // Make sure PassManager knows which analyses to make available
210      // to coalescing and which analyses coalescing invalidates.
211      AU.addRequiredTransitiveID(RegisterCoalescerPassID);
212      AU.addRequired<CalculateSpillWeights>();
213      AU.addRequiredID(LiveStacksID);
214      AU.addPreservedID(LiveStacksID);
215      AU.addRequired<MachineLoopInfo>();
216      AU.addPreserved<MachineLoopInfo>();
217      AU.addRequired<VirtRegMap>();
218      AU.addPreserved<VirtRegMap>();
219      AU.addRequired<LiveDebugVariables>();
220      AU.addPreserved<LiveDebugVariables>();
221      AU.addRequiredID(MachineDominatorsID);
222      AU.addPreservedID(MachineDominatorsID);
223      MachineFunctionPass::getAnalysisUsage(AU);
224    }
225
226    /// runOnMachineFunction - register allocate the whole function
227    bool runOnMachineFunction(MachineFunction&);
228
229    // Determine if we skip this register due to its being recently used.
230    bool isRecentlyUsed(unsigned reg) const {
231      return reg == avoidWAW_ ||
232       std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
233    }
234
235  private:
236    /// linearScan - the linear scan algorithm
237    void linearScan();
238
239    /// initIntervalSets - initialize the interval sets.
240    ///
241    void initIntervalSets();
242
243    /// processActiveIntervals - expire old intervals and move non-overlapping
244    /// ones to the inactive list.
245    void processActiveIntervals(SlotIndex CurPoint);
246
247    /// processInactiveIntervals - expire old intervals and move overlapping
248    /// ones to the active list.
249    void processInactiveIntervals(SlotIndex CurPoint);
250
251    /// hasNextReloadInterval - Return the next liveinterval that's being
252    /// defined by a reload from the same SS as the specified one.
253    LiveInterval *hasNextReloadInterval(LiveInterval *cur);
254
255    /// DowngradeRegister - Downgrade a register for allocation.
256    void DowngradeRegister(LiveInterval *li, unsigned Reg);
257
258    /// UpgradeRegister - Upgrade a register for allocation.
259    void UpgradeRegister(unsigned Reg);
260
261    /// assignRegOrStackSlotAtInterval - assign a register if one
262    /// is available, or spill.
263    void assignRegOrStackSlotAtInterval(LiveInterval* cur);
264
265    void updateSpillWeights(std::vector<float> &Weights,
266                            unsigned reg, float weight,
267                            const TargetRegisterClass *RC);
268
269    /// findIntervalsToSpill - Determine the intervals to spill for the
270    /// specified interval. It's passed the physical registers whose spill
271    /// weight is the lowest among all the registers whose live intervals
272    /// conflict with the interval.
273    void findIntervalsToSpill(LiveInterval *cur,
274                            std::vector<std::pair<unsigned,float> > &Candidates,
275                            unsigned NumCands,
276                            SmallVector<LiveInterval*, 8> &SpillIntervals);
277
278    /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
279    /// try to allocate the definition to the same register as the source,
280    /// if the register is not defined during the life time of the interval.
281    /// This eliminates a copy, and is used to coalesce copies which were not
282    /// coalesced away before allocation either due to dest and src being in
283    /// different register classes or because the coalescer was overly
284    /// conservative.
285    unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
286
287    ///
288    /// Register usage / availability tracking helpers.
289    ///
290
291    void initRegUses() {
292      regUse_.resize(tri_->getNumRegs(), 0);
293      regUseBackUp_.resize(tri_->getNumRegs(), 0);
294    }
295
296    void finalizeRegUses() {
297#ifndef NDEBUG
298      // Verify all the registers are "freed".
299      bool Error = false;
300      for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
301        if (regUse_[i] != 0) {
302          dbgs() << tri_->getName(i) << " is still in use!\n";
303          Error = true;
304        }
305      }
306      if (Error)
307        llvm_unreachable(0);
308#endif
309      regUse_.clear();
310      regUseBackUp_.clear();
311    }
312
313    void addRegUse(unsigned physReg) {
314      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
315             "should be physical register!");
316      ++regUse_[physReg];
317      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
318        ++regUse_[*as];
319    }
320
321    void delRegUse(unsigned physReg) {
322      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
323             "should be physical register!");
324      assert(regUse_[physReg] != 0);
325      --regUse_[physReg];
326      for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
327        assert(regUse_[*as] != 0);
328        --regUse_[*as];
329      }
330    }
331
332    bool isRegAvail(unsigned physReg) const {
333      assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
334             "should be physical register!");
335      return regUse_[physReg] == 0;
336    }
337
338    void backUpRegUses() {
339      regUseBackUp_ = regUse_;
340    }
341
342    void restoreRegUses() {
343      regUse_ = regUseBackUp_;
344    }
345
346    ///
347    /// Register handling helpers.
348    ///
349
350    /// getFreePhysReg - return a free physical register for this virtual
351    /// register interval if we have one, otherwise return 0.
352    unsigned getFreePhysReg(LiveInterval* cur);
353    unsigned getFreePhysReg(LiveInterval* cur,
354                            const TargetRegisterClass *RC,
355                            unsigned MaxInactiveCount,
356                            SmallVector<unsigned, 256> &inactiveCounts,
357                            bool SkipDGRegs);
358
359    /// getFirstNonReservedPhysReg - return the first non-reserved physical
360    /// register in the register class.
361    unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
362      ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
363      assert(!O.empty() && "All registers reserved?!");
364      return O.front();
365    }
366
367    void ComputeRelatedRegClasses();
368
369    template <typename ItTy>
370    void printIntervals(const char* const str, ItTy i, ItTy e) const {
371      DEBUG({
372          if (str)
373            dbgs() << str << " intervals:\n";
374
375          for (; i != e; ++i) {
376            dbgs() << '\t' << *i->first << " -> ";
377
378            unsigned reg = i->first->reg;
379            if (TargetRegisterInfo::isVirtualRegister(reg))
380              reg = vrm_->getPhys(reg);
381
382            dbgs() << tri_->getName(reg) << '\n';
383          }
384        });
385    }
386  };
387  char RALinScan::ID = 0;
388}
389
390INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
391                      "Linear Scan Register Allocator", false, false)
392INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
393INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
394INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
395INITIALIZE_PASS_DEPENDENCY(LiveStacks)
396INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
397INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
398INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
399INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
400INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
401                    "Linear Scan Register Allocator", false, false)
402
403void RALinScan::ComputeRelatedRegClasses() {
404  // First pass, add all reg classes to the union, and determine at least one
405  // reg class that each register is in.
406  bool HasAliases = false;
407  for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
408       E = tri_->regclass_end(); RCI != E; ++RCI) {
409    RelatedRegClasses.insert(*RCI);
410    for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
411         I != E; ++I) {
412      HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
413
414      const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
415      if (PRC) {
416        // Already processed this register.  Just make sure we know that
417        // multiple register classes share a register.
418        RelatedRegClasses.unionSets(PRC, *RCI);
419      } else {
420        PRC = *RCI;
421      }
422    }
423  }
424
425  // Second pass, now that we know conservatively what register classes each reg
426  // belongs to, add info about aliases.  We don't need to do this for targets
427  // without register aliases.
428  if (HasAliases)
429    for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
430         I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
431         I != E; ++I)
432      for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
433        const TargetRegisterClass *AliasClass =
434          OneClassForEachPhysReg.lookup(*AS);
435        if (AliasClass)
436          RelatedRegClasses.unionSets(I->second, AliasClass);
437      }
438}
439
440/// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
441/// allocate the definition the same register as the source register if the
442/// register is not defined during live time of the interval. If the interval is
443/// killed by a copy, try to use the destination register. This eliminates a
444/// copy. This is used to coalesce copies which were not coalesced away before
445/// allocation either due to dest and src being in different register classes or
446/// because the coalescer was overly conservative.
447unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
448  unsigned Preference = vrm_->getRegAllocPref(cur.reg);
449  if ((Preference && Preference == Reg) || !cur.containsOneValue())
450    return Reg;
451
452  // We cannot handle complicated live ranges. Simple linear stuff only.
453  if (cur.ranges.size() != 1)
454    return Reg;
455
456  const LiveRange &range = cur.ranges.front();
457
458  VNInfo *vni = range.valno;
459  if (vni->isUnused() || !vni->def.isValid())
460    return Reg;
461
462  unsigned CandReg;
463  {
464    MachineInstr *CopyMI;
465    if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
466      // Defined by a copy, try to extend SrcReg forward
467      CandReg = CopyMI->getOperand(1).getReg();
468    else if (TrivCoalesceEnds &&
469            (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
470             CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
471      // Only used by a copy, try to extend DstReg backwards
472      CandReg = CopyMI->getOperand(0).getReg();
473    else
474      return Reg;
475
476    // If the target of the copy is a sub-register then don't coalesce.
477    if(CopyMI->getOperand(0).getSubReg())
478      return Reg;
479  }
480
481  if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
482    if (!vrm_->isAssignedReg(CandReg))
483      return Reg;
484    CandReg = vrm_->getPhys(CandReg);
485  }
486  if (Reg == CandReg)
487    return Reg;
488
489  const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
490  if (!RC->contains(CandReg))
491    return Reg;
492
493  if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
494    return Reg;
495
496  // Try to coalesce.
497  DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
498        << '\n');
499  vrm_->clearVirt(cur.reg);
500  vrm_->assignVirt2Phys(cur.reg, CandReg);
501
502  ++NumCoalesce;
503  return CandReg;
504}
505
506bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
507  mf_ = &fn;
508  mri_ = &fn.getRegInfo();
509  tm_ = &fn.getTarget();
510  tri_ = tm_->getRegisterInfo();
511  tii_ = tm_->getInstrInfo();
512  allocatableRegs_ = tri_->getAllocatableSet(fn);
513  reservedRegs_ = tri_->getReservedRegs(fn);
514  li_ = &getAnalysis<LiveIntervals>();
515  loopInfo = &getAnalysis<MachineLoopInfo>();
516  RegClassInfo.runOnMachineFunction(fn);
517
518  // We don't run the coalescer here because we have no reason to
519  // interact with it.  If the coalescer requires interaction, it
520  // won't do anything.  If it doesn't require interaction, we assume
521  // it was run as a separate pass.
522
523  // If this is the first function compiled, compute the related reg classes.
524  if (RelatedRegClasses.empty())
525    ComputeRelatedRegClasses();
526
527  // Also resize register usage trackers.
528  initRegUses();
529
530  vrm_ = &getAnalysis<VirtRegMap>();
531  if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
532
533  spiller_.reset(createSpiller(*this, *mf_, *vrm_));
534
535  initIntervalSets();
536
537  linearScan();
538
539  // Rewrite spill code and update the PhysRegsUsed set.
540  rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
541
542  // Write out new DBG_VALUE instructions.
543  getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
544
545  assert(unhandled_.empty() && "Unhandled live intervals remain!");
546
547  finalizeRegUses();
548
549  fixed_.clear();
550  active_.clear();
551  inactive_.clear();
552  handled_.clear();
553  NextReloadMap.clear();
554  DowngradedRegs.clear();
555  DowngradeMap.clear();
556  spiller_.reset(0);
557
558  return true;
559}
560
561/// initIntervalSets - initialize the interval sets.
562///
563void RALinScan::initIntervalSets()
564{
565  assert(unhandled_.empty() && fixed_.empty() &&
566         active_.empty() && inactive_.empty() &&
567         "interval sets should be empty on initialization");
568
569  handled_.reserve(li_->getNumIntervals());
570
571  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
572    if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
573      if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
574        mri_->setPhysRegUsed(i->second->reg);
575        fixed_.push_back(std::make_pair(i->second, i->second->begin()));
576      }
577    } else {
578      if (i->second->empty()) {
579        assignRegOrStackSlotAtInterval(i->second);
580      }
581      else
582        unhandled_.push(i->second);
583    }
584  }
585}
586
587void RALinScan::linearScan() {
588  // linear scan algorithm
589  DEBUG({
590      dbgs() << "********** LINEAR SCAN **********\n"
591             << "********** Function: "
592             << mf_->getFunction()->getName() << '\n';
593      printIntervals("fixed", fixed_.begin(), fixed_.end());
594    });
595
596  while (!unhandled_.empty()) {
597    // pick the interval with the earliest start point
598    LiveInterval* cur = unhandled_.top();
599    unhandled_.pop();
600    ++NumIters;
601    DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
602
603    assert(!cur->empty() && "Empty interval in unhandled set.");
604
605    processActiveIntervals(cur->beginIndex());
606    processInactiveIntervals(cur->beginIndex());
607
608    assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
609           "Can only allocate virtual registers!");
610
611    // Allocating a virtual register. try to find a free
612    // physical register or spill an interval (possibly this one) in order to
613    // assign it one.
614    assignRegOrStackSlotAtInterval(cur);
615
616    DEBUG({
617        printIntervals("active", active_.begin(), active_.end());
618        printIntervals("inactive", inactive_.begin(), inactive_.end());
619      });
620  }
621
622  // Expire any remaining active intervals
623  while (!active_.empty()) {
624    IntervalPtr &IP = active_.back();
625    unsigned reg = IP.first->reg;
626    DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
627    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
628           "Can only allocate virtual registers!");
629    reg = vrm_->getPhys(reg);
630    delRegUse(reg);
631    active_.pop_back();
632  }
633
634  // Expire any remaining inactive intervals
635  DEBUG({
636      for (IntervalPtrs::reverse_iterator
637             i = inactive_.rbegin(); i != inactive_.rend(); ++i)
638        dbgs() << "\tinterval " << *i->first << " expired\n";
639    });
640  inactive_.clear();
641
642  // Add live-ins to every BB except for entry. Also perform trivial coalescing.
643  MachineFunction::iterator EntryMBB = mf_->begin();
644  SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
645  for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
646    LiveInterval &cur = *i->second;
647    unsigned Reg = 0;
648    bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
649    if (isPhys)
650      Reg = cur.reg;
651    else if (vrm_->isAssignedReg(cur.reg))
652      Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
653    if (!Reg)
654      continue;
655    // Ignore splited live intervals.
656    if (!isPhys && vrm_->getPreSplitReg(cur.reg))
657      continue;
658
659    for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
660         I != E; ++I) {
661      const LiveRange &LR = *I;
662      if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
663        for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
664          if (LiveInMBBs[i] != EntryMBB) {
665            assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
666                   "Adding a virtual register to livein set?");
667            LiveInMBBs[i]->addLiveIn(Reg);
668          }
669        LiveInMBBs.clear();
670      }
671    }
672  }
673
674  DEBUG(dbgs() << *vrm_);
675
676  // Look for physical registers that end up not being allocated even though
677  // register allocator had to spill other registers in its register class.
678  if (!vrm_->FindUnusedRegisters(li_))
679    return;
680}
681
682/// processActiveIntervals - expire old intervals and move non-overlapping ones
683/// to the inactive list.
684void RALinScan::processActiveIntervals(SlotIndex CurPoint)
685{
686  DEBUG(dbgs() << "\tprocessing active intervals:\n");
687
688  for (unsigned i = 0, e = active_.size(); i != e; ++i) {
689    LiveInterval *Interval = active_[i].first;
690    LiveInterval::iterator IntervalPos = active_[i].second;
691    unsigned reg = Interval->reg;
692
693    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
694
695    if (IntervalPos == Interval->end()) {     // Remove expired intervals.
696      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
697      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
698             "Can only allocate virtual registers!");
699      reg = vrm_->getPhys(reg);
700      delRegUse(reg);
701
702      // Pop off the end of the list.
703      active_[i] = active_.back();
704      active_.pop_back();
705      --i; --e;
706
707    } else if (IntervalPos->start > CurPoint) {
708      // Move inactive intervals to inactive list.
709      DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
710      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
711             "Can only allocate virtual registers!");
712      reg = vrm_->getPhys(reg);
713      delRegUse(reg);
714      // add to inactive.
715      inactive_.push_back(std::make_pair(Interval, IntervalPos));
716
717      // Pop off the end of the list.
718      active_[i] = active_.back();
719      active_.pop_back();
720      --i; --e;
721    } else {
722      // Otherwise, just update the iterator position.
723      active_[i].second = IntervalPos;
724    }
725  }
726}
727
728/// processInactiveIntervals - expire old intervals and move overlapping
729/// ones to the active list.
730void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
731{
732  DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
733
734  for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
735    LiveInterval *Interval = inactive_[i].first;
736    LiveInterval::iterator IntervalPos = inactive_[i].second;
737    unsigned reg = Interval->reg;
738
739    IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
740
741    if (IntervalPos == Interval->end()) {       // remove expired intervals.
742      DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
743
744      // Pop off the end of the list.
745      inactive_[i] = inactive_.back();
746      inactive_.pop_back();
747      --i; --e;
748    } else if (IntervalPos->start <= CurPoint) {
749      // move re-activated intervals in active list
750      DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
751      assert(TargetRegisterInfo::isVirtualRegister(reg) &&
752             "Can only allocate virtual registers!");
753      reg = vrm_->getPhys(reg);
754      addRegUse(reg);
755      // add to active
756      active_.push_back(std::make_pair(Interval, IntervalPos));
757
758      // Pop off the end of the list.
759      inactive_[i] = inactive_.back();
760      inactive_.pop_back();
761      --i; --e;
762    } else {
763      // Otherwise, just update the iterator position.
764      inactive_[i].second = IntervalPos;
765    }
766  }
767}
768
769/// updateSpillWeights - updates the spill weights of the specifed physical
770/// register and its weight.
771void RALinScan::updateSpillWeights(std::vector<float> &Weights,
772                                   unsigned reg, float weight,
773                                   const TargetRegisterClass *RC) {
774  SmallSet<unsigned, 4> Processed;
775  SmallSet<unsigned, 4> SuperAdded;
776  SmallVector<unsigned, 4> Supers;
777  Weights[reg] += weight;
778  Processed.insert(reg);
779  for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
780    Weights[*as] += weight;
781    Processed.insert(*as);
782    if (tri_->isSubRegister(*as, reg) &&
783        SuperAdded.insert(*as) &&
784        RC->contains(*as)) {
785      Supers.push_back(*as);
786    }
787  }
788
789  // If the alias is a super-register, and the super-register is in the
790  // register class we are trying to allocate. Then add the weight to all
791  // sub-registers of the super-register even if they are not aliases.
792  // e.g. allocating for GR32, bh is not used, updating bl spill weight.
793  //      bl should get the same spill weight otherwise it will be chosen
794  //      as a spill candidate since spilling bh doesn't make ebx available.
795  for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
796    for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
797      if (!Processed.count(*sr))
798        Weights[*sr] += weight;
799  }
800}
801
802static
803RALinScan::IntervalPtrs::iterator
804FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
805  for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
806       I != E; ++I)
807    if (I->first == LI) return I;
808  return IP.end();
809}
810
811static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
812                                    SlotIndex Point){
813  for (unsigned i = 0, e = V.size(); i != e; ++i) {
814    RALinScan::IntervalPtr &IP = V[i];
815    LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
816                                                IP.second, Point);
817    if (I != IP.first->begin()) --I;
818    IP.second = I;
819  }
820}
821
822/// getConflictWeight - Return the number of conflicts between cur
823/// live interval and defs and uses of Reg weighted by loop depthes.
824static
825float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
826                        MachineRegisterInfo *mri_,
827                        MachineLoopInfo *loopInfo) {
828  float Conflicts = 0;
829  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
830         E = mri_->reg_end(); I != E; ++I) {
831    MachineInstr *MI = &*I;
832    if (cur->liveAt(li_->getInstructionIndex(MI))) {
833      unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
834      Conflicts += std::pow(10.0f, (float)loopDepth);
835    }
836  }
837  return Conflicts;
838}
839
840/// findIntervalsToSpill - Determine the intervals to spill for the
841/// specified interval. It's passed the physical registers whose spill
842/// weight is the lowest among all the registers whose live intervals
843/// conflict with the interval.
844void RALinScan::findIntervalsToSpill(LiveInterval *cur,
845                            std::vector<std::pair<unsigned,float> > &Candidates,
846                            unsigned NumCands,
847                            SmallVector<LiveInterval*, 8> &SpillIntervals) {
848  // We have figured out the *best* register to spill. But there are other
849  // registers that are pretty good as well (spill weight within 3%). Spill
850  // the one that has fewest defs and uses that conflict with cur.
851  float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
852  SmallVector<LiveInterval*, 8> SLIs[3];
853
854  DEBUG({
855      dbgs() << "\tConsidering " << NumCands << " candidates: ";
856      for (unsigned i = 0; i != NumCands; ++i)
857        dbgs() << tri_->getName(Candidates[i].first) << " ";
858      dbgs() << "\n";
859    });
860
861  // Calculate the number of conflicts of each candidate.
862  for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
863    unsigned Reg = i->first->reg;
864    unsigned PhysReg = vrm_->getPhys(Reg);
865    if (!cur->overlapsFrom(*i->first, i->second))
866      continue;
867    for (unsigned j = 0; j < NumCands; ++j) {
868      unsigned Candidate = Candidates[j].first;
869      if (tri_->regsOverlap(PhysReg, Candidate)) {
870        if (NumCands > 1)
871          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
872        SLIs[j].push_back(i->first);
873      }
874    }
875  }
876
877  for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
878    unsigned Reg = i->first->reg;
879    unsigned PhysReg = vrm_->getPhys(Reg);
880    if (!cur->overlapsFrom(*i->first, i->second-1))
881      continue;
882    for (unsigned j = 0; j < NumCands; ++j) {
883      unsigned Candidate = Candidates[j].first;
884      if (tri_->regsOverlap(PhysReg, Candidate)) {
885        if (NumCands > 1)
886          Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
887        SLIs[j].push_back(i->first);
888      }
889    }
890  }
891
892  // Which is the best candidate?
893  unsigned BestCandidate = 0;
894  float MinConflicts = Conflicts[0];
895  for (unsigned i = 1; i != NumCands; ++i) {
896    if (Conflicts[i] < MinConflicts) {
897      BestCandidate = i;
898      MinConflicts = Conflicts[i];
899    }
900  }
901
902  std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
903            std::back_inserter(SpillIntervals));
904}
905
906namespace {
907  struct WeightCompare {
908  private:
909    const RALinScan &Allocator;
910
911  public:
912    WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
913
914    typedef std::pair<unsigned, float> RegWeightPair;
915    bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
916      return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
917    }
918  };
919}
920
921static bool weightsAreClose(float w1, float w2) {
922  if (!NewHeuristic)
923    return false;
924
925  float diff = w1 - w2;
926  if (diff <= 0.02f)  // Within 0.02f
927    return true;
928  return (diff / w2) <= 0.05f;  // Within 5%.
929}
930
931LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
932  DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
933  if (I == NextReloadMap.end())
934    return 0;
935  return &li_->getInterval(I->second);
936}
937
938void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
939  for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
940    bool isNew = DowngradedRegs.insert(*AS);
941    (void)isNew; // Silence compiler warning.
942    assert(isNew && "Multiple reloads holding the same register?");
943    DowngradeMap.insert(std::make_pair(li->reg, *AS));
944  }
945  ++NumDowngrade;
946}
947
948void RALinScan::UpgradeRegister(unsigned Reg) {
949  if (Reg) {
950    DowngradedRegs.erase(Reg);
951    for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
952      DowngradedRegs.erase(*AS);
953  }
954}
955
956namespace {
957  struct LISorter {
958    bool operator()(LiveInterval* A, LiveInterval* B) {
959      return A->beginIndex() < B->beginIndex();
960    }
961  };
962}
963
964/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
965/// spill.
966void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
967  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
968  DEBUG(dbgs() << "\tallocating current interval from "
969               << RC->getName() << ": ");
970
971  // This is an implicitly defined live interval, just assign any register.
972  if (cur->empty()) {
973    unsigned physReg = vrm_->getRegAllocPref(cur->reg);
974    if (!physReg)
975      physReg = getFirstNonReservedPhysReg(RC);
976    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
977    // Note the register is not really in use.
978    vrm_->assignVirt2Phys(cur->reg, physReg);
979    return;
980  }
981
982  backUpRegUses();
983
984  std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
985  SlotIndex StartPosition = cur->beginIndex();
986  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
987
988  // If start of this live interval is defined by a move instruction and its
989  // source is assigned a physical register that is compatible with the target
990  // register class, then we should try to assign it the same register.
991  // This can happen when the move is from a larger register class to a smaller
992  // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
993  if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
994    VNInfo *vni = cur->begin()->valno;
995    if (!vni->isUnused() && vni->def.isValid()) {
996      MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
997      if (CopyMI && CopyMI->isCopy()) {
998        unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
999        unsigned SrcReg = CopyMI->getOperand(1).getReg();
1000        unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1001        unsigned Reg = 0;
1002        if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1003          Reg = SrcReg;
1004        else if (vrm_->isAssignedReg(SrcReg))
1005          Reg = vrm_->getPhys(SrcReg);
1006        if (Reg) {
1007          if (SrcSubReg)
1008            Reg = tri_->getSubReg(Reg, SrcSubReg);
1009          if (DstSubReg)
1010            Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1011          if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1012            mri_->setRegAllocationHint(cur->reg, 0, Reg);
1013        }
1014      }
1015    }
1016  }
1017
1018  // For every interval in inactive we overlap with, mark the
1019  // register as not free and update spill weights.
1020  for (IntervalPtrs::const_iterator i = inactive_.begin(),
1021         e = inactive_.end(); i != e; ++i) {
1022    unsigned Reg = i->first->reg;
1023    assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1024           "Can only allocate virtual registers!");
1025    const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1026    // If this is not in a related reg class to the register we're allocating,
1027    // don't check it.
1028    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1029        cur->overlapsFrom(*i->first, i->second-1)) {
1030      Reg = vrm_->getPhys(Reg);
1031      addRegUse(Reg);
1032      SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1033    }
1034  }
1035
1036  // Speculatively check to see if we can get a register right now.  If not,
1037  // we know we won't be able to by adding more constraints.  If so, we can
1038  // check to see if it is valid.  Doing an exhaustive search of the fixed_ list
1039  // is very bad (it contains all callee clobbered registers for any functions
1040  // with a call), so we want to avoid doing that if possible.
1041  unsigned physReg = getFreePhysReg(cur);
1042  unsigned BestPhysReg = physReg;
1043  if (physReg) {
1044    // We got a register.  However, if it's in the fixed_ list, we might
1045    // conflict with it.  Check to see if we conflict with it or any of its
1046    // aliases.
1047    SmallSet<unsigned, 8> RegAliases;
1048    for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1049      RegAliases.insert(*AS);
1050
1051    bool ConflictsWithFixed = false;
1052    for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1053      IntervalPtr &IP = fixed_[i];
1054      if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1055        // Okay, this reg is on the fixed list.  Check to see if we actually
1056        // conflict.
1057        LiveInterval *I = IP.first;
1058        if (I->endIndex() > StartPosition) {
1059          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1060          IP.second = II;
1061          if (II != I->begin() && II->start > StartPosition)
1062            --II;
1063          if (cur->overlapsFrom(*I, II)) {
1064            ConflictsWithFixed = true;
1065            break;
1066          }
1067        }
1068      }
1069    }
1070
1071    // Okay, the register picked by our speculative getFreePhysReg call turned
1072    // out to be in use.  Actually add all of the conflicting fixed registers to
1073    // regUse_ so we can do an accurate query.
1074    if (ConflictsWithFixed) {
1075      // For every interval in fixed we overlap with, mark the register as not
1076      // free and update spill weights.
1077      for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1078        IntervalPtr &IP = fixed_[i];
1079        LiveInterval *I = IP.first;
1080
1081        const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1082        if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1083            I->endIndex() > StartPosition) {
1084          LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1085          IP.second = II;
1086          if (II != I->begin() && II->start > StartPosition)
1087            --II;
1088          if (cur->overlapsFrom(*I, II)) {
1089            unsigned reg = I->reg;
1090            addRegUse(reg);
1091            SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1092          }
1093        }
1094      }
1095
1096      // Using the newly updated regUse_ object, which includes conflicts in the
1097      // future, see if there are any registers available.
1098      physReg = getFreePhysReg(cur);
1099    }
1100  }
1101
1102  // Restore the physical register tracker, removing information about the
1103  // future.
1104  restoreRegUses();
1105
1106  // If we find a free register, we are done: assign this virtual to
1107  // the free physical register and add this interval to the active
1108  // list.
1109  if (physReg) {
1110    DEBUG(dbgs() <<  tri_->getName(physReg) << '\n');
1111    assert(RC->contains(physReg) && "Invalid candidate");
1112    vrm_->assignVirt2Phys(cur->reg, physReg);
1113    addRegUse(physReg);
1114    active_.push_back(std::make_pair(cur, cur->begin()));
1115    handled_.push_back(cur);
1116
1117    // Remember physReg for avoiding a write-after-write hazard in the next
1118    // instruction.
1119    if (AvoidWAWHazard &&
1120        tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
1121      avoidWAW_ = physReg;
1122
1123    // "Upgrade" the physical register since it has been allocated.
1124    UpgradeRegister(physReg);
1125    if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1126      // "Downgrade" physReg to try to keep physReg from being allocated until
1127      // the next reload from the same SS is allocated.
1128      mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1129      DowngradeRegister(cur, physReg);
1130    }
1131    return;
1132  }
1133  DEBUG(dbgs() << "no free registers\n");
1134
1135  // Compile the spill weights into an array that is better for scanning.
1136  std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1137  for (std::vector<std::pair<unsigned, float> >::iterator
1138       I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1139    updateSpillWeights(SpillWeights, I->first, I->second, RC);
1140
1141  // for each interval in active, update spill weights.
1142  for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1143       i != e; ++i) {
1144    unsigned reg = i->first->reg;
1145    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1146           "Can only allocate virtual registers!");
1147    reg = vrm_->getPhys(reg);
1148    updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1149  }
1150
1151  DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1152
1153  // Find a register to spill.
1154  float minWeight = HUGE_VALF;
1155  unsigned minReg = 0;
1156
1157  bool Found = false;
1158  std::vector<std::pair<unsigned,float> > RegsWeights;
1159  ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
1160  if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1161    for (unsigned i = 0; i != Order.size(); ++i) {
1162      unsigned reg = Order[i];
1163      float regWeight = SpillWeights[reg];
1164      // Skip recently allocated registers and reserved registers.
1165      if (minWeight > regWeight && !isRecentlyUsed(reg))
1166        Found = true;
1167      RegsWeights.push_back(std::make_pair(reg, regWeight));
1168    }
1169
1170  // If we didn't find a register that is spillable, try aliases?
1171  if (!Found) {
1172    for (unsigned i = 0; i != Order.size(); ++i) {
1173      unsigned reg = Order[i];
1174      // No need to worry about if the alias register size < regsize of RC.
1175      // We are going to spill all registers that alias it anyway.
1176      for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1177        RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1178    }
1179  }
1180
1181  // Sort all potential spill candidates by weight.
1182  std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1183  minReg = RegsWeights[0].first;
1184  minWeight = RegsWeights[0].second;
1185  if (minWeight == HUGE_VALF) {
1186    // All registers must have inf weight. Just grab one!
1187    minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1188    if (cur->weight == HUGE_VALF ||
1189        li_->getApproximateInstructionCount(*cur) == 0) {
1190      // Spill a physical register around defs and uses.
1191      if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1192        // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1193        // in fixed_. Reset them.
1194        for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1195          IntervalPtr &IP = fixed_[i];
1196          LiveInterval *I = IP.first;
1197          if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1198            IP.second = I->advanceTo(I->begin(), StartPosition);
1199        }
1200
1201        DowngradedRegs.clear();
1202        assignRegOrStackSlotAtInterval(cur);
1203      } else {
1204        assert(false && "Ran out of registers during register allocation!");
1205        report_fatal_error("Ran out of registers during register allocation!");
1206      }
1207      return;
1208    }
1209  }
1210
1211  // Find up to 3 registers to consider as spill candidates.
1212  unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1213  while (LastCandidate > 1) {
1214    if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1215      break;
1216    --LastCandidate;
1217  }
1218
1219  DEBUG({
1220      dbgs() << "\t\tregister(s) with min weight(s): ";
1221
1222      for (unsigned i = 0; i != LastCandidate; ++i)
1223        dbgs() << tri_->getName(RegsWeights[i].first)
1224               << " (" << RegsWeights[i].second << ")\n";
1225    });
1226
1227  // If the current has the minimum weight, we need to spill it and
1228  // add any added intervals back to unhandled, and restart
1229  // linearscan.
1230  if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1231    DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1232    SmallVector<LiveInterval*, 8> added;
1233    LiveRangeEdit LRE(*cur, added);
1234    spiller_->spill(LRE);
1235
1236    std::sort(added.begin(), added.end(), LISorter());
1237    if (added.empty())
1238      return;  // Early exit if all spills were folded.
1239
1240    // Merge added with unhandled.  Note that we have already sorted
1241    // intervals returned by addIntervalsForSpills by their starting
1242    // point.
1243    // This also update the NextReloadMap. That is, it adds mapping from a
1244    // register defined by a reload from SS to the next reload from SS in the
1245    // same basic block.
1246    MachineBasicBlock *LastReloadMBB = 0;
1247    LiveInterval *LastReload = 0;
1248    int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1249    for (unsigned i = 0, e = added.size(); i != e; ++i) {
1250      LiveInterval *ReloadLi = added[i];
1251      if (ReloadLi->weight == HUGE_VALF &&
1252          li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1253        SlotIndex ReloadIdx = ReloadLi->beginIndex();
1254        MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1255        int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1256        if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1257          // Last reload of same SS is in the same MBB. We want to try to
1258          // allocate both reloads the same register and make sure the reg
1259          // isn't clobbered in between if at all possible.
1260          assert(LastReload->beginIndex() < ReloadIdx);
1261          NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1262        }
1263        LastReloadMBB = ReloadMBB;
1264        LastReload = ReloadLi;
1265        LastReloadSS = ReloadSS;
1266      }
1267      unhandled_.push(ReloadLi);
1268    }
1269    return;
1270  }
1271
1272  ++NumBacktracks;
1273
1274  // Push the current interval back to unhandled since we are going
1275  // to re-run at least this iteration. Since we didn't modify it it
1276  // should go back right in the front of the list
1277  unhandled_.push(cur);
1278
1279  assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1280         "did not choose a register to spill?");
1281
1282  // We spill all intervals aliasing the register with
1283  // minimum weight, rollback to the interval with the earliest
1284  // start point and let the linear scan algorithm run again
1285  SmallVector<LiveInterval*, 8> spillIs;
1286
1287  // Determine which intervals have to be spilled.
1288  findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1289
1290  // Set of spilled vregs (used later to rollback properly)
1291  SmallSet<unsigned, 8> spilled;
1292
1293  // The earliest start of a Spilled interval indicates up to where
1294  // in handled we need to roll back
1295  assert(!spillIs.empty() && "No spill intervals?");
1296  SlotIndex earliestStart = spillIs[0]->beginIndex();
1297
1298  // Spill live intervals of virtual regs mapped to the physical register we
1299  // want to clear (and its aliases).  We only spill those that overlap with the
1300  // current interval as the rest do not affect its allocation. we also keep
1301  // track of the earliest start of all spilled live intervals since this will
1302  // mark our rollback point.
1303  SmallVector<LiveInterval*, 8> added;
1304  while (!spillIs.empty()) {
1305    LiveInterval *sli = spillIs.back();
1306    spillIs.pop_back();
1307    DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1308    if (sli->beginIndex() < earliestStart)
1309      earliestStart = sli->beginIndex();
1310    LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1311    spiller_->spill(LRE);
1312    spilled.insert(sli->reg);
1313  }
1314
1315  // Include any added intervals in earliestStart.
1316  for (unsigned i = 0, e = added.size(); i != e; ++i) {
1317    SlotIndex SI = added[i]->beginIndex();
1318    if (SI < earliestStart)
1319      earliestStart = SI;
1320  }
1321
1322  DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1323
1324  // Scan handled in reverse order up to the earliest start of a
1325  // spilled live interval and undo each one, restoring the state of
1326  // unhandled.
1327  while (!handled_.empty()) {
1328    LiveInterval* i = handled_.back();
1329    // If this interval starts before t we are done.
1330    if (!i->empty() && i->beginIndex() < earliestStart)
1331      break;
1332    DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1333    handled_.pop_back();
1334
1335    // When undoing a live interval allocation we must know if it is active or
1336    // inactive to properly update regUse_ and the VirtRegMap.
1337    IntervalPtrs::iterator it;
1338    if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1339      active_.erase(it);
1340      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1341      if (!spilled.count(i->reg))
1342        unhandled_.push(i);
1343      delRegUse(vrm_->getPhys(i->reg));
1344      vrm_->clearVirt(i->reg);
1345    } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1346      inactive_.erase(it);
1347      assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1348      if (!spilled.count(i->reg))
1349        unhandled_.push(i);
1350      vrm_->clearVirt(i->reg);
1351    } else {
1352      assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1353             "Can only allocate virtual registers!");
1354      vrm_->clearVirt(i->reg);
1355      unhandled_.push(i);
1356    }
1357
1358    DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1359    if (ii == DowngradeMap.end())
1360      // It interval has a preference, it must be defined by a copy. Clear the
1361      // preference now since the source interval allocation may have been
1362      // undone as well.
1363      mri_->setRegAllocationHint(i->reg, 0, 0);
1364    else {
1365      UpgradeRegister(ii->second);
1366    }
1367  }
1368
1369  // Rewind the iterators in the active, inactive, and fixed lists back to the
1370  // point we reverted to.
1371  RevertVectorIteratorsTo(active_, earliestStart);
1372  RevertVectorIteratorsTo(inactive_, earliestStart);
1373  RevertVectorIteratorsTo(fixed_, earliestStart);
1374
1375  // Scan the rest and undo each interval that expired after t and
1376  // insert it in active (the next iteration of the algorithm will
1377  // put it in inactive if required)
1378  for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1379    LiveInterval *HI = handled_[i];
1380    if (!HI->expiredAt(earliestStart) &&
1381        HI->expiredAt(cur->beginIndex())) {
1382      DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1383      active_.push_back(std::make_pair(HI, HI->begin()));
1384      assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1385      addRegUse(vrm_->getPhys(HI->reg));
1386    }
1387  }
1388
1389  // Merge added with unhandled.
1390  // This also update the NextReloadMap. That is, it adds mapping from a
1391  // register defined by a reload from SS to the next reload from SS in the
1392  // same basic block.
1393  MachineBasicBlock *LastReloadMBB = 0;
1394  LiveInterval *LastReload = 0;
1395  int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1396  std::sort(added.begin(), added.end(), LISorter());
1397  for (unsigned i = 0, e = added.size(); i != e; ++i) {
1398    LiveInterval *ReloadLi = added[i];
1399    if (ReloadLi->weight == HUGE_VALF &&
1400        li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1401      SlotIndex ReloadIdx = ReloadLi->beginIndex();
1402      MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1403      int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1404      if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1405        // Last reload of same SS is in the same MBB. We want to try to
1406        // allocate both reloads the same register and make sure the reg
1407        // isn't clobbered in between if at all possible.
1408        assert(LastReload->beginIndex() < ReloadIdx);
1409        NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1410      }
1411      LastReloadMBB = ReloadMBB;
1412      LastReload = ReloadLi;
1413      LastReloadSS = ReloadSS;
1414    }
1415    unhandled_.push(ReloadLi);
1416  }
1417}
1418
1419unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1420                                   const TargetRegisterClass *RC,
1421                                   unsigned MaxInactiveCount,
1422                                   SmallVector<unsigned, 256> &inactiveCounts,
1423                                   bool SkipDGRegs) {
1424  unsigned FreeReg = 0;
1425  unsigned FreeRegInactiveCount = 0;
1426
1427  std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1428  // Resolve second part of the hint (if possible) given the current allocation.
1429  unsigned physReg = Hint.second;
1430  if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1431    physReg = vrm_->getPhys(physReg);
1432
1433  ArrayRef<unsigned> Order;
1434  if (Hint.first)
1435    Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
1436  else
1437    Order = RegClassInfo.getOrder(RC);
1438
1439  assert(!Order.empty() && "No allocatable register in this register class!");
1440
1441  // Scan for the first available register.
1442  for (unsigned i = 0; i != Order.size(); ++i) {
1443    unsigned Reg = Order[i];
1444    // Ignore "downgraded" registers.
1445    if (SkipDGRegs && DowngradedRegs.count(Reg))
1446      continue;
1447    // Skip reserved registers.
1448    if (reservedRegs_.test(Reg))
1449      continue;
1450    // Skip recently allocated registers.
1451    if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1452      FreeReg = Reg;
1453      if (FreeReg < inactiveCounts.size())
1454        FreeRegInactiveCount = inactiveCounts[FreeReg];
1455      else
1456        FreeRegInactiveCount = 0;
1457      break;
1458    }
1459  }
1460
1461  // If there are no free regs, or if this reg has the max inactive count,
1462  // return this register.
1463  if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1464    // Remember what register we picked so we can skip it next time.
1465    if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1466    return FreeReg;
1467  }
1468
1469  // Continue scanning the registers, looking for the one with the highest
1470  // inactive count.  Alkis found that this reduced register pressure very
1471  // slightly on X86 (in rev 1.94 of this file), though this should probably be
1472  // reevaluated now.
1473  for (unsigned i = 0; i != Order.size(); ++i) {
1474    unsigned Reg = Order[i];
1475    // Ignore "downgraded" registers.
1476    if (SkipDGRegs && DowngradedRegs.count(Reg))
1477      continue;
1478    // Skip reserved registers.
1479    if (reservedRegs_.test(Reg))
1480      continue;
1481    if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1482        FreeRegInactiveCount < inactiveCounts[Reg] &&
1483        (!SkipDGRegs || !isRecentlyUsed(Reg))) {
1484      FreeReg = Reg;
1485      FreeRegInactiveCount = inactiveCounts[Reg];
1486      if (FreeRegInactiveCount == MaxInactiveCount)
1487        break;    // We found the one with the max inactive count.
1488    }
1489  }
1490
1491  // Remember what register we picked so we can skip it next time.
1492  recordRecentlyUsed(FreeReg);
1493
1494  return FreeReg;
1495}
1496
1497/// getFreePhysReg - return a free physical register for this virtual register
1498/// interval if we have one, otherwise return 0.
1499unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1500  SmallVector<unsigned, 256> inactiveCounts;
1501  unsigned MaxInactiveCount = 0;
1502
1503  const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1504  const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1505
1506  for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1507       i != e; ++i) {
1508    unsigned reg = i->first->reg;
1509    assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1510           "Can only allocate virtual registers!");
1511
1512    // If this is not in a related reg class to the register we're allocating,
1513    // don't check it.
1514    const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1515    if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1516      reg = vrm_->getPhys(reg);
1517      if (inactiveCounts.size() <= reg)
1518        inactiveCounts.resize(reg+1);
1519      ++inactiveCounts[reg];
1520      MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1521    }
1522  }
1523
1524  // If copy coalescer has assigned a "preferred" register, check if it's
1525  // available first.
1526  unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1527  if (Preference) {
1528    DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1529    if (isRegAvail(Preference) &&
1530        RC->contains(Preference))
1531      return Preference;
1532  }
1533
1534  unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1535                                    true);
1536  if (FreeReg)
1537    return FreeReg;
1538  return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1539}
1540
1541FunctionPass* llvm::createLinearScanRegisterAllocator() {
1542  return new RALinScan();
1543}
1544